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This review describes in silico methods to characterize the

toxicity of pharmaceuticals, including tools which predict

toxicity endpoints such as genotoxicity or organ-specific

models, tools addressing ADME processes, and methods

focusing on protein–ligand docking binding.These in silico tools

are rapidly evolving. Nowadays, the interest has shifted from

classical studies to support toxicity screening of candidates,

toward the use of in silico methods to support the expert.

These methods, previously considered useful only to provide

a rough, initial estimation, currently have attracted interest as

they can assist the expert in investigating toxic potential. They

provide the expert with safety perspectives and insights

within a weight-of-evidence strategy. This represents a shift

of the general philosophy of in silico methodology, and it is

likely to further evolve especially exploiting links with system

biology.

Addresses

IRCCS – Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa

19, 20156 Milano, Italy

Corresponding author: Benfenati, Emilio (emilio.benfenati@marionegri.it,

benfenati@marionegri.it)

Current Opinion in Pharmacology 2013, 13:802–806

This review comes from a themed issue on New technologies

Edited by Andreas Gescher and Marco Gobbi

For a complete overview see the Issue and the Editorial

Available online 21st June 2013

1471-4892/$ – see front matter, # 2013 Elsevier Ltd. All rights

reserved.

http://dx.doi.org/10.1016/j.coph.2013.06.001

Introduction
The pharmaceutical industry has used in silico methods

for decades to aid the search for new drugs. Usually the

process of drug design implies the optimization of com-

pounds to enhance activity through the identified thera-

peutic target starting with the screening of large sets of

structures, using fast tools to identify an optimal number

of promising lead compounds, and moving afterwards to

more sophisticated tools which allow fine tuning the

structures of the final candidates. It is nowadays well

established that the rate of candidate drugs successfully

placed into the market is very poor mainly due to the

discovery of adverse effects. Therefore there is an

increasing interest in early detection methods for finding

possible reason for drug failure. In silico methods are

particularly interesting from this point of view because
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they can be easily integrated into the early stage of the

drug discovery process using only the ‘virtual’ structure of

the compounds. Moreover, they are less time consuming

and cheaper than wet experiments so that large numbers

of compounds can be evaluated. There are several kinds

of in silico models, which focus on targets at different

levels, addressing the whole body, or specific organs, or

certain biological processes, or focused biochemical

mechanism, such as binding to a receptor (see

Figure 1). A large set of in silico methodologies are used

to predict toxicity. They include quantitative structure–
activity relationship (QSAR) models, expert systems, 3D-

QSAR and docking models. The QSAR methods seek a

mathematical relationship between a group of molecular

descriptors, used to describe each molecule present in a

set of chemicals, and their toxicity values. It is funda-

mental to verify the predictivity of the model, using

appropriate statistical methods. These methods include

internal and external validation. In case of the external

validation a set of new chemicals, never before used in

model development, is applied. A recent book described

the theory and applications of in silico models with

emphasis on QSAR [1]. ‘Expert systems’ are software

programs which codify a series of rules identified by

experts in their field of interest. A typical example is

when there is a set of known toxic fragments (often called

‘structural alerts’), and the software recognizes their pre-

sence in the target chemical. An issue associated with this

kind of approach is that the set of toxic fragments can be

incomplete and thus may produce false negatives, that is,

falsely predict chemicals as safe. 3D-QSAR is based on

the concept of so-called ‘molecular interaction fields’.

With this technique the variation in the steric and elec-

trostatic interaction energies calculated between each

molecule and a probe is correlated with the variation in

the investigated property. 3D-QSAR is usually focused on

a set of structurally similar compounds with associated

toxicity data, while docking mimics the binding to a

biological macromolecule (usually a protein) [2]. In gen-

eral, docking is not so commonly used in toxicity esti-

mation, because most typically toxicity phenomena

involve a complex sequence of events and binding to a

specific receptor is only a possible component of this

sequence. Conversely, docking studies are more fre-

quently used in the drug design process where the

therapeutic target is known (i.e. the receptor one wishes

to block/activate), while often the causes are not clarified

at the biochemical level for toxicological phenomena.

This mini-review will present recent trends on the use

of in silico methods to explore adverse effects of drugs. In
www.sciencedirect.com
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The more and more detailed tools available to predict toxicity endpoints,

using in silico methods.
particular models and approaches dealing with ADME

(adsorption, distribution, metabolism, and excretion)

properties will be presented here, together with models

related to toxicity, with emphasis on both systemic

toxicity and organ specific effects. Furthermore we will

discuss the applications of in silico methods from the

regulatory point of view, and we consider problems and

future perspectives.

Models for ADME
ADME properties comprise the evaluation of a series of

parameters that are relevant not only in determining the

capability of the drug to reach pharmacologically active

concentration at the therapeutic targets. Furthermore,

ADME may be responsible for adverse effects due for

instance to accumulation or biotransformation. So ADME

evaluation can be useful combined to in silico models for

toxicity evaluation [3]. Physico-chemical indicators are

increasingly used during the early stages of drug discovery

to provide a comprehensive understanding of the key

properties that affect biological functions (ADME).

Historically simple approaches based on filters applied

to the evaluation of some physico-chemical properties in

relation to drug likeness (such as the ‘Lipinski rule of 5’)

have been widely used and are still popular nowadays [4],

although their use has been sometimes criticized for

being over simplistic [5]. Lipinski rules are specific

cut-offs values assigned to physico-chemical parameters

(molecular weight, lipophilicity, number of H-bond

donors or acceptors) to identify easily bioavailable drugs.

Drug bioavailability is a key aspect often evaluated with in
silico models [6]. It comprises the assessment of common
www.sciencedirect.com 
physico-chemical properties such as solubility [7] or pKa,

which describe the substance regardless of the biological

environment. Moreover, interactions with the biological

system are also evaluated, such as intestinal permeability

[6] (with models derived on the basis of in vivo [8�] or in
vitro data [9��]). Interest is now growing also in the role of

active transporters [10] together with passive diffusion.

Some studies addressed the blood–brain barrier (BBB)

permeability of compounds [11�,12] that can be related to

possible neurotoxic effects. Binding to plasma proteins is

also often evaluated [13].

Among the properties relevant to ADME, metabolism is

one of the most intensely studied. In particular, metab-

olism can play a crucial role in the toxicity of drugs (e.g.

genotoxicity; see also below: ‘Regulatory context for in
silico models’) but also in drug–drug interactions. A

variety of modeling approaches have been adopted in

this field as recently detailed by Kirchmair et al. [14��];
these approaches include expert systems, data mining,

QSARs, MIFs, and protein–ligand docking. Often,

emphasis is placed on phase I metabolism involving

P450 enzymes. Aspects which have been analyzed are

selectivity for some CYP isoforms, metabolic product

formation, relative quantities of metabolite formation,

and sites of transformation in the molecule. In the case

of metabolism, it is possible to rely on the structure of the

enzymes involved in the biotransformation for the mod-

eling. So the structure based approach is one of the most

promising in analyzing metabolism [15] and has been

successfully employed on a series of macromolecules

relevant in the ADME processes such as phase II meta-

bolizing sulfotransferases. Expert systems have been also

widely employed with the advantage of allowing simul-

taneously evaluation of ADME and toxicity character-

istics [16,17]. Software availability for the developed in
silico models of ADME properties is also crucial for their

routine use, and several commercial and non-commercial

software programs for ADME properties estimation are

available [18��] and new ones are constantly being devel-

oped [19]. A key characteristic of some of these software

programs is the possibility to have trainable models where

in house data are included in the training set of the pre-

built model to improve its performance for the specific

compounds of interest.

An aspect that is often emphasized in evaluating model

reliability is the lack of adequate quantity and quality of

data to be modeled [20], so there is the need to make

more experimental data available to modelers [18��,21].

Nowadays there are also more and more efforts to inte-

grate ADME predictions into physiologically based phar-

macokinetic/pharmacodynamic (PBPK/PD) models [22].

For instance, there are models predicting volume of

distribution and other parameters which can be useful

in the overall evaluation of the drug distribution in the
Current Opinion in Pharmacology 2013, 13:802–806
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body. The combination of in silico and in vitro derived

parameters can be useful to mimic in vivo behavior [23].

In silico models for toxicity
When dealing with in silico models for toxicity we can

distinguish methods which address the overall toxic

phenomenon, for instance carcinogenicity, and methods

which address factors of the process leading to toxicity

manifestations. Thus, some models address systemic

toxicity while others focus on organ-specific toxicity.

There are in silico models for a large number of toxicity

phenomena [24,25�]. Among these genotoxicity and car-

cinogenicity, although very complex, are among the most

extensively studied. However, the availability of a model

is different from the reliability of the model prediction.

Moreover the possibility to satisfactorily apply a model to

a pharmaceutical of interest may depend on toxicological

data availability for molecules chemically related to this

entity. There are papers in which model performance is

assessed for general chemicals [26,27], or for pharmaceu-

ticals, with respect to carcinogenicity and mutagenicity

[28��]. In contrast, there is a paucity of models for devel-

opmental or reproductive toxicity [18��]. In comparison

with the models presented above, in silico models for

organ-specific effects are generally focused on pharma-

ceuticals, since data availability is most abundant for

drug-like compounds. Among them hepatotoxicity has

been frequently investigated [29], and nowadays increas-

ing interest is also placed on cardiotoxicity [30,31] and

nephrotoxicity [32]. Limited models are available for

neurotoxicity or other effects such as phospholipidosis

[33]. Some investigations involved the use of adverse

effect databases [34] or combinations of effects against

several receptor targets [35], using integrated risk indices.

Regulatory context for in silico models
The use of in silico methods to estimate toxicity is solicited

in different legislation in the EU such as those concerning

chemicals or cosmetics. Their use in the pharmaceutical

field is more related to the R&D of new drugs avoiding

potential adverse effects. Furthermore, regulatory criteria

have been defined for the use of in silico predictions in drug

safety for the genotoxicity evaluation of drug impurities

where the presence or absence of specific structural alerts

triggers the subsequent management of potential risk posed

by the presence of this impurity [36�,37,38�]. In this context,

new models have been recently proposed to estimate

genotoxic or carcinogenic potency in order to estimate

safety [37,38�,39]. Very good results have been obtained

in the evaluation of genotoxic impurities in the industrial

sector when in silico data were coupled with expert evalu-

ation [36�] achieving a negative predictive value of 99%.

Problems and future perspectives
As mentioned above, data availability is one of the major

barriers to the improvement of in silico predictive models.

Indeed, these methods are based on data, and frequently
Current Opinion in Pharmacology 2013, 13:802–806 
method viability suffers from a scarcity of data. In the case

that interest focuses on drugs with a similar structures, the

requirement of chemical entity number is low, typically

10–30. This number has to be much higher for hetero-

geneous compounds. A complication associated with

unusual molecular scaffold features in new drug design

is that such drugs may contain chemical moieties not

present in the molecules used to build up the model

generating effects difficult to predict. So far two types of

solutions have been proposed to overcome this problem:

firstly introduction of an independent third party entity

allowing inclusion of confidential data into the database

[40], and secondly the use of software capable of extract-

ing rules that can be run by the owner of the data [41] and

shared on a limited basis to avoid confidentiality issues. A

similar problem is associated with data quality. The

quality of the existing toxicological data and their

standardization can be vital. A debate is ongoing on

the definition of the different toxicity endpoints, on

the similarity of the procedures and on data uncertainty

[42].

New scientific fields will very probably have an impact on

in silico methods for toxicity prediction. This is the case

for systems biology, which provides associations useful for

toxicity assessment, merging data sets of different origin

[31,43] and contributing to the elucidation of mechan-

isms. For instance networks of protein-protein inter-

actions have been investigated to elucidate adverse

cardiotoxic effects [31]. This broad approach will add

further complexity, on the one hand, but it will offer novel

insights and possibilities to model toxicity phenomena,

on the other.

Another challenge is that in silico models typically work on

classical chemical structures, but nowadays new types of

therapeutics emerge, including peptides and nano-

materials, therefore pioneer studies on peptides [44�]
and nano-materials [45�,46] are a promising area of future

expansion for in silico models. These studies addressed

the issue of which format should be used to simplify the

complexity of the parameters potentially involved, which

range from the chemical structure to others experimen-

tally measured.

Conclusions
In silico models for toxicity prediction are used within the

pharmaceutical industry. The results obtained using

these models can contribute to the screening process of

new drugs. A wide series of different tools exist, addres-

sing general toxicity effects, or organ-specific ones. Tools

to predict ADME are common and assist in understand-

ing toxicity phenomena.

The improvement in the field is expected when further

experimental data will become available. Novel powerful

approaches will help, integrating results obtained in
www.sciencedirect.com
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multiple independent ways. Indeed, as with in vitro
methods, the combination of multiple approaches will

increase the performance of the predictions, compared to

results related to one model.
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The International Serious Adverse 
Events Consortium
Arthur L. Holden, Jorge L. Contreras, Sally John and Matthew R. Nelson

The International Serious Adverse Events Consortium is generating novel insights into  
the genetics and biology of drug-induced serious adverse events, and thereby improving 
pharmaceutical product development and decision-making.

The impetus for the International Serious Adverse Events 
Consortium (iSAEC) arose from a series of interviews 
in 2006 with senior research and development leaders 
of major pharmaceutical companies, exploring how to 
build on the success of the SNP Consortium1 to identify 
additional, high-value genomic research areas in which 
to apply this highly effective cross-industry collaborative 
model. The interviewees assigned the highest priority to 
exploring the genetic basis of drug-induced, rare serious 
adverse events (SAEs). In May 2006, with staff at the US 
Food and Drug Administration (FDA), we conceptualized 
the structure for a private, international research consor-
tium to explore the genetic contribution to drug-induced 
SAEs. It was felt the opportunities for applying genomic 
technologies to better understand this vital aspect of drug 
safety would benefit both drug development and regula-
tory oversight. Equally significant were the complexity, 
logistics, management, risks, and cost associated with 
such a research initiative. No single institution possessed 
the resources, sufficient well-phenotyped cases, geno
mics expertise and international breadth to execute such 
a research endeavour alone. The stage was set for the 
development and launch of the iSAEC.

