
52

PROTOTYPING TOOLS AND TECHNIQUES

Michel Beaudouin-Lafon
Universite Paris—Sud

Wendy Mackay
Institut National de Recherche en

Informatique et en Automatique (INRIA)

Introduction 1007
What Is a Prototype? 1007

Prototypes As Design Artifacts 1007
Representation 1007
Precision 1008
Interactivity 1008
Evolution 1009

Prototypes and the Design Process 1009
User-Centered Design 1009
Participatory Design 1010
Exploring the Design Space 1010
Expanding the Design Space: Generating Ideas 1011
Contracting the Design Space: Selecting Alternatives ... 101

2
 
in in

Michel Beaudouin-Lafon and Wendy Mackay (2003). Prototyping Tools And Techniques In: J. A. Jacko and A. Sears (Eds) The Human-Computer Interaction Handbook. © 2003 by Lawrence Erlbaum Associates. Prototyping Strategies 1013
Rapid Prototypes 1014

Offline Rapid Prototyping Techniques 1014
Online Rapid Prototyping Techniques 1017

Iterative Prototypes 1021
Software Tools 1022
Software Environments 1025

Evolutionary Prototypes 1026
Software Architectures 1026
iin 

 
Design Patterns 1028

Summary 1029
References 1029

1006



52. Prototyping Tools and Techniques • 1007

INTRODUCTION

"A good design is better than you think."
—RexHeftman, cited by Raskin, 2000, p. 143.

Design is about making choices. In many fields that require cre-
ativity and engineering skill, such as architecture or automobile
design, prototypes both inform the design process and help de-
signers select the best solution. This chapter describes tools and
techniques for using prototypes to design interactive systems.
The goal is to illustrate how they can help designers generate
and share new ideas, get feedback from users or customers,
choose among design alternatives, and articulate reasons for
their final choices.

We begin with our definition of a prototype and then discuss
prototypes as design artifacts, introducing four dimensions for
analyzing them. We then discuss the role of prototyping within
the design process, in particular, the concept of a design space
and how it is expanded and contracted by generating and select-
ing design ideas. The next three sections describe specific pro-
totyping approaches: rapid prototyping, both offline and online,
for early stages of design; iterative prototyping, which uses on-
line development tools; and evolutionary prototyping, which
must be based on a sound software architecture.

What Is a Prototype?

We define a prototype as a concrete representation of part or all
of an interactive system. A prototype is a tangible artifact, not
an abstract description that requires interpretation. Designers,
as well as managers, developers, customers, and end users, can
use these artifacts to envision and reflect on the final system.

Prototypes may be denned differently in other fields. For ex-
ample, an architectural prototype is a scaled-down model of
the final building. This is not possible for interactive system
prototypes: The designer may limit the amount of information
the prototype can handle, but the actual interface must be pre-
sented at full scale. Thus, a prototype interface to a database
may handle only a small pseudo-database but must still present
a full-size display and interaction techniques. Full-scale, one-of-a-
kind models, such as a handmade dress sample, are another type
of prototype. These usually require an additional design phase
to mass produce the final design. Some interactive system pro-
totypes begin as one-of-a-kind models that are then distributed
widely (because the cost of duplicating software is so low);
however, most successful software prototypes evolve into the
final product and then continue to evolve as new versions of
the software are released.

Hardware and software engineers often create prototypes
to study the feasibility of a technical process. They conduct
systematic, scientific evaluations with respect to predefined
benchmarks and, by systematically varying parameters, fine-
tune the system. Designers in creative fields, such as typography
or graphic design, create prototypes to express ideas and reflect
on them. This approach is intuitive, oriented more to discovery
and generation of new ideas than to evaluation of existing ideas.

Human-computer interaction (HCI) is a multidisciplinary
field that combines elements of science, engineering, and design
(Dykstra-Erickson, Mackay, & Arnowitz, 2001; Mackay & Fayard,
1997). Prototyping is primarily a design activity, although we use
software engineering to ensure that software prototypes evolve
into technically sound working systems and we use scientific
methods to study the effectiveness of particular designs.

PROTOTYPES AS DESIGN ARTIFACTS

We can look at prototypes as both concrete artifacts in their own
right or as important components of the design process. When
viewed as artifacts, successful prototypes have several charac-
teristics: They support creativity, helping the developer to cap-
ture and generate ideas, facilitate the exploration of a design
space, and uncover relevant information about users and their
work practices. They encourage communication, helping de-
signers, engineers, managers, software developers, customers,
and users to discuss options and interact with each other. They
also permit early evaluation because they can be tested in var-
ious ways, including traditional usability studies and informal
user feedback, throughout the design process.

We can analyze prototypes and prototyping techniques along
four dimensions:

• Representation describes the form of the prototype (e.g., sets
of paper sketches or computer simulations).

• Precision describes the level of detail at which the prototype
is to be evaluated (e.g., informal and rough or highly polished).

• Interactivity describes the extent to which the user can ac-
tually interact with the prototype (e.g., watch only or fully
interactive).

• Evolution describes the expected life cycle of the prototype
(e.g., throw away or iterative).

Representation

Prototypes serve different purposes and thus take different
forms. A series of quick sketches on paper can be considered
a prototype; so can a detailed computer simulation. Both are
useful; both help the designer in different ways. We distinguish
between two basic forms of representation: offline and online.

Offline prototypes (also called paper prototypes) do not
require a computer. They include paper sketches, illustrated
storyboards, cardboard mock-ups, and videos. The most salient
characteristics of offline prototypes (of interactive systems) is
that they are created quickly, usually in the early stages of de-
sign, and they are usually thrown away when they have served
their purpose.

Online prototypes (also called software prototypes) run on
a computer. They include computer animations, interactive
video presentations, programs written with scripting languages,
and applications developed with interface builders. The cost
of producing online prototypes is usually higher and may re-
quire skilled programmers to implement advanced interaction
and/or visualization techniques or to meet tight performance

fkis
Highlight

fkis
Highlight

fkis
Highlight

fkis
Highlight

fkis
Highlight

fkis
Highlight



1 008 • BEAUDOUIN-LAFON AND MACKAY

constraints. Software prototypes are usually more effective in
the later stages of design, when the basic design strategy has
been decided.

In our experience, programmers often argue in favor of soft-
ware prototypes even at the earliest stages of design. Because
they already are familiar with a programming language, these
programmers believe it will be faster and more useful to write
code than to "waste time" creating paper prototypes. In 20 years
of prototyping, in both research and industrial settings, we have
yet to find a situation in which this is true.

First, offline prototypes are inexpensive and quick. This per-
mits a rapid iteration cycle and helps prevent the designer from
becoming overly attached to the first possible solution. Offline
prototypes make it easier to explore the design space (discussed
in detail later), examining a variety of design alternatives and
choosing the most effective solution. Online prototypes intro-
duce an intermediary between the idea and the implementation,
slowing down the design cycle.

Second, offline prototypes are less likely to constrain the de-
signer's thinking. Every programming language or development
environment imposes constraints on the interface, limiting cre-
ativity and restricting the number of ideas considered. If a partic-
ular tool makes it easy to create scroll bars and pull-down menus
and difficult to create a zoomable interface, the designer is likely
to limit the interface accordingly Considering a wider range of
alternatives, even if the developer ends up using a standard set
of interface widgets, usually results in a more creative design.

Finally, and perhaps most important, offline prototypes can
be created by a wide range of people, not just programmers.
Thus, all types of designers, technical or otherwise, as well as
users, managers, and other interested parties, can all contribute
on an equal basis. Unlike programming software, modifying a
storyboard or cardboard mock-up requires no particular skill.
Collaborating on paper prototypes not only increases partici-
pation in the design process, but also improves communication
among team members and increases the likelihood that the final
design solution will be well accepted.

Although we believe strongly in offline prototypes, they are
not a panacea. In some situations, they are insufficient to fully
evaluate a particular design idea. For example, interfaces re-
quiring rapid feedback to users or complex, dynamic visualiza-
tions usually require software prototypes. However, particularly
when using video and "Wizard-of-Oz" techniques, which we de-
scribe later, offline prototypes can be used to create sophisti-
cated representations of the system.

Prototyping is an iterative process, and all prototypes provide
information about some aspects while ignoring others. The de-
signer must consider the purpose of the prototype (Houde &
Hill, 1997) at each stage of the design process and choose the
representation that is best suited to the current design question.

Precision

Prototypes are explicit representations that help designers, en-
gineers, and users reason about the system being built. By their

nature, prototypes require details. A verbal description such as
"the user opens the file" or "the system displays the results"
provides no information about what the user actually does.
Prototypes force designers to show the interaction: Just how
does the user open the file and what are the specific results that
appear on the screen?

Precision refers to the relevance of details with respect to
the purpose of the prototype.1 For example, when sketching a
dialogue box, the designer specifies its size, the positions of each
field, and the titles of each label. Not all these details are relevant
to the goal of the prototype, however. It may be necessary to
show where the labels are, but too early to choose the text. The
designer can convey this by writing nonsense words or drawing
squiggles, which shows the need for labels without specifying
their actual content.

Although it may seem contradictory, a detailed representa-
tion need not be precise. This is an important characteristic of
prototypes: Those parts of the prototype that are not precise
are those open for future discussion or for exploration of the
design space, yet they need to be incarnated in some form so
the prototype can be evaluated and iterated.

The level of precision usually increases as successive pro-
totypes are developed and more and more details are set. The
forms of the prototypes reflect their level of precision; sketches
tend not to be precise, whereas computer simulations are usu-
ally very precise. Graphic designers often prefer using hand
sketches for early prototypes because the drawing style can
directly reflect what is precise and what is not—the wigglely
shape of an object or a squiggle that represents a label are di-
rectly perceived as imprecise. This is more difficult to achieve
with an online drawing tool or a user interface builder.

The form of the prototype must be adapted to the desired
level of precision. Precision defines the tension between what
the prototype states (relevant details) and what the prototype
leaves open (irrelevant details). What the prototype states is
subject to evaluation; what the prototype leaves open is subject
to more discussion and design space exploration.

Interactivity

An important characteristic of HCI systems is that they are
interactive: users both respond to them and act on them. Unfor-
tunately, designing effective interaction is difficult: Many inter-
active systems (including many Web sites) have a good "look"
but a poor "feel." HCI designers can draw from a long tradi-
tion in visual design for the former but have relatively little
experience with how interactive software systems should be
used—personal computers have only been commonplace for
about a decade. Another problem is that the quality of interac-
tion is tightly linked to the end users and a deep understanding
of their work practices. A word processor designed for profes-
sional typographers requires a different interaction design than
one designed for secretaries, even though ostensibly they serve
similar purposes. Designers must take the context of use into
account when designing the details of the interaction.

1The terms low-fidelity and high-fidelity prototypes are often used in the literature. We prefer the term precision because it refers to the content of
the prototype itself, not its relationship to the final, as-yet-undefined system.

fkis
Highlight

fkis
Highlight

fkis
Highlight

fkis
Highlight



52. Prototyping Tools and Techniques • 1009

A critical role for an interactive system prototype is to illus-
trate how the user will interact with the system. Although this
may seem more natural with online prototypes, in fact it is of-
ten easier to explore different interaction strategies with offline
prototypes. Note that interactivity and precision are orthogo-
nal dimensions. One can create an imprecise prototype that is
highly interactive, such as a series of paper screen images in
which one person acts as the user and the other plays the sys-
tem. Or one may create a precise but noninteractive prototype,
such as a detailed animation that shows feedback from a specific
action by a user.

Prototypes can support interaction in various ways. For
offline prototypes, one person (often with help from others)
plays the role of the interactive system, presenting information
and responding to the actions of another person playing the
role of the user. For online prototypes, parts of the software
are implemented, whereas others are "played" by a person (an
approach called the "Wizard of Oz" after the character in the
1939 movie of the same name). The key is that the prototype

feels interactive to the user.
Prototypes can support different levels of interaction. Fixed

prototypes, such as video clips or precomputed animations, are
noninteractive. The user cannot interact, or pretend to inter-
act, with it. Fixed prototypes are often used to illustrate or test
scenarios (see chapter 53 by Rosson and Carroll). Fixed-path
prototypes support limited interaction. The extreme case is a
fixed prototype in which each step is triggered by a prespecified
user action. For example, the person controlling the prototype
might present the user with a screen containing a menu. When
the user points to the desired item, she presents the correspond-
ing screen showing a dialogue box. When the user points to the
word OK, she presents the screen that shows the effect of the
command. Even though the position of the click is irrelevant (it
is used as a trigger), the person in the role of the user can get a
feel for the interaction. Of course, this type of prototype can be
much more sophisticated, with multiple options at each step.
Fixed-path prototypes are effective with scenarios and can also
be used for horizontal and task-based prototypes (discussed in
detail in the next section).

