

Outline	
<u>A. Introduction</u> • Clinical trials • Limitations	
<u>B. In silico Clinical Trials</u> • what • why • how	
<u>C. Examples</u> Clinical studies Precision dosing Research & Development Drafting a law	
 <u>D. Al clinical trials</u> Al synthesized patients Variational Autoencoders 	2

- Patients
- Pathological status
- Drug
- Clinical design

In silico

... Pseudo-Latin for "in silicon", alluding to the mass use of silicon for computer chips

... is an expression meaning "**performed on computer or via computer simulation**" in reference to biological experiments

... The phrase was coined in 1989 as an allusion to the Latin phrases **in vivo**, **in vitro**, and **in situ**, which are commonly used in biology

ORIGINAL ARTICLE	Olden: CPT Planacamérika Syst. Planacat. (2018) 7, 215- C.2.218/CDT Magto-mored	in : 27; ax:10.1002/sp4.12276	vilico assessment of biomedical ducts: The conundrum of rare but -so rare events in two case studies	Proc Medic Part H J Coperating in Medice 2017, Vol. 2016, 455-446 © Pilede 2017 Reprints and permittions Incol Instrumentations are Incol Instrumentations Instrumentation SAGE
RESEARCHARTICLE Using simulat vaccination tr	I: An Assessment of Mo of Anemia Treatment Al ialysis	odel-Based gorithms	¹ Viceconti ¹ , Claudio Cobelli ² , Tarek Haddad ³ , Adam H Kovatchev ⁴ and Mark Palmer ³	limes ³ ,
Matt David Thomas Hitchings ¹ * Robocca Emoman Grais ² Marc I	ineitch ¹	Ø. F 6	JS ONE	
1C Nat Resolut 20 Noomber 201 Robert 20 Appet 218 Ausput 2 Noomber 201 DOE 10.0000.mask TUTORIAL IN RIOSTATISTICS Ularing circumplation studies to explore	WILEY Statistic	Check for updates	REEXMONNOLE Betting on the fastest horse: Usi simulation to design a combinat intervention for future projects i Maharashtra, India	ng computer ion HIV n
Using simulation studies to evaluate	statistical methods		Kelly V. Ruggles ¹ *, Anik R. Patel ² , Stephen Schensul ³ , Jean Sc Kimberly Nucifora ⁵ , Qinlian Zhou ⁴ , Kendali Bryan ⁶ , R. Scott Br	chensul ⁴ , raithwaite ⁵
PERSPECTIVE Improving Realism in Clinical Trial Si Real-World Data	mulations via	Trials Usi Endpoint Disease V	gy in mulation of Pivotal Clinical ng Linked Models for Multiple in Chronic Obstructive Pulmonary Vith Roflumilast	ACCCP The Internet of Check Phonesolution (1990) 401 2017, Internet of Check Phonesolution (1990) 401 2017, Internet of Check of Check Phonesolution (1990) 401 (1990)
CLINEAR PHARMACOLOGY & THERMAEUTICS VOLUME OD NUMBER OD MONTH 2017	Designs	Axel Facius, and Gezim L	PhD ¹ , Andreas Krause, PhD ² , Laurent Claret, PhD ² , Rei ahu, PhD ¹	ne Bruno, PhD²,
Can Be Made More Informative L Modeling and Simulation Approa Philip J. Love ² , Martin Fink ¹ and Mark N. Millon ²	lsing ches	_	Models of Models: A Route for Cancer Trea Drug Development	Translational atment and
REVERVE ARTICLE REVERVE ARTICLE In Finn-In Fine Correlation Using In Silico Modeling of Metabolics, and Interfinal Metabolism	Physiological Properties,	Schuber et al DMC Medical Diversion DOI 10.118/01/2008-01/2008-01/2008-01 RESEARCH ARTI Virtual patier reasoning sl matter? A co	BAC Medical Education in a Comment El Commentaria Commentaria Ints in the acquisition of clinical Image and inits: onders presentation mode	Werling', Bodo M. H. Lange'
Sung-Min Choi ¹ , Chin-Yang Kang ¹ , Beem-Jin Lee ² and Jun-Bom Park ^{1,3,*}		Fabian Schubach ¹¹ O, Matth	as Cool ² , Gitz Fabry ² , Wemer Yach ¹ and Martin Boeler ¹	

