
REVIEW

The Future of Radiobiology

David G. Kirsch, Max Diehn, Aparna H. Kesarwala, Amit Maity, Meredith A.
Morgan, Julie K. Schwarz, Robert Bristow, Sandra Demaria, Iris Eke, Robert J.
Griffin, Daphne Haas-Kogan, Geoff S. Higgins, Alec C. Kimmelman, Randall J.
Kimple, Isabelle M. Lombaert, Li Ma, Brian Marples, Frank Pajonk, Catherine
C. Park, Dörthe Schaue, Eric J. Bernhard
Affiliations of authors: Department of Radiation Oncology and Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC (DGK);
Department of Radiation Oncology, Stanford Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine,
Stanford, CA (MD); Radiation Oncology Branch (AHK, IE) and Radiation Research Program, Division of Cancer Treatment and Diagnosis (EJB), National Cancer Institute,
National Institutes of Health, Bethesda, MD; Department of Radiation Oncology Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA (AM);
Department of Radiation Oncology (MAM) and Department of Biologic and Materials Sciences, Biointerfaces Institute, School of Dentistry (IML), University of Michigan,
Ann Arbor, MI; Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO (JKS); Department of Radiation Oncology, Princess
Margaret Cancer Center, Toronto, ON, Canada (RB); Department of Radiation Oncology and Department of Pathology and Laboratory Medicine, Weill Cornell Medical
College, New York, NY (SD); Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR (RJG); Department of Radiation Oncology,
Harvard Medical School, Dana-Farber Cancer Institute, Brigham and Women’s Hospital, Boston Children’s Hospital, Boston, MA (DHK); Department of Oncology,
University of Oxford, Oxford, Oxfordshire, UK (GSH); Perlmutter Cancer Center and Department of Radiation Oncology, New York University Langone Medical Center,
New York, NY (ACK); Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI (RJK); Department of Experimental
Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX (LM); Department of Radiation Oncology, University of Miami, Miami, FL (BM);
Division of Molecular and Cellular Oncology (DS), Department of Radiation Oncology (FP), David Geffen School of Medicine, University of California, Los Angeles, C A;
Department of Radiation Oncology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA (CCP)

See the Notes section for the full list of authors and affiliations.
Correspondence to: David G. Kirsch, MD, PhD, Duke University Medical Center, DUMC Box 91006, Durham, NC 27708 (e-mail: david.kirsch@duke.edu).

Abstract

Innovation and progress in radiation oncology depend on discovery and insights realized through research in radiation
biology. Radiobiology research has led to fundamental scientific insights, from the discovery of stem/progenitor cells to the
definition of signal transduction pathways activated by ionizing radiation that are now recognized as integral to the DNA
damage response (DDR). Radiobiological discoveries are guiding clinical trials that test radiation therapy combined with
inhibitors of the DDR kinases DNA-dependent protein kinase (DNA-PK), ataxia telangiectasia mutated (ATM), ataxia telangi-
ectasia related (ATR), and immune or cell cycle checkpoint inhibitors. To maintain scientific and clinical relevance, the field
of radiation biology must overcome challenges in research workforce, training, and funding. The National Cancer Institute
convened a workshop to discuss the role of radiobiology research and radiation biologists in the future scientific enterprise.
Here, we review the discussions of current radiation oncology research approaches and areas of scientific focus considered
important for rapid progress in radiation sciences and the continued contribution of radiobiology to radiation oncology and
the broader biomedical research community.

Role of Radiation Biology Research in the
Research Enterprise

Past research into the cellular response to ionizing radiation led
to fundamental biological insights, such as demonstrating the

existence of stem/progenitor cells (1) and identifying key com-
ponents of the DNA damage response pathway (2). These and
current advances in radiobiology impact clinical radiation on-
cology, improving cancer patients’ outcomes (3). Basic insights
from radiobiology can be applied to societally important topics
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such as carcinogenesis risk estimation from medical, occupa-
tional, or space travel radiation exposure (4) and the develop-
ment of medical treatments for radiation injury (5). Despite the
substantial impact of radiation biology in the past and its poten-
tial for future contributions, the field of radiation biology is fac-
ing challenges in research workforce, training, and funding,
exacerbated by a clinical emphasis on technological rather than
biologic science advances. Therefore, the National Cancer
Institute (NCI) convened a workshop to discuss the role and fu-
ture of radiation biology research and radiation biologists in the
context of radiation oncology.

The radiobiology research workforce faces ongoing chal-
lenges of critical mass and identity that have been a topic of dis-
cussion for more than a decade (6). The number of principle
investigators whose research focuses on radiation biology is
limited, and researchers in radiation oncology departments of-
ten define themselves as cancer biologists or immunologists,
rather than as radiation biologists. While this diversity of exper-
tise is a strength, maintaining a research focus that is clinically
relevant to radiation oncology is essential to improving patient
care.

For radiobiology, as for other scientific disciplines, scientific
reproducibility is an absolute requirement. To facilitate replica-
tion of radiation research, it is particularly important to stan-
dardize radiation dosimetry (7) and sufficiently describe
experimental details of combining drugs and radiation (8).
Rigorous application of basic radiobiological principles and
techniques will enhance the reproducibility and scientific im-
pact, but this requires maintaining a workforce with an ad-
vanced working knowledge of these basic principles.

