Review of Selected Topics in Probability Conditional Probability

Christoforos Raptopoulos

Lecture 3

Conditional Probability

- Event of interest: A
- Additional information (after the realization of the event but before total disclosure - "early" event): B, such that $\operatorname{Pr}(B)>0$.

Conditional Probability

- Event of interest: A
- Additional information (after the realization of the event but before total disclosure - "early" event): B, such that $\operatorname{Pr}(B)>0$.

The probability of A given B is

$$
\begin{equation*}
\operatorname{Pr}(A \mid B)=\frac{\operatorname{Pr}(A \cap B)}{\operatorname{Pr}(B)} \tag{1}
\end{equation*}
$$

Some Examples

Example 1: Assume we roll a symmetric 6 -sided die. Let A be the event that we roll 3,4 or 6 and let B be the event that we roll an even number. Then $\operatorname{Pr}(A)=\frac{1}{2}, \operatorname{Pr}(A \mid B)=\frac{2}{3}$ and $\operatorname{Pr}(A \mid \bar{B})=$

Some Examples

Example 1: Assume we roll a symmetric 6 -sided die. Let A be the event that we roll 3,4 or 6 and let B be the event that we roll an even number. Then $\operatorname{Pr}(A)=\frac{1}{2}, \operatorname{Pr}(A \mid B)=\frac{2}{3}$ and $\operatorname{Pr}(A \mid \bar{B})=\frac{1}{3}$.

Some Examples

Example 1: Assume we roll a symmetric 6 -sided die. Let A be the event that we roll 3,4 or 6 and let B be the event that we roll an even number. Then $\operatorname{Pr}(A)=\frac{1}{2}, \operatorname{Pr}(A \mid B)=\frac{2}{3}$ and $\operatorname{Pr}(A \mid \bar{B})=\frac{1}{3}$.

Example 2: Assume someone chooses randomly a person from a class of 8 women (6 have a degree from U . Patras and there is 1 biologist) and 3 men (1 has a degree from U. Patras). Consider the following events:

- A: The person chosen has a degree from U. Patras.
- B: The person chosen is a woman.
- C: The person chosen is a biologist.

Then $\operatorname{Pr}(A)=\frac{7}{11}, \operatorname{Pr}(A \mid B)=\frac{6}{8}, \operatorname{Pr}(\bar{A} \mid B)=\frac{2}{8}$,
$\operatorname{Pr}(A \mid \bar{B} \cap C)=$ undefined, $\operatorname{Pr}(B \mid A)=\frac{6}{7}, \operatorname{Pr}(B \mid \bar{A})=\frac{2}{4}$.

Some Examples

Example 1: Assume we roll a symmetric 6 -sided die. Let A be the event that we roll 3,4 or 6 and let B be the event that we roll an even number. Then $\operatorname{Pr}(A)=\frac{1}{2}, \operatorname{Pr}(A \mid B)=\frac{2}{3}$ and $\operatorname{Pr}(A \mid \bar{B})=\frac{1}{3}$.

Example 2: Assume someone chooses randomly a person from a class of 8 women (6 have a degree from U . Patras and there is 1 biologist) and 3 men (1 has a degree from U. Patras). Consider the following events:

- A: The person chosen has a degree from U. Patras.
- B: The person chosen is a woman.
- C: The person chosen is a biologist.

Then $\operatorname{Pr}(A)=\frac{7}{11}, \operatorname{Pr}(A \mid B)=\frac{6}{8}, \operatorname{Pr}(\bar{A} \mid B)=\frac{2}{8}$,
$\operatorname{Pr}(A \mid \bar{B} \cap C)=$ undefined, $\operatorname{Pr}(B \mid A)=\frac{6}{7}, \operatorname{Pr}(B \mid \bar{A})=\frac{2}{4}$.
What happens if, by some error, a person appears more than once in our class list?

Some Examples

Example 1: Assume we roll a symmetric 6 -sided die. Let A be the event that we roll 3,4 or 6 and let B be the event that we roll an even number. Then $\operatorname{Pr}(A)=\frac{1}{2}, \operatorname{Pr}(A \mid B)=\frac{2}{3}$ and $\operatorname{Pr}(A \mid \bar{B})=\frac{1}{3}$.

Example 2: Assume someone chooses randomly a person from a class of 8 women (6 have a degree from U . Patras and there is 1 biologist) and 3 men (1 has a degree from U. Patras). Consider the following events:

- A: The person chosen has a degree from U. Patras.
- B: The person chosen is a woman.
- C: The person chosen is a biologist.