Scientific focus and organizational structure
The iSAEC is a pharmaceutical-industry-led and FDA-
supported international research consortium, focused 
on identifying and validating DNA variants predictive of  
the risk of drug-induced SAEs. It was launched in 2007 
with the scientific and financial support of six funding  
members (Abbott, GlaxoSmithKline, Johnson & Johnson,  
Pfizer, Roche and Sanofi-Aventis). Additional dues-paying  
members were added (Novartis, Takeda, Daiichi Sankyo, 
and The Wellcome Trust) as the consortium completed its 
Phase 1 research programme (focused on the genetics of  
drug-induced liver injury (DILI) and serious skin injury  
(DISI)). A separate call for funding and membership roster  
was developed for the Phase 2 research programme, which  
included ten dues-paying members (Abbott, GlaxoSmith
Kline, Pfizer, Takeda, Daiichi Sankyo, Novartis, Merck, 

Amgen, AstraZeneca and the Wellcome Trust), as well  
as three associate members that made in-kind, non-cash  
contributions to the research effort (Cerner, Clinical Data  
and Catholic Health Initiatives). The FDA has partici-
pated from the outset as an observer, advisor and research 
collaborator, but without formal membership status.

Since 2007, the iSAEC has collaborated with over 200 
leading academic centres and scientists globally to:
•	 standardize and publish phenotype definitions for 

the major drug-induced SAEs (liver, skin, heart and 
renal injury);

•	 build diverse, well-phenotyped clinical cohorts and 
sample repositories for many of the major SAEs;

•	 apply optimal genomic and computational methods 
(including imputation) for effective genome-wide 
single nucleotide polymorphism (SNP) genotyping 
and exome sequencing;

•	 ensure timely public availability of scientific results/
associated data (within 12 months after genotyping, 
regardless of publication timing) to the scientific com-
munity at no cost2 (see Further information); and

•	 ensure the open use of all iSAEC data, unencumbered 
by intellectual property constraints3.
The iSAEC’s organization is virtual and composed of 

multiple collaborative teams, staffed by member volun-
teers and research collaborators, and under the direction 
of the iSAEC’s CEO/Chairman. The iSAEC is governed by 
a board of directors (BOD) that consists of one director 
from each sponsoring member and the CEO, ex officio, 
and makes its decisions using a ‘majority rules’ model. 
The board delegates the oversight and management of 
the consortium’s research agenda to the scientific manage-
ment committee (SMC), which has representatives from 
each member company as well as scientific and clinical 
experts from many of its major collaborations. The SMC 
is supported by the Data Analysis and Coordination 
Center (DACC) at Columbia University as well as a net-
work of genotyping and sequencing partners. The DACC 
coordinates the aggregation, quality control, analysis and 
release of all research data; prior to public data release, no 
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consortium member or collaborator may use the data for 
any purpose other than the advancement of the consor-
tium’s research (that is, there is no preferential access; see 
Further information for details of the data release policy).

Current status and scientific output so far
Over the past 7 years, the iSAEC has developed novel, inter-
national clinical networks to aggregate well-phenotyped 
case collections associated with specific SAEs and causal 
drugs. Specifically, we have aggregated subjects with DILI, 
DISI, drug-induced hypersensitivity syndrome (DIHSS), 
drug-induced renal injury (DIRI), drug-induced Torsades 
de pointes/prolonged QT effects (DITdP), inflammatory 
bowel disease (IBD) therapy-related SAEs such as pan-
creatitis and leukopenia, excessive weight gain (EWG) 
associated with class 2 antipsychotics, and osteonecrosis 
of the jaw (ONJ). Case enrolment has been completed for 
all SAEs, with the exception of DIRI and those related to 
IBD (see Supplementary information S1 (table)). By the 
end of 2015, the consortium expects to have aggregated 
close to 7,500 SAE cases spanning these phenotypes. The 
majority of this collection will be Caucasian, but it will con-
tain important African, Indian and Chinese cohorts. The 
scale, depth, quality, and diversity of this recruitment effort 
are unprecedented in the history of drug safety research.

The iSAEC has or will conduct genome-wide geno
typing of all collected subjects. In Phase 1, initial genome-
wide association studies were conducted for DILI, DISI and 
DITdP, leading to several novel findings and key insights 
into the primary immune-related mechanisms underlying 
many of these SAEs (see Supplementary information S2 
(box) for a list of publications). Following the success 
of the first phase, the BOD approved a plan to increase 
the existing DILI and DISI case collections, expand into 
DIHSS, DIRI, EWG, ONJ and IBD-related SAEs, expand 
investigations for selected SAEs into non-European popu-
lations, and explore the role of rare variants in SAEs with 
pilot exome sequencing studies for co-amoxiclav-induced 
liver injury, clozapine-induced agranulocytosis and DITdP.

To date, the iSAEC has completed 18 public releases 
of anonymized subject-level clinical and genotyping 
data, associated with 3,623 of its cases and controls. A 
total of 135 researchers and institutions have applied 
for and been granted access to the iSAEC database (see 
Further information). Through this open access policy, 
we hope to stimulate further analysis that will yield addi-
tional scientific insights and publications as collections 
and genetic analysis methods evolve2.

The iSAEC is helping to set the precedent for genetic 
analysis of drug-induced SAEs and beginning to broaden 
the scientific understanding of these highly personalized 
reactions to otherwise safe and effective drugs. Through 
our research, we have demonstrated that the primary 
genetic contribution to SAE risk is through human leuko
cyte antigen (HLA) variation and the adaptive immune 
response, and that the variants with clinically meaningful  
effects can be detected in relatively small sample sizes 
(<50 cases in several instances). This bodes well for the 
feasibility of applying genomic methods in the future 
when an immunologically mediated toxicity is suspected. 
In those studies where we have performed sequencing 

analysis, our quest to identify rare variants (that is, <1% 
of the population) with a large SAE influence has, to date, 
been unfruitful. We remain uncertain as to the effects 
such rare genetic variants may have on SAEs. To date, 
most of our findings are drug-specific versus across mul-
tiple drugs, which may be expected given the important 
role for the major histocompatibility complex genomic 
region in the pathology of immunologically mediated  
SAEs and the very specific relationships observed 
between HLA alleles and clinical disease (for example, 
HLA-B*27 in ankylosing spondylitis and HLA-C*06 in 
psoriasis). Finally, there are a number of HLA alleles 
that are associated with different SAEs and for different 
drugs, including HLA-B*57:01, HLA‑DRB1*07:01, and 
HLA‑DRB1*15:01, that may provide important insights 
into the underlying biology of SAEs and offer strategies 
to predict or mitigate future SAEs.

Lessons learned and conclusions
Lessons learned in developing the iSAEC include:
•	 a clear, unifying, highly important mission is a must 

from the outset;
•	 to maximize membership and ease of formation, 

ensure the proposed effort is precompetitive and in 
the public good;

•	 develop the operating plan and uniform membership 
requirements with the potential funding members;

•	 have a high-quality, phased scientific/operating plan 
before recruiting funding members;

•	 establish dedicated, high-quality management early;
•	 develop funding requirements early, and work with 

the potential members on trade-offs to produce an 
affordable and effectively phased consortium;

•	 organize a board and well-defined committees with 
high-quality, dedicated leaders;

•	 outsource to the best external advisors/investigators 
via performance-based contracts;

•	 exceed expectations;
•	 make it fun and say “thank you” in meaningful ways;
•	 know when to terminate the consortium — begin 

with the end in mind!
Drug-related biomedical research options are exploding  

in number, complexity, risk and cost. To address the chal-
lenges, all stakeholders must work together to develop 
new collaborative research frameworks and diversified 
funding models that enhance financial leverage and 
research productivity. The iSAEC serves as an excellent 
example of such innovation.
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Predicting Adverse Drug Events Using Pharmacological Network Models

 
Editor's Summary

 
 
 

warnings.
discovered earlier, helping to prevent drug-related morbidity and mortality through appropriate consumer label 

The benefit for patients? With this powerful model in place, certain unknown adverse drug effects may be

attack.
emerged after 2005, including the relationship between the anti-diabetes drug rosiglitazone (Avandia) and heart 
able to predict with high specificity seven of eight drug ADEs identified by pharmacological experts as having
adverse event reporting, making it a realistic method for predicting future ADEs. With their network, the authors were 
newly reported between 2006 and 2010. Such prospective evaluation preserves the chronological order of drug
in the network. The predictive capabilities of the model were prospectively validated using drug-ADE associations 

basically creating a formula that would indicate the likelihood of unknown side effects of any drug−−predictive model
 then used this drug-ADE network to train a logistic regressionet al.a network that is reminiscent of a web. Cami 

documented in 2005. These drug-safety associations were combined with taxonomic and biological data to construct 
The authors first collected a ''snapshot'' of 809 drugs and their 852 related adverse events that had been

that will be detected down the line.
need to wait for such evidence to accumulate. Instead, it can inform drug safety practitioners early on of likely ADEs 

a process that may take years. The method devised by Cami and coauthors does not−clinical evidence accumulates
(adverse drug effects). This post hoc analysis is usually unable to detect rare or delayed-onset ADEs until enough 

After its release to the market, any given drug undergoes rigorous evaluation to determine associated ADEs

mortality.
and−−predicting such adverse events associated with the drugs we take, in hopes of reducing drug-related morbidity

adverse drug effects before they are clinically discovered? Cami and colleagues develop a mathematical approach to
added to the drug label only years after a drug goes on the market. But what if scientists could know about certain 
headaches warrant another visit to the doctor. Oftentimes, important adverse effects of drugs are discovered and
medication. The result is a seemingly infinite list of Web sites telling us that the nausea is normal, or that the 

We've all done it: googled a combination of medical terms to describe how we feel after taking a new

The Power of Prediction
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R E S EARCH ART I C L E
COMPUTAT IONAL PHARMACOLOGY
Predicting Adverse Drug Events Using Pharmacological
Network Models
Aurel Cami,1,2* Alana Arnold,1 Shannon Manzi,1 Ben Reis1,2
er
 2

2,
 2

01
1

Early and accurate identification of adverse drug events (ADEs) is critically important for public health. We have
developed a novel approach for predicting ADEs, called predictive pharmacosafety networks (PPNs). PPNs integrate
the network structure formed by known drug-ADE relationships with information on specific drugs and adverse
events to predict likely unknown ADEs. Rather than waiting for sufficient post-market evidence to accumulate
for a given ADE, this predictive approach relies on leveraging existing, contextual drug safety information, thereby
having the potential to identify certain ADEs earlier. We constructed a network representation of drug-ADE associa-
tions for 809 drugs and 852 ADEs on the basis of a snapshot of a widely used drug safety database from 2005 and
supplemented these data with additional pharmacological information. We trained a logistic regression model to
predict unknown drug-ADE associations that were not listed in the 2005 snapshot. We evaluated the model’s
performance by comparing these predictions with the new drug-ADE associations that appeared in a 2010 snapshot
of the same drug safety database. The proposed model achieved an AUROC (area under the receiver operating
characteristic curve) statistic of 0.87, with a sensitivity of 0.42 given a specificity of 0.95. These findings suggest
that predictive network methods can be useful for predicting unknown ADEs.
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INTRODUCTION

Adverse drug events (ADEs) pose serious challenges to public health.
A wide range of approaches are used in attempts to detect ADEs in
both pre- and post-market stages. In pre-market stages, compounds
undergo extensive toxicity testing through a diverse range of methods
(1–11), followed by rigorous clinical trials to evaluate their efficacy and
safety profile. In post-market stages, data collected in different types of
observational databases—such as spontaneous reports, drug-specific
patient registries, administrative claims databases, and electronic health
records—are continuously analyzed in search of evidence of increased
ADE rates possibly related to specific drugs (12–14). These methods
involve well-known limitations, such as the difficulty of detecting rare
or delayed-onset ADEs (15–17), as well as ADEs that are already com-
mon in the treatment population (18).

To further strengthen the collection of tools available to drug safety
professionals, we proposed an approach for identifying ADEs, called
predictive pharmacosafety networks (PPN). PPNs exploit the net-
work structure formed by known drug safety relationships and com-
bine this high-level network data with information on specific drugs
and adverse events to predict likely unknown adverse events. Although
existing methods (12–14) rely on sufficient post-market evidence to
accumulate for a specific adverse drug effect, this predictive approach
relies on leveraging contextual information from previously known
drug safety relationships. As a result, it has the potential to predict
certain candidate ADEs earlier than they might be detected by existing
post-market methods. In addition, the proposed approach can poten-
tially become a valuable complementary addition to the set of existing
pre-market predictive tools of toxicity through enabling the analysis of
an unexplored type of information: the network structure.
1Children’s Hospital Boston, Boston, MA 02115, USA. 2Harvard Medical School, Harvard
University, Boston, MA 02115, USA.
*To whom correspondence should be addressed. E-mail: aurel.cami@childrens.harvard.
edu

www.ScienceTr
We are aware of only one other network-based study focused on
the prediction of unknown ADEs (19). In relation to this previous
work, the current paper makes two primary contributions. First, it
develops a predictive approach that integrates various data types—
including structural network properties, drug intrinsic properties, and
drug and ADE taxonomies—and introduces several covariates that
have not been explored previously. Second, and perhaps more impor-
tantly, this study evaluated network-based predictive models through
a simulated prospective approach. Prospective evaluation is the only
method that preserves the chronological order in which the informa-
tion historically became available. Preserving this chronological order
is crucial because, to be useful in practice, an ADE prediction method
must be able to predict an unknown ADE based only on information
available before the ADE became known. The use of other approaches,
such as cross-validation, can potentially break this chronological order
by including in the training set ADEs that historically became known
only after certain related ADEs in the validation set became known,
providing an unfair and unrealistic advantage to the prediction model.

