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Finite difference schemes providing an improved representation of a 
range of scales (spectral-like resolution) in the evaluation of first, 
second, and higher order derivatives are presented and compared with 
well-known schemes. The schemes may be used on non-uniform 
meshes and a variety of boundary conditions may be imposed. Schemes 
are also presented for derivatives at mid-cell locations, for accurate 
interpolation and for spectral-like filtering. Applications to fluid 
mechanics problems are discussed. 0 1992 Academic Press. Inc. 

1. INTRODUCTION 

Many physical phenomena possess a range of space and 
time scales, turbulent fluid flows being a common example. 
Direct numerical simulations of these processes require all 
the relevant scales to be properly represented in the numeri- 
cal model. These requirements have led to the development 
of spectral methods [l-2]. Some examples of the direct 
simulation of turbulent flows by spectral methods may be 
found in [3-51. The use of spectral methods is, however, 
limited to flows in simple domains and simple boundary 
conditions. These difficulties may be overcome by em- 
ploying alternative numerical representations. For example, 
finite difference schemes or spectral (finite) element schemes 
may be used. Direct simulations of turbulent flows using 
these alternative schemes is relatively new. Rai and Moin 
[6, and references therein for earlier work] present simula- 
tions of a turbulent channel flow using a high-order, 
upwind-biased finite difference scheme. Work of Patera, 
Karniadakis, and their co-workers [ 7-93 illustrates the use 
of spectral element methods. 

This paper presents finite difference schemes for use on 
problems with a range of spatial scales. Compared to the 
traditional finite difference approximations the schemes 
presented here provide a better representation of the shorter 
length scales. This feature brings them closer to the spectral 
methods, while the freedom in choosing the mesh geometry 
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and the boundary conditions is maintained. The emphasis 
in this paper is on the resolution characteristics of the 
difference approximations rather than their formal accuracy 
(i.e., truncation error). By resolution characteristics we 
mean the accuracy with which the difference approximation 
represents the exact result over the full range of length scales 
that can be realized on a given mesh. This notion of resolu- 
tion is quantified by means of a Fourier analysis of the dif- 
ferencing scheme. It is analogous to, but more general than, 
the notion of intervals per wavelength used by Swartz and 
Wendroff [l&13] and by Kreiss and Oliger [ 141 to com- 
pare the resolving power of different schemes. The notion of 
intervals per wavelength also uses Fourier analysis to quan- 
tify phase errors. For very small phase errors the number of 
intervals per wavelength needed by a differencing scheme is 
sensitive only to the behavior of the longest waves repre- 
sented on a mesh. This is precisely the same information as 
obtained from the leading order truncation error (formal 
accuracy) of the scheme. It should be stressed that the quan- 
titative importance of correctly resolving a particular range 
of length scales is dependent on the physical problem being 
solved as well as on the nature of results being sought from 
the numerical calculation. 

The organization of the paper is as follows. Section 2 
presents the basic schemes for approximating the first and 
second derivatives. Schemes for higher derivatives are 
described in Appendix A. Compact schemes on cell- 
centered mesh are discussed in Appendix B and the 
applications to interpolation and filtering are discussed in 
Appendix C. Section 3 presents analysis of the schemes, 
showing the associated dispersive errors and the anisotropy 
of the schemes in multi-dimensions. Comparisons with 
conventional finite difference schemes are made throughout 
these sections. This analysis leads to a definition of the 
resolving efficiency of the differencing schemes. Comments 
are also made on the aliasing errors encountered with 
nonlinear problems. Section 4 presents a treatment of 
boundaries in the derivative approximations. Assessment of 
the local boundary errors is presented. Its effect on the 
overall scheme is analyzed by means of numerical tests. An 
eigenvalue analysis of the complete scheme and the time- 
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stepping restrictions for stability are also described in this 
section. General remaks on the application of the schemes 
are made in Section 5 and some example applications from 
fluid mechanics are presented. 

2 

2.1. Approximation of First Derivative 

Given the values of a function on a set of nodes the finite 
difference approximation to the derivative of the function is 
expressed as a linear combination of the given function 
values. For simplicity consider a uniformly spaced mesh 
where the nodes are indexed by i. The independent variable 
at the nodes is x, = h( i - 1) for 1 < i < N and the function 
values at the nodes f, = f (x,) are given. The finite difference 
approximation fl to the first derivative (df/dx)(xi) at the 
node i depends on the function values at nodes near i. 
For second- and fourth-order central differences the 
approximation f i depends on the sets (h.-, , f,, i) and 
( fifi 2, fjfi i, L+ , , fi, J, respectively. In the spectral 
methods, however, the value off I depends on all the nodal 
values. The Pade or compact finite difference schemes 
[ 15-191 mimic this global dependence. The schemes 
presented here are generalizations of the Pade scheme. 

These generalizations are derived by writing approxima- 
tions of the form: 

Pf:-*+cI +fl+olfi+1 +Bfi+2 

=c~+~-~-~+bf,+2-.f;~2+afi+I-~-I 

6h 4h 2h ’ 

(2.1) 

The relations between the coefficients a, b, c and a, B are 
derived by matching the Taylor series coefficients of various 
orders. The first unmatched coefficient determines the 
formal truncation error of the approximation (2.1). These 
constraints are: 

a+b+c=1+2a+2p (second order) 

a + 22b + 32c = 2 G (a + 2’p) (fourth order) 

a + 24b + 34c = 2 z (a + 24/?) (sixth order) 

a+26b+3”c=2~(a+2”B) (eighthorder) 

a + 28b + 38c = 2 E (a + 28/?) (tenth order). 

(2.1.1) 

(2.1.2) 

(2.1.3) 

(2.1.4) 

(2.1.5) 

If the dependent variables are periodic in x, then the 
system of relations (2.1) written for each node can be solved 

together as a linear system of equations for the unknown 
derivative values. This linear system is a cyclic penta- 
diagonal (tridiagonal) when fl is nonzero (zero). The 
general non-periodic case requires additional relations 
appropriate for the near boundary nodes. These are 
described in Sections 4.1 and 4.2. The resulting linear 
system is amenable to efficient numerical solution. 

The relation (2.1), along with a mathematically defined 
mapping between a non-uniform physical mesh and a 
uniform computational mesh, provides derivatives on a 
non-uniform mesh. It is also possible to derive relations 
analogous to (2.1) for a non-uniform mesh directly (e.g., 
relations corresponding to the traditional Pad& scheme were 
derived in [19-211). We now consider the various special 
cases of (2.1). In the discussion below at least the first two 
of the constraints (2.1.1)-(2.1.5) are imposed. Thus all the 
schemes described have at least a fourth-order formal 
accuracy. 

In Section 3.1 an analysis of the dispersive errors of 
schemes (2.1) is presented. This analysis shows the 
improved representation of the shorter length scales (i.e., 
spectral-like resolution) of the schemes presented here. The 
analysis also leads to schemes with very small dispersive 
errors (almost spectral). These are also presented in Sec- 
tion 3.1. In the present section we proceed in the traditional 
way to classify the differencing schemes generated by (2.1) 
in terms of the formal truncation error and the computa- 
tional stencil required. 

The general relation (2.1) with (2.1.1), (2.1.2) can be 
regarded as a three-parameter family of fourth-order 
schemes. If the schemes are restricted to /I = 0 a variety of 
tridiagonal systems are obtained. For /I # 0 pentadiagonal 
schemes are generated. If the additional constraint of sixth- 
order formal accuracy is imposed, a two-parameter family 
of sixth-order pentadiagonal schemes is obtained. These 
may be further specialized into a one-parameter family of 
eighth-order pentadiagonal schemes or a single tenth-order 
scheme. 

