In Silico Clinical Trials

Vangelis D. Karalis

Department of Pharmacy
School of Health Sciences

National and Kapodistrian University of Athens

Outline

A. Introduction
e Clinical trials
e Limitations

B. In silico Clinical Trials
e what
*  why
* how

C. Examples
Clinical studies

» Precision dosing
* Research & Development
Drafting a law

D. Al clinical trials
» Al synthesized patients
» Variational Autoencoders

3/2/24



A. Introduction

e (Clinical trials

 Limitations

Clinical trial

clinical investigation
evaluates the effect (safety/efficacy) of a new
drug/device/procedure) on human volunteers

(healthy/patients)

The Code of Federal Regulations (21 CFR 312.3) defines a
clinical trial as the clinical investigation of a drug that is
administered or dispensed to or used involving one or
more human subjects
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Patients
Pathological status
Drug

Clinical design

Experiment: rules & luck
'\

Statistical power
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Population

Sampling Inference

N

Limitations/Bias/Errors

Time consuming

Not all factors

Drop outs

Patient/volunteer compliance

Lack in biomarker sensitivity

Absence of optimization in trial design

Confounding

 Cost
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e Contents lists available at ScienceDirect .mm
R
Pl i) Journal of Health Economics
& il
journal homepage: www.e vier cate/ecc ase

Innovation in the pharmaceutical industry: New estimates of R&D @mw“k
costs

Joseph A. DiMasi**, Henry G. Grabowski", Ronald W. Hansen

» The cost of bringing a new pharmaceutical product
to the market has been increasing exponentially in

the last decades, reaching the $2.5 billion

« Of these, $1.5 billion is due the clinical assessment

9
=)  Difficult
 Time
« Cost
Can we find alternatives to predict the outcome
of a clinical study?
10
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N

Albert Anker, Fortune Teller, 1880

11

B. In silico Clinical Trials
(ISCT)

 what
 why
e how

12
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In silico

... Pseudo-Latin for "in silicon”, alluding to the mass
use of silicon for computer chips

... IS an expression meaning "performed on
computer or via computer simulation” in
reference to biological experiments

... The phrase was coined in 1989 as an allusion to
the Latin phrases in vivo, in vitro, and in situ,
which are commonly used in biology

13

... what

14
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In silico clinical trials

From Wikipedia, the free encyclopedia

A
An in silico clinical trial is an individualised computer simulation used in the development or regulatory evaluation of a medicinal product, device, or
intervention. While completely simulated clinical trials are not feasible with current and of biology, its would be
expected to have major benefits over current in vivo clinical trials, and research on it is being pursued.
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History [edit]

The term in silico indicates any use of computers in clinical trials, even if limited to management of clinical information in a database.!'!

Rationale [edt)

The traditional model for the development of medical treatments and devices begins with pre-clinical development. In laboratories, test-tube and other
in i establish the p! ibility for the efficacy of the treatment. Then in vivo animal models, with different species, provide guidance on
the efficacy and safety of the product for humans. With success in both in vitro and in vivo studies, scientist can propose that ciinical trials test
whether the product be made available for humans. Clinical trals are often divided into four phases. Phase 3 involves testing a large number of
people. 2l When a medication fails at this stage, the financial losses can be catastrophic.

Predicting low-frequency side effects has been difficult, because such side effects need not become apparent until the treatment is adopted by many
patients. The appearance of severe side-effects in phase three often causes development to stop, for ethical and economic reasons.2I“I5] Also, in
recent years many candidate drugs failed in phase 3 trials because of lack of efficacy rather than for safety reasons.?%! One reason for failure is that
traditional trials aim to establish efficacy and safety for most subjects, rather than for individual subjects, and so efficacy is determined by a statistic of
central tendency for the trial. Traditional trials do not adapt the treatment to the covariates of subjects:

« Taking account of factors such as the patient's particular physiology, the individual manifestation of the disease being treated, their lifestyle, and
the presence of co-morbidities. “I(]

« Compliance, or lack thereof, in taking the drug at the times and dose prescribed. In the case of a surgically implanted device, to account for the
variability in surgeons’ experience and technique, as well as the particular anatomy of the patient.I”) However, adjusting the evaluation of the study
for noncompliance has proved difficult. Such adjustments often bias the results of the study, and so many health authorities mandate that clinical
trials analyse the data according to the intention to treat principle.

