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Abstract

Implicit finite difference schemes for solving two dimensional and three dimensional
Euler and Navier-Stokes equations will be addressed. The methods are demonstrated in
fully vectorized codes for a CRAY type architecture. We shall concentrate on the Beam
and Warming implicit approximate factorization algorithm in generalized coordinates.
The methods are either time accurate or accelerated non-time accurate steady state
schemes. Various acceleration and efficiency modifications such as matrix reduction,
diagonalization and flux split schemes will be presented. Examples for 2-D inviscid and
viscous calculations (e.g. airfoils with a deflected spoiler, circulation control airfoils and
unsteady buffeting) and also 3-D viscous flow are included.
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Commentary, 1992

These notes were developed and put together in 1984-5 for a lecture series entitled “von
Kármán Institute For Fluid Dynamics Lecture Series : Numerical Techniques for Viscous
Flow Computation In Turbomachinery Bladings”, von Kármán Institute, Rhode-St-Genese,
Belgium , 1985. They may be a little dated today, but they still represent current algorithms
and codes being used on a day to day basis for both research and development. I will update
and correct some of the material, but I will not be attempting to completely modernize these
lectures. Newer topics, e.g. TVD, ENO, are handled better in other forums and I will have
to make my attempt at them some other time.

Finally, I would like to recognized the influence of one of my best friends and my
mentor, Dr. Joseph L. Steger who passed away this year. I first met Joe in the early
days of CFD at NASA Ames (circa 1974) when I started work on my thesis and Joe
became my advisor. I consider myself Joe’s first student and although Joe went on to
teach at Stanford and U.C. Davis and produced many fine CFD researchers, I think my
years with Joe will always be special since they were his and my first experiences as friends
and teacher/student. Joseph Steger was a real pioneer for CFD, he did much of the ground
breaking work in transonics and Euler/Navier-Stokes algorithms. I don’t think he gets much
credit for his transonic work, but if it wasn’t for Joe many of the important advances made
here at NASA Ames would never have happened. We always refer to the “Beam-Warming
algorithm”, but possibly it should be called the “Steger algorithm”. Although Beam and
Warming can be credited with the initial development, Steger had much to do with the
final developments and analysis. More importantly though, is the contribution Joe made in
making the algorithm practical and popular. In 1976, Joe wrote what was then call AIR2D,
based on the Beam-Warming algorithm and generalized coordinate transformations. That
one effort has blossomed into the ARC2D and ARC3D codes and their subsequent impact
on CFD today. Those kernels (gems of ideas) form the basis of most of the practical and
useful codes in existence today. One only has to look anywhere in the literature to see
that impact. Joe’s other developments were equally as important to the whole picture.
He developed elliptic grid generators (GRAPE) and hyperbolic grid generating algorithms.
Joe can also be credited with producing the first practical Parabolized Navier-Stokes (PNS)
codes and Incompressible Navier-Stokes (INS) based on psuedo-compressibility. His work on
the Chimera approach for complicated geometry is currently the workhorse of computation
here at NASA Ames and has been a significant part of the overall CFD effort. But besides
all that, we really have suffered a great loss in losing Joe Steger, he always will be in my
heart, his laugh and friendship are dear to me and I’m sure to all who knew him.
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1. Introduction

Computational fluid dynamics is a mature technology. Even though there is still a
substantial amount of theoretical development necessary before it becomes a consistent
engineering tool, we can produce research codes which can be applied to relevant physical
problems. At present full potential codes and panel methods have been the most widely
used tools in the design cycle. Those methods are computationally less expensive than the
Euler and Navier - Stokes codes and in general more robust and accurate ( mainly due to
the ability to employ a large number of grid points or panels). Euler and Navier - Stokes
codes require more storage and computational work per solution than the classical methods.
Even with the present class of super computers we still have not reached a stage where the
restrictions of computational speed and storage can be ignored. At this stage the Euler and
Navier - Stokes codes available should be considered to be research codes. At first we strive
to demonstrate the feasibility of the numerical technique used, then we should go on to
establish the accuracy, efficiency and robustness of a developed code. These are the areas
in code development and application which require careful consideration.

A wide variety of numerical techniques are in use today. Some have developed to a
high enough level to be used in production codes (see Refs. [1], [2], [3], [4], [5], and [6]),
while other techniques (for example TVD schemes, Ref. [7], [8], and [9]) are just now en-
tering the research code realm. In this presentation we shall concentrate on methods and
techniques which have been applied to various computational fluid flow problems. These
include, implicit finite differences, central space differencing, upwind differencing, approxi-
mate factorization, nonlinear dissipation models, characteristic boundary procedures, grid
refinement - reclustering algorithms and various acceleration techniques for steady state
and time accurate computations. Most of the applications are for external flows, but the
methods have been and are easily extended to internal flows. A lot of the development will
be in 2-D, with the extension to 3-D relatively straightforward.

A series of computer codes that have been developed at NASA Ames Research Center
based on the implicit approximate factorization algorithm of Beam and Warming [1] will be
used for demonstration. A particular application in two dimensions was first presented by
Steger [2] and for three dimensions by Pulliam and Steger [3]. Concurrent with this work
has been the paralleled development and application of MacCormacks method [4]. I shall
concentrate here on the theoretical development, application and assessment of the implicit
algorithm which at this stage has produced two codes, ARC2D a two dimensional version
and ARC3D the three dimensional code. The original development of these codes was more
in the spirit of a demonstration effort, where we were more concerned with demonstrating
the feasibility of the algorithm for general geometries and varying flow cases. A number
of applications appeared over the years in the literature. More recently we have improved
the accuracy, efficiency and robustness of the codes. I shall present below some details of
the current versions of the implicit codes, ARC2D and ARC3D. Notable exceptions will
be discussed. I shall not concentrate on the idiosyncrasies of the coding, I/O or other
programming aspects except where they affect the algorithm application.
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2. The Euler and Navier - Stokes Equations

The starting point is the strong conservation law form of the two-dimensional Navier-
Stokes equations in Cartesian coordinates. The strong conservation law form is chosen
because we wish to accurately capture shocks. The equations in nondimensional form
are

∂tQ + ∂xE + ∂yF = Re−1 (∂xEv + ∂yFv) (2.1)

where

Q =




ρ
ρu
ρv
e


 , E =




ρu
ρu2 + p

ρuv
u(e + p)


 , F =




ρv
ρuv

ρv2 + p
v(e + p)


 , (2.2)

Ev =




0
τxx

τxy

f4


 , Fv =




0
τxy

τyy

g4


 (2.3)

with

τxx = µ(4ux − 2vy)/3
τxy = µ(uy + vx)
τyy = µ(−2ux + 4vy)/3
f4 = uτxx + vτxy + µPr−1(γ − 1)−1∂xa2

g4 = uτxy + vτyy + µPr−1(γ − 1)−1∂ya
2 (2.4)

Pressure is related to the conservative flow variables, Q, by the equation of state

p = (γ − 1)
(

e− 1
2
ρ(u2 + v2)

)
(2.5)

where γ is the ratio of specific heats, generally taken as 1.4. The speed of sound is a which
for ideal fluids, a2 = γp/ρ. The dynamic viscosity is µ and is typically made up of a constant
plus a computed turbulent eddy viscosity. The Reynolds number is Re and Prandtl number
Pr.

The choice of nondimensional parameters is arbitrary. Here we have chosen to scale the
variables ρ (density), u v (the Cartesian velocities), and e (the total energy) as

ρ̃ =
ρ

ρ∞
,

ũ =
u

a∞
,
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ṽ =
v

a∞
,

ẽ =
e

ρ∞a2∞
(2.6)

where ∞ refers to free stream quantities. Assuming a reference length, l (usually taken as
some characteristic physical length such as chord of an airfoil), time t scales as t̃ = ta∞/l.
The viscous coefficients scale as

µ̃ =
µ

µ∞
, Re =

ρ∞la∞
µ∞

(2.7)

Note that Re uses a∞ and therefore Re based on u∞ (the usual case for experimentally
given Reynolds number) must be scaled by M∞ = u∞/a∞. For the remainder of this
development the ∼ will be dropped for simplicity.

The Euler equations are recovered from Equations 2.1 – 2.6 by dropping the viscous
terms, i.e. setting the right hand side of Equation 2.1 equal to zero.

3. Generalized Curvilinear Coordinate Transformations

The Navier-Stokes equations can be transformed from Cartesian coordinates to general
curvilinear coordinates where

τ = t

ξ = ξ(x, y, t)
η = η(x, y, t) (3.1)

The coordinate transformation introduced here follows the development of Viviand [10]
and Vinokur [11]. Curvilinear coordinates are a representation of n-space in which arbri-
tary vectors are represented by two sets of basis vectors (not necessarily orthogonal). An
arbritary vector V (here demonstrated in 2 dimensions) is defined as

V = v1e1 + v2e2

with ei covariant basis vectors and vi the contravariant components of V. Since we don’t
require the basis vectors to be orthogonal, another set of component extracting basis vectors
are required, the contravariant basis vectors ei. The basis vectors satisfy the relationship
ei · ej = δi,j . So that, contravariant component vi = ei ·V. Another representation of V is
in terms of covariant basis vectors ei with

V = v1e
1 + v2e

2

and vi the covariant components of V, i.e., vi = ei ·V. An excellent reference for curvilinear
transforms is Korn and Korn [12]. This representation and sets of basis vectors form the
fundamental framework for the curvilinear transformations which will be applied to the
Euler and Navier-Stokes equations.
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Figure 1: Ġeneralized Curvilinear Coordinate Transformations.

The transformations are chosen so that the grid spacing in the curvilinear space is
uniform and of unit length, see Figure 1. This produces a computational space ξ and η
which is a rectangular domain and which has a regular uniform mesh so that standard
unweighted differencing schemes can be used in the numerical formulation. The original
Cartesian space will be referred to as the physical domain. Typically there will be a one to
one correspondence between a physical point in space and a computational point, except
for regions where there are singularities or cuts due to the topology. In those cases it may
be necessary to map one physical point to many computational points (this usually occurs
at computational boundaries). With this construction we can produce one computational
code for a wide variety of physical geometries and grid systems.

Chain rule expansions are used to represent the Cartesian derivatives ∂x and ∂y of
Equation 2.1 in terms of the curvilinear derivatives where in matrix form




∂t

∂x

∂y


 =




1 ξt ηt

0 ξx ηx

0 ξy ηy







∂τ

∂ξ

∂η


 (3.2)

Applying Equation 3.2 to the Navier-Stokes equations, Equation 2.1, we have

∂τQ + ξt∂ξQ + ηt∂ηQ + ξx∂ξE + ηx∂ηE + ξy∂ξF + ηy∂ηF =
Re−1 (ξx∂ξEv + ηx∂ηEv + ξy∂ξFv + ηy∂ηFv) (3.3)
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3.1. Metric Relations

In most cases the transformation from physical space to computational space is not
known analytically, rather it is generated numerically. That is, we usually are provided
with just the x, y coordinates of grid points and we numerically generate the metrics
(ξt, ξx, ξy, ηt, ηx, ηy) using finite differences.

Reversing the role of the independent variables in the chain rule formulas, Equation 3.2,
we have,

∂τ = ∂t + xτ∂x + yτ∂y, ∂ξ = xξ∂x + yξ∂y, ∂η = xη∂x + yη∂y (3.4)

which can be written in matrix form



∂τ

∂ξ

∂η


 =




1 xτ yτ

0 xξ yξ

0 xη yη







∂t

∂x

∂y


 (3.5)

Solving Equation 3.5 for the curvilinear derivatives in terms of the Cartesian derivatives
yields




∂t

∂x

∂y


 = J




(xξyη − yξxη) (−xτyη + yτxη) (xτyξ − yτxξ)
0 yη −yξ

0 −xη xξ







∂τ

∂ξ

∂η


 (3.6)

where J−1 = (xξyη − xηyξ). Evaluating Equation 3.6 for the metric terms by comparing to
the matrix of Equation 3.2 we find that

ξx = Jyη, ξy = −Jxη, ξt = −xτξx − yτξy

ηx = −Jyξ, ηy = Jxξ, ηt = −xτηx − yτηy (3.7)

where J is defined to be the metric Jacobian.

3.2. Invariants of the Transformation

At this point we notice that Equations 3.3 are in a weak conservation law form. That
is, even though none of the flow variables (or more appropriately functions of the flow
variables) occur as coefficients in the differential equations, the metrics do. There is some
argument in the literature, see for instance Hindman [13], which advocates the use of the
so called “chain rule form” since it should still have good shock capturing properties and
in some ways it is a simpler form. Here, though, we shall restrict ourselves to the strong
conservation law form which will be derived below.

To produce the strong conservation law form we first multiply Equations 3.3 by J−1

and use the chain rule on all terms such as
(

ξx

J

)
∂ξE = ∂ξ

(
ξx

J
E

)
−E∂ξ

(
ξx

J

)
(3.8)
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For simplicity, we examine only the inviscid terms, the derivation for the viscous terms
is similar. Collecting all the terms into two groups,

Term1 + Term2 = 0

where

Term1 = ∂τ (Q/J) + ∂ξ[(ξtQ + ξxE + ξyF )/J ] + ∂η[(ηtQ + ηxE + ηyF )/J ] (3.9)
Term2 = −Q[∂τ (J−1) + ∂ξ(ξt/J) + ∂η(ηt/J)]−E[∂ξ(ξx/J) + ∂η(ηx/J)]− F [∂ξ(ξy/J) + ∂η(ηy/J)]

If Term2 is eliminated then the strong conservation law form of the equations results,
Term1 = 0. Assuming solutions such that Q 6= 0, E 6= 0, and F 6= 0, the expressions, from
Term2,

∂τ (J−1) + ∂ξ(ξt/J) + ∂η(ηt/J)
∂ξ(ξx/J) + ∂η(ηx/J)
∂ξ(ξy/J) + ∂η(ηy/J) (3.10)

are defined as invariants of the transformation and will be shown to be analytically zero.
Substituting the metric definitions, Equation 3.7, into the invariants, Equation 3.10 we have

∂τ (xξyη − yξxη) + ∂ξ(−xτyη + yτxη) + ∂η(xτyξ − yτxξ)
∂ξ(yη) + ∂η(−yξ) = yηξ − yξη

∂ξ(−xη) + ∂η(xξ) = −xηξ + xξη (3.11)

Now analytically differentiation is commutative and each of the above terms then sums
to zero. This eliminates Term2 of Equation 3.10 and the resulting equations are in strong
conservation law form.

There is an important problem associated with these invariants which can be discussed
now. If Term1 is evaluated for uniform flow,

ρ = 1,

u = M∞,

v = 0,

e =
1

γ(γ − 1)
+

1
2
M2
∞ (3.12)

then the resulting equations which must sum to zero (if we require that our equations
satisfy free stream) are exactly composed of the invariants, Equation 3.10. Now when
numerical differencing is applied to these equations (as developed in the Section 5.) then
the numerical difference formulas used to evaluate the spatial differences of the fluxes and
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the finite difference forms used to calculate the metrics must satisfy the commutative law.
It is not true in general that finite difference derivatives are commutative, (second order
central differences are, but mixing second order and fourth order formulas is not). As we
shall see, the central difference formulas used in two-dimensions can produce consistent
invariants, but in three-dimensions it is not a straightforward procedure.

It should be at least a minimum requirement of any finite difference formulation that
the finite difference equations satisfy free stream flow. Care must be taken to insure that
the finite difference formulation is consistent in this area or at least we should recognize and
correct as much as possible any errors of this type. Hindman [13], Pulliam and Steger [3] and
Flores et. al. [14] have investigated this area for a variety of finite difference formulations.

The Navier-Stokes equations written in generalized curvilinear coordinates are

∂τ Q̂ + ∂ξÊ + ∂ηF̂ = Re−1[∂ξÊv + ∂ηF̂v] (3.13)

where

Q̂ = J−1




ρ
ρu
ρv
e


 , Ê = J−1




ρU
ρuU + ξxp
ρvU + ξyp

U(e + p)− ξtp


 , F̂ = J−1




ρV
ρuV + ηxp
ρvV + ηyp

V (e + p)− ηtp


 (3.14)

with

U = ξt + ξxu + ξyv, V = ηt + ηxu + ηyv (3.15)

the Contravariant velocities. The viscous flux terms are Êv = J−1(ξxEv + ξyFv) and F̂v =
J−1(ηxEv + ηyFv).

The stress terms, such as τxx are also transformed in terms of the ξ and η derivatives
where

τxx = µ(4(ξxuξ + ηxuη)− 2(ξyvξ + ηyvη))/3
τxy = µ(ξyuξ + ηyuη + ξxvξ + ηxvη)
τyy = µ(−2(ξxuξ + ηxuη) + 4(ξyvξ + ηyvη))/3
f4 = uτxx + vτxy + µPr−1(γ − 1)−1(ξx∂ξa

2 + ηx∂ηa
2)

g4 = uτxy + vτyy + µPr−1(γ − 1)−1(ξy∂ξa
2 + ηy∂ηa

2) (3.16)

with terms such as ux expanded by chain rule.

4. Thin - Layer Approximation

In high Reynolds number viscous flows the effects of viscosity are concentrated near
rigid boundaries and in wake regions. Typically in computations we only have enough grid
points available to us (due to computer storage limits) to concentrate grid lines near the
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Figure 2: Ṫhin Viscous Layer Near Body Surface.

rigid surfaces. The resulting grid systems usually have fine grid spacing in directions nearly
normal to the surfaces and coarse grid spacing along the surface, see Figure 2.