Earlier identification of ADEs could have a direct positive impact
on drug safety and public health by enabling the design of risk eval-
uation and minimization strategies and the addition of appropriate
label warnings and market withdrawals. The proposed computational
approach is intended as a complementary hypothesis generation tool
to identify potential drug–adverse event relationships. Given the tre-
mendous complexity of drug safety research and the many ways in
which a drug can cause an adverse event (20, 21), each of these poten-
tial relationships requires further investigation, including expert hu-
man pharmacological review.
RESULTS

Overview of constructing PPNs
As the first stage of the PPN approach (Fig. 1), we integrated data
from multiple sources, including data on drug-ADE associations, drug
anslationalMedicine.org 21 December 2011 Vol 3 Issue 114 114ra127 1
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and ADE taxonomies, and intrinsic drug properties. Next, we con-
structed a network representation of the drug-ADE associations
contained in the 2005 database snapshot. We used this drug-ADE
network to derive a collection of network, taxonomic, and intrinsic
covariates (table S1) and to train a logistic regression (LR) predictive
model. The LR model generated scores (predicted probabilities) for all
the non-edges of the 2005 network, and the highest-scoring non-edges
formed the model’s predictions for unknown drug-ADE associations.
Next, we identified the drug-ADE associations that were newly reported
during the 5-year period from 2006 to 2010 by comparing the 2005 and
2010 snapshots. We performed a systematic evaluation of the model’s
performance by comparing the model-generated scores with the set of
newly reported drug-ADE associations.

Data description
Figure 2 provides a visualization of the drug-ADE network (high-
resolution image available as supplementary online file “Fig2-highres.
tif”). The data for constructing this network were obtained from differ-
ent sources. Drug-ADE associations were extracted from two chron-
ologically separated snapshots of a proprietary commercial database
widely used in hospitals today, provided by Lexicomp (http://www.
lexi.com). These two snapshots contained all reported adverse events
of all Food and Drug Administration–approved drugs as of December
2005 and December 2010, respectively. The ADEs in these snapshots
were then mapped to the Medical Dictionary for Regulatory Activities
(MedDRA) taxonomy v12.0 (Supplementary Methods). For a very small
number of ADE names (less than 1%), we were not able to find a map-
ping at the MedDRA lowest-level term (LLT), preferred term (PT), or
high-level term (HLT) levels, but only at a higher level, such as high-
level group terms (HLGTs). We excluded those ADE names from our
analysis. The taxonomic and intrinsic drug properties were extracted
from the following publicly available databases: World Health Organi-
zation Anatomical Therapeutic Chemical (ATC) Classification System
www.ScienceTr
(http://www.whocc.no/atc), University of Alberta DrugBank (http://www.
drugbank.ca), and National Center for Biotechnology Information’s
PubChem Compound (http://www.ncbi.nlm.nih.gov/pccompound).
Generic names were used to uniquely represent drugs and to perform
data integration.

After integrating the safety data from the 2005 snapshot with the
DrugBank, PubChem, and ATC drug data, we identified 809 unique
drugs common to all three databases (table S2). These 809 drugs collect-
ively were associated with 852 unique ADEs, represented by MedDRA
HLTs, in the 2005 snapshot. The 2005 drug-ADE network therefore
consisted of 1661 nodes (Fig. 2): 809 drugs and 852 ADEs. This net-
work had 39,591 edges and 649,677 non-edges (proportion of edges in
the training set: 5.7%). In the 2010 safety data snapshot, we identified
10,845 new edges between these 809 drugs and 852 ADEs (proportion
of new edges in the validation set: 1.7%). Of the 809 drugs included in
the study, 522 had at least one “newly associated” ADE that appeared
as associated with the drug in the 2010 data, but not in the 2005 data.
Figure S1 shows the mean number of newly associated ADEs per drug
in each ATC top-level group. Over this subset of 522 drugs, the mini-
mum, maximum, and mean number of newly associated ADEs were
1, 164, and 20.8 [95% confidence interval (CI), 18.7 to 22.9], respec-
tively. Of the 852 ADEs included in the study, 709 had at least one
newly associated drug that appeared as associated with the ADE in the
2010 data, but not in the 2005 data. Figure S2 shows the mean number
of newly associated drugs per ADE in each MedDRA top-level group.
Over this subset of 709 ADEs, the minimum, maximum, and mean
number of newly associated drugs were 1, 97, and 15.3 (95% CI, 13.97
to 16.63), respectively.

Baseline model: Network covariates
We began our modeling analysis by first considering baseline models
that contained only network covariates (those relating to the struc-
ture of connections between drugs and ADEs). We investigated nine
Fig. 1. Overview of the PPN approach. First, data were integrated from
multiple sources, including safety data (drug-ADE associations contained

sic covariates and to train a logistic regression (LR) predictive model. The
trained LR model was used to generate scores for all the non-edges of
in two chronologically separated snapshots of a drug safety database: one
from 2005 and another from 2010), taxonomic data (ATC taxonomy of
drugs and MedDRA taxonomy of ADEs), and biological data (intrinsic drug
properties). Next, a network representation of the drug-ADE associations
contained in the 2005 database snapshot was constructed. The drug-ADE
network was used to derive a collection of network, taxonomic, and intrin-
the 2005 network. Next, the actual drug-ADE associations that were
newly reported during the 5-year period from 2006 to 2010 were iden-
tified by comparing the 2005 snapshot with the 2010 snapshot. Finally,
a systematic evaluation of the model’s performance was performed by
comparing the model-generated scores with the set of newly reported
drug-ADE associations.
anslationalMedicine.org 21 December 2011 Vol 3 Issue 114 114ra127 2
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network covariates (table S1): degree-prod, degree-sum, degree-ratio,
degree-absdiff, jackard-ADE-max, jackard-ADE-Kullback-Leibler
(KL) divergence, jackard-drug-max, jackard-drug-KL, and edge-density.
For a given drug-ADE pair (i, j), each covariate Xs(i, j) in this study
depended on the nodes (i, j) and on their neighbor sets N(i) and
N( j). The fitting of univariate and multivariate models was performed
using the LOGISTIC procedure in the Statistical Analysis System
(SAS) v9.2. The covariate degree-prod aimed to capture any potential
preferential association among high-degree drugs and ADEs. The co-
variate degree-absdiff aimed to capture assortativity by degree; that
is, whether high-degree drugs tend to connect more frequently to
high-degree ADEs or to small-degree ADEs. The covariates degree-
sum and degree-ratio are analogous to degree-prod and degree-absdiff,
respectively, and were generated for completeness. Degree-based
covariates were found to be predictive of drug-ADE associations and
drug-drug interactions using an exponential random graph (ERG)
model. The covariates jackard-ADE-max and jackard-drug-max aimed
to capture the structural similarity between drug pairs and ADE pairs.
Jackard coefficient–based predictors have been used in several earlier
studies (22, 23); specifically, jackard-drug-maxwas earlier used in (19).
The versions of Jackard-based predictors based on KL divergence
leverage the full distribution of similarities between a drug and the
drugs in its local neighborhood or between an ADE and the ADEs in
its neighborhood.
www.ScienceTr
Univariate and multivariate analyses were performed for these net-
work covariates (Table 1). The signs of the parameter estimates reflect the
effect of each network covariate on the probability of the existence of an
edge between a given drug and ADE. Specifically, edges are more likely to
exist in drug-ADE pairs with higher values of degree-prod, degree-
absdiff, jackard-drug-max, and jackard-ADE-max, and lower values
of jackard-drug-KL and jackard-ADE-KL. Figure 3 illustrates the ef-
fect of covariates degree-prod (Fig. 3A) and jackard-ADE-max (Fig. 3B)
on the probability of the existence of an edge for both the training and
the validation sets. As expected from the differing proportions of edges
in the training and validation sets (5.7% versus 1.7%, respectively), the
probabilities were markedly smaller in the validation set. The mean
distribution of the variable jackard-ADE (J(k, j), k ∈ N(i) − {j}) over
the edges and non-edges groups, for both the training (Fig. 3F) and
the validation (Fig. 3G) sets, is also shown, along with analogous
information for the variable jackard-drug (J(k, i), k ∈ N( j) − {i}) (Fig.
3, H and I). It may be seen that when a drug-ADE pair (i, j) denotes a
true association, the neighborhood N(i) typically contains more ADEs
that are highly similar—such as with a Jackard coefficient greater than
0.2—to the ADE j than when the pair denotes a non-association. An
analogous conclusion can be drawn for neighborhoods N( j).

The performance of the best model developed using only these
network (NET) covariates was evaluated (Table 1). Table 2 lists
the 10 highest-scoring true positives predicted with model NET.
Table 1. Analysis of model covariates. Definition of each covariate is pro-
vided in table S1. Parameter estimates were obtained by fitting univariate
logistic regression models. AUROC values were determined on both the
training data and the validation data and are therefore shown separately.
Sen99, Sen95, and Sen90 denote the sensitivity achieved when specificity
is fixed at 0.99, 0.95, and 0.9, respectively. Model NET contains all network
covariates except degree-sum and degree-ratio. Model TAX contains all
taxonomic covariates. Model INT contains all intrinsic covariates.
Covariate name
 Parameter estimate
 Training set AUROC
anslatio
Validation set AUROC
nalMedicine.org 21 December
Sen99
2011 Vol 3 Iss
Sen95
ue 114 114ra12
Sen90
jackard-ADE-max
 9.99
 0.95
 0.856
 0.108
 0.368
 0.554
degree-prod
 0.00023
 0.918
 0.853
 0.118
 0.374
 0.555
degree-sum
 0.013
 0.906
 0.828
 0.11
 0.363
 0.507
jackard-drug-max
 13.911
 0.906
 0.786
 0.064
 0.232
 0.386
jackard-ADE-KL
 −2.36
 0.898
 0.832
 0.086
 0.309
 0.491
jackard-drug-KL
 −2.07
 0.854
 0.771
 0.066
 0.249
 0.401
degree-ratio
 −0.181
 0.799
 0.781
 0.032
 0.196
 0.363
degree-absdiff
 0.01
 0.772
 0.688
 0.093
 0.267
 0.386
NET
 0.963
 0.862
 0.111
 0.407
 0.588
atc-min
 −0.568
 0.87
 0.816
 0
 0
 0.422
atc-KL
 −2.85
 0.759
 0.72
 0.06
 0.215
 0.365
meddra-min
 −0.695
 0.737
 0.644
 0
 0
 0
meddra-KL
 −4.77
 0.64
 0.571
 0.02
 0.11
 0.174
TAX
 0.90
 0.838
 0.093
 0.337
 0.519
NET + TAX
 0.965
 0.869
 0.119
 0.415
 0.608
euclid-min
 −0.0044
 0.815
 0.752
 0.048
 0.2
 0.365
euclid-KL
 −1.6
 0.839
 0.79
 0.077
 0.294
 0.458
INT
 0.839
 0.79
 0.077
 0.294
 0.458
NET+INT
 0.963
 0.86
 0.111
 0.408
 0.586
TAX + INT
 0.907
 0.844
 0.107
 0.346
 0.525
NET + TAX + INT
 0.966
 0.869
 0.122
 0.421
 0.612
7 4
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For comparison, if the prediction threshold were chosen such that the
pairs in Table 2 were the only true positives, the model would predict
30 false positives, resulting in a positive predictive value (PPV) of 0.25.

Adding taxonomic covariates in the model
Next, we investigated the use of taxonomic covariates in the model.
These covariates were based on the ATC taxonomy of drugs and the
MedDRA taxonomy of adverse events. As a preliminary step, we com-
puted for every pair (drug1, drug2) the minimum distance dATC(drug1,
drug2), denoting the minimum over all possible ATC positions of
drug1 and drug2 of the length of the shortest path between drug1 and
drug2 in the ATC taxonomy. Similarly, we computed for every pair of
adverse events (ADE1, ADE2) the distance dMedDRA(ADE1, ADE2),
denoting the length of the shortest path between ADE1 and ADE2
in the MedDRA taxonomy. Using the above distance measures, we
constructed four taxonomic covariates: atc-min, atc-KL, meddra-min,
and meddra-KL (table S1). ATC distance–based covariates were found
to be predictive of drug-ADE associations and drug-drug interactions
using an ERG model. For reference, Perlman et al. used a different
ATC-based metric to predict drug targets (24). The MedDRA-based
covariates defined above are counterparts of the ATC-based covariates.
www.ScienceTr
The motivation behind atc-KL and meddra-KL was the same as the
motivation behind jackard-ADE-KL, discussed earlier.

Table 1 shows the results of univariate and multivariate analysis
for the taxonomic covariates. It can be seen that edges are more
likely to exist in drug-ADE pairs with smaller values of atc-min,
meddra-min, atc-KL, and meddra-KL. Figure 3 illustrates the effect
of atc-min (Fig. 3C) and meddra-min (Fig. 3D) on the probability
of edge. The means of the distribution of ATC distances over the
edges and non-edges groups are also shown for both the training
(Fig. 3J) and the validation (Fig. 3K) sets. It may be seen that when
a drug-ADE pair (i, j) denotes a true association, the neighborhood
N( j) typically contains more drugs that are at a small minimum ATC
distance—such as at a distance of 2—to the drug i than when the pair
denotes a non-association. The results in Table 1 show that a model
containing all taxonomic (TAX) covariates performs reasonably well
[validation set AUROC (area under the receiver operating char-
acteristic curve), 0.838], but less well than the network (NET) model
(validation set AUROC, 0.862). A model combining network and
taxonomic covariates (NET + TAX) has a better performance (vali-
dation set AUROC, 0.869) than the network-only or the taxonomy-
only models.
Fig. 3. Illustration of selected covariate effects. (A to E) Probability of the existence of an edge as a function
of covariates degree-prod (A), jackard-ADE-max (B), atc-min (C), meddra-min (D), and euclid-min (E). (F to M)
Mean distribution of variables jackard-ADE (F and G), jackard-drug (H and I), ATC distance (J and K), and
Euclidean distance (L and M) over the edges and non-edges for both training and validation sets.
anslationalMedicine.org 21 December 2011 Vol 3 Issue 114 114ra127 5
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Table 3 lists the 10 highest-scoring true positives predicted with the
TAX model. For comparison, if the prediction threshold were chosen
such that the pairs in Table 3 were the only true positives, the model
would predict 22 false positives, resulting in a PPV of 0.31.