15

Components

Virtual subjects

adult, child, elder ...

Physiology

Biochemistry

Tissue
solubility

= & =

Model equations

16
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Drug

plasma levels, clinical response, adverse events...

—_—

Pharmacokinetics

Pharmacodynamics

17

Pathological status / Disease progress

type of disease, status ..

18
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Trial design

type of design, number of arms, sample size, subject
enrollment criteria, sampling scheme, dosage regimens. ..

P
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Allow predicting the outcome of a clinical

trial and testing any condition that potentially
affects the outcome, without performing the

actual study

21
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... why

23

23
Why use ISCT ... advantages Uitations/Bias/Errors
- Dosage regimens & Dose selection S
« Lack in biomarker sensitivity
+ Study design optimization ——
+ Evaluate different conditions
+ Investigate cases not able to be tested in actual practice
+ |dentify and quantify sources of variability (between- and
within-subject, inter-occasion variability)
» Appropriate/reduced sample size
* Optimize benefit and minimize the adverse events
* Predict in vivo performance
24
24
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Why use ISCT ... question to address

How likely is a trial to succeed?

What is the optimal dosing and treatment schedule for a
particular indication?

What is the expected range of responses across doses?

How will a change in inclusion/exclusion criteria affect outcomes?
How frequently should the response be measured?

What is the impact of poor compliance or concomitant disease?

Should drug development be stopped if the results might not
support a competitive drug?

Can we shorten Phase 1 and Phase 2 clinical trials?
Can we reduce the cost of the next trial?

Will the drug be successful in Phase 3?

25

Why use ISCT ... descritpion

26
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Why use ISCT ... validation .. reproducibility

|||||

27

27

... how

28

28
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The basic idea

» Define the situation (... clinical trial)
» Describe the system (... mathematics)
« Simulate the system (... in silico)

Change sth

Predict the outcome

29

Mathematical models

Model:

- a miniature representation of something

- a system of data, postulates, and inferences
presented as a mathematical description

Mathematical model:

- a representation in mathematical terms of the
behavior of real devices and objects

30

30
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nllathematical formlh

F..=ma

net externa
N onobject = mass of object x

A+B=A"+PB

S V. [S]
E+S_ZES_E+P = V =—"H——
o e K, +[S]

\_

/ a system of ... \
1

- airflow * downforce

\ B

31

treatments.

(@

Organoids, multicellular spheroids and
early tumor development.

Model pathology

Mathematical models that explicitly take into account the spatial architecture of
tumors and address tumor development, progression and response to

Angiogenesis, vascularized tumor
growth and tumor treatments

32
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The purpose:

Trial Design - Virtual Subjects
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Concentration (yg/mL)

The beginning:
Model the ‘average’ and ‘individual’ drug performances
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1. Virtual subject(s)

Imitate reality by creating a ‘simpler’, but complete version

Drug kinetics Drug action

TUMOR BIOMARKER

35

35
Mathematical description ... Model parameters
(based on mass-balance ODEs)
GI: Parent drug i‘” i1
BLP| Ter 2

Mo _ g vy, v, —Ma .

