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What is the difference between precision
medicine and personalized medicine? What
about pharmacogenomics?

There is a lot of overlap between the terms "precision medicine" and "personalized medicine."

Your Guide to Understanding
Genetic Conditions

According to the National Research Council, "personalized medicine" is an older term with a meaning
similar to "precision medicine." However, there was concern that the word "personalized" could be
misinterpreted to imply that treatments and preventions are being developed uniquely for each
individual; in precision medicine, the focus is on identifying which approaches will be effective for which
patients based on genetic, environmental, and lifestyle factors. The Council therefore preferred the
term "precision medicine" to "personalized medicine." However, some people still use the two terms
interchangeably.

Pharmacogenomics is a part of precision medicine. Pharmacogenomics is the study of how genes
affect a person’s response to particular drugs. This relatively new field combines pharmacology (the
science of drugs) and genomics (the study of genes and their functions) to develop effective, safe
medications and doses that are tailored to variations in a person’s genes.

Read more about precision medicine, personalized medicine, and
pharmacogenomics:

A 2011 report from the National Research Council (PDF) (7 provides a detailed overview of
precision medicine, including the reasoning behind the Council’s preference for the term
"precision medicine" over "personalized medicine."

Genetics Home Reference provides an introduction to pharmacogenomics. Additional
information about pharmacogenomics is available from the National Human Genome Research
Institute (NHGRI).



PRECISION MEDICINE

The evidence landscape in precision medicine

Spencer Phillips Hey'*, Cory V. Gerlach®*®, Garrett Dunlap>®, Vinay Prasad’, Aaron S. Kesselheim'*?

For example, one challenge arises from the
fact that the unit of testing in precision medi-
cine is a complex intervention ensemble that
combines a therapeutic agent, a marker, and
a diagnostic assay for detecting that marker
(1). Rigorous testing of this complex interven-
tion ensemble requires that each component—
treatment, marker, and assay—has been opti-
mized for a given condition.

A second challenge arises from the fact that
diagnostic assays require their own multistep
development and validation process, which
involves assessment of the assay’s preanalytical
validity (proper specimen handling and pro-
cessing), analytical validity (test accuracy, re-
liability, and reproducibility), clinical validity
(strong association between test result and a
clinical outcome of interest), and clinical
utility (use of the test to direct patient care
results in a more favorable risk-benefit bal-
ance than nonuse of the test) (2). Failure to

Hey et al., Sci. Transl. Med. 12, eaaw7745 (2020)
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A third challenge arises from disagree-
ment about the level of evidence necessary to
demonstrate the effectiveness of the inter-
vention ensemble. Simon et al.’s influential
evidence hierarchy for precision medicine
marker validation (5) stipulates that level 1A
evidence requires randomized controlled trials
(RCTs) that stratify patients according to their
marker status and then randomize them to
a therapy, thus providing a rigorous test of
the interaction between a patient’s marker
test result and their clinical outcomes with a
particular intervention. Level 1B evidence can
be produced by retrospective analyses of RCTs
that analyze the interaction between marker
status and treatment response after the RCT
has been carried out (5). However, a recent
analysis of targeted drugs approved by the
U.S. Food and Drug Administration (FDA)
found that the majority were approved on
the basis of evidence from enrichment trials
only—that is, trials that restricted enroll-
ment to patients who tested positive for the
marker of interest (6). Whereas enrichment
trials can provide evidence about how a
therapy works in the marker-positive pa-
tient population, their exclusion of the marker-
negative population means that they do not
provide evidence about the clinical validity of
the marker (7). Thus, for most approved
targeted medicines, the complete interven-
tion ensemble has not been fully tested, and it
is not known whether the marker diagnostic
is actually a necessary component of the
therapeutic strategy.
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FURTHER INFORMATION

- iSAEC Data Access Site: hitpsi//dataportalsaeconsortium.org/
iSAEC Public Data Access Policy: hitp://swww saeconsortium.org/?q=node/27

The International Serious Adverse SUPPLEMENTARY INFORMATION
Events Consortium

Arthur L. Holden, Jorge L. Contreras, Sally John and Matthew R. Nelson

Amgen, AstraZeneca and the Wellcome Trust), as well
as three associate members that made in-kind, non-cash
The International Serious Adverse Events Consortium is generating novelinsightsinto  contributions to the research effort (Cerner, Clinical Data

the genetics and biology of drug-induced serious adverse events, and thereby improving and Catholic Health Initiatives). The FDA has partici-

pharmaceutical product development and decision-making. pated from the outset as an observer, advisor and research

— o collaborator, but without formal membership status.
Scientific focus and organizational structure Since 2007, the iSAEC has collaborated with over 200
The iSAEC is a pharmaceutical-industry-led and FDA-

supported international research consortium, focused
on identifying and validating DNA variants predictive of
the risk of drug-induced SAEs. It was launched in 2007
with the scientific and financial support of six funding "
members (Abbott, GlaxoSmithKline, Johnson & Johnson,

Pfizer, Roche and Sanofi-Aventis). Additional dues-paying o
members were added (Novartis, Takeda, Daiichi Sankyo,
and The Wellcome Trust) as the consortium completed its
Phase 1 research programme (focused on the genetics of

drug-induced liver injury (DII_“I) and serious Skif‘ injury * ensure timely public availability of scientific results/
(DISI)). A separate call for funding and membership roster associated data (within 12 months after genotyping,

—Wasqevetoped foT The PiTse 2 TesearciT programe; Wit regardless of publication timing) to the scientific com-

included ten dues-paying members (Abbott, GlaxoSmith-
Kline, Pfizer, Takeda, Daiichi Sankyo, Novartis, Merck,

leading academic centres and scientists globally to:

* standardize and publish phenotype definitions for
the major drug-induced SAEs (liver, skin, heart and
renal injury);
build diverse, well-phenotyped clinical cohorts and
sample repositories for many of the major SAEs;
apply optimal genomic and computational methods
(including imputation) for effective genome-wide
single nucleotide polymorphism (SNP) genotyping
and exome sequencing;

munity at no cost’ (see Further information); and
* ensure the open use of all iISAEC data, unencumbered

Opyava TToU CUXVOTEPA TTAPOUCIGIouV by intellectual property constraints®.
TOSIKEG ETTIOPACEIC PAPUAKWYV;;

796 | NOVEMEBER 2014 | VOLUME 13 www.nature.com/reviews/drugdisc
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The International Serious Adverse
Events Consortium

Arthur L. Holden, Jorge L. Contreras, Sally John and Matthew R. Nelson

The International Serious Adverse Events Consortium is generating novel insights into
the genetics and biology of drug-induced serious adverse events, and thereby improving
pharmaceutical product development and decision-making.

Box S2 | Publications from the International Serious Adverse Events Consortium to date (as of September 2014)

. Daly, A. K. et al. HLA-B*5701 genotype is a major determinant of drug-induced liver injury due to flucloxacillin. Nature Genet. 41, 816-
819 (2009).

. Lucena, M. L. et al. Susceptibility to amoxicillin-clavulanate-induced liver injury is influenced by multiple HLA class I and 11 alleles.
Gastroenterology 141, 338-347 (2011).

. Shen, Y. et al. Genome-wide association study of serious blistering skin rash caused by drugs. Pharmacogenomics J. 12,96-104 (2012).

. McCormack, M. ef al. HLA-A*3101 and carbamazepine-induced hypersensitivity reactions in Europeans. N. Engl. J. Med. 364, 1134-
1143 (2011).

. Pirmohamed, M. et al. The Phenotype Standardization Project: improving pharmacogenetic studies of serious adverse drug reactions.
Clin. Pharmacol. Ther. 89, 784-758 (2011).

. Pirmohamed, M. et al. Phenotype standardization for immune-mediated drug-induced skin injury. Clin. Pharmacol. Ther. 89, 896-901
(2011).

. Aithal, G. P. et al. Case definition and phenotype standardization in drug-induced liver injury. Clin. Pharmacol. Ther. 89, 806-815
(2011).

. Behr, E. R. ef al. DiTdP a The International Serious Adverse Events Consortium (iSAEC) phenotype standardization for drug-induced
torsades de pointes. Eur. Heart J. 34, 1958-1963 (2013).