Even though we may program the full Navier-Stokes equations, the viscous terms asso-
ciated with derivatives along the body will not be resolved and in most cases for attached
and mildly separated flows these terms are negligible. The terms in the near normal will
be resolved for sufficiently fine grid spacing and these are substantial terms.

In boundary layer theory, appropriate scaling arguments show that streamwise compo-
nents of the viscous terms can be neglected relative to the normal terms. We rely upon
similar arguments as a justification for the thin layer approximation.

The thin layer approximation requires that

1. All body surfaces be mapped onto coordinate surfaces. For example, η = constant
coordinate surfaces, see Figure 1.

2. Grid spacing is clustered to the body surfaces such that sufficient resolution for a
particular Reynolds number is obtained. ( At least one or two grid points in the
sublayer).

3. All the viscous derivatives in the ξ direction are neglected, while the terms in the η
direction are retained. All of the inviscid terms are used.

The thin layer approximation is similar in philosophy but not the same as the boundary
layer theory. The normal momentum equation is solved and pressure can vary through the
boundary layer.



T.H. Pulliam, NASA Ames 13

The thin layer approximation can break down for low Reynolds numbers and in regions
of massive flow separation. It is not a necessary step into the development of the equations
and numerical algorithm. The full Navier-Stokes equations are incorporated in cases where
sufficient resolution was provided and the physical situation warranted it. The thin layer
Navier-Stokes equations have been widely used for a variety of applications.

4.1. Thin - Layer Equations

Applying the thin layer approximation to Equations 3.1, 3.14, 3.15 and Equation 3.16,
where all the viscous terms associated with ξ derivatives are neglected we obtain

∂τ Q̂ + ∂ξÊ + ∂ηF̂ = Re−1∂ηŜ (4.1)

where

Ŝ = J−1




0
ηxm1 + ηym2

ηxm2 + ηym3

ηx(um1 + vm2 + m4) + ηy(um2 + vm3 + m5)


 (4.2)

with

m1 = µ(4ηxuη − 2ηyvη)/3
m2 = µ(ηyuη + ηxvη)
m3 = µ(−2ηxuη + 4ηyvη)/3
m4 = µPr−1(γ − 1)−1ηx∂η(a2)
m5 = µPr−1(γ − 1)−1ηy∂η(a2) (4.3)

4.2. Turbulence Model

The very polular and widely used Baldwin and Lomax [15] turbulence model has been
the main workhorse for most computational efforts, at least until recently circa 1990. It is an
algebraic mixing length two-layer model included to approximate the effect of turbulence.
The inner layer is governed by the Prandtl mixing length with Van Driest damping, and the
outer layer follows the Clauser approximation. Computed vorticity is used in defining the
reference mixing length required for the outer layer. The turbulence model is detailed by
Baldwin and Lomax [15] and was designed specifically for use with the thin layer approxi-
mation. The model is most appropriate to attached and mildly separated boundary layers.
No attempt is made to model wake regions and massively separated flows. The model is
used in both two and three dimensions with very little modification. It has been very suc-
cessful for computing boundary layer growth, shock-boundary layer interaction, separation
points or lines and other boundary layer properties.

More modern turbulence models include the one equation models of Baldwin and Barth [17]
and Spalart and Almaras [16]. These models are more complicated than Baldwin and Lo-
max [15], but have been shown to be more accuate and applicable to separated and wakes
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flows. A wide variety of two equation turbulence models are available, and as one quickly
finds out in this area, no single model seems universal or completely adequate. One aspect
of using turbulence models which is often overlooked is that adequate resolution is always
required to get reasonable results reguardless of the turbulence model employed. Typically,
the inaccuracy or inadequacy of a solution is not the fault of the turbulence model, but
rather a lack of proper resolution in the viscous and even inviscid regions of the flowfield.

5. Numerical Algorithm

There are a number of considerations to weigh when choosing a numerical algorithm
to apply to a set of partial differential equations. If we restrict ourselves to finite differ-
ence schemes then the possibilities are narrowed somewhat to the two classical approaches
for time integration, explicit and implicit techniques. The merits of either of these two
have been extensively discussed in the literature. Explicit methods typically require less
computational work and are simpler both in derivation and application. Implicit methods,
while computationally expensive, have less stringent stability bounds (classical stability
analysis shows unconditional stability but in practice on nonlinear problems bounds are
encountered).

Implicit numerical schemes are usually chosen because we wish to obtain solutions which
require fine grid spacing for numerical resolution, and we do not want to limit the time steps
by employing a conditionally stable explicit scheme. Explicit schemes are very useful and
schemes such as MacCormack’s explicit algorithm [4] have seen a lot of use and are even
in wide use today. The extra work required for an implicit scheme is usually offset by the
advantages obtained by the increased stability limits, and in general implicit schemes have
been very useful and successful for a variety of inviscid and viscous flowfield calculations.

With the advent of high speed vector and parallel processors one must also consider
the degree to which a certain algorithm can be vectorized/parallelized when choosing a
scheme. As a rule explicit schemes are more easily vectorized/parallelized than implicit
schemes. But implicit schemes can be fully vectorized and have been sucessfully employed
on parallel machines. This requires though a substantial amount of temporary storage and
a commitment to the details of data management, see for instance, Lomax and Pulliam [18].

Another consideration is the question of time accuracy verses non-time-accurate steady
state iteration. For unsteady, transient problems we wish to employ time accurate methods,
initialize the flow with some realizable state and integrate forward in time with time steps
commensurate with the unsteady phenomena which is being calculated. Both implicit and
explicit methods are capable of computing time accurately. In steady state calculation
we wish to integrate from some arbitrary state to the asymptotic solution in any manner
which will get us there in the least amount of computational work. Non-time-accurate
techniques (for instance relaxation methods, variable time steps, matrix preconditioning,
large time steps) can be employed as long as they are convergent and do not distort the
steady state equations so as to produce inaccurate results. The methods presented below
can be employed either for time accurate calculations or for steady state rapidly convergent



T.H. Pulliam, NASA Ames 15

solutions.

The algorithm to be presented is an implicit approximate factorization finite difference
scheme which can be either first or second order accurate in time. Local time linearizations
are applied to the nonlinear terms and an approximate factorization of the two-dimensional
implicit operator is used to produce locally one-dimensional operators. This results in block
tridiagonal matrices, which are easy to solve. The spatial derivative terms are approximated
with second order central differences. Explicit and implicit artificial dissipation terms are
added to achieve nonlinear stability. A spatially variable time step is used to accelerate
convergence for steady-state calculations. A diagonal form of the algorithm is also discussed,
which produces a computationally efficient modification of the standard algorithm where
the diagonalization results in scalar tridiagonal or pentadiagonal operators in place of the
block operators. This diagonal form of the algorithm produces a robust, rapid and versatile
scheme for steady state calculations. We also discuss the details of a matrix reduction
scheme, due to Barth and Steger [19] where the block matrices of the standard implicit
scheme are reduced to sets of lower rank matrices (e.g. two scalars and a 2 × 2 in 2-D).

5.1. Implicit Time Differencing

Consider Equation 4.1 (the derivation will be done for the thin layer equations but is
easily extended to the full Navier-Stokes) and apply an implicit three point time differencing
scheme of the form, Warming and Beam [20]

∆Q̂n =
ϑ∆t

1 + ϕ

∂

∂t

(
∆Q̂n

)
+

∆t

1 + ϕ

∂

∂t
Q̂n +

ϕ

1 + ϕ
∆Q̂n−1 + O

[
(ϑ− 1

2
− ϕ)∆t2 + ∆t3

]
(5.1)

where ∆Q̂n = Q̂n+1 − Q̂n and Q̂n = Q̂(n∆t). The parameters ϑ and ϕ can be chosen to
produce different schemes of either first or second order accuracy in time.

For ϑ = 1 and ϕ = 0, we have the first order Euler implicit scheme, and for ϑ = 1 and
ϕ = 1/2, the three point implicit scheme.

Let us restrict ourselves to the first order in time scheme (although all of the subsequent
development can easily be extended to any second order scheme formed from Equation 5.1).
Applying Equation 5.1 to Equation 4.1, results in

Q̂n+1 − Q̂n + h
(
Ên+1

ξ + F̂n+1
η −Re−1Ŝn+1

η

)
= 0 (5.2)

with h = ∆t.

5.2. Local Time Linearizations

We wish to solve Equation 5.2 for Q̂n+1 given Q̂n. The flux vectors Ê ,F̂ and Ŝ are
nonlinear functions of Q̂ and therefore Equation 5.2 is nonlinear in Q̂n+1. The nonlinear
terms are linearized in time about Q̂n by a Taylor Series such that

Ên+1 = Ên + Ân∆Q̂n + O(h2)
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F̂n+1 = F̂n + B̂n∆Q̂n + O(h2)

Re−1Ŝn+1 = Re−1
[
Ŝn + M̂n∆Q̂n)

]
+ O(h2) (5.3)

where Â = ∂Ê/∂Q̂ , B̂ = ∂F̂/∂Q̂ and M̂ = ∂Ŝ/∂Q̂ are the flux Jacobians and ∆Q̂n is
O(h).

Note that the linearizations are second order accurate and so if a second order time
scheme had been chosen the linearizations would not degrade the time accuracy.

The Jacobian matrices are Â or B̂ =



κt κx κy 0
−uθ + κxφ2 κt + θ − (γ − 2)κxu κyu− (γ − 1)κxv (γ − 1)κx

−vθ + κyφ
2 κxv − (γ − 1)κyu κt + θ − (γ − 2)κyv (γ − 1)κy

θ[φ2 − a1] κxa1 − (γ − 1)uθ κya1 − (γ − 1)vθ γθ + κt


 (5.4)

with a1 = γ(e/ρ) − φ2, θ = κxu + κyv, φ2 = 1
2(γ − 1)(u2 + v2), and κ = ξ or η for

Â or B̂, respectively.

The viscous flux Jacobian is

M̂ = J−1




0 0 0 0
m21 α1∂η(ρ−1) α2∂η(ρ−1) 0
m31 α2∂η(ρ−1) α3∂η(ρ−1) 0
m41 m42 m43 m44


 J (5.5)

where

m21 = −α1∂η(u/ρ)− α2∂η(v/ρ)
m31 = −α2∂η(u/ρ)− α3∂η(v/ρ)
m41 = α4∂η

[−(e/ρ2) + (u2 + v2)/ρ
]

−α1∂η(u2/ρ)− 2α2∂η(uv/ρ)
−α3∂η(v2/ρ)

m42 = −α4∂η(u/ρ)−m21

m43 = −α4∂η(v/ρ)−m31

m44 = α4∂η(ρ−1)
α1 = µ[(4/3)ηx

2 + ηy
2], α2 = (µ/3)ηxηy

α3 = µ[ηx
2 + (4/3)ηy

2], α4 = γµPr−1(ηx
2 + ηy

2)

(5.6)

Applying Equations 5.3 to 5.2 and combining the ∆Q̂n terms produces the “delta form”
of the algorithm

[
I + h∂ξÂ

n + h∂ηB̂
n −Re−1h∂ηM̂

]
∆Q̂n = −h

(
∂ξÊ

n + ∂ηF̂
n −Re−1∂ηŜ

n
)

(5.7)

This is the unfactored form of the block algorithm. We shall call the right hand side of
Equation 5.7 the “explicit” part and the left hand side the “implicit” part of the algorithm.
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5.3. Space Differencing

The next step is to take the continuous differential operators ∂ξ and ∂η and approximate
them with finite difference operators on a discrete mesh.

Introducing a grid of mesh points (j, k), variables are defined at mesh points as

uj,k := u(j∆ξ, k∆η) (5.8)

The grid spacing in the computational domain is chosen to be unity so that

∆ξ = 1 and ∆η = 1 (5.9)

Second order central difference operators can be used where for example,

δξuj,k = (uj+1,k − uj−1,k) /2 and δηuj,k = (uj,k+1 − uj,k−1) /2 (5.10)

For the viscous derivatives the terms take the form

∂η (αj,k∂ηβj,k) (5.11)

which is differenced in the compact three point form as

[(αj,k+1 + αj,k) (βj,k+1 − βj,k)− (αj,k + αj,k−1) (βj,k − βj,k−1)] /2 (5.12)

The choice of the type and order of the spatial differencing is important both in terms
of accuracy and stability. In most applications second order accuracy has proven to be
sufficient provided the grid resolution is reasonable. The choices for differencing type include
central and upwind operators. These choices are dictated by stability, and in the next section
we discuss what motivates certain choices.

5.4. Stability Analysis of Difference Forms

The choice of the type of difference forms to use for the Euler equations can be justified
by a linear stability analysis. For simplicity, let us examine a one dimensional coupled
system of linear equations of the form

Qt + AQx = 0 (5.13)

where A is analogous to the flux Jacobian matrix. Assume that A has a complete set of
real eigenvalues and eigenvectors (a property that the Euler flux Jacobians have) then

Λ = X−1AX (5.14)

Multiplying Equation 5.13 by X−1 and combining terms using Equation 5.14 we have

X−1Qt + X−1AXX−1Qx = Wt + ΛWx = 0 (5.15)
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with W = X−1Q. Since A is linear and constant the eigenvector matrix X−1 can be brought
through the derivatives.

The resulting system is now uncoupled and we can examine the representative model
equation

wt + λwx = 0 (5.16)

where λ represents an eigenvalue of A.

We shall apply different finite difference approximations for the spatial derivative and
use Fourier analysis to determine conditions on λ for stability.

If the second order central difference operator is applied to the model equation one gets

(wj)t + λ (wj+1 − wj−1) /(2∆x) = 0 (5.17)

where j is the spatial index. This is the ODE (ordinary differential equation) approach to
the analysis, since now we are dealing with a system of ODE’s.

Classical Fourier analysis can be performed by assuming periodic boundary conditions
and a solution of the form

w(xj , t) = eαteiβj∆x (5.18)

with i =
√−1 and x = j∆x.

Substituting this into Equation 5.16 yields

αeαteiβj∆x + λ
(
eαteiβ(j+1)∆x − eαteiβ(j−1)∆x

)
/(2∆x) = 0 (5.19)

The stability of the ODE is dependent on the sign of <(α) (the real part). Obviously,
if <(α) > 0 then w(x, t) will grow unboundedly with time.

For Equation 5.19

α = −λ
(
eiβ∆x − e−iβ∆x

)
/(2∆x) = −λi sin(β∆x)/∆x (5.20)

Since α is pure imaginary (<(α) = 0) the scheme is stable in the ODE sense independent
of the sign of λ.

If one-sided difference formulas are employed, conditions on λ arise. For simplicity, let
us consider first order one-sided differences.

Applying forward differencing to the model Equation 5.16 gives

(wj)t + λ (wj+1 − wj) /∆x = 0 (5.21)

Fourier analysis produces

α + λ
(
eiβ∆x − 1

)
/∆x = 0 (5.22)
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so that,

α = λ
(
1− eiβ∆x

)
/∆x = λ [1− cos (β∆x) + i sin (β∆x)] /∆x (5.23)

Since cos (β∆x) is bounded by 1, <(α) will be less than zero if λ < 0. So for forward
spatial differencing λ must be less than zero for stability. A similar argument for first order
backward differencing shows that λ > 0 for stability. It can be shown that for higher order
central and one sided differences the stability requirements on λ remain the same.

These results have a direct application to the choice of differencing for the Euler equa-
tions. As we shall see below the inviscid flux Jacobians have eigenvalues (equivalent to λ)
with both positive and negative sign. In their basic form the only stable spatial differencing
is central differencing, but as we shall see when flux splitting is used or when the eigenvalues
can be restricted to one sign then upwind differencing can be employed. A class of upwind
schemes shall be discussed in Section 6.2..

5.5. Matrix Form of Unfactored Algorithm

We now turn to examining the matrices we get when difference formulas are applied
to the implicit algorithm. It is always instructive to examine the matrix structure of any
finite difference equation. With the application of central differences to Equation 5.7 it
is easy to show that the implicit algorithm produces a large banded system of algebraic
equations. Let the mesh size in ξ be Jmax and in η Kmax. Then the banded matrix is a
(Jmax ·Kmax · 4) × (Jmax ·Kmax · 4) square matrix of the form

[
I + h∂ξÂ

n + h∂ηB̂
n −Re−1h∂ηM̂

]
⇒




I A B
−A I A B

−A I A B
−A I A B

−B −A I A B
. . . . . . . . . . . . . . .

−B −A I A B
−B −A I A B

−B −A I A
. . . . . . . . . . . .

−B −A I A
−B −A I




(5.24)

where the variables have been ordered with j running first and then k.

The matrix is sparse but it would be very expensive (computationally) to solve the
algebraic system. For instance, for a reasonable two-dimensional calculation of transonic
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flow past an airfoil we could use approximately 80 points in the ξ direction and 40 points in
the η direction. The resulting algebraic system is a 12,800 × 12,800 matrix problem to be
solved and although we could take advantage of its banded sparse structure it would still
be very costly in terms of both CPU time and storage.

5.6. Approximate Factorization

As we have seen, the integration of the full two-dimensional operator can be very expen-
sive. One way to simplify the solution process is to introduce an approximate factorization
of the two-dimensional operator into two one-dimensional operators. The implicit side of
Equation 5.7 can be written as

[
I + hδξ Ân + hδη B̂n − hRe−1δηM̂

n
]

∆Q̂n =
[
I + hδξ Ân

] [
I + hδη B̂n − hRe−1δηM̂

n
]

∆Q̂n

−h2δξÂ
nδηB̂

n ∆Q̂n + h2Re−1δξÂ
nδηM̂

n ∆Q̂n (5.25)

Noting that ∆Q̂n is O(h), one sees that the cross terms (h2 terms) are second order in
time and can be neglected without lowereing the time accuracy below second order.