dt MM, +M,,
Central compartment: Parent drug
dcC M M

d;’P =K,- VGI - C],P '(Kf +Kcl,P) _KIZ,P 'Cl,P + K21,P : VZEP

P LP
Central compartment: Metabolite
dc,, _K _CLPJ/LP K. .C +MMO. M,
- el ,M M

dt Vl,M VI,M MMso + MGI
Peripheral compartment: Parent drug
sz,P

dt =Kip Cop Vip =Ky p- My p

C,(0)=C,(0)=C,,(0)=0

1 (0= (0)=C,,,(0) Initial conditions
M, (0)=F-Dose

36
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1. Between-Subject Variability

patint 'ﬁ‘ 'I',w '”\w

Sample of patients

Model parameter K;

value

37

37

Describe the typical time course of tumor size and quantify the
interpatient variability

X PATIENT 1 PATIENT 2 PATIENT 3 PATIENT 4 PATIENT §
Individual TUMOR A TUMOR A TUMOR 8 TUMOR 8 TUMOR 8 t
observations ey
o .
N
@
§
e
Time
Covariate submode!
TUMOR A TUMOR B
Population e __— Typical (population) profile
model 8 .
3 = 3 4
5 . P 1 el =44 Inter-patient variability
E . L e oy UV
‘
Time
PATIENT 1 PATIENT 2 PATIENT 3 PATIENT 4 PATIENT 5
Individual TUMOR A TUMOR A TUMOR B TUMOR 8 TUMOR 8
predicted fits © =
N -
@ » - . . o> Residual error
g 3
=
Time

T8(1), = Ts'mr"’[(lm ).)xl] ’@

38
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2. Within-Subject Variability

» Circadian rhythm
» Environment
» Physiology changes

Time
i i .
Ki Ki+ oj Ki+ oj
X
{
P —
_time

39

2. Pathological status / Disease progress

125 100 75 50 25 0
Glomerular filtration rate (mL/min)

T

Disease progress

= 100 — Drug A: Kidney clearance only

g & 80- — Drug B: Non-kidney clearance only
s £ Drug C: Kidney and non-kidney
-0 J s

S » 60 clearance

28

£% 40

58

E 204

40
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3. Drug

Different drugs =» Different models

One compartment

Two-compartment (P)

Two-compartment (M)

Kizp| ;------, y

s

Koy p| *-----?

Tissues
Ti

Kizp| .

Kaip| *-

Tissues

Tissues

Ki2p| .-

Kop| *-

Tissues

SRS, | S SN PSS S SR SR R SR

41

41

4. Trial design

f Virtual

population

Random
assignment to
conditions

‘ Group A ’ %

l Group B l

42

42
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Overall: Schematic representation of the classical modeling
and simulation methodology used in in-silico clinical trials

-
A. Generate random population using
Monte Carlo simulations

Individual Concentration - time data

oF C. Repeat the ‘A’ & ‘B’ procedures

L ! i e for thousands to million of times
( .
B. Construct a simulated study
Use appropriate statistical models
N

43
43
Improving Realism via Real-World Data
... Improved Realism
Model — “

44
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Example: simulations in pediatrics

» The models often include body weight as a covariate

» A certain number of ages are usually sampled uniformly

. —roTr T T
Simulated 0 20 40 60 80 100

I 1000 samples

100 samples

Observed data

25
Frequency
0 10 20 30

Frequency
15

© 8
e I T T T T 1 E,‘ _8_1
0 20 40 60 80 100 3
g8 I:H]
Weight, kg -
45
Implementation
Software:
+ Use commercial or publicly available
Yl LixoFT [NoNMeM?
Phoenix WinNonlin CERTARAr)
- User created code ‘R ooy B PUtHON
MaTL
46
46
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0 EUROPEAN MEDICINES AGENCY

SCIENCE MEDICINES HEALTH

Modelling and Simulation
Working Party

The Modelling and Simulation Working Party (MSWP) provides
support to the European Medicines Agency's scientific committees
and working parties on modelling and simulation relating to
medicines, including the Committee for Medicinal Products for
Human Use (CHMP), the Paediatric Committee (PDCO) and the
Scientific Advice Working Party (SAWP). It also supports more
general methodological discussions and qualification procedures
regarding modelling and simulation.