Previous surveys and workshops have reported that the
number of National Institutes of Health (NIH)–funded research-
ers within radiation oncology departments is small, which
reflects a small and shrinking applicant pool (9). However, the
success rate of radiobiology applications has not been
substantially different from that of other oncology disciplines.
To update these reports, we conducted a survey of FY2016
radiation-related federal awards using the NIH RePORTER
search engine (https://projectreporter.nih.gov/reporter.cfm).
There were 72 304 projects reported in this fiscal year (including
multiple reporting of multiproject awards), 634 of which were
retrieved in our search focused on ionizing radiation studies.
Review of the abstracts was done to ensure that only awards di-
rectly exploring radiation-related topics were counted. Topics
with relevance to radiation (eg, DNA repair, cancer stem cell
studies) that did not mention studies with ionizing radiation
were not included; thus the results are a conservative estimate.
Two-hundred ninety-two awards were identified, funded
through the various NIH institutes and centers, primarily the
NCI, as well as through the US Food and Drug Administration
and Veterans Administration under a variety of grant and con-
tract mechanisms (Table 1; Supplementary Table 1, available
online). The majority of these (n ¼ 183) focused on radiobiology,
with 56 awards focused on a clinical question and 15 awards
whose scope included both.

A concern raised by Steinberg et al. in 2013 was that most ra-
diation researchers with an NIH grant were full professors,
while only 4.6% of the grants were career development awards,
indicating a limited pipeline of early career investigators within
the radiation sciences (9). Our RePORTER survey showed that
this trend continued in 2016, with 11 (3.8%) K-type awards or
K99/R00 career development awards identified. However, these
data were somewhat mitigated by the finding that 27 (9.4%)
awards were awarded to investigators who were identified as

new or early-stage investigators. Nevertheless, it is evident that
as established radiation researchers retire, investing in training
junior investigators to perform radiation research and teaching
will be essential to maintaining the field’s vitality (10,11). To re-
tain clinical radiobiology expertise, increased emphasis on train-
ing and retention of PhD- and MD/PhD-level radiobiologists by
academic radiation oncology departments will be key, as well as
supporting active research programs in these departments.

Successful development of new physician scientists in radia-
tion oncology will require opportunities for mentored research
training extending beyond residency. Trainees making the tran-
sition to scientific independence should be encouraged to apply
for K08, K99, and other career development awards. Academic
departments must invest in junior scientists by providing both
mentoring and sufficient support to develop a research pro-
gram. For clinician scientists, protected time and adequate
technical support are essential. In addition, clinician scientists
can initially be embedded as mentored but independent
researchers within a laboratory of an established scientist,
thereby reducing practical laboratory management duties.
Newly independent researchers in radiation research should
apply to diverse funding sources, including NIH agencies, the
Department of Defense, NASA, pharmaceutical companies, and
various foundations (eg, American Cancer Society, Capcure,
Lustgarten, etc.).

Given the challenges of maintaining a critical mass of inves-
tigators in the radiation research workforce, here we review cur-
rent radiation research approaches and areas of scientific focus
that should be considered for future investment.

Model Systems for Studying Radiobiology

Clonogenic survival is the gold standard assay for assessing ra-
diation sensitivity in vitro as well as for testing the efficacy of
agents that modify radiation survival. The advantage of this as-
say is that its colony formation end point integrates all forms of
cell death and measures the reproductive capacity of individual
cells, thus defining a cell’s ability to replicate and form a tumor
(12). While clonogenic assays are sensitive across a range of ra-
diation doses, they are relatively low throughput and may not
be suitable for all cells. Throughput is being addressed through
development of medium/high-throughput-adapted colony for-
mation assays (13). These screens have nominated targets for
radiosensitization that have been validated for efficacy and se-
lectivity and subsequently advanced to drug development pro-
grams (14).

To enable higher-throughput siRNA, CRISPR/Cas9, or small
molecule library screens with radiation, investigators use multi-
well plate formats with surrogates for clonogenic radiation

Table 1. Overview of radiation-related grants awarded in FY2016

Primary topics of
radiation research
awards

No. of
awards

Training/
career development

awards
No. of

awards

Biology 183 Training T32 4
Clinical 56 Training R25 2
Clinical and biology 15 K-awards 9
Chemistry 5 K99/R00 2
Physics 5 � �
Countermeasures 4 � �
Epidemiology 4 � �
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survival including radiation-induced foci (eg, c�H2AX) (14,15),
viability measured by Adenosine Triphosphate (ATP), or
luciferase-based reporters (16,17). Clonogenic assays should still
be done to validate the hits in these screens because they do
not measure clonogenic survival.

For in vivo radiobiology studies, orthotopic (18) and subcuta-
neous Patient Derived Xenograft (PDX) models are rapidly being
integrated as model systems in radiation research. Orthotopic
models better approximate the tumor microenvironment of hu-
man tumors than do subcutaneous tumors, an important con-
sideration for measuring radiation responses. However,
orthotopic models introduce challenges for radiation delivery.
The availability of small animal radiation micro-irradiators
equipped with computed tomography (CT) imaging has made
irradiation of orthotopic tumors feasible, but image-guided ra-
diotherapy (IGRT) in mice can be limited by cost, throughput,
and radiation toxicity when treating specific organs. Because
PDX tumors are normally implanted into immune-deficient
mice, this limits opportunities to study the immune system
contribution to radiotherapy response, which has been shown
to have an impact on radiocurability in syngeneic mouse mod-
els (19). The radiosensitivity of DNA-PK-deficient host mice is
also a concern in radiobiological studies. Genetically engineered
mouse models (GEMMs), while not fully recapitulating the ge-
netic complexity of human tumor counterparts, generate au-
tochthonous tumors within a native microenvironment in an
immune competent animal, thus providing a critical model for
dissecting mechanisms of tumor responses to radiation (20–23).
GEMMs and GEMM-derived tumors (20–23) have been used for
assessing experimental radiation sensitizers, including those
targeting immune checkpoints (24).

The therapeutic potential of radiosensitizing agents is deter-
mined both by efficacy against and selectivity for tumor cells.
Animal models of dose-limiting toxicities are more reliable than
in vitro models for assessing normal tissue radiation toxicities,
given the limitations of established cell lines in culture (eg, poor
colony-forming efficiency, nonphysiologic in vitro growth con-
ditions). Mouse models are routinely used for monitoring nor-
mal tissue toxicity such as those occurring in the oral mucosa
and small intestine, which limit radiation dose in the clinic for
head and neck and pancreatic cancers, respectively (25,26).
Other animal models can be of high value in translational radio-
biology, including swine and canine models of normal tissue in-
jury (27,28) and companion animals with spontaneous tumors
as advanced models for studying responses to radiation and
combined modality treatments (29).