First the tridiagonal schemes are described. These are 
generated by p = 0. If a further choice of c = 0 is made, a 
one-parameter (a) family of fourth-order tridiagonal 
schemes is obtained. For these schemes 

B=O, a=f(a+2), b=f(4a-1), c=O. (2.1.6) 

The truncation error on the r.h.s. of (2.1) (unless stated 
otherwise the term truncation error will be used in this sense 
from here on) for this scheme and for other schemes to be 
described below are listed in Table I. The stencil sizes 
indicated in the table are the maximum stencil sizes needed 
within a class of schemes. 

As a -+ 0 this family merges into the well-known fourth- 
order central difference scheme. Similarly for a = $ the 
classical Padt scheme is recovered. Furthermore, for a = f 
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TABLE I 

Truncation Error for the First Derivative Schemes 

Max. 1.h.s. Max. r.h.s. 
Scheme stencil size stencil size Truncation error in (2.1) 

(2.1.6) 

(2.1.7) 

(2.1.8) 

(2.1.8)&a =; 

(2.1.9) 

(2.1.10) 

(2.1.11) 

(2.1.12) 

(2.1.13) 

(2.1.14) 

3 

3 

3 

3 

5 

5 

5 

5 

5 

5 

5 $ (3a - 1) h4f”’ 

5 $ h6fc7’ 

7 F(-8a+3)hlf”’ 

7 $haf’P’ 

7 ~(-1+3a-l2/?+10c)h~“’ 

7 

5 i (9a - 4) hqf”’ 

5 -;,(,I 

7 g (2a - 1) h*f ‘9) 

7 ;hlOfilK 

the leading order truncation error coefficient vanishes and 
the scheme is formally sixth-order accurate. Its coefficients 
are 

a=$, j?=o, a+, b+, c=Q (2.1.7) 

The specific tridiagonal schemes obtained for a = $ and a = i 
were given by Collatz [22, p. 5381. 

With /3 = 0 and c #O the family of schemes (2.1.6) is 
extended to a two-parameter family of fourth-order 
tridiagonal schemes. Contained within these is a one- 
parameter family of sixth-order tridiagonal schemes. For 
this (sixth-order) family 

P=O, a=$(a+9), 

b=h(32a-9), c=&(-3a+l). 
(2.1.8) 

The sixth-order tridiagonal scheme (2.1.7) is a member of 
this family (with c = 0, a = f). This sixth-order family can be 
further specialized into an eighth-order scheme by choosing 
a = $. This is the tridiagonal scheme (p = 0) with the highest 
formal accuracy within (2.1). 

K. LELE 

Pentadiagonal schemes are generated with j? ~0. In 
general this fourth-order three-parameter (a, j?, and c) 
family is given by 

a=f(4+2a-168+5c), 

b=$(-1+4a+228-8c). 
(2.1.9) 

Schemes of sixth-order formal accuracy contain two 
parameters a and p. They are given by 

a=i(9+a-208), b=&(-9+32a+62/?), 

c=h(1-3a+12j). 
(2.1.10) 

The tridiagonal sixth-order family of (2.1.8) is a subclass 
within (2.1.10). Another subclass is obtained with B # 0 and 
c = 0. This sixth-order pentadiagonal family has 

B=h(-1+3a), a=$(8-3a), 

b=&(-17+57a), c=O. 
(2.1.11) 

This family limits to the sixth-order tridiagonal scheme 
(2.1.7) as fi -+ 0 or a = $. The leading truncation error coef- 
ficient for (2.1.11) vanishes for a = $ yielding an eighth-order 
scheme. This eighth-order scheme has 

a=$, p=$, a=%, b=g, c=O. (2.1.12) 

This particular scheme is also given by Collatz [22, p. 5381 
and analyzed by Swartz and Wendroff [l&13]. 

By choosing p = $ ( - 3 + 8a) in (2.1.10) a one-parameter 
family of eighth-order pentadiagonal schemes is generated. 
This eighth-order family has 

/I?=$(-3+8a), a=i(12-7a), 

b=&(568a-183), c=&(9a-4). 
(2.1.13) 

The specific eighth-order schemes obtained earlier viz., (a) 
scheme (2.1.8) with a = 2 and (b) scheme (2.1.12), belong to 
this one-parameter family. 

By choosing a = i in (2.1.13) a tenth-order scheme is 
generated. This is the scheme with the highest formal 
accuracy amongst the schemes defined by (2.1). The 
coefficients of this scheme are 

a=;, j?=$j, a=+$ b=s, c=&. (2.1.14) 

Among the class of derivative approximations repre- 
sented by (2.1) those which achieve the highest possible 
formal accuracy within each subclass of schemes (denoted 
by a specified computational stencil on both the 1.h.s. and 
r.h.s. of (2.1)) are precisely the schemes obtained by a 
rational (or Padt) approximation of the first derivative 
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operator.’ This Pad& table is given by Kopal [23]. The 
formal rational approximation generates only these specific 
members of the multiparameter scheme (2.1.9). 

An alternate and more effective way of classifying the 
schemes presented here is provided by their Fourier 
analysis. The Fourier analysis also quantifies the resolution 
characteristics of the schemes. It also provides a way to 
“optimize” the scheme from a multi-parameter family. 
These issues are fully discussed in Section 3.1. 

2.2. Approximation of Second Derivative 

The derivation of compact approximations for the second 
derivative proceeds exactly analogous to the first derivative. 
Once again the starting point is a relation of the form 

(2.2) 

where f; represents the finite difference approximation to 
the second derivative at node i. The relations between the 
coefficients a, b, c and ~1, /I are derived by matching the 
Taylor series coefficients of various orders. The first 
unmatched coefficient determines the formal truncation 
error of the approximation (2.2). These constraints are: 

a+b+c=1+2a+2B (second order) (2.2.1) 

a+2*b+3’c=~(a+2*/3) (fourth order) (2.2.2) 

a + 24b + 34c = $ (a + 24/?) (sixth order) (2.2.3) 

a+26b+36c=~(a+2”/I) (eighth order) (2.2.4) 

a+28h+38c=F(a+2X/?) (tenthorder). (2.2.5) 

The form of these constraints is very close to those 
derived for the first derivative approximations but the mul- 
tiplying factors on the r.h.s. are different. In the following 
discussion at least the first two of these constraints are 
imposed resulting in schemes with at least a fourth-order 
formal accuracy. For dependent variables which are 

’ The author is grateful to Dr. K. ShariN for explicitly verifying this 
equivalence (via the use of MACSYMA) and pointing out some errors in 
the Pad& table of Kopal [23]. The coefficients of h4 and S6 in the expres- 
sions for 0:“’ and 0:” (on p. 553) are in error, they should read as & and 
A, respectively. 

periodic in x the tridiagonal or pentadiagonal system 
defined by (2.2) at each node may be solved to yield the 
second derivatives. For the non-periodic case additional 
relations are required at the boundary (presented in 
Section 4.3). 

By choosing B = 0 and c = 0 a one-parameter family of 
fourth-order schemes is generated. This family has 

B=O, c=o, a=%-~), b=i(-l+lOcc). (2.2.6) 

The truncation error on the r.h.s. of (2.2) for this and other 
schemes discussed in this section are listed in Table II. It 
may be noted that as a + 0 this family coincides with the 
well-known fourth-order central difference scheme. For 
a = $ the classical Pade scheme is recovered. For a = & a 
sixth-order tridiagonal scheme is obtained. This scheme has 

a=&, b=O, a=g, b=$, c=O. (2.2.7) 

The particular members obtained with a = h and a = h 
were given by Collatz [22, p. 5383. 