47

2019 Conference: The Role of Digital Evidence
FDA U S FOOD & D RU G to Support Personalized Patient Healthcare.

ADMINISTRATION

S s

2017 BMESIFDA
Frontiers in Medical Devices Conference

Adapted from: Tina Morrison
Concept of “In Silico Clinical Trials”

-
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In silico Clinical Trials

Variability
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.
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0~ )? cc image courtesy: Tina Morrison,

LY Division of Applied Mechanics, FDA
Physical Modeling Bayesian Statistics
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C. Examples

* Clinical studies

* Posology

* Precision dosing

* Research & Development
Drafting a law

49

49

In silico assessment of biomedical
ot T e Pt SR SR 0110104 7 ucts: The conundrum of rare but
0 rare events in two case studies

ORIGINAL ARTICLE

RESEARCH ARTICLE The Virtual A ia Trial: An A of Model-Based |yiceconti', Claudio Cobelli?, Tarek Haddad®, Adam Himes?,
Using simulat In Silico Clinical Trials of Anemia Treatment Algorithms (ovatchev* and Mark Palmer’

in Patients With Hemodialysis

Daris K. Fundinge™, Ace Topping, Fanz KappeP, Skphan Thissen’ nd Peer Kotanka'

vaccination tr

Matt David Thomas Hitchings'*, "

1 s SN
- e, e 1) ——
g Pomimean v, Betting on the fastest horse: Using computer
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. p— . B L. Maharashtra, India
Using studies to statistical methods e’ s st st
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40,000 T

The number of in silico publications by year according to

Google Scholar
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In silico trials in drug development process

A

Therapeutic Area
Knowledge: Disease
Progression &
Target Response

Profile \/ /

Preclinical &

Early Development:
PK-PD, Systems
Biology M&S

Low

Preclinical
\

Toxicology\ | Human
PK \|MTD, PK

E-R /

Biomarker /|Biomarker,
/| Tolerability, E—R/
7

Simulation-Guided
(Adaptive) Phase Il

Simulation & Optimization
of Phase Ill Trial Designs

| lla Ib

Designs: Early Pop PK, E-R for
Probability of Success & Labeling and
Dose-Response Confirmatory
Efficacy Support
Increasing
Proof of Concept: Prior
Probability-Based Information
Decision Rule
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\ 1l v
\ m— ) )\
\_ | Biomarker, Efficacy, "\ |Efficacy, \ New \\

\; Tolerability E-R
/| Dose-Response

12

3 /|Special /
Covariates, Pop PK?' Populations // Indications  /

Safety & Dose \ | Formulations \
/| Bridge to New /

I 74

52
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C1. Clinical studies

53

Applications

» Suggest the appropriate Clinical design
+ Sample size estimation

* Waive the need of many clinical studies: Study

extrapolation

54
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Phase | study:
Simulations to determine MTD

Simulations were conducted on six potential dose—toxicity curves

@
3 >
28
o R
o2
20
= £
=
8E
0=
a -
Dose (mg/kg)

F: Flat slope at maximum tolerated dose
H1: High-toxicity profile 1

H2: High-toxicity profile 2

L1: Low-toxicity profile 1

L2: Low-toxicity profile 2

. S: Steep slope at maximum tolerated dose

oakrwn=

55

Phase Il study:
Simulations to better define dose-response relationships

To estimate the probability of success for five different study designs

Design Design options
Dose-response Response adaptive  Arm dropping Early stopping criteria*
model randomization

Design A No No No No

Design B Yes No No No

Design C Yes Yes No No

Design D Yes Yes Yes No

Design E Yes Yes No Yes

56
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Probability of success

Design Dose-response curves

Null 1 Q- U-shaped
Design A 0.15 {062 ) {073} 0.83
Design B 0.15 061 072 0.82
Design C 0.04 0.56 (073
Design D 0.13 0.60 07 0.82
Design E 0.05 058 071 0.89

Mean sample size

Design Dose-response curves

Null c1 c2 U-shaped
Designs A/B/C’ 640 640 640 640
Design D 554 590 585 614

Design E 549 520 492

57
Phase lll study:
Guide group sequential designs
To test an investigational women’s therapy against an active comparator,
using a non-inferiority design with 90% power and a one-sided 2.5%
significance level
Simulations were performed to allow decision making on:
* What stopping rules should be used?
* How many interim analyses should be conducted and when they should
take place?
* How the robustness of the design would be affected by various assumed
response rates?