There is also great interest in using 3D models for radiobio-
logical studies (eg, spheroids, organoids). These maintain some
of the key physiologic and structural features of tumors (eg,
cell-matrix interactions, hypoxia). They are less expensive than
in vivo models, can be genetically modified, and can be
employed for large-scale experiments (30). These models may
better predict response than 2D cultures (30).

Molecular Targets and Radiosensitivity

A major goal of radiobiology is to achieve selective radiosensiti-
zation of cancer cells by modulating the molecular response to
radiation injury. Ataxia-telangiectasia mutated (ATM) and
ataxia telangiectasia and Rad3 related (ATR) are key proteins in
the DNA damage response pathways (31). Substrate analysis
has identified more than 900 phosphorylation sites containing a
consensus ATM or ATR phosphorylation motif in 700 proteins

that are phosphorylated in response to ionizing radiation (32).
These proteins regulate DNA repair, RNA post-translational
modification, and cell morphology, suggesting opportunities to
enhance tumor radiosensitivity by modulating ATM or ATR
pathways.

ATM inhibitors have been shown to preferentially radiosen-
sitize p53 mutant tumor cells in mouse xenografts when deliv-
ered via osmotic pump, thus offering some indication of
selectivity (33,34,35). The orally available ATM inhibitor
AZD0156, which has sub-nanomolar potency in cell-based
assays with selectivity of greater than 1000-fold over other kin-
ases such as ATR, shows synergy with DNA double-strand
break-inducing agents in mouse xenograft models (36). A phase
I clinical trial is currently testing AZD0156 alone or with other
systemic drugs such as the PARP inhibitor olaparib in patients
with advanced cancer (NCT02588105). There are no trials of
ATM inhibitors with radiotherapy to date, and it will be impor-
tant to determine whether this combination will have accept-
able toxicities.

Two ATR inhibitors are currently in clinical trials. VE-822,
also known as VX-970, radiosensitized pancreatic cancer cells
as a single agent both in vitro and in xenograft models and syn-
ergistically sensitized lung cancer cells to cisplatin (37,38).
Based on these preclinical data, a phase I trial is testing VX-970
with whole brain radiotherapy for patients with brain metasta-
ses from non–small cell lung cancer (NCT02589522). VX-970 is
also being tested with radiation therapy and cisplatin for
patients with human papillomavirus (HPV)–negative head and
neck squamous cell carcinoma (NCT02567422). Another ATR in-
hibitor, AZD6738, is in a phase I trial as a single agent in combi-
nation with radiation therapy for refractory solid tumors
(NCT02223923) (39,40).

The epithelial-to-mesenchymal transition (EMT), which gen-
erates cells with stem cell properties, is another target for radio-
sensitization. EMT can be modulated by extracellular factors,
such as transforming growth factor-beta, tumor necrosis factor-
alpha, and platelet-derived growth factor, or transcription fac-
tors, such as Twist, Snail, and zinc finger E-box-binding homeo-
box 1 (ZEB1) (41). Cancer stem-like cells preferentially activate
the DNA damage response and repair pathways, thereby pro-
moting radiation survival (42,43). A mechanistic link between
EMT and radiation response signaling is that ZEB1 is phosphor-
ylated and stabilized by ATM in response to DNA damage.
Phosphorylated ZEB1 appears to promote DNA repair via USP7-
mediated stabilization of checkpoint kinase 1, a process that
can be reversed via microRNA (miR)-205 to enhance radiosensi-
tivity (44,45). MiRs have yet to be approved by the US Food and
Drug Administration for therapeutic use but are candidates for
therapeutic interventions. Off-target effects may, however,
complicate their clinical use, as was seen in a phase I trial of the
liposomal miR-34 mimetic MRX34. MRX34 was used to downre-
gulate oncogene expression (NCT01829971), but the trial was
terminated due to immune-related adverse events.

The phosphatidylinositol-4,5-bisphosphonate 3-kinase
(PI3K)/protein kinase B (AKT)/mammalian target of rapamycin
(mTOR) pathway is another example of a pathway that has
been studied extensively for its impact on radiosensitivity
through a number of mechanisms (46,47). A critical question in
the translation of molecular therapeutics to clinical trials with
radiation is how to best test molecularly targeted agents.
Stratification of patients to therapies by tumor molecular fea-
tures is routinely utilized for systemic therapy trials, and this
approach should be better integrated into clinical trials of radia-
tion therapy. Developing and applying biomarkers to
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radiotherapy trials, particularly when testing radiation response
modulators, would be an important advance.

Metabolism as a Therapeutic Target

Otto Warburg observed in 1924 that tumors consumed large
quantities of glucose while secreting high levels of lactate, irre-
spective of tissue oxygen concentration, a phenomenon now
known as the “Warburg effect.” This “aerobic glycolysis” has
since been shown to benefit tumor growth by providing inter-
mediates needed to maintain high rates of cellular division (48).
In addition, tumor-specific genetic alterations drive metabolic
phenotypes. For example, RAS-driven cancers use alternate car-
bon sources (both extracellular and intracellular) as fuel for the
Tricarboxylic Acid (TCA) cycle (49). MYC-driven cancers engage
in glutaminolysis, while other cancers may not require gluta-
mine for growth (50). Thus, it is important to consider metabolic
therapies in the appropriate genetic context.

