Spark Dataframes

Spark Short Introduction 1/2

- Apache Spark, is a very fast optimized engine that offers APIS in Java, Scala, Python,R and .NET.
- It can run standalone or over Hadoop or Mesos and access data sources like HDFS, Cassandra, and HBase.

Spark Short Introduction 2/2

The core system of Spark consists of different libraries and components that provide a rich set of higher tools including Spark SQL for SQL and structured data processing, MLlib for machine learning, GraphX for processing graphs and Spark Streaming

Apache Spark ecosystem

M

Apache Spark Core 1/2

The main block of Spark Core Engine is the Resilient Distributed Dataset (RDD).

- The term resilient means that if the dataset is entirely missing or partially damaged, Spark can recover the computation of data by retrieving them the memory and recompute them.
- The term distributed means that the dataset doesn't have to be set on specific node of the cluster, but it can reside on any node.
- The term dataset means a collection (set) of data.

Apache Spark Core 2/2

The creation of RDDs can be achieved in three ways

- by reading from a storage source
- by using an in-memory collection
- by transforming an existing RDD

Two types of operations are supported in RDDs, the transformations, and actions.

- 1. In transformations an existing RDD is changed to a new one, transformed RDD. In case a failure occurs, the RDD is rebuilded by the data lineage of transformations.
- 2. In actions, an RDD triggers a Spark job and returns a value. The actions result in a Directed Acyclic Graph (DAG) operation

Spark Dataframes Introduction 1/4

- Spark DataFrames are the standard way of dealing with data for Scala and Spark
- Spark is moving away from the RDD syntax in favor of a simpler to understand DataFrame syntax
- Spark DataFrames are also now the standard way of using Spark's Machine Learning Capabilities
- An extension to RDD API

Spark Dataframes Introduction 2/4

Spark SQL architecture ecosystem

Spark Dataframes Introduction 3/4

The goal of Project Tungsten is to improve Spark execution by optimizing Spark jobs for CPU and memory efficiency (as opposed to network and disk I/O which are considered fast enough).

Spark Dataframes Introduction 4/4

History of Spark APIs

<Pp>(EPAITT) | Spark 3 from 2000 rev Alexand

77

×

Features of DataFrames 1/2

- Ability to scale from kilobytes of data on a single laptop to petabytes on a large cluster
- Support for a wide array of data formats and storage systems
- State-of-the-art optimization and code generation through the Spark SQL Catalyst optimizer
- Seamless integration with all big data tooling and infrastructure via Spark
- APIs for Python, Java, Scala, R and .NET

.

Features of DataFrames 2/2

Spark SQL Catalyst optimizer

DataFrames and Spark SQL

DataFrames are fundamentally tied to Spark SQL.

- The DataFrames API provides a *programmatistic* interface for interacting with your data.
- Spark SQL provides a SQL-like interface.
- What you can do in Spark SQL, you can do in DataFrames

What, exactly, is Spark SQL?

Spark SQL allows you to manipulate distributed data with SQL queries.

Currently, two SQL dialects are supported:

- If you're using a Spark SQLContext, the only supported dialect is "sql", a rich subset of SQL 92
- If you're using a HiveContext, the default dialect is "hiveql", corresponding to Hive's SQL dialect. "sql" is also available, but "hiveql" is a richer dialect

м

Spark SQL

- You issue SQL queries through a SQLContext method.
- The sql() method returns a DataFrame
- You can mix DataFrame methods and SQL queries in the same code

- To use SQL, you must:
 - make a table alias for a DataFrame, using registerTempTable()
 - or to create a temporary view using createOrReplaceTempView()

DataFrames

■ Like Spark SQL, the DataFrames API assumes that the data has a **table-like structure**.

Formally, a DataFrame is a size-mutable, potentially heterogeneous tabular data structure with rows and columns.

Just think of it as a table in a distributed database: a distributed collection of data organized into named, typed columns.

Transformations, Actions, Laziness DataFrames are *lazy*.

Transformations contribute to the query plan, but they don't execute anything.

Actions cause the execution of the query.

Transformation examples

- filter
- select
- drop
- intersect
- join

Action examples

- count
- collect
- show
- head
- take

Transformations, Actions, Laziness

Actions cause the execution of the query.

What, exactly does "execution of the query" mean? It means:

- Spark initiates a distributed read of the data source
- The data flows through the transformations (the RDDs resulting from the Catalyst query plan)
- The result of the action is pulled back into the driver JVM.