A three-parameter family of fourth-order schemes is 
generated from (2.2) by considering /I # 0 and c # 0. These 
satisfy 

a=f(4-4a-408+5c), 

b=f(-l+lOa+46P-8c). 
(2.2.8) 

This class of schemes can be further specialized into 
a two-parameter family of sixth-order schemes, a one- 
parameter family of eighth-order schemes or a single tenth- 

TABLE II 

Truncation Error for Second Derivative Schemes 

Max. 1.h.s. Max. r.h.s. 
Scheme stencil size stencil size Truncation error in (2.2) 

(2.2.6) 3 

(2.2.7) 3 

(2.2.8) 5 

(2.2.9) 5 

(2.2.10) 5 

(2.2.11) 5 

5 $(ll,-2)hY’6’ 

5 s jqf’8’ 

7 ~(-2+ll~-124/?+20c)h~‘6’ 

7 g (9 - 38a + 214/l) h6f(” 

7 *y&-$ j8f”O’ 

7 
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order scheme. The two-parameter sixth-order family is 
defined by 

6-9cr- 128 
b= 

-3+24a-68 
a= 

4 , 5 ’ 

2- lla+ 1248 
(2.2.9) 

C= 
20 . 

When the eighth-order constraint is imposed (2.2.9) 
reduces to a one-parameter family of eighth-order schemes. 
These are defined by 

38a-9 

/I=- ’ 
696- 119la 

214 ‘= ’ 428 

b= 

2454a - 294 1179a-344 
(2.2.10) 

535 ) c= 2140 . 
The particular eighth-order scheme with a = s corre- 
sponding to c=O in (2.2.10) was given by Collatz [22, 
p. 5391. 

Finally, when the tenth-order constraint is imposed a 
single tenth-order scheme is obtained. This scheme defined 
by 

j?=&$, a=%, a=$$, b=E, c=& (2.2.11) 

has the highest formal accuracy within the class of schemes 
defined by (2.2). 

As before amongst the schemes defined by (2.2), those 
which maximize the formal accuracy (with a prescribed 
computational stencil) correspond precisely to the rational 
or Padt approximation of the second derivative operator. 
These have been given by Kopal [23, pp. 551-5521 in 
operator notation. A comparison of schemes (2.2) by means 
of Fourier analysis is presented in Section 3.1, where com- 
parisons are also made with other well-known schemes. 
This analysis brings out the spectral-like resolution of the 
schemes described here and also leads to more “optimal” 
schemes. 

Compact schemes for evaluating higher derivatives are 
described in Appendix A. Schemes involving a cell-centered 
mesh in evaluating derivatives are described in Appendix B. 
Compact schemes for interpolation and liltering are 
presented in Appendix C. 

3. FOURIER ANALYSIS OF ERRORS 

This section presents a Fourier analysis of the errors 
associated with the approximations introduced in the last 
two sections. Comparison are made with the standard linite- 
difference schemes to judge the improvement in the error 

characteristics. Formal truncation error of the differencing 
schemes were given in the preceding sections. The use of 
Fourier analysis to characterize the errors of difference 
approximations is described extensively in [24]. It is a 
classical technique for comparing differencing schemes. It 
was used by Roberts and Weiss [25], Fromm [26], Oliger 
and Kreiss [14], Orszag [27-281 and by Swartz and 
Wendroff [l&13]. Fourier analysis of the standard PadC 
scheme was presented in [ 181 and comparisons were made 
with the second- and fourth-order central differences. 

The Fourier analysis provides an effective way to quantify 
the resolution characteristics of the differencing approxima- 
tions. This quantification may be used to further guide an 
optimization of the differencing schemes. In the following 
section the differencing errors are analyzed in terms of 
dispersion or phase error and anisotropy (in multi- 
dimensions). Comparisons are made throughout with the 
standard difference formulae. Examples of optimization of 
the schemes based on the resolution characteristics are also 
presented. All differencing approximations (for the interior 
nodes) studied here are of central difference form, thus there 
are no dissipative errors (from the differencing of conser- 
vative terms). The treatment of boundary errors (for non- 
periodic problems) is presented in Section 4, where the 
approximations appropriate for the near boundary nodes 
are also introduced. Local errors introduced by the bound- 
ary scheme are discussed along with the schemes and their 
effect on the global accuracy is presented in Section 4.4. This 
requires direct numerical tests on the performance of the 
first derivative schemes. Analysis of the stability properties 
of the overall scheme is deferred to Section 4.5 which is 
followed by a summary of the time step restrictions for 
stable explicit time advancement in Section 4.6. 

3.1. Fourier Analysis of Differencing Errors 

For the purposes of Fourier analysis the dependent 
variables are assumed to be periodic over the domain [0, L] 
of the independent variable, i.e.,fi = fN+ , and h = L/N. The 
dependent variables may be decomposed into their Fourier 
coefficients 

f(x)= ‘=c”:, fkexp(F), 
k= -N/2 

(3.1.1) 

where i=F 1. Since the dependent variables are real- 
valued, the Fourier COefflCientS satisfy fk =f?k for 1 < 
k d N/2 and f0 = f,*, where * denotes the complex 
conjugate. 

It is convenient to introduce a scaled wavenumber 
w = 2nkhJL = 2zk/N and a scaled coordinate s = x/h. The 
Fourier modes in terms of these are simply exp(iws). The 
domain of the scaled wavenumber w  is [0, rr]. The exact 
first derivative of (3.1.1) (with respect to s) generates a func- 
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0 
r; 

tion with Fourier coefficients -& = iwfk. The differencing 
error of the first derivative scheme may be assessed by com- 
paring the Fourier coefficients of the derivative obtained 
from the differencing scheme (fb)rd with the exact Fourier 
coefficients &. For central difference schemes it may be 
shown that (f;),, = iw’fk, where the modified wavenumber 
w’ is real-valued. Each finite difference scheme corresponds 
to a particular function w’(w). Exact differentiation 
corresponds to the straight line w’ = w. Spectral methods 
provide w’ = w  for w  # x (and w’ = 0 for w  = x). The range 
of wavenumbers [27r/N, wr] over which the modified 
wavenumber w’(w) approximates the exact differentiation 
w’(w) = w  within a specified error tolerance defines the set of 
well-resolved waves. While, the value wr, i.e., the shortest 
well resolved wave, certainly depends on the specific error 
tolerance it is quite reasonable to keep this error tolerance 
fixed when different finite difference schemes are compared. 
It should also be noted that wf depends only on the scheme 
and not on the number of points N used in the descretiza- 
tion. In the following the error tolerance is defined as: 

Iw’(w)-WI <E 
1, 

W 
(3.1.3) 

0 
d 

0.0 0.5 I.0 1.5 2.0 2.5 ‘3.0 

Wovenumber 

FIG. 1. Plot of modified wavenumher vs wavenumher for first 
derivative approximations: (a) second-order central differences; (b) fourth- 
order central differences; (c) sixth-order central differences; (d) standard 
Padt scheme (p=O = c, x= f); (e) sixth-order &diagonal scheme 
(/? = 0 = c, a = f); (f) eighth-order tridiagonal scheme (8 = 0); (g) eighth- 
order pentadiagonal scheme (c = 0); (h) tenth-order pentadiagonal 
scheme; (i) spectral-like pentadiagonal scheme (3.1.6); (j) exact differentia- 
tion. 

The fraction I-, = 1 - wf/7c represents the fraction of 
poorly resolved waves for the first derivative scheme. This 
fraction is also independent of the number of points N. The 
fraction e, = w,/rc = 1 - rl may be regarded as a measure of 
the resolving efficiency of a scheme. We note that the com- 
putational efficiency of a scheme is proportional to the 
resolving efficiency but also depends on the operation count 
of the numerical algorithm and its implementation. The 
leading order operation count for the spectral-like scheme 
described later in this section is 7N multiplies, N divides, 
and 7N addition or subtraction operations when sparse 
matrix techniques are used [46] and the Cholesky decom- 
position of the symmetric portion of the associated matrix is 
computed (in LDLT form) and saved for future use. For the 
tridiagonal schemes the operation count is SN, N, and 5N 
for multiply, divide, and add/subtract operations, respec- 
tively. For reference, a radix 2 FFT [47] requires 2N log, N 
multiplies and 3N log, N adds. 

