
Spark Dataframes

Spark Short Introduction 1/2

• Apache Spark, is a very fast optimized engine that offers

APIS in Java, Scala, Python,R and .NET.

• It can run standalone or over Hadoop or Mesos and

access data sources like HDFS, Cassandra, and HBase.

x

Spark Short Introduction 2/2

The core system of Spark consists of different libraries and components

that provide a rich set of higher tools including Spark SQL for SQL and

structured data processing, MLlib for machine learning, GraphX for

processing graphs and Spark Streaming

x

Apache Spark ecosystem

Apache Spark Core 1/2

x

The main block of Spark Core Engine is the Resilient Distributed Dataset

(RDD).

• The term resilient means that if the dataset is entirely missing or

partially damaged, Spark can recover the computation of data by

retrieving them the memory and recompute them.

• The term distributed means that the dataset doesn’t have to be set on

specific node of the cluster, but it can reside on any node.

• The term dataset means a collection (set) of data.

Apache Spark Core 2/2

x

The creation of RDDs can be achieved in three ways

• by reading from a storage source

• by using an in-memory collection

• by transforming an existing RDD

Two types of operations are supported in RDDs, the transformations, and

actions.

1. In transformations an existing RDD is changed to a new one,

transformed RDD. In case a failure occurs, the RDD is rebuilded by

the data lineage of transformations.

2. In actions, an RDD triggers a Spark job and returns a value. The

actions result in a Directed Acyclic Graph (DAG) operation

Spark Dataframes Introduction 1/4

• Spark DataFrames are the standard way of dealing with

data for Scala and Spark

• Spark is moving away from the RDD syntax in favor of a

simpler to understand DataFrame syntax

• Spark DataFrames are also now the standard way of

using Spark’s Machine Learning Capabilities

• An extension to RDD API

x

Spark Dataframes Introduction 2/4

x

Spark SQL architecture ecosystem

Spark Dataframes Introduction 3/4

x

The goal of Project Tungsten is to improve Spark execution by optimizing Spark jobs for CPU and memory efficiency (as

opposed to network and disk I/O which are considered fast enough).

Spark Dataframes Introduction 4/4

x

https://image.slidesharecdn.com/spark2zinovievforit-subbotnik-161028213227/95/joker16-spark-2-api-changes-structured-streaming-encoders-77-638.jpg?cb=1483965803

https://image.slidesharecdn.com/spark2zinovievforit-subbotnik-161028213227/95/joker16-spark-2-api-changes-structured-streaming-encoders-77-638.jpg?cb=1483965803

Features of DataFrames 1/2
• Ability to scale from kilobytes of data on a single laptop

to petabytes on a large cluster

• Support for a wide array of data formats and storage
systems

• State-of-the-art optimization and code generation
through the Spark SQL Catalyst optimizer

• Seamless integration with all big data tooling and
infrastructure via Spark

• APIs for Python, Java, Scala, R and .NET

Features of DataFrames 2/2

SparkSQL Catalyst optimizer

DataFrames and Spark SQL

 DataFrames are fundamentally tied to Spark

SQL.

 The DataFrames API provides a programmatistic

interface for interacting with your data.

 Spark SQL provides a SQL-like interface.

 What you can do in Spark SQL, you can do in

DataFrames

What, exactly, is Spark SQL?
 Spark SQL allows you to manipulate distributed data

with SQL queries.

Currently, two SQL dialects are supported:

 If you're using a Spark SQLContext, the only

supported dialect is "sql", a rich subset of SQL 92

 If you're using a HiveContext, the default dialect is

"hiveql", corresponding to Hive's SQL dialect. "sql" is

also available, but "hiveql" is a richer dialect

Spark SQL
• You issue SQL queries through a SQLContext method.

• The sql() method returns a DataFrame

• You can mix DataFrame methods and SQL queries in

the same code

• To use SQL, you must :

- make a table alias for a DataFrame, using
registerTempTable()

- or to create a temporary view using
createOrReplaceTempView()

DataFrames

 Like Spark SQL, the DataFrames API assumes that

the data has a table-like structure.