58
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Number of interim Analysis

analyses

Two Interim 1
Interim 2
Final

Three Interim 1
Interim 2
Interim 3
Final

The impact of two possible stopping rules for futility

(inability to demonstrate noninferiority)

O’Brien-Fleming

30% response rate
465
697
929
376
563
751
939

40% response rate
531

797

1062

429

644

858

1073

* The O’Brian-Fleming rule requires strong evidence for stopping early,
but has a smaller impact on the maximum sample size.

* The Pocock rule more easily allows for stopping early, but tends to lead
to a larger maximum sample size

Planned sample sizes and numbers of interim analyses

Pocock
30% response rate  40% response rate

509 582
764 872
1018 1163
416 476
624 713
832 951
1040 1189

59

C2. Posology

60

60
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Physiologically Based PharmacoKinetic models, PBPK

61

Input Parameters Required in PBPK Models

Species specific
« tissue volume (V) - 3 Fabs, Ka
. QL, V1i
Flow rates (Q) Xoil +
Compound specific
’ * tissue partitioning (Kp)
+ CL (hep, microsomes)

VENOUS

* protein binding
\ * physicochemical descript.

Qlad, Viad Kpad

Q.. VL. Kp.

31
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Blood flow
Blood Mouse Rat Rabbit Monkey Dog Human
flows - 13 ; 72 45 700
Brain 1.8 13.8 177 218 309 1450
Liver 13 9.2 80 138 216 1240
Kidneys  0.28 3.9 16 60 54 240
Heart  0.09 0.63 9 21 25 77
Spleen 15 75 111 125 216 1100
Gut  0.91 75 155 90 250 750
Muscle - 0.4 32 20 35 260
Adipose 0.41 5.8 - 54 100 300
Skin
(mL/min)

32



Organ volumes

Organvolumes Mouse Rat Rabbit Monkey Dog Human

Brain _ 192
Liver 13 196
Kidneys 434 3.7
Heart 9095 1.2
Spleen g 4 13
Lungs ¢ 4 2.1
Gut 45 11.3
Muscle 10.0 245
Adipose } 10.0
(mL)

100
15
6
1
17
120
1350
120

135
30
17

230
2500

72
480
60
120
36
120
480
5530

35000
10000

1450
1690
280
310
192
1170
1650
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C3. Precision dosing

67

Typical Pharmacokinetics Population Ph_armacokmetlc Modeling

LR
w L]
w

o
=a

250 1| 250] 2| 250 3
125

~
S o

N
o o
=

s £
. e 8’ 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20
i = 250 5| 20 6| 250 7
<. = 125% 125} 12.5}’\.\'_1'\.\‘_
3 o
g, Y £ ol - oy Pe
| [} 0 5 10 15 2 0 5 10 15 20 0 5§ 10 15 2
3 . S 250 9] 250] 0] 250 P
1 O 125 r‘ E [ 125 125
N R 0 0
- 0 05 10 15 2 0 5 10 15 20 0 5 10 15 20
Time (h)

68

3/2/24

34



3/2/24

69

69

uoleJjuaduo)

70

Time

70

35



Optimizing dosage regimen in cancer
chemotherapy

to:

- minimize the tumor burden during the
treatment period

- while maintaining the WBC population
above a lower level as a limit of toxicity

