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Background

Opver the past few decades, the computer experiment has
become an invaluable tool for both chemistry and chemical
engineering. The power of this new technique derives largely
from the fact that it occupies a unique position between the
traditional regimes of theory and laboratory experiment (/).
Computer experiments can test new theoretical ideas, such as
improved models of intermolecular forces, on systems far too
complex for manual calculation. At the same time, computer
simulations can approximate laboratory experiments to the
extent that computer results can sometimes be compared
with, and lend microscopic insight into, real experimental
results. Furthermore, computer experiments can provide
(virtual) access to extreme conditions that are not easily
reproduced in the real laboratory, such as the pressures and
temperatures at the earth’s core.

Two different kinds of computer experiments based upon
statistical mechanics are especially useful for modeling the
dynamics of atoms and molecules. Both approaches have been
applied successfully to systems as simple as an atomic fluid
like liquid argon and as complicated as a protein composed
of hundreds of amino acids. The first method, invented
by B. J. Alder and T. W. Wainwright (2, 3) at Lawrence
Livermore National Laboratory, is known as molecular dy-
namics MD) simulation (1, 4, 5). It follows the classical time
evolution—that is, the positions and velocities after each of
a series of time steps—of a collection of virtual interacting
particles by means of their integrated equations of motion.
The dynamics are derived from Newton’s second law,
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where the acceleration a; is produced by an instantaneous
force F; acting on particle 7 with mass 7; and instantaneous
position ;. With appropriate forces, MD experiments can
simulate particles traveling through space, colliding with one
another, oscillating in concert, and even evaporating from a
free surface. During an MD experiment, the microscopic
trajectories of a great many particles are averaged using the
rules of statistical physics to give macroscopic quantities such
as diffusion coefficients, temperatures of phase transitions, and
the instantaneous potential and kinetic energies of the system.
The second method relies upon an element of chance
rather than the classical equations of motion and is known
as the Monte Carlo (MC) technique (5). In each step of an MC
simulation, a randomly chosen particle is moved to a new
randomly chosen location. If the new configuration has a
lower energy than the previous one, the move is immediately
accepted; otherwise, the new configuration is subjected to
further statistical tests. If the move is ultimately rejected,

the system is returned to its previous state. This process is
repeated until the changes in energy become vanishingly
small, at which point the system is deemed to have reached
thermodynamic equilibrium. As in the molecular dynamics
technique, the microscopic states of the particles are averaged
to generate macroscopic equilibrium properties such as the
internal energy and the entropy.

Overview

In this article, we present an introduction to both the
chemical and the computational aspects of the molecular
dynamics technique. Using just a few elementary ideas from
classical mechanics and numerical analysis, we go through
the steps required for the design and analysis of a simple
molecular dynamics simulation. We use linear chains of inter-
acting particles as examples, since the mathematical models
describing these systems are relatively uncomplicated but still
produce interesting dynamics. Along the way, we emphasize
the compromises that arise in any computer-based experi-
ment because of floating-point arithmetic, finite memory,
and limitations in processor performance. Saiz and Tarazona
have described the principles of molecular dynamics in this
Journal and applied the technique to an isolated particle, two
interacting particles, and the water molecule (6).

This paper is part of a larger project concerned with the
development of instructional materials and laboratory facilities
for an undergraduate course in high-performance scientific
computing and scientific visualization. The course materials
are available through anonymous FIP from [hzp://www.cs)
folorado.edu/95-96/coursesimaterials.hpsc.htm] and include a
number of tutorials and reference manuals, a laboratory
manual, and software to accompany the laboratory manual.

We begin with a brief description of the meanings of
force and potential in a molecular dynamics experiment, with
emphasis on the Hooke’s law approximation. We then illus-
trate the derivation of the classical equations of motion for a
linear chain of interacting particles by considering the three-
particle chain in detail. We introduce two simple methods
for numerically integrating the equations of motion, one
based on Euler’s method for differential equations and the
other a more accurate algorithm developed by Verlet. Next,
we present a molecular dynamics simulation of the three-
particle system, with an analysis of the particle trajectories
in terms of the normal modes of vibration of the chain. We
conclude with a comparison of the cumulative errors produced
by the two methods of numerical integration for the three-
particle simulation. As supplemental material, we provide a
basic MD implementation using the Euler integration algo-

rithm in both Fortran and C and a few suggested exercises
for the code.W
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Forces and Potentials in Molecular Dynamics