Then $\operatorname{Pr}(A)=\frac{7}{11}, \operatorname{Pr}(A \mid B)=\frac{6}{8}, \operatorname{Pr}(\bar{A} \mid B)=\frac{2}{8}$,
$\operatorname{Pr}(A \mid \bar{B} \cap C)=$ undefined, $\operatorname{Pr}(B \mid A)=\frac{6}{7}, \operatorname{Pr}(B \mid \bar{A})=\frac{2}{4}$.
What happens if, by some error, a person appears more than once in our class list? What if a person is more likely to get picked?

Conditional Probability - Properties

- $\operatorname{Pr}(A \mid B)$ is a probability function, i.e. the 3 axioms still hold!

Conditional Probability - Properties

- $\operatorname{Pr}(A \mid B)$ is a probability function, i.e. the 3 axioms still hold!
- $\operatorname{Pr}(A \cap B)=\operatorname{Pr}(B) \operatorname{Pr}(A \mid B)$. In general

Theorem (Product Rule)
For events A_{1}, \ldots, A_{n},

$$
\begin{equation*}
\operatorname{Pr}\left(A_{1} A_{2} \cdots A_{n}\right)=\operatorname{Pr}\left(A_{1}\right) \operatorname{Pr}\left(A_{2} \mid A_{1}\right) \cdots \operatorname{Pr}\left(A_{n} \mid A_{1} \cdots A_{n-1}\right) \tag{2}
\end{equation*}
$$

Conditional Probability - Properties

- $\operatorname{Pr}(A \mid B)$ is a probability function, i.e. the 3 axioms still hold!
- $\operatorname{Pr}(A \cap B)=\operatorname{Pr}(B) \operatorname{Pr}(A \mid B)$. In general

Theorem (Product Rule)
For events A_{1}, \ldots, A_{n},

$$
\begin{equation*}
\operatorname{Pr}\left(A_{1} A_{2} \cdots A_{n}\right)=\operatorname{Pr}\left(A_{1}\right) \operatorname{Pr}\left(A_{2} \mid A_{1}\right) \cdots \operatorname{Pr}\left(A_{n} \mid A_{1} \cdots A_{n-1}\right) \tag{2}
\end{equation*}
$$

Theorem (Law of Total Probability)
Let B_{1}, \ldots, B_{n} be a partition of \mathcal{S}, then

$$
\begin{equation*}
\operatorname{Pr}(A)=\sum_{i=1}^{n} \operatorname{Pr}\left(A \mid B_{i}\right) \operatorname{Pr}\left(B_{i}\right) . \tag{3}
\end{equation*}
$$

a posteriori Probability

- Example 1: Suppose we have two bins C_{1} and C_{2}. The first one has 2 blue balls and 1 red and the second one has 1 blue ball and 3 red ones. We pick one of the two bins equiprobably and we choose a random ball from it. Given that it is red, what is the probability that it came from the first bin?

a posteriori Probability

- Example 1: Suppose we have two bins C_{1} and C_{2}. The first one has 2 blue balls and 1 red and the second one has 1 blue ball and 3 red ones. We pick one of the two bins equiprobably and we choose a random ball from it. Given that it is red, what is the probability that it came from the first bin? What happens if we do not choose the bins equiprobably?

a posteriori Probability

- Example 1: Suppose we have two bins C_{1} and C_{2}. The first one has 2 blue balls and 1 red and the second one has 1 blue ball and 3 red ones. We pick one of the two bins equiprobably and we choose a random ball from it. Given that it is red, what is the probability that it came from the first bin? What happens if we do not choose the bins equiprobably?
- Example 2 - diagnostic tests: Let B be the event that a person in a population has some disease and let A be the event that a specific testing procedure for this disease becomes positive.
- We are interested in $\operatorname{Pr}(B \mid A)$.
- Sensitivity and Specificity: We usually know $\operatorname{Pr}(A \mid B)$ (true positive) and $1-\operatorname{Pr}(A \mid \bar{B})$ (true negative).
- We also assume we know $\operatorname{Pr}(B)$ and $\operatorname{Pr}(\bar{B})$.

