

ΑΝΟΙΚΤΑ ακαδημαϊκά ΠΠ

Αριθμητικός Έλεγχος Εργαλειομηχανών

Eνότητα 4: Tool Changing and Tool Registers


Δημήτρης Μούρτζης, Επίκουρος Καθηγητής
Πολυτεχνική Σχολή
Τμήμα Μηχανολόγων & Αεροναυπηγών Μηχανικών

COMPUTER NUMERICAL CONTROL OF MACHINE TOOLS

Laboratory for Manufacturing Systems and Automation Department of Mechanical Engineering and Aeronautics University of Patras, Greece

Dr. Dimitris Mourtzis Assistant Professor

Patras, 2015

Objectives of section 4

- Explain why the speed, repeatability, and accuracy of tool changing are important factors in numerical control
- Name the two types of tool changes
- Explain why quick-change tooling is used on NC mills
- Explain how tooling is used in automatic tool change functions
- Name the five types of automatic tool changers and briefly describe the operation of each
- Describe the two basic methods of tool storage
- Explain what tool registers are and what they are used for
- Describe what tool offset length is and how it is determined
- Explain how tool offsets may be entered by the operator during setup and how the programmer allows for this

Tool Changes

There are two types of tool changes:

Tool Changes

Manual

Automatic Tool Change (ATC)

CNC mills

Machining Centers

Tool Changes:

It is the tool changing capability that separates the CNC Machining Center from the CNC Milling machines

- Machining Centers like milling machines have the capability to do numerous machining operations (drilling, tapping, milling etc)
- This is opposed to a machine capable of a single function only such as an NC drilling machine

Tooling for Manual Tool Change:

What is to be gained by the speed with which a CNC machine can position itself for hole drilling if the tool changes are so lengthy as to cancel the time and accuracy gained by using NC?

Tool changing greatly influences the efficiency of NC so tool changes should take place as quickly and safety as possible

- The tool must be accurate located in the spindle to assure proper machining of the workpiece
- The tool must be located as accurately as possible in the same location
- The tool must be located in the same relationship to the workpiece each time is inserted to the spindle

Note: This is known as the **repeatability** of a tool – the ability to locate or repeat its position in the spindle each time it is used

Tooling for Manual Tool Change

- Usually NC mills (manual tool change) are supplied with some type of quickchange tooling system to accomplish this task
- Most small vertical turret mills are manufactured with an R-8 spindle taper that will accept R-8 collets
- The R-8 is a standard collet on Bridgeport vertical mills
- Since most vertical turret mills are spin-offs of this design R-8 has become pseudostandard for these machines
- R-8 collets and R-8 tool holders require the use of a draw-bar
- For CNC use: a) an automatically tightening draw-bar is supplied with the machine or b) a quick-change tool system is added

Tooling for Manual Tool Change

- The quick-change tooling system consists of:
 - A quick-release chuck held in the machine spindle
 - A set of tool-holders that hold the individual tools needed for a particular part program
- The chuck is a separate tool-holding system that stays in the spindle
- During the tool change the tool-holder is removed from the chuck (it is also called the tool-changer) and
- A toolholder containing the next required tool is installed in the place
- The tools placed in the toolholders are securely held by means of set screws
- Many varieties of quick-change tool systems are available on the market

Tooling for Manual Tool Change

- Larger vertical mills and most horizontal mills use another type of spindle taper called the American Standard Milling Machine Taper
- Like the R-8 this taper requires the use of a drawbar
- If no automatic drawbar is supplied with the machine, a quick-change tooling system is added for improving tool changing

Tooling for Automatic Tool Change

- When automatic tool change is used the requirements for speed and repeatability are even more critical
- The machine's tool changer can not think for itself or correct misalignments or tool setup errors like a human being

Tooling for Automatic Tool Change

- The tool changer will carry out its tool-changing cycle and <u>nothing else</u> since that is all it was programmed to do
- Tooling used with a tool changer therefore MUST:
 - Be easy to center in the spindle
 - Be easy for the tool changer to grab
 - ➤ Have some means of providing **safe disengagement** of the tool changer from the tool once it is secured in the spindle
- Using this procedure insures:
 - Proper alignment of the tool with the spindle
 - Prevents damage from occurring to the spindle or tool holder taper