To develop a classical description of our system of inter-
acting particles, we must know the net force acting on each
particle during each time step. In general, we assume con-
servative, two-body forces between the particles. That is, we
assume that the total energy of the system is always conserved
and that the total force acting on a particle 7 is equal to the
pairwise vector sum of forces between particle 7 and all other
particles j # 7 in the system. For example, the total force
acting on particle 3 in a six-particle system is

F;=F; + F5 + F34 + Fs + Fyg )

Note that the order of subscripts is important here: the symbol
F;; refers exclusively to the force on particle i due to particle ;.
In an n-particle molecular dynamics simulation, the forces
are computed from a potential energy function V (ry, 75, ...,
r,,) that depends upon the coordinates of all 7 particles. (Vis
usually called simply the potential.) For any particle 7,

oV
F.--9V
= or )

Thus, we may equivalently discuss molecular dynamics in terms
of either forces or potentials, and the problem of modeling
a system is sometimes posed as a search for an appropriate
potential for that system (). Given one potential, our virtual
particles might represent a dilute noble gas; given another,
they might represent covalently bonded atoms in an organic
compound. The choice of potential also reflects one of the most
important trade-offs in a molecular dynamics experiment:
the more realistic and complicated the potential, the greater
the demands made on the processor(s) and memory of the
computational system.

Rigorously, an interatomic potential should include
terms for all of the electron—electron, nucleus—nucleus, and
electron—nucleus interactions in the system. In practice,
approximate potentials are employed, since formulating a
complete potential is an impossible demand for any but the
most rudimentary of systems. Fortunately, in some cases,
surprisingly insightful results can be obtained with potentials as
simple as the hard-sphere potential, in which the atoms are
represented as perfect spheres with infinitely hard surfaces,
and the Hooke’s law (HL) potential, in which the system
is modeled as a collection of masses and springs. The HL
potential is especially popular for a first approximation because
its visualization in terms of springs provides a natural model
for chemical bonds; in addition, it is one of the very few
potentials that lead to equations of motion that can be solved
in closed form. If ., designates the equilibrium position of
a particle, then the HL potential energy of that particle at
any position 7 is

Vir) = % (r - req)z + Vo (4)

where 4 is known as the force or spring constant and V, is a
constant representing the minimum potential energy. (Vi
is the constant of integration in eq 3.) We use the Hooke’s

law potential exclusively in the following discussion.
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Figure 1. A linear chain of three interacting particles. In the text
we take the line joining the particles as the x axis.
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Figure 2. The linear three-particle chain of Figure 1 after the change
of variables g; = x; - (i —1)d, where g; denotes the position of the
ith particle relative to its equilibrium position and d represents the
equilibrium separation of any two neighbors. At equilibrium, the
positions of particles 1, 2, and 3 are 0, d, and 2d, respectively.
The figure shows the equilibrium positions of the particles in dashed
circles and a possible set of nonequilibrium positions in solid circles.

Equations of Motion for a Chain of Interacting
Particles

Once the potential for the model system has been chosen,
the equations of motion governing the particles of the system
must be derived. To illustrate the procedure for a linear chain
of particles, we consider in detail the three-particle system
shown in Figure 1. We assume that there are no external forces
acting upon the system and that each particle interacts with
at most two other particles, namely, its nearest neighbors. In
addition, we assume that all particles have the same mass m
and that all interactions have a common force constant 4.

Our use of the Hooke’s law potential allows us to picture
the interactions between the particles equivalently as a set of
springs. The forces of the springs act along a line joining the
particles that we take as the x axis; the position of particle 7
on this axis is denoted as x;. We number the particles in
increasing order from left to right and define a constant &
that represents the equilibrium separation of the particles. We
say that the system is in equilibrium if the distance between
any two neighbors is equal to 4. If the distance between two
neighbors is less than d, the spring connecting the particles
is compressed and a force acts to drive the particles apart;
conversely, if the distance between two neighbors is greater
than 4, the connecting spring is stretched and a force acts to
drive the particles together. The total Hooke’s law potential
energy of this system is

V(xl,xz,x3) = %[(xz_xl _d)2+ (Xa_xz_d)2]+ Viin 5)

It can be easily verified that V=V, ;, when (x,—x;) and (x;— x,)
are equal to 4.