 Formally, a DataFrame is a size-mutable,

potentially heterogeneous tabular data structure

with rows and columns.

 Just think of it as a table in a distributed database:

a distributed collection of data organized into

named, typed columns.

Transformations, Actions, Laziness

Actionexamples

• count

• collect

• show

• head

• take

Transformation examples

• filter

• select

• drop

• intersect

• join

DataFrames are lazy.

Transformations contribute to the query plan,

but they don't execute anything.

Actions cause the execution of the query.

Transformations, Actions, Laziness

Actions cause the execution of the query.

What, exactly does "execution of the query" mean?

It means:

 Spark initiates a distributed read of the data source

 The data flows through the transformations

(the RDDs resulting from the Catalyst query plan)

 The result of the action is pulled back into the

driver JVM.

All Actions on a DataFrame 1/3

All Actions on a DataFrame 2/3

All Actions on a DataFrame 3/3

DataFrames & Resilient Distributed

Datasets (RDDs) 1/2

• DataFrames are built on top of the Spark RDD API.

• This means you can use normal RDD operations on

DataFrames.

• However, stick with the DataFrame API, wherever

possible.

• Using RDD operations will often give you back an RDD, not a

DataFrame.

• The DataFrame API is likely to be more efficient, because it can

optimize the underlying operations with Catalyst.

DataFrames can be significantly faster than RDDs.

And they perform the same, regardless of language.

10

DataFrame SQL

DataFrame R

DataFrame Python

DataFrame Scala RDD

Python

RDD Scala

0 2 4 6 8

Time to aggregate 10 million integer pairs (in seconds)

DataFrames & Resilient Distributed

Datasets (RDDs) 2/2

Creating a DataFrame

2

3

• You create a DataFrame with a SQLContext object

(or one of its descendants)

• In the Spark Scala shell (spark-shell) you have a
SQLContext available automatically, as sqlContext.

• In an application, you can easily create one yourself,
from a SparkContext.

• The DataFrame data source API is the same, across
data formats.

Creating a DataFrame in Scala

import org.apache.spark.{SparkConf, SparkContext}

import org.apache.spark.sql.SQLContext

val conf = new SparkConf().setAppName(appName).
setMaster(master)

// Returns existing SparkContext, if there is one
// otherwise, creates a new one from the config.
val sc = SparkContext.getOrCreate(conf)
//

val sqlContext = SQLContext.getOrCreate(sc)

val df = sqlContext.read.json("/path/to/data.json")

2

4

Data Sources supported by DataFrames

{ JSON }

built- in external

JDBC

and more …

Schema Inference

2

6

What if your data file doesn’t have a schema?
(e.g., You’re reading a CSV file or a plain text file.)

• You can create an RDD of a particular type and

let Spark infer the schema from that type.

• You can use the API to specify the schema

programmatically.

Schema Inference Example

2

7

Suppose you havea (text) file that looks like this:

The file has no schema,

but it’s obvious there is

one:

First name: string

Last name: string

Gende

r: Age:

string

integer

Erin,Shannon,F,42
Norman,Lockwood,M,81
Miguel,Ruiz,M,64
Rosalita,Ramirez,F,14
Ally,Garcia,F,39
Claire,McBride,F,23
Abigail,Cottrell,F,75
José,Rivera,M,59
Ravi,Dasgupta,M,25
…

Schema Inference ::Scala

import sqlContext.implicits._

case class Person(firstName: String,
lastName:
gender:
age:

String,
String,
Int)

val rdd = sc.textFile("people.csv")
val peopleRDD = rdd.map { line =>

val cols = line.split(",")
Person(cols(0), cols(1), cols(2), cols(3).toInt)
}

val df = peopleRDD.toDF

2

8

Schema Inference ::Scala

If you don’t supply the column names, the API defaults to

“_1”, “_2”, etc.

val rdd = sc.textFile("people.csv")

val peopleRDD = rdd.map { line =>
val cols = line.split(",")

(cols(0), cols(1), cols(2), cols(3).toInt)

}

val df = peopleRDD.toDF("firstName", "lastName","gender",
"age")

2

9

We can also force schema inference without creating our own People type, by using

a fixed length data structure and supplying the column names to the toDF() method.