Within tumor cells, high rates of glucose metabolism are
needed to support intracellular redox balance. The connection
between glucose metabolism and redox stress is relevant for ra-
diation therapy. The consumption of glucose via the pentose
phosphate pathway generates ribose, which can be used to gen-
erate nucleotides for DNA replication and repair; however, an
important byproduct of this reaction is NADPH, which can be
used by tumor cells as a source of reducing equivalents.
Radiation increases intracellular redox stress. Therefore, inter-
fering with metabolic pathways that support intracellular redox
balance may enhance the efficacy of radiation (51,52). Tumors
can use alternative fuel sources and rely on additional path-
ways to maintain reducing equivalents, which may also be at-
tractive therapeutic targets.

Additional study is needed to characterize normal vs tumor
metabolism and the impact of this difference on radiosensitiv-
ity. Also, understanding radiation effects on tumor metabolic
phenotypes is needed in order to devise rational combinations
of radiation and drugs that target tumor metabolism. Given the
diversity in tumor metabolic phenotypes and the influence of
specific gene mutations, it is critical to perform these studies in
a defined genetic context. For these studies, it will also be im-
portant to understand the metabolic impact of the interaction
between tumor and stroma using in vivo model systems and to
harness the power of imaging to track treatment-associated
changes in tumor metabolism after radiation, drug, or combined
treatment.

Cancer Stem Cells

Cancer stem cells (CSCs) were initially described in early 2000 as
a cell population capable of tumor regeneration (53,54). CSCs
differ from their progeny in their metabolic state, which can
convert easily between aerobic glycolysis and oxidative phos-
phorylation depending on the local microenvironment (55,56).
CSCs increase the expression of enzymes that regulate intracel-
lular redox metabolism (57,58,59) and activation of DNA repair
mechanisms (42), and as such may represent a unique cell pop-
ulation for radiation therapy.

It has also been shown that Glioblastoma Multiforme (GBM)
CSCs can migrate within the brain to the subventricular zone
(SVZ) and thereby escape regions of high radiation dose (60,61).
Environmental stress such as radiotherapy, chemotherapy,
hypoxia, and low pH can increase CSC subpopulations and in-
fluence radiation sensitivity, and it has been proposed that

some normal and non-neoplastic cells can convert spontane-
ously to a stem-like state (62).

In the future, methods and criteria for the identification of
radiobiologically important CSCs should be developed and stan-
dardized. Further study is needed to understand CSC migration
and determine whether CSC safe harbors like the SVZ need to
be included in radiotherapy treatment fields. It may be possible
to target the invasive phenotype of CSCs for therapy. Finally,
further study is needed to understand how phenotypic plastic-
ity influences radiotherapy outcomes. Drugs that limit pheno-
typic plasticity in tumors should be incorporated into
radiotherapy clinical trials.

Radiation Toxicity to Normal Tissues and
Stem Cells

Following ionizing radiation, cell death is initiated when cells
with chromosomal aberrations attempt to divide. Thus, the tim-
ing of radiation toxicity in normal tissues often correlates with
the cell cycle rate within that organ (63). Acute radiation toxicity
occurs quickly in highly proliferative tissues, while slower-
cycling organs often show late radiation responses. An excep-
tion is the salivary gland, which has a slow turnover rate yet
responds acutely to radiation. Radiation first affects the plasma
membrane of secretory cells, resulting in the disruption of stim-
ulated water secretion and loss of organ function before any pa-
renchymal cell death. Therefore, acute toxicity can derive from
multiple factors in addition to cell loss. Intermediate to late side
effects of radiation toxicity may include inflammation, fibrosis,
loss of endothelial function (64), and potential neuronal dysre-
gulation (65). When a given radiation dose exceeds an organ’s
tolerance, reduced and progressive loss of organ function can
occur and persist for the patient’s lifetime. Organ recovery after
radiation depends on the number of surviving and functional
stem/progenitor cells (66), which continuously replenish differ-
entiated cell types within the organ. Multiple epithelial stem/
progenitor cells are distributed along the organ to locally bal-
ance homeostasis by providing new cells, but also by cross-
communicating with cells in the surrounding niche (67), such as
stromal, endothelial, and neuronal-derived cells. Radiation not
only impacts epithelial stem/progenitors, but also their niche’s
internal communication network to induce survival in neigh-
boring cells and promote repair.

Efforts to reduce radiation toxicity are primarily focused on
prevention and mitigation strategies. Preventative radioprotec-
tors have tremendous potential, but clinical adoption has been
hampered by concern over potential radioprotection of tumor
and/or side effects. Mitigators delivered after radiation, which
suppress cell death and/or enhance cell proliferation of surviv-
ing stem/progenitor cells, may prevent loss of organ function by
impacting one or more cell types. To minimize organ dysfunc-
tion, an optimal radiation delivery technique to limit normal
tissues to radiation should be combined with novel radioprotec-
tors and local delivery of organ-specific radiation mitigators
(68,69). The timing of applying these factors (ie, simultaneous or
sequential) will be critically important as delivering antioxi-
dants, prosurvival, pro-proliferation, and/or anti-inflammatory
agents at the wrong time points may reduce their effects and
potentially even enhance toxicity. Using sophisticated radiation
delivery methods to avoid irradiating the most sensitive areas
within an organ may also reduce toxicity, as has been described
for salivary glands (70). Predictive models can be used to assist
in minimizing the dose to critical areas, where potential clusters
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of crucial epithelial stem cells and essential surrounding niches
reside. Further study of regenerative therapies in the context of
radiobiology, including cell transplantation, gene transfer, and
tissue engineering, will provide novel approaches to repair
radiation-damaged organs. Combining spatio-temporal radia-
tion planning with protective and mitigating strategies may be
the optimal approach.

Combining Radiotherapy With
Immunotherapy

Radiation therapy has historically been a means of improving
local control. However, mounting preclinical and clinical evi-
dence indicates that radiation therapy can augment a systemic
immune response directed against tumor cells when combined
with immunomodulatory drugs (71). In some preclinical studies,
mice bearing two synchronous tumors were used in order to
test the ability of radiation delivered to one tumor to induce an
out-of-field response in the other tumor (abscopal effect). Such
responses reflect the development of robust antitumor T cells
and have been achieved when radiation is combined with
immunotherapies, such as anti-CTLA4 or anti-PD-1 antibodies,
that are otherwise ineffective in these tumor models (72–74).