Bayes Theorem - a posteriori Probability

- We are interested in the probability of an event B, given some "later" event A, and we know the probability $\operatorname{Pr}(A \mid B)$ and $\operatorname{Pr}(A \mid \bar{B})$; same mechanic, only conceptually different. Then

$$
\operatorname{Pr}(B \mid A)=\frac{\operatorname{Pr}(A \cap B)}{\operatorname{Pr}(A)}=\frac{\operatorname{Pr}(B) \operatorname{Pr}(A \mid B)}{\operatorname{Pr}(B) \operatorname{Pr}(A \mid B)+\operatorname{Pr}(\bar{B}) \operatorname{Pr}(A \mid \bar{B})}
$$

Bayes Theorem - a posteriori Probability

- We are interested in the probability of an event B, given some "later" event A, and we know the probability $\operatorname{Pr}(A \mid B)$ and $\operatorname{Pr}(A \mid \bar{B})$; same mechanic, only conceptually different. Then

$$
\operatorname{Pr}(B \mid A)=\frac{\operatorname{Pr}(A \cap B)}{\operatorname{Pr}(A)}=\frac{\operatorname{Pr}(B) \operatorname{Pr}(A \mid B)}{\operatorname{Pr}(B) \operatorname{Pr}(A \mid B)+\operatorname{Pr}(\bar{B}) \operatorname{Pr}(A \mid \bar{B})}
$$

Theorem (Bayes Theorem)
Let B_{1}, \ldots, B_{n} be a partition of the sample space and assume $\operatorname{Pr}(A)>0$ and $\operatorname{Pr}\left(B_{i}\right)>0, \forall i$. Then

$$
\begin{equation*}
\operatorname{Pr}\left(B_{i} \mid A\right)=\frac{\operatorname{Pr}\left(B_{i}\right) \operatorname{Pr}\left(A \mid B_{i}\right)}{\sum_{j=1}^{n} \operatorname{Pr}\left(B_{j}\right) \operatorname{Pr}\left(A \mid B_{j}\right)} \tag{4}
\end{equation*}
$$

Quiz

Suppose we have two bins C_{1} and C_{2}. The first one has 2 blue balls and 1 red and the second one has 1 blue ball and 3 red ones. We pick one of the two bins (i) equiprobably and (ii) with probability proportional to the number of balls it has. We then choose a random ball from it. Given that it is red, what is the probability that it came from the first bin?

Quiz

Suppose we have two bins C_{1} and C_{2}. The first one has 2 blue balls and 1 red and the second one has 1 blue ball and 3 red ones. We pick one of the two bins (i) equiprobably and (ii) with probability proportional to the number of balls it has. We then choose a random ball from it. Given that it is red, what is the probability that it came from the first bin?
(a) $\frac{1}{7}$ and $\frac{4}{13}$.
(b) $\frac{4}{13}$ and $\frac{1}{4}$
(c) The second probability is smaller than the first.
(d) None of the above.

Quiz

Suppose we have two bins C_{1} and C_{2}. The first one has 2 blue balls and 1 red and the second one has 1 blue ball and 3 red ones. We pick one of the two bins (i) equiprobably and (ii) with probability proportional to the number of balls it has. We then choose a random ball from it. Given that it is red, what is the probability that it came from the first bin?
(a) $\frac{1}{7}$ and $\frac{4}{13}$.
(b) $\frac{4}{13}$ and $\frac{1}{4}$
(c) The second probability is smaller than the first.
(d) None of the above.

Answer: (b)

Independence

Definition (Independence)
An event A is independent of an event B iff

$$
\begin{equation*}
\operatorname{Pr}(A \mid B)=\operatorname{Pr}(A) \tag{5}
\end{equation*}
$$

Independence

Definition (Independence)
An event A is independent of an event B iff

$$
\begin{equation*}
\operatorname{Pr}(A \mid B)=\operatorname{Pr}(A) \tag{5}
\end{equation*}
$$

Some properties of independence:
Symmetry: If A is independent of B, then B is independent of A. Also A is independent of \bar{B}.

Independence

Definition (Independence)
An event A is independent of an event B iff

$$
\begin{equation*}
\operatorname{Pr}(A \mid B)=\operatorname{Pr}(A) . \tag{5}
\end{equation*}
$$

Some properties of independence:
Symmetry: If A is independent of B, then B is independent of A. Also A is independent of \bar{B}.
Easier Product Rule: If A, B are independent, then $\operatorname{Pr}(A B)=\operatorname{Pr}(A) \operatorname{Pr}(B)$. (Extremely useful - see e.g. balls and bins quiz of previous lecture - but be careful when assuming independence!)

Independence (cntd.)