Adding intrinsic covariates in the model
Finally, we investigated the use of intrinsic covariates in the model. For
this purpose, we first assembled a vector of intrinsic properties for each
drug. We extracted 16 drug molecular descriptors from PubChem:
Molecular Weight, XLogP3 (partition coefficient), H Bond Donor, H
Bond Acceptor, Rotatable Bond Count, Tautomer Count, Topological
Polar Surface Area, Heavy Atom Count, Formal Charge, Complexity,
Defined Atom StereoCenter (SC) Count, Undefined Atom SC Count,
Defined Bond SC Count, Undefined Bond SC Count, Covalently Bonded
(CB) Unit Count, and Isotope Atom Count. We excluded from our
www.ScienceTr
analysis XLogP3 and Tautomer Count because of missing values (table
S3). We also excluded Isotope Atom Count because it had a value of zero
for every drug in the study. Next, we extracted four physicochemical or
absorption, distribution, metabolism, and excretion (ADME) properties
from DrugBank: Melting Point, Exp LogP Hydrophobicity, Protein
Binding, and Half Life. All properties extracted from DrugBank had
a significant proportion of missing data (table S4). Here, we decided
to analyze only the two DrugBank properties having the smallest propor-
tions of missing data: Exp LogP Hydrophobicity and Protein Binding.
For these two properties, we replaced the missing values by the aver-
age of non-missing values.

As a preliminary step, we computed for every pair (drug1, drug2)
the Euclidean distance dINT(drug1, drug2) in the 15-dimensional in-
trinsic property space described above. Using this distance, we con-
structed two intrinsic covariates: euclid-min and euclid-KL (table S1).
Table 2. The 10 highest-scoring true positives predicted with the NET model and their corresponding network covariates. Network covariates are
specified in table S1. nec, not elsewhere classified.
Drug name
 ADE
 degree-prod
 jackard-drug-max
 jackard-ADE-max
anslationalMedicine.
jackard-drug-KL
org 21 December 2
jackard-ADE-KL
011 Vol 3 Issue 11
degree-absdiff
Nortriptyline
 Circulatory collapse
and shock
40,052
 0.80
 0.93
 0.10
 0.39
 451
Fenoprofen
 Edema nec
 19,899
 0.77
 0.90
 0.20
 0.48
 230
Ketoprofen
 Edema nec
 22,275
 0.74
 0.90
 0.22
 0.57
 222
Nortriptyline
 Headaches nec
 43,624
 0.80
 0.74
 0.10
 0.37
 498
Oxybutynin
 Pupillary signs
 2,862
 0.50
 0.95
 0.40
 1.02
 1
Nabumetone
 Edema nec
 24,948
 0.54
 0.90
 0.13
 0.43
 213
Hydrocortisone
 Muscle weakness
conditions
3,410
 0.63
 0.81
 0.91
 1.04
 7
Prochlorperazine
 Sexual arousal
disorders
8,052
 0.58
 0.84
 0.35
 0.62
 56
Metoprolol
 Circulatory collapse
and shock
22,661
 0.59
 0.93
 0.23
 0.90
 484
Ibuprofen
 Genitourinary tract
infections and
inflammations nec
5,124
 0.69
 0.72
 0.61
 0.78
 23
Table 3. The 10 highest-scoring true positives predicted with the TAX model and their corresponding taxonomic covariates. Taxonomic covariates
are specified in table S1.
Drug name
 ADE
 atc-min
 meddra-min
 atc-KL
4 11
meddra-KL
Triamcinolone
 Hyperglycemic conditions nec
 2
 2
 0.079
 0.020
Cefdinir
 Red blood cell analyses
 2
 2
 0.088
 0.007
Clomipramine
 Purpura and related conditions
 2
 2
 0.086
 0.006
Indomethacin
 Urinary abnormalities
 2
 2
 0.093
 0.007
Anagrelide
 Skin injuries and mechanical dermatoses
 2
 2
 0.038
 0.012
Estramustine
 Skin injuries and mechanical dermatoses
 2
 2
 0.038
 0.016
Betaxolol
 Dyspneas
 2
 2
 0.068
 0.015
Isocarboxazid
 Sleep disorders nec
 2
 2
 0.137
 0.025
Rivastigmine
 Cerebrovascular and spinal necrosis and vascular insufficiency
 2
 2
 0.063
 0.011
Indomethacin
 Hyperglycemic conditions nec
 2
 2
 0.069
 0.003
4ra127 6
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Covariates based on distance in the intrinsic attribute space were found
to be predictive of drug-drug interactions using an ERG model. A dis-
tance measure similar to dINT has been used to guide the clustering pro-
cess in (25). The motivation behind the KL distance version of Euclidean
distance is the same as the motivation discussed earlier for network
and taxonomic covariates.

The results of univariate analyses for the intrinsic covariates show
that edges are more likely to exist in drug-ADE pairs with smaller val-
ues of euclid-min and euclid-KL (Table 1). Figure 3 further illustrates
the effect of euclid-min (Fig. 3E) on the probability of the existence of
an edge. The means of the distributions of Euclidean distances in the
neighborhood of drug-ADE pairs over the edges and non-edges groups,
for both the training (Fig. 3L) and the validation (Fig. 3M) sets, are also
shown. It may be seen that when a drug-ADE pair (i, j) denotes a true
association, the neighborhood N( j) typically contains more drugs that
are at a small Euclidean distance—such as a distance less than 200—to
the drug i than when the pair denotes a non-association.

A model containing only intrinsic (INT) covariates performs less
well than the network or taxonomic models (validation set AUROC,
0.79) (Table 1). Adding intrinsic covariates to network or taxonomic
models leads to a slight or no improvement in performance. For ex-
ample, TAX + INT model reaches a slightly greater AUROC of 0.844
compared to the AUROC of 0.838 reached by TAX model, whereas
NET + TAX + INT model reaches the same AUROC as does NET +
TAX, but slightly higher sensitivity at the specificity levels 0.90, 0.95,
and 0.99. To investigate the sensitivity of the predictive performance
to the two physical/ADME properties that had missing and thus
imputed data values (Exp LogP Hydrophobicity and Protein Binding),
we repeated the performance evaluation with these two descriptors
excluded. We found that the validation set AUROCs of covariates
euclid-min and euclid-KL remained virtually unchanged (that is, 0.75
and 0.79, respectively) relative to the pre-exclusion AUROC values.

Table 4 lists the 10 highest-scoring true positives predicted with the
model INT. If the prediction threshold were chosen such that the
pairs in Table 4 were the only true positives, the model would predict
www.ScienceTr
38 false positives, resulting in a PPV of 0.21. Intercorrelation of covar-
iates was generally small (table S5): The highest positive (Pearson) cor-
relation was between degree-prod and jackard-ADE-max (0.71), whereas
the highest negative correlation was between jackard-ADE-KL and
jackard-ADE-max (−0.77).

Comparison of model types
Comparative histograms of the scores generated by the three model types,
for the observed edges and non-edges groups, were created (fig. S3). For
all three models, the non-edges consistently obtained low scores, result-
ing in small (<0.2) thresholds for the 0.9, 0.95, and 0.99 specificity
levels.

Three-wayVenndiagrams for the sets of true positives and false pos-
itiveswere generated by the threemodel types, with specificity fixed at 0.95
(fig. S4). There are substantial differences in the correct predictionsmade
by the threemodel types. However, eachmodel also generated a number
of distinct false positives. This may explain why the NET + TAX + INT
model does not perform much better than the best single-type model.

Finally, comparative histograms are provided to illustrate the char-
acteristics of the drug-ADE pairs that were predicted to be edges and
non-edges by the models NET (fig. S5), TAX (fig. S6), and INT (fig. S7),
when specificity of each model was fixed at 95%.

Drug- and ADE-specific prediction accuracy
The predictive performance of the models was evaluated on the set of
all non-edges in the 2005 network through a comparison with the new-
ly reported (in 2010) true drug-ADE associations. This straightforward
approach allowed for a consistent and systematic evaluation of the
model performance across 649,677 drug-ADE pairs. To investigate
any potential variation in predictive performance according to drug
and ADE, we carried out a second evaluation. For this evaluation, we
generated all 809 drug-specific validation sets and 852 ADE-specific
validation sets and, for each set, computed an AUROC statistic on
the basis of the scores generated with the NET + TAX + INT model.
However, because these drug- and ADE-specific AUROCs were based
on local thresholds, they are not directly comparable to the AUROCs
reported in Table 1, which were based on global thresholds.

Drug-specific AUROCs were plotted, with drugs grouped accord-
ing to the ATC top-level categories (fig. S8A). For most of the drugs
in the network, the AUROC was above 0.85 and mean AUROCs did
not vary much across drug ATC categories. A plot of the drug-specific
AUROC against the number of newly associated ADEs is also pro-
vided (fig. S8B). The P value associated with the slope of the regres-
sion line for this relationship was 0.86, implying that the AUROC
was not affected significantly by the number of newly associated
ADEs. However, the variability of AUROC was much higher when
the number of newly associated ADEs was small than when this
number was high. There are numerous drugs for which the NET +
TAX + INTmodel produced a very high AUROC, including desipramine
(0.977), chlorothiazide (0.958), and niacin (0.933). There are also a small
number of drugs for which the NET + TAX + INT model produced a
small AUROC, including cysteamine (0.599), cevimeline (0.601), and
pioglitazone (0.637).

ADE-specific AUROCs were also plotted for MedDRA top-level
groups and newly associated drugs (fig. S9). Examples of ADEs for
which the NET + TAX + INT model produced high AUROCs include
myelodysplastic syndromes (0.932), esophageal ulcers and perforation
(0.928), and mood alterations with manic symptoms (0.909). Examples
Table 4. The 10 highest-scoring true positives predicted with the INT
model and their corresponding intrinsic covariates. Intrinsic covariates
are specified in table S1.
Drug name
 ADE
 euclid-min
 euclid-KL
Fenoprofen
 Febrile disorders
 13.50358895
 0.023528
Dexmedetomidine
 Diarrhea*
 12.02562272
 0.023577
Benzphetamine
 Diarrhea*
 30.53129051
 0.026821
Orphenadrine
 Pruritus nec
 20.73166319
 0.028765
Dexmedetomidine
 Gastrointestinal
and abdominal
pains (excl oral
and throat)
12.02562272
 0.029129
Diethylpropion
 Diarrhea*
 23.07050289
 0.032107
Pramipexole
 Diarrhea*
 22.27254264
 0.033017
Ropivacaine
 Febrile disorders
 30.79868175
 0.033470
Dexmedetomidine
 Headaches nec
 12.02562272
 0.033204
Nabumetone
 Edema nec
 25.31841108
 0.033915
*Diarrhea ADEs exclude infective.
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of ADEs for which the NET + TAX + INTmodel did not produce high
AUROCs include dermal and epidermal conditions not elsewhere
classified (0.526), pulmonary edemas (0.562), and bladder infections
and inflammations (0.549).

Prediction case studies
Two pharmacological experts were asked to choose a set of prominent
drug-ADE associations that were discovered during the period from
2006 to 2010 for use as case studies. For each case study they named,
we generated a score using the model NET + TAX + INT and then
computed the specificity and PPV corresponding to that score (using
the drug-specific validation sets). The respective values of score, spec-
ificity, and PPV obtained for the selected case studies are provided in
table S6. The specificities corresponding to the model-generated scores
were consistently high: All drug-ADE pairs shown, except “Saquinavir-
Electrocardiogram QT prolonged,” would have been detected using
operational thresholds that correspond to a specificity level of 0.9.
The PPV typically lies between 0.2 and 0.4, but in extreme cases, it
is as low as 0.04 and as high as 0.67 (table S6), depending on the num-
ber of newly reported ADEs for the drug under consideration. That is,
the greater the number of newly reported ADEs, the greater the PPV,
as expected.
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DISCUSSION

Here, we investigated the utility of network methods for predicting
unknown drug adverse events in a simulated prospective setting. We
trained a network-based predictive model on safety data from 2005
and used it to predict the new associations among 809 drugs and
852 ADEs reported between 2006 and 2010. The proposed model
achieved an AUROC of 0.87, with a sensitivity of 0.42 (0.61) at a spec-
ificity of 0.95 (0.9). Our findings suggest that predictive network
methods can be useful for predicting future reported drug-ADE rela-
tionships. The proposed approach, based on computer models and
available data, can complement existing hypothesis generation tools
that support the work of drug safety professionals.