Several case reports, retrospective series, and a recent pro-
spective trial support the clinical relevance of the observations
made in preclinical models. In melanoma, Postow et al. de-
scribed marked regression of nonirradiated metastases in a pa-
tient who had progressive disease on the anti-CTLA4 antibody
ipilimumab and was subsequently treated palliatively with radi-
ation to a paraspinal mass (75). Since the approval of ipilimu-
mab for melanoma, several retrospective analyses have
reported abscopal responses in patients treated with radiation
during/after immunotherapy (76,77). The results of a phase I
clinical trial that combined ipilimumab with hypofractionated
radiation in patients with metastatic melanoma were recently
reported, showing a response rate of 18% in unirradiated lesions
(74). Responses to combination therapy have also been reported
in tumors that did not initially show a clinical response to ipili-
mumab alone (78), suggesting that radiation could reposition
immunotherapies for cancers that are not optimal candidates
for these treatments. Importantly, a phase I–II trial of combina-
tion radiotherapy with granulocyte-macrophage colony-stimu-
lating factor produced objective abscopal responses in more
than 25% of patients with metastatic solid tumors, establishing
radiotherapy as a potential in situ antitumor vaccine (79).

The mechanisms by which radiotherapy promotes a tumor-
specific immune response are multifactorial and have been
reviewed elsewhere (80–82). Radiation may act as a personalized
vaccine by causing the release of danger signals and tumor-
specific antigens, which are subsequently presented by den-
dritic cells to elicit a T-cell-mediated immune response (83–85).
Because radiation can activate immune-inhibitory pathways as
well as immune-stimulatory ones, the net effect of these oppos-
ing forces may ultimately determine whether radiation will
drive a beneficial immune response in a specific patient (86).
Thus, identification and targeting of the immunosuppressive
pathways that are induced or exacerbated by radiation will be
critical (87).

The notion that a healthy immune system contributes to
successful radiotherapy has been around for decades (19), as
has the immense potential that lies in combining radiation with
immunotherapy (88). These concepts can now be revisited with
newer immune targeting strategies. For example, radiation

could convert an immune-privileged tumor into one that is T-
cell-inflamed, which immune checkpoint inhibitors alone seem
unable to do. Clinical testing and further mechanistic research
will provide answers to outstanding questions to establish the
role of radiation in immuno-oncology (89). Studies should be
designed to assure that the contribution of radiation can be
assessed, keeping in mind that immunotherapy can show
delayed tumor responses. The radiation dose and fractionation
and sequencing with immunotherapy that provide the optimal
effect remain to be established, but recent mechanistic studies
may provide a rationale for dose selection (90,91). Whether the
site that is irradiated matters for radiation to potentiate an im-
mune response is also unknown, and the main antigenic targets
of radiation-induced immune responses are unclear. Most im-
portantly, the identification of useful biomarkers that predict
which patients will eventually have a clinical response is an im-
portant area of investigation that may guide patient selection
and early evaluation of treatment response. In this regard, ex-
pression of Trex1, an upstream negative regulator of radiation-
induced antitumor immunity, was recently shown to be a po-
tential biomarker for determining the optimal radiation dose
and fractionation to promote immune activation (91). Perhaps
one of the great challenges and opportunities for the radiation
oncology field will be to undertake big data studies that inte-
grate sophisticated imaging technology and personalized radia-
tion treatment planning with complex, multidimensional
immune monitoring data and patient outcome (92,93).

Hypoxia, Tumor Vasculature, and
Radiotherapy

The solid tumor microenvironment (TME) is often characterized
by poor vasculature and inadequate blood supply (94). As a con-
sequence, tumors may contain regions exhibiting increased in-
terstitial fluid pressure, hypoxia, excess lactate accumulation,
lowered pH, and a lack of nutrients. This hostile microenviron-
ment may select for cells that are particularly resistant to kill-
ing, and may also contribute to phenotypic diversity within the
tumor. However, reliable technologies to properly measure or
predict outcomes based on average pH, interstitial fluid pres-
sure, or oxygenation remain elusive.

Hypoxia is associated with poor prognosis in many cancers,
irrespective of treatment (94–96). Hypoxic cells are more resis-
tant to radiotherapy and some chemotherapies because O2 par-
ticipates in chemical reactions that enhance initial DNA
damage, so without O2 there is less DNA damage (96).
Additionally, hypoxia influences biological signaling pathways,
including the activation of the transcription factor hypoxia-
inducible factor 1 (HIF-1), which promotes changes in cellular
metabolism and other pathways that affect radiation response
(20–23). Hypoxia-induced biological changes have been shown
to promote the generation and maintenance of cancer stem
cells in discrete regions of the tumor (43), which, as discussed
above, may be more resistant to DNA damage. Hypoxia may
also create an immunosuppressive tumor microenvironment
that promotes evasion of immune surveillance. Lastly, hypoxia
can promote malignant progression by increasing genomic in-
stability and metastatic potential (97).

Specifically relating to hypoxia and radiation therapy, hyp-
oxic cell radiosensitizers (nitroimidazoles) are reduced selec-
tively in hypoxic cells to form covalent cross-links and also act
to fix radiation damage. Some nitroimidazoles have shown
modest benefit in clinical trials (98). Bioreductive prodrugs are
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also being studied as hypoxic cytotoxins; some of these are now
in clinical trials (99). The alternative approaches of reducing tu-
mor hypoxia using hyperbaric oxygen during radiotherapy or
administering a gas mixture containing higher levels of O2 in
combination with vasodilators (ARCON) have also shown mod-
est improvements in local control (100).