Open prototypes support large sets of interactions. Such pro-
totypes work like the real system, with some limitations. They
usually only cover part of the system (discussed in the next
section) and often have limited error-handling or reduced per-
formance relative to that of the final system.

Prototypes may thus illustrate or test different levels of inter-
activity. Fixed prototypes simply illustrate what the interaction
might look like. Fixed-path prototypes provide designers and
users with the experience of what the interaction might be
like, but only in prespecified situations. Open prototypes allow
designers to test a wide range of examples of how users will
interact with the system.

Evolution

Prototypes have different life spans. Rapid prototypes are cre-
ated for a specific purpose and then thrown away. Iterative
prototypes evolve, either to work out some details (increasing

their precision) or to explore various alternatives. Evolutionary
prototypes are designed to become part of the final system.

Rapid prototypes are especially important in the early stages
of design. They must be inexpensive and easy to produce be-
cause the goal is to quickly explore a wide variety of possible
types of interaction and then throw them away. Note that rapid
prototypes may be offline or online. Creating precise software
prototypes, even if they must be reimplemented in the final ver-
sion of the system, is important for detecting and fixing inter-
action problems. We present specific prototyping techniques,
both offline and online, later in the chapter.

Iterative prototypes are developed as a reflection of a design
in progress, with the explicit goal of evolving through several
design iterations. Designing prototypes that support evolution is
sometimes difficult. There is a tension between evolving toward
the final solution and exploring an unexpected design direction,
which may be adopted or thrown away completely. Each itera-
tion should inform some aspect of the design. Some iterations
explore different variations of the same theme. Others may sys-
tematically increase precision, working out the finer details of
the interaction. We describe tools and techniques for creating
iterative prototypes later in the chapter.

Evolutionary prototypes are a special case of iterative proto-
types in which the prototype evolves into part or all of the final
system (Fig. 52.1). Obviously this only applies to software pro-
totypes. Extreme Programming (Beck, 2000), advocates this ap-
proach, tightly coupling design and implementation and build-
ing the system through constant evolution of its components.
Evolutionary prototypes require more planning and practice
than the approaches above because the prototypes are both
representations of the final system and the final system itself,
making it more difficult to explore alternative designs. We ad-
vocate a combined approach, beginning with rapid prototypes
and then using iterative or evolutionary prototypes according to
the needs of the project. Later in the chapter, we describe how
to create evolutionary prototypes by building on software archi-
tectures specifically designed to support interactive systems.

PROTOTYPES AND THE DESIGN PROCESS

In the previous section, we looked at prototypes as artifacts
(i.e., the results of a design process). Prototypes can also be
seen as artifacts/or design (i.e., as an integral part of the design
process). Prototyping helps designers think: Prototypes are the
tools they use to solve design problems. In this section, we focus
on prototyping as a process and its relationship to the overall
design process.

User-Centered Design

The HCI field is both user-centered (Norman & Draper, 1986)
and iterative. User-centered design places the user at the cen-
ter of the design process, from the initial analysis of user re-
quirements (see chapters 48-50 in this volume) to testing and
evaluation (see chapters 56-59 in this volume). Prototypes sup-
port this goal by allowing users to see and experience the final

fkis
Highlight



1010 • BEAUDOUIN-LAFON AND MACKAY

FIGURE 52.1. Evolutionary prototypes of the Apple Lisa: July 1979
(left), October 1980 (right). Note. From "Inventing the Lisa User Inter-
face" by R. Perkins, D. S. Keller, and F. Ludolph, 1997, ACM Interactions,
4, pp. 43, 47. Copyright 1997 by the Association for Computing Machin-
ery. Reprinted with permission.

system long before it is built. Designers can identify functional
requirements, usability problems, and performance issues early
and improve the design accordingly.

Iterative design involves multiple design-implement-test
loops,2 enabling the designer to generate different ideas and
successively improve on them. Prototypes support this goal by
allowing designers to evaluate concrete representations of de-
sign ideas and select the best.

Prototypes reveal the strengths as well as the weaknesses
of a design. Unlike pure ideas, abstract models, or other repre-
sentations, they can be contextualized to help understand how
the real system would be used in a real setting. Because proto-
types are concrete and detailed, designers can explore different
real-world scenarios, and users can evaluate them with respect
to their current needs. Prototypes can be compared directly
with existing systems, and designers can learn about the con-
text of use and the work practices of the end users. Prototypes
can help designers (re)analyze users' needs during the design
process, not abstractly as with traditional requirements analysis,
but in the context of the system being built.

Participatory Design

Participatory (also called cooperative) design is a form of user-
centered design that actively involves the user in all phases the
design process (see Greenbaum & Kyng, 1991, and chapter 54
by Muller in this volume). Users are not simply consulted at the
beginning and called in to evaluate the system at the end; they
are treated as partners throughout. This early and active involve-
ment of users helps designers avoid unpromising design paths
and develop a deeper understanding of the actual design prob-
lem. Obtaining user feedback at each phase of the process also
changes the nature of the final evaluation, which is used to fine-
tune the interface rather than discover major usability problems.

A common misconception about participatory design is that
designers are expected to abdicate their responsibilities as
designers, leaving the design to the end user. In fact, the goal
is for designers and users to work together, each contributing
their strengths to clarify the design problem as well as explore
design solutions. Designers must understand what users can and
cannot contribute. Usually, users are best at understanding the
context in which the system will be used and subtle aspects of
the problems that must be solved. Innovative ideas can come
from both users and designers, but the designer is responsible
for considering a wide range of options that might not be known
to the user and balancing the trade-offs among them.

Because prototypes are shared, concrete artifacts, they serve
as an effective medium for communication within the design
team. We have found that collaborating on prototype design is
an effective way to involve users in participatory design. Proto-
types help users articulate their needs and reflect on the efficacy
of design solutions proposed by designers.

Exploring the Design Space

Design is not a natural science. The goal is not to describe and
understand existing phenomena but to create something new.
Designers do, of course, benefit from scientific research find-
ings, and they may use scientific methods to evaluate interac-
tive systems. But designers also require specific techniques for
generating new ideas and balancing complex sets of trade-offs
to help them develop and refine design ideas.

Designers from fields such as architecture and graphic de-
sign have developed the concept of a design space, which con-
strains design possibilities along some dimensions, while leav-
ing others open for creative exploration. Ideas for the design
space come from many sources: existing systems, other de-
signs, other designers, external inspiration, and accidents that

2Software engineers refer to this as the Spiral model (Boehm, 1988).



52. Prototyping Tools and Techniques • 1011

prompt new ideas. Designers are responsible for creating a de-
sign space specific to a particular design problem. They explore
this design space, expanding and contracting it as they add and
eliminate ideas. The process is iterative, more cyclic, than re-
ductionist. That is, the designer does not begin with a rough
idea and successively add more precise details until the final
solution is reached. Instead, she begins with a design prob-
lem, which imposes set of constraints, and generates a set of
ideas to form the initial design space. She then explores this
design space, preferably with the user, and selects a particular
design direction to pursue. This closes off part of the design
space but opens up new dimensions that can be explored. The
designer generates additional ideas along these dimensions, ex-
plores the expanded design space, and then makes new design
choices. Design principles (e.g., Beaudouin-Lafon & Mackay,
2000) help this process by guiding it both in the exploration
and choice phases. The process continues, in a cyclic expansion
and contraction of the design space, until a satisfying solution is
reached.

All designers work with constraints—not just limited bud-
gets and programming resources, but also design constraints.
These are not necessarily bad; one cannot be creative along all
dimensions at once. Some constraints are unnecessary, how-
ever, derived from poor framing of the original design problem.
If we consider a design space as a set of ideas and a set of con-
straints, the designer has two options. She can modify ideas
within the specified constraints or modify the constraints to en-
able new sets of ideas. Unlike traditional engineering, which
treats the design problem as a given, designers are encouraged
to challenge, and if necessary, change the initial design problem.
If she reaches an impasse, the designer can either generate new
ideas or redefine the problem (and thus change the constraints).
Some of the most effective design solutions derive from a more
careful understanding and refraining of the design brief.

Note that all members of the design team, including users,
may contribute ideas to the design space and help select design
directions from within it. However, it is essential that these two
activities are kept separate. Expanding the design space requires
creativity and openness to new ideas. During this phase, every-
one should avoid criticizing ideas and concentrate on generating
as many as possible. Clever ideas, half-finished ideas, silly ideas,
impractical ideas all contribute to the richness of the design
space and improve the quality of the final solution. In contrast,
contracting the design space requires critical evaluation of ideas.
During this phase, everyone should consider the constraints and
weigh the trade-offs. Each major design decision must eliminate
part of the design space: rejecting ideas is necessary to experi-
ment and refine others and make progress in the design process.
Choosing a particular design direction should spark new sets of
ideas, and those new ideas are likely to pose new design prob-
lems. In summary, exploring a design space is the process of
moving back and forth between creativity and choice.

Prototypes aid designers in both aspects of working with
a design space: generating concrete representations of new
ideas and clarifying specific design directions. The next two
subsections describe techniques that have proven most useful
in our own prototyping work, both for research and product
development.

Expanding the Design Space: Generating Ideas

The most well-known idea generation technique is brainstorm-
ing, introduced by Osborn (1957). His goal was to create syn-
ergy within the members of a group: Ideas suggested by one
participant would spark ideas in other participants. Subsequent
studies (Collaros & Anderson, 1969; Diehl & Stroebe, 1987) chal-
lenged the effectiveness of group brainstorming, finding that ag-
gregates of individuals could produce the same number of ideas
as groups. They found certain effects, such as production block-
ing, free-riding, and evaluation apprehension, were sufficient
to outweigh the benefits of synergy in brainstorming groups.
Since then, many researchers have explored different strategies
for addressing these limitations. For our purposes, the quantity
of ideas is not the only important measure: The relationships
among members of the group are also important. As de Vreede,
Briggs, van Duin, and Enserink (2000) pointed out, one should
also consider elaboration of ideas as group members react to
each other's ideas.

We have found that brainstorming, including a variety of vari-
ants, is an important group-building exercise in participatory de-
sign. Designers may, of course, brainstorm ideas by themselves.
But brainstorming in a group is more enjoyable and, if it is a
recurring part of the design process, plays an important role in
helping group members share and develop ideas together.

The simplest form of brainstorming involves a small group of
people. The goal is to generate as many ideas as possible on a pre-
specified topic; quantity not quality, is important. Brainstorming
sessions have two phases: The first generates ideas and the sec-
ond reflects on those ideas. The initial phase should last no more
than an hour. One person should moderate the session, keep-
ing time and ensuring that everyone participates and preventing
people from critiquing each other's ideas. Discussion should be
limited to clarifying the meaning of a particular idea. A second
person records every idea, usually on a flipchart or transparency
on an overhead projector. After a short break, participants are
asked to reread all the ideas, and each person marks their three
favorite ideas.

One variation is designed to ensure that everyone con-
tributes, not just those who are verbally dominant. Participants
write their ideas on individual cards notes for a prespecified pe-
riod of time. The moderator then reads each idea aloud. Authors
are encouraged to elaborate (but not justify) their ideas, which
are then posted on a whiteboard or flipchart. Group members
may continue to generate new ideas, inspired by the others they
hear.

We use a variant of brainstorming that involves prototypes
called video brainstorming (Mackay, 2000): Participants not
only write or draw their ideas, they act them out in front of a
video camera (Fig. 52.2). The goal is the same as other brain-
storming exercises: to create as many new ideas as possible,
without critiquing them. The use of video, combined with paper
or cardboard mock-ups, encourages participants to actively ex-
perience the details of the interaction and to understand each
idea from the perspective of the user.

Each video brainstorming idea takes 2 to 5 minutes to gener-
ate and capture, allowing participants to simulate a wide variety
of ideas quickly. The resulting video clips provide illustrations



1012 • BEAUDOUIN-LAFON AND MACKAY

FIGURE 52.2. Video brainstorming: One person moves the
transparency, projected onto the wall, in response to the ac-
tions of the user, who explores how he might interact with an
online animated character. Each interaction idea is recorded
and videotaped.

of each idea that are easier to understand (and remember) than
hand-written notes. (We find that raw notes from brainstorming
sessions are not very useful after a few weeks because the par-
ticipants no longer remember the context in which the ideas
were created.)

Video brainstorming requires thinking more deeply about
each idea. It is easier to stay abstract when describing an inter-
action in words or even with a sketch, but acting out the interac-
tion in front of the camera forces the author of the idea (and the
other participants) to consider seriously how a user would inter-
act with the idea. It also encourages designers and users to think
about new ideas in the context in which they will be used. Video
clips from a video brainstorming session, even though rough,
are much easier for the design team, including developers, to
interpret than ideas from a standard brainstorming session.