Additional Input Formats

3

0

The DataFrames API can be extended to understand

additional input formats (or, input sources).

For instance, if you’re dealing with CSV files, a very

common data file format, you can use the spark-csv

package

(spark-packages.org/package/databricks/spark- csv)

This package augments the DataFrames API so that

it understands CSV files.

Spark installation 1/3

Apache Spark runs on the Java Virtual Machine (JVM). The

Software Development Kit (SDK) is required for building

application with Spark and not the Java Runtime Environment

(JRE).

 The recommended version of Java is 7 or higher. The most

suitable version of Java for working with Scala and Python is 8,

because of the functional programming methods are included.

3

1

install oracle java 8

$ sudo apt-get install software-properties-common

$ sudo add-apt-repository ppa:webupd8team/java

$ sudo apt-get update

$ sudo apt-get install oracle-java8-installer

$ echo JAVA_HOME

Spark installation 2/3
The Spark download page is http://spark.apache.org/downloads.html.

The webpage also archives earlier versions of Spark in different

packages. In this project we have selected the release, pre-built for

Hadoop 2.7 and later. An easy way to install Spark is to use a prebuilt

package, and not building it from source. The downloaded has to be

moved to the directory ~/spark under the root directory.

So the first step is to download the latest release of Spark

1. We select the latest stable Spark release

2. We choose the package type Prebuilt for Hadoop 2.7 and later,

3. We choose the download type Direct Download

4. We download the .tgz file

5. We verify this release using the appropriate signatures and

checksums

3

2

http://spark.apache.org/downloads.html

Spark installation 3/3

It is essential also to install Eclipse IDE which is a development

environment commonly used for creating Java applications.

The installation of the Eclipse IDE is a straightforward procedure. The

program is available to download via the following link:

http://www.eclipse.org/downloads/eclipse-

packages/?osType=linux&release=undefined

We choose the Linux 64 Bit version and save the tarball file to a local folder

named eclipse.

3

3

http://www.eclipse.org/downloads/eclipse-packages/?osType=linux&release=undefined

A brief look at spark-csv 1/3

Let’s assume our data file has a

header:

first_name,last_name,gender,age
Erin,Shannon,F,42
Norman,Lockwood,M,81
Miguel,Ruiz,M,64
Rosalita,Ramirez,F,14
Ally,Garcia,F,39
Claire,McBride,F,23
Abigail,Cottrell,F,75
José,Rivera,M,59
Ravi,Dasgupta,M,25

…

3

4

A brief look at spark-csv 2/3

With spark-csv, we can simply create a DataFrame

directly from our CSV file.

// Scala
val df = sqlContext.read.format("com.databricks.spark.csv").

option("header","true"). load("people.csv")

3

5

spark-csv uses the header to infer the schema, but the

column types will always be string.

df: org.apache.spark.sql.DataFrame = [first_name: string,

last_name: string, gender: string, age: string]

A brief look at spark-csv 3/3
You can also declare the schema programmatically,

which allows you to specify the column types.

import org.apache.spark.sql.types._

objects.// A schema is a StructType, built from a List of StructField

val schema = StructType(
StructField("firstName", StringType, false) :: StructField("gender",

StringType, false) :: StructField("age",
IntegerType, false) ::

)

val df = sqlContext.read.format("com.databricks.spark.csv").
option("header", "true").

schema(schema). load("people.csv")

3

6

Columns 1/3

3

7

A DataFrame column is an abstraction.

It provides a common column-oriented view of

the underlying data, regardless of how the data is

really organized.

Columns 2/3

3

8

how

DataFrame

columns

map onto

some

common

data

sources.

