Review of Selected Topics in Probability Random Variables

Christoforos Raptopoulos

Lecture 4

Random Walk on the Line

An individual is placed at vertex 0 . At each time step $t=1,2, \ldots$, he independently and equiprobably decides to move either one vertex to its right or one vertex to its left. What is the probability that after n steps he is back where he started?

Random Walk on the Line

An individual is placed at vertex 0 . At each time step $t=1,2, \ldots$, he independently and equiprobably decides to move either one vertex to its right or one vertex to its left. What is the probability that after n steps he is back where he started?

$$
\operatorname{Pr}\{\text { at } 0 \text { after } n \text { steps } \mid \text { started at } 0\}= \begin{cases}0 & \text {,if } n \text { is odd }\end{cases}
$$

Random Walk on the Line

An individual is placed at vertex 0 . At each time step $t=1,2, \ldots$, he independently and equiprobably decides to move either one vertex to its right or one vertex to its left. What is the probability that after n steps he is back where he started?

$$
\operatorname{Pr}\{\text { at } 0 \text { after } n \text { steps } \mid \text { started at } 0\}= \begin{cases}0 & \text {,if } n \text { is odd } \\ \binom{n}{n / 2} \frac{1}{2^{n}} & \text {,if } n \text { is even. }\end{cases}
$$

Random Variables in the Random Walk

Let

$$
X_{t}= \begin{cases}+1 & , \text { with probability } \frac{1}{2} \\ -1 & , \text { with probability } \frac{1}{2}\end{cases}
$$

- X_{t} is a random variable.
- So is $S_{n}=\sum_{t=1}^{n} X_{t}$, denoting the position at time n.

Definition (Random Variable)
Random Variable X is a function mapping an outcome to a real number, i.e. $X: S \rightarrow \mathbb{R}$.

Note: In fact, they are smart ways to name events!

Examples and Properties

- Discrete Random Variables: X takes values in a countable set. Examples: The outcome of a die, the sum of the outcomes of 5 dice, the number of Heads when flipping a coin 732 times, the number of births in a population in the time interval $[0, \sqrt{2}]$ etc.
- Continuous Random Variables: X takes values in a non-countable set. Examples: The time between two phone calls, the sum of the waiting times between 500 consecutive births in a population, etc.

Defining Discrete Random Variables

To define a discrete random variable X, we need:

- The (countable) set of values \mathcal{A} that X can take on, i.e. $X \in \mathcal{A}$.
- Definition (Probability Mass Function) The probability mass function of X is the function $p: \mathcal{A} \rightarrow \mathbb{R}$

$$
\begin{equation*}
p(a) \stackrel{\text { def }}{=} \operatorname{Pr}(X=a) \tag{1}
\end{equation*}
$$

such that

$$
\begin{aligned}
& \text { 1. } p(a) \geq 0, \forall a \in \mathcal{A} \\
& \text { 2. } \sum_{a \in \mathcal{A}} p(a)=1 \text {. }
\end{aligned}
$$

Defining Continuous Random Variables

To define a continuous random variable Y, we need:

- The (non-countable) set of values \mathcal{A} that Y can take on, i.e. $Y \in \mathcal{A}$.
- Definition (Probability Density Function) The probability density function of Y is the function $f: \mathcal{A} \rightarrow \mathbb{R}$ satisfying

1. $f(y) \geq 0, \forall y \in \mathcal{A}$
2. $\int_{-\infty}^{\infty} f(y) d y=1$
3. $\forall a, b \in \mathbb{R}$,

$$
\begin{equation*}
\operatorname{Pr}(a<Y<b) \stackrel{\text { def }}{=} \int_{a}^{b} f(y) d y \tag{2}
\end{equation*}
$$

Defining Continuous Random Variables

To define a continuous random variable Y, we need:

- The (non-countable) set of values \mathcal{A} that Y can take on, i.e. $Y \in \mathcal{A}$.
- Definition (Probability Density Function) The probability density function of Y is the function $f: \mathcal{A} \rightarrow \mathbb{R}$ satisfying

$$
\begin{aligned}
& \text { 1. } f(y) \geq 0, \forall y \in \mathcal{A} \\
& \text { 2. } \int_{-\infty}^{\infty} f(y) d y=1 \\
& \text { 3. } \forall a, b \in \mathbb{R} \text {, }
\end{aligned}
$$

$$
\begin{equation*}
\operatorname{Pr}(a<Y<b) \stackrel{\text { def }}{=} \int_{a}^{b} f(y) d y \tag{2}
\end{equation*}
$$

Important note: For a continuous random variable $\operatorname{Pr}(Y<a)=\operatorname{Pr}(Y \leq a)$ and $\operatorname{Pr}(Y=a)$ is 0 or undefined.