We generally run a standard brainstorming session, either
oral or with cards, before a video brainstorming session to max-
imize the number of ideas to be explored. Participants then take
their favorite ideas from the previous session and develop them
further as video brainstorms. Each person is asked to "direct" at
least two ideas, incorporating the hands or voices of other mem-
bers of the group. We find that, unlike standard brainstorming,
video brainstorming encourages even the quietest team mem-
bers to participate.

Contracting the Design Space: Selecting Alternatives

After expanding the design space by creating new ideas, de-
signers must stop and reflect on the choices available to them.
After exploring the design space, designers must evaluate their
options and make concrete design decisions—choosing some
ideas, specifically rejecting others, and leaving other aspects of
the design open to further idea generation activities. Rejecting

good, potentially effective ideas is difficult, but necessary to
make progress.

Prototypes often make it easier to evaluate design ideas from
the user's perspective. They provide concrete representations
that can be compared. Many of the evaluation techniques de-
scribed elsewhere in this handbook can be applied to proto-
types to help focus the design space. The simplest situation
is when the designer must choose among several discrete, in-
dependent options. Running a simple experiment, using tech-
niques borrowed from psychology (see chapter 56 by Dumas)
allows the designer to compare how users respond to each of
the alternatives. The designer builds a prototype, with either
fully implemented or simulated versions of each option. The
next step is to construct tasks or activities that are typical of
how the system would be used, and ask people from the user
population to try each of the options under controlled condi-
tions. It is important to keep everything the same, except for
the options being tested.

Designers should base their evaluations on both quantitative
measures, such as speed or error rate, and qualitative measures,
such as the user's subjective impressions of each option. Ideally,
of course, one design alternative will be clearly faster, prone to
fewer errors, and preferred by the majority of users. More often,
the results are ambiguous, and the designer must take other fac-
tors into account when making the design choice. (Interestingly,
running small experiments often highlights other design prob-
lems and may help the designer reformulate the design problem
or change the design space.)

The more difficult (and common) situation is when the de-
signer faces a complex, interacting set of design alternatives
in which each design decision affects a number of others. De-
signers can use heuristic evaluation techniques, which rely on
our understanding of human cognition, memory, and sensory-
perception (see chapters 1-6). They can also evaluate their de-
signs with respect to ergonomic criteria (see chapter 51 by
Stewart and Trans) or design principles (Beaudouin-Lafon &
Mackay, 2000). (See chapters 56-60 for a more thorough dis-
cussion of testing and evaluation methods.)

Another strategy is to create one or more scenarios (see
chapter 53 by Rosson and Carroll) that illustrate how the com-
bined set of features will be used in a realistic setting. The sce-
nario must identify who is involved, where the activities take
place, and what the user does over a specified period of time.
Good scenarios involve more than a string of independent tasks;
they should incorporate real-world activities, including com-
mon or repeated tasks, successful activities, and breakdowns
and errors, with both typical and unusual events. The designer
then creates a prototype that simulates or implements the as-
pects of the system necessary to illustrate each set of design
alternatives. Such prototypes can be tested by asking users to
"walk through" the same scenario several times, once for each
design alternative. As with experiments and usability studies,
designers can record both quantitative and qualitative data, de-
pending on the level of the prototypes being tested.

The previous section described an idea-generation technique
called video brainstorming, which allows designers to generate
a variety of ideas about how to interact with the future system.
We call the corresponding technique for focusing in on a design



52. Prototyping Tools and Techniques • 1013

video prototyping. Video prototyping can incorporate any of
the rapid-prototyping techniques (offline or online) described
later. They are quick to build, force designers to consider the
details of how users will react to the design in the context in
which it will be used, and provide an inexpensive method of
comparing complex sets of design decisions.

To an outsider, video brainstorming and video prototyp-
ing techniques look very similar. Both involve small design
groups working together, creating rapid prototypes and inter-
acting with them in front of a video camera. Both result in
video illustrations that make abstract ideas concrete and help
team members communicate with each other. The critical dif-
ference is that video brainstorming expands the design space
by creating a number of unconnected collections of individual
ideas, whereas video prototyping contracts the design space
by showing how a specific collection of design choices work
together.

Prototyping Strategies

Designers must decide what role prototypes should play with re-
spect to the final system and in which order to create different
aspects of the prototype. The next subsections presents four
strategies: horizontal, vertical, task-oriented, and scenario-
based, which focus on different design concerns. These strate-
gies can use any of the prototyping techniques covered in the
sections that follow.

Horizontal Prototypes. The purpose of a horizontal proto-
type is to develop an entire layer of the design at the same time.
This type of prototyping is most common with large software
development teams, where designers with different skill sets
address different layers of the software architecture. Horizontal
prototypes of the user interface are useful to get an overall pic-
ture of the system from the user's perspective and address issues
such as consistency (similar functions are accessible through
similar user commands), coverage (all required functions are
supported), and redundancy (the same function is/is not acces-
sible through different user commands).

User interface horizontal prototypes can begin with rapid
prototypes and progress through to working code. Software
prototypes can be built with an interface builder (discussed later
in the chapter), without creating any of the underlying function-
ality, making it possible to test how the user will interact with the
user interface without worrying about how the rest of the archi-
tecture works. Some level of scaffolding or simulation of the rest
of the application is often necessary, however, otherwise the
prototype cannot be evaluated properly. As a consequence, soft-
ware horizontal prototypes tend to be evolutionary (i.e., they
are progressively transformed into the final system).

Vertical Prototypes. The purpose of a vertical prototype is
to ensure that the designer can implement the full, working
system from the user interface layer down to the underlying
system layer. Vertical prototypes are often built to assess the
feasibility of a feature described in a horizontal, task-oriented,
or scenario-based prototype. For example, when we developed

the notion of magnetic guidelines in the CPN2000 system to
facilitate the alignment of graphical objects (Beaudouin-Lafon
& Mackay, 2000), we implemented a vertical prototype to test
not only the interaction technique but also the layout algorithm
and the performance. We knew that we could only include the
particular interaction technique if the we could implement a
sufficiently fast response.

Vertical prototypes are generally high precision, software
prototypes because their goal is to validate an idea at the system
level. They are often thrown away because they are generally
created early in the project, before the overall architecture has
been decided, and they focus on only one design question. For
example, a vertical prototype of a spelling checker for a text ed-
itor does not require text editing functions to be implemented
and tested. The final version will need to be integrated into the
rest of the system, however, which may involve considerable
architectural or interface changes.

Task-Oriented Prototypes. Many user interface designers
begin with a task analysis (see chapter 48 by Redish and Wixon)
to identify the individual tasks that the user must accomplish
with the system. Each task requires a corresponding set of func-
tionality from the system. Task-based prototypes are organized
as a series of tasks, which allows both designers and users to
test each task independently, systematically working through
the entire system.

Task-oriented prototypes include only the functions neces-
sary to implement the specified set of tasks. They combine
the breadth of horizontal prototypes, to cover the functions
required by those tasks, with the depth of vertical prototypes,
enabling detailed analysis of how the tasks can be supported.
Depending on the goal of the prototype, both offline and online
representations can be used for task-oriented prototypes.

Scenario-Based Prototypes. Scenario-based prototypes are
similar to task-oriented ones, except that they do not stress in-
dividual, independent tasks but rather follow a more realistic
scenario of how the system would be used in a real-world set-
ting. Scenarios are stories that describe a sequence of events
and how the user reacts (see chapter 53 by Rosson and Carroll).
A good scenario includes both common and unusual situa-
tions and should explore patterns of activity over time. B0dker,
Christiansen, and Thuring (1995) developed checklist, to ensure
that no important issues have been left out.

We find it useful to begin with use scenarios based on obser-
vations of or interviews with real users. Ideally, some of those
users should participate in the creation of the specific scenar-
ios, and other users should critique them based on how realistic
they are. Use scenarios are then turned into design scenarios, in
which the same situations are described but with the functional-
ity of the new system. Design scenarios are used, among other
things, to create scenario-based video prototypes or software
prototypes. Like task-based prototypes, the developer needs to
write only the software necessary to illustrate the components
of the design scenario. The goal is to create a situation in which
the user can experience what the system would be like in a re-
alistic situation, even if it addresses only a subset of the planned
functionality.



1014 • BEAUDOUIN-LAFON AND MACKAY

The following section describes a variety of rapid prototyp-
ing techniques that can be used in any of these four prototyping
strategies. We begin with offline rapid prototyping techniques,
followed by online prototyping techniques.

RAPID PROTOTYPES

The goal of rapid prototyping is to develop prototypes quickly,
in a fraction of the time it would take to develop a working sys-
tem. By shortening the prototype-evaluation cycle, the design
team can evaluate more alternatives and iterate the design sev-
eral times, improving the likelihood of finding a solution that
successfully meets the user's needs.

How rapid is rapid depends on the context of the particular
project and the stage in the design process. Early prototypes
(e.g., sketches) can be created in a few minutes. Later in the
design cycle, a prototype produced in less than a week may
still be considered "rapid" if the final system is expected to take
months or years to build. Precision, interactivity, and evolution
all affect the time it takes to create a prototype. Not surprisingly,
a precise and interactive prototype takes more time to build than
an imprecise or fixed one.

The techniques presented in this section are organized from
most rapid to least rapid, according to the representation dimen-
sion introduced earlier. Offline techniques are generally more
rapid than online ones; however, creating successive iterations
of an online prototype may end up being faster than creating
new offline prototypes.

Offline Rapid Prototyping Techniques

Offline prototyping techniques range from simple to elaborate.
Because they do not involve software, they are usually consid-
ered a tool for thinking through the design issues, to be thrown
away when they are no longer needed. This section describes
simple paper-and-pencil sketches, three-dimensional mock-ups,
Wizard-of-Oz simulations, and video prototypes.

Paper and Pencil. The fastest form of prototyping involves
paper, transparencies, and post-it notes to represent aspects of
an interactive system (for an example, see Muller, 1991). By
playing the roles of both the user and the system, designers
can get a quick idea of a wide variety of different layout and
interaction alternatives in a short period of time.

Designers can create a variety of low-cost "special effects."
For example, a tiny triangle drawn at the end of a long strip cut
from an overhead transparency makes a handy mouse pointer,
which can be moved by a colleague in response to the user's
actions. Post-it Notes, with prepared lists, can provide "pop-up
menus." An overhead projector pointed at a whiteboard makes
it easy to project transparencies (hand-drawn or preprinted,
overlaid onto each other as necessary) to create an interactive
display on the wall. The user can interact by pointing (Fig. 52.3)
or drawing on the whiteboard. One or more people can watch
the user and move the transparencies in response to her actions.

FIGURE 52.3. Hand-drawn transparencies can be projected
onto a wall, creating an interface a user can respond to.

Everyone in the room gets an immediate impression of how the
eventual interface might look and feel.

Note that most paper prototypes begin with quick sketches
on paper, then progress to more carefully drawn screen images
made with a computer (Fig. 52.4). In the early stages, the goal is
to generate a wide range of ideas and expand the design space,
not to determine the final solution. Paper-and-pencil prototypes
are an excellent starting point for horizontal, task-based, and
scenario-based prototyping strategies.

Mock-Ups. Architects use mock-ups or scaled prototypes
to provide three-dimensional illustrations of future buildings.
Mock-ups are also useful for interactive system designers,

FIGURE 52.4. Several people work together to simulate in-
teracting with this paper prototype. One person moves a
transparency with a mouse pointer, while another moves the
diagram accordingly.



52. Prototyping Tools and Techniques • 1015

FIGURE 52.5. Mock-up of a handheld display with carrying
handle.

helping them move beyond two-dimensional images drawn on
paper or transparencies (see B0dker, Ehn, Knudsen, Kyng, &
Madsen, 1988). Generally made of cardboard, foamcore or other
found materials, mock-ups are physical prototypes of the new
system. Figure 52.5 shows an example of a handheld mock-up
showing the interface to a new handheld device. The mock-up
provides a deeper understanding of how the interaction will
work in real-world situations than possible with sets of screen
images.

Mock-ups allow the designer to concentrate on the physi-
cal design of the device, such as the position of buttons or the
screen. The designer can also create several mock-ups and com-
pare input or output options, such as buttons versus trackballs.
Designers and users should run through different scenarios,
identifying potential problems with the interface or generating
ideas for new functionality. Mock-ups can also help the designer
envision how an interactive system will be incorporated into a
physical space (Fig. 52.6).

