Μάθημα : ΗΛΕΚΤΡΟΔΥΝΑΜΙΚΗ/ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ
Κωδικός : PHY1958
-
Θεματικές Ενότητες
-
Ενότητα 1: Εισαγωγή
-
Ενότητα 2: Θεώρημα Green
-
Ενότητα 3: Η συνάρτηση Green σε επίπεδη γεωμετρία και η μέθοδος των ειδώλων για την σφαιρική
-
Ενότητα 4: Προβλήματα σφαιρικής γεωμετρίας
-
Ενότητα 5: Η εξίσωση Laplace σε καρτεσιανές συντεταγμένες
-
Ενότητα 6: Εξίσωση Laplace σε πολικές συντεταγμένες
-
Ενότητα 7: Εξίσωση Laplace σε σφαιρικές συντεταγμένες
-
Ενότητα 8: Προβλήματα σφαιρικών συντεταγμένων με αζιμουθιακή συμμετρία
-
Ενότητα 9: Η συνάρτηση Green σε σφαιρικές συντεταγμένες
-
Ενότητα 10: Εφαρμογές στις σφαιρικές και εισαγωγή στις κυλινδρικές συντεταγμένες
-
Ενότητα 11: Εφαρμογή στις κυλινδρικές συντεταγμένες
-
Ενότητα 12: Συνάρτηση Green από ιδιοσυναρτήσεις
-
Ενότητα 13: Πολυπολική ανάπτυξη
-
Ενότητα 14: Ολοκλήρωση πολυπολικής ανάπτυξης και διηλεκτρικά
-
Ενότητα 15: Εφαρμογές στα διηλεκτρικά
-
Ενότητα 16: Εισαγωγή στην μαγνητοστατική
-
Ενότητα 17: Μαγνητοστατική σε υλικά
-
Ενότητα 18: Νόμοι Maxwell
-
Ενότητα 19: Η συνάρτηση Green για την κυματική εξίσωση και το θεώρημα Poynting
-
Ενότητα 20: Ηλεκτρομαγνητικά κύματα
-
Ενότητα 21: Διάδοση ηλεκτρομαγνητικών κυμάτων
-
Ενότητα 22: Κυματοπακέτα-Κυματοδηγοί
-
Ενότητα 1: Εισαγωγή
Ενότητα 21: Διάδοση ηλεκτρομαγνητικών κυμάτων
Ολοκληρώνεται η μελέτη που αφορά την εξαγωγή συμπερασμάτων για την ανάκλαση και διάθλαση κυμάτων σε διαχωριστική επιφάνεια μεταξύ δύο διηλεκτρικών. Ακόμη, παρατίθεται ένα απλό μοριακό μοντέλο που αφορά την έκφραση της διηλεκτρικής σταθεράς. Υπάρχει η περίπτωση όπου το υλικό αποκρίνεται με διαφορετικό τρόπο σε διαφορετικές συχνότητες. Προσπαθούμε να εκφράσουμε την συμπεριφορά της διηλεκτρικής σταθεράς για τις διάφορες συχνότητες. Μια πολύ καλή προσέγγιση είναι το κλασικό μοριακό μοντέλο.