A Discrete Example

Example: Suppose we flip a coin two times and let X denote the number of heads. Then X takes on values in $\{0,1,2\}$, $p_{X}(2)=\operatorname{Pr}(X=2)=\frac{1}{4}$ and $\operatorname{Pr}(X<2)=p_{X}(0)+p_{X}(1)=\frac{3}{4}$.

A Continuous Example: Exponential distribution with rate $\lambda=7$

Example: Let Y be a continuous random variable, $Y \in \mathbb{R}$ and

$$
f_{Y}(y)= \begin{cases}7 e^{-7 y} & , \text { for any } y \geq 0 \\ 0 & , \text { elsewhere }\end{cases}
$$

Then $\operatorname{Pr}(Y=0)=0, \operatorname{Pr}(Y \leq a)=1-e^{-7 a}$ and $\operatorname{Pr}(1<Y<2)=\frac{1}{e^{7}}-\frac{1}{e^{14}}=\operatorname{Pr}(Y<2)-\operatorname{Pr}(Y<1)$.

Distribution Function

Definition (Distribution function)

The distribution function of a random variable X is the function $F: \mathcal{A} \rightarrow[0,1]$

$$
\begin{align*}
F(a) & =\operatorname{Pr}(X \leq a) \tag{3}\\
& \left.=\int_{-\infty}^{a} f_{X}(x) d x \quad \quad \text { (if } X \text { is continuous }\right) \\
& =\sum_{x \leq a} p_{X}(x) \quad(\text { if } X \text { is discrete })
\end{align*}
$$

Properties of the Distribution Function

- $F(x)$ is increasing on x.
- $\lim _{x \rightarrow \infty} F(x)=1$ and $\lim _{x \rightarrow-\infty} F(x)=$

Properties of the Distribution Function

- $F(x)$ is increasing on x.
- $\lim _{x \rightarrow \infty} F(x)=1$ and $\lim _{x \rightarrow-\infty} F(x)=0$.
- The distribution function uniquely characterizes the density function (or mass probability function in the discrete case), since $f(x)=\frac{d F(x)}{d x}$.

Multidimensional Random Variables

Definition (Joint mass probability function)
The joint mass probability function of two discrete random variables X and Y is the two dimensional function $f: \mathcal{A}_{X} \times \mathcal{A}_{Y} \rightarrow \mathbb{R}$

$$
\begin{equation*}
f(x, y) \stackrel{\text { def }}{=} \operatorname{Pr}(X=x, Y=y) \tag{4}
\end{equation*}
$$

such that

1. $f(x, y) \geq 0, \forall x, y \in \mathcal{A}$
2. $\sum_{x \in \mathcal{A}_{X}, y \in \mathcal{A}_{Y}} f(x, y)=1$

Note: This generalizes to n random variables and also to the continuous case.

Multidimensional Random Variables

Marginal Distributions

Given the joint mass probability function $f(x, y)$, the marginal distributions of f are

$$
\begin{align*}
f_{1}(x) & =\operatorname{Pr}(X=x) \tag{5}\\
& =\operatorname{Pr}\left(X=x, \cup_{y \in \mathcal{A}_{Y}}\{Y=y\}\right) \\
& =\sum_{y \in \mathcal{A}_{Y}} f(x, y)
\end{align*}
$$

and

$$
\begin{equation*}
f_{2}(y)=\operatorname{Pr}(Y=y) \tag{6}
\end{equation*}
$$

Multidimensional Random Variables (cntd.)

Some more (easy) definitions:

- Joint Distribution Function is the function $F: \mathcal{A}_{X} \times \mathcal{A}_{Y} \rightarrow[0,1]$

$$
\begin{equation*}
F(x, y) \stackrel{\text { def }}{=} \operatorname{Pr}(X \leq x, Y \leq y)=\sum_{x^{\prime} \leq x, y^{\prime} \leq y} f\left(x^{\prime}, y^{\prime}\right) \tag{7}
\end{equation*}
$$

- We write

$$
\begin{align*}
f(y \mid x) & \stackrel{\text { def }}{=} \operatorname{Pr}(Y=y \mid X=x) \tag{8}\\
& =\frac{f(x, y)}{f_{1}(x)}
\end{align*}
$$

Further reading

S. Ross. A first course in probability:

Chapter 4, "Random Variables"
Chapter 5, "Continuous Random Variables"
Chapter 6, "Jointly Distributed Random Variables"