The integrative data representation and the predictive method dis-
cussed here fall within the scope of the emerging field of systems phar-
macology (26). In recent years, systems pharmacologic approaches
have been applied successfully to various problems, such as identifying
new targets for existing drugs (23, 24, 27–30) or understanding ADEs
(21, 25, 31–35). Here, we extend our earlier work on developing
network-based methods for predicting drug adverse events and drug-
drug interactions. We had previously constructed integrated network
representations of drug-drug interactions and ADEs and developed
ERG (36) predictive models to identify the most likely “missing”
edges (22, 37) in those networks. Here, we explored the following
directions. First, we developed more complex network-based models
that incorporate additional types of data, such as simple molecular
descriptors of drugs, and additional predictors, including novel ones
like the KL-based covariates (table S1). To integrate these additional
predictors in our model, we used a maximum-likelihood fitting
method based on LR rather than the Markov chain Monte Carlo
fitting method (38) used previously. We also evaluated the predictive
models developed here through a simulated prospective study design
that used two chronologically separated snapshots of a drug safety
database.
www.ScienceTr
We are aware of only one other study that attempts to predict
unknown drug ADEs through network-based methods (19). That
study and the current study are similar in that they both integrate
various types of information to predict unknown likely ADEs and
both conclude that prediction of reported ADEs may be possible.
The data and methods used by the two studies differ in several ways.
The current paper uses three types of information—network, intrinsic,
and taxonomic—whereas Atias and Sharan (19) used a subset of the
network information in the current study (jackard-drug-max), used
alternative intrinsic information (hashed fingerprints computed from
molecule structures), and did not include taxonomic information.
Moreover, the predictive model described here takes into account all
possible drug-ADE relationships at a given time (for example, 2005),
yet (19) excludes from analysis any drugs and ADEs that have a degree
smaller than two or that lie in the top 10% in terms of degree. Finally,
perhaps the most important distinction between these two studies
lies in the approach for evaluating the prediction accuracy. We used a
simulated prospective approach, compared with (19), which used
cross-validation on ADE data from the Side Effects Resource (SIDER,
http://sideeffects.embl.de/) database and comparison of predictions
with unseen ADE associations found in another database, the Hazard-
ous Substances Data Bank (http://toxnet.nlm.nih.gov/cgi-bin/sis/htmlgen?
HSDB)—neither of which preserves the chronological order in which the
information became available.

The goal of our study was to demonstrate the utility of the pro-
posed network-based approach, not to develop an optimal model or
to discover an optimal set of predictors for a given model, which are
much broader objectives. The set of covariates analyzed here was re-
stricted to those network covariates that were relatively inexpensive
computationally and those drug and ADE properties that were acces-
sible. The covariates based on the drug intrinsic properties that we
examined displayed a lower predictive performance than the network
and taxonomic covariates. One potential explanation for these results
is that here we have used only a limited set of basic intrinsic proper-
ties. However, a large amount of additional biological data exists—
such as quantitative structure-activity relationship (QSAR) molecular
descriptors (39)—that could be integrated into the PPN modeling
framework to potentially improve the predictive performance. Varied
performance by drug and ADE was found for the final predictive
model. This variability may depend on many factors, such as the vary-
ing amount of information available for each drug and ADE, the ex-
istence of potential biases in the reporting of ADEs, and the limited
ability of the model to correctly predict certain types of drug-ADE
associations.

The gold standard used in this study was the set of all reported
drug-ADE associations from the Lexicomp database mentioned above.
Although this gold standard is the best one available, several limita-
tions warrant discussion. First, we only had knowledge of the drug-
ADE pairs that were reported to be true associations but not of the
entirety of drug-ADE pairs that were tested and found unrelated. Thus,
we do not know if the reported negatives were indeed true negatives or
not yet known positives. In addition, a fraction of the reported drug-
ADE associations may be false positives that were reported for various
reasons, such as to protect against liability in cases of uncertainty. The
strong performance of some study covariates, such as degree-prod,
could reflect the fact that more testing and monitoring is conducted
for certain drug-ADE pairs than others. Alternatively, it could be due
to an inherent link between those covariates and the likelihood of true
anslationalMedicine.org 21 December 2011 Vol 3 Issue 114 114ra127 8
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drug-ADE associations. In the former case, the predictive value of these
covariates may change in time if the underlying testing and monitoring
processes also change. In the latter case, the predictive value of these
covariates would remain unchanged. In practical terms, the reported
ADEs are the ones used by the medical community today for clinical
practice, and the early prediction of any of them could reduce drug-
related morbidity and mortality. In the gold standard used in this paper,
the reported drug-ADE associations constituted only 1.7% of all possible
drug-ADE pairs. As is often the case with predicting rare phenomena,
high specificity and sensitivity can be associated with a low PPV. How-
ever, this predictive approach can help drug safety professionals greatly
reduce the vast space of possible drug-ADE pairs and better prioritize
the use of their already limited resources.

This study could be extended in several clinically relevant direc-
tions. First, a number of statistical approaches may be used to deal
with potential correlations in the response data, including ERG
models (36, 38) or mixed models. Furthermore, the network data could
be stratified by various criteria, such as by ADE type or by drug-ADE
mechanism, leading to a more accurate prediction of certain types of
ADEs. Finally, the network data can be enriched with frequency
information on drug-ADE associations. All these extensions could in-
crease the practical value of the PPN approach for drug safety profes-
sionals.

In summary, we have proposed a new network-based method
for predicting ADEs. This method can be applied to data that are
available today and can be used as a practical hypothesis generation
tool with potential to reduce the morbidity and mortality resulting
from drug-related adverse events. A practitioner wishing to apply
this method in a prospective “real-world” setting can access the latest
version of any of the clinical drug safety databases available and use it
to train the model described above. The model will generate a set of
predicted drug-ADE relationships that do not appear in the training
database. The practitioner can then follow up on the highest-scoring
predictions with thorough clinical investigation, thus focusing his or
her already limited time and resources on higher-probability drug
safety hypotheses.
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MATERIALS AND METHODS

Network construction
We constructed a bipartite network to represent the data on drugs,
ADEs, and their associations. In this network, nodes denote drugs or
ADEs and edges denote known drug-ADE associations. The set of
edges corresponds to the drug-ADE associations contained in a 2005
snapshot of a drug safety database provided by Lexicomp. Because a
single ADE name can map to multiple HLT codes, we replaced each
drug-ADE association appearing in the original data snapshots with
one or more drug-HLT associations, as determined by the MedDRA
taxonomy. In addition, for each drug in the network, we assembled a
vector that contains the drug’s intrinsic properties extracted from
DrugBank and PubChem as well as the drug’s ATC code(s). We refer
to the network described above as the drug-ADE network.

The predictive model
Wemodel the binary response variable Yij, i = 1,…, number of drugs,
j = 1, …, number of ADEs, denoting the presence or absence of
drug-ADE associations. Using LR, we modeled this response as a
www.ScienceTr
Bernoulli random variable with expectation E[Yij] = pij, where pij
is given by Eq. 1:

pij ¼ 1=½1þ expð−∑s qsXsði, jÞÞ� ð1Þ

Here, qs denotes the model parameter and Xs denotes the model
covariate. The covariates used in this study are of three main types
(table S1). Network covariates of the first type depend on the structure
of the observed drug-ADE network but not on the attributes of drugs
or ADEs. Taxonomic covariates of the second type depend on the
structure of the observed drug-ADE network and on the taxonomic
attributes (ATC and MedDRA codes). Intrinsic covariates of the third
type depend on the structure of the observed drug-ADE network and
on the intrinsic properties of drugs. The source code to compute all
covariates is provided as supplementary online files: meddra_mapping_
codes.sas, NET_INT_covariates.R, and TAX_covariates.sas (listed in
table S7). We proceeded by making the standard assumption of inde-
pendence between the responses Yij and carrying out model fitting by
maximum likelihood.

Model prediction
The training data in our experiments consisted of the 2005 drug-ADE
network. The validation data consisted of all the pairs in 2010 data
that were non-edges in 2005. The prediction goal was to identify which
of the pairs in the validation set would appear as edges in the 2010
snapshot of the drug safety database.

In the training phase, we used the binary response Yij correspond-
ing to the 2005 drug-ADE network and analyzed a collection of
network, taxonomic, and intrinsic covariates. For each collection of
covariates, we performed univariate and multivariate analyses. In the
univariate analysis stage, we fitted all possible univariate models, ranked
the covariates on the basis of the training set AUROC, and excluded
the bottom-ranked covariates from further analysis. In the multivariate
analysis stage, we performed covariate selection through an exhaustive
search over all possible sets of predictors using Akaike information cri-
terion (AIC) goodness-of-fit measure to perform model ranking. The
statistical significance (P values) of covariates was assessed through the
standard c2 test in the LOGISTIC procedure in SAS.

After a multivariate model was trained, we scored each drug-ADE
pair (i, j) in the validation set using the predicted probabilities pestij, as
shown in Eq. 2:

pestij ¼ 1=½1þ expð−∑s qestsXsði, jÞÞ� ð2Þ

We hypothesized that the validation set drug-ADE pairs having the
highest predicted probabilities would be the ones that appear as true
associations in the 2010 snapshot. To evaluate the predictive perform-
ance, we computed the validation set AUROC by comparing the
scores given in Eq. 2 with the actual drug-ADE associations appearing
in the 2010 snapshot. In addition, we computed the model sensitivity
and PPV for various benchmark levels of specificity, including 0.99,
0.95, and 0.90.
SUPPLEMENTARY MATERIAL
www.sciencetranslationalmedicine.org/cgi/content/full/3/114/114ra127/DC1
Methods
Table S1. Definition of covariates.
Table S2. List of drugs and their ATC codes.
Table S3. Number of missing observations for PubChem properties extracted for this study.
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Table S4. Number of missing observations for DrugBank properties extracted for this study.
Table S5. Intercorrelation analysis of covariates.
Table S6. Prediction cases studies.
Table S7. List of supplementary source code files.
Fig. S1. Newly associated ADEs per drug in each ATC top-level group.
Fig. S2. Newly associated drugs per ADE in each MedDRA top-level group.
Fig. S3. Comparative histograms of scores for the observed edges and non-edges by the three
model types.
Fig. S4. Three-way Venn diagrams for the sets of true and false positives generated by models
NET, TAX, and INT.
Fig. S5. Comparative histograms of selected network covariates for the predicted edges and
non-edges.
Fig. S6. Comparative histograms of selected taxonomic covariates for the predicted edges and
non-edges.
Fig. S7. Comparative histograms of the intrinsic covariates for the predicted edges and non-edges.
Fig. S8. Drug-specific AUROCs.
Fig. S9. ADE-specific AUROCs.
File “meddra_mapping_code.sas” (SAS code to perform MedDRA mapping).
File “NET_INT_covariates.R” (R code to compute network and intrinsic covariates).
File “TAX_covariates.sas”(SAS code to compute taxonomic covariates).
File “Fig2-highres.tif” (high-resolution version of Fig. 2).
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Introduction

Toxicity is a key cause of late-stage failures in drug discovery.

Even some approved drugs such as Phenacetin [1] and

Troglitazone [2] have been withdrawn from the market because

of unexpected toxicities that were not detected during Phase III

clinical trials. Thus, early toxicology data on compounds are

needed to reduce R&D costs. Evaluating toxicity and assessing

risks of diverse chemicals require comprehensive experimental

testing against a broad spectrum of toxicity end points. These tests

can cost millions of dollars, involving several thousand animals,

and take many years to complete. As a result, very few chemicals

have undergone the degree of testing needed to support accurate

health risk assessments or meet regulatory requirements for drug

approval. In recent years, the number of synthetic compounds has

surged with the advance of combinatorial chemistry, and

accordingly large quantities of toxicity data are urgently demand-

ed.

Recently, particular interest has been raised to apply fast and

cost-effective in silico toxicological models to supplement those

in vitro and in vivo testing. These models require high quality

toxicity data for a large set of structurally diverse drug candidates.

Accelrys Toxicity is a database of toxicity information compiled

from the open scientific literature [3] and containing toxicological

data for approximately 0.17 million chemicals. This database is of

great value for investigating the pharmacokinetic properties,

metabolism and potential toxicities of compounds. Six types of

toxicity data are collected in the database: (1) Acute Toxicity; (2)

Mutagenicity; (3) Tumorigenicity; (4) Skin and Eye Irritation; (5)

Reproductive Effects; and (6) Multiple Dose Effects. It should be

noted that these categories have multiple and overlapping

mechanisms of toxic action and each category represents only

specific types of experiments. The combination of these experi-

mental results may help define the overall safety profile of a

compound. However, this kind of databases only provides

toxicological information for recorded compounds, not for new

ones. It would be valuable to accurately predict toxicities of a new

compound based on the information available for recorded

compounds. In order to meet the demand, there is a drive to

develop quick, reliable, and non-animal-involved prediction

methods, e.g. using structure-activity relationships (SARs) to

predict drugs toxicities.

Currently, most toxicological SAR models belong to binary

classifiers, which only predict compounds to be toxic or non-toxic

within a single toxicity class [4,5]. It is desired to modify the

strategy to predict a series of toxicity effects. In this study, we chose

to build a multiclass model [6,7] to predict six categories of toxicity

using the Accelrys Toxicity database instead of only one or two

toxicity endpoints. However, the quadratic optimization problem

PLOS ONE | www.plosone.org 1 February 2013 | Volume 8 | Issue 2 | e56517



in multiclass models is difficult to solve. Thus, many previous

multiclass approaches tended to decompose a multiclass problem

into multiple independent binary classifications. Investigators built

a set of binary classifiers, such as the model of Dietterich et al [7],

each classifier distinguishing only one of the classes from the

others. Although this greatly simplifies the problem, such an

approach cannot provide order prediction information for the

query compounds. That is, it can only predict whether the query

compound has some toxicity end points, but cannot determine

which is the most likely toxicity, or even the order of toxicity end

points by toxicity likelihoods.

In recent years, the assessment of protein-protein interactions

has been widely used to predict many attributes of proteins

[8,9,10,11]. Furthermore, multiclass predictions of protein attri-

butes have become more common [12,13,14]. These methods and

their results show that interactive proteins tend to share the same

functions with higher probability than do non-interactive ones.