Il

71
The (etoposide) model
Dosage
regimen u(t)
Pharmacokinetics
Pharmacodynamics
Hematological toxicity Antitumor efficacy
72
72
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\ Pharmacokinetic

modeling

dey(t)

Determine the optimal dosage regimen u(t)

dt

d":(f)_
dar

u(t)
—(ky + k) () +— ¢(0)=0.
"
"
kn'y-mr)—k:-c:(r) (0)=0

Pharmacodynamic-Efficacy Modeling |

Although clinical tumors are heterogeneous, herein they were considered
not only througl their growth but also after being perturbed by
an anticancer drug. Then, we assumed that this tumor grows according to a
type growth ion and that the cell loss term, due to the action of

y ic drug, on the effective drug in the tumor site:

dn(t)
- - Aen(t) In[0/n(t)] = k+[cy(t) = Cagy |- n(t) Hlcs(t) = Cugy]  1(0) = no

n(f) denotes the number of tumor cells at time ¢, and n.denotes the initial size of
the tumor at = 0.

Pharmacodynamic-Toxicity Modeling

The WBC count differential equation becomes:

aw(t)
=le=v-wi)-u-wit) q-1)
dt
73
Simulate different dosage regimens
Pharmacokinetics Pharmacodynamics
c ‘ ‘
kel
Single dose & g & |
5 ‘ g
T'ime' Time
§ | | |
Multiple administration =» E il
5 :
- e

74
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C4. Research & Development

75

75

Bridge the gap
Available Marketing
evidence Authorization
MS
methods

76
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Predict the probability of success of a BE
study relying on in vitro data
(IVIVS)

77
In vitro dissolution fitting In vivo PK model
™
1 I ,
’““l -
i H puera
e :
Utersture / NUMEto clot G+ data
Model parsmeters for T and R PX parameters for T ard R
2
°
2
Jolnt in vitro - in vivo Simulations Y
Y
Gastrointestinal transit scenarios 3
W Fa «
5|8
E 3
Y 2
In vivo profile s 8
2
Clinical design
* & . T
1 ]
it ;
e
Bicequivalence outcoms
Probability of success
DECISION
78
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pH=1.2
100
g,(, //"’—/'/
H
»
0
o ; © s 2 ®x »
time (h)
pH=4.5
10

% Dissolved
o8 &8

o s . 13 2 3 »
time (h)
pH=6.8
10
1
.
o
]
& w
®

I
% Dissolved

* Cumutabve dasaved in vero syssem

Entire in vitro
profile

- time: in o

)y 4

Concentration (mg/L)

g

g 2
T——

=

lasma; C+t profile

200 400 600 800 1000 1200
Time (min)

1400

79
79
Sample size ¢ — Sampling scheme
Within-subject |/ /| Between-subject
variability - s variability
Gastrointestinal transit
scenario

80

80
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Gastric emptying and Gl transit times

Location Mean Transit Time (Minutes)
1 2 3 4 5
Stomach 10 20 30 45 60
Small intestine 180 200 215 240 265
Large intestine 1970 1940 1915 1875 1835

81
81
Sampling scheme
£ £ 3
- 8 £.
5 1) :
] - ]
|
Design Sampling Times (in Minutes)
Sparse 0 10 40 60 90 160 240 480 720 1440
Typical 0 10 20 40 60 90 120 180 240 360 480 720 960 1440
Dense 0 10 20 40 60 80 100 120 150 180 240 360 480 600 720 960 1440
82
82
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In vitro dissolution fittings
"74 e . ; $ 1 e i
/ “ ¥ 4 ¢
. / g
j i/
$ -y g /
‘ pH: 1.2 ‘ pH: 4.5 » pH: 6.8
Sl : SRS Pl AaNE LGl £ O
(a) (b) (e)
83
83
’ Test
asif ' ~Reference
= .’\ = 3
z 1\
2.l \ i
§. \ § .
E g
Sl 3
. \\
~ N
: - l'im-l(mln] - SR e
84
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Backward methodology