The resulting factored form of the algorithm is
[
I + hδξÂ

n
] [

I + hδηB̂
n − hRe−1δηM̂

n
]
∆Q̂n = −h

[
δξÊ

n + δηF̂
n −Re−1δηŜ

n
]

(5.26)

We now have two implicit operators each of which is block tridiagonal. The structure
of the block tridiagonal matrix is

[
I + hδξÂ

n
]
⇒




I A
−A I A

−A I A
. . . . . . . . .

−A I A
−A I A

−A I A
−A I




(5.27)

Note that the thin layer implicit viscous term M̂ is kept with the η factor. Since it is a
three point stencil, it will not affect the tridiagonal structure. Also when vectorization and
parallization issues are considered the one dimensional form of the factored algorithm will
be advantageous.

The solution algorithm now consists of two one-dimensional sweeps, one in the ξ and
one in the η direction. The block matrix size is now at most (max[Jmax, Kmax] · 4) ×
(max[Jmax,Kmax] · 4). Each step requires the solution of a linear system involving a
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block tridiagonal which is solved by block LUD (lower-upper decomposition). The result-
ing solution process is much more economical than the unfactored algorithm in terms of
computer storage and CPU time.

5.7. Reduced Forms of The Implicit Algorithm

Even though the factorization has improved the efficiency of the block implicit algorithm
the major expense of the implicit scheme still resides in the block tridiagonal inversions.
Compared to standard explicit algorithms the implicit scheme is still computationally ex-
pensive. The increased stability bounds of the implicit scheme offsets some of this disad-
vantage especially for problems where refined grids are used. In general, this holds true for
time accurate applications where mesh refinement would unduly restrict the time steps for
explicit schemes, but developments in multigrid techniques, see Jespersen [21] for a review,
applied to steady state problems requires us to reexamine the implicit schemes. One way to
capture back the advantage is to make the implicit scheme less computationally expensive,
we will discuss other ways, such as accelerated convergence and improved accuracy, in later
sections.

To improve the efficiency of a numerical scheme we can modify or simplify the algorithm
so that the computational work is decreased. Most of the computational work for the
implicit algorithm is tied to the block tridiagonal solution process. One way to reduce that
work would be to reduce the block size for the tridiagonals. This can be accomplished by
reducing the equation set from four variables (density, x-momentum, y-momentum, and
energy) to three variables (density and the two momentum) by assuming constant total
enthalpy, H = (e + p)/ρ = H0 or similar thermodynamic approximations. The energy
equation is then replaced by the thermodynamic relation and the simplified set of equations
can be solved. Such approximations can be restrictive in terms of the physical situations
where they can be applied.

5.7.1. Diagonal Form

The computational work can also be decreased by introducing a diagonalization of the
blocks in the implicit operators as developed by Pulliam and Chaussee [22]. The eigensystem
of the flux Jacobians Â and B̂ are used in this construction. For now let us again restrict
ourselves just to the Euler equations, the application to the Navier-Stokes is discussed later.

The flux Jacobians Â and B̂ each have real eigenvalues and a complete set of eigenvectors.
Therefore, the Jacobian matrices can be diagonalized, see Warming, Beam and Hyett [23],

Λξ = T−1
ξ ÂTξ and Λη = T−1

η B̂Tη (5.28)

with Tξ the matrix whose columns are the eigenvectors of Â and Tη the corresponding
eigenvector matrix for B̂. They are written out in the Appendix.

Here we take the factored algorithm in delta form, Equation 5.26 and replace Â and B̂
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with their eigensystem decompositions.
[
Tξ T−1

ξ + h δξ

(
Tξ Λξ T−1

ξ

)] [
Tη T−1

η + h δη

(
Tη Λη T−1

η

)]
∆Qn

= the explicit right hand side of Equation 5.26 = R̂n. (5.29)

At this point Equation 5.26 and 5.29 are equivalent. A modified form of Equation 5.29
can be obtained by factoring the Tξ and Tη eigenvector matrices outside the spatial derivative
terms δξ and δη. The eigenvector matrices are functions of ξ and η and therefore this
modification reduces the time accuracy to at most first order in time, as shown in [22]. The
resulting equations are

Tξ [I + h δξ Λξ] N̂ [I + h δη Λη] T−1
η ∆Q̂n = R̂n (5.30)

where N̂ = T−1
ξ Tη, see Appendix.

The explicit side of the diagonal algorithm (the steady-state finite difference equations)
is exactly the same as in the original algorithm, Equation 5.26. The modifications are
restricted to the implicit side and so if the diagonal algorithm converges, the steady-state
solution will be identical to one obtained with the unmodified algorithm. In fact, linear
stability analysis would show that the diagonal algorithm has exactly the same unconditional
stability as the original algorithm. (This is because the linear stability analysis assumes
constant coefficients and diagonalizes the blocks to scalars, the diagonal algorithm then
reduces to the unmodified algorithm.) The modification (pulling the eigenvector matrices
outside the spatial derivatives) of the implicit operator does affect the time accuracy of the
algorithm. It reduces the scheme to at most first order in time and also gives time accurate
shock calculations a nonconservative feature, i.e., errors in shock speeds and shock jumps,
see [22]. The steady-state is in full conservation law form since the steady-state equations
are unmodified. Also, computational experiments by Pulliam and Chaussee [22] have shown
that the convergence and stability limits of the diagonal algorithm are similar to that of
the unmodified algorithm.

The diagonal algorithm reduces the block tridiagonal inversion to 4 × 4 matrix multi-
plies and scalar tridiagonal inversions. The operation count associated with the implicit side
of the full block algorithm is 410 multiplies, 356 adds, and 10 divides, a total of 776 opera-
tions, while the diagonal algorithm requires 233 multiplies, 125 adds, and 26 divides or 384
operations. Adding in the explicit side and other overhead such as I/O (input/output) and
initialization, the overall savings in computational work can be as high as 40%. In fact the
computational work can be further decreased by noting that the first two eigenvalues of the
system are identical (see Appendix). This allows us to combine the coefficient calculations
and part of the inversion work for the first two scalar operators.

The diagonal algorithm as presented above is really only rigorously valid for the Euler
equations. This is because we have neglected the implicit linearization of the viscous flux
Ŝn in the implicit operator for the η direction. The viscous flux Jacobian M̂n is not
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simultaneously diagonalizable with the flux Jacobian B̂n and therefore to retain the full
diagonalization we neglect it. For viscous flows we have investigated four options. One
possibility is to use the block tridiagonal algorithm in the η direction and include the
viscous Jacobian M̂n. This increases the computational work and restricts us from using
some of the convergence acceleration techniques which will be discussed below. Another
option is to introduce a third factor to the implicit side of Equation 5.26 where we use

[
I − hRe−1δηM̂

n
]

(5.31)

This again increases the computational work since we now have an added block tridiagonal
inversion. We take these measures though because of the questionable stability of just
completely neglecting the implicit viscous terms. The third option is to throw caution to the
wind and actually neglect the viscous Jacobian, thereby gaining the increased efficiency of
the diagonal algorithm. As long as the algorithm remains stable and convergent, the steady
state obtained is identical for all three options since the explicit side is unchanged. The
fourth option is to include a diagonal term on the implicit side which is an approximation
to the viscous Jacobian eigenvalues. The estimate (taken from an examination of the terms
of the Jacobian M̂) currently used is

λv(ξ) = µRe−1J−1
(
ξ2
x + ξ2

y

)
Jρ−1

λv(η) = µRe−1J−1
(
η2

x + η2
y

)
Jρ−1 (5.32)

which are added to the appropriate implicit operators in Equation 5.30 with a differencing
stencil taken from Equation 5.11. The new form of the diagonal allgorithm is given as

Tξ [I + h δξ Λξ − h I δξξλv(ξ)] N̂ [I + h δη Λη − h I δηηλv(η)] T−1
η ∆Q̂n = R̂n (5.33)

The terms in Equation 5.32 which are contained under the overbar are distinguished from
the Jρ−1 because the application to the difference forms require those terms to be averaged
as in Equation 5.12. The ξ term is not added if the thin layer approximation is used. In all
the above cases the explicit viscous operator is unchanged from the standard algorithm.

We have compared the four options for a number of test cases. For the first option, block
tridiagonal with second order implicit dissipation the convergence rate was the slowest. For
the second option, the third factor, fast convergence rates and stability were obtained at
the expense of more computation. The third option, neglecting the viscous flux Jacobian,
produced identical stability and convergence as the second option in most cases but re-
quired less computational work. In the fourth option (which is the recommended form) the
convergence rates are typically the best and the overall robustness of a numerical code is
improved. In all cases the converged solutions are identical.

5.7.2. Pressure–Velocity Splitting

Another way is to reduce the block size by similarity transformations as proposed by
Steger [24]. This was originally restricted to Cartesian variables. Barth and Steger [19] have
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removed some of this restriction and developed an algorithm where two scalar tridiagonals
and one block two by two tridiagonal inversion is required. The basic concept can be
demonstrated in two-dimensional Cartesian coordinates, see Barth and Steger [19] for the
extension to generalized coordinates.

The development of the sound speed - velocity splitting begins by considering the non-
conservative form of the Euler equations

∂tR + M∂xR + N∂yR = 0 (5.34)

where

R =




ρ
u
v
p


 , M =




u ρ 0 0
0 u 0 ρ−1

0 0 u 0
0 γp 0 u


 , N =




v 0 ρ 0
0 v 0 0
0 0 v ρ−1

0 0 γp v


 (5.35)

The eigenvalues of coefficient matrices, M and N, are the usual characteristic speeds

ΛM = [u, u, u + c, u− c] , ΛN = [v, v, v − c, v + c] (5.36)

These coefficient matrices can each be split into two submatrices: one derived from the
velocity part of the eigenvalues and the other from the sound speed part of the eigenvalues. A
particular matrix splitting (there are many possibilities) was chosen to satisfy the following
conditions

Λ(M) = Λ(Mu) + Λ(Mc), Λ(Mu) = (u, u, u, u), Λ(Mc) = (0, 0, c,−c) (5.37)

Λ(N) = Λ(Nv) + Λ(Nc), Λ(Nv) = (v, v, v, v), Λ(Nc) = (0, 0, c,−c) (5.38)

Specifically, M and N are split as

M = Mu + Mc =




u ρ 0 0
0 u 0 0
0 0 u 0
0 0 0 u


 +




0 0 0 0
0 0 0 ρ−1

0 0 0 0
0 γp 0 0


 (5.39)

N = Nv + Nc =




v 0 ρ 0
0 v 0 0
0 0 v 0
0 0 0 v


 +




0 0 0 0
0 0 0 0
0 0 0 ρ−1

0 0 γp 0


 (5.40)

Given the coefficient matrices M and N, a similarity transformation exists that trans-
forms these matrices into their conservative counterpart, the flux Jacobians A and B.
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A = SMS−1, B = SNS−1 where S = ∂Q
∂R . Using this similarity transformation, Mc

and Nc transform to Ac = SMcS
−1 and Bc = SNcS

−1 written out as

Ac = (γ − 1)




0 0 0 0
(u2 + v2)/2 −u −v 1

0 0 0 0
ac

41 ac
42 −uv u


 ,

Bc = (γ − 1)




0 0 0 0
0 0 0 0

(u2 + v2)/2 −u −v 1
bc
41 −uv bc

43 v


 (5.41)

where

ac
41 = [u(u2 + v2)/2]− γup/[ρ(γ − 1)2], ac

42 = γp/[ρ(γ − 1)2]− u2 (5.42)

bc
41 = [v(u2 + v2)/2]− γvp/[ρ(γ − 1)2], bc

43 = γp/[ρ(γ − 1)2]− v2 (5.43)

while Au and Bv are

Au = A−Ac, Bv = B −Bc (5.44)

This splitting produces matrices Au and Bv that are more complex than A and B. But it
is found that Q is an eigenvector of Au and Bv, i.e.

AuQ = uQ, BvQ = vQ (5.45)

which motivates the following substitution

AQ = (uI + Ac)Q, BQ = (vI + Bc)Q (5.46)

Insertion of Equation 5.46 into the equations for local linearization of the Jacobians, the
Cartesian equivalent of Equation 5.3), produces

En+1 = En + (uI + Ac)n(Qn+1 −Qn) (5.47)

Fn+1 = Fn + (vI + Bc)n(Qn+1 −Qn) (5.48)
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Utilizing these linearizations in the basic algorithm Equation 5.26 yields

LxLy∆Q = −∆t [δxEn + δyF
n] (5.49)

with

Lx = [I + θ∆tδx(uI + Ac)n] (5.50)

Ly = [I + θ∆tδy(vI + Bc)n] (5.51)

The end result of this splitting is that the new operators Lx and Ly form matrices that
no longer require 4× 4 block tridiagonal inversions. In matrix operator form, we have

Lx =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


+ θ∆tδx




u 0 0 0
ac

21 u + ac
22 ac

23 ac
24

0 0 u 0
ac

41 ac
42 ac

43 u + ac
44


 (5.52)

Ly =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


+ θ∆tδy




v 0 0 0
0 v 0 0

bc
31 bc

32 v + bc
33 bc

34

bc
41 bc

42 bc
43 v + bc

44


 (5.53)

where ac and bc are the respective elements of Ac and Bc given by Equation 5.41.

In the Lx operator, for example, the first and third rows decouple from the system and
can be solved as scalar tridiagonal matrices with their respective right-hand-sides. Once
these rows are solved, the elements of the first and third columns can be moved to the
right-hand-side. The second and fourth equations remain coupled and are solved as a 2× 2
block tridiagonal matrix. The block decoupling of the Ly operator is even more conspicuous
and is inverted (i.e., solved for) in a similar manner.

The use of the pressure–velocity splitting has substantially reduced the computational
work over the basic block implicit scheme. A typical 2 × 2 block tridiagonal requires 55
operations per point, so the overall inversion, including the two scalar tridiagonals, requires
73 operations per entry. Because the two scalar tridiagonals have identical coefficients, this
work can be even further cut by solving them together.

The matrix splitting produces the flux vectors

E = AQ = uIQ + AcQ = Eu + Ec, F = BQ = vIQ + BcQ = Fv + Fc (5.54)
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where

Eu =




ρu
ρu2

ρvu
ue


 , Ec =




0
p
0
up


 , Fv =




ρv
ρuv
ρv2

ve


 , Fc =




0
0
p
vp


 (5.55)

Note that the Jacobians of Ec and Fc are not Ac and Bc as defined above. Usually, the
use of implicit linearizations which are not the Jacobians of the explicit flux vectors leads to
restricted stability bounds or unconditional instability. Linear stability analysis presented
by Barth and Steger, as well as numerical experiment have shown though that the use of
Ac and Bc leads to unconditional stability.

The generalized coordinate form of pressure–velocity splitting is developed in Barth
and Steger [19]. A rotation transformation is used to align the momentum equations with
generalized coordinate directions, e.g. in the ξ direction they use

Cξ =




1 0 0 0
0 ξx

L1

ξy

L1
0

0 − ξy

L1

ξx

L1
0

0 0 0 1




(5.56)

with L1 =
√

ξ2
x + ξ2

y . This produces the transformed splitting matrix

Ãc = (γ − 1)




0 0 0 0
L1(u2+v2)

2 −U −V̂ L1

0 0 0 0

ac
41 ac

42 −UV̂
L1

U




(5.57)

where

ac
41 = U [(u2 + v2)/2− c2

(γ − 1)2
], ac

42 = L1
c2

(γ − 1)2
− U2

L1
(5.58)

with V̂ = ηyu− ηxv.

The structure of Equation 5.57 is identical to Equation 5.41 so that the implicit operators
in generalized coordinates are again reducible to 2 scalars and one 2× 2 block operator for
each direction. Barth and Steger also discuss the application of pressure–velocity splitting
to the Navier-Stokes equations.
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5.8. Metric Differencing and Invariants

Once a fluid dynamics code has been written, there are a number of first order checks
which must be passed to assess accuracy and efficiency. A first test is that the code recovers
free stream or uniform flow. In the case of arbitrary curvilinear coordinates and general finite
differences this is not a trivial exercise. By construction finite volume schemes automatically
balance fluxes and therefore they are not as susceptible to this type of error. There are a
number of examples in the literature where finite volume schemes have been employed, see
Jameson et.al. [6] or Rizzi and Erikson [5]. We prefer to employ finite difference formulations
since they are usually more flexible, especially in the implementation of boundary conditions
and in obtaining higher order accuracy. In this case the differencing used to form the flux
derivatives and the differencing used to form the metrics must obey certain relations if free
stream is to be captured.

