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Conditional Probability

I Event of interest: A

I Additional information (after the realization of the event but
before total disclosure - “early” event): B, such that
Pr(B) > 0.
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The probability of A given B is

Pr(A|B) =
Pr(A ∩ B)

Pr(B)
(1)
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Some Examples

Example 1: Assume we roll a symmetric 6-sided die. Let A be the
event that we roll 3, 4 or 6 and let B be the event that we roll an
even number. Then Pr(A) = 1

2 , Pr(A|B) = 2
3 and Pr(A|B̄) =

1
3 .

Example 2: Assume someone chooses randomly a person from a
class of 8 women (6 have a degree from U. Patras and there is 1
biologist) and 3 men (1 has a degree from U. Patras). Consider
the following events:

I A: The person chosen has a degree from U. Patras.

I B: The person chosen is a woman.

I C : The person chosen is a biologist.

Then Pr(A) = 7
11 , Pr(A|B) = 6

8 , Pr(Ā|B) = 2
8 ,

Pr(A|B̄ ∩ C ) = undefined, Pr(B|A) = 6
7 , Pr(B|Ā) = 2

4 .
What happens if, by some error, a person appears more than once
in our class list? What if a person is more likely to get picked?
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Conditional Probability - Properties

I Pr(A|B) is a probability function, i.e. the 3 axioms still hold!

I Pr(A ∩ B) = Pr(B) Pr(A|B). In general

Theorem (Product Rule)

For events A1, . . . ,An,

Pr(A1A2 · · ·An) = Pr(A1) Pr(A2|A1) · · ·Pr(An|A1 · · ·An−1) (2)

Theorem (Law of Total Probability)

Let B1, . . . ,Bn be a partition of S, then

Pr(A) =
n∑

i=1

Pr(A|Bi ) Pr(Bi ). (3)
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a posteriori Probability

I Example 1: Suppose we have two bins C1 and C2. The first
one has 2 blue balls and 1 red and the second one has 1 blue
ball and 3 red ones. We pick one of the two bins equiprobably
and we choose a random ball from it. Given that it is red,
what is the probability that it came from the first bin?

What
happens if we do not choose the bins equiprobably?

I Example 2 - diagnostic tests: Let B be the event that a person
in a population has some disease and let A be the event that
a specific testing procedure for this disease becomes positive.

I We are interested in Pr(B|A).
I Sensitivity and Specificity: We usually know Pr(A|B) (true

positive) and 1− Pr(A|B̄) (true negative).
I We also assume we know Pr(B) and Pr(B̄).
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Bayes Theorem - a posteriori Probability

I We are interested in the probability of an event B, given some
“later” event A, and we know the probability Pr(A|B) and
Pr(A|B̄); same mechanic, only conceptually different. Then

Pr(B|A) =
Pr(A ∩ B)

Pr(A)
=

Pr(B) Pr(A|B)

Pr(B) Pr(A|B) + Pr(B̄) Pr(A|B̄)

Theorem (Bayes Theorem)

Let B1, . . . ,Bn be a partition of the sample space and assume
Pr(A) > 0 and Pr(Bi ) > 0, ∀i . Then

Pr(Bi |A) =
Pr(Bi ) Pr(A|Bi )∑n
j=1 Pr(Bj) Pr(A|Bj)

. (4)
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Quiz

Suppose we have two bins C1 and C2. The first one has 2 blue
balls and 1 red and the second one has 1 blue ball and 3 red ones.
We pick one of the two bins (i) equiprobably and (ii) with
probability proportional to the number of balls it has. We then
choose a random ball from it. Given that it is red, what is the
probability that it came from the first bin?

(a) 1
7 and 4

13 .

(b) 4
13 and 1

4

(c) The second probability is smaller than the first.

(d) None of the above.

Answer: (b)
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Independence

Definition (Independence)

An event A is independent of an event B iff

Pr(A|B) = Pr(A). (5)

Some properties of independence:

Symmetry: If A is independent of B, then B is independent of A.
Also A is independent of B̄.

Easier Product Rule: If A,B are independent, then
Pr(AB) = Pr(A) Pr(B). (Extremely useful - see e.g.
balls and bins quiz of previous lecture - but be careful
when assuming independence!)
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Independence (cntd.)

Definition (Mutual Independence)

Events A1, . . . ,An are mutually independent iff, for any k ∈ [n],

Pr(Ai1Ai2 · · ·Aik ) = Pr(Ai1) Pr(Ai2) · · ·Pr(Aik ). (6)

FAQ: Does pairwise independence imply mutual independence?
Answer by Example: Assume a sample space consisting of all
permutations of a, b, c , together with the points aaa, bbb and ccc .
Define a probability space in which all 9 sample points are
equiprobable. Consider the following events, for i ∈ {1, 2, 3}:

Ai : “there is an a in the i-th place of the sample point”.

Then Pr(AiAj) = Pr(Ai ) Pr(Aj) = 1
9 , for all i 6= j , but

Pr(A1A2A3) = 1
9 6= Pr(A1) Pr(A2) Pr(A3).
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Independence (cntd.)

I Testing for mutual independence is hard (even experts in
probability cannot tell sometimes); we have to check whether(

n

2

)
+

(
n

3

)
+ · · ·+

(
n

n

)
= 2n − n − 1

equalities hold.

I We usually assume mutual independence when events happen
in different time and space.
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The Birthday Paradox

Assuming all birthdays are equiprobable and that they are mutually
independent, what is the probability that at least 2 individuals in a
class of m = 23 people are born on the same day of the year
(assume a year has N = 365 days)?

Answer: Homework! (You can reduce this to a balls and bins
problem; Use conditional probability)
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Random Walk on the Line

0−1−2 1 2

starting position

An individual is placed at vertex 0. At each time step t = 1, 2, . . .,
he independently decides to move either one vertex to its right or
one vertex to its left. What is the probability that after n steps he
is back where he started?

Pr{at 0 after n steps|started at 0} =

{
0 ,if n is odd( n
n/2

)
1
2n ,if n is even.
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Further reading

S. Ross. A first course in probability:
Chapter 3, “Conditional Probability and Independence”