. Contreras, |. Information access. Prepublication data release, latency, and genome commons. Science 329, 393-394 (2012).

. Behr, E. R. et al. Genome wide analysis of drug-induced torsades de pointes: lack of common variants with large effect sizes. PLoS One 8,
€78511 (2013).

. Sullivan, P. F. et al. Clozapine-induced agranulocytosis is associated with rare HLA-B and HLA-DQBI alleles™. Nature Comms. 4 Sep
2014 (doi: 10.1038/ncomms 5757)

. Heap, G. A. et al. HLA DQAI1-DRBI1 variants confer susceptibility to pancreatitis induced by the thiopurine immunosuppressants.

Nature Genet. 15 Sept 2014 (doi:10.1038/ng.3093)

796 | NOVEMEBER 2014 | VOLUME 13 www.nature.com/reviews/drugdisc



What is the difference between adverse drug reaction and side effect??

They are sometimes used interchangeably but adverse drug reaction means an unintended and
undesired reaction to a medicine given at the correct dose.

Any medicine can cause an adverse drug reaction.

An adverse drug reaction can start soon after you take the medicine,

or up to 2 weeks after you stop taking the medicine.

Drug reactions can affect your entire body (systemic),

or they can be limited to a specific organ. The skin is the most common area affected.

You may have an itchy rash, swelling, or blisters.

Systemic reactions can cause fevers, swelling of blood vessels,

or a life-threatening allergic reaction called anaphylaxis.

Moapadeiypa;

A side effect is a result of drug or other therapy in addition to or in extension of the desired
therapeutic effect;

usually but not necessarily, connoting an undesirable effect.

Although technically the therapeutic effect carried beyond the desired limit

(a hemorrhage from an anticoagulant) is a side effect,

the term more often refers to pharmacologic results of therapy unrelated to the usual objective
(a development of signs of Cushing syndrome with steroid therapy).

Moapadseiypa;



Aurel Cami, et al.
Sci Transl Med 3, 114ra127 (2011);
DOI: 10.1126/scitransimed.3002774
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Predicting Adverse Drug Events Using Pharmacological Network Models

Cardiovascular Adverse Events
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Fig. 6. Interaction diagram depicting single-drug effects, drug-class effects, DDIs, and class-class inter-
actions for cardiovascular adverse events. Drugs are sorted clockwise around the ring by the physiological
system they treat. Drugs labeled by name are members of data-mined DDIs. Within each physiological
system, drugs are grouped into lower-order drug classes according to structural similarity or treatment
indication. These lower-order classes are colored by their class-wide association with adverse cardio-
vascular effects (red for most severe to blue for least severe). Each arc across the center represents one
DDI according to the data mining. The arc is colored red if the drug interaction is corroborated with evi-
dence from the EMRs and brown if the drugs are members of class-class interactions. The heat map
around the interior of the ring indicates the individual drug effects with the top 10 cardiovascular adverse
events (arteriosclerosis, decreased arteriole pressure, chest pain, difficulty breathing, heart attack, apoplexy,
high blood pressure, coronary heart disease, edema in extremities, cardiac decompression) (dark red for
strong associations to white for weak or no association).
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Predicting Adverse Drug Events Using Pharmacological Network Models
Aurel Cami, et al.
Blaias Sci Transl Med 3, 114ra127 (2011);

- DOI: 10.1126/scitranslmed. 3002774

~ ] Science
Editor's Summary Translational

Medicine

The Power of Prediction

We've all done it: googled a combination of medical terms to describe how we feel after taking a new
medication. The result is a seemingly infinite list of Web sites telling us that the nausea is normal, or that the
headaches warrant another visit to the doctor. Oftentimes, important adverse effects of drugs are discovered and

added to the drug lapel only years after a drug goes on th¢ market. But what if scientists could know about certain
adverse drug effects before they are clinically discovered? Cami and colleagues develop a mathematical approach to
predicting such adv ; ; e take, in hopes of reducing drug-related morbidity —and

mortality.

After its release to the market, any given drug undergoes rigorous evaluation to determine associated ADEs
(adverse drug effects). This post hoc analysis is usually unable to detect rare or delayed-onset ADEs until enough
clinical evidence accumulates—a process that may take years. The method devised by Cami and coauthors does not
need to wait for such evidence to accumulate. Instead, it can inform drug safety practitioners early on of likely ADEs
that will be detected down the line.

The authors first collected a "snapshot" of 809 drugs and their 852 related adverse events that had been
documented in 2005. These drug-safety associations were combined with taxonomic and biological data to construct
a network that is reminiscent of a web. Cami et al. then used this drug-ADE network to train a logistic regression

g = g

in the network. The predictive capabilities of the model were prospectively validated using drug-ADE associations
newly reported between 2006 and 2010. Such prospective evaluation preserves the chronological order of drug
adverse event reporting, making it a realistic method for predicting future ADEs. With their network, the authors were
able to predict with high specificity seven of eight drug ADEs identified by pharmacological experts as having
emereed after 2005, including the relationship between the anti-diabetes drug rosiglitazone (Avandia) and heart
attack.

The benefit for patients? With this powerful model in place, certain unknown adverse drug effects may be
discovered earlier, helping to prevent drug-related morbidity and mortality through appropriate consumer label
warnings.

| stm.sciencemag.org on December 22, 2011



Predicting Adverse Drug Events Using Pharmacological Network Models
Aurel Cami, et al.

Sci Trans! Med 3, 114ra127 (2011);

DOI: 10.1126/scitransimed 3002774
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Fig. 1. Overview of the PPN approach. First, data were integrated from
multiple sources, including safety data (drug-ADE associations contained
in two chronologically separated snapshots of a drug safety database: one
from 2005 and another from 2010), taxonomic data (ATC taxonomy of
drugs and MedDRA taxonomy of ADEs), and biological data (intrinsic drug
properties). Next, a network representation of the drug-ADE associations
contained in the 2005 database snapshot was constructed. The drug-ADE
network was used to derive a collection of network, taxonomic, and intrin-
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sic covariates and to train a logistic regression (LR) predictive model. The
trained LR model was used to generate scores for all the non-edges of
the 2005 network. Next, the actual drug-ADE associations that were
newly reported during the 5-year period from 2006 to 2010 were iden-
tified by comparing the 2005 snapshot with the 2010 snapshot. Finally,
a systematic evaluation of the model’s performance was performed by
comparing the model-generated scores with the set of newly reported
drug-ADE associations.
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In silico methods to predict drug toxicity
Alessandra Roncaglioni, Andrey A Toropov,
Alla P Toropova and Emilio Benfenati

to predict toxicity. They include quantitative structure—
activity relationship (QSAR) models, expert systems, 3D-
QSAR and docking models. The QSAR methods seck a
mathematical relationship between a group of molecular
descriptors, used to describe each molecule present in a
set of chemicals, and their toxicity values. It is funda-

Current Opinion in
Pharmacology

when there is a set of known toxic fragments (often called
‘structural alerts’), and the software recognizes their pre-
sence in the target chemical. An issue associated with this
kind of approach is that the set of toxic fragments can be
incomplete and thus may produce false negatives, that is,
falsely predict chemicals as safe. 3D-QSAR is based on
the concept of so-called ‘molecular interaction fields’.
With this technique the variation in the steric and elec-
trostatic interaction energies calculated between each
molcculc and a prohc is correlated with the variation in

- pre is usually focused on
yith associated
§ the binding to a
l)l()](){.,l(.dl m.u.romolecule (usuall\ a protein) [2]. In gen-

a SCt
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SAR-QSAR

particular models and approaches dealing with ADME
(adsorption, distribution, metabolism, and excretion)

QYP isoforms, metaBolic product

relative quantities of metabolite formation,

environment. Morcover, interactions with the biological
system are also evaluated, such as intestinal permeability
[6] (with models derived on the basis of in vive [8°] or in
vitro data [9°°]). Interest is now growing also in the role of
active transporters [10] together with passive diffusion.

Some studies addressed te. blood-brain barrier (BB
permeability of compounds [117, ; related to
possible neurotoxic effects. Binding to plasma proteins is
also often evaluated [13].