The difference schemes (2.1) correspond to 

Plots of the modified wavenumber w’ against wave- 
number w  are presented in Fig. 1 for a variety of schemes. 
In this manner the resolution characteristics of different 
schemes can be compared. From this plot the fraction r,, 
representing the fraction of poorly resolved waves and the 

w,(w) = a sin(w) + (b/2) sin(2w) + (c/3) sin(3w) 
1 + 2cr cos(w) + 28 cos(2w) . 

(3.1.4) 

resolving efficiency e, = 1 - ri is determined. This is done 

for three different values of the error tolerance E, viz., 
E = 0.1 0.01, and 0.001. The results quantify the resolution 
characteristics of the schemes and are tabulated in 
Table. III. 

It is evident that compared to the standard second- and 
fourth-order central differences the compact schemes stay 
close to the exact differentiation over a wider range of 
wavenumbers. The tridiagonal sixth-order scheme (2.1.7) is 
better than the standard PadC scheme. Similarly, the eighth- 

TABLE III 

Resolving Efficiency e,(s) of the First Derivative Schemes 
Shown in Fig. 1 

Scheme 

iti 

1:; 
(e) 
(f) 
(g) 
(h) 
6) 

&=o.l E = 0.01 .s=O.OOl 

0.25 0.08 0.02 
0.44 0.23 0.13 
0.54 0.35 0.23 
0.59 0.35 0.20 
0.70 0.50 0.35 
0.75 0.58 0.44 
0.77 0.61 0.48 
0.81 0.68 0.56 
0.90 0.83 0.79 
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order schemes (2.1.8) with c1= 2, (2.1.11), and the tenth- 
order scheme (2.1.13) stay close to the exact differentiation 
over a progressively larger wavenumber range. It may also 
be noted that the improvements in the dispersive error for 
wavenumber range (7r/2, n) are not very sensitive to the 
reduction of the formal truncation error of the scheme. Also 
shown on Fig. 1 is a “spectral-like” scheme obtained from 
(2.1). This scheme has a formal fourth-order accuracy but 
considerably better resolution characteristics. For the pur- 
poses of constructing “spectral-like” schemes the following 
constraints were imposed: 

w’(wt) = WI 2 w’(w,) = w2, w'(w,)= w3. (3.1.5) 

The scheme shown in Fig. 1 corresponds to w1 = 2.2, 
w2 = 2.3, and w3 = 2.4. Its parameters are 

a = 0.5771439, /l= 0.0896406, a = 1.3025166, 

b=0.9935500, c=O.O3750245. 
(3.1.6) 

No attempt was made to optimize the choices for w,, 
Schemes obtained for other choices of w, , wq, wj 

r&?are the characteristics of scheme (3.1.6). 
It is possible to optimize the scheme within a particular 

I'.0 I'S i.0 is i.0 

Wavenumber 

FIG. 2. Plot of modified wavenumbers vs wavenumber for first 
derivative approximations: (a) fourth-order central differences; (b) 
standard Pad& scheme (jl =O=b=c, a= $; (c) sixth-order tridiagonal 
scheme (p = 0 = c, a = f); (d) fourth-order tridiagonal scheme (B = 0 = c, 
a = A); (e) fourth-order tridiagonal scheme (B = 0 = c, a = A); (f) fourth- 
order txidiagonal scheme (B = 0 = c, a = A); (g) fourth-order tridiagonal 
scheme (B = 0 = c, a = 4); (h) exact differentiation. 

TABLE IV 

Resolving Efficiency e,(E) of the First Derivative Schemes 
Shown in Fig. 2 

Scheme &=o.l E = 0.01 E = 0.001 

(a) 0.44 0.23 0.13 
(b) 0.59 0.35 0.20 
(cl 0.70 0.50 0.35 
(d) 0.74 0.59 0.52 
(e) 0.79 0.46 0.24 
(f) 0.86 0.39 0.21 
k) 0.61 0.35 0.20 

family of schemes (say defined by a given choice of the com- 
putational stencil on the 1.h.s. and r.h.s of (2.1)). This is 
illustrated in Fig. 2 for the tridiagonal schemes defined by 
(2.1.6). Estimates for the fraction of poorly resolved waves 
rl and the resolving efficiency e, are tabulated in Table IV. 
Evidently, the member with c1= & (fourth-order scheme 
(d)) provides a better resolution than the sixth-order 
scheme obtained with a = f (scheme (c)). We anticipate this 
to be a general feature of difference approximations. Other 
specific examples which illustrate this behaviour may *be 
found elsewhere in this paper. 

The dispersive error characteristics can be alternatively 
presented in terms of the error in the phase speed of waves 
of different wavenumber. It may be shown by considering 
the semi-discrete (exact time advancement) form of the 
advection equation 

af af z+;ix=o (3.1.7) 

that the phase speed for a wave of wavenumber w  is given 
by the finite difference scheme as (cP,)fd = w’(w)/w. The par- 
tial differential equation (3.1.7) has the phase speed one for 
all wavenumbers, thus (c~)~~- 1 is the measure of phase 
error.’ Figure 3 presents this information for a variety of 
finite difference schemes. Once again the improved phase 
error of the compact schemes is evident. Again, schemes 
with spectral-like resolution can be generated from (2.1) by 
not insisting on the highest possible formal accuracy. 

In multi-dimensional problems the phase errors of the 
differencing schemes also appear in the form of anisotropy 
[24]. To illustrate this effect consider the 1D advection 
equation 

af af z+w=o, (3.1.8) 

*For some of the schemes discussed in this paper the modified 
wavenumber W’(W) exceeds w over some intermediate range of wave- 
numbers. The phase speeds for this range of wavenumbers exceeds the 
exact phase speed and their phase error leads to the exact phase. 
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Wovenumber 

FIG. 3. Plot of phase speed vs wavenumber for first derivative 
approximations: (a) second-order central differences; (b) fourth-order 
central differences; (c) sixth-order central differences; (d) standard Padt 
scheme (fi = 0 = b = c, a = a); (e) sixth-order tridiagonal scheme (b = 0 = c, 
a = f); (f) eighth-order tridiagonal scheme (/?=O); (g) eight-order 
pentadiagonal scheme (c = 0); (h) tenth-order pentadiagonal scheme; 
(i) spectral-like pentadiagonal scheme (3.1.6); (j) exact differentiation. 

where 1 is an arbitrary direction on a two-dimensional grid. 
While (3.1.8) has a phase speed of unity for all waves (any 
wavenumber and any orientation) the finite difference 
schemes generate different phase speeds for waves of 
differing wavenumber and orientation. It may be shown 
that 

(CJfd (w, 0) = 
cos Bw’(w cos 8)nfsin @w’(w sin e), (3.1.9) 

where l9 is the angle between the propagation direction and 
the x axis. This anisotropic propagation is displayed in 
Fig. 4 for several finite difference schemes. The curves in this 
figure are polar plots of (c,)~~ at fixed wavenumber w. For 
each curve the radial distance at an angle 8 represents (c,b 
obtained for waves propagating in that direction. Curves 
are plotted for W/X = 8, $, . . . . $$, $. The outermost curves 
(circles) correspond to small w, i.e., well resolved waves. For 
these waves the propagation is isotropic and phase speed is 
very close to unity. Shorter waves (larger w), usually, have 
smaller phase speeds and the propagation is anisotropic 
(with least error along & 45” angles). The innermost curves 
correspond to the shortest waves resolved on the mesh. It 
may be seen that in compact schemes the anisotropic error 
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FIG. 4. Polar plot of phase speed anisotropy for first derivative 
approximations; the phase speed for wavenumber (magnitude) w/x= 
$, f,  . . . . $,# are plotted: (a) second-order central differences; (b) fourth- 
order central differences; (c) standard Pad.5 scheme (/I = 0 = b = c, a = f); 
(d) sixth-order tridiagonal scheme (B =0 = c, a = f); (e) spectral-like 
pentadiagonal scheme (3.1.6). 

is limited to a narrower range of short waves. For the spec- 
tral-like scheme the anisotropy is felt only by the shortest 
20% of the waves (for any 0). 