Following eq 3, we obtain the force acting on each par-
ticle 7 by computing -9V/dx;:

Fi(oey,57) = k(o — x; — d)
Fy(x1,%9,%3) = ko) — 25 + x3) (0)
Fa(Xz,X3) = k(xj — X3 + d)
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The Newtonian equations of motion can be derived directly
from these three relations, but it is usually advantageous to
first perform a change of variables. We fix the eguilibrium
position of the first particle at the origin and define ¢; to be the
displacement of the 7th particle from its equilibrium position:

gi=x;—(i-1d, i=1,2,3 @)

The equilibrium points of particles 1, 2, and 3 are now 0, 4,
and 24, respectively, and any vanishing g; means that particle 7
is at its equilibrium position. The new coordinate system is
shown in Figure 2. The forces can now be written in a form
that is independent of 4

Fl(qlaqz) = k(qz - 71)
E(q1> 42> 45) = k(g1 — 295 + ¢3) (8)
Fy(qy q3) = kg, — g93)

and substituted into eq 1 to give the final equations of motion:
mijy = k(g — 1)

mij, = k(g — 295 + ) )
mijs = kg, = q5)

where we have used ¢ for the second time derivative of ¢;.
These equations describe oscillatory motions of the particles
along the x axis. The closed-form solution for the three-
particle system, to which we shall return later, reveals that
each ¢ is proportional to cos(wr), where the angular frequency
w is proportional to (k/m)"2.

We conclude this section by observing that even a model
as elementary as ours, with a few minor extensions, can have
real applications. By simply providing for unequal particle
masses, for example, we can simulate a variegated linear
molecule such as CO,. Alternatively, by treating the first
and last particles of the chain as nearest neighbors, we can
model z-particle rings like those that occur in allotropes of
the catenation-prone chalcogens S and Se (7).

Integration of the Equations of Motion

For the great majority of cases, the equations of motion
cannot be solved in closed form and must be integrated
numerically. The integration is usually performed using a
time-stepping algorithm (8), which generates a solution in-
crementally in time starting from a set of initial conditions—
that is, which uses the positions and velocities of the particles
at some time ¢ to compute the positions and velocities at some
later time # + Az. The time step A can be constant or variable,
but in either case represents a trade-off between accuracy
and efficiency: in order to obtain a faithful picture of the
molecular choreography, Ar must be small compared to the
characteristic periods of the system, but if it is too small, the
computation becomes onerously slow. In general, the best
compromise between accuracy and efficiency is found by using
simple second-order schemes such as the Verlet algorithm (8,
10) (see below) and adjusting the time step appropriately. The
initial conditions are usually chosen so that

gqi(opo, 2. v(0)=0 (10)

i=1

where v,(2) is the velocity of particle 7 at time 2.

The simplest time integration algorithm is based on
Euler’s method for ordinary differential equations (9). In this
procedure, the position and velocity of each particle in the
chain is updated at the conclusion of each time step as follows,
where we have followed custom and used 4 for Az

qi(t"'b):qi(t)'*b”i(t) (11)
oleeh)=ole) + 2 F (g 1)) (12)

Note that these relations tend toward the familiar differential
equations

dg; dv; 1

@ T mh (13)
as # - 0. To carry out the calculation, a value for 4 is chosen,
q:(h) and v{(h) are computed from the initial (#= 0) conditions,
q42h) and v,(2h) are then computed from ¢,(h) and v,(h), and
so on. A simple molecular dynamics implementation using
the Hooke’s law potential and the Euler integration algorithm
is given online in both Fortran and C.

Like all numerical integration algorithms, Euler’s method
suffers from round-off and truncation (or discretization) errors.
Round-off errors result from the finite length of numbers
within a computer, usually 32 bits for single precision and
64 bits for double precision, whereas truncation errors derive
from the use of a finite or truncated expression to approximate
the sum of an infinite series. A formal error analysis demon-
strates that the overall, or global, numerical error associated
with Euler’s method is proportional to 4, which means that
the error decreases by a factor of 10 each time 4 is decreased
by a factor of 10 (4). An error of this type is described as
being on the order of b, or more simply as O(b). The error is
also cumulative, since each step uses values produced by the
previous step. Because the error eventually becomes compa-
rable in magnitude to the solution, Euler’s method is rarely
used in practice.