More efficient compound safety
screening methods are much-neede
to help reduce the persistently high
attrition rates in clinical develop-
ment. Now, writing in the Journal
of Proteome Research, Nicholson
and colleagues present the novel
approach taken by the Consortium
on Metabonomic Toxicology

(C , which provi
argest validation so far of the
potential of metabolic profiling to
dict drug toxicity.

Their metabonomics-based
method involved profiling com-
pound-induced perturbations in
urinary metabolites using 'H nuclear
magnetic resonance spectroscopy
(NMR). Their study included 80
compounds that were selected to
cover a diverse range of structures
and toxicities, with an emphasis on

liver and kidney toxins as these are
the major organs involved in toxicity.

To assess the effect of compounds
on urinary metabolites, the authors
first built a multivariate model of
normal urine based on pre-processed
'"H NMR spectra of the samples.
Classification of samples from dosed
animals as normal or abnormal
using this model revealed a high
correspondence between toxicity and
ormal metabolic profiles;
67 out of the 80 treatments sho
agr
absence of an effect. Compared with
the normal model, 62 treatments
exerted an effect and these were used
for subsequent studies.

Next, Nicholson et al. set out to
determme whether urinary metabo-
d to detect
specific organ toxicity. To do
is, they used a density-estima-
tion method — Classification of
Unknowns by Density Superposition
(CLOUDS). This combines NMR
data obtained from all animals across

all time points within the studies for a
particular treatment, which can then

be compared as a single unit with the
signatures of other treatments.

TO=IKOTHTA
OAPMAKQN

Using the CLOUDS method in
blind tests the authors could correctly
identify the target organ of the liver
toxin azathioprine and the kidney
toxin maleic acid, even at sub-toxic
levels. Assessment of the system
across all 62 treatments showed that it

had a-sensitivity~< the proportion of
all{reatments affecylng a given organ
that are-elassifiedto that organ — to

liver and kidney toxins of 67% and

41%, respectively. The corresponding
pecificities™> the proportion of all

treatments prgdicted to affect a given

artimat truly affect that organ

— were 77% and 100%, respectively.

ORIGINAL RESEARCH PAPER Ebbels, T. et al.
Prediction and classification of drug toxicity
using probabilistic modeling of temporal
metabolic data: the consortium on metabonomic
toxicology screening approach. J. Prot. Res. 6,
4407-4422 (2007)

FURTHER READING Lindon, ). et al.

The Consortium for Metabonomic Toxicology
{COMET): aims, activities and achievements.
Pharmacogenomics 6, 691-699 (2005)

NATURE REVIEWS |DRUG DISCOVERY
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SYSTEMSBIOLOGY

Metabonomics

Jeremy K. Nicholson and John C. Lindon

NATURE|Vol 455|23 October 2008

Organisms oftenrespondin complex and unpredictable ways to stimuli that cause disease or injury.
By measuring and mathematically modelling changesin the levels of products of metabolism found in
biological fluids and tissues, metabonomics offers fresh insight into the effects of diet, drugs and disease.

What arethe origins of the field?
The idea that changes in tissues and biclogical
fluids are indicative of disease goes back at
least as far as ancient Greece. Diagnostic
‘urine charts’ were widely used from the Middle
Ages onwards (Fig. 1). These charts linked
the colours, smells and tastes of urine to vari-
ous medical conditions. Such features are, of
course, metabolic in origin. Metab ics,
and the related field of metabolomics, uses
modern techniques to analyse samples, but the
basic principle of relating chemical patterns to
biology is the same.

The distinction is mainly
philosophical, rather than
technical. Metabonomics
broadly aims to meas-
ure the global, dynamic
metabolic response
of living systems to
biological stimuli or
genetic manipula-
tion. The focus is on
understanding sys-
temic change through
time in complex
multicellular systems.
Metabolomics seeks
an analytical descrip-
tion of complex biologi-
cal samples, and aims to
characterize and quantify
all the small molecules in
such a sample. In practice, the
terms are often used interchange-
ably, and the analytical and modelling
procedures are the same.

How did modern-day metabonomics
begin?

There were two, largely independent, start-
ing points. The first was metabolic-control
analysis, a mathematical method in
the 1960s for modelling metabolism in cells.

This required metabolite concentrations to be
quantified, and so methods were developed
to do this — often using gas chromatography
(GC) or GC coupled to mass spectrometry
(MS). The second contributing factor was the
development of nuclear magnetic resonance
(NMR) spectroscopy. By the mid-1980s,
NMR was sensitive h to identify metab-
olites in unmodified biological fluids. This
led to the discovery that altered metabolite

Figure 1 Metabonomics of yore. This urine
wheel was published in 1506 by Ullrich Pinder,
in his book Epiphanie Medicorum. It describes
the possible colours, smells and tastes of urine,
and uses them to diagnose disease.

@ 2008 Macmillan Publishers Limitecl All rights reserved

N\

profiles are caused by certain diseases or by
adverse side effects to drugs. MS techniques
were also developed for profiling biological
fluids. But metabonomics really took off
with the reahization that pattern-recognition
methods (also known as chemometrics or
multivariate statistical analysis) could help to
interpret the complex data sets that result from
these studies.

How does this approach fitin with
systems biology?
Metabonomics dovetails beautifully with §

it provides a 'top-down, integrated view
of biochemistry in complex organ- 3
isms, as opposed to the tradi-
tional ‘bottom-up’ approach 3
that investigates the network
of interactions between ¥
genes, proteins and metab-
olites in individual cell
types. A problem with
systems biology is that
each level of biological
organization and control
— EENOMICs, gene expres-
sion, protein expression
and metabolism — oper-
ates on a markedly dif-
ferent timescale from the
others, making it difficult
to find causal linkages.
Moreover, environmental
and lifestyle factors greatly
influence metabolism, maki
it difficult to disentangle their
effects from gene-related out-
comes. Environmental influences
on gene expression also make it hard
to interpret genomic data, for example to
predict an individual’s susceptibility to diseases.
monitoring the global outcome of all the influ-
encing factors, without making assumptions
about the effect of any single contribution to
that outcome. Yet in so doing, the individual
contributions can be teased out.

NN



Metabolomics and Metabonomics - Just more omics?

Metabolomics and metabonomics have seen a surge in popularity in recent
scientific research. They may seem like two interchangable terms, with some
groups favouring one over the other, but there is some difference between the
two terms. Metabolomics as defined by Oliver Fiehn involves "...a comprehensive
analysis in which all the metabolites of a biological system are identified and
quantified...”

whereas Metabonomics was defined by Jeremy Nicholson as "the quantitative
measurement of the multiparametric time-related metabolic responses of a
complex (multicellular) system to a pathophysiolocigal intervention or genetic
modification.”

In other words, metabolomics is the process of measuring the whole
metabolome, whereas metabonomics is the measurement of changes across the
metabolome, with respect to time, due to an intervention, which is a smaller set of
metabolites.

From
https://www.metabolomics.strath.ac.uk/Metabolomics.htm
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Predicting Chemical Toxicity Effects Based on Chemical- TO=IKOTHTA

Chemical Interactions Q)APMAKQN

Lei Chen??, Jing Lu®?, Jian Zhang® Kai-Rui Feng®, Ming-Yue Zheng®*, Yu-Dong Cai'*
Accelrys Toxicity 1s a database of toxicity information compiled
from the open scientific literature [3] and containing toxicological
data for approximately 0.17 million chemicals. This database 1s of

Table 1. Distribution of compounds in each category of
compound toxicity.

Tag Toxicity Total
T Acute Toxicity 12,633
T, Mutagenicity 6,110
Ts Tumorigenicity 2,293
Ta Skin and Eye Irritation 2,353
Ts Reproductive Effects 2,501
Te Multiple Dose Effects 4,198
T; Non-toxicity 646
Total - 30,734
doi:10.1371/journal.pone.0056517.1001
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Systems Pharmacology to
Predict Drug Toxicity:
Integration Across Levels of
Biological Organization*

Jane P.F. Bai and Darrell R. Abernethy

Office of Clinical Pharmacology, Office of Translational Science, Center for Drug Evaluation
and Research, US Food and Drug Administration, Silver Spring, Maryland 20993;
email: darrell.abernethy@fda.hhs.gov

To achieve sensitive and specific mechanism-based prediction of drug toxi-
city, the tools of systems pharmacology will be integrated using structured
ontological approaches, analytics, mathematics, and statistics. Success of this
effort is based on the assumption that a systems network that consists of
drug-induced perturbations of physiological functions can be characterized.
This network spans the hierarchy of biological organization, from gene to
mRNA to protein to intracellular organelle to cell to organ to organism. It
is populated with data from each of these levels of biological organization.