We remind the reader that the improved resolution 
properties of the schemes described here also lead to the 
possibility of increased aliasing errors [l, 2, 27, 31, 321 
when solving nonlinear problems. The relative importance 
of aliasing errors compared to pure differentiation errors 
depends on the nature of the physical problem (e.g., energy 
content of high wavenumbers compared to the most 
energetic scales), on the type of nonlinearity, (spatial) 
dimensionality of the problem, as well as on the specific 
numerical algorithms. If all scales are well resolved then the 
differentiation error may be expected to be more dominant. 
With marginal resolution of the short scales the aliasing 
errors may be more significant. Rather than attempting to 
analyze this complex issue in detail we remind the reader 
that since the differencing schemes presented here are spec- 
tral-like their aliasing behaviour may be expected to be akin 
to the spectral algorithms. When aliasing errors are 
dominant they may be removed either by following the 
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algorithms developed for the spectral methods (dealiasing 
by the use of FFTs, use of different forms of the conserva- 
tion equations) [32-351 for periodic problems or by use of 
spectral-like filtering techniques (described in Section 6.2) 
for non-periodic cases. An alternative to these is provided in 
[6] via the use of a high order upwind biased scheme. More 
research is, however, needed to establish the best way of 
aliasing control. 

The error analysis for the second and higher derivative 
approximations proceeds similarly to the analysis for the 
first derivative. The exact second derivative of (3.1.1) (with 
respect to s) generates a function with Fourier coefftcients 
f: = -w2fkk- The numerical approximations (2.2) corre- 
spond to (f;:),fd= -w”?~, where 

2a( 1 - cos(w)) + (b/2)( 1 - cos(2w)) 

w”(W) = 
+ (2c/9)( 1 - cos(3w)) > 

1 + 2u cos(w) + 28 cos(2w) 
(3.1.10) 

The difference between w”(w) and w* is a measure of error 
in the second derivative approximation. Plots of w”(w) vs w  
for different finite difference schemes are presented in Fig. 5. 

Wavenumber 

FIG. 5. Differencing error for second derivative vs wavenumber: 
(a) second-order central differences; (b) fourth-order central diflerences; 
(c) fourth-order central differences; (d) standard Pad& scheme 
(b=O=b=c, a= &); (e) sixth-order tridiagonal scheme (/?=O=c, 
CC= A); (f) eighth-order tridiagonal scheme (fi =O); (g) eighth-order 
pentadiagonal scheme (c = 0); (h) tenth-order pentadiagonal scheme; 
(i) spectral-like pentadiagonal scheme (3.1.12); (j) exact differentiation. 

The range of wavenumbers [27c/N, w,] which are well 
resolved may be defined by the error tolerance: 

[w”(w)- w*1 
w2 GE. (3.1.11) 

The fraction r2 = 1 - w,/rc represents the fraction of 
poorly resolved waves for the second derivative scheme. 
This fraction is also independent of the number of points N. 
The fraction e2 = w,/rc = 1 - r2 may be regarded as a 
measure of the resolving efficiency of a scheme. These 
estimates are tabulated in Table V for the schemes plotted 
on Fig. 5. The improvement of the compact schemes over 
the explicit central differences is evident. The largest dif- 
ferencing error which occurs near w  = rr depends only 
weakly on the formal accuracy of the scheme. Once again 
spectral-like schemes can be constructed via a different 
optimization. One such scheme is also displayed in this 
figure. This scheme has a fourth-order formal accuracy. Its 
coefficients are given by 

u = 0.50209266, /I = 0.05569169, a = 0.21564935, 

b = 1.7233220, c = 0.17659730. (3.1.12) 

For the purposes of constructing “spectral-like” schemes the 
following constraints were imposed on (2.1.4): 

wU(w = WI) = w:, wn(w = w*) = w;, w”(w = W3) = w$ 
(3.1.13) 

The scheme shown in Fig. 5 was obtained with w, = 2, 
w,=2.4, and w,=2.6. These values of (w,, w2, We) 
represent just one particular example. Schemes obtained for 
other choices of (wl, w2, w3) shared the same characteristics 
as the scheme (3.1.12). 

TABLE V 

Resolving Efficiency eZ(&) of the Second Derivative Schemes 
shown in Fig. 5 

Scheme &=o.l E = 0.01 E = 0.001 

(a) 
(b) 

ii; 
(e) 
(f) 
(Ed 
(h) 
(i) 

0.35 0.11 0.03 
0.59 0.3 1 0.17 
0.70 0.44 0.29 
0.68 0.39 0.22 
0.80 0.55 0.38 
0.86 0.64 0.48 
0.89 0.66 0.51 
0.91 0.73 0.59 
1.00 0.89 0.84 
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4. NON-PERIODIC BOUNDARIES 

Many applications involve computations in domains with 
non-periodic boundaries. This section introduces approxi- 
mations for the first and second derivatives for the near 
boundary nodes. These approximations are, of necessity, 
non-central or one-sided. In developing these boundary 
formulations emphasis has been placed on maintaining a 
discrete form of global conservation. Analysis of the local 
error inherent in the approximation is included. This is 
supplemented by numerical estimates of the global error. 
Typically the global error is dominated by the boundary 
error. 

4.1. Boundary Formulation for the First Derivative 

the schemes. In the following the same approach is used to 
compare different boundary approximations. It should be 
noted that this Fourier analysis of the boundary approxi- 
mations can be justified only at a heuristic level [29], while 
the application of the analysis to the interior differencing is 
rigorous (for problems with periodic boundary conditions). 

The modified wavenumber w’ (introduced in (3.1)) 
corresponding to (4.1.1) is in general complex. The real part 
of w’, indicated by w;, is associated with the dispersive error 
(when different from w) and the imaginary part, wi, is 
associated with the dissipative error. In Figs. 6-7 the real 
and imaginary parts of w’ are plotted for various boundary 
approximations. It may be noted that increasing the formal 
accuracy of the explicit approximations (shown by curves 
a, b, and c) reduces the dissipative error in the low-inter- 

The first derivative at the boundary i = 1 may be obtained mediate wavenumber range, but at the same time degrades 

from a relation of the form3 the dispersive error for the intermediate wavenumbers. The 
second-order compact scheme (4.1.2) (shown by curve d) 

f;+~f;=~(af~+bf2+cf3+df~), 
with IX= 1 and d = 0 discussed by Adam [ 173 is purely non- 

(4.1.1) dissipative (i.e., w( =O), its formal truncation error (in 
evaluating f’,) is f the truncation error of the explicit _ 

coupled to the relations (2.1) written for the interior nodes. 
second-order form, but has a singular w: at w  = 71. The third- 

Requiring (4.1.1) to be at least second-order accurate 
order compact scheme (4.1.3) with c1=2 (giving d=O) 

constrains the coefficients to 

3+cr+2d 
a= - 

2 
, b=2+3d, c=- ’ - “2’ 6d. (4.1.2) 

If higher order formal accuracy is desired schemes of third 
and fourth order may be derived. These are given by 

11+2cr 6-a 
a= --) b=2’ 6 

2-a 
(4.1‘3) 

+?, d=-u..m 
6 ’ 

(third order) 

a=3, a= -5, b=$, 

c= 3, d= - $. (fourth order) 
(4.1.4) 

The leading order truncation error (on the r.h.s. of 
(4.1.1)) for these boundary approximations are given 

* by ((2-a-6d)/3!)h f 1” for second-order schemes, by 
(2(cr-3)/4!)h3f(p)for third-orderschemesand by(6/5!)h4f’,5’ 
for the fourth-order scheme. It may be noted that for the 
even order schemes the leading order truncation error is 
of dispersive type, while for the third-order schemes it is 
dissipative. Wovenumber 