Likewise, it is reasonable to expect that interactive compounds are

also more likely to share common functions as indicated by some

pioneer studies [15,16]. Thus, toxicity, as part of the biological

functions of compounds, should follow the same rule. Moreover,

based on a previous work on the Anatomical Therapeutic

Chemical (ATC) classification of drugs [16], compared to the

SAR models based on physicochemical descriptors or structural

alerts, a model based on chemical-chemical interactions can rank

the order of the predictions more easily and yield better prediction

results. In our study, we attempt to quantify chemical-chemical

interactions for each pair of interactive compounds, and obtain the

confidence scores of the interactions by which the toxicity end

points were ordered. Briefly, compounds of seven categories

including six categories of toxicity plus non-toxicity were collected.

The interactive compounds of each query compound were

identified utilizing STITCH (Search tool for interactions of

chemicals) [17,18]. Then, the score of each class of the query

compound was obtained from the confidence scores of interactions

between the query compound and its interactive compounds using

the toxicity profile of the interactive compounds. Finally, the

prediction quality of the model was evaluated using the Jackknife

test through ten test groups. Each of these was constructed from

the benchmark dataset and contained one training dataset and one

external test dataset. Details are described in the following

sections.

Materials and Methods

Benchmark Dataset
We obtained a total of 171,266 compounds from the Accelrys

Toxicity Database 2011.4 [19], which had at least one toxicity

effect belonging to the following six categories: (1) Acute Toxicity;

(2) Mutagenicity; (3) Tumorigenicity; (4) Skin and Eye Irritation;

(5) Reproductive Effects; (6) Multiple Dose Effects. Based on

compound toxicity, these compounds are allocated to the 6

Table 1. Distribution of compounds in each category of
compound toxicity.

Tag Toxicity Total

T1 Acute Toxicity 12,633

T2 Mutagenicity 6,110

T3 Tumorigenicity 2,293

T4 Skin and Eye Irritation 2,353

T5 Reproductive Effects 2,501

T6 Multiple Dose Effects 4,198

T7 Non-toxicity 646

Total – 30,734

doi:10.1371/journal.pone.0056517.t001

Figure 1. The number of compounds plotted against the number of categories in the benchmark dataset.
doi:10.1371/journal.pone.0056517.g001
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categories, allowing multiple assignments. In addition, 2,871 ‘‘non-

toxic’’ compounds including FDA-approved drugs from DrugBank

[20] and endogenic metabolites from the Human Metabolome

database (HMDB) [21] were collected and labeled as a negative

class. For convenience, the ‘non-toxic set’ is regarded as the 7th

category of compound toxicity. Due to lack of chemical-chemical

interaction information in STITCH [17,18], some compounds

cannot be investigated by this approach. After excluding these

compounds, a benchmark dataset S consisting of 17,233

compounds was retrieved, of which 16,587 were toxic and 646

were non-toxic. These compounds are classified into 7 categories

of compound toxicity. Shown in Table 1 is the distribution of

compounds in each category. The codes of 17,233 compounds and

their toxicity information can be found in Table S1.

It is observed from Table 1 that the sum of the number of

compounds in all the 7 categories is much larger than the number

of compounds, indicating that some compounds are allocated to

more than one category of toxicity. Of the 17,233 compounds in

the benchmark dataset, 10,151 compounds belong to only one

category of toxicity, 3,475 compounds belong to two categories of

toxicity, while others belong to 3–5 categories of toxicity and no

compounds belong to more than five categories of toxicity - refer

to Figure 1 for a plot of the number of compounds against the

number of categories of toxicity. Thus, prediction of compound

toxicity is a multi-label classification problem. Like the case of

processing proteins or compounds with multiple attributes

[15,16,22], the proposed method would provide a series of

candidate toxicities, ranging from the most to the least likely,

instead of presenting only the most likely one.

To sufficiently evaluate the prediction method described in the

following section, we constructed 10 test groups, denoted by

TG1,TG2, . . . ,TG10, respectively. In each test group

TGi(1ƒiƒ10), there is one training dataset S(i)
tr and one test

dataset S(i)
te , i.e., TGi~SS(i)

tr ,S(i)
te T, where the test dataset consisted

of 1,723 compounds which were randomly selected from S, while

the training dataset contained the remaining 15,510 samples in S,

i.e., S~S(i)
tr |S(i)

te for each 1ƒiƒ10. It is necessary to point out

that, in each test group, the portion of the data in each class of the

test dataset is roughly the same as that of the training dataset.

Shown in Table 2 is the distribution of compounds in training

and test datasets of each test group.

Chemical-chemical Interactions
It is known that two proteins that can interact with each other

are more likely to share common biological functions than non-

interactive ones [8,9,10,11]. Likewise, two interactive compounds

are also more likely to share similar biological functions [15,16].

Since toxicity is one of a compound’s properties and functions,

utilizing chemical-chemical interactions to identify compound

toxicity is deemed to be feasible.

The data for chemical-chemical interactions were retrieved

from STITCH (chemical_chemical.links.detailed.v3.0.tsv.gz,

http://stitch.embl.de/cgi/show_download_page.) [17], a well-

known database including known and predicted interactions of

chemicals and proteins collected from experiments, literature or

other reliable sources. In the obtained file, the interaction unit

contains two compounds and five kinds of scores with titles

‘‘Similarity’’, ‘‘Experimental’’, ‘‘Database’’, ‘‘Textmining’’ and

‘‘Combined_score’’. The last kind of score was used here to

indicate the interactivity of two compounds, i.e., two compounds

with ‘‘Combined_score’’ greater than zero were deemed interac-

tive compounds, because the last kind of score integrates the

information of the other kinds of scores. Thus, the considered

interactive compounds in this study contain the following three

categories: (1) those participating in the same reactions; (2) those

sharing similar structures or activities and (3) those with literature

associations [17]. It is known that these categories correspond to

the following three facts: (I) compounds involved in the same

reactions occupy the same biological pathways; (II) compounds

with similar structures or activities are likely to share similar

functions, thereby occupying the same pathways with high

probability; (III) the co-occurrence of two compounds, as noted

in many studies, indicates some direct or indirect relationships,

suggesting that they have the potential to share the same pathways.

On the other hand, compounds in the same biological pathways

always induce similar side effects, thereby having similar toxicity

effects. Accordingly, it is reasonable to suppose that interactive

compounds tend to have similar toxicity effects.

The value of the ‘‘Combined_score’’ of two interactive

compounds indicates the likelihood that they can interact, i.e.,

two interactive compounds with high ‘‘Combined_score’’ can

interact with high probability. Thus, this score is also termed a

confidence score in this study. For two compounds c1 and c2, let us

denote the confidence score of an interaction between them by

Q(c1,c2). Specifically, if there is no interaction information between

c1 and c2 based on the current records in STITCH, their

interaction confidence score is assigned zero, i.e., Q(c1,c2) = 0. In

this study, 323,432 interaction units, i.e., 323,432 pairs of

compounds with confidence scores greater than 0, were used to

predict compound toxicity. The detailed information on these

interaction units can be found in Table S2.

Prediction Method
As is mentioned in the above section, interactive compounds are

more likely to have common toxicity. Accordingly, the toxicities of

a query compound can be identified according to its interactive

compounds.

For convenience, let T1, T2, …, T7 denote the seven categories

of toxicity, where T1 denotes ‘‘Acute Toxicity’’, T2 ‘‘Mutagenic-

ity’’, and so forth (see column 1 and 2 of Table 1). Suppose that

there are n compounds in the training dataset, that is c1, c2, …, cn,

the toxicity of a compound ci in the training dataset is formulated

as

T(ci)~½ti,1,ti,2, . . . ,ti,7�(i~1,2, . . . ,n) ð1Þ

where

ti,j~
1 If ci has toxicity Tj

0 Otherwise

�
ð2Þ

Given a query compound cq, its toxicity is predicted not only by its

interactive compounds but also by the confidence scores of their

interactions. The score indicating that the query compound cq has

toxicity Tj is calculated by

H(cq.Tj)~
Xn

i~1

Q(ci,cq):ti,j j~1,2,3,4,5,6,7 ð3Þ

The high score H(cq.Tj) means that there are many

interactive compounds of cq in the training dataset that have

toxicity Tj or some interactions between cq and its interactive

compounds having toxicity Tj are labeled by high confidence

Chemical Toxicity Order Prediction
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scores. In view of this, the greater the score H(cq.Tj), the more

likely that the compound cq has toxicity Tj. In particular, if

H(cq.Tj) for some j, it is indicated that the probability that the

query cq having the j-th category of toxicity is zero because there

are no interactive compounds of cq in the training dataset that have

toxicity Tj.

Since this is a multi-label classification problem, i.e., some

compounds have more than one category of toxicity. A prediction

method only providing the most likely toxicity is not an optimal

choice. Thus, our method is valuable in that it can provide a series

of candidate toxicities for a query compound, ranging from the

most likely to the least likely. For example, if the results obtained

from Eq. 3 are

H(cq.T3)§H(cq.T1)§H(cq.T6)w0 ð4Þ

it can be interpreted to mean that there are three candidate

toxicities for the query compound cq, and the most likely toxicity

for cq is T3 (‘‘Tumorigenicity’’, cf. Table 1), followed by T1

(‘‘Acute Toxicity’’) and T6 (‘‘Multiple Dose Effects’’). In addition,

T3 is called the 1st order prediction, T1 the 2nd order prediction,

and so forth.

Jackknife Test
The Jackknife test [16] is often used to examine the

performance of various predictors, because it can always provide

a unique prediction result for a given dataset. It has been widely

used by investigators to evaluate their predictors

[23,24,25,26,27,28,29,30,31,32,33]. During the test, each sample

in the training dataset is singled out one-by-one and tested by the

predictor trained by the other samples. Thus, each sample is tested

exactly once.

Accuracy Measurement
The j-th order prediction accuracy is calculated by the following

formula [15,16]:

Cj~
CTj

N
j~1,2,3,4,5,6,7 ð5Þ

where CTj denotes the number of compounds whose j-th order

prediction is one of its true toxicities, and N denotes the total

number of compounds in the dataset. If a prediction method can

obtain high Cj with small j and low Cj with large j, it implies that

the method arranges the candidate toxicities well. Among them,

the 1st order prediction accuracy is the most important indicator of

good or bad performance.

Although the seven prediction accuracies can be obtained by

Eq. 5, none of them provides the overall prediction accuracy. In

view of this, we employ another measurement that calculates the

proportion of true toxicities of the first m predictions. It can be

calculated as follows [16]:

Dm~

PN
i~1

Si,m

PN
i~1

Ni

ð6Þ

where Si,m represents the number of the correct predictions of the

i-th compound among its first m predictions, and Ni represents the

number of toxicities that the i-th compound has. Since different

compounds may have different numbers of toxicities, the

parameter m in Eq. 6 is usually taken as the smallest integer no

less than the average number of toxicities in the dataset, which can

Table 2. Distribution of compounds in training and test datasets of each test group.

TG1 TG2 TG3 TG4 TG5

Tag

T1 11,382 1,251 11,387 1,246 11,351 1,282 11,364 1,269 11,385 1,248

T2 5,475 635 5,476 634 5,529 581 5,492 618 5,491 619

T3 2,065 228 2,065 228 2,063 230 2,063 230 2,056 237

T4 2,102 251 2,102 251 2,115 238 2,112 241 2,093 260

T5 2,235 266 2,235 266 2,260 241 2,255 246 2,235 266

T6 3,747 451 3,749 449 3,777 421 3,784 414 3,799 399

T7 582 64 577 69 586 60 582 64 583 63

Total 27,588 3,146 27,591 3,143 27,681 3,053 27,652 3,082 27,642 3,092

TG6 TG7 TG8 TG9 TG10

Tag

T1 11,367 1,266 11,395 1,238 11,369 1,264 11,374 1,259 11,353 1,280

T2 5,489 621 5,500 610 5,492 618 5,497 613 5,506 604

T3 2,075 218 2,067 226 2,070 223 2,043 250 2,070 223

T4 2,123 230 2,125 228 2,135 218 2,102 251 2,133 220

T5 2,244 257 2,243 258 2,236 265 2,258 243 2,234 267

T6 3,762 436 3,750 448 3,772 426 3,777 421 3,755 443

T7 583 63 587 59 579 67 569 77 584 62

Total 27,643 3,091 27,667 3,067 27,653 3,081 27,620 3,114 27,635 3,099

doi:10.1371/journal.pone.0056517.t002
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be computed by

M~

PN
i~1

Ni

N
ð7Þ

where m~qMr. Obviously, a larger Dm implies better prediction

performance by the method for the identification of compound

toxicity.

Results

As described in the Section ‘‘Benchmark dataset’’, 10 test

groups were constructed to evaluate the method described in

Section ‘‘Prediction method’’. In each test group, there were one

training dataset consisting of 15,510 compounds and one test

dataset containing 1,723 compounds. The predicted results for

each test group obtained by the proposed method are as follows.

Performance of the Method on the Training Dataset
For the 15,510 compounds in each training dataset

S(i)
tr (1ƒiƒ10), we conducted the prediction and evaluated its

performance by the Jackknife test. Listed in the column with title

S(i)
tr of Table 3 are seven prediction accuracies, calculated by Eq.

5, for training dataset S(i)
tr , from which we can see that the 1st order

prediction accuracies were all around 79.50%, where the

maximum was 79.57%, while the minimum was 79.23%; the

2nd order ones were all around 37.30%. It is indicated that the

proposed method is very stable. It is also observed from the

corresponding columns of Table 3 that the accuracies followed a

descending trend when increasing the order number, indicating

that the method sorted the candidate toxicities quite well for the

compounds in each training dataset S(i)
tr (1ƒiƒ10). The average

Table 3. Prediction accuracies obtained by the method as applied to training and test datasets of each test group.