The most commonly employed numerical integration
technique in molecular dynamics is probably the Verlet time
integration algorithm (7, 8, 10), whose most basic form is

At 0 =20(0) =g (e-n)+ L E(g(e) (g

v(e) = (gl +h) =g e=h) (15)
Notice that two previous positions, rather than a single
previous position and a single previous velocity, are required
here for each calculation of ¢, ( + /) and that eq 15 provides
the velocity at time # instead of (¢ + /). Since the initial values
for an MD problem usually consist of the positions and
velocities of the particles at # = 0, an alternative formulation
must be used for the first Verlet iteration. If we expand the
displacement ¢; (#) in a Taylor series about 4, then, after the
first time step,

2B =a(0) o)+ L E(g0) a6

2m
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Euler algorithm: /= 0.001
kim=1
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Figure 3. A molecular dynamics simulation of a linear chain of three
particles interacting via the Hooke's law potential with k/m = 1.
The equations of motion were integrated numerically by means of
the Euler algorithm with h = 0.001. The starting conditions were
q](o) = ;Ir Ch(o) = O, qS(O) = ]: V[(O) = O, i= ]/ 2/ 3.

Formal analysis reveals that the global error associated
with the Verlet algorithm is O(/#?) rather than O(}), implying
that the error decreases by a factor of 100, rather than 10,
each time 4 is decreased by a factor of 10 (). (In a later
section, we provide a numerical illustration of the differ-
ence made by this single power of 4.) In addition, /4 can be
chosen so that the cumulative error remains small compared
to the solution.

Molecular Dynamics of the Three-Particle Chain

We now wish to present an actual molecular dynamics
simulation, so we return to our example of a linear chain of
three particles interacting via the Hooke’s law potential.
Figure 3 shows the results of a 20-s simulation performed
with #/m =1 and / = 0.001 s. (Although this time step is
convenient for our example, we emphasize that it is much
larger than any real molecular period; the fundamental period
of N, for instance, is about 14.3 fs (10s) (11). Typically,
we set b = 1 fs [4].) We employed the Euler time-integration
algorithm and began the simulation with the conditions

ql(o) = _1) qZ(O) = O) q}(o) = 1: UZ‘(O) = O) i= 152:3

These conditions lead to dynamics known as the symmetric
stretch of the chain (see below). The equilibrium positions of
the particles are x = 0, 4, and 8; that is, 4 = 4 here.

To fully appreciate the trajectories described in Figure
3, we must understand something about the fundamental
vibrational properties of our system (4, 12, 13). In general, a
linear #-particle chain has 7z normal modes of vibration along
its axis (one mode for each vibrational degree of freedom).
A normal mode of vibration is a vibration for which (i) each
participating particle executes simple harmonic motion about
its equilibrium position, (ii) all participating particles oscillate
with the same frequency, (iii) any two participating particles

Figure 4. The longitudinal normal modes of vibration of a linear
three-particle chain. A: Simple translation. B: Symmetric stretch. C:
Asymmetric stretch.

Verlet algorithm: h = 0.001
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Figure 5. A molecular dynamics simulation of a linear chain of three
particles interacting via the Hooke's law potential with k/m = 1.
The equations of motion were integrated numerically by means of
the Verlet algorithm with h = 0.001. The starting conditions were
Sl (O) =-1 ’ qQ(O) = O, CIS(O) = 21 V,'(O) = O, i= ]/ 2! 3.

oscillate exactly in phase or exactly out of phase, and (iv) the
center of gravity of the system remains unchanged (73). The
normal modes of vibration for the three-particle chain are
shown in Figure 4. The mode shown in Figure 4A has w=0
and corresponds to simple translation of the system along its
axis. (Because the equilibrium distance is maintained between
each pair of neighboring particles, the potential V'is always
equal to Vi ;, and there are no compressive or tensive forces.)
The other two modes represent true oscillatory motions of
the system and have nonzero frequencies that are proportional
to (k/m)'2. In the mode pictured in Figure 4B, which is
known as the symmetric stretch, the center atom remains at
rest while the two outer atoms vibrate exactly out of phase
with the same amplitude. Alternatively, in the asymmetric
stretch of Figure 4C, the two outer atoms vibrate in phase with
the same amplitude, and the center atom vibrates exactly out
of phase with the outer atoms with an amplitude modulated
by a factor of 2.
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Euler algorithm: h = 0.001
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Figure 6. The errors accumulated by the Euler time integration
algorithm for a 20-s simulation of the symmetric stretch mode of a
three-particle linear chain with k/m = 1 and h = 0.001.