As discussed in Section 3.1 the Fourier analysis of the dif- FIG. 6. Real part of modified wavenumber for first derivative 
ferencing schemes reveals the resolution characteristics of boundary schemes: (a) first-order explicit scheme; (b) second-order explicit 

scheme; (c) third-order explicit scheme; (d) second-order compact scheme 
(a = 1, d= 0); (e) third-order compact scheme (a = 2, d = 0); (f) Fourth- 

3 With this choice the boundary schemes can be used with a tridiagonal order compact scheme (a = 3); (g) third-order compact scheme (a = 5); 
interior scheme without increasing the bandwidth. (h) second-order compact scheme (a = 4, d= - f); (i) exact differentiation. 
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FIG. 7. Imaginary part of modified wavenumber for first derivative 
boundary schemes: (a) first-order explicit scheme; (b) second-order explicit 
scheme; (c) third-order explicit scheme; (d) second-order compact scheme 
(a = 1, d = 0); (e) third-order compact scheme (a = 2, d = 0); (f) fourth- 
order compact scheme (a = 3); (g) third-order compact scheme (a = 5); 
(h) second-order compact scheme (a = 4, d = - i); (i) exact differentiation. 

shown by curve e (also discussed in [17]), has quite small 
dispersive errors. Its formal truncation error (in evaluating 
f;) is $ of the third-order explicit form. Its dissipative error 
is also confined to high wavenumbers. Other members of 
(4.1.3) shown by curves f and g reduce the dissipative error 
but also degrade the dispersive error. Also shown on the 
plots is a second-order compact scheme with virtually no 
dissipative error. This scheme is obtained by adding the 
constraint wl(w = X) = 0 to (4.1.2). This constraint requires 
that d = - 4, thus reducing (4.1.2) to a one-parameter (a) 
family. The member with a = 4 is plotted (shown as curve 
h). It may be noted again that the desired characteristics of 
a finite difference scheme are better achieved by directly 
optimizing the scheme (in Fourier space) rather than by 
seeking the scheme with the lowest possible truncation 
error. 

It may also be noted that for many of the compact 
boundary schemes described here w; has a sign opposite 
to that obtained with the explicit one-sided boundary 
formulas. For the second-order schemes defined by (4.1.2) it 
may be shown that w,!(w = n) = 4(2d + 1 )/( 1 - a). Thus for 
the (first), second- and third-order explicit (a = 0) boundary 
schemes the values of w:(rc) are (2), 4, and 8, while for the 

compact schemes labelled (e) and (f ) the values are - 4 and 
- $, respectively. 

It is erroneous to conclude from this behavior of w;(n) 
that the compact boundary schemes (described above) may 
lead to unstable numerical schemes. The stability of the 
complete numerical scheme (including the boundary 
approximation) must be determined by the appropriate 
eigenvalue analysis. In the present instance this eigenvalue 
analysis requires a numerical solution. It, however, 
establishes that the boundary schemes presented in this 
section do in fact lead to stable numerical schemes. Details 
of such an eigenvalue analysis are deferred to Section 4.5. 
Numerical tests of the global performance of the complete 
difference scheme is presented in Section 4.4. 

4.2. Conservative Formulation for the First Derivative 

In this section an approach is presented for constructing 
difference approximations (for the near boundary nodes) 
which satisfy a discrete form of global conservation 
constraint. Such a treatment is particularly useful in the 
discretization of conservation laws. To motivate the discus- 
sion consider a conservation law of the form 

af aF 
at+-&=% (4.2.1) 

over the domain [a, 61 and F= F(f ), with some initial and 
boundary conditions. Integrating (4.2.1) over the domain 
yields 

$~-';*f(~~ t) dx= FI(,=.,,=, j-FIc,=b,r=,j, (4.2.2) 
x 0 

showing that the total f in the domain (i.e., integral off) 
changes (in time) only due to the flux off at the boundary. 
This is a global conservation statement. We seek a formula- 
tion for the near boundary nodes such that the global 
conservation law (4.2.2) has a discrete analog for the 
difference approximations. As a result of this constraint the 
difference approximations imply the appropriate quadrature 
weights for discretizing the integral on the 1.h.s. of (4.2.2). 

We consider the system of linear equations (2.1), one 
equation for each interior node but not necessarily with the 
same coefficients, along with the boundary equation (4.1.1) 
(and the analogous equation at the other boundary). 
Formally this system may be written as 

Aif=;Bl, (4.2.3) 

where A, B are N x N sparse matrices and ^r, ̂r’ are N vectors 
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representing the values of the function and its derivative at 
the nodes, respectively. In order to satisfy the global conser- 
vation constraint it is sufhcient to require that the columns 
2 through N- 1 of the matrix B sum exactly to zero. 
This ensures that only the boundary nodes contribute to 
the boundary fluxes. Given a particular interior scheme 
(say with a particular value of CI along with any of 
(2.1.6)-(2.1.13)) we show that near boundary approxima- 
tions of the form (2.1.6)-(2.1.13) and (4.1.1) may be chosen 
to satisfy global conservation. This derivation is simpler 
when the interior scheme has c = 0 and is presented first. 
The procedure is easily adapted to interior schemes with 
c # 0. This is summarized subsequently. 

For the interior schemes with c =O it is sufficient to 
consider the entries in the top left corner of B, viz., 

B 

w,q w,r H',S 0 0 0 ooo...o 

-w2q’ 0 &q’ 0 0 0 0 000 . ..o 
-w3r” -wlq” 0 w39” wjrm 0 0 0 0 0 ... 0 

0 -r’ -4 0 lj i 0 000 0 “. 

0 0 -i -cj 0 ij i 000 0 ... 

0 0 0 -r’ -tj 0 ij i 00 0 ... 

0 0 0 0 -i -4 0 4 f 0 0 

0 0 0 0 0 -i -(j 0 f 0 (j 

: : :::.,: 

(4.2.4) 

In writing the entries of B we have explicitly allowed for 
the weights w  i, w2, and w3. The choice of the schemes at the 
near boundary nodes has been restricted. In particular at 
node 2, neighboring the boundary node, the standard Pade 
form is used, thus q’ = i. The coefficients p, q, r, s are given 
by (4.1.1) and other coefficients satisfy the constraints 
defined by (2.1.6)-(2.1.10) as appropriate. It may be seen 
that at least 10 nodes (four interior and three near boundary 
nodes from each boundary) are needed for the fluxes to 
telescope to the boundary fluxes. By imposing the specific 
global conservation restriction it follows that 

q”(CY”) 4 4(4+4-s -=-- - 
,“(a”) q+s i(i) q+s’ 

(4.2.5) 

where oi and LX” are the specific values of the coefficient a of 
the schemes used in the interior and at node 3, respectively. 
Once specific choices about the family of schemes to be used 
in the interior and at node 3 are made, all of the coefficients 
appearing in (4.2.4) are determined. In the following we 
assume that the schemes used at node 3 and the interior 
belong to the same family. 

