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A. Introduction
• Clinical trials
• Limitations
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• clinical investigation

• evaluates the effect (safety/efficacy) of a new 

drug/device/procedure) on human volunteers 

(healthy/patients)

Clinical trial

The Code of Federal Regulations (21 CFR 312.3) defines a
clinical trial as the clinical investigation of a drug that is
administered or dispensed to or used involving one or
more human subjects
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• Patients
• Pathological status
• Drug
• Clinical design
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Experiment: rules & luck
Statistical power
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Population

Sample

Sampling Inference
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Limitations/Bias/Errors

• Time consuming

• Not all factors
• Drop outs

• Patient/volunteer compliance
• Lack in biomarker sensitivity
• Absence of optimization in trial design

• Confounding

• Cost

8
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• The cost of bringing a new pharmaceutical product
to the market has been increasing exponentially in
the last decades, reaching the $2.5 billion

• Of these, $1.5 billion is due the clinical assessment
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• Difficult

• Time

• Cost

Can we find alternatives to predict the outcome 
of a clinical study?
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Albert Anker, Fortune Teller, 1880
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B. In silico Clinical Trials 
(ISCT)
• what
• why

• how
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In silico
… Pseudo-Latin for "in silicon", alluding to the mass 
use of silicon for computer chips
… is an expression meaning "performed on 
computer or via computer simulation" in 
reference to biological experiments
… The phrase was coined in 1989 as an allusion to 
the Latin phrases in vivo, in vitro, and in situ, 
which are commonly used in biology
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… what
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Virtual subjects 

Components

adult, child, elder …

16
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Drug 

plasma levels, clinical response, adverse events…

Pharmacokinetics

Pharmacodynamics
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Pathological status / Disease progress 

type of disease, status ..

18
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Trial design 

type of design, number of arms, sample size, subject 
enrollment criteria, sampling scheme, dosage regimens…

19

Overall: In silico clinical trials

Trial Design Virtual Subjects

Pathological status / Disease Progress

Drug

20
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Allow predicting the outcome of a clinical 

trial and testing any condition that potentially 

affects the outcome, without performing the 

actual study

21
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… why

23

• Dosage regimens & Dose selection

• Study design optimization

• Evaluate different conditions

• Investigate cases not able to be tested in actual practice

• Identify and quantify sources of variability (between- and 

within-subject, inter-occasion variability) 

• Appropriate/reduced sample size
• Optimize benefit and minimize the adverse events 

• Predict in vivo performance
24

Why use ISCT … advantages
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Why use ISCT … question to address
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Why use ISCT … descritpion
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Why use ISCT … validation .. reproducibility
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… how
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The basic idea

• Define the situation (… clinical trial)
• Describe the system (… mathematics)
• Simulate the system (… in silico)

Change sth

Predict the outcome

29

30

Mathematical models

Model: 
- a miniature representation of something
- a system of data, postulates, and inferences 

presented as a mathematical description

Mathematical model: 
- a representation in mathematical terms of the
behavior of real devices and objects

30
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Mathematical formula … a system of …

31

Mathematical models that explicitly take into account the spatial architecture of 
tumors and address tumor development, progression and response to 
treatments.

Model pathology

Organoids, multicellular spheroids and 
early tumor development.

Angiogenesis, vascularized tumor 
growth and tumor treatments

32
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The purpose:

33
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The beginning: 
Model the ‘average’ and ‘individual’ drug performances

34
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Imitate reality by creating a ‘simpler’, but complete version

Drug kinetics Drug action

1. Virtual subject(s)
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Initial conditions

Mathematical description … Model parameters 
(based on mass-balance ODEs)
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Patient i

Sample of patients

1. Between-Subject Variability
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Describe the typical time course of tumor size and quantify the 
interpatient variability

38
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2. Within-Subject Variability