TG1 TG2 TG3 TG4 TG5

Prediction Order

1 79.40% 79.69% 79.45% 79.28% 79.23% 80.62% 79.28% 79.45% 79.30% 79.34%

2 37.16% 38.42% 37.14% 38.24% 37.54% 37.20% 37.17% 38.31% 37.40% 36.16%

3 22.18% 23.16% 22.20% 22.87% 22.32% 21.65% 22.29% 22.63% 22.53% 22.87%

4 15.45% 16.66% 15.49% 16.77% 16.35% 14.86% 15.46% 16.13% 15.41% 15.55%

5 11.06% 11.61% 11.04% 11.49% 11.00% 10.85% 10.88% 10.16% 10.95% 11.20%

6 6.92% 7.25% 6.84% 7.89% 7.23% 5.86% 6.99% 6.56% 6.85% 7.84%

7 1.21% 1.33% 1.22% 1.04% 1.27% 1.51% 1.39% 1.45% 1.26% 1.68%

TG6 TG7 TG8 TG9 TG10

Prediction Order S(6)
tr S(6)

te S(7)
tr S(7)

te S(8)
tr S(8)

te S(9)
tr S(9)

te S(10)
tr S(10)

te

1 79.57% 80.15% 79.36% 79.98% 79.45% 79.05% 79.52% 79.80% 79.46% 79.34%

2 37.11% 37.72% 37.57% 36.10% 37.21% 38.65% 37.32% 35.98% 37.44% 37.20%

3 22.57% 22.29% 22.30% 23.39% 22.23% 24.03% 22.46% 23.33% 22.42% 22.93%

4 15.31% 15.90% 15.36% 15.55% 15.52% 14.74% 15.40% 16.25% 15.36% 16.37%

5 10.93% 10.45% 10.95% 11.55% 11.08% 10.10% 10.74% 11.55% 10.87% 10.74%

6 7.00% 6.56% 7.00% 6.62% 7.16% 5.86% 6.76% 7.78% 6.97% 7.25%

7 1.25% 1.57% 1.32% 0.99% 1.32% 1.45% 1.27% 1.57% 1.30% 1.33%

doi:10.1371/journal.pone.0056517.t003

Table 4. Proportions of true toxicities covered by the first
two predictions for training and test datasets of each test
group.

Test group Training dataset Test dataset

TG1 65.52% 64.69%

TG2 65.54% 64.52%

TG3 65.43% 66.49%

TG4 65.32% 65.83%

TG5 65.48% 64.36%

TG6 65.46% 65.71%

TG7 65.55% 65.21%

TG8 65.43% 65.82%

TG9 65.61% 64.07%

TG10 65.61% 64.79%

doi:10.1371/journal.pone.0056517.t004

Figure 2. The structures of the alkyl N-nitroso group and the
primary aromatic amine group.
doi:10.1371/journal.pone.0056517.g002
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numbers of toxicities for compounds in each training dataset S(i)
tr

were about 1.78 according to Eq. 7, i.e., M = 1.78. It is noteworthy

that if one predicts compound toxicity by random guesses, the

average success rate would be only 25.43% (1.78/7), which is

much lower than each of the 1st order prediction accuracies by our

method. To evaluate the prediction accuracy by the method more

thoroughly, Eq. 6 was calculated by taking m = 2, i.e., we

considered the first two predictions for each compound in

S(i)
tr (1ƒiƒ10) to see the proportions of true toxicities covered

by these predictions. These proportions are shown in column 2 of

Table 4, from which we can see that they were all about 65.50%,

where the maximum was 65.61% while the minimum was

65.32%. Thus, it is indicated once again that our method is

reliable.

Performance of the Method on the Test Dataset
For the 1,723 compounds in each test dataset S(i)

te (1ƒiƒ10),
the toxicities of these compounds were predicted by the proposed

method described in Section ‘‘Prediction method’’ based on the

compounds in the training dataset S(i)
tr . After processing by Eq. 5,

seven prediction accuracies for each test dataset S(i)
te were obtained

and were listed in the column with title S(i)
te of Table 3. It is

observed that the 1st order prediction accuracies were all about

79.50%. Similar to the seven prediction accuracies for each

training dataset S(i)
tr , those of test dataset S(i)

te also followed a

descending trend with the increase of the order number, implying

that our method also arranged the candidate toxicities of samples

in each test dataset quite well. According to Eq. 7, the average

numbers of toxicities for the compounds in each test dataset were

about 1.80. Thus, we still considered the first two predictions of

each sample in S(i)
te (1ƒiƒ10) to calculate the proportions of true

toxicities covered by these predictions, i.e., computing Eq. 6 by

taking m = 2. Listed in column 3 of Table 4 are ten proportions

for ten test datasets, each yielding a probability of approximately

65%.

Discussion

Understanding of the Toxicity Prediction Results
It is observed from Table 3 that the performance of the method

on ten test groups is similar. Thus, the first test group (i.e., TG1) is

used as an example to show how to interpret the toxicity predicting

results in detail.

Our multiclass model achieved a quite promising performance

using the chemical-chemical interactions data on test group TG1

(see Table 3 for details). For example, the compound 4-(N-

methyl-N-nitrosamino)-1-(3-pyridyl)-1-butanone (CID000047289,

NNK) shows positive results for five toxicity endpoints: T1, T2, T3,

T5, and T6. Our model accurately predicted these five kinds of

endpoints, and provided the order predictions as T3. T2.

T1.T6. T5. T4.T7. The 7th label representing ‘non-toxic’ was

ranked as the last, suggesting that this compound is very likely to

have toxic effects. As stated in the Section ‘‘Chemical-chemical

interactions’’, the interactive compounds derived from STITCH

tend to have the same toxicity categories. 4-(Methylnitrosamino)-

1-(3-pyridyl)-1-butanol (CID000104856, NNAL), an interactive

compound of NNK, has toxicities T2 and T3, which are also

shared by NNK. The alkyl N-nitroso group (see Figure 2) of these

two compounds associates with the formation of DNA adducts,

and induces lung cancer in laboratory animals [34,35,36]. Another

example is trimethoprim (CID000005578), which is positive for

five toxicity endpoints: T1, T2, T4, T5, and T6. The prediction

order of our model was T1. T6. T2.T5. T4. T3.T7. This

compound was considered to be a carcinogen according to

chemical-chemical interactions, but the Accelrys Toxicity database

[19] labeled this compound only as a mutagen. However, it is

reasonable to assume this compound as a carcinogen because it

has a genotoxic toxicophore-aromatic amine (see Figure 2)

[5,37,38]. Typically, mutation is one of the first steps in the

development of cancer [39].

Table 5. Details of Tasosartan’s interactive compounds in the training dataset.

Compound ID Tag of toxicity class Its interactive compound ID Tag of toxicity class Confidence score

CID000060919 T7 CID000003749 T7 679

CID000060919 T7 CID000002541 T7 670

CID000060919 T7 CID000060921 T7 669

CID000060919 T7 CID000003961 T7 667

CID000060919 T7 CID000060846 T7 658

CID000060919 T7 CID000065999 T1, T6 643

CID000060919 T7 CID000054738 T1, T2 172

doi:10.1371/journal.pone.0056517.t005

Table 6. The details of common compounds belonging to
two categories.

Tag of
toxicity
class T1 T2 T3 T4 T5 T6

T1 12,633a 3,483
(22.8%)b

1,485
(11.0%)

2,027
(15.6%)

2,075
(15.9%)

3,446
(25.7%)

T2 6110 1,720
(25.7%)

1,213
(16.7%)

1,336
(18.4%)

1,723
(20.1%)

T3 2293 570
(14.0%)

753
(18.6%)

781
(13.7%)

T4 2353 731
(17.7%)

897
(15.9%)

T5 2501 1,409
(26.6%)

T6 4,198

aThe number of common compounds belonging to two categories.
bThe number in parenthesis means the ratio of the number of common
compounds to the number of non-overlapping compounds of the two
categories.
doi:10.1371/journal.pone.0056517.t006

Chemical Toxicity Order Prediction

PLOS ONE | www.plosone.org 6 February 2013 | Volume 8 | Issue 2 | e56517



Tasosartan (CID000060919) is an angiotensin II (AngII)

receptor blocker [40], which is labeled as a relatively ‘‘non-toxic’’

compound in the dataset. Using our model, the order prediction of

this compound was T7. T1. T6. T2. The 1st order prediction is

‘‘non-toxic’’, consistent with the experimental data available.

Among seven interactive compounds in the training dataset

retrieved from STITCH (see Table 5), the top five interactive

compounds are ‘‘non-toxic’’, and their confidence scores are

relatively high. However, the latter two interactive compounds are

toxic, so tasosartan is predicted to have some toxicity effects in our

model. However, the possibility of its possessing these toxicities is

less than that of its not possessing toxicity (i.e., ‘‘non-toxic’’).

The predictions for NNK, trimethoprim, and tasosartan and the

prediction accuracies of the method indicate that interactive

compounds can share common toxicity with high probability,

which assessment conforms to the results of predicting other

attributes of compounds [15,16]. The confidence scores of

chemical-chemical interactions contribute significantly to the

prediction of compound toxicity. As shown in Table 5, the

interactive compounds of tasosartan with high confidence scores

dominantly have the same toxicity as tasosartan. On the other

hand, the predicted results for NNK, trimethoprim, and tasosartan

reflect a limitation of our model: the judgment of ‘‘toxic’’ or ‘‘non-

toxic’’ is based on a collective set of compounds with interactive

information. However, some compounds with low confidence

scores exist and they may contribute to the input of promiscuous

interaction information to the final classification model. To

address this issue, a future endeavor should introduce a threshold

to the interaction confidence score and exclude ‘‘noisy’’ informa-

tion to obtain a more accurate prediction.

Moreover, many more compounds are without chemical-

chemical interactions in the original Accelrys Toxicity database.

It is expected that the problem of predicting compound toxicity

can be solved more favorably by the method as increasing

amounts of chemical-chemical interaction information become

available.

Analysis of the Relationship between Different Chemical
Toxicity Effects

In the Accelrys Toxicity Database, there are 3,607 compounds

with more than two types of toxicity effects and 3,475 compounds

with exact two effects (refer to Figure 1). We analyzed the

number of common compounds belonging to two categories, and

the ratio of the number of common compounds to the number of

non-overlapping compounds of the two categories (see Table 6).

It can be found that the intersection of T5 (‘‘Reproductive Effects’’,

cf. Table 1) and T6 (‘‘Multiple Dose Effects’’) is the largest,

sharing 26.6% of common compounds. The overlapping com-

pounds suggest that there may be a causal relationship between

the two categories. Specifically, the reproductive effects may cause

multiple dose effects, i.e., reproductive toxicities may be cumula-

tive, and hence be regarded as showing multiple dose effects in the

meantime. The followed instances of correspondence between two

categories are T2 (‘‘Mutagenicity’’) vs. T3 (‘‘Tumorigenicity’’) and

T1 (‘‘Acute Toxicity’’) vs. T6 (‘‘Multiple Dose Effects’’). Since, in

many cases, mutation is one of the first steps in the development of

cancer [39], we took T2 (‘‘Mutagenicity’’) vs. T3 (‘‘Tumorigenic-

ity’’) as an example to study the relationship between the two toxic

categories.

From the viewpoint of mechanism of action, carcinogens can be

classified into genotoxic or epigenetic carcinogens. Genotoxic

carcinogens can bind covalently to DNA, and many known

mutagens belong to this category. In the dataset, there are 1,720

common compounds with simultaneous toxicity T2 (‘‘Mutagenic-

ity’’) and T3 (‘‘Tumorigenicity’’). The Structural alerts (SAs)

provided by Benigni [37], which are molecular functional groups

associated with a specific toxicity end point [38], were used here to

gain insights into the correspondence of the two toxic effects. As

summarized in Table S3, we illustrated a few examples for each

of the matched SAs.

As previously mentioned, not all of the mutagens are

carcinogens. For example, a,b-unsaturated carbonyl compounds

can interact with DNA by Michael addition, then lead to

mutagenic and carcinogenic responses [37], e.g. acrylamide

(CID000006579) and 2-butenal (CID000447466). However, if an

Figure 3. Nongeneric SAs (Benigni) and some carcinogens matching these SAs.
doi:10.1371/journal.pone.0056517.g003
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a,b-unsaturated carbonyl compound has conformational con-

straints or alkyl groups at the site of nucleophilic attack, the

compound would be prone to reaction via Schiff base formation

[41]. This change may only generate the DNA-adducts, but not

undergo the following carcinogenic process [37]. This means that

this kind of compound has no carcinogenicity, e.g. (E)-2-methyl-2-

butenal (CID005321950) and 2-propylacrolein (CID000070609).

Epigenetic carcinogens do not usually bind directly to DNA, but

have a large variety of different and specific mechanisms, and

behave negatively in the standard mutagenicity assay [42]. Thus,

some compounds that can match nongeneric SAs [37] are only

carcinogens, not mutagens (see Figure 3).

Conclusions
In this study, a multi-classifier for six toxicity effects was built

based on 17,233 compounds with their experimental toxicity

information available and 323,432 pairs of mapped chemical-

chemical interaction information extracted from the STITCH

database. A new chemical entity can have multiple toxicity effects,

so a multiclass toxicity prediction tool may prove to be practically

more valuable to chemists than a traditional binary classification

model. It can provide a better toxicity profile for a compound

rather than merely indicating whether the compound has a

specific toxic action or potential. The outstanding performance of

our approach suggests that the multi-classification scheme is

feasible and effective for in silico chemical toxicity prediction.
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screening methods are much-needed 
to help reduce the persistently high 
attrition rates in clinical develop-
ment. Now, writing in the Journal 
of Proteome Research, Nicholson 
and colleagues present the novel 
approach taken by the Consortium 
on Metabonomic Toxicology 
(COMET), which provides the  
largest validation so far of the 
potential of metabolic profiling to 
predict drug toxicity.

Their metabonomics-based 
method involved profiling com-
pound-induced perturbations in 
urinary metabolites using 1H nuclear 
magnetic resonance spectroscopy 
(NMR). Their study included 80 
compounds that were selected to 
cover a diverse range of structures 
and toxicities, with an emphasis on 

liver and kidney toxins as these are 
the major organs involved in toxicity. 