Definition (Mutual Independence)
Events A_{1}, \ldots, A_{n} are mutually independent iff, for any $k \in[n]$,

$$
\begin{equation*}
\operatorname{Pr}\left(A_{i_{1}} A_{i_{2}} \cdots A_{i_{k}}\right)=\operatorname{Pr}\left(A_{i_{1}}\right) \operatorname{Pr}\left(A_{i_{2}}\right) \cdots \operatorname{Pr}\left(A_{i_{k}}\right) \tag{6}
\end{equation*}
$$

Independence (cntd.)

Definition (Mutual Independence)
Events A_{1}, \ldots, A_{n} are mutually independent iff, for any $k \in[n]$,

$$
\begin{equation*}
\operatorname{Pr}\left(A_{i_{1}} A_{i_{2}} \cdots A_{i_{k}}\right)=\operatorname{Pr}\left(A_{i_{1}}\right) \operatorname{Pr}\left(A_{i_{2}}\right) \cdots \operatorname{Pr}\left(A_{i_{k}}\right) \tag{6}
\end{equation*}
$$

FAQ: Does pairwise independence imply mutual independence?

Independence (cntd.)

Definition (Mutual Independence)
Events A_{1}, \ldots, A_{n} are mutually independent iff, for any $k \in[n]$,

$$
\begin{equation*}
\operatorname{Pr}\left(A_{i_{1}} A_{i_{2}} \cdots A_{i_{k}}\right)=\operatorname{Pr}\left(A_{i_{1}}\right) \operatorname{Pr}\left(A_{i_{2}}\right) \cdots \operatorname{Pr}\left(A_{i_{k}}\right) \tag{6}
\end{equation*}
$$

FAQ: Does pairwise independence imply mutual independence? Answer by Example: Assume a sample space consisting of all permutations of a, b, c, together with the points $a a a, b b b$ and $c c c$.

Independence (cntd.)

Definition (Mutual Independence)

Events A_{1}, \ldots, A_{n} are mutually independent iff, for any $k \in[n]$,

$$
\begin{equation*}
\operatorname{Pr}\left(A_{i_{1}} A_{i_{2}} \cdots A_{i_{k}}\right)=\operatorname{Pr}\left(A_{i_{1}}\right) \operatorname{Pr}\left(A_{i_{2}}\right) \cdots \operatorname{Pr}\left(A_{i_{k}}\right) \tag{6}
\end{equation*}
$$

FAQ: Does pairwise independence imply mutual independence? Answer by Example: Assume a sample space consisting of all permutations of a, b, c, together with the points $a a a, b b b$ and $c c c$. Define a probability space in which all 9 sample points are equiprobable. Consider the following events, for $i \in\{1,2,3\}$:
A_{i} : "there is an a in the i-th place of the sample point".
Then $\operatorname{Pr}\left(A_{i} A_{j}\right)$

Independence (cntd.)

Definition (Mutual Independence)

Events A_{1}, \ldots, A_{n} are mutually independent iff, for any $k \in[n]$,

$$
\begin{equation*}
\operatorname{Pr}\left(A_{i_{1}} A_{i_{2}} \cdots A_{i_{k}}\right)=\operatorname{Pr}\left(A_{i_{1}}\right) \operatorname{Pr}\left(A_{i_{2}}\right) \cdots \operatorname{Pr}\left(A_{i_{k}}\right) \tag{6}
\end{equation*}
$$

FAQ: Does pairwise independence imply mutual independence? Answer by Example: Assume a sample space consisting of all permutations of a, b, c, together with the points $a a a, b b b$ and $c c c$. Define a probability space in which all 9 sample points are equiprobable. Consider the following events, for $i \in\{1,2,3\}$:
A_{i} : "there is an a in the i-th place of the sample point".
Then $\operatorname{Pr}\left(A_{i} A_{j}\right)=\operatorname{Pr}\left(A_{i}\right) \operatorname{Pr}\left(A_{j}\right)=\frac{1}{9}$, for all $i \neq j$,

Independence (cntd.)