An approach currently under investigation is the reduction
of hypoxia by decreasing tumor O2 consumption. Based on
mathematical modeling, Secomb et al. predicted that even a
30% decrease in O2 consumption would decrease the hypoxic
fraction from 37% to 11% (101). Studies have shown metformin
reducing O2 consumption and tumor hypoxia, which may en-
hance radiation sensitivity selectively in hypoxic tumors
(98,102).

In addition to directly targeting hypoxia within tumors, an-
other therapeutic approach is to target the aberrant vasculature
within the TME. Many strategies have been tried, ranging from
starving tumors by collapsing their blood supply with vascular-
disrupting agents to reducing hypoxia via vascular normaliza-
tion (103). More recent work has shown the contribution of
myeloid cells to vasculogenesis and metastasis after therapy,
and the ability to block their recruitment to tumors by disrupt-
ing the CXCR4/CXCL12 interaction (104,105). These novel
approaches to targeting or normalizing tumor vasculature, and
to preventing revascularization after therapy, may improve
treatment outcomes. Moreover, characterizing the hypoxia sta-
tus of the tumor may help identify tumors that will recur or me-
tastasize after primary therapy (106,107). Lastly, the field of
nanomedicine is well positioned to develop multifunctional
agents that preferentially act in or around the tumor microvas-
culature. These platforms have the potential to facilitate both
imaging for and therapy with radiation (108–110).

There is growing evidence from a number of groups that ra-
diation itself may lead to vascular dysfunction in certain set-
tings, for example, when using doses on the order of 10 Gy or
more per fraction (111–113). These are the types of doses used
in stereotactic body radiotherapy (SBRT). As SBRT is increas-
ingly used in the clinic, it is important in the future to under-
stand how much of its efficacy is due to direct tumor cell killing
vs indirect killing via vascular ablation. Experiments using dual
recombinase technology in a genetically engineered mouse
model of soft tissue sarcoma indicate that the killing of blood
vessels contributes to growth delay, but not local control follow-
ing SBRT (20–23). Further experiments in other model systems
are needed to determine if these conclusions extend to other tu-
mor types. In addition, a better understanding of how much the
presence of hypoxia within tumors (and what specific type or
signature of hypoxia) contributes to local failures after SBRT
and whether adjuvant therapies such as vascular-targeted
nanoparticles or high-frequency ultrasound ablation (HiFU)
tumor debulking can increase local control following SBRT may
expand the indications of SBRT to more tumor types and ana-
tomical sites.

Extracellular Matrix and Physical-Mechanical
Properties of the Tumor Microenvironment
and Radiotherapy

The extracellular matrix (ECM) is another key factor in the tu-
mor microenvironment affecting cancer cell survival after radi-
ation. ECM comprises the structural, cellular, and molecular
stromal components including the basal lamina or basement
membrane that physically separate the epithelial compartment

from the stroma (114). The integrin family of receptors, neces-
sary for cell adhesion to the basement membrane, has largely
defined adhesion-mediated signaling between the epithelial
and stromal compartments. Integrin-mediated cell–ECM inter-
actions can enhance radiation and chemoresistance of several
tumor types by activating prosurvival signaling (115–118).
Furthermore, adhesion of tumor cells to ECM proteins modu-
lates the efficacy of molecularly targeted therapy (119,120).
Therefore, a better understanding of the biochemical signaling
pathways from the ECM should lead to new targets for sensitiz-
ing tumors to radiation and other therapies. In addition, investi-
gating the mechanical signals that impact cell survival is now
possible due to advances in the field of biophysical mechanics
in cell biology (121).

Integrins induce biochemical signaling from direct binding
of ECM ligands via multiple possible combinations of integrin
heterodimers and ECM molecules. Further complexity lies in
the specific physical and mechanical properties of individual
ECM molecules, which can enhance integrin signaling by facili-
tating increased ligand-receptor engagement (122). The bio-
physical properties of ECM and tissues play a critical role in
cellular function and signaling (123). Tumors are inherently
stiffer than their normal tissue counterparts, and stiffness itself
has been shown to enhance tumor progression (124). Indeed,
multiple types of receptors and signaling that respond to bio-
physical changes in TME are now evident (114), including the
YAP/TAZ cotranscription factors downstream of the HIPPO
pathway, which have oncogenic properties (125). Signaling via
HIPPO-YAP/TAZ ties developmental pathways regulating prolif-
eration and organ size with cancer pathophysiology. Tumor
stiffness regulates response to growth factor–mediated signal-
ing via YAP/TAZ, demonstrating the broad relevance of this sig-
naling network related to biophysical properties (119).
Advanced 3D models reproducing physiologically relevant
microenvironments and capable of tuning elastic modulus and
microfabricating the size and shape of culture platforms with
“stretch” capability will improve our understanding of the mo-
lecular and mechanical mechanisms underlying cancer and
cancer cell survival mechanisms under physiologic conditions
and enhance the testing of innovative treatment strategies to
combine with radiotherapy.

Predictive Biomarkers for Radiotherapy

Predictive biomarkers that allow rational selection of treat-
ments for individual patients are playing a central role in the
precision cancer medicine revolution (126). While biomarkers
have transformed approaches for systemic cancer treatment,
few predictive biomarkers are currently available for radiother-
apy in the clinic (127,128). In many disease sites, there is consid-
erable heterogeneity in outcomes, both with regard to tumor
control and treatment toxicity. Thus, biomarkers that predict
tumor control probability and normal tissue complication prob-
ability would advance the care of individual patients (129).
Although few biology-informed parameters currently influence
radiation therapy decisions in the clinic, a number of areas of
active investigation promise to deliver novel predictive bio-
markers in the near future (Table 2).

One promising avenue of research for biomarkers predictive
of radiation response relates to the altered function of genes in-
volved in DNA repair. Ionizing radiation kills cells through di-
rect or indirect induction of DNA damage, with DNA double-
strand breaks (DSB) being the most important lesion (130).