The global conservation requirements lead to 

(40&- l)q+7(4$- 1)s 
“‘=16(6+2)q+8(1-4d)sl 

2oi+l 
w’=2(q+ 

(4.2.6) 

(4.2.7) 

w* = 
(86 + 7)q - Wt, 1 fb + (86 + 7)~, (4.2.8) 

4(&+2)q+2(1-4oi)s 
wj = 

9(q+s) ’ 
(4.2.9) 

if the scheme (2.1.6) is used in the interior. 
The interior scheme (2.1.11) yields 

’ 
,, _ (42096 - 289)s + (26796 - 799)s 

- (32496 +2271)q+ (561- 1881oi)s’ 
(4.2.10) 

(4.2.11) 

WI= 
(330i+47)q-30(30i+l)r+(33&+47)s 

wq + s) 
2 (4.2.12) 

w3 = 
(1083oi-757)q+(187-6276)s 

108O(q + s) 
(4.2.13) 

Once the weights wi, w2, w3, and u” are determined the 
(implied) nodal weights in computing the integral on the 
1.h.s. of (4.2.2) become fixed. If a non-uniform mesh defined 
by a mathematical mapping x=x(s) (not changing with 
time) between a uniformly spaced mesh s and the physical 
coordinate x is used, rewriting (4.2.2) as 

d x=bdxOfb(s), t)ds=FI(,=.,,=,)-FI(,=b,t=l), dt x=cI i ds 

(4.2.14) 

shows that the near boundary formulation discussed above 
preserves global conservation (with the factor (dx/ds)l x = x, 
included with the nodal weights for calculating the 1.h.s of 
(4.2.14)). Such a definition for discretizing the integral 
naturally assigns more weight to larger computational cells. 

Now we summarize the near boundary formulation for 
the interior schemes with c # 0. It becomes necessary to 
consider a larger number of entries of B, viz. 
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c 
WlP 

- w*q’ 

- w,r” 

- W‘Q” 

0 
0 

0 

0 

0 
0 

w1q 
0 

- w3qu 

- wqr”’ 

-s  ̂
0 

0 

0 

0 
0 

wlr 
w24' 

0 
- wq q”’ 

-r^ 
-i 

0 

0 

0 
0 

WlS 

0 

w3q” 

0 

-4 

-F 

-s  ̂

0 
0 

0 

0 

0 
wxr” 

wq q”’ 

0 

-4 
-r^ 

-s  ̂
0 

0 

0 0 0 0 0 0 0 0 . ..’ 

0 0 0 0 0 0 0 0 ... 
0 0 0 0 0 0 0 0 ... 

wqr”’ wqs”’ 0 0 0 0 0 0 .‘. 

4 i s  ̂ 0 0 0 0 0 .‘. 
0 lj F s  ̂ 0 0 0 0 ... . 

-cj 0 4 i f 0 0 0 ... 
-i -4 0 cj F i 0 0 .‘. 

-s  ̂ -r^ -4 0 ij i s  ̂ 0 .‘. 
0 -9 -i -4 0 4 f s  ̂ . . . 

. . . . . . . . . . . . . . . 9 
(4.2.15) 

A minimum of 14 nodes (six interior and four at each 
boundary) are needed to allow for the telescoping of the 
fluxes. The global conservation constraint requires that 

(4.2.16) 

where oi and ~1”’ are the specific values of the coefficient c1 of 
the schemes used in the interior and at node 4, respectively. 
The weights may be obtained from 

Q+2i+3s  ̂ s^ 
w, = 

q+s ’ w4=7l, s 
(4.2.17) 

w2=;T^+G(B+zi+3S)~+~, 
q+s 

and 

(4.2.18) 

w  q”=(4-s)(B+s)+(q-2s)s  ̂
3 

q+s 

The weights wi, w2, w4 depend only on the interior scheme 
and the scheme at node 1, while the weight w3 depends on 
the choice made for the scheme at node 3. 

4.3. Boundary Formulation for the Second Derivative 

The relations appropriate for near boundary nodes 
between the nodal values of a function and its second 
derivative may be derived by Taylor series expansions. The 
compact scheme analogous to (4.1.1) is given by 

f;+llf;=j$(13f~-27fif15f,-f,). (4.3.1) 

This relation is formally third-order accurate (truncation 
error on the r.h.s. is h3 h f”‘). The explicit expressions (at 
the boundary node) with second- and third-order formal 
accuracy are given by 

f;=;(2fi-5f,+4f3-f4)Y 

(second order) (4.3.2) 

(third order). (4.3.3) 

Their truncation errors are fi h’f (4) and 2 h3f (‘). The trun- 
cation error of the explicit third-order form is 10 times 
larger than that of the third-order compact form. 

Boundary schemes for other neighboring nodes may be 
chosen from (2.2). It is possible to extend the global conser- 
vation considerations (Section 4.2) to the evaluation of the 
second derivatives. For these purposes it becomes necessary 
to introduce more general compact boundary schemes 

f:+zf$=$(afi+bfz+cf3+df4+efs). (4.3.4) 

Requiring second-order accuracy restricts the coefficients to 

a=a+2+e, b= -(2cr+5+4e), 
(4.3.5) 

c=u+4+6e, d= -(1+4e). 

The formal truncation error is & (c( + 12e - 11) h’f ‘4). By 
requiring third-order formal accuracy the coefficients are 
reduced to 

llu+35 5u+26 
a=-v b= -3’ 

u+ 19 
12 c=T9 

(4.3.6) 
u-14 11 -u 

d=3, 
e=12. 

The formal truncation error is reduced to ((u - 10)/12) h3f (5). 
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4.4. Numerical Tests (Including Boundary Scheme ) 

For problems with periodic boundary conditions the 
Fourier analysis presented in Section 3.1 may be used to 
assess the global errors. This, however, is not possible with 
other forms of boundary conditions. The global errors may 
still be assessed by direct numerical tests. Such tests can be 
performed at various levels. The simplest of these is to com- 
pare the numerically calculated derivative with the known 
derivative of various test functions. In order to test the 
schemes on functions which contain a range of scales, such 
functions were numerically synthesized by taking a sum of 
different Fourier modes (representable on the mesh). The 
phases of the Fourier modes were chosen randomly 
(uniformly distributed over [0,27c]) and their amplitudes 
were chosen to synthesize a prescribed energy spectrum. For 
the examples presented here the interval [0, l] was 
descretized into 128 intervals (i.e., 129 points when counting 
both end points). On this mesh Fourier modes [0,63] (for 
the wavenumber k in (3.1.1)) may be represented. The mode 
k = 64 (or the 26 wave) is not included. In the examples to 
be discussed Fourier modes with k in the range [0, k,] were 
included. The amplitude of the Fourier modes were equal 
and phases were random (white noise). For the numerical 
tests the conservative formulation of the first derivative 
scheme with CI = i, B = 0 = c (2.1.7) were used. At the end 
points the third-order compact boundary scheme with d = 0 
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was used. This overall scheme was chosen as it has been 
used in several practical applications [36-371. In Figs. 8a-b 
numerical tests of this overall scheme are shown for four 
classes of test functions (with k, varying from 9,21, 31, and 
63). One randomly chosen realization of the test functions is 
displayed for each class in Fig. 8a. On Fig. 8b the numeri- 
cally computed first derivatives (shown with a dashed line) 
and the exact derivative of the test functions (shown with a 
solid line) are plotted. It may be noted that dominant error 
in the derivatives always occurs at the boundary. Only for 
cases with k, of 31 and 63 this localized boundary error is 
visible on the plots, and even in these cases the interior is 
virtually error-free. 