All Actions on a DataFrame 1/3

Actions	
▶ def	collect(): Array[Row] Returns an array that contains all of Rows in this DataFrame.
▶ def	collectAsList(): List[Row] Returns a Java list that contains all of Rows in this DataFrame.
▶ def	count(): Long Returns the number of rows in the <u>DataFrame</u> .
▶ def	describe(cols: String*): DataFrame Computes statistics for numeric columns, including count, mean, stddev, min, and max.
▶ def	first(): Row Returns the first row.
▶ def	head(): Row Returns the first row.
▶ def	head(n: Int): Array[Row] Returns the first n rows.
▶ def	show(): Unit Displays the top 20 rows of <u>DataFrame</u> in a tabular form.
▶ def	show(numRows: Int): Unit Displays the <u>DataFrame</u> in a tabular form.
▶ def	take(n: Int): Array[Row] Returns the first n rows in the <u>DataFrame</u> .

All Actions on a DataFrame 2/3

Basic DataFrame functions			
▶ def	<pre>cache(): DataFrame.this.type</pre>		
▶ def	columns: Array[String]		
	Returns all column names as an array.		
▶ def	<pre>dtypes: Array[(String, String)]</pre>		
	Returns all column names and their data types as an array.		
▶ def	<pre>explain(): Unit</pre>		
3	Only prints the physical plan to the console for debugging purposes.		
▶ def	<pre>explain(extended: Boolean): Unit</pre>		
	Prints the plans (logical and physical) to the console for debugging purposes.		
▶ def	isLocal: Boolean		
	Returns true if the collect and take methods can be run locally (without any Spark executors).		
▶ def	<pre>persist(newLevel: StorageLevel): DataFrame.this.type</pre>		
▶ def	<pre>persist(): DataFrame.this.type</pre>		
▶ def	<pre>printSchema(): Unit</pre>		
	Prints the schema to the console in a nice tree format.		
▶ def	<pre>registerTempTable(tableName: String): Unit</pre>		
	Registers this <u>DataFrame</u> as a temporary table using the given name.		

All Actions on a DataFrame 3/3

Basic DataFrame functions				
>	def	schema: <u>StructType</u>		
	I	Returns the schema of this <u>DataFrame</u> .		
>	def	toDF(colNames: String*): <u>DataFrame</u>		
	ı	Returns a new <u>DataFrame</u> with columns renamed.		
>	def :	toDF(): DataFrame		
	ſ	Returns the object itself.		
>	def (unpersist(): DataFrame.this.type		
>	def ı	unpersist(blocking: Boolean): DataFrame.this.type		

DataFrames & Resilient Distributed Datasets (RDDs) 1/2

- DataFrames are built on top of the Spark RDD API.
 - This means you can use normal RDD operations on DataFrames.
- However, **stick** with the DataFrame API, wherever possible.
 - Using RDD operations will often give you back an RDD, not a DataFrame.
 - The DataFrame API is likely to be more efficient, because it can optimize the underlying operations with Catalyst.

м

DataFrames & Resilient Distributed Datasets (RDDs) 2/2

DataFrames can be *significantly* faster than RDDs. And they perform the same, regardless of language.

Time to aggregate 10 million integer pairs (in seconds)

Creating a DataFrame

- You create a DataFrame with a SQLContext object (or one of its descendants)
- In the Spark Scala shell (*spark-shell*) you have a SQLContext available automatically, as sqlContext.
- In an application, you can easily create one yourself, from a SparkContext.
- The DataFrame data source API is the same, across data formats.

Creating a DataFrame in Scala

```
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.sql.SQLContext
val conf = new SparkConf().setAppName(appName).
                           setMaster(master)
// Returns existing SparkContext, if there is one
// otherwise, creates a new one from the config.
val sc = SparkContext.getOrCreate(conf)
//
val sqlContext = SQLContext.getOrCreate(sc)
val df = sqlContext.read.json("/path/to/data.json")
```


Data Sources supported by DataFrames

and more ...

Schema Inference

What if your data file doesn't have a schema? (e.g., You're reading a CSV file or a plain text file.)

- You can create an RDD of a particular type and let Spark infer the schema from that type.
- You can use the API to specify the schema programmatically.