Input Source

Format

Data Frame

Variable Name
Data

JSON dataFrame1 [

{"first": "Amy",

"last": "Bello",

"age": 29 },

{"first": "Ravi",

"last": "Agarwal",

"age": 33 },

…

]

CSV dataFrame2
first,last,age
Fred,Hoover,91
Joaquin,Hernandez,24
…

SQL Table dataFrame3
first last age

Joe Smith 42

Jill Jones 33

Columns 3/3
Input Source

Format

Data Frame

Variable Name
Data

JSON dataFrame1 [{"first": "Amy",

"last": "Bello",

"age": 29 },

{"first": "Ravi",

"last": "Agarwal",

"age": 33 },

…

]

CSV dataFrame2 first,last,age
Fred,Hoover,91
Joaquin,Hernandez,24
…

SQL Table dataFrame3
first last age

Joe Smith 42

Jill Jones 33

dataFrame1

column: "first"

dataFrame2

column: "first"

dataFrame3

column: "first"

3

9

printSchema()

You can have Spark respond you what it thinks

the data schema is, by calling the

printSchema() method.

(This is mostly useful in the shell.)

scala> df.printSchema()

root
firstName: string (nullable
lastName: string (nullable

= true)

= true)
gender: string (nullable = true)

|-
‐-‐

|-
‐-‐ age: integer (nullable = false)

4

0

show()

4

1

You can look at the first n elements in a DataFrame
with the show() method.

If not specified, n defaults to 20.

This method is an action - It:

•reads (or re-reads) the input source

•executes the RDD DAG across the cluster

•pulls the n elements back to the driver JVM

•displays those elements in a tabular form

show()

scala> df.show()

+-‐-‐-‐-‐-‐-‐-‐-‐-‐+-‐-‐-‐-‐-‐-‐-‐-‐+-‐-‐-‐-‐-‐-‐+-‐-‐-‐+

| firstName|lastName|gender|age|

+-‐-‐-‐-‐-‐-‐-‐-‐-‐+-‐-‐-‐-‐-‐-‐-‐-‐+-‐-‐-‐-‐-‐-‐+-‐-‐-‐+

| Erin| Shannon| F| 42|

| Claire| McBride| F| 23|

| Norman|Lockwood| M| 81|

| Miguel| Ruiz| M| 64|

| Rosalita| Ramirez| F| 14|

| Ally| Garcia| F| 39|

| Abigail|Cottrell| F| 75|

| José| Rivera| M| 59|

+-‐-‐-‐-‐-‐-‐-‐-‐-‐+-‐-‐-‐-‐-‐-‐-‐-‐+-‐-‐-‐-‐-‐-‐+-‐-‐-‐+

4

2

select()
select() is like a SQL SELECT, allowing you to

limit the results to specific columns.

scala> df.select($"firstName", $"age").show(5)

+-‐-‐-‐-‐-‐-‐-‐-‐-‐+-‐-‐-‐+

| firstName| age|

Erin	42
Claire	23
Norman	81
Miguel	64
Rosalita	14
+-‐-‐-‐-‐-‐-‐-‐-‐-‐+-‐-‐-‐+

4

3

select()

The select() also allows you create on-the-fly

derived columns.

scala> df.select($"firstName",$"age",
$"age" >
$"age" +

49,
10).show(5)

+-‐-‐-‐-‐-‐-‐-‐-‐-‐+-‐-‐-‐+-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐+-‐-‐-‐-‐-‐-‐+
| firstName|age|(age > 49) |(age + 10)|

+-‐-‐-‐-‐-‐-‐-‐-‐-‐+-‐-‐-‐+-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐+-‐-‐-‐-‐-‐-‐-
‐-‐-‐-‐+| Erin| 42| false| 52|
Claire	23	false	33
Norman	81	true	91
Miguel	64	true	74
Rosalita	14	false	24
+-‐-‐-‐-‐-‐-‐-‐-‐-‐+-‐-‐-‐+-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐+-‐-‐-‐-‐-‐-‐-‐-+

4

4

select()
And, of course, you can also use SQL.