85

85

Backward methodology:

Start from:

Literature C-t data

>

Set/Suggest:

- the appropriate in vitro dissolution profile

- Dose selection (if different salt/ester)

86

86
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For example:

dosing)

Contumtrttn tome protle

¥ o om0 s 00 w0 360 0 400 40 1000

Time (min)

Start from C-t data at steady state (after multiple

N Comussne S11sved o 3ytem

0 a0 &0 80 w0 m w0

87
Applications:
Assist the RD department to develop a product
with the appropriate dissolution characteristics,
when in vitro data of a comparator product are
not available.
88
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Reveal the “hidden” in
vitro performance

89

89

In vitro: Almost identical In vivo: Large discrepancy

" — 40

100 =

20 o € 35
X ® o 30
<, £
S w ?25
E w0 20 )
S - | N - T
S 15
] - R u = ——R
= . c
(=) @

o e s

5ol
0 8 0
o 10 20 30 0 50 6 70 0o 10 20 30 4 S0 6 70 80
Time (min) Time (h)
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Modeling framework

______________________________________

PK

parameters
. ’ T
Data from a previous =

BE study N PK

=== ==========u

+ Dissolution
parameters
R model
\\\ — ’,/
L
Y

Hidden in vitro performance

91
91
... what happened:
In vitro: Experimental
~ - -
AA&
S .
e In vivo
gx _u
10 E 35
*o 2 m % e e o 30
27 Time (min) .o .E- 25
< S S 2
d ’ S ~ E 15 - T
. i € w0 "
In vitro: Modeled (hidden) | &:
o
% o ‘ (] 10 20 30 40 50 60 70 80
80 Time (h)
§ 70 -
:bu
.g 50
S a0 - T
[=]
Q3 - R
a2
10
0
1] 10 20 30 40 50 &0 70
Time (min)
& = 92
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Applications:

In situations where:

A. The application of the typical in vitro tests (e.g.,
at pH: 1.2, 4.5, and 6.8) showed high level of
similarity between the T and R products

BUT:

The in vivo data, showed a high level of
discrepancy.

B. During drug development (in collaboration with
the RD group) to assess the anticipated in vivo
performance = suggest an appropriate o

93

Waive the need of clinical/PK
studies: Study extrapolation

94
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Applications:

For example:

A. MR products:

A variety of studies are required (fasting, fed, steady-
state, dose-proportionality etc.)

>

The use of modeling/simulation can waive the need

of performing all or part of the required studies

95

95

Study extrapolation:

Perform a Single dose study =» simulate multiple-dose
studies

30

0 6 12 18 24 30 36
Time (hr) T

96

96
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Applications:

For example:

A. If in vivo data are available only in case of single
dose studies, BUT: Regulations require further
knowledge/assessment at the steady-state.

B. Examine if ‘steady-state’ conditions are
reached.

97

97

C5. Drafting a law

0 EUROPEAN MEDICINES AGENCY =) /A

98

98
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The impact of variability on BE
acceptance

Greater variability — More difficult to prove BE

)
—@®— v f 1 X
i i
I || | | L
80.00 100 125.00 80.00 100 125.00
Test / Reference Test / Reference

99

99

A solution:

Scaled BE approaches

The BE limits are not constant any more

‘ BE limits = f(variability) |

2 o4
2
é 128 T e a B £
e £ S 'IT 1T T TTTTY
8 1.00 w100 |
OO oo e SRS o o wm i 0.80 [—— Pt 08 X
0.60° 0.60 i — e |
0 20 30 0 50 60 10 120; % 40 80 60
ANOVA-CV% ANOVA-CV% 0 10 20 % & s ® M ®
CV,g (%)
100
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1. Highly variable drugs - Scaled bioequivalence limits