Schema Inference Example

Suppose you have a (text) file that looks like this:

Erin, Shannon, F, 42 Norman, Lockwood, M, 81 Miguel, Ruiz, M, 64 Rosalita, Ramirez, F, 14 Ally, Garcia, F, 39 Claire, McBride, F, 23 Abigail, Cottrell, F, 75 José, Rivera, M, 59 Ravi, Dasgupta, M, 25 The file has no schema, but it's obvious there *is* one:

First name: string

Last name: string

Gende string

r: Age: integer

Schema Inference :: Scala

```
import sqlContext.implicits.
case class Person(firstName: String,
                  lastName:
                              String,
                              String,
                   gender:
                              Int)
                   age:
val rdd = sc.textFile("people.csv")
val peopleRDD = rdd.map { line =>
val cols = line.split(",")
Person(cols(0), cols(1), cols(2), cols(3).toInt)
}
val df = peopleRDD.toDF
```

Schema Inference :: Scala

We can also force schema inference without creating our own People type, by using a fixed length data structure and supplying the column names to the toDF() method.

```
val rdd = sc.textFile("people.csv")
val peopleRDD = rdd.map { line =>
val cols = line.split(",")
(cols(0), cols(1), cols(2), cols(3).toInt)
}

val df = peopleRDD.toDF("firstName", "lastName", "gender",
"age")
```

If you don't supply the column names, the API defaults to "_1", "_2", etc.

Additional Input Formats

The DataFrames API can be extended to understand additional input formats (or, input sources).

For instance, if you're dealing with CSV files, a *very* common data file format, you can use the *spark-csv* package

(spark-packages.org/package/databricks/spark- csv)

This package augments the DataFrames API so that it understands CSV files.

Spark installation 1/3

- ■Apache Spark runs on the Java Virtual Machine (JVM). The Software Development Kit (SDK) is required for building application with Spark and not the Java Runtime Environment (JRE).
- The recommended version of Java is 7 or higher. The most suitable version of Java for working with Scala and Python is 8, because of the functional programming methods are included.

```
# install oracle java 8

$ sudo apt-get install software-properties-common

$ sudo add-apt-repository ppa:webupd8team/java

$ sudo apt-get update

$ sudo apt-get install oracle-java8-installer
```

Spark installation 2/3

The Spark download page is http://spark.apache.org/downloads.html. The webpage also archives earlier versions of Spark in different packages. In this project we have selected the release, pre-built for Hadoop 2.7 and later. An easy way to install Spark is to use a prebuilt package, and not building it from source. The downloaded has to be moved to the directory ~/spark under the root directory.

So the first step is to download the latest release of Spark

- 1. We select the latest stable Spark release
- 2. We choose the package type Prebuilt for Hadoop 2.7 and later,
- 3. We choose the download type Direct Download
- 4. We download the .tgz file
- 5. We verify this release using the appropriate signatures and checksums

Spark installation 3/3

- ■It is essential also to install Eclipse IDE which is a development environment commonly used for creating Java applications.
- ■The installation of the Eclipse IDE is a straightforward procedure. The program is available to download via the following link:

<u>http://www.eclipse.org/downloads/eclipse-packages/?osType=linux&release=undefined</u>

We choose the Linux 64 Bit version and save the tarball file to a local folder named eclipse.

A brief look at spark-csv 1/3

Let's assume our data file has a header:

```
first_name,last_name,gender,age
Erin,Shannon,F,42
Norman,Lockwood,M,81
Miguel,Ruiz,M,64
Rosalita,Ramirez,F,14
Ally,Garcia,F,39
Claire,McBride,F,23
Abigail,Cottrell,F,75
José,Rivera,M,59
Ravi,Dasgupta,M,25
...
```

A brief look at spark-csv 2/3

With *spark-csv*, we can simply create a DataFrame directly from our CSV file.

```
// Scala
val df = sqlContext.read.format("com.databricks.spark.csv").
option("header","true"). load("people.csv")
```

spark-csv uses the header to infer the schema, but the column types will always be string.

```
df: org.apache.spark.sql.DataFrame = [first_name: string,
last_name: string, gender: string, age: string]
```


A brief look at spark-csv 3/3

You can also declare the schema programmatically, which allows you to specify the column types.

```
import org.apache.spark.sql.types.
// A schema is a StructType, built from a List of StructField objects.
val schema = StructType(
  StructField("firstName", StringType, false) :: StructField("gender",
                     StringType, false) :: StructField("age",
                     IntegerType, false) ::
  val df = sqlContext.read.format("com.databricks.spark.csv").
  option("header", "true").
  schema(schema). load("people.csv")
```

Columns 1/3

A DataFrame column is an abstraction.