Automatic Tool Changers (ATC)

Automatic Tool changers are made in five basic types:

ATC

Turret Head

180-degree Rotation Pivot Insertion

Multi-Axis

Spindle Direct

Automatic Tool Changers (ATC)

FIGURE 1 Tool Carousel

FIGURE 2 Tool Carousel on the MultiCAM

Automatic Tool Changers (ATC)

- Tools used in ATC are secured in toolholders designed for that purpose
- These toolholders are installed directly in the spindle by the tool changer

Turret Head

- Tool changing accomplished through the use of turret head is perhaps the oldest form of ATC
- Turret Head is a number of spindles linked to the same milling machine head
- The tools are placed in the spindles prior running the program
- When another tool is needed the head moves to the desired position
- <u>Disadvantage</u>: The limited number of tool spindles available
- For using more tools than available spindles the operator must remove tools that have already been used and insert those called for later in the program
- Problem: More machine operator attention
- Turret Head ATC are still in use (drilling)

Tool Length Offset

General

- Tools used for machining can vary in length
- When using 3-axis NC machinery there are two basic methods to compensate the different tool lengths:
 - Pre-measuring the tools
 - Using CNC controller's tool length compensation feature

Preset Tool Method

- Set the tool to a specific length
- The known length is can be then added to the program's Z-axis coordinates
- Setting the tool to a specific length: Presetting Preset Tools
- Tool set-up drawing may be used
- Special tool-setting equipment is used to measure the tools accurately
 - The cost of the equipment is high
 - The labour for tool setting is high
 - The replacement of broken Preset Tools is complicated
 - The Preset tools must be set to specific length to function properly

Tool Length and Tool Length Offset

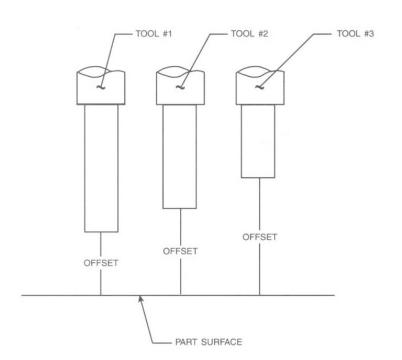


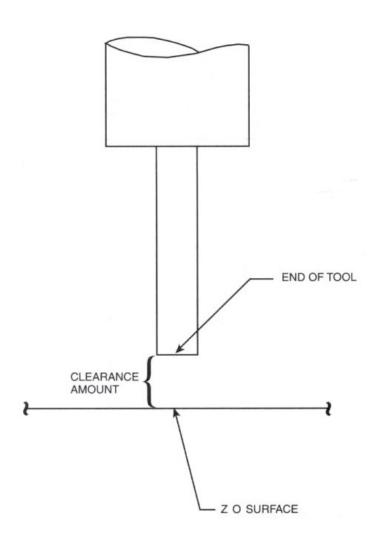
FIGURE 3 Tool length offset, difference of gage tool trim method

Tool Length Offset

CNC machinery has revolutionized tool setting by the Programmable Tool Register

Tool Register:

- Is a memory spot in the computer where the length of the tool may be stored
- When a tool is called up the computer checks the Tool Register to see how much offset has been programmed for that tool
- Check the comments for tool offset
- The MCU sifts the Z-axis by the amount stored in the offset register