As discussed in Section 3., applying free stream or constant flow reduces the flow equa-
tions to the invariants of Equation 3.11. Examining one of these terms ∂ξ(yη) + ∂η(−yξ)
where central differences are used to form the metric terms, and using central differencing
for the flux derivatives, we have,

δc
ξδ

c
ηy − δc

ηδ
c
ξy = [yj+1,k+1 − yj−1,k+1 − yj+1,k−1 + yj−1,k−1]/4

+ [−yj+1,k+1 + yj+1,k−1 + yj−1,k+1 − yj−1,k−1]/4 = 0 (5.59)

We see that central differencing in two dimension does satisfy the invariant relations.
This becomes obvious when one realizes that second order central differencing operators
commute, i.e. δc

ξδ
c
η = δc

ηδ
c
ξ. This is not true for general differences, e.g. δb

ξδ
c
η 6= δc

ξδ
b
η. Take

the case of central differencing to form metrics and one sided backward differencing for the
fluxes. Then we have,

∇ξδηy −∇ηδξy = [yj,k+1 − yj−1,k+1 − yj,k−1 + yj−1,k−1]/2
+ [−yj+1,k + yj+1,k−1 + yj−1,k − yj−1,k−1]/2 6= 0 (5.60)

The error associated with not satisfying the invariant relations is truncation error equal
to or less than the lowest order accurate operator used. The error can be eliminated by
modifying the difference formulas, for example introducing simple averages. The equiva-
lent relationships for three dimensions can be very complicated. In most cases the error
introduced is small except in regions of large mesh spacing or large distorted cells (high
aspect ratios). It should be stressed though, that the satisfaction of the invariant relations
is at least a high priority for any flow code. Hindman [13] has investigated this area for the
Euler equations and Flores et.al. [14] give an interesting account of similar problems and
solutions for the conservative full potential equations.

6. Artificial Dissipation Added to Implicit Schemes

Even though linear stability analysis shows unconditional stability for the implicit al-
gorithm, in practice stability bounds are encountered. This is especially true in strongly
nonlinear cases, such as flows with shocks.
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Whenever discrete methods are used to “capture” shocks (as opposed to fitting them), or
to compute high Reynolds number viscous behavior, scales of motion appear which cannot
be resolved by the numerics. These can be brought about by the nonlinear interactions in
the convection terms of the momentum equations. If scale is represented by wave length
or frequency, it can be easily shown that two waves interact as products to form a wave of
higher frequency (the sum of the original two) and one of lower frequency (the difference).
The lower frequencies do not cause a problem, but the continual cascading into higher and
higher frequencies does. It is accounted for physically by shock formation (the harmonic
analysis of a discontinuity contains all frequencies ) or by viscous dissipation of the very high
wave numbers. In numerical computations it can not be ignored and must be accounted
for in the algorithm constructed. In any finite discrete mesh the cascading frequencies can
eventually exceed the capacity of the mesh resolution at which point they can either alias
back into the lower frequencies or pile up at the higher frequency side. In either case, if
uncontrolled, these terms can lead to serious inaccuracies and possible numerical instability.

The most common way of coping with the high-frequency cascade is to add to the
complete algorithm some form of numerical dissipation with an error level that does not
interfere with the accuracy of any physical viscous effects. This can be done in a variety of
ways.

6.1. Constant Coefficient Implicit and Explicit Dissipation

Historically, in the class of implicit finite difference codes developed in the mid 1970’s, a
common procedure was to add explicit fourth difference artificial dissipation to the central
difference algorithm of the form

−εe∆tJ−1[(∇ξ∆ξ)2 + (∇η∆η)2]JQ̂n (6.1)

which is added to the right-hand side of Equation 5.26 and implicit second difference smooth-
ing

−εi∆tJ−1∇ξ∆ξJ, −εi∆tJ−1∇η∆ηJ (6.2)

which was inserted into the respective implicit block operators. Second difference implicit
dissipation was used to keep the block implicit operators tridiagonal. The difference oper-
ators are defined as

∇ξqj,k = qj,k − qj−1,k, ∆ξqj,k = qj+1,k − qj,k

∇ηqj,k = qj,k − qj,k−1, ∆ηqj,k = qj,k+1 − qj,k (6.3)

and are applied at all interior points. The parameter εe is chosen to be O(1) and εi = 2εe.
The smoothing terms are scaled with ∆t which makes the steady state independent of the
time step.

It is important to assess the effect on stability when these terms are added. In Section7.2.,
we provide a linear analysis of the effect of added dissipation on stability. We summarize
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the results here. In the original development of the implicit algorithm we only added in
the explicit dissipation, but this lead to a linear stability bound which was dependent on
the magnitude of εe∆t. The implicit second difference term was added to eliminate this
stability bound. The proper approach would be to make the fourth difference dissipation
implicit. This would then necessitate the use of block pentadiagonal solvers which is too
computationally expensive. The second difference implicit dissipation stabilizes the algo-
rithm and allows us to retain block tridiagonal inversions. Linear analysis shows that if
εi À εe then unconditional stability is obtained. It should be noted that in practice for
nonlinear problems the total algorithm has large but conditional stability bounds.

Beam and Bailey [25] suggest that while the implicit second difference dissipation im-
proves the practical stability bound, the use of fourth difference implicit dissipation match-
ing the explicit terms produces larger stability bounds and enhanced convergence. This
is consistent with a concept which I will discuss in more detail below. That is, maximum
stability bounds and optimal convergence rates are only achieved if we properly linearize the
explicit side of the algorithm. In this case a proper linearization of the explicit dissipation
produces improved stability and convergence. Beam and Bailey employed a block penta-
solver which greatly increased the computational work and storage. We take advantage of
the diagonal algorithm to produce a much more efficient scheme. Within the framework
of the diagonal scheme we can replace the four scalar tridiagonals with scalar pentadiago-
nals which is just a minor increase in computational work. The resulting scheme has the
advantage of increased stability bounds and convergence rates with the total computation
work still less than the standard block tridiagonal scheme. Computational experiments
demonstrate the increased efficiency and stability.

The approach of adding a constant coefficient fourth difference explicit dissipation can
produce some problems which are only evident in the case of refined meshes. Initially,
because of computer limitations we only employed coarse grids and this type of dissipation
was sufficient to produce stability and limited accuracy. With the advent of more powerful
computers we have gone to grid refinement especially to resolve shocks. The use of the
above type of fourth difference dissipation with refined meshes produces wild oscillations
near shocks even in cases where the computation is completely stable and converged. In
Figure 3, we show a converged solution for a NACA 0012 airfoil at a transonic Mach number,
M∞ = 0.8 and angle of attack, α = 0◦ isolating the region near the shock.

As can be seen, the solution seems perfectly fine except in the region of the shock where
a large every other point oscillation is evident. Varying the coefficient of artificial dissipation
over a fairly wide range did not alter the nature of this oscillation. This is obviously an
undesirable result which can be eliminated as shown below.

6.2. The Upwind Connection to Artificial Dissipation

In the early 1980’s a number of schemes were developed based on upwind differencing.
The flux split schemes of Steger and Warming [26], Roe [27], and Van Leer [28] employ a
decomposition of the flux vectors in such a way that each element can be stably differenced in
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Figure 3: Ċoefficient of Pressure Showing Oscillations at Shock.

an upwind fashion. Other schemes of a similar nature but based on complicated theories are
the flux difference scheme of Osher and Chakravarthy [29] and Harten’s TVD methods [30].
These schemes all claim (with good justification) to be physically consistent since they follow
in some sense the characteristics of the flow. They in general can be shown to produce sharp
oscillation free shocks without added artificial dissipation. They are, though, complicated
schemes which are just now being applied to complicated flowfield situations. Also these
schemes have an inherent amount of internal dissipation, due to the one sided differences,
which cannot be modified or decreased. It may be advantageous to have the flexibility of a
simple central difference scheme with a controllable amount of artificial dissipation.

It can be shown (as done below) that the upwind schemes have an equivalence to central
difference schemes with added dissipation. The central schemes are much simpler and more
flexible and are therefore desirable if the dissipation can be added in an analogous fashion
to the upwind schemes.

The plus - minus flux split method of Steger and Warming [26] will be used here to
demonstrate the dissipative nature of upwind schemes. The approach taken is to split the
eigenvalue matrix Λ of the flux Jacobians into two matrices, one with all positive eigenvalues
and the other with all negative eigenvalues. Then the similarity transformations X or Y
are used to form new matrices A+, A− and B+, B−. Formally,

A = XΛAX−1 = X(Λ+
A + Λ−A)X−1 = A+ + A− (6.4)

with

Λ±A =
ΛA ± |ΛA|

2
(6.5)
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Here, |Λ| implies that we take the absolute values of the elements of Λ. The two matrices,
A+ and A− have by construction all positive and all negative eigenvalues, respectively.

New flux vectors can be constructed as

E = AQ = (A+ + A−)Q = E+ + E−

F = BQ = (B+ + B−)Q = F+ + F− (6.6)

Different types of spatial differencing can now be used for each of the new flux vectors. One
stable form is to use one sided backward differencing for the positive terms and one sided
forward differencing for the negative terms. The one-sided difference operators are usually
either first order accurate

∇b
ξ uj,k =

uj,k − uj−1,k

∆ξ
and ∆f

ξ uj,k =
uj+1,k − uj,k

∆ξ
(6.7)

or second order accurate

δb
ξ uj,k =

3
2 uj,k − 2uj−1,k + 1

2 uj−2,k

∆ξ

δf
ξ uj,k =

−3
2 uj,k + 2 uj+1,k − 1

2 uj+2,k

∆ξ
(6.8)

Similar expressions are used for the η derivatives. Note that ∆ξ = 1, bull will appear in
formulas where its presence conveys meaning.

The plus-minus matrices, A+ and A− can be written as

A± = X

(
Λ± |Λ|

2

)
X−1 =

A± |A|
2

(6.9)

which gives

E± = A±Q =
A

2
Q± |A|

2
Q =

E

2
± |A|

2
Q (6.10)

Similar expressions are obtainable for the B matrices and flux vector F .

Examining the flux derivative

δb
ξE

+ + δf
ξ E− (6.11)

where second order one sided difference approximations are chosen

δb
ξ = (3I − 4E−1 + E−2)/(2∆ξ)

δf
ξ = (−3I + 4E+1 − E+2)/(2∆ξ) (6.12)

with E i the shift operator, i.e., E±iuj = uj±i.
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Combining Equations (6.7b) and (6.8) we have

1
2

[
(δb

ξ + δf
ξ )E + (δb

ξ − δf
ξ )|A|Q

]
(6.13)

for the difference equation.

It is easily shown that

(δb
ξ + δf

ξ )/2 = (−E+2 + 4E+1 − 4E−1 + E−2)/(4∆ξ) = δξ (6.14)

which is a second order central difference operator, but not δξ. The other term of Equa-
tion 6.13 is of more interest, where

(δb
ξ − δf

ξ )/2 = (E+2 − 4E+1 + 6I − 4E−1 + E−2)/(4∆ξ) =
1

4∆ξ
(∆ξ∇ξ)2 (6.15)

which is a fourth difference stencil. The difference operators are defined in Equation 6.3.

Now Equation 6.13 can be written as

(
δξE +

1
4∆ξ

(∆ξ∇ξ)
2|A|Q

)
(6.16)

The form now is a second order central difference term plus fourth difference dissipation.
The dissipative term is a natural consequence of the upwind differencing. It is interesting
to note that the central difference term Equation 6.14 is not the standard three point
difference. If first order formulas are employed for the upwind differences then a similar
analysis would produce the standard second order three point central differencing plus a
second differencing dissipative term. For instance, Equation 6.16 is replaced by

(
δξE − 1

2∆ξ
(∆ξ∇ξ)|A|Q

)
(6.17)

We note a number of things from the form of Equations 6.16, 6.17 which can guide us
in developing artificial dissipation models for a central difference scheme. Adding fourth
difference dissipation to a central difference produces the equivalent of some second order
upwind scheme. The use of second difference dissipation can produce a first order upwind
equivalent. Research has shown that applying flux limiters to upwind schemes and some
of the TVD concepts suggest that the best approach for an upwind algorithm is to use a
locally first order upwind difference at a shock and second order elsewhere. This can be
accomplished by some switching and transitioning of second difference and fourth differ-
ence dissipation added to a central scheme. The coefficients for the dissipation parts of
Equation 6.16, 6.17 suggest some sort of flux Jacobian scaling where for instance a spectral
radius of the Jacobians could be used.
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6.3. Nonlinear Artificial Dissipation Model

As seen from the previous analysis a mixed second and fourth difference dissipation
model with appropriate coefficients should produce a scheme with good shock capturing
capabilities. Jameson et.al. [6] has employed a dissipative model of such a form where
second and fourth difference dissipation are combined. The model rewritten in our notation
is

∇ξ

(
σj+1,kJ

−1
j+1,k + σj,kJ

−1
j,k

) (
ε
(2)
j,k∆ξQj,k − ε

(4)
j,k∆ξ∇ξ∆ξQj,k

)
(6.18)

with

ε
(2)
j,k = κ2∆t max(Υj+1,k,Υj,k, Υj−1,k)

Υj,k = |pj+1,k−2pj,k+pj−1,k|
|pj+1,k+2pj,k+pj−1,k|

ε
(4)
j,k = max(0, κ4∆t− ε

(2)
j,k) (6.19)

where typical values of the constants are κ2 = 1/4 and κ4 = 1/100. Similar terms are used
in the η direction. The term σj,k is a spectral radius scaling and is defined as

σj,k = |U |+ a
√

ξ2
x + ξ2

y (6.20)

which is the spectral radius of Â, the spectral radius of B̂ is used for the η dissipation.

The first term of Equation 6.18 is a second difference dissipation with an extra pressure
gradient coefficient to increase its value near shocks. The second term is a fourth difference
term where the logic to compute ε

(4)
j,k switches it off when the second difference nonlinear

coefficient is larger then the constant fourth difference coefficient. This occurs right near a
shock. In Figures 4 and 5, we show solutions for the flow problem of Figure 3, using this
nonlinear artificial dissipation. For Figure 4 we employ just the fourth difference term, i.
e. κ2 = 0.

The oscillations at the shock are eliminated and a sharp shock is obtained. In this case
though there is an overshoot and undershoot at the top and bottom of the shock which is
eliminated in Figure 5 by adding the second difference term, κ2 = 1/4.

The results shown are fully converged to machine zero and in the case of Figure 5
represent the current quality of our shock capturing capabilities. The chosen values of the
coefficients have, at least to date, been static and are not changed from case to case.

The implicit dissipation used with Equation 6.18 is the linearization of the equation
treating the pressure coefficient Υ and the spectral radius σ as space varying functions
but ignoring their functional dependency on Q. Then the dissipation is linear in Qj,k and
is added to the diagonal algorithm again necessitating scalar pentadiagonal solvers. This
produces a very efficient, stable and convergent form of the implicit algorithm.

Near computational boundaries we modify the fourth difference dissipation so as to
maintain a dissipative term. A derivation and analysis of various boundary treatments in
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Figure 4: Ċoefficient of Pressure Obtained Using Fourth Difference Nonlinear Dissipation.

Figure 5: Ċoefficient of Pressure Obtained Using Second + Fourth Difference Nonlinear
Dissipation.
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given in Ref. [31]. The modification is needed at the first interior point (e.g. Qj+1,k) where
the five point fourth difference term Qj+2,k − 4Qj+1,k + 6Qj,k − 4Qj−1,k + Qj−2,k is to be
applied. There the point Qj+2,k doesn’t exist, the formula is modified to a one sided second
difference term with the differencing stencil −2Qj+1,k + 5Qj,k − 4Qj−1,k + Qj−2,k. Similar
formulas are used at other boundaries.

6.4. Total Variation Diminishing Schemes, TVD

The development of monotone, flux vector/difference splitting, TVD and other nonoscil-
latory schemes can be found in numerous publications, see for example, Refs. [7], [8], [9], [26],
[27], [28], [29], [30]. Here we shall just briefly define the conditions for a class of TVD schemes
introduced by Harten [30].

The conditions for a scheme to be TVD in Harten’s sense can be developed for the scalar
hyperbolic conservation law

∂u

∂t
+

∂f(u)
∂x

= 0 (6.21)

where f (the flux) is a nonlinear function of u . We can define a characteristic speed
a(u) = ∂f/∂u.

A one parameter family of schemes can be defined

un+1
j + λθ

(
hn+1

j+ 1
2

− hn+1
j− 1

2

)
= un

j − λ(1− θ)
(

hn
j+ 1

2
− hn

j− 1
2

)
(6.22)

rewritten as

Lun+1 = Run (6.23)

where un
j = u(j∆x, n∆t), λ = ∆t/∆x, θ parameterizes the equations from the fully explicit

to fully implicit forms, and h is the numerical flux function with hj± 1
2

= h (uj∓1, uj , uj±1, uj±2).

The total variation of a mesh function un is defined as

TV (un) =
∞∑

j=−∞
|un

j+1 − un
j | =

∞∑

j=−∞
|∆j+ 1

2
un| (6.24)

where ∆j+ 1
2

= uj+1 − uj .

A numerical scheme is TVD if

TV
(
un+1

)
≤ TV (un) (6.25)

For Equations 6.22, 6.23 the conditions due to Harten [30] are

TV (Run) ≤ TV (un) (6.26)
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and

TV
(
Lun+1

)
≥ TV

(
un+1

)
(6.27)

Rewritting Equations 6.22 6.23, assuming h is Lipschitz continuous,

un+1
j − λθ

(
C−

j+ 1
2

∆j+ 1
2
u− C+

j− 1
2

∆j− 1
2
u

)n+1

=

un
j + λ(1− θ)

(
C−

j+ 1
2

∆j+ 1
2
u− C+

j− 1
2

∆j− 1
2
u

)n

(6.28)

with C∓ bounded functions. Sufficient conditions for Equations 6.26, 6.27 are

for all j :

λ(1− θ)C∓
j+ 1

2

≥ 0

λ(1− θ)
(

C+
j+ 1

2

+ C−
j+ 1

2

)
≤ 1

−∞ < C ≤ −λθC±
j+ 1

2

≤ 0 (6.29)

for finite C.