Wizard of Oz. Sometimes it is useful to give users the im-
pression that they are working with a real system, even before
it exists. Kelley (1983) dubbed this technique the Wizard of Oz,
based on a scene in the 1939 movie of the same name. The hero-
ine, Dorothy, and her companions ask the mysterious Wizard of
Oz for help. When they enter the room, they see an enormous
green human head, breathing smoke and speaking with a deep,
impressive voice. When they return later to see the Wizard,
Dorothy's small dog pulls back a curtain, revealing a frail old
man pulling levers and making the mechanical Wizard of Oz
speak. They realize that the impressive being before them is not
a wizard at all, but simply an interactive illusion created by the
old man.

The software version of the Wizard of Oz operates on the
same principle. A user sits a terminal and interacts with a pro-
gram. Hidden elsewhere, the software designer (the wizard)
watches what the user does and, by responding in different

FIGURE 52.6. Scaled mock-up of an air traffic control table,
connected to a wall display.

ways, creates the illusion of a working software program. In
some cases, the user is unaware that a person, rather than a
computer, is operating the system.

The Wizard-of-Oz technique lets users interact with partially
functional computer systems. Whenever they encounter some-
thing that has not been implemented (or there is a bug), a human
developer who is watching the interaction overrides the proto-
type system and plays the role destined to eventually be played
by the computer. A combination of video and software can work
well, depending on what needs to be simulated.

The Wizard of Oz was initially used to develop natural lan-
guage interfaces (e.g., Chapanis, 1982; Good, Whiteside, Wixon,
& Jones, 1984). Since then, the technique has been used in a
wide variety of situations, particularly those in which rapid re-
sponses from users are not critical. Wizard-of-Oz simulations
may consist of paper prototypes, fully implemented systems,
and everything in between.

Video Prototyping. Video prototypes (Mackay, 1988) use
video to illustrate how users will interact with the new system.
As explained earlier, they differ from video brainstorming in
that the goal is to refine a single design, not generate new ideas.
Video prototypes may build on paper-and-pencil prototypes and
cardboard mock-ups and can also use existing software and im-
ages of real-world settings.

We begin our video prototyping exercises by reviewing rele-
vant data about users and their work practices and then review
ideas we video brainstormed. The next step is to create a use
scenario, describing the user at work. Once the scenario is de-
scribed in words, the designer develops a storyboard. Similar
to a comic book, the storyboard shows a sequence of rough
sketches of each action or event, with accompanying actions
and dialogue (or subtitles), with related annotations that explain
what is happening in the scene or the type of shot (Fig. 52.7).
A paragraph of text in a scenario corresponds to about a page
of a storyboard.



1016 • BEAUDOUIN-LAFON AND MACKAY

FIGURE 52.7. This storyboard is based on observations of real Colour-
ed Petri Net (CPN) users in a small company and illustrates how the CPN
developer modifies a particular element of a net, the "Simple Protocol."

Storyboards help designers refine their ideas, generate "what
if" scenarios for different approaches to a story, and communi-
cate with the other people who are involved in creating the
production. Storyboards may be informal "sketches" of ideas,
with only partial information. Others follow a predefined for-
mat and are used to direct the production and editing of a video
prototype. Designers should jot down notes on Storyboards as
they think through the details of the interaction.

Storyboards can be used like comic books to communi-
cate with other members of the design team. Designers and
users can discuss the proposed system and alternative ideas
for interacting with it (Fig. 52.8). Simple videos of each suc-
cessive frame, with a voiceover to explain what happens,
can also be effective. We usually use Storyboards to help us
shoot video prototypes, which illustrate how a new system
will look to a user in a real-world setting. We find that placing
the elements of a storyboard on separate cards and arranging
them (Mackay & Pagani, 1994) helps the designer experiment
with different linear sequences and insert or delete video clips.

The process of creating a video prototype, based on the story-
board, provides an even deeper understanding of the design and
how a user will interact with it.

The storyboard guides the shooting of the video. We of-
ten use a technique called "editing-in-the-camera" (see Mackay,
2000), which allows us to create the video directly, without
editing later. We use title cards, as in a silent movie, to sepa-
rate the clips and to make it easier to shoot. A narrator explains
each event, and several people may be necessary to illustrate
the interaction. Team members enjoy playing with special ef-
fects, such as "time-lapse photography." For example, we can
record a user pressing a button, stop the camera, add a new
dialogue box, and then restart the camera to create the illusion
of immediate system feedback.

Video is not simply a way to capture events in the real world
or to capture design ideas but can also be a tool for sketch-
ing and visualizing interactions. We use a second live video
camera as a Wizard-of-Oz tool. The wizard should have access
to a set of prototyping materials representing screen objects.



52. Prototyping Tools and Techniques • 1017

FIGURE 52.8. Video prototyping: The Coloured Petri Net
(CPN) design team reviews their observations of CPN devel-
opers and then discuss several design alternatives. They work
out a scenario and storyboard it, then shoot a video prototype
that reflects their design.

Other team members stand by, ready to help move objects as
needed. The live camera is pointed at the wizard's work area,
with either a paper prototype or a partially working software
simulation. The resulting image is projected onto a screen or
monitor in front of the user. One or more people should be
situated so that they can observe the actions of the user and
manipulate the projected video image accordingly. This is most
effective if the wizard is well prepared for a variety of events
and can present semiautomated information. The user interacts
with the objects on the screen as wizard moves the relevant
materials in direct response to each user action. The other cam-
era records the interaction between the user and the simulated
software system on the screen or monitor, to create either a
video brainstorm (for a quick idea) or a fully storyboarded video
prototype.

Figure 52.9 shows a Wizard-of-Oz simulation with a live video
camera, video projector, whiteboard, overhead projector, and
transparencies. The setup allows two people to experience how
they would communicate via a new interactive communication
system. One video camera films the woman at left, who can
see and talk to the other woman. Her image is projected live
onto the left side of the wall. An overhead projector displays
hand-drawn transparencies, manipulated by two other people,
in response to gestures made by the woman at right. The entire
interaction is videotaped by a second video camera.

Combining Wizard-of-Oz and video is a particularly powerful
prototyping technique because it gives the person playing the
user a real sense of what it might actually feel like to interact with
the proposed tool, long before it has been implemented. Seeing
a video clip of someone else interacting with a simulated tool is
more effective than simply hearing about it, but interacting with
it directly is more powerful still. Video prototyping may act as
a form of specification for developers, enabling them to build
the precise interface, both visually and interactively, created by
the design team.

FIGURE 52.9. Complex Wizard-of-Oz simulation, with pro-
jected image from a live video camera and transparencies pro-
jected from an overhead projector.

Online Rapid Prototyping Techniques

The goal of online rapid prototyping is to create higher preci-
sion prototypes than can be achieved with offline techniques.
Such prototypes may prove useful to better communicate ideas
to clients, managers, developers, and end users. They are also
useful for the design team to fine tune the details of a layout
or an interaction. They may exhibit problems in the design that
were not apparent in less precise prototypes. Finally, they may
be used early on in the design process for low precision pro-
totypes that would be difficult to create offline, such as when
dynamic interactions or visualizations are needed.

The techniques presented in this section are sorted by
interactivity. We start with noninteractive simulations (i.e.,
animations), followed by interactive simulations that provide
fixed or multiple-paths interactions. We finish with scripting
languages that support open interactions.

Noninteractive Simulations, A noninteractive simulation
is a computer-generated animation that represents what a per-
son would see of the system if he or she were watching over
the user's shoulder. Noninteractive simulations are usually cre-
ated when offline prototypes, including video, fail to capture a
particular aspect of the interaction, and it is important to have
a quick prototype to evaluate the idea. It is usually best to start
by creating a storyboard to describe the animation, especially if
the developer of the prototype is not a member of the design
team.

One of the most widely used tools for noninteractive sim-
ulations is Macromedia Director. The designer defines graphic
objects called sprites and defines paths along which to animate
them. The succession of events, such as when sprites appear
and disappear, is determined with a time line. Sprites are usually
created with drawing tools (e.g., Adobe Illustrator or Deneba
Canvas), painting tools (e.g., Adobe Photoshop), or even



1018 • BEAUDOUIN-LAFON AND MACKAY

FIGURE 52.10. A noninteractive simulation of a desktop inter-
face created with Macromedia Flash. The time line (top) dis-
plays the active sprites and the main window (bottom) shows
the animation. Reprinted with permission from O. Beaudoux.

scanned images. Director is a powerful tool; experienced de-
velopers can create sophisticated interactive simulations; how-
ever, noninteractive simulations are much faster to create. Other
similar tools exist on the market, including Abvent Katabounga,
Adobe AfterEffects, and Macromedia Flash (Fig. 52.10).

Figure 52.11 shows a set of animation movies created by
Dave Curbow to explore the notion of accountability in com-
puter systems (Dourish, 1997). These prototypes explore new
ways to inform the user of the progress of a file copy opera-
tion. They were created with Macromind Director by combin-
ing custom-made sprites with sprites extracted from snapshots
of the Macintosh Finder. The simulation features cursor motion,
icons being dragged, windows opening and closing, and so on.
The result is a realistic prototype that shows how the interface
looks and behaves that was created in just a few hours. Note
that the simulation also features text annotations to explain each
step, which helps document the prototype.

Noninteractive animations can be created with any tool that
generates images. For example, many Web designers use Adobe
Photoshop to create simulations of their Web sites. Photoshop
images are composed of various layers that overlap like trans-
parencies. The visibility and relative position of each layer can
be controlled independently. Designers can quickly add or
delete visual elements, simply by changing the characteristics of
the relevant layer. This permits quick comparisons of alternative
designs and helps visualize multiple pages that share a common
layout or banner. Skilled Photoshop users find this approach
much faster than most Web authoring tools.

We used this technique in the CPN2000 project (Mackay,
Ratzer, & Janecek, 2000) to prototype the use of transparency.
After several prototyping sessions with transparencies and over-
head projectors, we moved to the computer to understand
the differences between the physical transparencies and the
transparent effect as it would be rendered on a computer screen.
We later developed an interactive prototype with OpenGL,

which required an order of magnitude more time to implement
than the Photoshop mock-up.

Interactive Simulations. Designers can also use tools such
as Adobe Photoshop to create Wizard-of-Oz simulations. For ex-
ample, the effect of dragging an icon with the mouse can be
obtained by placing the icon of a file in one layer and the icon
of the cursor in another layer and by moving either or both
layers. The visibility of layers, as well as other attributes, can
also create more complex effects. Like Wizard-of-Oz and other
paper prototyping techniques, the behavior of the interface is
generated by the user who is operating the Photoshop interface.

More specialized tools, such as HyperCard and Macromedia
Director, can be used to create simulations that the user can
directly interact with. HyperCard (Goodman, 1987) is one of
the most successful early prototyping tools. It is an authoring
environment based on a stack metaphor: A stack contains a
set of cards that share a background, including fields and but-
tons. Each card can also have its own unique contents, including
fields and buttons (Fig. 52.12). Stacks, cards, fields, and buttons
react to user events (e.g., clicking a button) as well as system
events (e.g., when a new card is displayed or about to disappear;
Fig. 52.13). HyperCard reacts according to events programmed
with a scripting language called Hypertalk. For example, the fol-
lowing script is assigned to a button, which switches to the next
card in the stack whenever the button is clicked. If this button
is included in the stack background, the user will be able to
browse through the entire stack:

on click
goto next card

end click

Interfaces can be prototyped quickly with this approach by
drawing different states in successive cards and using buttons
to switch from one card to the next. Multiple-path interactions
can be programmed by using several buttons on each card. More
open interactions require more advanced use of the scripting
language but are fairly easy to master with a little practice.

Director uses a different metaphor, attaching behaviors to
sprites and to frames of the animation. For example, a button
can be defined by attaching a behavior to the sprite represent-
ing that button. When the sprite is clicked, the animation jumps
to a different sequence. This is usually coupled with a behavior
attached to the frame containing the button that loops the an-
imation on the same frame. As a result, nothing happens until
the user clicks the button, at which point the animation skips
to a sequence where, for example, a dialogue box opens. The
same technique can be used to make the OK and Cancel but-
tons of the dialogue box interactive. Typically, the Cancel button
would skip to the original frame, whereas the OK button would
skip to a third sequence. Director comes with a large library of
behaviors to describe such interactions so that prototypes can
be created completely interactively. New behaviors can also be
defined with a scripting language called Lingo.

Many educational and cultural CD-ROMs are created exclu-
sively with Director. They often feature original visual displays
and interaction techniques that would be almost impossible
to create with the traditional user interface development tools



52. Prototyping Tools and Techniques • 1019

FIGURE 52.11. Frames from an animated simulation created with
Macromind Director. Reprinted with permission from D. Curbow.

described in the next section. Designers should consider tools
such as HyperCard and Director as user interface builders or
user interface development environments. In some situations,
they can even be used for evolutionary prototypes.

Scripting Languages. Scripting languages are the most
advanced rapid prototyping tools. As with the interactive-
simulation tools described above, the distinction between rapid
prototyping tools and development tools is not always clear.