Methods for Tool Trimming or Offsetting

- Difference of gage tool trim
- Plus direction trim
- Minus direction trim

Tool Length and Tool Length Offset

Difference of Gage Tool Trim

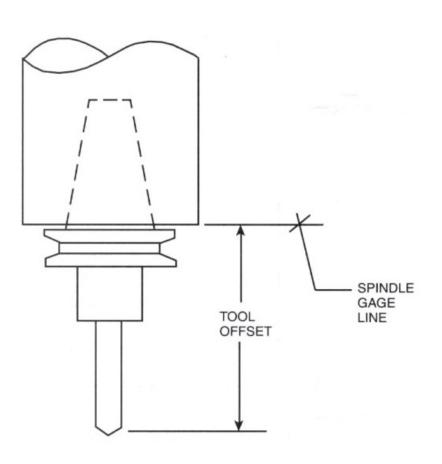

It is a variation of the Preset Tool method

FIGURE 4 Tool clearance

Tool Length and Tool Length Offset

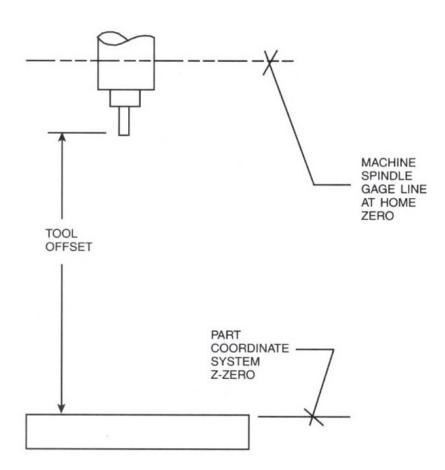


FIGURE 5 Tool length offset, plus direction trimming

FIGURE 6 Tool length offset, minus direction trimming

Summary

- The speed, repeatability, and accuracy of a tool change greatly influence the efficiency of numerical control
- There are two types of tool change: manual and automatic
- Machinery utilizing manual tool change generally incorporates some type of quick-change tooling system to facilitate the speed and accuracy of tool changes
- Automatic tool changers are grouped into five categories: turret head, 180degree rotation, pivot insertion, multi-axis, and spindle direct
- Tool storage magazines are grouped into two types: carousel or matrix
- Tool registers are places in the computer's memory to program tool offsets

Vocabulary Introduced in this section

- 180-degree rotation tool changer
- Automatic tool change (ATC)
- Carousel tool magazine
- Manual tool change
- Matrix tool magazine
- Multi-axis tool changer
- Pivot insertion tool changer
- Preset tools
- Quick-change tooling
- Spindle direct tool changer
- Tool length offset
- Tool offset register
- Turret head

End of Section

Funding

- This educational material has been developed in the teaching duties of the respective educator.
- The Project "Open Academic Courses at the University of Patras" has funded only the reformation of the educational material.
- The Project is implemented within the context of the Operational Programme "Education and Lifelong Learning" (EdLL) and is cofunded by the European Union (European Social Fund) and national resources.

Reference Note

Copyright University of Patras, School of Engineering, Dept. of Mechanical Engineering & Aeronautics, Dimitris Mourtzis. Wourtzis. Wourtzis. Wourtzis. Wourtzis. Wourtzis. Wourtzis. Tool Changing and Tool Registers. Version: 1.0. Patras 2015. Available at: https://eclass.upatras.gr/courses/MECH1213/

License Note

This material is provided under the license terms of Creative Commons Attribution-NonCommercial-NoDerivatives (CC BY-NC-ND 4.0) [1] or newer, International Version. Works of Third Parties (photographs, diagrams etc) are excluded from this license and are referenced in the respective "Third Parties' works Note"

[1] https://creativecommons.org/licenses/by-nc-nd/4.0/

As **NonComercial** is denoted the use that:

- does not involve directed or indirect financial profit for the use of this content, for the distributor and the licensee
- does not involve any financial transaction as a prerequisite of the using or accessing this content
- does not offer to the distributor and licensee indirect financial profit (e.g. ads) from websites

The owner can provide the licensee a separate license for commercial use upon request.

Notes Preservation

Any reproduction or modification of this material must include:

- the Reference Note
- the License Note
- the Notes Preservation statement
- the Third Parties' Works Note (if exists)

as well as the accompanying hyperlinks.

Third Parties' Works Note

This Work makes use of the following works:

Figure 1: slide 12, CC BY-SA 3.0,

https://commons.wikimedia.org/wiki/File:Datalogger %28MSR165%29 measuring vibrations on a tool carousel of a CNC lathe.jpg

Figure 2: slide 12, CC BY-SA 3.0,

https://en.wikiversity.org/wiki/User:Brianwcallaghan/CNCtutorial#/media/File: CNCcarousel.JPG

Any content that is not referenced or cited has been created by the respective course instructor and/or his colleagues and is provided under the same license CC BY-NC-ND 4.0