Table 1 Key knowledge bases and databases

Database or knowledge base URL
SIDER (computer-readable side effect resource) http://sideeffects.embl.de
DrugBank http://www.drugbank.ca

Chemical Effects in Biological Systems (CEBS) http://cebs.niehs.nih.gov/

NCBI Database of Genotypes and Phenotypes (dbGaP) http://www.ncbi.nlm.nih.gov/gap/

Comparative Toxicogenomics Database

http://ctd. mdibl.org/

Genetic Association Database
(archive of human genetic association studies of complex diseases and
disorders)

http://geneticassociationdb.nih.gov

Kyoto Encyclopedia of Genes and Genomes (KEGG) http:/fwww.genome.jp/kegg
(bioinformatics resource for linking genomics to life)
The Pharmacogenomics Knowledgebase (PharmGKB) http://www.pharmgkb.org

(resource describing how variation in human genetics leads to variation
in response to drugs)

Gene Expression Omnibus (GEO)
(database repository of high-throughput gene expression data and
hybridization arrays, chips, and microarrays)

http://www.ncbi.nlm.nih.gov/geo

Connectivity Map

(detailed map that links gene patterns associated with disease to
corresponding patterns produced by drug candidates and a variety of
genetic manipulations)

http://www.broadinstitute.org/genome_bio/
connectivitymap.html

The Gene Ontology (GO) http://www.geneontology.org
(standardized representation of gene and gene product attributes across

species and databases)
Tox21 (Computational Toxicology Research program) http://epa.gov/ncct/Tox21

International HapMap Project
(database of genes associated with human disease and response to
pharmaceuticals)

http://hapmap.nebi.nlm.nih.gov

Human Interactome Database
(database of human binary protein-protein interaction networks)

http://interactome.dfci.harvard.edu/H_sapiens

European Bioinformatics Insttute (EBI) ArrayExpress Archive

http://www.ebi.ac.uk/microarray-as/ae/

NCI-60 DTP Human Tumor Cell Line Screen

http://dtp.nci.nih.gov/branches/btb/ivclsp.html

Library of Integrated Network-Based Cellular Signatures (LINCS)

http://commonfund.nih.gov/lincs/

Reactome

http:/fwww.reactome.org/ReactomeGWT/
entrypoint.html

Online Mendelian Inheritance in Man®

http://www.ncbi.nlm.nih.gov/omim
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organelles [such as mitochondria (5, 6)], to cells (7), and to organs (8), with the final result being de-
tectable or measurable drug action(s). One action may be the desired therapeutic effect, but other
actions may resultin parallel propagations that cause other (off-target) effects and systemic adverse
reactions (8) (Figure 15). Both drug chemistry and individual patient phenotype form the basis for
drug response, either therapeutic or toxic. Although individual drugs possess unique and diverse
chemical structures, they are linked to one another by structural fingerprints and similarity (9),
by overlapping transcriptomic patterns (10), by adverse reactions (11), by shared mechanisms of
biotransformation such as cytochrome 450 enzyme-mediated metabolism (12), and by Anatomical
Therapeutic Chemical (ATC) classification of pharmacological target (13) and pathway (14).
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(@) Distribution hierarchy of drug molecules in the human body. (#) Propagation schematic of drug actions in the human body. The
colored biochemical pathways map is taken from Reference 15 (http://www.genome.jp/kegg).
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Interaction map showing # number of drugs, £ number of proteins, 7 number of pathways, and A number of adverse drug reactions
(ADRs). Abbreviation: GI, gastrointestinal.
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Current paradigm of drug safety needs translational bridging between clinical phenotype and molecular
phenotype.
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Genetic signature and toxicogenomics

TO — I KOT T Genetic Signature as a Predictor of Connectivity
I
— I I A Single-nucleotide polymorphisms and haplotypes have been extensively used to explore as

well as to describe the genetic basis of many human diseases and their response to treatment
¢A PMA KQ N [see the Pharmacogenomics Knowledgebase (PharmGKB) at http://www.pharmgkb.org/].
Development of statistical connectivity between a genetic signature and a patient phenotype (47,
48) has been attempted for several diseases; for example, one study (49) links phenome to genome

Annu. Rev. Pharmacol. Toxicol. 2013. 53:451-73 to describe and genetically define neuropsvehiatric disorders.
< _Genome-wide association studies and candidate gene studiesIve been successfully used
to ldLlltlf) causal gem.t]c mutatons associated with idiosyneratic ADRs. A recent review that
in this area (16) noted some successes, including asso-
sdadon of HLA-B*5701 with abacavir hypersensig Many strains of genetically manipulated
(transgenic, knockout, and knockin) mice have been developed to investigate the relationship
between a specific gene and animal phenotype (50, 51). Perhaps owing to the uncertainty about
the interaction networks of a gene and its gene product, in some cases the observed phenotype
is unlike that predicted from either the function of the protein encoded or the clinical phenotype
in individuals carrying that genetic mutation. Protein expression assays may be conducted in
s to better understand the phenotype actually observed (52). One example: 36
nbred mouse strains were used to €3

e.g. HLA/
abacavir hypersensitivity

transgenic ani

qe the high variability in acetaminophen drug-induced
liver i |n|uw (DILI) in mice, 1m1 the gedetic polymorphisms of these mice were selected to
rariability (53). Humanized mouse models are increasingly used
in drug toxicity research (54 55), with most efforts centered on hepatotoxicity (53, 56). Most
of the useful extrapolations of results from animals to humans have come from studies utilizing

mouse to human
humanized mice

genes that are highly preserved across the species.
Transcriptomic Signature as a Predictor of Connectivity
Advances in microarray and next-generation sequencing technologies have allowed affordable
gene expression profiling and enabled integration of transcriptomic profiling into drug discovery

and development (57). Tox21 is a National Institutes of Health (NIH) program that focuses
on high-throughput toxicity testing (58), and the Gene Expression Omnibus (GEO) is a
functional genomics data repository sponsored by the National Center for Bioinformatics for
data mining (http://www.ncbi.nlm.nih.gov/geo/). The Japanese Toxicogenomics Project

Both whole-genome microarray (61) and differential expression of candidate genes (19) have

been used to identify genes that are up- or downregulated, to allow generation of hypotheses and

deduction of the biological pathways and networks that are perturbed (62) in relation to specific

ADRs. Pinpointing the causative biological pathways perturbed by a drug that leads to an ADR,

Confirmation Of however, requires confirmation by changes at the translational level of corresponding proteins

gene expreSSion levels and requires availability of dctcctiop methods such_as monoclonal anFib?LIics .(}()).‘Furthcrinorc,

i i mass spectrometry methods are being developed for low-level protein identification and quan-

by proteln eXpPressioNn  ification (63). Clinical transcriptomics analysis to delineate the mechanisms of drug toxicity in

humans is limited by inaccessibility of the target organ’s tissue (Figure 2). Human peripheral

blood mononuclear cells are therefore often used as a surrogate for inaccessible organs (64, 65).
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organelle-focused

toxicity
as Predictors of Connectivity

sponsible, at the organelle level, for several clinical
shermdTTa 1n the production of cellular energy via ATP formation
due to aeroblc respiration is consistent with the adverse cellular consequences of drug-induced
mitochondrial dysfunctlon Tox1c1ty can be meas‘ured by the change in mitochondria permeability

either drug can result in the formation of intracytoplasmic lipid droplets and significant elevations
of intracellular triglycerides. These histological features result from altered expression profiles of
the genes involved in fatty acid transport and lipid metabolism (25). The mitochondrial basis of
drug toxicity prediction is usually assessed using a composite score, such as the one that includes
the mitochondrial DNA (mtDNA) expression profile, mitochondrial membrane potential, ATP
level, electron transport chain, cell viability, and cellular reactive oxygen species level (93). The
human mtDNA has been completely sequenced (94). Future understanding of mtDNA mutations
and mtDNA transcriptomics in relation to ADRs may help shed light on the incidence of rare
ADRs. The data supporting drug-induced mitochondrial dysfunction will constitute the infor-
mation base that will support organelle-level connectivity in a systems pharmacology predictive
network. The database for drug-induced toxicity for other cellular organelles is more limited and
will require further development.