• Circadian rhythm
• Environment
• Physiology changes
• …

Time 

Ki Ki + σj Ki + σj

K i

time

…

39
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2. Pathological status / Disease progress

K i

Disease progress

40
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3. Drug Different drugs è Different models

41
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4. Trial design

42
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Overall: Schematic representation of the classical modeling 
and simulation methodology used in in-silico clinical trials
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Improving Realism via Real-World Data 

Reality

… Improved Realism

Model

44



3/2/24

23

Example: simulations in pediatrics

• The models often include body weight as a covariate

• A certain number of ages are usually sampled uniformly

Observed data

Simulated

45
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Software:
• Use commercial or publicly available

• User created code

Implementation

46



3/2/24

24

47

47

48

Adapted from: Tina Morrison

cc image courtesy: Tina Morrison, 
Division of Applied Mechanics, FDA
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C. Examples
• Clinical studies
• Posology
• Precision dosing
• Research & Development
• Drafting a law

49
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The number of in silico publications by year according to 
Google Scholar

51

In silico trials in drug development process

52
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C1. Clinical studies

53
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• Suggest the appropriate Clinical design

• Sample size estimation

• Waive the need of many clinical studies: Study 

extrapolation

Applications

54
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Phase I study: 
Simulations to determine MTD

Simulations were conducted on six potential dose–toxicity curves

1. F: Flat slope at maximum tolerated dose
2. H1: High-toxicity profile 1
3. H2: High-toxicity profile 2
4. L1: Low-toxicity profile 1
5. L2: Low-toxicity profile 2
6. S: Steep slope at maximum tolerated dose

55

Phase II study: 
Simulations to better define dose–response relationships

To estimate the probability of success for five different study designs

56
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Probability of success

Mean sample size

57

Phase III study: 
Guide group sequential designs

To test an investigational women’s therapy against an active comparator,
using a non-inferiority design with 90% power and a one-sided 2.5%

significance level

Simulations were performed to allow decision making on:
• What stopping rules should be used?

• How many interim analyses should be conducted and when they should 

take place?

• How the robustness of the design would be affected by various assumed 

response rates?

58
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The impact of two possible stopping rules for futility
(inability to demonstrate noninferiority)

Planned sample sizes and numbers of interim analyses

• The O’Brian-Fleming rule requires strong evidence for stopping early, 
but has a smaller impact on the maximum sample size. 

• The Pocock rule more easily allows for stopping early, but tends to lead 
to a larger maximum sample size

59

C2. Posology

60
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Physiologically Based PharmacoKinetic models, PBPK

61

62
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Organ volumes
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C3. Precision dosing

67

Population Pharmacokinetic ModelingTypical Pharmacokinetics

68
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to:
- minimize the tumor burden during the 

treatment period
- while maintaining the WBC population 

above a lower level as a limit of toxicity

Optimizing dosage regimen in cancer 
chemotherapy

71

Dosage 
regimen u(t)

72

The (etoposide) model

Hematological toxicity Antitumor efficacy

Pharmacokinetics

Pharmacodynamics

72
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Determine the optimal dosage regimen u(t)

73

Pharmacokinetics Pharmacodynamics

Simulate different dosage regimens
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Multiple administration è
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C4. Research & Development

75

7676

Marketing 
Authorization

Available 
evidence

MS 
methods

Bridge the gap

76
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Predict the probability of success of a BE 
study relying on in vitro data

(IVIVS)

77

77

78
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Entire in vitro 
profile

Plasma C-t profile

79

80
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Gastric emptying and GI transit times

81
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Sampling scheme
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In vitro dissolution fittings

83

84
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Backward methodology

85

Start from:
Literature C-t data
è

Set/Suggest:
- the appropriate in vitro dissolution profile 

- Dose selection (if different salt/ester)

Backward methodology:

86
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For example:
Start from C-t data at steady state (after multiple 
dosing) 

87

Applications:

Assist the RD department to develop a product 
with the appropriate dissolution characteristics, 
when in vitro data of a comparator product are 
not available.