Scripting languages make it easy to quickly develop throw-away
prototypes (a few hours to a few days), which may or may not
be used in the final system for performance or other technical
reasons.

A scripting language is a programming language that is both
light weight and easy to learn. Most scripting languages are in-
terpreted or semicompiled (i.e., the user does not need to go
through a compile-link-run cycle each time the script or program
is changed). Scripting languages can be forbidding: They are not

FIGURE 52.12. A HyperCard card (right) is the combination of a back-
ground (left) and the card's content (middle). Reprinted with permis-
sion from Apple Computer.



1020 • BEAUDOUIN-LAFON AND MACKAY

FIGURE 52.13. The hierarchy of objects in HyperCard deter-
mines the order (from left to right) in which a handler is
looked up for an event. © Apple Computer, Inc. Used with
permission.

strongly typed, and nonfatal errors are ignored unless explicitly
trapped by the programmer. Scripting languages are often used
to write small applications for specific purposes and can serve
as glue between preexisting applications or software compo-
nents. Tcl (Ousterhout, 1993) was inspired by the syntax of the
Unix shell, it makes it easy to interface existing applications by
turning the application programming interface (API) into a set
of commands that can be called directly from a Tcl script.

Tcl is particularly suitable for developing user interface pro-
totypes (or small- to medium-sized applications) because of its
Tk user interface toolkit. Tk features all the traditional interac-
tive objects (called widgets) of a user interface toolkit: buttons,
menus, scroll bars, lists, dialogue boxes, and so on. A widget is
typically only one line. For example:

button.dialogbox.ok -text OK -command {destroy.dialogbox}

This command creates a button, called ".dialogbox.ok" with
the label "OK." It deletes its parent window ".dialogbox" when
the button is pressed. A traditional programming language and
toolkit would take 5 to 20 lines to create the same button.

Tcl also has two advanced, heavily parameterized widgets:
the text widget and the canvas widget. The text widget can be
used to prototype text-based interfaces. Any character in the text
can react to user input through the use of tags. For example, it
is possible to turn a string of characters into a hypertext link. In
Beaudouin-Lafon (2000), the text widget was used to prototype
a new method for finding and replacing text. When entering the
search string, all occurrences of the string are highlighted in the
text (Fig. 52.14). Once a replace string has been entered, click-
ing an occurrence replaces it (the highlighting changes from
yellow to red). Clicking a replaced occurrence returns it to its
original value. This example also uses the canvas widget to cre-
ate a custom scroll bar that displays the positions and status of
the occurrences.

The Tk canvas widget is a drawing surface that can contain
arbitrary objects: lines, rectangles, ovals, polygons, text strings,
and widgets. Tags allow behaviors (i.e., scripts) that are called
when the user acts on these objects. For example, an object

FIGURE 52.14. Using the Tk text and canvas widgets to proto-
type a novel search and replace interaction technique. Note.
From "Instrumental interaction: An interaction model for de-
signing post-WIMP user interfaces" by M. Beaudouin-Lafon,
2000, Proceedings of the Association for Computing Machinery Human
Factors in Computing Systems (CHI'2000), CHI Letters 2(1), 452.
Copyright 2000 by the Association of Computing Machinery.
Reprinted with permission.

that can be dragged will be assigned a tag with three behav-
iors: button-press, mouse-move, and button-up. Because of the
flexibility of the canvas, advanced visualization and interaction
techniques can be implemented more quickly and easily than
with other tools. For example, Fig. 52.15 shows a prototype
exploring new ideas to manage overlapping windows on the
screen (Beaudouin-Lafon, 2001). Windows can be stacked and
slightly rotated so that it is easier to recognize them, and they
can be folded so it is possible to see what is underneath without
having to move the window. Even though the prototype is not
perfect (for example, folding a window that contains text is not
properly supported), it was instrumental in identifying a num-
ber of problems with the interaction techniques and finding
appropriate solutions through iterative design.

Tcl and Tk can also be used with other programming lan-
guages. For example, Pad++ (Bederson & Meyers, 1998) is im-
plemented as an extension to Tcl/Tk: the zoomable interface is
implemented in C for performance and accessible from Tk as a
new widget. This makes it easy to prototype interfaces that use
zooming. It is also a way to develop evolutionary prototypes:
a first prototype is implemented completely in Tcl, then parts of
it are reimplemented in a compiled language to enhance perfor-
mance. Ultimately, the complete system may be implemented
in another language, although it is more likely that some parts
will remain in Tcl.

Software prototypes can also be used in conjunction with
hardware prototypes. Figure 52.16 shows an example of a hard-
ware prototype that captures hand-written text from a paper
flight strip (using a combination of a graphics tablet and a
custom-designed system for detecting the position of the pa-
per strip holder). We used Tk/TCL, in conjunction with C++,
to present information on a RADAR screen (tied to an existing
air traffic control simulator) and to provide feedback on a touch-
sensitive display next to the paper flight strips (Mackay, Fayard,



52. Prototyping Tools and Techniques • 1021

FIGURE 52.15. Using the Tk canvas widget to prototype a novel window
manager. Note. From "Novel interaction techniques for overlapping win-
dows" by M. Beaudouin-Lafon, 2001, Proceedings of the Association for Com-
puling Machinery Symposium on User Interface Software and Technology (UIST
2001). CHI Letters, 3(2), 154. Copyright 2001 by the Association for Com-
puting Machinery. Reprinted with permission.

Frobert, & Medini, 1998). The user can write in the ordinary
way on the paper flight strip, and the system interprets the ges-
tures according to the location of the writing on the strip. For
example, a change in flight level is automatically sent to another
controller for confirmation and a physical tap on the strip's ID
lights up the corresponding aircraft on the RADAR screen.

ITERATIVE PROTOTYPES

Prototypes may also be developed with traditional software de-
velopment tools. In particular, high-precision prototypes usually
require a level of performance that cannot be achieved with the

rapid online prototyping techniques described earlier. Similarly,
evolutionary prototypes intended to evolve into the final prod-
uct require more traditional software development tools. Finally,
even shipped products are not "final," because subsequent re-
leases can be viewed as initial designs for prototyping the next
release.

Development tools for interactive systems have been in use
for more than 20 years and are constantly being refined. Several
studies have shown that the part of the development cost of
an application spent on the user interface is 50% to 80% of the
total cost of the project (Myers & Rosson, 1992). The goal of de-
velopment tools is to shift this balance by reducing production
and maintenance costs. Another goal of development tools is to

FIGURE 52.16. Cameleon's augmented stripboard (left) is a working
hardware prototype that identifies and captures hand writing from pa-
per flight strips. Members of the design team test the system (right),
which combines both hardware and software prototypes into a single
interactive simulation.



1022 • BEAUDOUIN-LAFON AND MACKAY

anticipate the evolution of the system over successive releases
and support iterative design.

Interactive systems are inherently more powerful than non-
interactive ones (see Wegner, 1997, for a theoretical argument).
They do not match the traditional, purely algorithmic, type of
programming: An interactive system must handle user input and
generate output at almost any time, whereas an algorithmic sys-
tem reads input at the beginning, processes it, and displays re-
sults at the end. In addition, interactive systems must process
input and output at rates that are compatible with the human
perception-action loop (i.e., in time frames of 20 to 200 ms).
In practice, interactive systems are both reactive and real-time
systems, two active areas in computer science research.

The need to develop interactive systems more efficiently has
led to two interrelated streams of work. The first involves cre-
ation of software tools, from low-level user interface libraries
and toolkits to high-level user interface development environ-
ments (UIDE). The second addresses software architectures for
interactive systems, or how system functions are mapped onto
software modules. The rest of this section presents the most
salient contributions of these two streams of work.

Software Tools

Since the advent of graphical user interfaces in the 1980s, a
large number of tools have been developed to help with the
creation of interactive software, most aimed at visual interfaces.
This section presents a collection of tools, from low-level (i.e.,
requiring a lot of programming) to high-level tools.

The lowest level tools are graphical libraries that provide
hardware independence for painting pixels on a screen and
handling user input, and window systems that provide an ab-
straction (the window) to structure the screen into several
"virtual terminals." User interface toolkits structure an inter-
face as a tree of interactive objects called widgets, whereas user
interface builders provide an interactive application to create
and edit those widget trees. Application frameworks build on
toolkits and UI builders to facilitate creation of typical functions
such as cut/copy/paste, undo, help, and interfaces based on
editing multiple documents in separate windows. Model-based
tools semiautomatically derive an interface from a specification
of the domain objects and functions to be supported. Finally,
user interface development environments or UIDEs provide an
integrated collection of tools for the development of interactive
software.

Before we describe each of these categories in more detail,
it is important to understand how they can be used for pro-
totyping. It is not always best to use the highest-level available
tool. High-level tools are most valuable in the long term because
they make it easier to maintain the system, port it to various
platforms, or localize it to different languages. These issues are
irrelevant for vertical and throw-away prototypes, so a high-level
tool may prove less effective than a lower level one.

The main disadvantage of higher level tools is that they con-
strain or stereotype the types of interfaces they can implement.
User interface toolkits usually contain a limited set of "widgets,"
and it is expensive to create new ones. If the design must

incorporate new interaction techniques, such as bimanual in-
teraction (Kurtenbach, Fitzmaurice, Baudel, & Buxton, 1997)
or zoomable interfaces (Bederson & Hollan, 1994), a user in-
terface toolkit will hinder rather than help prototype develop-
ment. Similarly, application frameworks assume a stereotyped
application with a menu bar, several toolbars, a set of windows
holding documents, and so on. Such a framework would be
inappropriate for developing a game or a multimedia educa-
tional CD-ROM that requires a fluid, dynamic, and original user
interface.

Finally, developers need to truly master these tools, especially
when prototyping in support of a design team. Success depends
on the programmer's ability to quickly change the details as well
as the overall structure of the prototype. A developer will be
more productive when using a familiar tool than if forced to use
a more powerful but unknown tool.

Graphical Libraries and Window Systems. Graphical li-
braries underlie all the other tools presented in this section.
Their main purpose is to provide the developer with a hardware-
independent, and sometimes cross-platform application pro-
gramming interface (API) for drawing on the screen. They can
be separated into two categories: direct drawing and scene-
graph based. Direct drawing libraries provide functions to draw
shapes on the screen once their geometry and their graphical
attributes are specified. This means that every time something
is to be changed on the display, the programmer has to either
redraw the whole screen or figure out exactly which parts have
changed. Xlib on Unix systems, Quickdraw on MacOS, Win32
GDI on Windows, and OpenGL (Woo, Neider, & Davis, 1997)
on all three platforms are all direct drawing libraries. They offer
the best compromise between performance and flexibility but
are difficult to program.

Scene-graph based libraries explicitly represent the contents
of the display by a structure called a scene graph. It can be a sim-
ple list (called display list), a tree (as used by many user interface
toolkits; see next subsection), or a direct acyclic graph (DAG).
Rather than painting on the screen, the developer creates and
updates the scene graph, and the library is responsible for up-
dating the screen to reflect the scene graph. Scene graphs are
mostly used for three-dimensional graphics (e.g., OpenInven-
tor, Strass, 1993), but in recent years they have also been used
for two-dimensional graphics (Beaudouin-Lafon & Lassen, 2000;
Bederson et al., 2000). With the advent of hardware-accelerated
graphics cards, scene-graph based graphics libraries can offer
outstanding performance while easing the task of the developer.

Window systems provide an abstraction to allow multiple
client applications to share the same screen. Applications create
windows and draw into them. From the application perspective,
windows are independent and behave as separate screens. All
graphical libraries include or interface with a window system.
Window systems also offer a user interface to manipulate win-
dows (move, resize, close, change stacking order, etc.) called
the window manager. The window manager may be a separate
application (as in X-Windows), it may be built into the window
system (as in Windows), or it may be controlled of each appli-
cation (as in MacOS). Each solution offers a different trade-off
between flexibility and programming cost.



52. Prototyping Tools and Techniques • 1023

Graphical libraries include or are complemented by an in-
put subsystem. The input subsystem is event driven: Each time
the user interacts with an input device, an event recording the
interaction is added to an input event queue. The input sub-
system API lets the programmer query the input queue and re-
move events from it. This technique is much more flexible than
polling the input devices repeatedly or waiting until an input
device is activated. To ensure that input events are handled in
a timely fashion, the application has to execute an event loop
that retrieves the first event in the queue and handles it as fast
as possible. Every time an event sits in the queue, there is a
delay between the user action and the system reaction. As a
consequence, the event loop sits at the heart of almost every
interactive system.