Figure 4
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Abstract

TO — I KOT H T A Systems approaches have long been used in pharmacology to understand

drug action at the organ and organismal levels. The application of com-
putational and experimental systems biology approaches to pharmacology
¢ A P M A KQ N allows us to expand the definition of systems pharmacology to include net-
work analyses at multiple scales of biological organization and to explain
both therapeutic and adverse effects of drugs. Systems pharmacology analy-

ses rely on experimental “omics” technologies that are capable of measuring

SYS tems Ph ALIS L ] i changes in large numbers of variables, often at a genome-wide level, to build

NetW()rk Analys“lb to Identify networks for analyzing drug action. A major use of omics technologies is
. - to relate the genomic status of an individual to the therapeutic efficacy of
MU]USC‘&IC MC Ch‘dfll&ﬂ]ﬁ a drug of interest. Combining pathway and network analyses, pharmacoki-

netic and pharmacodynamic models, and a knowledge of polymorphisms in
the genome will enable the development of predictive models of therapeu-
tic efficacy. Network analyses based on publicly available databases such as
the U.S. Food and Drug Administration’s Adverse Event Reporting System

of Drug Action

Shan Zhao and Ravi Iyengar

Department of Pharmacology and Systems Therapeutics, and Systems Biology Center

New York, Mount Sinai School of Medicine, New York, New York 10029; allow us to develop an initial understanding of the context within which
email:rav iyengar@omseon.edu molecular-level drug-target interactions can lead to distal effectors in a pro-
Annu. Rev. Pharmacol. Toxicol. 2012. 52:505-21 cess that results in adverse phenotypes at the organ and organismal levels.

The current state of systems pharmacology allows us to formulate a set of
questions that could drive future research in the field. The long-term goal
of such research is to develop polypharmacology for complex diseases and
predict therapeutic efficacy and adverse event risk for individuals prior to

commencement of therapy.
A
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Figure 1

A schematic representation of the multiscale networks needed to understand and predict drug action. Atomic interactions between drug
and target lead to alterations in the function of cellular regulatory networks, which lead to changes in cellular- and tissue-level
physiology, which, in turn, lead to alterations in organ-level networking, which lead to changes in whole-body functions. Networks at
both the cellular/tissue level and organ level are needed to understand the mechanism of drug action and to predict therapeutic efficacy
and adverse event probability. The drug-protein structures are taken from structures deposited in the Protein Data Bank
(http://www.pdb.org) with PDB IDs of 3QC4 and 2Y03 (88, 89), with the authors’ permission.
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Systems Pharmacology:
Network Analysis to Identify
Multiscale Mechanisms

of Drug Action

Shan Zhao and Ravi Tyengar
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New York, Mount Sinai School of Medicine, New York, New York 10029;
email: ravi.iyengar@mssm.edu

Annu. Rev. Pharmacol. Toxicol. 2012. 52:505-21

Proteomics Analyses

Proteomics involves the study of changes in the levels or states of large numbers of proteins in a
sample of interest such as a cell extract, the plasma, or a tissue sample. Typically, the measurement
of proteins is by mass spectrometry, although sometimes protein arrays are also used. In contrast
to genomics approaches, the use of proteomics in drug discovery and study of drug action has been
limited. A major issue is the difficulty in obtaining tissue biopsies sufficient for proteomics analyses
to correlate changes in target tissues and organs with drug action in humans. Most proteomics
studies have focused on human cancer cell lines and can be used for target profiling (25) and

mechanism-based classification of potential drugs (26).

Genomics Analyses

Genomics analyses involve the sequencing or characterization of many genes, typically the whole
genome simultaneously. At the DNA level, genomics involves sequencing of the genome to identify
variations and to determine transcriptional binding sites and epigenetic status. At the mRNA level,
genome-wide profiling is largely focused on characterizing gene expression patterns in a disease
state or before and after drug treatment. This type of profiling was accomplished mostly through
the use of microarrays, butin the past few years, direct sequencing, termed mRNA seq, has become
more widely used.

Metabolomics Analyses

Metabolomics focuses on measuring changes in a large number of metabolites simultaneously (27).
The method of choice for identification of metabolites is mass spectrometry, generally preceded
by chromatographic resolution. The most readily available source for metabolic profiling in hu-
mans is plasma. Several studies have shown identifiable metabolic signatures associated with drug
treatment. A study on 50 patients with schizophrenia being treated with antidepressants showed
identifiable changes in lipid patterns after treatment (28). These observations raise the possibility
that metabolic signatures of drug treatment could be an additional tool in assessing drug therapy
in patients. A recent study (29) on patients with major depressive disorders has shown an inter-
esting relationship between genomics and metabolomics in predicting drug action. Metabolomics
was used to characterize levels of amino acids in plasma. Patients who were nonresponsive to
therapy with the serotonin reuptake inhibitor citalopram showed higher baseline levels of glycine,
which remained unaltered after treatment. Genomics analyses indicated that in nonresponders,
the SNP rs10975641 in the glycine dehydrogenase gene was associated with treatment outcome.
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Pharmacogenomic effects on:

- kinetics
- dynamics

- responsiveness
- unknown mech

Table 1 Various types of pharmacogenomic effects in drug action

of Drug Action

Drug | Gene Effect
Shan Zhao and Ravi Iyengar Pharmacokinetics
Department of Pharmacology and Systems Therapeutics, and Systems Biology Center Codeine CYP2D6 (34) Increase in the amount of active (lrug b‘.-" variants
New York, Mount Sinai School of Medicine, New York, New York 10029; =
email: ravi.iyengar@mssm.edu _»(,lopldugrcl CYP2C19 (80) Increase in the amount of active drug by variants

Annu. Rev. Pharmacol. Toxicol. 2012. 52:505-21  Warfarin

CYP2C9 (81)

Changes in drug levels in blood by variants

Pharmacodynantics

ﬁ\,\?ﬂ rfa rin

VKORCI (21)

Increase or decrease of effectiveness of drug

Capecitabine DPD (82) Decrease in breakdown of 5-FU metabolite
Responsiveness

Panitumumab k-RAS (83) Requirement of wild-type £-RAS for drug efficacy
matinib KIT (84) Requirement of wild-type e-KIT for drug efficacy
Tretinoin PMIL/RARa translocation (85) Increased drug responsiveness

Unbknown mechanisms

Carbamazepine

HLA-B*1502 (86)

Increased risk of Stevens-Johnson syndrome and
toxic epidermal necrolysis

ﬁf\bﬂ CﬂVi r

HLA-B*5701 (87)

Multorgan systemic hypersensitivity, which may
lead to death

Abbreviations: 5-FU, fluorouracil; CYP, cytochrome P450; DPD, dihydropyrimidine dehydrogenase; HLA, human
leukocyte antigen; PML, promyelocytic leukemia; RAR, retinoic acid receptor; VKOR, vitamin K epoxide reductase.
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reactive metabolite can predict toxicity
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Abstract

Because of the inability to predict and quantify the risk of idiosyncratic
adverse drug reactions (IADRs) and because reactive metabolites (RMs) are
thought to be responsible for the pathogenesis of some IADRs, the potential
for RM formation within new chemical entities is routinely examined with
the ultimate goal of eliminating or reducing the liability through iterative
design. Likewise, avoidance of structural alerts is almost a standard practice
in drug design. However, the perceived safety concerns associated with the
use of structural alerts and/or RM screening tools as standalone predictors of
toxicity risks may be overexaggerated. Numerous marketed drugs form RMs
but do not cause idiosyncratic toxicity. In this review article, we present a
critique of the structural alert/RM concept as applied in drug discovery and
evaluate the evidence linking structural alerts and RMs to observed toxic
effects. Pragmatic risk mitigation strategies to aid the advancement of drug
candidates that carry a RM liability are also discussed.
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Abstract

Epigenetics is a new development in complex non-Mendelian
disease, which may not only uncover etiologic and pathogenic
mechanisms but may also provide the basis for the development of
medications that would target the primary epigenetic causes of such
diseases. Such epigenetic drugs would be novel, potentially possess-
ing substantially higher therapeutic potential and a much lower rate
of adverse effects in comparison to current symptomatic treatments.
A collection of epigenetic drugs already exist at various stages of de-
velopment and, although their effectiveness has yet to be maximized,
they show great promise in the treatment of cancer, psychiatric dis-
orders, and other complex diseases. Here we present a review of the
epigenetic theory of complex disease and an evaluation of current
epigenetic therapies, as well as predictions of the future directions
in this expanding field.