It provides a common column-oriented view of the underlying data, *regardless* of how the data is really organized.

Columns 2/3

Input Source Format	Data Frame Variable Name	Data
JSON	dataFrame1	<pre>[{"first": "Amy", "last": "Bello", "age": 29 }, {"first": "Ravi", "last": "Agarwal", "age": 33 },]</pre>
CSV	dataFrame2	first,last,age Fred,Hoover,91 Joaquin,Hernandez,24
SQL Table	dataFrame3	first last age
		Joe Smith 42
		Jill Jones 33

how
DataFrame
columns
map onto
some
common
data
sources.

Columns 3/3

Input Source Data Frame Data **Format** Variable Name [{"first": "Amy", **JSON** dataFrame1 "last": "Bello", "age": 29 }, {"first": "Ravi", "last": "Agarwal", "age": 33 }, first,last,age **CSV** dataFrame2 Fred Hoover, 91 Joaquin, Hernandez. 2 dataFrame3 **SQL** Table first Joe • Smith 42 Jill Jones

dataFrame1 column: "first"

dataFrame2 column: "first"

dataFrame3
column: "first"

printSchema()

You can have Spark respond you what it thinks the data schema is, by calling the printSchema() method.

(This is mostly useful in the shell.)

```
scala> df.printSchema()
root
|- firstName: string (nullable = true)
--- lastName: string (nullable = true)
|- gender: string (nullable = true)
--- age: integer (nullable = false)
```


show()

You can look at the first *n* elements in a DataFrame with the show() method.

If not specified, *n* defaults to 20.

This method is an action - It:

- •reads (or re-reads) the input source
- executes the RDD DAG across the cluster
- •pulls the *n* elements back to the driver JVM
- displays those elements in a tabular form

show()

```
scala> df.show()
               firstName|lastName|gender|age|
                   Erin | Shannon | F | 42 |
                 Claire | McBride | F | 23 |
                 Norman | Lockwood | M | 81 |
                Miguel Ruiz M 64
               Rosalita Ramirez F 14
                  Ally | Garcia | F | 39 |
                Abigail | Cottrell | F | 75 |
                  José | Rivera | M | 59 |
```

select()

select() is like a SQL SELECT, allowing you to limit the results to specific columns.

select()

The select() also allows you create on-the-fly derived columns.

```
scala> df.select($"firstName",$"age",
              $"age" > 49,
              "age" + 10).show(5)
    firstName | age | (age > 49) | (age + 10) |
      Erin| 42|
                                false
                                            52
       Claire 23
                                false
                                            33
       Norman 81
                                 true
                                            91
       Miguel 64
                                 true
                                            74
                                false
     Rosalita 14
                                            24
```

select()

And, of course, you can also use SQL.

filter()

The filter() method allows you to filter rows out of your results.

filter()

The SQLversion.

orderBy()

The orderBy() method allows you to sort the results.

orderBy()

It's easy to reverse the sort order.

```
scala> df.filter($"age" > 49).
select($"firstName", $"age"). orderBy($"age".desc, $"firstName").
show()
+-----+
| firstName|age|
+-----+
| Norman | 81|
| Abigail | 75|
| Miguel | 64|
+-----+
```

orderBy()

In SQL:

as() or alias()

```
scala> df.select($"firstName", $"age", ($"age" < 30).as("young")).</pre>
         show()
       first_name |age|young|
              Erin | 42|false|
Claire | 23| true |
              Norman | 81|false|
              Miguel 64|false|
            Rosalita | 14 | true |
```

Other Useful Transformations

Method	Description
limit(n)	Limit the results to <i>n</i> rows. limit() is not an action, like show() or the RDD take() method. It returns another DataFrame.
distinct()	Returns a new DataFrame containing only the unique rows from the current DataFrame
drop(column)	Returns a new DataFrame with a column dropped. <i>column</i> is a name or a Column object.
intersect(dataframe)	Intersect one DataFrame with another.
join(<i>dataframe</i>)	Join one DataFrame with another, like a SQL join.

Writing DataFrames

- You can write DataFrames out, as well.
- In most cases, if you can read a data format, you can write that data format, as well.
- If you're writing to a text file format (e.g., JSON), you'll typically get multiple output files.

Writing DataFrames

```
scala> df.write.format("json").save("/path/to/directory")
scala> df.write.format("parquet").save("/path/to/directory")
```