These conditions can be used to analyze and construct various TVD schemes. Refer to
References [30], [7], and [8] for two forms of high resolution (at least second order accurate)
TVD schemes applied to hyperbolic conservation law equations.

7. Time Accuracy, Steady States, Convergence and Stability

7.1. Time Accuracy vrs Steady-State Computation

The implicit algorithm is designed to be time accurate where second order accuracy
can be maintained and the equations are integrated through time from some meaningful
initial condition to the the solution at time T . In this case the time step is chosen to be
commensurate with some time scale of the problem. The evolution of the solution through
time is physically realistic and good solution accuracy is dependent on the mesh spacing
and boundary conditions.

The equations can also be applied to steady-state problems. Typically we employ the
first order scheme in time and attempt to accelerate the algorithm by various non-time-like
maneuvers. The equations are then integrated from an arbitrary initial condition to a time
asymptotic state. Any procedure which drives us to the steady-state faster must also be
stable and accurate at convergence. It might be expected that large time steps could be
used to drive the solution to the steady-state faster. As we shall see, based on linear analysis
large time steps can increase the convergence rate, but for factored forms the limit of the
amplification factor (a measure of the maximum convergence rate) as h = ∆t →∞ is 1.
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A. Effect of Factorization Errors On Convergence

Let us divide the total solution into the transient (time-like) and particular (steady-
state) parts. The goal of any fast steady-state algorithm is to eliminate the transient as
quickly as possible. We can examine the ability of the implicit scheme to eliminate transients
by investigating the model problem, Equation 5.16. In this case, instead of Equation 5.18
we take

w = w̃(t) eiβ x (7.1)

and treat the spatial derivative ∂x analytically, then examine the temporal differencing
schemes in one and two dimensions. This gives us the purely transient one dimensional
model problem

w̃t + λx w̃ = 0 (7.2)

with λx = iβλ.

The delta form of the first order implicit algorithm is

(1 + h λx)∆w̃n = −hλx w̃n (7.3)

which can be rewritten as

w̃n+1 =
[

1
(1 + hλx)

]
w̃n

or

w̃n =
[

1
(1 + hλx)

]n

w̃0 (7.4)

where w̃0 is some initial value. The term in the brackets is the amplification factor, σ.

For h →∞, w̃n → 0 and the transient can actually be eliminated directly for large h.

In contrast, let us examine a two-dimensional factored implicit scheme for the two-
dimensional transient problem

w̃t + λxw̃ + λyw̃ = 0 . (7.5)

This is the two-dimensional counterpart to Equation 7.2. Applying the first order implicit
approximate factorization delta algorithm to Equation 7.5 we have

[1 + hλx] [1 + hλy] ∆w̃n = −h (λx + λy) w̃n (7.6)

Expanding ∆w̃n = w̃n+1 − w̃n and combining terms we have

w̃n =

[ (
1 + h2 λxλy

)

(1 + h λx + h λy + h2 λxλy)

]n

w̃0 (7.7)
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and so |σ| → 1 as h →∞.

A close examination of this result shows that the factorization has destroyed the good
convergence characteristics at large time steps. The factoring error term has introduced a
h2 term in the numerator of the amplification factor. Therefore the factored schemes do
not have good convergence characteristics for large time steps. Actually, there is a range of
moderately large time steps where the amplification factor is a minimum, see for instance
Abarbanel, Dwoyer, and Gottlieb [32]. Convergence can therefore be accelerated by using
a time step which minimizes the amplification factor.

Note that for the delta form of the algorithm (either factored or unfactored) the steady-
state solution is independent of the time step, h. (There are numerical schemes where this
is not the case, such as Lax-Wendroff.) Therefore, the time step path to the steady-state
does not affect the final solution and we can envision using time step sequences or spatially
variable time steps to accelerate convergence.

B. Space Varying ∆t

Manipulation of the time step can have a substantial influence on convergence even
within the framework of the factored algorithms. If only a steady state solution is required,
one can let h (or ∆t) change in space. This approach can be viewed as a way to condition the
iteration matrix of the relaxation scheme defined via Equation 5.26 or Equation 5.30. Use
of a space varying ∆t can also be interpreted as an attempt to use a more uniform Courant
number throughout the field. In any event, changing ∆t can be effective for grid spacings
that vary from very fine to very coarse - a situation usually encountered in aerodynamic
simulations where grids contain a wide variety of length scales.

A space varying ∆t has been used in both explicit and implicit schemes ( e.g. Shang and
Hankey [33], McDonald and Briley [34], Shirnivasan et al [35], Coakley [36], Jameson [6],
etc ). As a rule one wishes to adjust ∆t at each point proportional to the grid spacing and
the characteristic speed of the flow. Something like the Courant number restriction ( which
for the Euler equations in multi-dimensions is a bit of an approximation).

For highly stretched grids the space variation of the grid is the most important parameter
to scale with. In subsonic and transonic flow the characteristic speeds have moderate
variation and we have found that a purely geometric variation of ∆t is adequate, specifically

∆t =
∆t|ref

1. +
√

J
(7.8)

To illustrate the advantage of using a variable time step, Figure 6 shows the degradation
in convergence rate when a constant step size is substituted for the variable time step in a
NACA 0012 test case. For this comparison all other possible parameters were held constant
and no other changes were employed. We should note at this time that the above variation
of time step has often worked poorly in viscous flow until the numerical dissipation terms
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Figure 6: Ċonvergence Improvement Due to Variable Time Step.

were also put in implicitly as described later. Also other forms of the variable step size
sometimes perform better than Equation 7.8, for example

∆t =
∆t|ref

|U |+ |V |+ a
√

ξ2
x + ξ2

y + η2
x + η2

y

(7.9)

which is approximately a constant CFL condition. However, Equation 7.9 is more costly to
compute then Equation 7.8.

C. Mesh Sequences

For inviscid airfoil calculations on a grid of O(250 x 50) practical convergence is usually
obtained in 500-600 fine grid iterations when the flow field has been started from an initial
condition of uniform free stream flow. Typically the first 100 to 200 iterations on the fine
mesh are needed to get past the initial transients which can be a substantial portion of
the total solution time. For instance, in the above test case it takes on the order of 600
fine grid iterations for a tight convergence criteria (e.g. lift to 5 decimal places) , 200 of
which are spent on clearing out the impulsive start. One way to accelerate convergence
to a steady state is to obtain a good initial guess for a fine mesh by first iterating on a
sequence of coarse grids and then interpolating the solution up to the next refined grid.
Such a mesh sequence procedure can often reduce the amount of time required to obtain a
solution to plotable accuracy by a factor of two. Also, because a coarse grid tends to damp
high frequency waves, using a mesh sequence procedure can improve the overall robustness
of the code.
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Figure 7: İmprovement In Total Convergence of Lift Due to Mesh Sequencing.

A mesh sequencing procedure can be implemented in an optionally called stand alone
routine. If a sequence of m grids are used, a coarsened grid is cut from each previous
grid by halving the number of points in the ξ-direction and by regenerating a new η-
distribution of points in the η-direction using a fewer number of points. The η-distribution
is regenerated because in viscous flows the spacing near the wall would be too coarse if the
halving procedure is used. A finite number of iterations (perhaps 50) are carried out on
each coarsened grid at which point the approximate solution is interpolated onto a more
refined grid. The finest grid is then iterated to convergence. The result is faster convergence
to practical levels and a more robust starting procedure.

For a NACA 0012 test case a sequence of 3 grids has been used; 48 by 18 and 96 by 25
and the final grid of 192 by 33 points. The convergence of Cl is shown in Figure 7 to indicate
the overall improvement in convergence due to the use of mesh sequencing in comparison
to the use of a fine grid only. Both cases were started with a free stream initial condition.

7.2. Effect of Dissipation Model on Convergence and Stability

As discussed in Section 6., based on linear theory the use of explicit dissipation pro-
duces an explicit stability bounds unless implicit dissipation is added. The second-difference
dissipation, Equation 6.2, will stabilize the fourth-difference dissipation if the coefficients
are chosen properly. Ideally though, it would be better to treat the explicit dissipation
in a fully implicit manner. That is, use implicit fourth-difference dissipation which is an
exact linearization of the explicit fourth-difference dissipation. In fact, although the im-
plicit second-difference dissipation stabilizes the fourth-difference dissipation it can have a
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detrimental effect on the convergence rates of an implicit algorithm for steady-state com-
putations.

Consider the model problem in one-dimension (equivalent to Equation 5.16 with a con-
venient change in notation),

qt + aqx = 0 (7.10)

Applying the first-order time accurate Euler implicit scheme in delta form to Equation 7.10
and adding explicit fourth-difference dissipation (β4 > 0), implicit second-difference dissi-
pation (α2 > 0), and implicit fourth-difference dissipation (α4 > 0) gives the algorithm

[
1 + haδx − hα2∇x∆x + hα4(∇x∆x)2

]
(qn+1 − qn) = −h

(
aδx + β4(∇x∆x)2

)
qn (7.11)

Fourier analysis using qn = wneikjj∆x (with kj the wave number in x) produces
[
1 + haλx − hα2µx + hα4µ

2
x

]
(wn+1 − wn) = −h

(
aλx + β4µ

2
x

)
wn (7.12)

where λx = 2i sin(kj∆x)/∆x represents the Fourier signature for the central difference δx,
µx = −2 + 2 cos(kj∆x) the signature of the second-difference dissipation operator ∇x∆x,
and µ2

x for the fourth-difference dissipation.

The amplification factor for wn+1 = σwn is then

σ =
1 + h

(
(α4 − β4)µ2

x − α2µx
)

1 + h (aλx − α2µx + α4µ2
x)

(7.13)

The choices which will be investigated are

1. 1. β4 6= 0 and α4 = α2 = 0, explicit dissipation only.

2. 2. β4 6= 0, α2 6= 0, and α4 = 0, explicit fourth-difference dissipation and implicit
second-difference dissipation, no implicit fourth-difference dissipation.

3. 3. β4 6= 0, α4 6= 0 and α2 = 0, explicit and implicit fourth-difference dissipation with
no implicit second-difference dissipation.

For case 1, explicit dissipation only, Equation 7.13 becomes

σ =
1− hβ4µ

2
x

1 + haλx
(7.14)

Now, since λx is pure imaginary and has a minimum of 0, and −4 ≤ µx ≤ 0 the explicit
stability bound is hβ4 < 1

8 . This is a limit on the product of h and β4 and therefore one
can always find a combination which will be stable. But, for arbritrary h, especially in the
case where large h are used to accelerate convergence, this bound is too restrictive.
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In the second case, implicit second-difference dissipation can eliminate the above stabil-
ity bound. The amplification factor σ is now

σ =
1− hβ4µ

2
x − hα2µx

1 + haλx − hα2µx
(7.15)

The numerator term λx can only improve the stability bounds since it is pure imaginary,
so it is taken at its minimum, 0. Let α2 = 2β4 and apply the stability condition |σ| ≤ 1
which results in the condition −2 ≤ −hβ4µx(4 + µx). Since µx ≤ 0, the condition can be
rewritten as −2 ≤ hβ4|µx|(4 + µx) which is satisfied because −4 ≤ µx. Therefore, using
α2 = 2β4 leads to unconditional stability. The disadvantage of this is form is evident from
the amplification factor, Equation 7.15. Even though the scheme is unconditionally stable,
σ → 1 as h → ∞. In fact, the amplification factor has a minimum at a finite h and then
asymptotes rapidly to 1 as h increases. For this reason, large h cannot be used to accelerate
convergence even in this simple one-dimensional example.

In contrast, the third case of implicit and explicit dissipation is unconditionally stable
and has good convergence characteristics for large h. The amplification factor σ for α4 = β4

and α2 = 0 is

σ =
1

1 + h (aλx + α4µ2
x)

(7.16)

which is unconditionally stable and σ → 0 as h →∞.

The analysis for two and three dimensions is straightforward and gives similar results
for the unfactored forms. The optimal algorithm is a fully implicit one. In general, optimal
stability and convergence only occurs for the fully implicit form of the algorithm.

We demonstrate the improved convergence and stability bounds in Figure 8.

The curves in Figure 8 are convergence histories for a transonic airfoil computation
showing the effect of a fully implicit treatment of the artificial dissipation. The upper curve
is the result of second order constant coefficient implicit dissipation, Equation 6.2, with
nonlinear explicit dissipation, Equation 6.18. A much faster convergence rate is obtained
in this problem when the second order implicit dissipation is replaced by an implicit lin-
earization of the nonlinear dissipation of Equation 6.18, see Ref. [31] for more details. Also
the maximum allowable time step is at least 10 times larger for the fully implicit scheme.

8. ARC2D - ARC3D Algorithms

General purpose centrally space differenced implicit finite difference codes in two [2] and
three [3] dimensions have been developed at NASA Ames and have been widely distributed
since their introduction in 1977 and 1978. These codes, now referred to ARC2D and ARC3D,
can run either in inviscid or viscous mode for steady or unsteady flow. They use general
coordinate systems and can be run on any smoothly varying curvilinear mesh, even a mesh
that is quite skew. Because they use well ordered finite difference grids, the codes can take
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Figure 8: İmprovement in Convergence Rate Due to Implicit Treatment of Artificial Dissi-
pation.

advantage of vectorized computer processors and have been implemented for the Control
Data 205 and the CRAY 1-S and X-MP. On a single processor of the X-MP a vectorized
version of the code runs approximately 20 times faster than the original code which was
written for the Control Data 7600.

Traditionally gains in computational efficiency due to improved numerical algorithms
have kept pace with gains due to increased computer power. Since the ARC2D and ARC3D
codes were introduced, a variety of algorithmic changes have been individually tested and
have been shown to improve overall computational efficiency. These include use of a spa-
tially varying time step (∆t), use of a sequence of mesh refinements to establish approximate
solutions, implementation of various ways to reduce inversion work, improved numerical
dissipation terms, and more implicit treatment of terms. Although the various individual
algorithm improvements can interact with each other, sometimes adversely making opti-
mization difficult, their combined effect has lead to an order of magnitude gain in compu-
tational efficiency for steady state applications. This is a gain equivalent to that achieved
with computer hardware. Unsteady flow calculations have also benefited from some of the
above improvements.

We now summarize the two basic algorithms used in the code ARC2D, for details of
ARC3D see Section 8.. The standard algorithm is used mainly for time accurate calcula-
tions. The equations are reproduce from Equation 5.26

[
I + hδξÂ

n
] [

I + hδηB̂
n − hRe−1δηM̂

n
]
∆Q̂n = R̂n
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R̂n = −h
[
δξÊ

n + δηF̂
n −Re−1δηŜ

n
]

(8.1)

This scheme consists of first forming the right hand side, R̂n then performing two block
tridiagonal inversions. Central differences are used for the flux and Jacobian differences.
The dissipation models used are the implicit second order, Equations 6.2, added to the
appropriate implicit operator to keep the band width tridiagonal and the explicit nonlinear
term Equation 6.18. Since this scheme is used for time accurate calculation the typical
time step will be small enough to assure stability even though the explicit dissipation
operator is not properly linearized. The advantage of this scheme is time accuracy while
the disadvantage is substantial computational work.

In most instances we are interested in steady state computations. In that case we can
take advantage of simplifications such as the diagonal algorithm as long as the scheme
converges and we do not distort the steady state equations. The diagonal algorithm used
in ARC2D is

Tξ [I + h δξ Λξ] N̂ [I + h δη Λη] T−1
η ∆Q̂n = R̂n (8.2)

In this case we always employ the nonlinear dissipation models, Equation 6.18 with a
linearization of the terms which necessitates the use of scalar pentadiagonal solvers. (Note
that the implicit artificial dissipation terms are placed inside the bracketed terms and are
operated on by the similarity transformations). This form of the diagonal scheme gives us a
very efficient code in terms of computational work and enhanced stability and convergence
due to the proper linearization of the explicit steady state equations. The time accuracy
though is at most first order. We also employ the variable time step Equations 7.8, 7.9 and
mesh sequencing to accelerate convergence.

We shall employ ARC2D and ARC3D to demonstrate various aspects of algorithm
improvements, accuracy, and application in the remainder of these notes.

9. Boundary Conditions

The implementation of a sophisticated numerical algorithm and the development of
a flow code usually are trivial tasks when compared with the work of actually solving a
particular fluid dynamics problem. We can always assess the applicability of a numerical
algorithm based on stability and accuracy considerations. The writing of specialized input
and output routines, while not unimportant, is usually mechanical. The real stumbling
block comes with the selection, implementation and assessment of boundary conditions
(BC).

There is a hierarchy of decisions which are made when the boundary condition problem
is attacked. The important aspects of boundary condition development are:

1. The physical definition of the flow problem must be satisfied. For example, inviscid
flow requires tangency at solid surfaces, or we may want to specify pressure at some
boundary.
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2. The physical conditions must be posed in terms of the mathematics of the problem.
Characteristic theory suggests the number of conditions required at a boundary. The
condition of no slip for viscous flow is imposed by setting the flow velocities to zero at
solid surfaces.

3. The mathematical conditions are numerically approximated.

4. The numerical interior scheme may require more boundary information than the physics
provides. For example, standard central differencing as an interior scheme requires all
flow quantities at boundaries, but this may not be consistent with mathematical theory.
Additional numerical boundary conditions may be adjoined.