In some co

fected

Epimutation: epigenetic
changes that cause or

predispose an organism to a
disease

diseases that affec

T diseases, the risk to offspring depends
t. For example, asthma, bipolar disorder, and epilepsy are 1
Mitted from the mother, whereas type 1 diabetes seems to be more often
ritted from the affected father (11). Parent-of-origin-dependent clinical difference:
have also been detected in schizophrenia (22). Molecular genetic studies, although
rarely performed in a gender-specific fashion, also reveal parental origin effects in a
wide variety of phenotypes, such as obesity (23), Alzheimer’ disease (24), atopy and
asthma (25), autism (26), and major psychosis (27). One of the most common mecha-
ms of parent-of-origin effects is genomic imprinting (28). The essence of genomi

wth, development, and behavio

L pigenetics aid Complex
Disease: From Etiology
to New Therapeutics

Carolyn Ptak and Arturas Petronis

Annu. Rev. Pharmacol. Toxicol. 2008. 48:257-76

There are three fundamental points that enable us to consider epigenetic factors as
etiological candidates in complex disease. First, the epigenetic status of genes is more
dynamic in comparison to DNA sequence and can be altered by developmental pro-
grams and the environment of the organism (8); furthermore, epigenetic changes may
occur even in the absence of evident environmental differences, i.e., owing to stochas-
tic reasons (9). Second, some epigenetic signals can be transmitted along with DNA
sequence across the germline generations, i.e., such signals exhibit partial meiotic sta-
bility (10). Third, epigenetic regulation is critical for normal genomic function, such

as segregation of chromosomes in mitosis, inactivation of parasitic DNA elements,
and regulation of gene activity (34). Partial epigenetic stability, or metastability, and
the primary role in controlling activities of DNA sequences can shed new light on
non-Mendelian irregularities of complex diseases.

sex of the af-

often

Fluoxetine, a selective serotonin reuptake inhibitor (SSRI) antidepressant, has
been shown to induce genes encoding the MBDs MeCP2 and MBD 1 by continuously
activating the serotonergic (5-HT) system in the adult rat brain, suggesting that
gene expression is repressed in the presence of fluoxetine. Induction of HDAC2
mRNA accompanied the protein increase, and decreased amounts of histone H3
were detected in three serotonin praject
cor;

ate-putamen, the frontal
e dentate gyrus of the hippocampus (109). Taken together,
increased HDAC2 expression and recruitment to DNA plays a role in the regulatior
istone acetylation and repression of gene expression in response to fluoxetin
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SUMMARY POINTS

1. Epigenetics is critical for normal functioning of the genome, and epimu-
tation can be viewed as the first (etiological) step in the pathogenesis of
complex diseases, which offers an explanation for their non-Mendelian char-
acteristics.

2. Medications that target epimutations show great potential in the treatment
of a variety of complex diseases, such as cancer and psychiatric disorders,
although such medications are still in the early stages of development.

3. As techniques advance in the profiling of DNA methylation and histone
modification patterns, disease epimutations may be detected and novel epi-
genetic drugs will emerge that have the potential to significantly improve
the treatment of complex diseases.
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Abstract Ann K. Daly

Genome-wide association (GWA) studies have detected novel associations
for serious, idiosyncratic, adverse drug reactions including liver toxicity, hy-
persensitivity, skin rash, and myotoxicity. Human leukocyte antigen (HLA)
genotype has been established as an important predictor of susceptibility to
drug-induced liver injury, including injury with some drugs where immune-
related toxicity was not suspected previously. Similarly, GWA studies have
shown a key role for HLA genotype in susceptibility to carbamazepine-
related skin rash and hypersensitivity. HLA genotype is not a risk factor for
all forms of drug-induced liver injury or for myotoxicity or cardiotoxicity.
For simvastatin-related myotoxicity, a strong association with SLCOIBI,
which encodes the hepatic statin uptake transporter, has been detected.
Genome-wide studies have not yet found clear associations for drug-induced
cardiotoxicity, but for bisphosphonate-induced necrosis of the jaw, polymor-
phisms in the cytochrome P450 CYP2C8 may predict susceptibility. Larger
GWA studies and whole-genome sequencing may provide additional in-
sights into all these toxicities.
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Using Genome-Wide
Association Studies to Identity
Genes Important in Serious
Adverse Drug Reactions

Ann K. Daly

Table 1 Summary of published genome-wide association studies on serious adverse drug reactions
Number of Highest level of
published significance
Type of toxicity studies Drugs involved Genes implicated (lowest p value) Reference(s)
Liver - Ximelagatran, HLA classes I and 11 8.7 x 1073 37,39,40, 42
Flucloxacillin,
Lumiracoxib,
Amoxicillin-
clavulanate
Skin and 3 Carbamazepine plus HILA-A 1.2 x 10713 58, 59, 62
hypersensitivity miscellaneous agents
Myotoxicity 1 Simvastatin SLCOIBI1 4.0 x 1077 68
QT prolongation 1 [loperidone CERKL 2.8 x 1076 78
Osteonecrosis of the 1 Pamidronate, CYP2C8 6.2 x 1076 80

Jaw

zoledronic acid
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Using Genome-Wide
Association Studies to Identify
Genes Important in Serious
Adverse Drug Reactions

Ann K. Daly

LIVER-RELATED ADVERSE DRUG REACTIONS

Idiosyncratic hepatotoxicity relating to drug exposure is usually referred to as drug-induced liver
injury (DILI), a rare but clinically important problem. Drugs that give rise to this toxicity are

DILI:

organ-specific toxicity

The first study on a possible genetic association for DILI susceptibility appeared more than
20 years ago as a report showing an increased incidence in frequency of certain human leukocyte
antigen (HLA) class II serotypes among DILI cases compared with controls (29). These cases
included DILI induced by several drugs. A number of further reports of associations with par-
ticular HLLA serotypes and genotypes followed, including, in particular, two independent reports
suggesting that the HLLA class II allele DRBI*1501 was a risk factor for DILI induced by the
antimicrobial agent, amoxicillin-clavulanate (30, 31). This form of DILI has been suggested to
relate predominantly to the clavulanic acid component of the drug (32), though this has still not
been demonstrated directly. Candidate-gene association studies have also led to the detection of
several other associations with non-HLA genes, either for DILI due to individual drugs (33, 34)
or for cases of this adverse drug reaction linked to a range of different drugs (35, 36).

Table 2 Genome-wide association studies on drug-induced liver injury

SNP(s)*
Number | showing lowest Odds ratio (95% Gene and allele
Drug of cases p value p value® cnd tagged by SNP Reference
Ximelagatran 74 s2858869 6.0 x 10-° Not done HLA-DRBI*0701- 37
DQAI*0201
Flucloxacillin 51 rs2395029 8.7 x 1073 45 (19.4-105) HLA-B*5701 39
Lumiracoxib 41 rs9270986 2.8 x 10710 5.3(3.0-9.2) HLA-DRBI*1501- 40
DQBI*0602
Amoxicillin- 201 rs9274407 48 x 10~14 3.1(2.34.2) None 42
clavulanate 1$9267992 6.8 x 101 3.1(2.3-4.2) None
rs3135388 3.5 x 1071 2.8(2.1-3.8) HLA-DRBI*1501-
DQB1*0602
rs2523822 1.8 x 10710 23(1.8-2.9 HLA-A*0201

*SNP, single-nucleotide polymorphism.

bBased on allele frequency for SNP.