R
EV

IEW

334 | JNCI J Natl Cancer Inst, 2018, Vol. 110, No. 4

Deleted Text: ,
Deleted Text: .
Deleted Text: [
Deleted Text: ]
Deleted Text: .[
Deleted Text: ]
Deleted Text: to reduce
Deleted Text: .[
Deleted Text: ]
Deleted Text: .[
Deleted Text: ]
Deleted Text:  
Deleted Text:  
Deleted Text: .[
Deleted Text: ]
Deleted Text: .
Deleted Text: [
Deleted Text: ]
Deleted Text: normalize 
Deleted Text: .
Deleted Text: [
Deleted Text: ]
Deleted Text: -
Deleted Text: ,
Deleted Text: .[
Deleted Text: ]
Deleted Text: .
Deleted Text: [
Deleted Text: ]
Deleted Text: ersu
Deleted Text: .[
Deleted Text: ]
Deleted Text: ,
Deleted Text:  
Deleted Text: -
Deleted Text: , which
Deleted Text: s
Deleted Text: .[
Deleted Text: ]
Deleted Text: -
Deleted Text: -
Deleted Text: .[
Deleted Text: ]
Deleted Text: .[
Deleted Text: ]
Deleted Text: .[
Deleted Text: ]
Deleted Text: .[
Deleted Text: ]
Deleted Text: .[
Deleted Text: ]
Deleted Text: .[
Deleted Text: ]
Deleted Text: ,[
Deleted Text: ]
Deleted Text: -
Deleted Text: .[
Deleted Text: ]
Deleted Text:  
Deleted Text: .[
Deleted Text: ]
Deleted Text: ,
Deleted Text: -
Deleted Text: `
Deleted Text: '
Deleted Text: ,
Deleted Text: ,
Deleted Text: .[
Deleted Text: ]
Deleted Text: .[
Deleted Text: ]
Deleted Text: .[
Deleted Text: ]
Deleted Text: .[
Deleted Text: ]


Cancers with defective DSB repair are, therefore, expected to
display increased sensitivity to radiation. Markers of DSB repair
defects, for example, mutations in or altered gene expression of
DNA repair genes, might therefore be ideal predictive bio-
markers (131–134). Unfortunately, data convincingly linking
mutations in DSB repair genes such as BRCA1 to increased tu-
mor radiosensitivity in the clinic have not yet materialized
(135). Furthermore, recurrent mutations in individual genes are
rare, and DNA damage response and repair networks are com-
plex (136,137). Therefore, comprehensive studies examining the
association of DSB repair pathway alterations and clinical radio-
sensitivity are an important area of future investigation. It is
also possible that tumors with such alterations may be particu-
larly sensitive to combined treatment with radiotherapy and
DNA repair inhibitors, such as those targeting PARP1, ATR, or
CHK1 (138).

Other molecular characteristics of tumors could serve as
potential predictive biomarkers for radiation therapy. For exam-
ple, numerous studies have shown that patients with HPV-
positive head and neck squamous cell carcinomas have
relatively good outcomes after treatment with radiation therapy
alone or combined with chemotherapy, corroborating preclini-
cal work demonstrating key roles for HPV oncogenes in

modulating radiation sensitivity (139,140). Indeed, therapy de-
escalation studies are already underway to test if less intense
treatment can achieve similarly good outcomes with fewer side
effects in this patient population (NCT01084083, NCT01525927,
NCT01716195, NCT01663259, NCT01302834, NCT01898494) (141).
Mutations in cancer driver genes may also affect tumor radiore-
sistance, but have been incompletely explored. Also, gene ex-
pression signatures that predict radioresistance/radiosensitivity
warrant further exploration (142).

In addition to genomics-based biomarkers, the predictive
power of assays that measure classic aspects of radiobiology
also warrants further exploration. For example, functional
assays of DSB, such as c H2AX staining performed on biopsies
before and after in vivo or ex vivo irradiation, could potentially
serve as a direct indicator of patient-specific radiosensitivity
(143,144). Current challenges of using such assays include the
need for representative tumor biopsies and the use of fresh tis-
sue, and more research is needed to develop techniques that
can be more easily adopted in the clinic. Several groups are cur-
rently developing cell-penetrating anti-c�H2AX tracers with the
ultimate aim of using them as PET-based imaging tools to as-
sess differences in DSB repair in radiotherapy patients (145).
Furthermore, it would be useful to identify molecular correlates

Table 2. Future of predictive tumor biomarkers in curative radiation oncology*

Biological parameter
Examples of candidate

biomarkers
Association with radiore-

sistance or radiosensitivity Potential intervention(s) Current clinical status

Number of clonogenic tu-
mor cells or CSCs

Cell surface markers
such as CD44

Higher baseline number of
clonogenic cells or CSCs
correlates with
radioresistance

Higher radiation dose or
radiosensitizer for
high CSC content

Tumor volume is a sur-
rogate for CSC num-
ber and influences RT
dosing in clinical
practice

Accelerated tumor cell
repopulation

EGFR expression Accelerated repopulation of
clonogenic tumor cells
during RT causes
radioresistance

Shortening of overall
treatment time limits
number of clonogenic
cells that need to be
sterilized by RT

HNSCC histology used
as surrogate in clini-
cal practice to guide
accelerated fraction-
ation schemes

Tumor sensitivity to RT
fraction size

No candidate markers
currently exist to pre-
dict a/b of individual
tumors

Some tumor types are asso-
ciated with high sensitiv-
ity to RT fraction size
(low a/b of< 10 Gy)

Hypofractionation (>2
Gy daily fraction size)

Breast or prostate histol-
ogy used as surrogate
in clinical practice to
guide hypo-fraction-
ation schedules