5. The combination of interior numerical scheme and boundary scheme should be checked
for stability and accuracy.

6. Finally, we must assess the efficiency and generality of a flow code in terms of its ability
to handle a wide variety of problems and flow conditions.

The physical definition of the flow problem is the first and foremost consideration. Once
a geometry and topology have been chosen, then physics dictates the constraints on the
boundaries.

9.1. Characteristic Approach

The concept of characteristic theory is best demonstrated with the one-dimensional
Euler equations, where

∂tQ + ∂x(AQ) = 0 (9.1)

represents the model equation. Assuming that A is a constant coefficient matrix we can
diagonalize Equation 9.1 using the eigenvector matrix X, so that

∂t

(
X−1Q

)
+ ΛA∂x

(
X−1Q

)
= 0. (9.2)

Defining X−1Q = W , we now have a diagonal system, with

ΛA =




u 0 0
0 u + a 0
0 0 u− a


 (9.3)

At the left boundary of a closed physical domain, see Figure 9, where say 0 < u < a,
(for example, subsonic inflow for a channel flow) the two characteristic speeds u, u + a
are positive, while u − a is negative. At inflow then, only two pieces of information enter
the domain along the two incoming characteristics and one piece leaves along the outgoing
characteristic. At the outflow boundary one piece of information enters and two leave.
We would like to specify the first two components of W , which are the two incoming
characteristic variables and then handle the third characteristic variable such that its value
is not constrained, i.e., is determined by the interior flow.
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Figure 9: Ċharacteristics at Subsonic Inflow and Outflow Boundaries of a Closed Domain.

It is not necessary to fix values only in terms of the characteristic variables, other
flow quantities could be employed, as long as they lead to well posed conditions (that is,
conditions which guarantee the stability of the mathematical problem). Yee [37] provides
an excellent survey and development of boundary conditions within the framework of an
implicit algorithm. The major constraints which occur are that the correct number of
boundary values corresponding to incoming characteristics are specified and that the actual
implementation is stable and well posed. Chakravarthy [38] presents an implicit charac-
teristic boundary procedure. In this the eigenvectors of the system are coupled with the
chosen fixed boundary values and one sided finite differences to develop an equation which
is solved for the flow variables at the boundaries.

9.2. Well Posedness

A simple check on the well posedness of boundary conditions is obtained as part of
Chakravarthy’s development. As an example, let us consider one-dimensional flow with
subsonic inflow and subsonic outflow. Then two variables can be specified at inflow, associ-
ated with the first two eigenvalues, and one variable can be specified at outflow, associated
with the third eigenvalue. As specified values take, ρ = ρin, ρu = (ρu)in and p = pout.
These can be written as

Bin(Q) =




q1

q2

0


 = Bin(Qin) (9.4)

Bout(Q) =




0
0

(γ − 1)(q3 − 1
2q2

2/q1)


 = Bout(Qout) (9.5)

with q1 = ρ, q2 = ρu, q3 = e.

Forming the Jacobians Cin = ∂Bin/∂Q, and Cout = ∂Bout/∂Q we have

Cin =




1 0 0
0 1 0
0 0 0


 and Cout =




0 0 0
0 0 0

((γ − 1)/2) u2 −(γ − 1)u γ − 1


 (9.6)
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The eigenvector matrix X−1 is



1− u2

2 (γ − 1)a−2 (γ − 1)ua−2 −(γ − 1)a−2

β[(γ − 1)u2

2 − ua] β[a− (γ − 1)u] β(γ − 1)
β[(γ − 1)u2

2 + ua] −β[a + (γ − 1)u] β(γ − 1)


 (9.7)

with β = 1/(
√

2ρa).

The condition for well posedness of these example boundary conditions is that C
−1
in and

C
−1
out exist where

Cin =




1 0 0
0 1 0

β[(γ − 1)u2

2 + ua] −β[a + (γ − 1)u] β(γ − 1)


 (9.8)

and

Cout =




1− u2

2 (γ − 1)a−2 (γ − 1)ua−2 −(γ − 1)a−2

β[(γ − 1)u2

2 − ua] β[a− (γ − 1)u] β(γ − 1)
(γ − 1)u2

2 −(γ − 1)u γ − 1


 (9.9)

These matrices are formed by adjoining the eigenvector associated with the outgoing
characteristic to the Jacobian matrices of the boundary conditions. The inverses of the
above matrices will exist if det(C) is nonzero. For the two boundaries we have det(Cin) =
β(γ− 1) 6= 0 and det(Cout) = β(γ− 1)a 6= 0 and so the boundary conditions are well posed.
Other choices for specified boundary values can be similarly checked.

Rather than go into any more detail on boundary condition theory we refer the reader
to Refs. [37] and [38]. For the remainder of this section, we shall discuss some of the current
types of physical conditions which are used in ARC2D.

9.3. Computational Mapping of Boundaries

Usually in a flow field computation, we are faced with a variety of boundary surfaces
and conditions. Our experience has been mostly in external flows and so we shall outline
below some of the more commonly used boundary conditions. The curvilinear coordinate
transformations are made such that physical boundaries are mapped to boundaries in the
computational domain. This makes the formulation and implementation of boundary con-
ditions easier.

At this stage in the development of ARC2D we have kept the boundary conditions
explicit. This gives us a more flexible clean code since all BC are handled in just one
subroutine. We realize that implicit boundary treatment will enhance the stability and
convergence rates of the codes. Our experience has been that the basic code in its present
form is fairly robust and can be implemented for a wide variety of cases. The user is then
responsible for the implementation of boundary conditions.
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Figure 10: Ṫopological Mapping of an Airfoil onto a “C” Mesh.

A particular set of BC for an airfoil calculation is used below for demonstration purposes.
The geometry is mapped onto the computational rectangle such that all the boundary
surfaces are edges of the rectangle, for example see Figure 10 .

In “O” mesh topologies the wake cut boundary is periodic and can be handled as such
where periodic solvers are used in the implicit inversions.

9.3.1. Body Surfaces

At a rigid body surface, tangency must be satisfied for inviscid flow and the no slip
condition for viscous flow. In two-dimensions body surfaces are usually mapped to η =
constant coordinates. The normal component of velocity in terms of the curvilinear metrics
is given by

Vn =
ηxu + ηyv√
(η2

x + η2
y)

(9.10)

and the tangential component is

Vt =
ηyu− ηxv√
(η2

x + η2
y)

(9.11)

Therefore, tangency is satisfied by Vn = 0 (no flow through the body). The tangential
velocity Vt is obtained at the body surface through linear extrapolation for inviscid cases
and is set to zero for viscous cases. The Cartesian velocities are then formed from the
inverse relation between them and Equations 9.10, 9.11 where
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(
u
v

)
=

1.√
(η2

x + η2
y)

[
ηy ηx

−ηx ηy

] (
Vt

Vn

)
(9.12)

The extrapolation of Vt produces less error if the mesh lines are clustered to the body
surface. The velocities of Equations 9.10, and 9.11 are scaled such that the metric variations
are removed which decreases the errors in the extrapolations, especially for nonorthogonal
meshes.

The pressure on the body surface is obtained from the normal momentum equation

ρ[∂τηt + u∂τηx + v∂τηy]− ρU(ηxuξ + ηyvξ) =

(ηxξx + ξyηy)pξ + (ηx
2 + ηy

2)pη = pn

√
ηx

2 + ηy
2 (9.13)

where n is the local normal to the body surface. Equation 9.13 is solved at the surface using
central second-order accurate differences in ξ and one-sided first- or second-order accurate
differences in η. For steady uniform incoming flow free-stream stagnation enthalpy H0 is held
constant along the body in inviscid flow. Using the equation for enthalpy H0 = (e+p)/ρ and
the computed velocities and pressure, a value of density is obtained at the body. Adiabatic
or constant temperature walls are used for viscous and unsteady flows to obtain density at
the surface. In either case, total energy e is decoded from the equation of state.

9.3.2. Free Surfaces

Stretched grids are usually used to place far field boundaries far away from body surfaces.
When bow shocks and attached shocks are generated at a body surface care is taken to
ensure that the shocks are sufficiently weak when they reach far field boundaries so that
they are not reflected or at least they reflect outside the flow domain. A nonreflective
characteristic like boundary procedure is used at far field boundaries.

For subsonic free stream locally one-dimensional Riemann invariants are used at the
outer far field boundaries. The locally one-dimensional Riemann invariants are given in
terms of the normal velocity component as

R1 = Vn − 2a/(γ − 1) and R2 = Vn + 2a/(γ − 1) (9.14)

The Riemann invariants R1, R2 are associated with the two characteristic velocities (locally
one-dimensional) λ1 = Vn − a and λ2 = Vn + a respectively. Two other equations are
needed so that four unknowns (the four flow variables) can be calculated. We choose Vt and
S = ln(p/ργ) where S is entropy. At the far field boundaries shown in Figure 10, the normal
n is directed away from the boundary. For subsonic inflow Vn < 0 and the characteristic
velocity λ2 > 0, therefore the characteristic variable R2 can be specified along with two other
conditions. The Riemann invariant R2, Vt and S are all set to free stream values. The other
characteristic velocity λ1 < 0 and R1 is extrapolated from the interior flow variables. On
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subsonic outflow Vn > 0 and λ2 > 0 while λ1 < 0 so only R1 is fixed to free stream and R2,
Vt and ln(S) are extrapolated. Once these four variables are available at the boundary the
four flow variables Q can be obtained. For supersonic inflow boundaries all flow variables
are specified and for supersonic outflow all variables are extrapolated.

Along singularities or cuts in the geometry (such as the wake cut in a “C” mesh), aver-
aging is used to provide continuous flow variables. As mentioned above periodic conditions
are used for “O” meshes.

9.3.3. Far Field Circulation Correction

For lifting airfoils in subsonic free stream, circulation at the far field boundary is ac-
counted for to first-order (following Salas, et. al. [39]) by imposing a compressible po-
tential vortex solution which is added as a perturbation to the free stream quantities
(u∞ = M∞ cos(α) and v∞ = M∞ sin(α)). The perturbed far field boundary velocities
are defined as

uf = u∞ +
βΓ sin(θ)

2πr
(
1−M2∞ sin2(θ − α)

) (9.15)

and

vf = v∞ − βΓ cos(θ)
2πr

(
1−M2∞ sin2(θ − α)

) (9.16)

where the circulation Γ = 1
2M∞lCl, l is the chord length, Cl the coefficient of lift at the

surface, M∞ the free stream Mach number, α the angle of attack, β =
√

1−M2∞ and r, θ
are polar coordinates to the point of application on the outer boundary relative to an origin
at the quarter chord point on the airfoil center line. A corrected speed of sound is also used
which enforces constant free stream enthalpy at the boundary where

a2
f = (γ − 1)

(
H∞ − 1

2
(u2

f + v2
f )

)
(9.17)

Equations 9.15, 9.16 and 9.17 are used instead of free stream values in defining the fixed
quantities for the far field characteristic boundary conditions to be consistent with the
surface lift.

Figure 11 shows the coefficient of lift Cl plotted against the inverse of the distance to the
outer boundary for a NACA 0012 airfoil at the transonic condition M∞ = 0.8, α = 1.25◦

and at subcritical conditions M∞ = 0.63, α = 2.0◦. In these cases the outer boundary
varies for 4.5 chords to 96 chords where outer mesh rings were eliminated from the 96
chord grid to produce the cut down meshes. This insures that the grid spacing between
the body and outer boundary is identical for all the cases. Without the far field vortex
correction the lift of the subcritical case can vary by as much as 12 % as seen in Figure 11.
With the far field vortex logic the subcritical case now has virtually no variation with outer
boundary distance. For the transonic case we see roughly a 1 - 2 % change which is quite
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Figure 11: Ėffect on Lift of Varying Outer Boundary Distances With and Without Vortex
Correction.

good considering the strength of the shocks. The typical distance chosen for most cases
presented here is 25 chords.

The vortex correction logic can be modified to produce boundary conditions which allow
one to compute the angle of attack for a given lift. This is done by fixing the circulation
Γ in Equations 9.15, 9.16,and 9.17, at its value for the given lift. An iterative procedure
is used where the lift computed at the surface is compared to the desired lift and then the
initial angle of attack is modified by the formula

∆α = −βα (Cl(input)− Cl(calculated)) (9.18)

with βα a relaxation parameter on the order of 2 . Computations in which a specified
lift resulted in an angle of attack were compared with fixed α solutions at the same Mach
number and showed excellent agreement. This procedure has been verified in numerous
numerical examples.

10. Geometry and Grid Generation

The generalized coordinate transformation produces a system of equations which can
be applied to any regular and nonsingular geometry or grid system. The advantages of
this form are : Since uniform unit spacing is used, the computational domain has a one to
one correspondence with the positive integers and therefore regular unweighted difference
formulas can be used in the numerical scheme. This produces a computer code which can be
applied to a wide variety of problems without modification of the equations and numerical
scheme. Physical boundary surfaces can be mapped onto coordinate surfaces, which makes
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Figure 12: ‘̇‘C” Mesh for a NACA0012 Airfoil.

application of boundary conditions easier. The transformation allows for unsteady motion
of the coordinates, so that moving meshes and distorting surfaces can be computed. Grid
lines can be concentrated in regions of high gradients, for instance clustered to body surfaces
to calculate boundary layers, or clustered near shocks.

There are a wide variety of methods for generating grid systems. Algebraic methods
such as conformal mappings, quadratic functions, or the control function approach of Eise-
man [40] have been widely employed. The numerical approach of using elliptic solvers,
Thompson, Thames and Mastin [41], is also widely used. Thompson [42] provides a good
review of the current state of the art in grid generation. Figures 12 and 13 show a “C”
mesh and an “O” mesh topology for an airfoil where the mesh has been generated using a
variant of Eiseman’s method [40].The terminology “C” comes from the wrap around nature
of the grid. In the case shown grid lines are clustered at the leading and trailing edge, near
the body in the near normal direction and on the upper surface to capture an expected
shock.

One of the major deficiencies in computational fluid dynamics today lies in the area of
surface definition and grid generation. While there are a wide variety of generation methods,
there is no efficient and accurate means to assess the usefulness of a particular grid. The
obvious first checks such as not having grid lines cross, no discontinuous changes in grid
spacing and other cosmetic qualities can be checked. But, aspects such as high skewness,
curvature smoothness, and other intrinsic properties are hard to assess. What is needed at
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Figure 13: ‘̇‘O” Mesh for a NACA0012 Airfoil.

this point is a set of well defined qualitative and quantitative checks for grid systems which
will allow us to distinguish between a “bad” grid and a “good” grid. A systematic study of
this form is lacking and hopefully will be pursued in the near future.

11. Examples and Application in 2-D

11.1. Code Validation

Once a computational code has been written and debugged, the author is faced with the
difficult challenge of assessing the accuracy, efficiency and robustness of the piece of work.
Each code is obviously tailored toward a class of problems and at least initially one should
restrict attention to that class. A series of test cases should be evaluated and then detailed
goals should be attacked.

In the case of ARC2D and ARC3D a number of sample cases have been computed and
details of these can be found in the literature, see for instance [2], [3], [43]– [50], and
numerious others. Here I shall briefly discuss some of the more exotic cases with the goal of
demonstrating the versatility and breath of applications. I refer the reader to the original
papers (where appropriate) for extensive details.

11.2. Inviscid Airfoils

The code ARC2D has the option of computing the inviscid equations (the Euler equa-
tions). The basic version of the code is written specifically for airfoil computations. The
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particular set of boundary conditions used now though are directed toward the solution
of flow past general airfoil shapes. The code has been applied to a wide variety of airfoil
shapes, flow conditions, and other geometries. We have validated the code against other
computational methods, [2], [50]. To demonstrate the accuracy and efficiency we have cho-
sen two test cases, a NACA0012 airfoil at M∞ = 0.8 , α = 1.25◦ on a coarse grid (192
by 33 points) and a fine grid (248 by 49 points). For comparison purposes we use results
from Jameson’s multigrid Euler code FLO52R [51]. FLO52R is an Euler code using a mul-
tistage Runge-Kutta like algorithm with a multigrid scheme to accelerate convergence. The
code employs enthalpy damping, residual averaging and an artificial dissipation model of
the same form as presented in Section 6.3.. In fact the boundary conditions and artificial
dissipation model used in ARC2D were modified to be the same as in FLO52R so that
quantitative as well as qualitative comparisons could be made. The two codes were run on
the same machine, the CRAY XMP at NASA Ames, on the same meshes and at the same
flow conditions.

The first case is the NACA0012 airfoil at M∞ = 0.8 and α = 1.25◦. The grid used is an
“O” mesh topology with 192 points on the airfoil surface (running from the lower trailing
edge around the nose to the upper trailing edge) and 33 points in the normal direction. The
grid which is clustered at the leading and trailing edges, near the expected shock locations
on the upper and lower surfaces and in the normal direction is shown in Figure 14

Results from this case using ARC2D are shown in Figure 15. We show here coefficient of
pressure, Mach contours, pressure contours and contours of entropy. In Figure 16 we show
similar results for FLO52R. Computed lift for ARC2D is CL = 0.33957 and for FLO52R
CL = 0.32408. The comparison between the two codes is quite good, despite the differences
in spatial discretization.

We have established a number of accuracy checks and convergence criteria for compar-
ison purposes. In terms of accuracy we recommend comparison of pressure coefficients, lift
and other flow quantities. It is also important to establish the accuracy of certain flow re-
gions. The stagnation region near the nose of the airfoil is particularly susceptible to errors
due to poor boundary conditions, resolution, or physical assumptions. The best measure of
this error is the entropy field. For inviscid flow there should be no generation of entropy at
the leading edge of an airfoil in the absence of a leading edge shock. Examination of the
entropy at the leading edge for the above case shows, see Figure 17, that both codes give
rise to some error at the leading edge, although the magnitude is rather small.