Using Genome-Wide

TOEIKOTHTA Association Studies to Identify

Genes Important in Serious

q)APMAKQN Adverse Drug Reactions

Annu. Rev. Pharmacol. Toxicol. 2012, 52:21-35  Ann K. Daly

DRUG-INDUCED MYOPATHY

A number of different drugs are associated with myopathy, which usually involves subacute mani-
festation of myopathic symptoms such as muscle weakness, myalgia, creatine phosphokinase (CPK)
elevation, or myoglobinuria. The precise disease phenotype is somewhat dependent on the indi-
vidual drug (63). Most cases are not serious and are readily reversible by drug withdrawal, but a
more severe form of disease resulting in rhabdomyolysis followed by death also occurs rarely.

example of pharmacogenomic-based, SNP- related, toxicity (myopathy)

Understanding the genetic basis of susceptibility to simvastatin-induced myopathy was greatly
increased by a GWA study of 85 cases of myopathy and 90 simvastatin-exposed controls without
evidence of myopathy (68). The cases and controls were all of European ethnic origin. A highly
significant association (p = 4 x 107”) was seen for a single SNP in SLCO1B1 with an odds
ratio of 4.5 per copy of the variant allele. This effect was confirmed in 21 cases of myopathy
from a separate replication cohort. SLCO1BI encodes an anionic drug transporter located on the
sinusoidal face of the hepatocyte, which is the main inward transporter for a number of different
statins (65). The significant SNP was in strong linkage disequilibrium with a nonsynonymous
SNP in the SLCOI1BI* 15 allele (also present in the rarer SLCOIBI*5 allele) that is associated with
higher plasma levels of statins owing to impaired transport (69). This association is, therefore, very
biologically plausible. The significant polymorphism is common with a variant allele frequency
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Y1revluuion:
oAa Ta CYP dev cuvelo@Epouy TO D10 OTOV UETABOAIOUO TWV PAPUAKWY
To CYP3A4 kai o CYP2D6 civail Ta 1110 onuavTIKA

A B
Relative CYP content Contribution to drug metabolism

CYP3A4: 40% CYP2R6- 2-10% . CYP1AD CYP=A4: 50% CYP2BE&: 3-12%

W CYP2BE
B8 CcYpzC
O CYP2D6
W CYP2E!
B CYP344
CYP2D6: 4% " 3 other CYP2D6: 30% "

Pie charts for hepatic CYP expression and their contribution to metabolism of clinically-used
drugs. (A) Relative hepatic expression of CYP content. (B) Contribution to drug metabolism.
Due to substrate overlap among CYP isozymes, the total of contributions is moderately >100%.

Curr Drug Metab. 2008 September; 9(7): 598—-610.

Ti1 M0avoTnNTEG £XOUV 2 PapuaKa va peTaBoAifovral atro To CYP3A4;



GENOMIC MEDICINE

2018

Emergence of the UK Biobank, a population-scale ——————=

cohort (Bycroft et al., 2018)

Maturation of human genome-wide polygenic risk
scores (Khera et al., 2018)

Cell 177, March 21, 2019 © 2019 Elsevier Inc.

2Taluoi:
L}
Genome sciences Genomic medicine
2002
First successful GWAS (Ozaki et al., 2002)
2004 -
Completion of Human Genome Project (International 2004
Human Genome Sequencing Consortium, 2004) Demonstration of NSCLC mutation-specific
2005 efficacy of gefitinib, a EGFR kinase inhibitor
Emergence of next generation DNA sequencing 2005 (Lynch et al., 2004; Paez et al., 2004)
(Margulies et al., 2005; Shendure et al., 2005)
Emergence of cost-effective genome-wide - I
genotyping arrays (Gunderson et al., 2005)
First draft of the HapMap (The International i
HapMap Consortium, 2005) 2008
=m=———— NGS of cell-free DNA for non-invasive
» 2009 screening of fetal aneuploidy (Chiu et al.,
2 NGS for Mendelian disease gene discovery and 2008; Fan et al., 2008)
..3 diagnosis (Choi et al., 2009; Hoischen et al., 2011
2 2010; Ng et al., 2009) =" 2010  Dpemonstration of efficacy of ivacaftor, a
E mutation-specific drug for cystic fibrosis
T me=————— (Ramsey et al., 2011)
2
o
2 2012
& Rapid WGS for genetic
-—— 2013 disease diagnosis in
2014 Demonstration that neonatal ICUs
Achievement of the $1,000 genome ~25% of probands with  (Saunders et al., 2012)
suspected genetic
disease could be
[ 2015 diagnosed by exome
sequencing (Saunders et
G al., 2012; Yang et al., 2013)
———— 2017

Case reports of successful gene therapy for
sickle cell anemia, hemophilia (Rangarajan et
al., 2017; Ribeil et al., 2017)

First-in-human testing of immunotherapy against
sequencing-defined patient-specific neoantigens
(Ott et al., 2017; Sahin et al., 2017)




GENOMIC MEDICINE
MeAAOVTIKEG TTPOKANCEIG:

Grand challenges

Genome sciences

A spatiotemporally resolved
molecular atlas of all human
cell types, throughout the
lifecycle, and in both health
and disease

A comprehensive catalog of
common genetic variants in
which all human populations,
as well as all classes of
genetic variation, are well
represented

A “telomere-to-telomere”
ungapped reference
representation of the
human genome

A functionally validated
catalog of human regulatory
elements, annotated with the
gene(s) that they regulate and
the cellular, developmental,
and/or disease contexts in
which they are active

® The definitive identification
of causal variants and
genes for thousands of
GWAS associations

® A comprehensive
understanding of the
genetic basis of all
Mendelian disorders

® A basic understanding of
the primary function(s) of
every human gene

® Algorithms that can
accurately predict the
consequences of arbitrary
genetic variants at the
molecular/cellular level

Genomic medicine

e A database of whole
genome sequences for at

least 0.1% of living humans,

integrated with electronic
medical records and other
phenotypes, and broadly
accessible for research

® The routine use of exome
or genome sequencing to
diagnose the vast
majority of suspected
cases of Mendelian
disease

® The routine use of genome-
wide genotyping and
polygenic risk scores for
common disease risk
prediction

® The generation of catalogs
of clinically meaningful
functional scores for all
possible SNVs in all
“clinically actionable” genes

® The routine use of exome
or genome sequencing to
guide cancer treatment,
including for patient-spe-
cific immunotherapy

® The successful exploitation
of cell-free DNA for early
(or at least earlier)
detection of common
cancers

e Algorithms that can
accurately predict the
consequences of arbitrary
genetic variants at the
organismal level

Cell 177, March 21, 2019 © 2019 Elsevier Inc.




Mepikoi opiopoi:

Glossary

Adverse outcome pathways
(AOPs): a conceptual framework
connecting a molecular initiating
event and key events with outcome
and adverse effects in risk
assessment.

DrugMatrix: one of the largest
toxicogenomic reference resources,
consisting of 638 compounds tested
under microarray technology and
their corresponding pathology data in
rat, which covers 137 mechanism of
toxicity-related pathways and 50
pathological endpoints.

TOZIKOIMONIAIQMATIKH

FAIRsharing community: a web-
based, searchable portal of three
interlinked registries, containing both
in-house and crowdsourced
manually curated descriptions of
standards, databases, and data
policies, combined with an integrated
view across all three types of
resource.

Gene Expression Omnibus (GEO):
the world’s largest functional
genomics data repository developed
by the National Center for
Biotechnology Information.
Idiosyncratic toxicity: is not dose-
dependent and unpredictable.
Idiosyncratic toxicity is caused by
drug- and patient-related risk factors.
Drug-related risk factors include
metabolism, bioactivation and
covalent binding, and the inhibition of
key cell functions. Patient-related risk
factors include genetic background,
underlying disease, age, gender,
comedications, and activation of the
innate immune system.

Trends in Pharmacological Sciences, February 2019, Vol. 40, No. 2

In vitro to in vivo extrapolation
(IVIVE): can be broadly defined as
an approach extrapolating the
experimental results or observations
made in vitro to predict in vivo
phenomena qualitatively or
quantitatively.