In[1]: df.registerTempTable("names")
first_name, age, age > 49 FROM names").\In[2]: sqlContext.sql("SELECT

show(5)
+-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐+-‐-‐-‐+-‐-‐-‐-‐-‐+

| first_name| age| _c2|

+-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐+-‐-‐-‐+-‐-‐-‐-‐-‐+

Erin	42	false
Claire	23	false
Norman	81	true
Miguel	64	true
Rosalita	14	false
+-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐+-‐-‐-‐+-‐-‐-‐-‐-‐+

4

5

filter()
The filter() method allows you to filter rows
out of your results.

scala> df.filter($"age" > 49).select($"firstName", $"age").show()

+-‐-‐-‐-‐-‐-‐-‐-‐-‐+-‐-‐-‐+
| firstName|age|
+-‐-‐-‐-‐-‐-‐-‐-‐-‐+-‐-‐-‐+
Norman	81
Miguel	64
Abigail	75
+-‐-‐-‐-‐-‐-‐-‐-‐-‐+-‐-‐-‐+

4

6

filter()

The SQLversion.

In[1]: SQLContext.sql("SELECT
"WHERE

first_name, age FROM names " + \
age > 49").show()

+-‐-‐-‐-‐-‐-‐-‐-‐-‐+-‐-‐-‐+
| firstName |age|
+-‐-‐-‐-‐-‐-‐-‐-‐-‐+-‐-‐-‐+
Norman	81
Miguel	64
Abigail	75
+-‐-‐-‐-‐-‐-‐-‐-‐-‐+-‐-‐-‐+

4

7

orderBy()

TheorderBy() method allows you to sort the results.

scala> df.filter(df("age") > 49).

select(df("firstName"), df("age")).

orderBy(df("age"), df("firstName")). show()

+-‐-‐-‐-‐-‐-‐-‐-‐-‐+-‐-‐-‐+
| firstName|age|
+-‐-‐-‐-‐-‐-‐-‐-‐-‐+-‐-‐-‐+
Miguel	64
Abigail	75
Norman	81
+-‐-‐-‐-‐-‐-‐-‐-‐-‐+-‐-‐-‐+

4

8

orderBy()

It’s easy toreverse the sort order.

scala> df.filter($"age" > 49).
select($"firstName", $"age"). orderBy($"age".desc, $"firstName").
show()

+-‐-‐-‐-‐-‐-‐-‐-‐-‐+-‐-‐-‐+
| firstName|age|
+-‐-‐-‐-‐-‐-‐-‐-‐-‐+-‐-‐-‐+
Norman	81
Abigail	75
Miguel	64
+-‐-‐-‐-‐-‐-‐-‐-‐-‐+-‐-‐-‐+

4

9

orderBy()

In SQL :

scala> sqlContext.SQL("SELECT first_name, age FROM names " +
| "WHERE age > 49 ORDER BY age DESC, first_name").show()

+-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐+-‐-‐-‐+
| first_name|age|
+-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐+-‐-‐-‐+
Norman	81
Abigail	75
Miguel	64
+-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐+-‐-‐-‐+

5

0

as() or alias()

scala> $"age", ($"age" < 30).as("young")).df.select($"firstName",
show()

+-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐+-‐-‐-‐+-‐-‐-‐-‐-‐+

| first_name |age|young|
+-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐+-‐-‐-‐+-‐-‐-‐-‐-‐+

Erin	42	false
Claire	23	true
Norman	81	false
Miguel	64	false
Rosalita	14	true
+-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐+-‐-‐-‐+-‐-‐-‐-‐-‐+

5

1

Method Description

5

2

limit(n) Limit the results to n rows. limit()

is not an action, like show() or the

RDD take() method. It returns

another DataFrame.

distinct() Returns a new DataFrame containing

only the unique rows from the current

DataFrame

drop(column) Returns a new DataFrame with a

column dropped. column is a name or

a Column object.

intersect(dataframe) Intersect one DataFrame with another.

join(dataframe) Join one DataFrame with another, like

a SQL join.

Other Useful Transformations

Writing DataFrames

5

3

• You can write DataFrames out, as well.

• In most cases, if you can read a data format, you

can write that data format, as well.

• If you're writing to a text file format (e.g., JSON),

you'll typically get multiple output files.

Writing DataFrames

scala> df.write.format("json").save("/path/to/directory")
scala> df.write.format("parquet").save("/path/to/directory")