88

88



3/2/24

45

Reveal the “hidden” in 
vitro performance

89

89

90

In vitro: Almost identical In vivo: Large discrepancy

?

90
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Data from a previous 
BE study

PK 
parameters 

T

PK 
parameters 

R

Dissolution 
model+

Hidden in vitro performance

Modeling framework

91
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In vitro: Experimental

In vivo

… what happened:

In vitro: Modeled (hidden)

92
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Applications:

In situations where:
A. The application of the typical in vitro tests (e.g., 
at pH: 1.2, 4.5, and 6.8) showed high level of 
similarity between the T and R products
BUT:
The in vivo data, showed a high level of 
discrepancy.

B. During drug development (in collaboration with 
the RD group) to assess the anticipated in vivo 
performance è suggest an appropriate 
dissolution profile. 

93

93

Waive the need of clinical/PK 
studies: Study extrapolation 

94
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Applications:

For example:

A. MR products:
A variety of studies are required (fasting, fed, steady-
state, dose-proportionality etc.)
è

The use of modeling/simulation can waive the need 
of performing all or part of the required studies

95

95

Study extrapolation:

Perform a Single dose study è simulate multiple-dose 
studies

96
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Applications:

For example:

A. If in vivo data are available only in case of single 
dose studies, BUT: Regulations require further
knowledge/assessment at the steady-state.

B. Examine if ‘steady-state’ conditions are 
reached.

97

97
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C5. Drafting a law

98
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Greater variability à More difficult to prove BE

The impact of variability on BE 
acceptance

99

99

100

The BE limits are not constant any more

Scaled BE approaches

BE limits = f(variability)

A solution:

100
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1. Highly variable drugs - Scaled bioequivalence limits

Greater variability à Less statistical power

Scaled approaches of the EMA and FDA

101

101

102

2. Study the properties of clinical designs

Sample size re-estimation designs

An ‘ideal’ design:

• should not lead to inflation of the type I error 

• exhibit the highest possible statistical power

102
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D. AI clinical trials

• AI synthesized patients
• Variational Autoencoders (VAEs)
• Generative Adversarial Networks (GANs)

103
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CGI (Computer-generated imagery)

106
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Create virtual subjects from the available data

Actual subjects
Sampled subjects

AI-generated

107

Sampled subjects
AI-generated

+

Hybrid dataset

108
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How it is done

110



3/2/24

56

AI / ML / DL

111

Machine learning

• Supervised learning 

• Unsupervised learning 

• Reinforcement learning 

• …

112
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Supervised Unsupervised Reinforcement

Linear regression
Principal Component 

Analysis
Q-learning

Logistic regression K-means clustering SARSA

Linear discriminant 

analysis

KNN (k-nearest 

neighbors)
Policy iteration

Decision trees Hierarchal clustering
Monte Carlo tree 

search

Naive Bayes Anomaly detection Bellman Equations

Support-vector 

machines
Neural Networks

Markov Decision 

Process 

113

Supervised learning 

A) linear regression, B) logistic regression, C) deep neural 
network, d) support vector machine, e) decision tree, f) 
random forest

114
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Unsupervised learning 

A) k-means cluster analysis, B) principal component analysis, C) linear 
discriminant analysis

115

Reinforcement 
learning 

116
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Deep learning
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VAEs

(Variational Autoencoders, 2013)
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GANs
(Generative Adversarial Networks, 2014)
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• decrease in human exposure
• reduction in dropouts
• significantly shorter study completion times

• lower complexity in the clinical trial
• reduced workload for physicians and clinics

• significantly lower costs for sponsors or health 
agencies. 

Less actual human data can be used to 

achieve similar, and even better, results
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Ben-Hur (1959, 11 Oscars)

The Lord of the Ring III (2003, 11 Oscars)

Generated

Actual
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