A number of convergence criteria have been chosen to assess the efficiency and conver-
gence rates of the codes. We have chosen to use computer times as our measure of relative
speed. Since the two codes are run on the same machines and with the same meshes this is
an adequate measure. Other measures such as operation count, work or iteration are usually
programming dependent or susceptible to misinterpretation. The convergence criteria used
here are:
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Figure 14: ṄACA0012 Grid Using 192 by 33 Grid Points.

Figure 15: ȦRC2D Results for 192 by 33 Grid.
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Figure 16: ḞLO52R Results for 192 by 33 Grid.

Figure 17: Ėntropy Errors at Leading Edge. a) ARC2D, b) FLO52R.
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1. Coefficient of lift (CL) to 1% of converged value.

2. Coefficient of lift (CL) to 1/2% of converged value.

3. Coefficient of lift (CL) to 5 decimal places.

4. Number of supersonic points to converged value.

5. Residual to machine zero. (10−13 on the Cray XMP.)

The residual is the l2 norm of the explicit or right hand side of Equation 8.1. We use
just the component from the continuity equation, the other components behave similarly.
For the above case on the 192 by 33 mesh the computer times for the convergence criteria
are given in Table 1.

Criteria ARC2D FLO52R
1% of CL 6 8

1/2% of CL 17 10.5
CL to 5 places 57 31

No. S.S. pts 36 17
Machine zero 120 97

Table 1: Convergence Comparison for 192 by 33 grid. (seconds)

As can be seen for this case FLO52R is up to twice as fast as ARC2D for some criteria.
In either event these are fairly good convergence times. In general, these numbers carry
over fairly consistently for a wide variety of airfoils and flow conditions for similar meshes.

A more stringent test is obtained with a finer grid and more grid points. A grid of 248
by 49 points is employed as the second study. The mesh is refined more at the nose, tail
and near the shocks. Also to reduce the entropy errors at the nose the grid is clustered
more tightly in the normal direction by reducing the minimum normal spacing by a factor
of 2. The mesh is shown in Figure 18.

Computational results for ARC2D and FLO52R are shown in Figures 19 and 20. In
this case the shocks are sharper and entropy errors at the leading edge are eliminated.

Convergence data for this case is contained in Table 2. In Figure 21, we show convergence
history vrs iteration for the two ARC2D results. All the results obtained with ARC2D were
done using the fully implicit pentadiagonal algorithm. As mentioned above, numerous other
cases and airfoils have been computed and perform similarly.

11.3. Viscous Airfoils

The code ARC2D has been applied to a wide variety of viscous computations for air-
foils [2], cascades [44], inlets [45], airfoils with a spoiler [46], circulation controlled air-
foils [47], and others. It has been used in an unsteady mode (see the next section) and
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Figure 18: ṄACA0012 Mesh, 248 by 49.

Figure 19: ȦRC2D Results for 248 by 49 Grid.
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Figure 20: ḞLO52R Results for 248 by 49 Grid.

Criteria ARC2D FLO52R
1% of CL 38 23

1/2% of CL 52.5 25.5
CL to 5 places 174 168.5

No. S.S. pts 118 160
Machine zero 376 800+

Table 2: Convergence Comparison for 248 by 49 grid. (seconds)
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Figure 21: Ċonvergence History vrs Iteration for ARC2D Results.

for steady viscous computations. The algorithm as presented above performs very well for
viscous cases. It is convergent, fast and accurate. Two example cases are presented below.
The cases are taken from the suggested problems of the 1981 Stanford Olympics [52], an
RAE2822 airfoil at M∞ = 0.676, α = 1.93◦, Re = 5.7 · 106 and M∞ = 0.73, α = 2.79 and
Re = 6.5 · 106.

Results obtained from ARC2D for the first case are shown in Figure 22. The grid used
is a 248 by 51 point “O” mesh. The turbulence model was used and transition was fixed
at 11% chord. Experimental data due to Cook et. al. [53] is used for comparison. We see a
good comparison with experiment for pressure coefficient, and boundary layer properties.

The computed lift, drag and moment are compared with other computations and the
experiment in Table 3. Due to the uncertainty of the angle of attack correction all computors
matched lift. We show here our computation for both the experimentally corrected angle
of attack and the values when lift is matched. Also shown are results from computors at
the Stanford Olympics and some results of Mehta [54]. For the present computations at
the two angles of attack the pressure and boundary layer quantities are almost identical.
The changes in lift and drag are noted. The overall comparison with experiment and other
computations is quite good.

Results obtained for the second case are shown in Figure 23. The grid used is a 248 by
51 point “O” mesh. The turbulence model was used and transition was fixed at 3% chord.
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Figure 22: V̇iscous Results for RAE2822 Airfoil at Re = 5.7× 106, M∞ = 0.676, α = 1.93◦.

α CL CDP CDf CD CM

Experiment 2.40 0.566 0.0085 –0.082
Corrected Exp. 1.93 0.566 0.0085 –0.082

Mehta (1983) 1.80 0.566 0.0033 0.0061 0.0094 –0.087
Melnik (1981) 1.84 0.566 0.0027 0.0060 0.0087 –0.082

Le Balleur (1981) 1.93 0.566 0.0036 0.0056 0.0092 –0.080
Present 1.93 0.576 0.0034 0.0055 0.0089 –0.081

Present Cor. α 1.87 0.566 0.0034 0.0055 0.0089 –0.081

Table 3: Loads – RAE2822 Airfoil – M∞ = 0.676, Re = 5.7× 106
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Figure 23: V̇iscous Results for RAE2822 Airfoil at Re = 6.5× 106, M∞ = 0.73, α = 2.79◦.

We again see a good comparison with experiment for pressure coefficient, and boundary
layer properties.

The computed lift, drag and moment are compared with other computations and the
experiment in Table 4. Results from computors at the Stanford Olympics and some results
of Mehta [54] are shown. The overall comparison with experiment and other computations
is again quite good. The shock location on the upper surface compares well. In the present
computations a small region of separated flow occurs at the base of the shock and near the
trailing edge on the upper surface.

α CL CDP CDf CD CM

Experiment 3.19 0.803 0.0168 –0.099
Corrected Exp. 2.79 0.803 0.0168 –0.099

Mehta (1983) 2.79 0.793 0.0118 0.0059 0.0177 –0.094
Melnik (1981) 2.54 0.803 0.0100 0.0057 0.0157 –0.094

Le Balleur (1981) 2.79 0.787 0.0111 0.0055 0.0166 –0.086
Present 2.79 0.824 0.0128 0.0050 0.0178 –0.092

Present Cor. α 2.67 0.803 0.0113 0.0051 0.0164 –0.092

Table 4: Loads – RAE2822 Airfoil – M∞ = 0.73, Re = 6.5× 106
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Figure 24: Ċonvergence History for RAE2822 Viscous Cases.

Convergence history vrs iteration for these cases are shown in Figure 24. Table 5 shows
the computed convergence criteria for these cases. The convergence for these cases is quite
good.

Criteria M∞ = 0.676 M∞ = 0.73
1% of CL 212 191

1/2% of CL 264 295
CL to 5 places 712 738

No. S.S. pts 608 513
Machine zero 1174 1203

Table 5: Convergence Data RAE2822 Viscous Cases. (seconds)

11.4. Unsteady Aileron Buzz

A calculation of unsteady aileron buzz was performed by Steger and Bailey [43]. A
composite of the results from their paper is shown in Figure 25.

In this case a two dimensional simulation of the interaction of a shock and the movable
aileron (flap) on a wing was performed. Steger and Bailey used a predecessor of ARC2D
coupled with a one degree of freedom equation describing the motion of the aileron on an
airfoil. A airfoil with a hinge point at 75% chord was used. The aileron was free moving
without damping and responded to the aerodynamic forces in balance with the inertia forces.

The flow conditions were in the transonic range of Mach number from M∞ = 0.76
to 0.83 and angles of attack of α = −1.0◦ to 1.0◦. Experiments performed by Erikson
and Stephenson [55] on a P-80 wing-aileron arrangement were used for comparison. A buzz
boundary was established in the experiments (in terms of Mach number and angle of attack)
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Figure 25: U̇nsteady Aileron Buzz, Steger and Bailey 1980.

where below the boundary the aileron remained stationary. Above the buzz boundary the
shock system on the airfoil moves onto the aileron and excites the buzz motion of the aileron.
An unsteady harmonic motion occurs with the upper and lower shocks running across the
hinge onto and off of the aileron.

Steger and Bailey simulated this flow using the thin layer Navier Stokes equations for
the conditions shown by the symbols in Figure 25b. Figure 25c shows a case below the
buzz boundary. In this case they gave the aileron an initial deflection of 4◦ and integrated
forward in time. As seen the aileron motion damps to the neutral position of 0◦ deflection.
Above the buzz boundary even an aileron deflection of 0◦ is excited to the unsteady motion.
In Figure 25c the results are compared with the measure deflection angles. In Figure 25c
the computed buzz boundary compares quite well with the measured boundary.

11.5. High Angle of Attack Airfoils

Application of the code ARC2D to the study of airfoils at high angles of attack was
carried out by Barton and Pulliam [56]. In this study NACA0012 airfoil flows at low Mach
number, M∞ = 0.25 to 0.40 and angles of attack up to 15◦ were examined. Computations
were performed for the Euler equations and thin layer Navier-Stokes. The calculations
presented were run time accurately because unsteady effects were anticipated. In that
paper unsteady separated but inviscid results were obtained. Comparisons were made with
viscous computation and experiment to demonstrate that inviscid flow separation can be
qualitatively different than viscous flow. A similar study which concentrated on comparisons
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Figure 26: Ėntropy Contours at Leading Edge Before and After Improved Accuracy.

with viscous experimental data was carried out by Anderson, Thomas and Rumsey [57]
in which good quantitative comparison were obtained. We shall briefly discuss here the
computations of Barton and Pulliam.

Barton and Pulliam presented two types of inviscid flow separation. In the first case at
flow conditions, M∞ = 0.25 α = 15◦ a shock free solution with inviscid flow separation was
obtained and the cause of the separation was traced to numerical error. At the high angle
of attack, inaccurate boundary conditions and resolution at the leading edge produced
vorticity (entropy gradients) which was convected downstream, resulting in an unsteady
separation on the upper surface near the trailing edge. By refining the grid and improving
the boundary conditions a steady error free solution was obtained. Figure 26 shows the
entropy contours at the leading edge before and after the improvement. Figure 27 shows a
comparison with full potential results using TAIR [58] and shows that good inviscid results
are obtained.

At a higher Mach number M∞ = 0.4 and the same angle of attack α = 15◦ a shock
forms at the leading edge, see Figure 28. In this case the shock is the source of vorticity
which is then convected downstream and forms an unsteady separation. Grid refinement
and the improved boundary conditions were used producing an error free leading edge, but
the unsteady motion was unaffected. The vorticity (entropy) generation is a result of the
strong normal shock strength gradient and high curvature of the leading edge.

The unsteady motion of the solution is depicted in Figure 29, 30, 31 , which shows the
time history of the pressure coefficient, stream function contours and entropy fields over a
complete cycle. A description of the evolution of this case is as follows. As the flow develops,
a strong shock is generated at the leading edge. Entropy, vorticity, and pressure loss are
created at the shock near the leading edge, and convected downstream along the body. A
small separation region appears at the trailing edge, which grows along the body towards
the leading edge. At some point the recirculation region is captured by the oncoming flow
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Figure 27: İnviscid Solution Compared with TAIR Result.

Figure 28: Ṁach Contours at Leading Edge Showing Shock.
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and is swept off the airfoil by convection. As the recirculation region passes the trailing
edge, another pocket of recirculation forms at the trailing edge, rotating in the opposite
direction. This counter-rotation is caused by the flow off the lower surface, whose direction
is opposite to that of the original region of recirculation. The shock then collapses, and
begins to slowly grow in strength as the pattern repeats itself. This flow pattern has a well
defined period and amplitude and has been reproduced in other computations with similar
grids and different values of time step and artificial viscosity.

Figure 29: Unsteady Solution at M∞ = 0.4, α = 15◦.

As a final case Barton and Pulliam computed a viscous calculation at similar conditions,
a Mach number M∞ = 0.301 and α = 13.5◦. The Reynolds number used was Re = 3.91×106

and the calculation was performed using the algebraic eddy-viscosity turbulence model. In
this case experimental data due to McCroskey [59] was available. For an inviscid simulation
unsteady results similar to the above M∞ = 0.4 case were obtained, but for the viscous
computation, a steady results occurred, which compared well with the experimental data.
The steady viscous comparison is shown in Figure 32.

Assuming the validity of the inviscid oscillation for this case, it was concluded that
the Euler solution is not a good approximation to the Navier-Stokes solution, under these
conditions. I refer the reader to the full paper for more details.

12. Three - Dimensional Algorithm

The 3 - D form of the implicit algorithm follows the same development as the 2 -
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Figure 30: Unsteady Solution at M∞ = 0.4, α = 15◦. Continued

Figure 31: Unsteady Solution at M∞ = 0.4, α = 15◦. Continued
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Figure 32: V̇iscous Solution Compared with Experimental Data of McCroskey, et. al.

D algorithm. The curvilinear transformations are carried out in the same fashion. The
standard and diagonal algorithm take the same format. We also employ the thin layer
approximation. Boundary conditions are similar. The equations, algorithm, and other
details can be found in Pulliam and Steger [3]. We shall briefly outline the important
aspects and point out the pertinent differences from the 2 - D development.

12.1. Flow Equations

The full three dimensional Navier-Stokes equations in strong conservation law form
are reduced to the thin layer form under the same restrictions and assumptions as in two
dimensions. The equations in generalized curvilinear coordinates are

∂τ Q̂ + ∂ξÊ + ∂ηF̂ + ∂ζĜ = Re−1∂ζ Ŝ (12.1)

where now

Q̂ = J−1




ρ
ρu
ρv
ρw
e




, Ê = J−1




ρU
ρuU + ξxp
ρvU + ξyp
ρwU + ξzp

U(e + p)− ξtp




,
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F̂ = J−1




ρV
ρuV + ηxp
ρvV + ηyp
ρwV + ηzp

V (e + p)− ηtp




, Ĝ = J−1




ρW
ρuW + ζxp
ρvW + ζyp
ρwW + ζzp

W (e + p)− ζtp




(12.2)

with

U = ξt + ξxu + ξyv + ξzw,

V = ηt + ηxu + ηyv + ηzw

W = ζt + ζxu + ζyv + ζzw (12.3)

with

Ŝ = J−1




0
µm1uζ + (µ/3)m2ζx

µm1vζ + (µ/3)m2ζy

µm1wζ + (µ/3)m2ζz

µm1m3 + (µ/3)m2(ζxu + ζyv + ζzw)




(12.4)

here m1 = ζ2
x + ζ2

y + ζ2
z , m2 = ζxuζ + ζyvζ + ζzwζ , and m3 = (u2 + v2 + w2)ζ/2 + Pr−1(γ −

1)−1(a2)ζ .

Pressure is again related to the conservative flow variables, Q, by the equation of state

p = (γ − 1)
(

e− 1
2
ρ(u2 + v2 + w2)

)
(12.5)

The metric terms are defined as

ξx = J(yηzζ − yζzη), ηx = J(zξyζ − yξzζ)
ξy = J(zηxζ − zζxη), ηy = J(xξzζ − zξxζ)
ξz = J(xηyζ − yηxζ), ηz = J(yξxζ − xξyζ)
ζx = J(yξzη − zξyη), ξt = −xτξx − yτξy − zτξz

ζy = J(zξxη − xξzη), ηt = −xτηx − yτηy − zτηz

ζz = J(xξyη − yξxη), ζt = −xτζx − yτζy − zτζz (12.6)

with

J−1 = xξyηzζ + xζyξzη + xηyζzξ − xξyζzη − xηyξzζ − xζyηzξ (12.7)

12.2. Numerical Methods
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The implicit approximate factorization algorithm applied to the three dimensional equa-
tions is

[
I + hδξÂ

n
] [

I + hδηB̂
n
] [

I + hδζĈ
n − hRe−1δζM̂

n
]

∆Q̂n =

− h
(
δξÊ

n + δηF̂
n + δζĜ

n −Re−1δζ Ŝ
n
)

(12.8)

The inviscid three dimensional flux Jacobians, Â, B̂, Ĉ are defined in the Appendix
along with the viscous flux Jacobian M̂ . Artificial dissipation terms can be added in the
constant coefficient form, straightforward extension of Equations 6.1, or in the nonlinear
form Equation 6.18.

The scalar pentadiagonal algorithm in three dimensions has the form

Tξ [I + h δξ Λξ] N̂ [I + h δη Λη] P̂ [I + h δζ Λζ ]T−1
ζ ∆Q̂n = R̂n (12.9)

with N̂ = T−1
ξ Tη and P̂ = T−1

η Tζ . Just as in two dimensions we use the explicit and implicit
nonlinear artificial dissipation terms.