Tumor hypoxia PET/MRI-based imaging
markers

Gene expression
signatures

Tumor hypoxia reduces ra-
diation damage to DNA,
thereby increasing
radioresistance

Combination of RT with
hypoxic radio-sensi-
tizer or dose increase
to hypoxic tumor
regions

Not yet used in clinical
practice

HPV status HPV16 DNA or p16
expression

HPV infection causes radio-
sensitivity, likely through
interfering with DNA
repair

Treatment de-
intensification

De-intensified treat-
ment to reduce toxic-
ity in HPVþ HNSCC in
clinical trials

Intrinsic radiosensitivity DSB repair gene muta-
tions, gene expression
signatures, repair foci
(eg, c-H2AX), ctDNA
response

Variation in ability of tumor
cells to cope with radia-
tion damage may cause
radiosensitivity or
radioresistance

Treatment de-intensifi-
cation or intensifica-
tion, respectively

Not yet used in clinical
practice

Tumor genotype Mutations in oncogenes
such as KRAS, BRAF,
EGFR, etc.

Tumor mutation status
may correlate with radio-
sensitivity or
radioresistance

Treatment de-intensifi-
cation or intensifica-
tion, respectively

Not yet used in clinical
practice

*CSC ¼ cancer stem cells; ctDNA ¼ circulating tumor DNA; DSB ¼ double-strand break; HNSCC ¼ head and neck squamous cell carcinoma; HPV ¼ human papilloma

virus; RT ¼ radiation therapy.
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of a/b ratios, which describe cell killing for tumor and normal
tissues that could be employed to predict dose fractionation de-
pendencies in radiotherapy (129). The use of increased fraction
sizes in tumors with low a/b ratios, such as breast and prostate
cancers, has already advanced into the clinic. However, a/b ra-
tios currently cannot be measured for individual patients. If this
were possible, fractionation regimens could potentially be indi-
vidualized to maximize tumor cell killing while minimizing nor-
mal tissue toxicity.

Identification of predictive biomarkers for radiation therapy
has been hampered by the fact that, except for prostate cancer
studies (146), large multi-omics profiling efforts such as The
Cancer Genome Atlas and the International Cancer Genome
Consortium have by and large not included specimens from
patients treated with radiation therapy. One technical hurdle
for performing such studies is that only small amounts of tumor
tissue are often available for radiotherapy patients. An attrac-
tive approach for overcoming this challenge is the use of liquid
biopsies, including analysis of circulating tumor DNA (ctDNA)
and circulating tumor cells (CTCs) (147,148). An important ad-
vantage of liquid biopsy approaches is the ability to non-
invasively and repeatedly sample molecular aspects of tumors.
Liquid biopsies have a number of potential applications, includ-
ing 1) noninvasive genotyping of tumors being treated with ra-
diation therapy for which no or minimal tissue is available; 2)
quantitation of tumoral heterogeneity as a biomarker; 3) early
response assessment during radiation therapy to allow escala-
tion or de-escalation of treatment; and 4) identification of radio-
graphically occult residual disease after completion of radiation
therapy to identify patients at high risk for recurrence. For ex-
ample, presence of residual circulating tumor-derived EBV DNA
in patients with nasopharyngeal cancer after treatment with ra-
diation therapy predicts outcome (149). Modification of adju-
vant therapy based on post-treatment EBV DNA levels is
currently being explored in a prospective trial (NCT02135042).
Based on recent advances in ctDNA detection technologies
that focus on somatic mutations instead of viral DNA,
similar approaches could likely be extended to most other
cancers (150).

Identification of biomarkers that can predict outcomes prior
to initiating radiation therapy will be an important advance.
However, no single biomarker approach will likely achieve this
goal; therefore, combination biomarkers that include measuring
multiple analytes should be explored. Two such developing
strategies include genomic-adjusted radiation dose (GARD) (151)
and Post-Operative Radiation Therapy Outcomes Score
(PORTOS) (152). Such gene expression–based platforms may be
able to personalize radiotherapy tumor dose or the need for
postoperative radiation. Biomarker studies will need to be per-
formed rigorously and should adhere to “best practices” guide-
lines such as STARD and REMARK (153,154). Any predictive
biomarker that is discovered will need to be validated in inde-
pendent cohorts. Finally, the most rapid progress in this field
will likely be through collaborative efforts and multi-
institutional teams. If successful, predictive biomarkers hold
the promise to transform both our understanding of radiobiol-
ogy and the clinical management of patients treated with radia-
tion therapy.

Conclusions

The field of radiobiology has made and continues to make criti-
cal contributions to science. To continue this work, challenges

to the training and retention of the radiation research workforce
and limitations in radiobiology research funding must be over-
come. The potential for major advances in radiation research
remains high because of the availability of new model systems,
genome editing tools, and technology for genome-wide analy-
ses. Decades of research investigating mechanisms of DNA
damage response to ionizing radiation are now bearing fruit,
with clinical trials combining radiation therapy with radiosensi-
tizers that target these pathways. Continued investment in un-
derstanding mechanisms of tumor and normal tissue response
to radiation can lead to a new generation of clinical trials to im-
prove the therapeutic ratio of radiotherapy. Already, preclinical
studies combining radiation with immunotherapy have led to a
large number of clinical trials, which could transform radiation
therapy from a local treatment to a treatment employed to
achieve systemic tumor elimination. To have maximum impact
for individual patients, predictive biomarkers should be identi-
fied that enable the rational selection of treatments to combine
with radiation therapy. Further research into the radiobiology of
tumor metabolism, cancer stem cells, and the tumor microenvi-
ronment has the potential to translate current knowledge and
future gains to the clinic. Future investment by academic radia-
tion oncology departments, professional societies, the NCI, and
other biomedical research funding groups will ensure that the
radiation research enterprise remains vibrant as a key contribu-
tor to increasing basic science knowledge and improving the
outcomes of cancer patients.
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