Window systems complement the input subsystem by rout-
ing events to the appropriate client application based on its
focus. The focus may be specified explicitly for a device (e.g.,
the keyboard) or implicitly through the cursor position (the
event goes to the window under the cursor). Scene-graph based
libraries usually provide a picking service to identify which ob-
jects in the scene graph are under or in the vicinity of the cursor.

Although graphical libraries and window systems are fairly
low level, they must often be used when prototyping novel inter-
action or visualization techniques. Usually, these prototypes are
developed when performance is key to the success of a design.
For example, a zoomable interface that cannot provide contin-
uous zooming at interactive frame rates is unlikely to be usable.
The goal of the prototype is then to measure performance to
validate the feasibility of the design.

User Interface Toolkits. User interface toolkits are probably
the most widely used tool nowadays to implement applications.
All three major platforms (Unix/Linux, MacOS, and Windows)
come with at least one standard user interface toolkit. The main
abstraction provided by a toolkit is the widget, a software ob-
ject that has three facets that closely match the Model-View-
Controller (MVC) model described later: a presentation, a be-
havior, and an application interface.

The presentation defines the graphical aspect of the widget.
Usually, the presentation can be controlled by the application,
but also externally. For example, under X-Windows, it is possible
to change the appearance of widgets in any application by edit-
ing a text file specifying the colors, sizes, and labels of buttons,
menu entries, and so on. The overall presentation of an interface
is created by assembling widgets into a tree. Widgets such as but-
tons are the leaves of the tree. Composite widgets constitute the
nodes of the tree: A composite widget contains other widgets
and controls their arrangement. For example, menu widgets in
a menu bar are stacked horizontally, whereas command widgets
in a menu are stacked vertically. Widgets in a dialogue box are
laid out at fixed positions or relative to each other so that the
layout may be recomputed when the window is resized. Such
constraint-based layout saves time because the interface does
not need to be laid out again when a widget is added or when
its size changes as a result of, for example, changing its label.

The behavior of a widget defines the interaction methods it
supports: a button can be pressed, a scroll bar can be scrolled, a
text field can be edited. The behavior also includes the various

FIGURE 52.17. Callback functions.

possible states of a widget. For example, most widgets can be
active or inactive, and some can be highlighted. The behavior
of a widget is usually hardwired and defines its class (menu,
button, list, etc.). It is sometimes parameterized, however (e.g.,
a list widget may be set to support single or multiple selection).

One limitation of widgets is that their behavior is limited
to the widget itself. Interaction techniques that involve multi-
ple widgets, such as drag-and-drop, cannot be supported by the
widgets' behavior alone and require a separate support in the
user interface toolkit. Some interaction techniques, such as tool-
glasses or magic lenses (Bier, Stone, Pier, Buxton, & De Rose,
1993), break the widget model both with respect to the presen-
tation and the behavior and cannot be supported by traditional
toolkits. In general, prototyping new interaction techniques re-
quires either implementing them within new widget classes,
which is not always possible, or not using a toolkit at all. Imple-
menting a new widget class is typically more complicated than
implementing the new technique outside the toolkit (e.g., with
a graphical library) and is rarely justified for prototyping. Many
toolkits provide a "blank" widget (Canvas in Tk, Drawing Area
in Motif, JFrame in Java Swing) that can be used by the appli-
cation to implement its own presentation and behavior. This is
usually a good alternative to implementing a new widget class,
even for production code.

The application interface of a widget defines how it commu-
nicates the results of the user interactions to the rest of the ap-
plication. Three main techniques exist. The first and most com-
mon is called a callback function or callback for short: When
the widget is created, the application registers the name of one
or more functions with it. When the widget is activated by the
user, it calls the registered functions (Fig. 52.17). The problem
with this approach is that the logic of the application is split
among many callback functions (Myers, 1991).

The second approach is called active variables and consists
of associating a widget with a variable of the application pro-
gram (Fig. 52.18). A controller ensures that when the widget
state changes, the variable is updated with a new value and,
conversely, when the value of the variable changes, the wid-
get state reflects the new value. This allows the application to
change the state of the interface without accessing the wid-
gets directly, therefore decoupling the functional core from the
presentation. In addition, the same active variable can be used
with multiple widgets, providing an easy way to support mul-
tiple views. Finally, it is easier to change the mapping between



1024 • BEAUDOUIN-LAFON AND MACKAY

FIGURE 52.19. Listener objects.

widgets and active variables than it is to change the assignment
of callbacks. This is because active variables are more declara-
tive and callbacks more procedural. Active variables work only
for widgets that represent data (e.g., a list or a text field) but not
for buttons or menus. Therefore, they complement, rather than
replace, callbacks. Few user interface toolkits implement active
variables. Tcl/Tk (Ousterhout, 1994) is a notable exception.

The third approach for the application interface is based on
listeners. Rather than registering a callback function with the
widget, the application registers a listener object (Fig. 52.19).
When the widget is activated, it sends a message to its listener
describing the change in state. Typically, the listener of a wid-
get would be its model (using the MVC terminology). The first
advantage of this approach is that it matches true more closely
the most common architecture models. It is also more true to
the object-oriented approach that underlies most user interface
toolkits. The second advantage is that it reduces the "spaghetti
of callbacks" described above: By attaching a single listener to
several widgets, the code is more centralized. A number of re-
cent toolkits are based on the listener model, including Java
Swing (Eckstein, Loy, & Wood, 1998).

User interface toolkits have been an active area of research
over the past 15 years. Interviews (Linton, Vlissides, & Calder,
1989) has inspired many modern toolkits and user interface
builders. A number of toolkits have also been developed for spe-
cific applications such as groupware (Roseman & Greenberg,
1996, 1999) or visualization (Schroeder, Martin, & Lorensen,
1997).

Creating an application or a prototype with a user interface
toolkit requires a solid knowledge of the toolkit and experi-
ence with programming interactive applications. To control the
complexity of the interrelations between independent pieces
of code (creation of widgets, callbacks, global variables, etc.), it
is important to use well-known design patterns. Otherwise the
code quickly becomes unmanageable and, in the case of a pro-
totype, unsuitable for design space exploration. Two categories
of tools have been designed to ease the task of developers: user
interface builders and application frameworks.

User Interface Builders. A user interface builder allows the
developer of an interactive system to create the presentation of
the user interface (i.e., the tree of widgets) interactively with
a graphical editor. The editor features a palette of widgets that
the user can use to "draw" the interface in the same way as a
graphical editor is used to create diagrams with lines, circles,
and rectangles. The presentation attributes of each widget can
be edited interactively as well as the overall layout. This saves
a lot of time that would otherwise be spent writing and fine-
tuning rather dull code that creates widgets and specifies their
attributes. It also makes it extremely easy to explore and test
design alternatives.

FIGURE 52.20. Iterative user interface builder.

User interface builders focus on the presentation of the inter-
face. They also offer some facilities to describe the behavior of
the interface and to test the interaction. Some systems allow the
interactive specification of common behaviors such as a menu
command opening a dialogue box, a button closing a dialogue
box, a scroll bar controlling a list, or text. The user interface
builder can then be switched to a "test" mode in which widgets
are not passive objects but actually work. This may be enough
to test prototypes for simple applications, even though there is
no functional core nor application data.

To create an actual application, the part of the interface gen-
erated by the user interface builder must be assembled with the
missing parts (i.e., the functional core), the application inter-
face code that could not be described from within the builder,
and the run-time module of the generator. Most generators save
the interface into a file that can be loaded at run-time by the
generator's run-time module (Fig. 52.20). With this method, the
application need only be regenerated when the functional core
changes, not when the user interface changes. This makes it
easy to test alternative designs or to iteratively create the inter-
face: Each time a new version of the interface is created, it can
be readily tested by rerunning the application.

To make it even easier to modify the interface and test the
effects with the real functional core, the interface editor can be
built into the target application (Fig. 52.21). Changes to the in-
terface can then be made from within the application and tested
without rerunning it. This situation occurs most often with in-
terface builders based on an interpreted language (e.g., Tcl/Tk,
Visual Basic).

In either case, a final application can be created by compiling
the interface generated by the user interface builder into actual
code, linked with the functional core and a minimal run-time



52. Prototyping Tools and Techniques • 1025

FIGURE 52.22. Generation of the final application.

module. In this situation, the interface is not loaded from a file
but directly created by the compiled code (Fig. 52.22). This
is both faster and eliminates the need for a separate interface
description file.

User interface builders are widely used to develop prototypes
as well as final applications. They are easy to use, they make it
easy to change the look of the interface, and they hide a lot of
the complexity of creating user interfaces with toolkits. Despite
their name, however, they do not cover the whole user interface,
only the presentation. Therefore, they still require a significant
amount of programming, namely, some part of the behavior
and all the application interface. Systems such as NeXT's Inter-
face Builder (NeXT, 1991) ease this task by supporting part of
the specification of the application objects and their links with
the user interface. Still, user interface builders require knowl-
edge of the underlying toolkit and an understanding of their
limits, especially when prototyping novel visualization and in-
teraction techniques.

Software Environments

Application Frameworks. Application frameworks address
a different problem than user interface builders and are actually
complementary. Many applications have a standard form where
windows represent documents that can be edited with menu
commands and tools from palettes. Each document may be
saved into a disk file; standard functions such as copy/paste,
undo, and help are supported. Implementing such stereotyped
applications with a user interface toolkit or builder requires
replicating a significant amount of code to implement the
general logic of the application and the basics of the standard
functions.

Application frameworks address this issue by providing a
shell that the developer fills with the functional core and the ac-
tual presentation of the nonstandard parts of the interface. Most
frameworks have been inspired by MacApp, a framework devel-
oped in the eighties to develop applications for the Macintosh
(Apple Computer, 1996). Typical base classes of MacApp in-
clude Document, View, Command, and Application. MacApp

supports multiple document windows, multiple views of a doc-
ument, cut/copy/paste, undo, saving documents to files, script-
ing, and more.

With the advent of object-oriented technology, most appli-
cation frameworks are implemented as collections of classes.
Some classes provide services such as help or drag-and-drop
and are used as client classes. Many classes are meant to be de-
rived to add the application functionality through inheritance
rather than by changing the actual code of the framework. This
makes it easy to support successive versions of the framework
and limits the risks of breaking existing code. Some frame-
works are more specialized than MacApp. For example, Unidraw
(Vlissides & Linton, 1990) is a framework for creating graphical
editors in domains such as technical and artistic drawing, music
composition, or circuit design. By addressing a smaller set of
applications, such a framework can provide more support and
significantly reduce implementation time.

Mastering an application framework takes time. It requires
knowledge of the underlying toolkit and the design patterns
used in the framework, and a good understanding of the design
philosophy of the framework. A framework is useful because
it provides a number of functions "for free," but at the same
time it constrains the design space that can be explored. Frame-
works can prove effective for prototyping if their limits are well
understood by the design team.

Model-Based Tools. User interface builders and application
frameworks approach the development of interactive applica-
tions through the presentation side: First the presentation is
built, then behavior (i.e., interaction) is added; finally the in-
terface is connected to the functional core. Model-based tools
take the other approach, starting with the functional core and
domain objects and working their way toward the user inter-
face and the presentation (Szekely, Luo, & Neches, 1992,1993).
The motivation for this approach is that the raison d'etre of a
user interface is the application data and functions that will be
accessed by the user. Therefore, it is important to start with the
domain objects and related functions and derive the interface
from them. The goal of these tools is to provide a semiautomatic
generation of the user interface from the high-level specifica-
tions, including specification of the domain objects and func-
tions, specification of user tasks, specification of presentation,
and interaction styles.

Despite significant efforts, the model-based approach is
still in the realm of research; no commercial tool exists yet.
By attempting to define an interface declaratively, model-based
tools rely on a knowledge base of user interface design to be
used by the generation tools that transform the specifications
into an actual interface. In other words, they attempt to do what
designers do when they iteratively and painstakingly create an
interactive system. This approach can probably work for well-
defined problems with well-known solutions (i.e., families of
interfaces that address similar problems). For example, it may
be the case that interfaces for management information systems
(MIS) could be created with model-based tools because these
interfaces are fairly similar and well understood.

In their current form, model-based tools may be useful to
create early horizontal or task-based prototypes. In particular,



1026 • BEAUDOUIN-LAFON AND MACKAY

FIGURE 52.23. The Garnet toolkit and tools (Myers et al.,
1990).

they can be used to generate a "default" interface that can serve
as a starting point for iterative design. Future systems may be
more flexible and therefore usable for other types of prototypes.

User Interface Development Environments. Like model-
based tools, user interface development environments (UIDE)
attempt to support the development of the whole interactive
system. The approach is more pragmatic than the model-based
approach, however. It consists of assembling a number of tools
into an environment where different aspects of an interactive
system can be specified and generated separately.