It is interesting (and somewhat disturbing) to note that a linear constant coefficient
Fourier analysis (periodic BC) for the three dimensional model wave equation shows uncon-
ditional instability for the three dimensional factored algorithm. This is due to the cross
term errors. In contrast to the case of two dimensions where the cross term errors just
affect the rapid convergence capability (at large time steps) of the algorithm. In three di-
mensions we also have a weak instability due to the cross terms. Linear analysis shows that
the instability is a weak one where the amplification factor is very close but greater than
one. It can be shown though that a small amount of added artificial dissipation moves the
amplification factor below one and therefore we have conditional stability. Practical model
equation analysis using nonperiodic boundary conditions also shows a stability range. In
actual practice on three dimensional nonlinear problems we have never encountered a case
where we could attribute an instability to this problem area. In fact, numerical experiments
show that if anything the three dimensional algorithm seems to be more stable and con-
vergent for a given problem than in two dimensions. Numerous cases have been calculated
where the three dimensional algorithm converges and residuals go to machine zero.

12.3. Boundary Conditions and Geometry

Physical boundaries are again mapped to computational boundaries. Explicit numer-
ical and physical conditions can be applied as necessary. The actual conditions used are
the straightforward extensions of the methods outlined in Section 9.. One aspect of the
three dimensional application which is more complicated then in two dimensions is the de-
velopment of grid topology and mesh systems. Surface definitions and the computational
mapping are complicated by the many surfaces involved, which include coordinate singular-
ities (unavoidable when mapping a closed 3-D body) and the lack of an adequate number of
grid points since 3-D is a bigger strain on computer storage limitations. This will definitely
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drive the computational community towards zonal or patch methods, i.e. the large 3-D
problem is broken into multiple sections and each section is handled separately. The inter-
action between zones can be explicit, see Rai [60] or implicit, Hessenius and Pulliam [61].
Also grid refinement techniques need more development, see Berger [62] and Nakahashi and
Deiwert [63] for examples of these concepts.

Geometry seems to be one of the biggest stumbling blocks in three dimensions. Another
aspect of 3-D which causes problems is the question of the metric invariants. If central
differencing is used to compute the metrics and for the flux derivatives then for 3-D the
metric invariants are not satisfied. This was pointed out in the original paper by Pulliam
and Steger [3]. By modifying the computation of the metrics we can satisfy the invariants.
This is done by averaging the central differences of the grid values, (xξ, xη, etc. ) to produce
metrics which are similar to terms which would be computed by a finite volume method.
For instance, ξx would be computed as

ξx = J [(µζδηy)(µηδζz)− (µηδζy)(µζδηz)] (12.10)

where δ is the standard central difference operator and µ is an average operator, for instance
µηxk = (xk+1+xk−1)/2. If all the metric terms are calculated is this manner then the metric
invariants are satisfied.

12.4. Code Structure and Vectorization

With the advent of vectorized computer architecture one cannot just program in a
linear fashion without regard to code structure and expect to produce efficient code. Two
major decisions face the programmer when writing code for a vector machine, for instance
CRAY type architecture. First you must identify the vector length or construct. Which
indices can be considered vectors, what are the vector lengths (some machines require long
vectors) and how is a vector loop implemented. Secondly, how do we manage the large data
bases which now can be processed because of the efficiency and speed of vector machines.
Many of the near future computers will have either large in-core memory or high speed
out-of-core storage. These large amounts of data will have to be managed efficiently. In
three dimensions for instance a data base of 1 million grid points and 32 variables will be
common place requiring us to manage 32 millions words. To efficiently handle this data base,
management systems such as plane slices or pencil concepts, see Lomax and Pulliam [18],
need to be developed and refined. The proper way to handle this is to divide memory into
two parts, the operating part of memory and the storage part. Identifiable blocks of data
are brought into the working area, processed and then moved back to storage. There are
a number of advantages to such a system. One is that large blocks of data can be moved
more efficiently especially for out-of-core storage devices but even for in-core storage. The
dimensions of the blocks define the vector lengths. For SIMD (single instruction - multiple
data) or MIMD (multiple instruction - multiple data) architecture the blocks define multiple
data strings to be operated on. In general, as machines become larger and more powerful
we will have to take more care in the development of a well structure efficient code.
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Figure 33: Ẇarped Spherical Topology for Hemisphere–Cylinder.

12.5. Application in Three Dimensions

Applications in three dimensions require substantial computational resources. Most of
the problems attempted so far have been for simple geometries and limited flow conditions.
The advent of the high speed – large memory machines, such as the CRAY 1S, XMP
or CYBER 205, will enable us to attempt realistic problems but even they fall short of
providing enough computer power for general purposes. I shall present below applications
of the code ARC3D for simple body shapes. The flow conditions used, though, produce some
interesting and complicated flowfields. These computations demonstrate the capabilities of
the code and demonstrate the accuracy and efficiency.

12.5.1. Hemisphere-Cylinder At High Angle Of Attack

The first application is flow past a semi–infinite hemisphere–cylinder at a supersonic
Mach number M∞ = 1.2 and high angle of attack α = 19◦. The calculation is for a laminar
Reynolds number RE = 222500.0 This calculation was originally presented by Pulliam and
Steger [3] where it was computed on a grid with 30 points in the axial direction , 19 points
circumferentially and 30 points in the normal direction, a total of 17100 grid points. The
grid is a warped spherical topology, see Figure 33 and is clustered in the normal direction
for boundary layer resolution. In the original code [3] the convergence rate (reduction in
residual per iteration) for typical cases was on the order of 0.996, for the current algorithm
it has been reduced to approximately 0.986. Employing the algorithm as described above
and using the fully implicit pentadiagonal algorithm the computation time for three orders
of magnitude drop in residual (plotting accuracy) was reduced from about 300 minutes for
a converged case on the CDC7600 to about 5 minutes on a CRAY-XMP. In fact cases which
could not be converged before on the CDC 7600 are now convergent. This is a substantial
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Figure 34: Ḣemisphere–Cylinder at M∞ = 1.2, α = 19◦.

reduction in the compute time and can be improved further.

An example of the computation is shown in Figure 34 and 35. A crossflow separation
occurs at this angle of attack which is indicated by the pressure contours and velocity
vectors at the cross sectional plane shown. In Figure 35 pressure along the body at three
circumferential locations is compared with experimental data due to Hsieh [64] and compares
quite well. Also shown is the computed crossflow separation angle against experiment.

Details of the interaction of the crossflow and symmetry plane as well as other features
of this flow require further study. Results by Pan and Pulliam [49] have expanded ARC3D
to use the SSD (solid state disk) on the XMP. This gives us the capacity for up to 1 million
grid points. With that resolution and the increased efficiency of the code we are carrying
out a detailed study of high angle of attack flowfields.

Other computations presented for this configuration at lower Mach numbers and angles
of attack were reported by Pulliam and Steger and compared well with data. The code is
also used to obtain starting solutions for a PNS (parabolized Navier-Stokes) code, see Schiff
and Steger [65], Chaussee, et. al. [66].

12.5.2. Boattail

As a second application, Deiwert employed a version of the code to study boattails at
angles of attack [67] and boattail exhaust plumes [68]. A composite of Deiwerts boattail
computation is given in Figure 36. The computation was performed using a boattail con-
figuration with a infinite sting. The region of interest is the converging area of the boattail.
The flow conditions are M∞ = 2.0, Re = 6.5 ·107 and angles of attack from 0◦ to 12◦. Com-
puted pressures at various angles of attack are compared with experiment in the paper.
The case shown here is for α = 6◦ and shows comparison at three circumferential stations.
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Figure 35: Ċomparison with Experiment.

Computed surface oil flow (particle paths restricted to the body) and surface pressure for
α = 6◦ show the type of results presented. The results reported by Deiwert [67] compared
very well with the experimental data of Shrewsbury [69].

The boattail study was undertaken as a first step toward the simulation of boattail
exhaust plumes which has been carried out in a preliminary stage by Deiwert [68]. In
this simulation the boattail sting is eliminated and a conical exhaust jet is added at the
base region. Figures 37 and 38 show comparisons of density contours and streamlines
with Schlieren photographs from Agrell and White [70]. In Figure 37 the pressure ratio for
the jet was 3 and we see an expanded exhaust plume and a complicated shock shear flow
pattern ( depicted by the bold lines). The qualitative comparison with the photograph is
quite remarkable. At a higher exhaust ratio, Figure 38 the jet is tighter and the shock shear
surface pattern more complicated. Again the qualitative comparison with the photograph is
quite good. I refer the reader to the original papers and one by Nakahashi and Deiwert [63]
for a more detailed analysis of these flowfields.

13. Summary

In summary, the development of some computational algorithms in two- and three-
dimensions have been presented. Details of two computational codes, ARC2D and ARC3D
have been presented. The basic algorithm used is the Beam and Warming implicit approxi-
mate factorization scheme or variants of that scheme such as the diagonalization. The codes
employ improvements to enhance accuracy, (grid refinement, better boundary conditions,
more versatile artificial dissipation model) and efficiency (diagonal algorithm, implicit treat-
ment of artificial dissipation terms, variable time steps). Results for a wide variety of cases
substantiate the accuracy and efficiency claims.

Future work is required to address improvement of boundary conditions, examining
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Figure 36: Ḃoattail Study at M∞ = 2.0, α = 6◦, Re = 6.5× 105.
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Figure 37: Ḃoattail Exhaust Plume Flow Details at Pressure Ratio = 3.
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Figure 38: Ḃoattail Exhaust Plume Flow Details at Pressure Ratio = 9.
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stability questions, eliminating cross term errors and more. We are also interested in devel-
oping new grid generation concepts both in terms of generation and grid quality. In three
dimensions we see the area of zonal concepts as the newest horizon and envision substantial
gains in solution capability as a result.
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Appendix

The flux Jacobian matrices of Equation 5.4 have real eigenvalues and a complete set of
eigenvectors. The similarity transforms are

Â = TξΛξT
−1
ξ and B̂ = TηΛηT

−1
η (A1)

where

Λξ =



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Λη =
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(A3)

with

Tκ =




1 0 α α
u κ̃yρ α(u + κ̃xa) α(u− κ̃xa)
v −κ̃xρ α(v + κ̃ya) α(v − κ̃ya)
φ2

(γ−1) ρ(κ̃yu− κ̃xv) α
[

φ2+a2

(γ−1) + aθ̃
]

α
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]
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T−1
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κ̃y/ρ
β[κ̃xa− (γ − 1)u]
−β[κ̃xa + (γ − 1)u]

(γ − 1)v/a2

−κ̃x/ρ
β[κ̃ya− (γ − 1)v]
−β[κ̃ya + (γ − 1)v]

−(γ − 1)/a2

0
β(γ − 1)
β(γ − 1)


 (A5)

and α = ρ/(
√

2a), β = 1/(
√

2ρa), θ̃ = κ̃xu + κ̃yv, and, forexample, κ̃x = κx/
√

κ2
x + κ2

y.

Relations exist between Tξ and Tη of the form

N̂ = T−1
ξ Tη, N̂−1 = T−1

η Tξ (A6)
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where

N̂ =




1 0 0 0
0 m1 −µm2 µm2

0 µm2 µ2(1 + m1) µ2(1−m1)
0 −µm2 µ2(1−m1) µ2(1 + m1)


 (A7)

and

N̂−1 =




1 0 0 0
0 m1 µm2 −µm2

0 −µm2 µ2(1 + m1) µ2(1−m1)
0 µm2 µ2(1−m1) µ2(1 + m1)


 (A8)

with m1 =
(
ξ̃x η̃x + ξ̃yη̃y

)
, m2 =

(
ξ̃x η̃y − ξ̃yη̃x

)
and µ = 1/

√
2.

It is interesting to note that the matrix N̂ is only a function of the metrics and not the
flow variables.

In three dimensions the Jacobian matrices Â or B̂ or Ĉ =




κt κx

κxφ2 − uθ κt + θ − κx(γ − 2)u
κyφ

2 − vθ κxv − κy(γ − 1)u
κzφ

2 − wθ κxw − κz(γ − 1)u
−θ

(
γe/ρ− 2φ2

)
κx

(
γe/ρ− φ2

)− (γ − 1)uθ

κy κz 0
κyu− κx(γ − 1)v κzu− κx(γ − 1)w κx(γ − 1)

κt + θ − κy(γ − 2)v κzv − κy(γ − 1)w κy(γ − 1)
κyw − κz(γ − 1)v κt + θ − κz(γ − 2)w κz(γ − 1)

κy
(
γeρ−1 − φ2

)− (γ − 1)vθ κz
(
γeρ−1 − φ2

)− (γ − 1)wθ κt + γθ




(A9)

where

θ = κxu + κyv + κzw

φ2 = (γ − 1)(u2+v2+w2

2 ) (A10)

with κ = ξ, or η or ζ for Â, B̂, or, Ĉ respectively.

The viscous flux Jacobian is

M̂ = J−1




0 0 0 0 0
m21 α1∂ζ(ρ−1) α2∂ζ(ρ−1) α3∂ζ(ρ−1) 0
m31 α2∂ζ(ρ−1) α4∂ζ(ρ−1) α5∂ζ(ρ−1) 0
m41 α3∂ζ(ρ−1) α5∂ζ(ρ−1) α6∂ζ(ρ−1) 0
m51 m52 m53 m54 α0∂ζ(ρ−1)




J (A11)
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where

m21 = −α1∂ζ(u/ρ)− α2∂ζ(v/ρ)− α3∂ζ(w/ρ)
m31 = −α2∂ζ(u/ρ)− α4∂ζ(v/ρ)− α5∂ζ(w/ρ)
m41 = −α3∂ζ(u/ρ)− α5∂ζ(v/ρ)− α6∂ζ(w/ρ)
m51 = α0∂ζ

[−(e/ρ2) + (u2 + v2 + w2)/ρ
]

−α1∂ζ(u2/ρ)− α4∂ζ(v2/ρ)− α6∂ζ(w2/ρ)
−2α2∂ζ(uv/ρ)− 2α3∂ζ(uw/ρ)− 2α5∂ζ(vw/ρ)

m52 = −α0∂ζ(u/ρ)−m21 m53 = −α0∂ζ(v/ρ)−m31

m54 = −α0∂ζ(w/ρ)−m41 m44 = α4∂ζ(ρ−1)
α0 = γµPr−1(ζx

2 + ζy
2 + ζz

2) α1 = µ[(4/3)ζx
2 + ζy

2 + ζz
2],

α2 = (µ/3)ζxζy, α3 = (µ/3)ζxζz, α4 = µ[ζx
2 + (4/3)ζy

2 + ζz
2],

α5 = (µ/3)ζyζz, α6 = µ[ζx
2 + ζy

2 + (4/3)ζz
2], (A12)

The eigensystem decomposition of the three dimensional Jacobians have the form Â =
TξΛξT

−1
ξ , B̂ = TηΛηT

−1
η , and Ĉ = TζΛζT

−1
ζ . The eigenvalues are

λ1 = λ2 = λ3 = κt + κxu + κyv + κzw
λ4 = λ1 + κa λ5 = λ1 − κa
κ =

√
κ2

x + κ2
y + κ2

z (A13)

The matrix Tκ, representing the left eigenvectors, is

Tκ =




κ̃x κ̃y

κ̃xu κ̃yu− κ̃zρ
κ̃xv + κ̃zρ κ̃yv
κ̃xw − κ̃yρ κ̃yw + κ̃xρ[

κ̃xφ2/(γ − 1) + ρ(κ̃zv − κ̃yw)
] [

κ̃yφ
2/(γ − 1) + ρ(κ̃xw − κ̃zu)

]

κ̃z α α
κ̃zu + κ̃yρ α(u + κ̃xa) α(u− κ̃xa)
κ̃zv − κ̃xρ α(v + κ̃ya) α(v − κ̃ya)

κ̃zw α(w + κ̃za) α(w − κ̃za)[
κ̃zφ

2/(γ − 1) + ρ(κ̃yu− κ̃xv)
]

α
[
(φ2 + a2)/(γ − 1) + θ̃a

]
α

[
(φ2 + a2)/(γ − 1)− θ̃a

]




(A14)

where

α =
ρ√
2a

, κ̃x =
κx

κ
, κ̃y =

κy

κ
, κ̃z =

κz

κ
, θ̃ =

θ

κ
(A15)
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The corresponding T−1
κ is

T−1
κ =




κ̃x
(
1− φ2/a2

)− (κ̃zv − κ̃yw)/ρ κ̃x(γ − 1)u/a2

κ̃y
(
1− φ2/a2

)− (κ̃xw − κ̃zu)/ρ κ̃y(γ − 1)u/a2 − κ̃z/ρ
κ̃z

(
1− φ2/a2

)− (κ̃yu− κ̃xv)/ρ κ̃z(γ − 1)u/a2 + κ̃y/ρ

β(φ2 − θ̃a) −β[(γ − 1)u− κ̃xa]
β(φ2 + θ̃a) −β[(γ − 1)u + κ̃xa]

κ̃x(γ − 1)v/a2 + κ̃z/ρ κ̃x(γ − 1)w/a2 − κ̃y/ρ −κ̃x(γ − 1)/a2

κ̃y(γ − 1)v/a2 κ̃y(γ − 1)w/a2 + κ̃x/ρ −κ̃y(γ − 1)/a2

κ̃z(γ − 1)v/a2 − κ̃x/ρ κ̃z(γ − 1)w/a2 −κ̃z(γ − 1)/a2

−β[(γ − 1)v − κ̃ya] −β[(γ − 1)w − κ̃za] β(γ − 1)
−β[(γ − 1)v + κ̃ya] −β[(γ − 1)w + κ̃za] β(γ − 1)




(A16)

where

β =
1√
2ρa

(A17)
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