Our description of the system in terms of its normal
modes of vibration is advantageous in part because it can
be shown that if the initial positions and velocities of the
particles correspond to one of the normal modes, the system
adopts that mode of vibration and remains in it forever
(assuming no friction). Thus, the initial conditions chosen
for our example simulation lead to the symmetric stretch mode
of Figure 4B and we expect these dynamics to continue until
the system is forcibly damped. However, the real importance of
a normal mode analysis lies in the much more general property
that any oscillatory motion of the system can be represented
as a linear combination of the normal modes of vibration.
This means that the dynamics of our linear chain of particles,
no matter how complex or apparently random, can always be
viewed as the sum of the individual modes shown in Figure 4,
each weighted with appropriate amplitude and phase factors.
Thus, we can consider the motion described in Figure 3 as
being composed of a nonzero-valued contribution of the
symmetric stretch mode and a zero-valued contribution of
the asymmetric stretch mode of the three-particle chain. As
an example of the dynamics resulting from initial conditions
that do not correspond to a normal mode of vibration,
Figure 5 depicts the motion of our test system with initial
conditions

Verlet algorithm: h= 0.001
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Figure 7. The errors accumulated by the Verlet time integration
algorithm for a 20-s simulation of the symmetric stretch mode of a
three-particle linear chain with k/m = 1 and h = 0.001. Note the
difference in vertical scale compared to Figure 6.

ql(o) = _11 qZ(O) = 0: q3(0) = 2) yi(o) = O) i= 1;203

In this case, the motion reflects nonzero-valued contributions
from both the symmetric and asymmetric stretch modes of the
chain. Notice that, in comparison with Figure 3, the middle
particle now executes an oscillatory motion and the symmetry
of the vibrations of each atom about its equilibrium position
has been lost.

Cumulative Errors in the Three-Particle Simulation

One advantage of the Hooke’s law potential is that it
admits closed-form solutions to the classical equations of
motion. For the 7-particle chain, one solution has the form

9/ = Qjcos(w;r+9), ij=1,2,3,....,n (17)

where Q;; is an amplitude factor for particle 7 oscillating in
mode j, w; is the angular frequency of mode j, and & is a
phase constant determined by the initial displacements and
velocities. Q; and w; are an eigenvector—eigenvalue pair and
may be determined with some effort through matrix methods;
the details are in Fosdick et al. (¢) and Goldstein (12). If the
amplitudes are normalized so that max|Q,]| = 1, the positions
for the symmetric stretch (7 = 2) of the three-particle system
are given by
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41(”:“5(@“5)’ 7,(1) =0,
q3(t) = —cos(@t + 5)

thatis, Q, =-Q5, = 1, Qy, = 0, and w, = (k/m)"/2.

We can exploit this exact solution to compare the accura-
cles of our two numerical integration methods. Figures 6 and
7 present the errors accumulated by the Euler and Verlet time-
integration algorithms, respectively, during a 20-s simulation
of the symmetric stretch mode of our three-particle chain with
klm=1,%=0.001, and the initial conditions of Figure 3. (These
initial conditions correspond to & = 0, as may be readily veri-
fied by solving for the phase constant when ¢ = 0.) Recall
that we characterized the error of the Euler algorithm as O(/)
and the error of the Verlet algorithm as O(4?). As expected,
the error associated with the middle particle is always zero,
because this particle is motionless during the symmetric
stretch. In contrast, the error curves associated with the end
particles are oscillatory and have maxima whose amplitudes
clearly increase with time. The difference in accuracy between
the two integration methods is quite striking: the maximum
error associated with the Verlet algorithm (near # = 20) is
about 10,000 times less than the maximum error associated
with the Euler algorithm. (Note that the vertical scales of the
two plots are different.) Repetitions of this simulation with
different values of / confirm that for a given elapsed time,
the maximum error of the Euler method increases linearly
with increasing 4 and the maximum error of the Verlet
method increases quadratically with increasing 4.

(18)
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F”Supplemenlal W‘GIGI’IO'

A basic MD implementation using the Euler integration
algorithm in both Fortran and C and a few suggested exercises
for the code are available in this issue of JCE Online.
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