Phase II study: Simulations to better define dose-response relationships To estimate the <u>probability of success</u> for five different study designs					
Design		Desig	n options		
	Dose–response model	Response adaptive randomization	Arm dropping	Early stopping criteria [†]	
Design A	No	No	No	No	
Design B	Yes	No	No	No	
Design C	Yes	Yes	No	No	
Design D	Yes	Yes	Yes	No	
Design E	Yes	Yes	No	Yes	

Probability of success

Design		Dose-r	esponse curves	
	Null	C1	C2	U-shaped
Design A	0.15	(0.62)	(0.73)	0.83
Design B	0.15	0.61	0.72	0.82
Design C	0.04	0.56	(0.73)	0.88
Design D	0.13	0.60	0.71	0.82
Design E	0.05	0.58	0.71	0.89

Mean sample size

Design		Dose-response curves		
	Null	C1	C2	U-shaped
Designs A/B/C [†]	640	640	640	640
Design D	554	590	585	614
Design E	444	549	520	492 🔶

The impact of <u>two possible stopping rules</u> for **futility** (*inability to demonstrate noninferiority*)

- The **O'Brian-Fleming** rule requires strong evidence for stopping early, but has a smaller impact on the maximum sample size.
- The **Pocock rule** more easily allows for stopping early, but tends to lead to a larger maximum sample size

Planned sample sizes and numbers of interim analyses

Number of interim	Analysis	O'Brien	-Fleming	Pocock	
analyses		30% response rate	40% response rate	30% response rate	40% response rate
Two	Interim 1	465	531	509	582
	Interim 2	697	797	764	872
	Final	929	1062	1018	1163
Three	Interim 1	376	429	416	476
	Interim 2	563	644	624	713
	Interim 3	751	858	832	951
	Final	939	1073	1040	1189

Blood	Mouse	Rat	Rabbit	Monkey	Dog	Human
flows	-	1.3	-	72	45	700
Brain	1.8	13.8	177	218	309	1450
Liver	1.3	9.2	80	138	216	1240
Kidneys	0.28	3.9	16	60	54	240
Heart	0.09	0.63	9	21	25	77
Spleen	1.5	7.5	111	125	216	1100
Gut	0.91	7.5	155	90	250	750
Muscle	-	0.4	32	20	35	260
Adipose	0.41	5.8	-	54	100	300
Skin						
(mL/min)						

Organ volumes						
Organ volumes	Mouse	Rat	Rabbit	Monkey	Dog	Humar
Brain	-	1.2	-	-	72	1450
Liver	1.3	19.6	100	135	480	1690
Kidneys	0.34	3.7	15	30	60	280
Heart	0.095	1.2	6	17	120	310
Spleen	0.1	1.3	1	-	36	192
Lungs	0.1	2.1	17	-	120	1170
Gut	1.5	11.3	120	230	480	1650
Muscle	10.0	245	1350	2500	5530	35000
Adipose	-	10.0	120	-	-	10000
(mL)						

Applications:

In situations where:

A. The application of the **typical in vitro tests** (e.g., at pH: 1.2, 4.5, and 6.8) showed high level of **similarity** between the T and R products **BUT**:

The in vivo data, showed a **high level of discrepancy**.

B. During **drug development** (in collaboration with the RD group) to assess the anticipated in vivo performance → suggest an appropriate

Applications:

For example:

A. If in vivo data are available only in case of single dose studies, **BUT:** Regulations require **further** knowledge/assessment at the **steady-state**.

B. Examine if '**steady-state**' conditions are **reached**.

Supervised	Unsupervised	Reinforcement
Linear regression	Principal Component Analysis	Q-learning
Logistic regression	K-means clustering	SARSA
Linear discriminant analysis	KNN (k-nearest neighbors)	Policy iteration
Decision trees	Hierarchal clustering	Monte Carlo tree search
Naive Bayes	Anomaly detection	Bellman Equations
Support-vector machines	Neural Networks	Markov Decision Process

"Machine Learning is a new technology"

Logistic regression -1958 Hidden Markov Model -1960 Stochastic gradient descent -1960 Support Vector Machine -1963 k-nearest neighbours -1967 Artificial Neural Networks -1975 EM algorithm-1977 Decision tree -1986 Random forest -1995