Definition (Mutual Independence)

Events A_{1}, \ldots, A_{n} are mutually independent iff, for any $k \in[n]$,

$$
\begin{equation*}
\operatorname{Pr}\left(A_{i_{1}} A_{i_{2}} \cdots A_{i_{k}}\right)=\operatorname{Pr}\left(A_{i_{1}}\right) \operatorname{Pr}\left(A_{i_{2}}\right) \cdots \operatorname{Pr}\left(A_{i_{k}}\right) \tag{6}
\end{equation*}
$$

FAQ: Does pairwise independence imply mutual independence? Answer by Example: Assume a sample space consisting of all permutations of a, b, c, together with the points $a a a, b b b$ and $c c c$. Define a probability space in which all 9 sample points are equiprobable. Consider the following events, for $i \in\{1,2,3\}$:
A_{i} : "there is an a in the i-th place of the sample point".
Then $\operatorname{Pr}\left(A_{i} A_{j}\right)=\operatorname{Pr}\left(A_{i}\right) \operatorname{Pr}\left(A_{j}\right)=\frac{1}{9}$, for all $i \neq j$, but $\operatorname{Pr}\left(A_{1} A_{2} A_{3}\right)=$

Independence (cntd.)

Definition (Mutual Independence)

Events A_{1}, \ldots, A_{n} are mutually independent iff, for any $k \in[n]$,

$$
\begin{equation*}
\operatorname{Pr}\left(A_{i_{1}} A_{i_{2}} \cdots A_{i_{k}}\right)=\operatorname{Pr}\left(A_{i_{1}}\right) \operatorname{Pr}\left(A_{i_{2}}\right) \cdots \operatorname{Pr}\left(A_{i_{k}}\right) . \tag{6}
\end{equation*}
$$

FAQ: Does pairwise independence imply mutual independence?
Answer by Example: Assume a sample space consisting of all permutations of a, b, c, together with the points $a a a, b b b$ and $c c c$. Define a probability space in which all 9 sample points are equiprobable. Consider the following events, for $i \in\{1,2,3\}$:
A_{i} : "there is an a in the i-th place of the sample point".
Then $\operatorname{Pr}\left(A_{i} A_{j}\right)=\operatorname{Pr}\left(A_{i}\right) \operatorname{Pr}\left(A_{j}\right)=\frac{1}{9}$, for all $i \neq j$, but $\operatorname{Pr}\left(A_{1} A_{2} A_{3}\right)=\frac{1}{9} \neq \operatorname{Pr}\left(A_{1}\right) \operatorname{Pr}\left(A_{2}\right) \operatorname{Pr}\left(A_{3}\right)$.

Independence (cntd.)

- Testing for mutual independence is hard (even experts in probability cannot tell sometimes); we have to check whether

$$
\binom{n}{2}+\binom{n}{3}+\cdots+\binom{n}{n}=2^{n}-n-1
$$

equalities hold.

Independence (cntd.)

- Testing for mutual independence is hard (even experts in probability cannot tell sometimes); we have to check whether

$$
\binom{n}{2}+\binom{n}{3}+\cdots+\binom{n}{n}=2^{n}-n-1
$$

equalities hold.

- We usually assume mutual independence when events happen in different time and space.

The Birthday Paradox

Assuming all birthdays are equiprobable and that they are mutually independent, what is the probability that at least 2 individuals in a class of $m=23$ people are born on the same day of the year (assume a year has $N=365$ days)?

The Birthday Paradox

Assuming all birthdays are equiprobable and that they are mutually independent, what is the probability that at least 2 individuals in a class of $m=23$ people are born on the same day of the year (assume a year has $N=365$ days)?

Answer: Homework! (You can reduce this to a balls and bins problem; Use conditional probability)

Random Walk on the Line

An individual is placed at vertex 0 . At each time step $t=1,2, \ldots$, he independently decides to move either one vertex to its right or one vertex to its left. What is the probability that after n steps he is back where he started?

Random Walk on the Line

An individual is placed at vertex 0 . At each time step $t=1,2, \ldots$, he independently decides to move either one vertex to its right or one vertex to its left. What is the probability that after n steps he is back where he started?
$\operatorname{Pr}\{$ at 0 after n steps \mid started at 0$\}= \begin{cases}0 & \text {,if } n \text { is odd }\end{cases}$

Random Walk on the Line

An individual is placed at vertex 0 . At each time step $t=1,2, \ldots$, he independently decides to move either one vertex to its right or one vertex to its left. What is the probability that after n steps he is back where he started?
$\operatorname{Pr}\{$ at 0 after n steps \mid started at 0$\}= \begin{cases}0 & \text {,if } n \text { is odd } \\ \binom{n}{n / 2} \frac{1}{2^{n}} & \text {,if } n \text { is even. }\end{cases}$

Further reading

S. Ross. A first course in probability:

Chapter 3, "Conditional Probability and Independence"