KEGG: Kyoto Encyclopedia of
Genes and Genomes database, a
collection of data resources that
takes account of the complex
relationship among biological
pathways, diseases, and chemical
substances/drugs.

OmicsMapNet: an approach to
transform omics data to 2D images
as an input for building deep
convolutional neural network (CNN).
Open TG-GATEs: a large-scale
toxicogenomics database that stores
gene expression profiles, pathological



TOZIKOIONIAIQMATIKH

2XNMOATIKN TTPOCEYYION
TTOIEG TEXVOAOYIEC 2 AQYN ATTOPACEWYV O& KAIVIKO pUBUICTIKO £TTITreQO0;

Key questions Options & solutions

+ Mechanistic information
Predictive results

Which TGx results should be
considered?

« Mode of action, adverse outcome pathways
» Machine learnings, point-of-departure,
read-across

How should the TGx results be presented? Mechanisms &

predictive models

« Individual genes
« Gene sets and signatures
« Gene network and functional modules

How can the reliability and reproducibility
of TGx findings be improved?

« Microarrays versus RNA-Seq
How should evolving technology in ; . « Beyond mRNA

TGx be addressed? Enabling technologies « Integrated approaches to testing
and assessment (IATA)

In vitro TGx
e Primary hepatocytes versus iPSC
e 2D culture versus 3D culture

What is the future of TGx
study design?

Trends in Pharmacological Sciences

Figure 1. The Pyramid of Toxicogenomics (TGx) towards Regulatory Decision Making. Some outstanding
questions and potential solutions for promoting TGx in respect of decision making are shown. iPSC, Induced pluripotent

stem caell.

Trends in Pharmacological Sciences, February 2019, Vol. 40, No. 2
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Table 1. Gene-Drug Combinations with Actionable Pharmacogenetics®®

Drug

Abacavir

Acenocoumarol, phenoprocoumon
Allopurinol

Atazanavir

Azathioprine, mercaptopurine, thioguanine
Azathioprine

Capecitabine, fluorouracil, tegafur
Carbamazepine

Clopidogrel

Clozapine

Codeine

Daunorubicin, doxorubicin
Oral hormonal contraceptives
Irinotecan

Phenytoin

Rasburicase

Simvastatin

Tacrolimus

Thioridazine
Warfarin

Gene/aliele

HLA-B:57:01

CYP2CY, VKORCT
HLA-B*58:01

UGT1A1

TPMT

HLA-DRB1, HLA-DQB1
DPYD

HLA-B*15:02, HLA-A"31:01
CYP2C19

HLA-B_158T,
HLA-DQB1705:02

CYP2D6

RARG, SLC28A3
Factor V (FV) Leiden
UGT1AT1

CYP2C9, HLA-B*15:02
G6PD

SLCO1B1

CYP3A5

CYP2D6
CYP2C9, VKORCT

ADR
Hypersensitivity
Bleeding
Hypersensitivity
Jaundice
Myelotoxicity

Pancreatitis

Neutropenia, mucositis, neuropathy

SJS, hypersensitivity

Myocardial infarction, stroke, bleeding

Agranulocytosis

Respiratory depression
Cardiotoxicity

Venous thromboembolism
Neutropenia, diarrhea
Hypersensitivity

Acute hemolytic anemia
Muscle toxicity

Supratherapeutic concentrations,
hypertension and nephrotoxicity

QT prolongation
Bleeding

3Guidelines for genetic testing have been issued by the Clinical Pharmacogenomics Implementation Consortium (CPIC), the
Royal Dutch Pharmacists Association, the Pharmacogenetics Working Group, the French Joint Working Group comprising
the National Pharmacogenetics Network (RNPGx) and the Group of Clinical Onco-Pharmacology (GPCO-Unicancer), the
Canadian Phammacogenomics Network for Drug Safety Clinical Recommendation Group, and other professional societies
(www.phamgkb.org/view/dosing-guidelines.do). These are examples of potentially preventable adverse drug reactions
where a genotype is already available or undertaken specifically before a patient is started on the drug.

bAbbreviations: CYP, cytochrome P450; DPYD, dihydropyrimidine dehydrogenase; GBPD, glucose-6-phosphate dehy-
drogenase; HLA, human leucocyte antigen; RARG, retinoic acid receptor y; SJS, Stevens-Johnson syndrome; SLC,
solute carrier transporter; TPMT, thiopurine methyttransferase; UGT1A1, UDP glucuronosyltransferase family 1A.

Trends in Pharmacological Sciences, January 2017, Vol. 38, No. 1



Model

Tissue slices

Primary hepatocytes

Immortalized cell
lines (e.g., HepaRG
and HepG2)

Three-dimensional
culture systems

Embryonic stem cells

Induced pluripotent
stem
cells

Organoids

Organ

Liver

Liver/
kidney

Liver

Liver

Liver/
cardio/brain

Liver/
cardio/brain

Multiple organs

TOZIKOIONIAIQMATIKH
AOKINEG in vitro 0TV TOSIKOYOVIOIWMATIKA

Table 1. Examples of In Vitro Models Used in Toxicogenomics

Species

Rat/mouse/
human

Rat/mouse/
human

Rat/mouse/
human

Rat/mouse/
human

Rat/mouse/
human

Rat/mouse/
human

Rat/mouse/
rat and other
species

Trends in Pharmacological Sciences, February 2019, Vol. 40, No. 2

Advantages

e Liver structure is maintained with all cell types
* Good correlation with in vivo regarding
xenobiotic metabolism and zone-specific
cytochrome activity

* Phase Il enzymes, gluconeogenesis, and
albumin production could be retained with 20—
96 hours

» Functional activities could be maintained for
24-72 hours

¢ |deal for assessing the interspecies and
interindividual differences in metabolism

» Suitable for enzyme induction and inhibition
studies

¢ High proliferative capacity and stable
karyotype

» Expression level of most liver functions and
phase I/ll enzymes can be retained in a lower
percentage than primary hepatocytes

* Hepatocyte functions are improved
compared with monolayer culture

» Cell types are retained and longevity is
extended

* Good correlation with in vivo toxicity

¢ Cell interaction, morphology is more stable

e Fasily studied with most established omics
technigues

* Define phenotypes for many organ toxicity
¢ Developmental toxicity

* |ndividual variability can be assessed

¢ Idiosyncratic toxicity

» Defined phenotype (multiple disease models)
e Easily studied with most established omics
technigues

s Limited amounts of starting material required
* Can be propagated for a long time

¢ Can be derived from multiple tissues and
species

* Good preservation of physiological features

Disadvantages

» Necrosis occurs after 48-72 hours

e Metabolic enzyme levels decreased after
6 72 hours

* Drug metabolism and intrinsic clearance
rates are lower than primary hepatocytes

* Hepatocyte de-differentiation changes
function, gene expressicn, cell morphology
* Microenvironment lost

» Cytochrome P450 expression decline
quickly after 24-48 hours

¢ |ndividual donor phenotype can be retained
* Limited predictive power of toxicity is
retained in population level

e | imited successful co-culture (mainly with
fibroblasts cells)

» Standard culture construction protocol is
needed

¢ Not fully high throughput

* | ower expression for metabolism-related
genes

* Not fit for long-term experiments

* Bioengineering required

* Bioengineering required

¢ | ack of robust and reproducible
differentiation protocols

s Loss of the functionality of native
hepatocytes

¢ Lower expression level of metabolism-
related genes

* The native microenvironment of derived
tissues could not be well maintained

¢ Unable to mimic in vivo growth factor
e Limited use in modeling inflammatory
responses of tissues
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2ZUMTTEPIANYN VEWYV TEXVOAOYIWV

Key questions

Integrated

[
anal

Roles in toxicology

Data analysis standardization
Phenotypic anchoring
Interpretation of the novel
gene elements and events

© Microarray versus RNA-Seq
© TempO-Seq™
© LINCS1000

a) Data fusion
b) Systems biology
c) Network

Trends in Pharmacological Sciences, February 2019, Vol. 40, No. 2

N Beyond mRNA

Potential solutions
I A

Knowledge base development
Ontology structure

Novel data analysis methods
Data integration approaches

© miRNA
® ncRNA
®© circular RNA