Garnet (Fig. 52.23) and its successor Amulet (Myers et al.,
1997) provide a comprehensive set of tools, including a tradi-
tional user interface builder, a semiautomatic tool for generating
dialogue boxes, a user interface builder based on a demonstra-
tion approach, and so on. One particular tool, Silk, is aimed
explicitly at prototyping user interfaces.

Silk (Landay & Myers, 2001) is a tool aimed at the early stages
of design, when interfaces are sketched rather than prototyped
in software. Using Silk, a user can sketch a user interface di-
rectly on the screen (Fig. 52.24). Using gesture recognition, Silk
interprets the marks as widgets, annotations, and so on. Even in
its sketched form, the user interface is functional; for example,
buttons can be pressed and tools can be selected in a toolbar.
The sketch can also be turned into an actual interface (e.g., using
the Motif toolkit). Finally, storyboards can be created to describe
and test sequences of interactions. Silk therefore combines some
aspects of offline and online prototyping techniques, trying to
achieve the best of both worlds. This illustrates a current trend
in research where online tools attempt to support not only the
development of the final system, but the whole design process.

EVOLUTIONARY PROTOTYPES

Evolutionary prototypes are a special case of iterative proto-
types, and are intended to evolve into the final system.
Methodologies such as Extreme Programming (Beck, 2000)
consist mostly of developing evolutionary prototypes. Because

prototypes are rarely robust or complete, it is often impractical
and sometimes dangerous to evolve them into the final system.
Designers must think carefully about the underlying software
architecture of the prototype, and developers should use
well-documented design patterns to implement them.

Software Architectures

The definition of the software architecture is traditionally done
after the functional specification is written but before coding
starts. The designers design on the structure of the application
and how functions will be implemented by software modules.
The software architecture is the assignment of functions to mod-
ules. Ideally, each function should be implemented by a single
module and modules should have minimal dependencies among
them. Poor architectures increase development costs (coding,
testing, and integration), lower maintainability, and reduce per-
formance. An architecture designed to support prototyping and
evolution is crucial to ensure that design alternatives can be
tested with maximum flexibility and at a reasonable cost.

Seeheim and Arch. The first generic architecture for inter-
active systems was devised at a workshop in Seeheim (Germany)
in 1985 and is known as the Seeheim model (Pfaff & ten
Hagen, 1985). It separates the interactive application into a user
interface and a functional core (then called "application," be-
cause the user interface was seen as adding a "coat of paint"
on top of an existing application). The user interface is made of
three modules: the presentation, the dialogue controller, and the
application interface (Fig. 52.25). The presentation deals with
capturing user's input at a low level (often called lexical level,
similar to the lexical, syntactic, and semantic levels of a com-
piler). The presentation is also responsible for generating output
to the user, usually as a visual display. The dialogue controller
assembles the user input into commands (syntactic level), pro-
vides some immediate feedback for the action being carried out,
such as an elastic rubber line, and detects errors. Finally, the ap-
plication interface interprets the commands into calls to the
functional core (semantic level). It also interprets the results of
these calls and turns them into output to be presented to the
user.

All architecture models for interactive systems are based on
the Seeheim model. They all recognize that there is a part of the
system devoted to capturing user actions and presenting output
(the presentation) and another part devoted to the functional
core (the computational part of the application). In between
are one or more modules that transform user actions into func-
tional calls and application data (including results from func-
tional calls) into user output.

A modern version of the Seeheim model is the Arch model
(The UIMS Workshop Tool Developers, 1992). The Arch model
is made of five components (Fig. 52.26). The interface toolkit
component is a preexisting library that provides low-level ser-
vices such as buttons and menus. The presentation component
provides a level of abstraction over the user interface toolkit.
Typically, it implements interaction and visualization techniques
that are not already supported by the interface toolkit. It may



52. Prototyping Tools and Techniques • 1027

FIGURE 52.24. A sketch created with Silk (top left) and its automatic
transformation into a Motif user interface (top right). A storyboard
(bottom) used to test sequences of interactions, here a button that ro-
tates an object. Reprinted with permission from J. Landay.

also provide platform independence by supporting different
toolkits. The functional core component implements the func-
tionality of the system. In some cases, it already exists and can-
not be changed. The domain adapter component provides ad-
ditional services to the dialogue component that are not in the
functional core. For example, if the functional core is a Unix-like
file system and the user interface is a iconic interface similar to
the Macintosh Finder, the domain adapter may provide the dia-
logue controller with a notification service so the presentation
can be updated whenever a file is changed. Finally, the dialogue
component is the keystone of the arch. It handles the translation
between the user interface world and the domain world.

The Arch model is also known as the Slinky model be-
cause the relative sizes of the components may vary across

FIGURE 52.25. Seeheim model (Pfaff & ten Hagen, 1985).

applications as well as during the life of the software. For ex-
ample, the presentation component may be almost empty if the
interface toolkit provides all the necessary services and be later
expanded to support specific interaction or visualization tech-
niques or multiple platforms. Similarly, early prototypes may
have a large domain adapter simulating the functional core of
the final system or interfacing to an early version of the func-
tional core; the domain adapter may shrink to almost nothing
when the final system is put together.

The separation that Seeheim, Arch, and most other architec-
ture models make between user interface and functional core
is a good, pragmatic approach but it may cause problems in
some cases. A typical problem is a performance penalty when
the interface components (left leg) have to query the domain
components (right leg) during an interaction such as drag-and-
drop. For example, when dragging the icon of a file over the
desktop, icons of folders and applications that can receive the
file should highlight. Determining which icons to highlight is a
semantic operation that depends on file types and other infor-
mation and must therefore be carried out by the functional core
or domain adapter. If drag-and-drop is implemented in the user
interface toolkit, this means that each time the cursor goes over



1028 • BEAUDOUIN-LAFON AND MACKAY

FIGURE 52.26. The Arch Model (The UIMS Workshop Developers Tool,
1992).

a new icon, up to four modules have to be traversed once by
the query and once by the reply to find out whether or not to
highlight the icon. This is both complicated and slow. A solution
to this problem, called semantic delegation, involves shifting
in the architecture some functions such as matching files for
drag-and-drop from the domain leg into the dialogue or presen-
tation component. This may solve the efficiency problem, but at
the cost of an added complexity especially when maintaining or
evolving the system, because it creates dependencies between
modules that should otherwise be independent.

Model-View-Controller and Presentation-Abstraction-
Controller Models. Architecture models such as Seeheim
and Arch are abstract models and are thus rather imprecise.
They deal with categories of modules such as presentation or
dialogue, when in an actual architecture several modules will
deal with presentation and several others with dialogue.

The model-view-controller or MVC model (Krasner & Pope,
1988) is much more concrete. MVC was created for the im-
plementation of the Smalltalk-80 environment (Goldberg &
Robson, 1983) and is implemented as a set of Smalltalk classes.
The model describes the interface of an application as a collec-
tion of triplets of objects. Each triplet contains a model, a view,
and a controller. A model represents information that needs to
be represented and interacted with. It is controlled by applica-
tions objects. A view displays the information in a model in a
certain way. A controller interprets user input on the view and
transforms it into changes in the model. When a model changes,
it notifies its view so the display can be updated.

Views and controllers are tightly coupled and sometimes im-
plemented as a single object. A model is abstract when it has no
view and no controller. It is noninteractive if it has a view but no
controller. The MVC triplets are usually composed into a tree.
For example, an abstract model represents the whole interface,
it has several components that are themselves models, such as
the menu bar and the document windows, all the way down
to individual interface elements such as buttons and scrollbars.
MVC supports multiple views fairly easily. The views share a sin-
gle model; when a controller modifies the model, all the views
are notified and update their presentation.

The presentation-abstraction-control or PAC model (Coutaz,
1987) is close to MVC. Like MVC, an architecture based on PAC
is made of a set of objects, called PAC agents, organized in a

tree. A PAC agent has three facets: The presentation takes care
of capturing user input and generating output; the abstraction
holds the application data, like a Model in MVC; the control man-
ages the communication between the abstraction and presenta-
tion facets of the agent, and with subagents and super-agents
in the tree. Like MVC, multiple views are easily supported.
Unlike MVC, PAC is an abstract model; there is no reference
implementation.

A variant of MVC, called MVP (model-view-presenter), is
close to PAC and is used in ObjectArts' Dolphin Smalltalk. Other
architecture models have been created for specific purposes
such as groupware (Dewan, 1999) or graphical applications
(Fekete & Beaudouin-Lafon, 1996).

Design Patterns

Architecture models such as Arch or PAC only address the over-
all design of interactive software. PAC is more fine-grained than
Arch, and MVC is more concrete because it is based on an imple-
mentation. Still, a user interface developer has to address many
issues to turn an architecture into a working system.

Design patterns have emerged in recent years as a way to cap-
ture effective solutions to recurrent software design problems.
In their book, Gamma, Helm, Johnson, and Vlissides (1995) pre-
sented 23 patterns. Many of these patterns come from interac-
tive software, and most of them can be applied to the design of
interactive systems. It is beyond the scope of this chapter to de-
scribe these patterns in detail. Nonetheless, it is interesting that
most patterns for interactive systems are behavioral patterns,
that is, patterns that describe how to implement the control
structure of the system.

Indeed, there is a battle for control in interactive software.
In traditional, algorithmic software, the algorithm is in control
and decides when to read input and write output. In interactive
software, the user interface needs to be in control because user
input should drive the system's reactions. Unfortunately, more
often than not, the functional core also needs to be in control.
This is especially common when creating user interfaces for
legacy applications. In the Seeheim and Arch models, it is often
believed that control is located in the dialogue controller when
in fact these architecture models do not explicitly address the
issue of control. In MVC, the three basic classes—Model, View,



52. Prototyping Tools and Techniques • 1029

and Controller—implement a sophisticated protocol to ensure
that user input is taken into account in a timely manner and
that changes to a model are properly reflected in the view (or
views). Some authors actually describe MVC as a design pattern,
not an architecture. In fact, it is both: The inner workings of the
three basic classes is a pattern, but the decomposition of the
application into a set of MVC triplets is an architectural issue.

It is now widely accepted that interactive software is event-
driven: The execution is driven by the user's actions, leading
to a control localized in the user interface components. Design
patterns such as Command, Chain of Responsibility, Mediator,
and Observer (Gamma et al., 1995) are especially useful to im-
plement the transformation of low-level user event into higher
level commands, to find out which object in the architecture
responds to the command, and to propagate the changes pro-
duced by a command from internal objects of the functional
core to user interface objects.

Using design patterns to implement an interactive system
not only saves time, it also makes the system more open to
changes and easier to maintain. Therefore, software prototypes
should be implemented by experienced developers who know
their pattern language and who understand the need for flexi-
bility and evolution.

SUMMARY

Prototyping is an essential component of interactive system
design. Prototypes may take many forms, from rough sketches
to detailed working prototypes. They provide concrete repre-
sentations of design ideas and give designers, users, developers,
and managers an early glimpse into how the new system will
look and feel. Prototypes increase creativity, allow early evalu-
ation of design ideas, help designers think through and solve
design problems, and support communication within multidis-
ciplinary design teams.

Prototypes, because they are concrete and not abstract, pro-
vide a rich medium for exploring a design space. They suggest
alternate design paths and reveal important details about partic-
ular design decisions. They force designers to be creative and
to articulate their design decisions. Prototypes embody design
ideas and encourage designers to confront their differences of
opinion. The precise aspects of a prototype offer specific design
solutions: Designers can then decide to generate and compare
alternatives. The imprecise or incomplete aspects of a prototype

highlight the areas that must be refined or require additional
ideas.

We begin by denning prototypes and then discuss them as
design artifacts. We introduce four dimensions by which they
can be analyzed: representation, precision, interactivity, and
evolution. We then discuss the role of prototyping within the
design process and explain the concepts of creating, exploring,
and modifying a design space. We briefly describe techniques
for generating new ideas, for expanding the design space, and
for choosing among design alternatives to contract the design
space.

We describe a variety of rapid prototyping techniques for
exploring ideas quickly and inexpensively in the early stages
of design, including offline techniques (from paper-and-pencil
to video) and online techniques (from fixed to interactive
simulations). We then describe iterative prototyping techniques
for working out the details of the online interaction, includ-
ing software development tools and software environments. We
conclude with evolutionary prototyping techniques, which are
designed to evolve into the final software system, including a
discussion of the underlying software architectures, design pat-
terns, and extreme programming.

This chapter has focused mostly on graphical user inter-
faces that run on traditional workstations. Such applications are
dominant today, but this is changing as new devices are be-
ing introduced, from cellular phones and personal digital assi-
tants to wall-sized displays. New interaction styles are emerging,
such as augmented reality, mixed reality, and ubiquitous com-
puting. Designing new interactive devices and the interactive
software that runs on them is becoming ever more challeng-
ing: Whether aimed at a wide audience or a small number of
specialists, the hardware and software systems must be adapted
to their contexts of use. The methods, tools, and techniques
presented in this chapter can easily be applied to these new
applications.