100p——
3 80
8
8 60
f © l:> Greater variability = Less statistical power
3]
= 20
0 !
100 110 120 125
Scaled approaches of the EMA and FDA
2 —— EMA
£ FDA
> .
o
o :
2 .
@© :
2 :
>
= :
(0] g
Re] :
@ o 10 20 30 40 50 60 70
CVyg (%) 101
101
2. Study the properties of clinical designs
Sample size re-estimation designs
f.4 f.0fa
iéii — i@g/ﬁ\*i\ : Inflation: > 5%
Stage 1 l Sample size re-estimation o
5%
Redeia
Stoge2
An ‘ideal’ design:
» should not lead to inflation of the type | error
« exhibit the highest possible statistical power 102

102
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D. Al clinical trials

Al synthesized patients
Variational Autoencoders (VAEs)

Generative Adversarial Networks (GANs)

103

103

104
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Power of Test

1.0

N I
. f ) g o
i 'l',i. i

20 40 60 80 100
Sample size

Power of Test

1.0

T.¢ ==

20 40 60 80 100
sample size

105

CG I (Computer-generated imagery)

106
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Create virtual subjects from the available data

Actual subjects Al-generated
Sampled subjects ‘I‘ 'l' j‘

'M‘ - it 24
‘l‘ ) r.1 ) . 'l' T
@ww 'H‘w ! ”M il

Sampled subjects 'l‘ wj‘
f.¢ P MR
M‘
1 ”%w P
\ ' )
% 1
ﬁ”w Hybrid dataset
LA
T Tﬂ‘
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Power of Test

owow

owo“ E=oC=
Ly
.w owow

109

How it is done

110

110
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Al /ML /DL

Artificial intelligence

111

Machine learning

Supervised learning

Unsupervised learning

Reinforcement learning

112
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Principal Component
Linear regression Q-learning

Analysis
K-means clustering SARSA
Linear discriminant KNN (k-nearest
Policy iteration
analysis neighbors)
Monte Carlo tree
Decision trees Hierarchal clustering
search
Anomaly detection Bellman Equations
Support-vector Markov Decision
Neural Networks
ET TS Process
113
Supervised learning
® e ® oeoe Y : : = °
PR o S PN
& e coe’ o '.'::.m Hidden layers °,‘,"::"
(A) (€
e oo [ ) ]
" .. S le
e _ o @ .’it\..’it\.(ii\.
" oe ® 1 1 1
@
(D) (E) (F)
A) linear regression, B) logistic regression, C) deep neural
network, d) support vector machine, e) decision tree, f)
random forest
114
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Unsupervised learning

x

x x
SR e oSt
xx.x""'“"‘

X x
BeRiSei9e ik
SciSc e

x

A) k-means cluster analysis, B) principal component analysis, C) linear
discriminant analysis

115

Reinforcement
learning

116
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"Machine Learning is a new technology"

Logistic regression -1958

Hidden Markov Model -1960
Stochastic gradient descent -1960
Support Vector Machine -1963
k-nearest neighbours -1967
Artificial Neural Networks -1975
EM algorithm-1977

Decision tree -1986

Random forest -1995

117
Deep learning
Hidden layers
Input layer ‘ A . Output layer
| g 2 |
Input w=p ( : X ‘ =) Output
\/
118
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Input
layer

Hidden layers

=  Qutput

Output

layer

119

VAEs

(Variational Autoencoders, 2013)

120
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Coarse styles copied

destination

source

GANs

(Generative Adversarial Networks, 2014)

121
VAE
x I - I i
— pUT  — Encod| — ;.;:: — Decoder, — OUtPUT —
122
122
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% Bioequivalence acceptance
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125

Less actual human data can be used to

achieve similar, and even better, results

decrease in human exposure

reduction in dropouts

significantly shorter study completion times
lower complexity in the clinical trial

reduced workload for physicians and clinics

significantly lower costs for sponsors or health
agencies.

126

126
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|

Ben-Hur (1959, 11 Oscars)

127

127
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