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How can we count elements in a finite set S?

I By using recurrence, induction etc ...provided a function of
the size of smaller subsets of S is given.

Example: For t = 0, 1, . . ., let St be the number of individuals
in a population at time t. Let also S0 = 2 and St+1 = St + t,

for all t ≥ 0. How much is Sn? Answer: Sn = 2 + n(n−1)
2 .

I By giving a bijection of S to a set S ′, whose cardinality is
known (simple but powerful!).

Example: Let A be a set of size n. By relating S = 2A to the
set of binary strings of length n, we can see that |S | = 2n.

I But there is more...! - General Counting Rules: (a) The Sum
Rule, (b) The Product Rule and (c) The Division Rule
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Union of Sets

Theorem (The Sum Rule)

If A1, . . . ,An are disjoint, then

|A1 ∪ · · · ∪ An| = |A1|+ · · ·+ |An|. (1)

If the sets are not disjoint - Inclusion-Exclusion Principle

Example: Let A the set of people in this class with cyan hair and B
those with purple skin. Then |A ∪ B| = |A|+ |B| − |A ∩ B|.
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Quiz

For 3 sets A,B,C , not necessarily disjoint, we have |A∪B ∪ C | =?

(a) |A|+ |B|+ |C |

(b) |A|+|B|+|C |−2|A∩B|−2|B∩C |−2|B∩C |+3|A∩B∩C |

(c) |A|+ |B|+ |C | − |A∩B| − |B ∩C | − |A∩C |+ |A∩B ∩C |

(d) |A|+ |B|+ |C |− |A∩B|− |B ∩C |− |B ∩C |+ 2|A∩B ∩C |

Answer: (c)
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Union of Sets - General (ugly) Case

Theorem (The Inclusion-Exclusion Principle)

Let A1, . . . ,An not necessarily disjoint, then

|A1 ∪ · · · ∪ An| =
∑

1≤i≤n
|Ai |

−
∑

1≤i<j≤n
|Ai ∩ Aj |

+
∑

1≤i<j<k≤n
|Ai ∩ Aj ∩ Ak |

...

(−1)n+1|A1 ∩ A2 ∩ · · · ∩ An|

=
n∑

l=1

(−1)l+1

 ∑
S⊆[n],|S |=l

∣∣∣∣∣⋂
i∈S

Ai

∣∣∣∣∣
 (2)
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Products of Sets

I Product of two sets A× B
def
= {(a, b)|a ∈ A, b ∈ B}.

Example: Let A = {x , y , z} and B = {1, 2}, then
A× B = {(x , 1), (x , 2), (y , 1), (y , 2), (z , 1), (z , 2)}.

Theorem (The Product Rule)

For sets A1,A2, . . . ,An,

|A1 × A2 × · · · × An| = |A1| · |A2| · · · · · |An|. (3)

Proof. By induction.



Quiz

Let us look at a DNA sequence as a string of the letters A, C , T
and G . How many different n-length DNA sequences can we have?

(a) 4n

(b) 2n+4

(c) 4n

(c) none of the above

Answer: (a); using a combination of the Sum and Product Rules.
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Refined Ways for Counting

I Permutations: The number of ways we can sort n items in a
line is n! = n · (n − 1) · · · 1

I r -Permutations: The number of ways we present r out of n
items in a sorted order is n!

(n−r)! (special case of the Division

Rule - next slide)

I r -Permutations with Repetition: The number of ways we
present r out of n items in a sorted order when repetitions are
allowed is nr
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The Division Rule

Theorem (The Division Rule)

Let A, B be sets. If there is a k-to-1 function f : A→ B, then
|A| = k · |B|.

Example 1: How many ways are there to make a necklace with n
different marbles? Answer: (n − 1)!

Example 2: (r -Combinations of a Set) How many subsets of size r
does an n-element set have? Answer:

(n
r

)
= n!

(n−r)!·r ! .
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More Refined Ways for Counting

I r -Combinations with Repetition: The number of ways to
select a subset of size r out of n items when repetitions are
allowed is

(n+r−1
r

)
.

Proof. Establish a bijection between r -combinations with
repetition and the set of strings of r ones and n− 1 zeros.

Example: Assuming the order of letters A,C ,T and G in a
DNA sequence does not matter, how many different 3-length
sequences can we have? Answer:

(4+3−1
3

)
= 20 (compare this

to 43 = 64 when the order does matter).

I r -Combinations with Repetition, with at least one of each
item: This number is equal to

(r−1
n−1
)
.
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Quiz - Permutations with Limited Repetition

The number of ways to arrange in a line three items X ,Y and Z
such that item X is repeated 3 times, item Y is repeated 5 times
and item Z is repeated 7 times is

(a) 315

(b) 15!
3!5!7!

(c) 3!5!7!
3

(d) 3!5!7!
15!

Answer: (b); use the Division Rule.
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More Refined Ways for Counting (cntd.)

I Permutations with Limited Repetition: The number of ways
to arrange in a line n items such that item i is repeated
exactly ri times is (r1+···+rn)!

r1!···rn! =
(r1+···+rn

r1,...,rn

)

Example: The Multinomial Theorem.

(x1+x2+· · ·+xn)r =
∑

r1+r2+···+rn=r

(
r

r1, r2, . . . , rn

)
x r11 ·x

r2
2 · · · x

rn
n

e.g.
∑r

i=0

(r
i

)
= 2r .

FAQ: Are there more ways to count objects? Yes...but...
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Further reading

C. Liu: Elements of Discrete Mathematics.