Urine samples were collected 
from male rats both prior to and 
at various time points over 7 days 
following treatment with a single 
dose of compound. This culminated 
in 6,260 control and 6,675 treated 
urine samples from 1,652 rats. 
Histopathology and clinical chem-
istry evaluations were carried out at 
48 and 168 hours post-dose, respec-
tively, to monitor toxicity.

To assess the effect of compounds 
on urinary metabolites, the authors 
first built a multivariate model of 
normal urine based on pre-processed 
1H NMR spectra of the samples. 
Classification of samples from dosed 
animals as normal or abnormal 
using this model revealed a high 
correspondence between toxicity and 
abnormal metabolic profiles, with 
67 out of the 80 treatments showing 
agreement as to the presence or 
absence of an effect. Compared with 
the normal model, 62 treatments 
exerted an effect and these were used 
for subsequent studies. 

Next, Nicholson et al. set out to 
determine whether urinary metabo-
lite analysis could be used to detect  
specific organ toxicity. To do 
this, they used a density estima-
tion method — Classification of 
Unknowns by Density Superposition 
(CLOUDS). This combines NMR 
data obtained from all animals across 
all time points within the studies for a 

particular treatment, which can then 
be compared as a single unit with the 
signatures of other treatments. 

Using the CLOUDS method in 
blind tests the authors could correctly 
identify the target organ of the liver 
toxin azathioprine and the kidney 
toxin maleic acid, even at sub-toxic 
levels. Assessment of the system 
across all 62 treatments showed that it 
had a sensitivity — the proportion of 
all treatments affecting a given organ 
that are classified to that organ — to 
liver and kidney toxins of 67% and 
41%, respectively. The corresponding 
specificities — the proportion of all 
treatments predicted to affect a given 
organ that truly affect that organ 
— were 77% and 100%, respectively.

These promising results indicate 
that this metabonomics-based 
method provides a non-invasive, 
sensitive, rapid and cost-effective 
approach for preclinical toxicology, 
and it is currently in use by several of 
the COMET pharmaceutical partners. 
Such an approach could also have 
potential in studying drug efficacy in 
preclinical studies and clinical trials.

Sarah Crunkhorn
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The International Serious Adverse 
Events Consortium
Arthur L. Holden, Jorge L. Contreras, Sally John and Matthew R. Nelson

The International Serious Adverse Events Consortium is generating novel insights into  
the genetics and biology of drug-induced serious adverse events, and thereby improving 
pharmaceutical product development and decision-making.

The impetus for the International Serious Adverse Events 
Consortium (iSAEC) arose from a series of interviews 
in 2006 with senior research and development leaders 
of major pharmaceutical companies, exploring how to 
build on the success of the SNP Consortium1 to identify 
additional, high-value genomic research areas in which 
to apply this highly effective cross-industry collaborative 
model. The interviewees assigned the highest priority to 
exploring the genetic basis of drug-induced, rare serious 
adverse events (SAEs). In May 2006, with staff at the US 
Food and Drug Administration (FDA), we conceptualized 
the structure for a private, international research consor-
tium to explore the genetic contribution to drug-induced 
SAEs. It was felt the opportunities for applying genomic 
technologies to better understand this vital aspect of drug 
safety would benefit both drug development and regula-
tory oversight. Equally significant were the complexity, 
logistics, management, risks, and cost associated with 
such a research initiative. No single institution possessed 
the resources, sufficient well-phenotyped cases, geno
mics expertise and international breadth to execute such 
a research endeavour alone. The stage was set for the 
development and launch of the iSAEC.

Scientific focus and organizational structure
The iSAEC is a pharmaceutical-industry-led and FDA-
supported international research consortium, focused 
on identifying and validating DNA variants predictive of  
the risk of drug-induced SAEs. It was launched in 2007 
with the scientific and financial support of six funding  
members (Abbott, GlaxoSmithKline, Johnson & Johnson,  
Pfizer, Roche and Sanofi-Aventis). Additional dues-paying  
members were added (Novartis, Takeda, Daiichi Sankyo, 
and The Wellcome Trust) as the consortium completed its 
Phase 1 research programme (focused on the genetics of  
drug-induced liver injury (DILI) and serious skin injury  
(DISI)). A separate call for funding and membership roster  
was developed for the Phase 2 research programme, which  
included ten dues-paying members (Abbott, GlaxoSmith
Kline, Pfizer, Takeda, Daiichi Sankyo, Novartis, Merck, 

Amgen, AstraZeneca and the Wellcome Trust), as well  
as three associate members that made in-kind, non-cash  
contributions to the research effort (Cerner, Clinical Data  
and Catholic Health Initiatives). The FDA has partici-
pated from the outset as an observer, advisor and research 
collaborator, but without formal membership status.

Since 2007, the iSAEC has collaborated with over 200 
leading academic centres and scientists globally to:
•	 standardize and publish phenotype definitions for 

the major drug-induced SAEs (liver, skin, heart and 
renal injury);

•	 build diverse, well-phenotyped clinical cohorts and 
sample repositories for many of the major SAEs;

•	 apply optimal genomic and computational methods 
(including imputation) for effective genome-wide 
single nucleotide polymorphism (SNP) genotyping 
and exome sequencing;

•	 ensure timely public availability of scientific results/
associated data (within 12 months after genotyping, 
regardless of publication timing) to the scientific com-
munity at no cost2 (see Further information); and

•	 ensure the open use of all iSAEC data, unencumbered 
by intellectual property constraints3.
The iSAEC’s organization is virtual and composed of 

multiple collaborative teams, staffed by member volun-
teers and research collaborators, and under the direction 
of the iSAEC’s CEO/Chairman. The iSAEC is governed by 
a board of directors (BOD) that consists of one director 
from each sponsoring member and the CEO, ex officio, 
and makes its decisions using a ‘majority rules’ model. 
The board delegates the oversight and management of 
the consortium’s research agenda to the scientific manage-
ment committee (SMC), which has representatives from 
each member company as well as scientific and clinical 
experts from many of its major collaborations. The SMC 
is supported by the Data Analysis and Coordination 
Center (DACC) at Columbia University as well as a net-
work of genotyping and sequencing partners. The DACC 
coordinates the aggregation, quality control, analysis and 
release of all research data; prior to public data release, no 
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consortium member or collaborator may use the data for 
any purpose other than the advancement of the consor-
tium’s research (that is, there is no preferential access; see 
Further information for details of the data release policy).

Current status and scientific output so far
Over the past 7 years, the iSAEC has developed novel, inter-
national clinical networks to aggregate well-phenotyped 
case collections associated with specific SAEs and causal 
drugs. Specifically, we have aggregated subjects with DILI, 
DISI, drug-induced hypersensitivity syndrome (DIHSS), 
drug-induced renal injury (DIRI), drug-induced Torsades 
de pointes/prolonged QT effects (DITdP), inflammatory 
bowel disease (IBD) therapy-related SAEs such as pan-
creatitis and leukopenia, excessive weight gain (EWG) 
associated with class 2 antipsychotics, and osteonecrosis 
of the jaw (ONJ). Case enrolment has been completed for 
all SAEs, with the exception of DIRI and those related to 
IBD (see Supplementary information S1 (table)). By the 
end of 2015, the consortium expects to have aggregated 
close to 7,500 SAE cases spanning these phenotypes. The 
majority of this collection will be Caucasian, but it will con-
tain important African, Indian and Chinese cohorts. The 
scale, depth, quality, and diversity of this recruitment effort 
are unprecedented in the history of drug safety research.

The iSAEC has or will conduct genome-wide geno
typing of all collected subjects. In Phase 1, initial genome-
wide association studies were conducted for DILI, DISI and 
DITdP, leading to several novel findings and key insights 
into the primary immune-related mechanisms underlying 
many of these SAEs (see Supplementary information S2 
(box) for a list of publications). Following the success 
of the first phase, the BOD approved a plan to increase 
the existing DILI and DISI case collections, expand into 
DIHSS, DIRI, EWG, ONJ and IBD-related SAEs, expand 
investigations for selected SAEs into non-European popu-
lations, and explore the role of rare variants in SAEs with 
pilot exome sequencing studies for co-amoxiclav-induced 
liver injury, clozapine-induced agranulocytosis and DITdP.

To date, the iSAEC has completed 18 public releases 
of anonymized subject-level clinical and genotyping 
data, associated with 3,623 of its cases and controls. A 
total of 135 researchers and institutions have applied 
for and been granted access to the iSAEC database (see 
Further information). Through this open access policy, 
we hope to stimulate further analysis that will yield addi-
tional scientific insights and publications as collections 
and genetic analysis methods evolve2.

The iSAEC is helping to set the precedent for genetic 
analysis of drug-induced SAEs and beginning to broaden 
the scientific understanding of these highly personalized 
reactions to otherwise safe and effective drugs. Through 
our research, we have demonstrated that the primary 
genetic contribution to SAE risk is through human leuko
cyte antigen (HLA) variation and the adaptive immune 
response, and that the variants with clinically meaningful  
effects can be detected in relatively small sample sizes 
(<50 cases in several instances). This bodes well for the 
feasibility of applying genomic methods in the future 
when an immunologically mediated toxicity is suspected. 
In those studies where we have performed sequencing 

analysis, our quest to identify rare variants (that is, <1% 
of the population) with a large SAE influence has, to date, 
been unfruitful. We remain uncertain as to the effects 
such rare genetic variants may have on SAEs. To date, 
most of our findings are drug-specific versus across mul-
tiple drugs, which may be expected given the important 
role for the major histocompatibility complex genomic 
region in the pathology of immunologically mediated  
SAEs and the very specific relationships observed 
between HLA alleles and clinical disease (for example, 
HLA-B*27 in ankylosing spondylitis and HLA-C*06 in 
psoriasis). Finally, there are a number of HLA alleles 
that are associated with different SAEs and for different 
drugs, including HLA-B*57:01, HLA‑DRB1*07:01, and 
HLA‑DRB1*15:01, that may provide important insights 
into the underlying biology of SAEs and offer strategies 
to predict or mitigate future SAEs.

Lessons learned and conclusions
Lessons learned in developing the iSAEC include:
•	 a clear, unifying, highly important mission is a must 

from the outset;
•	 to maximize membership and ease of formation, 

ensure the proposed effort is precompetitive and in 
the public good;

•	 develop the operating plan and uniform membership 
requirements with the potential funding members;

•	 have a high-quality, phased scientific/operating plan 
before recruiting funding members;

•	 establish dedicated, high-quality management early;
•	 develop funding requirements early, and work with 

the potential members on trade-offs to produce an 
affordable and effectively phased consortium;

•	 organize a board and well-defined committees with 
high-quality, dedicated leaders;

•	 outsource to the best external advisors/investigators 
via performance-based contracts;

•	 exceed expectations;
•	 make it fun and say “thank you” in meaningful ways;
•	 know when to terminate the consortium — begin 

with the end in mind!
Drug-related biomedical research options are exploding  

in number, complexity, risk and cost. To address the chal-
lenges, all stakeholders must work together to develop 
new collaborative research frameworks and diversified 
funding models that enhance financial leverage and 
research productivity. The iSAEC serves as an excellent 
example of such innovation.
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Box S1 | Summary of case enrolment by iSAEC and status of phase 2 pipeline 

 

 
 
 

          
  

  Phase 1   
 

  Phase 2   
 

  
 

  
iSAEC Collaborators Total 

 
iSAEC Collaborators Total 

 

Grand 
totals %  

DILI (iDILIC) 
 

505 401 906 
 

         
1,331  424 

         
1,755  

 

              
2,661  36% 

DISI (ITCH) 
 

90 0 90 
 

         
1,332  0 

         
1,332  

 

              
1,422  19% 

DiTdP 
 

74 206 280 
 

                
-    

                          
-    

                
-    

 

                  
280  4% 

DIRI (DIRECT) forecasted 
 

0 0 0 
 

            
800  

                       
100  

            
900  

 

                  
900  12% 

BNONJ 
 

0 0 0 
 

358 0 358 
 

                  
358  5% 

 
IBD SAE/ADR-related (PRED6) 

 
0 0 0 

 

         
1,636  

                          
-    

         
1,636  

 

              
1,636  22% 

Excessive weight gain/CL2APs 
 

0 0 0 
 

175 0 175 
 

                  
175  2% 

            
Total 

 
669 607      1,276 

 
5632 524 

         
6,156  

 

              
7,432  
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Box S2 | Publications from the International Serious Adverse Events Consortium to date (as of September 2014) 
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• McCormack, M. et al. HLA-A*3101 and carbamazepine-induced hypersensitivity reactions in Europeans. N. Engl. J. Med. 364, 1134-

1143 (2011). 
• Pirmohamed, M. et al. The Phenotype Standardization Project: improving pharmacogenetic studies of serious adverse drug reactions. 
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• Aithal, G. P. et al. Case definition and phenotype standardization in drug-induced liver injury. Clin. Pharmacol. Ther. 89, 806-815 

(2011). 
• Behr, E. R. et al. DiTdP à The International Serious Adverse Events Consortium (iSAEC) phenotype standardization for drug-induced 

torsades de pointes. Eur. Heart J. 34, 1958-1963 (2013). 
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• Behr, E. R.  et al. Genome wide analysis of drug-induced torsades de pointes: lack of common variants with large effect sizes. PLoS One 8, 

e78511 (2013). 
• Sullivan, P. F. et al. Clozapine-induced agranulocytosis is associated with rare HLA-B and HLA-DQB1 alleles”. Nature Comms. 4 Sep 

2014 (doi:  10.1038/ncomms 5757) 
• Heap, G. A. et al. HLA DQA1-DRB1 variants confer susceptibility to pancreatitis induced by the thiopurine immunosuppressants. 

Nature Genet. 15 Sept 2014 (doi:10.1038/ng.3093) 
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