We view design as an active process of working with a design
space, expanding it by generating new ideas and contracting it
as design choices are made. Prototypes are flexible tools that
help designers envision this design space, reflect on it, and test
their design decisions. Prototypes are diverse and can fit within
any part of the design process, from the earliest ideas to the final
details of the design. Perhaps most important, prototypes pro-
vide one of the most effective means for designers to commu-
nicate with each other, as well as with users, developers, and
managers, throughout the design process.

References

Apple Computer. (1996). Programmer's guide to MacApp. Cupertino,
CA: Apple (collective).

Beaudouin-Lafon, M. (2000). Instrumental interaction: An interaction
model for designing post-WIMP user interfaces. Proceedings of the
ACM Human Factors in Computing Systems (CHI '2000), CHI
Letters, 2(1), 446-453. New York: ACM Press.

Beaudouin-Lafon, M. (2001). Novel interaction techniques for overlap-
ping windows. Proceedings of ACM Symposium on User Interface
Software and Technology (UIST 2001). CHI Letters, 3(2), 153-156.

Beaudouin-Lafon, M., & Lassen, M. (2000). The architecture
and implementation of a post-WIMP graphical application.
Proceedings of ACM Symposium on User Interface Soft-
ware and Technology (UIST 2000). CHI Letters, 2(2), 181-
190.

Beaudouin-Lafon, M., & Mackay, W. (2000, May). Reification, polymor-
phism and reuse: Three principles for designing visual interfaces.
Proceedings of the Conference on Advanced Visual Interfaces (AVI
2000) (pp. 102-109). Palermo, Italy.



1030 • BEAUDOUIN-LAFON AND MACKAY

Beck, K. (2000). Extreme programming explained. New York: Addison-
Wesley.

Bederson, B., & Hollan, J. (1994). Pad++: A zooming graphical inter-
face for exploring alternate interface physics. Proceedings of ACM
Symposium on User Interface Software and Technology (UIST '94)
(pp. 17-26). New York: ACM Press.

Bederson, B., & Meyer, J. (1998). Implementing a zooming interface:
Experience Building Pad++. Software Practice and Experience,
28(10), 1101-1135.

Bederson, B. B., Meyer, J., & Good, L. (2000). Jazz: An extensible
zoomable user interface graphics toolkit in Java. Proceedings of ACM
Symposium on User Interface Software and Technology (UIST
2000). CHI Letters, 2(2), 171-180.

Bier, E., Stone, M., Pier, K., Buxton, W., & De Rose, T. (1993). Tool-
glass and magic lenses: The see-through interface. Proceedings ACM
SIGGRAPH '93 (pp. 73-80). New York: ACM Press.

Boehm, B. (1988). A spiral model of software development and enhance-
ment. IEEE Computer, 2/(5), 61-72.

B0dker, S., Christiansen, E., & Thuring, M. (1995). A conceptual tool-
box for designing CSCW applications. Proceedings of the Interna-
tional Workshop on the Design of Cooperative Systems (COOP '95)
(pp. 266-284).

B0dker, S., Ehn, P., Knudsen, J., Kyng, M., & Madsen, K. (1988).
Computer support for cooperative design. In Proceedings of the
CSCW'88 ACM Conference on Computer-Supported Cooperative
Work (pp. 377-393). Portland, OR: ACM Press.

Chapanis, A. (1982). Man/computer research at Johns Hopkins. In R. A.
Kasschau, R. Lachman, & K. R. Laughery (Eds.), Information Tech-
nology and Psychology: Prospects for the Future (pp. 238-249).
New York: Praeger.

Collaros, P. A., & Anderson, L. R. (1969). Effect of perceived expert-
ness upon creativity of members of brainstorming groups. Journal
of Applied Psychology, 53, 159-163.

Coutaz, J. (1987). PAC, an object oriented model for dialog design. In
H.J. Bullinger & B. Shackel (Eds.), Proceedings of INTERACT '87
(pp. 431-436). Amsterdam: Elsevier Science.

de Vreede, G.-J., Briggs, R. O., van Duin, R., & Enserink, B. (2000).
Athletics in electronic brainstorming: Asynchronous brainstorming
in very large groups. Proceedings of HICSS-33.

Dewan, P (1999). Architectures for collaborative applications. In
M. Beaudouin-Lafon (Ed.), Computer-supported co-operative work
(Trends in Software Series, pp. 169-193). New York: John
Wiley.

Diehl, M., & Strobe, W. (1987). Productivity loss in brainstorming
groups: Toward the solution of a riddle. Journal of Personality and
Social Psychology, 53, 497-509.

Dykstra-Erickson, E., Mackay, W. E., & Arnowitz, J. (2001, March).
Trialogue on Design (of). ACM/Interactions, 8(2), 109-117.

Dourish, P. (1997). Accounting for system behaviour: Representation,
reflection and resourceful action. In M. Kyng & L. Mathiassen (Eds.),
Computers and design in context (pp. 145-170). Cambridge, MA:
MIT Press.

Eckstein, R., Loy M., & Wood, D. (1998). Java Swing. Cambridge, MA:
O'Reilly.

Fekete, J.-D., & Beaudouin-Lafon, M. (1996). Using the multi-layer model
for building interactive graphical applications. In Proceedings of
ACM Symposium on User Interface Software and Technology (UIST
'96) (pp. 109-118). New York: ACM Press.

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1995). Design
patterns, elements of reusable object-oriented software. Reading,
MA: Addison Wesley.

Goldberg, A., & Robson, D. (1983). Smalltalk—80: The language and
its implementation. Reading, MA: Addison Wesley.

Goodman, D. (1987). The complete HyperCard handbook. New York:
Bantam Books.

Good, M., Whiteside, J., Wixon, D., & Jones, S. (1984, October). Building
a user-derived interface. Communications of the ACM, 27(10),
1032-1043.

Greenbaum, J., & Kyng, M. (Eds.). (1991). Design at work: Coopera-
tive design of computer systems. Hillsdale, NJ: Lawrence Erlbaum
Associates.

Houde, S., & Hill, C. (1997). What do prototypes prototype? In Hand-
book of human computer interaction (2nd ed. rev, pp. 367-381).
Amsterdam: North-Holland.

Kelley, J. F. (1983). An empirical methodology for writing user-friendly
natural language computer applications. In Proceedings of CHI '83
Conference on Human Factors in Computing Systems. New York:
ACM Press.

Krasner, E. G., & Pope, S. T. (1988, August/September). A cookbook
for using the model-view-controller user interface paradigm
in Smalltalk-80. Journal of Object-Oriented Programming,
27-49.

Kurtenbach, G., Fitzmaurice, G., Baudel, T, & Buxton, W. (1997). The
design of a GUI paradigm based on tablets, two-hands, and trans-
parency. Proceedings of ACM Human Factors in Computing Sys-
tems (CHI '97) (pp. 35-42). New York: ACM Press.

Landay, J., & Myers, B. A. (2001). Sketching interfaces: Toward more
human interface design. IEEE Computer, 34, 56-64.

Linton, M. A., Vlissides, J. M., & Calder, P. R. (1989). Composing user
interfaces with Interviews. IEEE Computer, 22, 8-22.

Mackay, W E. (1988). Video prototyping: A technique for developing hy-
permedia systems. Demonstration, CHI '88, Conference on Human
Factors in Computing Systems. Retrieved from http://www.lri.fr/-
mackay/publications.html

Mackay, W E., & Pagani, D. (1994). Video Mosaic: Laying out time in a
physical space. Proceedings of ACM Multimedia '94 (pp. 165-172).
New York: ACM Press.

Mackay, W E., & Fayard, A.-L. (1997). HCI, natural science and design: A
framework for triangulation across disciplines. Proceedings of ACM
DIS '97, Designing Interactive Systems (pp. 223-234). New York:
ACM Press.

Mackay, W, Fayard, A.-L., Frobert, L., & Medini, L. (1998). Reinventing
the familiar: Exploring an augmented reality design space for air
traffic control. Proceedings of ACM Conference on Human Factors
in Computing Systems (CHI '98) (pp. 558-565). New York: ACM
Press.

Mackay, W. E. (2000). Video techniques for participatory design:
Observation, brainstorming & prototyping. Tutorial Notes, CHI
2000, Human Factors in Computing Systems. Retrieved from
http://www.lri.fr/~mackay/publications.html

Mackay, W, Ratzer, A., & Janecek, P. (2000). Video artifacts for design:
Bridging the gap between abstraction and detail. Proceedings ACM
Conference on Designing Interactive Systems (DIS 2000) (pp. 72-
82). New York: ACM Press.

Muller, M. (1991). PICTIVE: An exploration in participatory de-
sign. Proceedings of ACM Conference on Human Factors in
Computing Systems (CHI '91) (pp. 225-231). New York: ACM
Press.

Myers, B. A., Giuse, D. A., Dannenberg, R. B., Vander Zander, B., Kosbie,
D. S., Pervin, E., Mickish, A., & Marchal, P. (1990). Garnet: Com-
prehensive support for graphical, highly-interactive user interfaces.
IEEE Computer, 23(11), 71-85.

Myers, B. A. (1991). Separating application code from toolkits: Elimi-
nating the spaghetti of call-backs. Proceedings of ACM SIGGRAPH
Symposium on User Interface Software and Technology (UIST '91)
(pp. 211-220). New York: ACM Press.



52. Prototyping Tools and Techniques • 1031

Myers, B. A., & Rosson, M. B. (1992). Survey on user interface pro-
gramming. Proceedings of the ACM Conference on Human Factors
in Computing Systems (CHI '92) (pp. 195-202). New York: ACM
Press.

Myers, B. A., McDaniel, R. G., Miller, R. C., Ferrency, A. S., Faulring, A.,
Kyle, B. D., Mickish, A., Klimotivtski, A., & Doane, P. (1997). The
Amulet environment. IEEE Transactions on Software Engineering,
23(6), 347-365.

NeXT Corporation. (1991). NeXT Interface Builder reference manual.
Redwood City, CA.

Norman, D. A., & Draper, S. W. (Eds.). (1986). User centered system
design. Hillsdale, NJ: Lawrence Erlbaum Associates.

Osborn, A. (1957). Applied imagination: Principles and procedures of
creative thinking (rev. ed.). New York: Scribner's.

Ousterhout, J. K. (1994). Tcl and the Tk Toolkit. Reading, MA: Addison
Wesley.

Perkins, R., Keller, D. S., & Ludolph, F. (1997). Inventing the Lisa User
Interface. ACM Interactions, 4(1), 40-53.

Pfaff, G. P., & ten Hagen, P. J. W. (Eds.). (1985). User interface manage-
ment systems. Berlin: Springer.

Raskin, J. (2000). The humane interface. New York: Addison Wesley.
Roseman, M., & Greenberg, S. (1996). Building real-time groupware with

GroupKit, a groupware toolkit. ACM Transactions on Computer-
Human Interaction, 3(1), 66-106.

Roseman, M., & Greenberg, S. (1999). Groupware toolkits for syn-
chronous work. In M. Beaudouin-Lafon (Ed.). Computer-supported

co-operative work (Trends in software series, pp. 135-168). New
York: John Wiley.

Schroeder, W., Martin, K., & Lorensen, B. (1997). The visualization
toolkit. New York: Prentice Hall.

Strass, P. (1993). IRIS Inventor, a 3D graphics toolkit. Proceedings ACM
Conference on Object-Oriented Programming, Systems, Languages
and Applications (OOPSLA '93) (pp. 192-200). New York: ACM
Press.

Szekely, P., Luo, P., & Neches, R. (1992). Facilitating the exploration of
interface design alternatives: The HUMANOID. Proceedings of ACM
Conference on Human Factors in Computing Systems (CHI '92)
(pp. 507-515). New York: ACM Press.

Szekely, P., Luo, P., & Neches, R. (1993). Beyond interface builders:
Model-based interface tools. Proceedings of ACM/IFIP Confer-
ence on Human Factors in Computing Systems (INTERCHI '93)
(pp. 383-390). New York: ACM Press.

The UIMS Workshop Tool Developers. (1992). A metamodel for the run-
time architecture of an interactive system. SIGCHI Bulletin, 24(1),
32-37.

Vlissides, J. M., & Linton, M. A. (1990). Unidraw: A framework for build-
ing domain-specific graphical editors. ACM Transactions on Infor-
mation Systems, 8(3), 237-268.

Wegner, P. (1997). Why interaction is more powerful than algorithms.
Communications of the ACM, 40(5), 80-91.

Woo, M., Neider, J., & Davis, T. (1997). OpenGL programming guide.
Reading, MA: Addison-Wesley.




