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Bernoulli Distribution - Indicator Random Variable

X is an indicator random variable iff X ∈ {0, 1} and

Pr(X = 1) = p = 1− Pr(X = 0) (1)

for some p ∈ [0, 1].

Note: Indicates the success of an experiment.

Parameters:

1. (Expectation) E[X ] = p.

2. (Variance) Var(X ) = p(1− p).

3. (PGF) E[zX ] = 1− p + pz .

4. (MGF) E[etX ] = 1− p + pet .
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Binomial Distribution

X follows the Binomial distribution iff X ∈ {0, 1, . . . , n} and

Pr(X = k) =

(
n

k

)
pk(1− p)n−k (2)

for some p ∈ [0, 1] and integer n > 0.

Note: Indicates the number of successes in n independent
realizations of an experiment; hence X =

∑
i Xi , where Xi is

Bernoulli.

Parameters:

1. (Expectation) E[X ] = np.

2. (Variance) Var(X ) = np(1− p).

3. (PGF) E[zX ] = (1− p + pz)n.

4. (MGF) E[etX ] = (1− p + pet)n.
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Geometric Distribution

X follows the Geometric distribution iff X ∈ {1, 2, . . .} and

Pr(X = k) = (1− p)k−1p (3)

for some p ∈ [0, 1].

Note: Indicates the number of independent Bernoulli trials in order
to get the first success.

Parameters:

1. (Expectation) E[X ] = 1
p .

2. (Variance) Var(X ) = 1−p
p2

.

3. (MGF) E[etX ] = pet

1−(1−p)et , for t < − ln(1− p).

4. (PGF) E[zX ] =?
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Poisson Distribution

X follows the Poisson distribution with parameter λ iff
X ∈ {0, 1, . . .} and

Pr(X = k) =
λke−λ

k!
. (4)

Note: Expresses the probability of a given number of events
occurring in a fixed interval of time and/or space if these events
occur with a known average rate (λ) and independently of the
time since the last event.

Parameters:

1. (Expectation) E[X ] = λ.

2. (Variance) Var(X ) = λ.

3. (PGF) E[zX ] = eλ(z−1).
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Convergence of Binomial to Poisson
Let X ∼ B(n, p) and Y ∼ Poisson(λ). Assume (a) λ = np is
bounded and (a) n→∞. Then

E[zX ] =

(1 + p(z − 1))n =

(
1 +

λ(z − 1)

n

)n

=

((
1 +

λ(z − 1)

n

) n
λ(z−1)

)λ(z−1)

→ eλ(z−1) = E[zY ].

Theorem (Poisson Paradigm)

Consider n Bernoulli trials Xi with success probability
pi , i = 1, . . . , n. If pi are “small” and the trials are either
independent or “weakly dependent”, then Y =

∑
i Xi follows

“approximately” the Poisson distribution with parameter
∑

i pi .
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Uniform Distribution (Continuous case)

X follows the Uniform distribution in [a, b] iff X ∈ [a, b] and

fX (x) =

{
1

b−a ,for a < x < b

0 elsewhere.
(5)

Parameters:

1. (Expectation) E[X ] = a+b
2 .

2. (Variance) Var(X ) = (b−a)2
12 .

3. (MGF) E[etX ] = etb−eta
t(b−a) .
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Exponential Distribution

X follows the Exponential distribution with parameter λ iff
X ∈ [0,∞) and

fX (x) =

{
λe−λx ,for x ≥ 0
0 ,for x ≤ 0.

(6)

Note: Expresses interarrival times (more on this in Poisson process
lecture). Also has the memoryless property (Homework!).

Parameters:

1. (Expectation) E[X ] = 1
λ .

2. (Variance) Var(X ) = 1
λ2 .

3. (MGF) E[etX ] = λ
λ−t .
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Normal (or Gaussian) Distribution

X follows the Normal distribution with mean value µ and typical
deviation σ iff X ∈ (−∞,∞) and

fX (x) =
1

σ
√

2π
e−

(x−µ)2

2σ2 . (7)

Note 1: The value of the interval in the computation of Pr(X ≤ a)
is computed numerically.

Note 2: If X ∼ N (µ, σ2), then Z = X−µ
σ ∼ N (0, 1); Z is called

standard normal random variable.

Parameters:

1. (Expectation) E[X ] = µ.

2. (Variance) Var(X ) = σ2.

3. (MGF) E[etX ] = eµt+
1
2
σ2t2 .
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The Central Limit Theorem

Theorem (Central Limit Theorem)

Let X1,X2, . . . be a sequence of independent random variables with
E[Xi ] = µi and Var(Xi ) = σ2i . Under “mild conditions”, for any
α ∈ R,

Pr

∑n
i=1(Xi − µi )√∑n

i=1 σ
2
i

≤ α

→ ∫ α

−∞

1√
2π

e−x
2
dx . (8)

i.e. as n→∞,
∑n

i=1 Xi is distributed according to
N
(∑n

i=1 µi ,
∑n

i=1 σ
2
i

)
.



Another well known Limit Theorem

Theorem (Strong law of large numbers)

Let X1,X2, . . . be a sequence of independent, identically
distributed random variables E[Xi ] = µ, for all i . Then, with
probability 1, as n→∞

X1 + X2 + · · ·+ Xn

n
→ µ. (9)



Further reading

S. Ross. A first course in probability:
Chapter 4, “Random Variables”
Chapter 5, “Continuous Random Variables”
Chapter 8, “Limit Theorems”