4.5. Eigenvalue Analysis of the Complete Differencing 
Scheme 

This section presents an eigenvalue analysis of the com- 
plete first derivative scheme. Such an analysis is necessary to 
establish that the overall differencing scheme generates a 
numerically stable algorithm. We begin by considering 

af af Tg+c-&=o, (4.51) 

over a domain [0, l] with a prescribed boundary condition 
f(x = 0, t) = 0. For the present purposes there is no loss of 
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FIG. 8. Numerical tests on the derivative scheme; the domain is divided into 128 intervals. The test functions contain Fourier modes up to wave- 
number k, with equal amplitude and random phases. One realization is plotted for each case with (1) k, = 9; (2) k, = 21; (3) k, = 31; (4) k, = 63; 
on (a). The corresponding exact derivative (solid line) and the calculated derivative (dashed line) are shown on (b). 
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FIG. 9. Eigenvalue spectrum w’ for the complete derivative scheme; boundary formulation is non-conservative and (4.1.3) is used with a = 2 (d= 0). 
N = 49. (a) Interior scheme (2.1.6) with a = a, p = b = c = 0 (standard Pad&); (b) interior scheme (2.1.6) with a = f, B = c = 0. 

generality in assuming this simple form for the boundary values.4 Since (4.5.3) is a system of ODE’s in time with 
condition. The domain is descretized into N equal intervals constant coefficients we look for normal modes ^f = exp(ot)l 
(i.e., the step size in x, Ax = l/N). The derivative af/dx in reducing (4.5.3) to an eigenvalue problem 
(4.5.1) is evaluated by the differencing schemes described 
earlier in the paper. This linear operation may be formally WAX 
written as --A?=BT, (4.5.4) 

c 

(4.5.2) 

where A, B are N x N (sparse) matrices and 1, ?I are N vec- 
tors representing the values of the function and its derivative 
at the nodes xi= i/N, respectively. Pre-multiplying the 
spatially descritized form of (4.5.1) by A and substituting 
(4.5.2) yields 

(4.5.3) 

where af/dt is a N vector of the time derivative of the nodal 

involving the eigenvalue o’ = o Ax/c. For the interior and 
boundary schemes of interest this matrix eigenvalue 
problem requires a numerical solution (performed with the 
IMSL routine EIGZF in double precision arithmetic). The 
eigenvalue o’ or o is, in general, complex valued and 
depends on the size N of the matrices A, B, the interior 
differencing scheme, and the boundary schemes. For the 
numerical stability of the overall differencing scheme it is 
required that all the eigenvalues of (4.5.4) lie in the left half 

4 In the numerical implementation the first derivative scheme also 
generates an approximation to (~Tflax)l,=,, which is discarded in writing 
(4.5.3) sincef,=, is prescribed by the boundary condition. 
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of the complex plane. A technical discussion of stability may 
be found in Strikwerda [38]. 

It should be noted that the present analysis (i.e., method 
of lines) is based on the semi-discrete form (no time differen- 
tiation errors) of (4.51). The effect of particular time 
descretization may be analyzed in an analogous manner. 

Eigenvalues are calculated for the tridiagonal differencing 
scheme family (2.1.6) when combined with either globally 
conservative or non-conservative boundary forms (in the 
sense of (4.2)). Boundary forms given by (4.1.1) as well as 
explicit boundary forms are considered. In all cases 
considered the eigenvalues of (4.5.4) satisfy the stability 
constraint. In Fig. 9 two examples of the eigenvalue 
spectrum are shown. In all cases (with a single exception to 
be noted below) the real part of the eigenvalue o’ with the 
least negative real part approaches the imaginary axis like 
Np3 as N is increased. The asymptotic behaviour was 
inferred from the numerically obtained eigenvalues for N up 
to 200. Note that the analysis of Warming and Beam [39] 
which uses a second-order interior scheme also predicts the 
same asymptotic behaviour. The only exception to the N ~ 3 
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behaviour is found for standard Padt scheme (a = a in 
(2.1.6)) when combined with the second-order compact 
boundary scheme a = 4, d= - 4 (giving W;(X) = 0) which 
has a zero eigenvalue (generalized GKS eigenvalue [39]). 
The same boundary scheme when combined with other 
members of the family (2.1.6) does not possess this zero 
eigenvalue. 

The behaviour of the eigenvalue w’ with most negative 
real part depends on the interior scheme. For the standard 
Pad& scheme this eigenvalue migrates towards the origin 
but at a rate slower than N-’ (with any boundary scheme). 
The rate of approach is consistent with the log N/N 
approach predicted by [39] for second-order interior 
schemes. For other members of the family (2.1.6) this 
eigenvalue (0’) remains fixed as N is increased (with any 
boundary scheme). In this case there are additional complex 
eigenvalues (adjacent to the one with the most negative real 
part) which also remain fixed. In all cases the eigenvalue 
spectrum falls into the three classes of eigenvalues defined 
by Warming and Beam [39] with no unstable eigenvalues. 

In Fig. 10 the influence of changing the boundary scheme 
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FIG. 10. Effect of boundary formulation on the eigenvalue spectrum w’ for the complete derivative scheme; boundary formulation is nonsonser- 
vative and interior scheme (2.1.6) with a = a, /I = b = c = 0 is used. N = 49. (a) First-order explicit scheme at the boundary; (b) second-order explicit 
scheme at the boundary; (c) second-order compact scheme at the boundary (a = 1, d= 0); (d) third-order compact scheme at the boundary (a = 2, d = 0). 
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with a fixed interior scheme (standard Padt) on the eigen- 
value spectrum is shown. It may be noted that, with a fixed 
number of nodes N, as the local accuracy of the boundary 
scheme is increased the eigenvalue spectrum shifts towards 
more negative eigenvalues. This unexpected trend serves as 
a caution against associating the eigenvalue spectrum with 
the overall performance (accuracy) of the differencing 
scheme. 

4.6. Stability Limits for Explicit Schemes 

This section summarizes the time step limits which need 
to be maintained for a numerically stable time advance- 
ment. One may anticipate (by analogy with the spectral 
methods) that the differentiation schemes presented here 
would require smaller time steps than are possible with the 
standard second-order central difference schemes. In order 
to keep the analysis simple the stability bounds are 
presented only for model problems with periodic boundary 
conditions. Furthermore, the analysis is restricted to the 
cases of pure advection and pure diffusion operators. For 
the more general non-periodic case the calculation of 
precise stability bounds requires a numerical calculation of 
the spectral radius of the associated matrices (as presented 
in Section 4.5). 

First we consider the pure advection case (on a periodic 
domain): 

af af z+cz=o. (4.6.1) 

The stability limit in this case is given by (e.g., [30]) 

(4.6.2) 

where Ax and At are the step sizes in x and t, respectively, 
[ - ia,, iai] is the segment of the imaginary axis in the stable 
region for the time advancement scheme, and wk is the 
maximum value of the modified wavenumber for the first 
derivative operator (i.e., maximum ordinate achieved on 
Fig. 1 for the first derivative scheme). For the schemes dis- 
played on Fig. 1 (labelled (a)-(j)) the values of wk are 1.0, 
1.372, 1.586, 1.732 (or ,,&), 1.989, 2.133, 2.205, 2.324, 3.142 
(or rr), respectively. We remind the reader that the values of 
0; for the second-, third-, and fourth-order Runge-Kutta 
schemes are 0, fi, and 2.85, respectively. 

Next we consider the pure diffusion case (on a periodic 
domain): 

af w 
z=vax" (4.6.3) 

The stability limit in this case is given by (e.g., [30]) 

vAt CT, 
(Ax)“z’ 

(4.6.4) 

where Ax and At are the step sizes in x and t, respectively, 
[ -or, 0] is the segment of the real axis in the stable region 
for the time advancement scheme, and w; is the maximum 
value of w” for the second derivative operator (i.e., maxi- 
mum ordinate achieved on Fig. 5 for the second derivative 
scheme). For the schemes displayed on Fig. 5 (labelled 
(a)-(j)) the values of wk are 4.0, 5.333, 6.044, 6.0, 6.857, 
7.324, 7.471, 7.838, 9.108, 9.860 (or rc2), respectively. 
Typically w” achieves its maximum value at w  = 7t. In such 
a case 

w;= 4(a + c/9) 
1-2x+28’ 

(4.6.5) 

We remind the reader that the values of or for the second-, 
third-, and fourth-order Runge-Kutta schemes are 2, 2.5, 
and 2.9, respectively. It may be noted that, as expected, the 
spectral schemes require the most severe time stepping 
restriction when explicit time advancement is used. 

5. APPLICATIONS 

This section illustrates application of the differencing 
schemes developed in this paper to some problems from 
fluid mechanics. Some general remarks are made first about 
these applications. 

The differencing schemes described here provide an 
improved resolution of the short length scales. Further- 
more, the schemes have a pure central difference form 
(except near the boundaries); i.e., they have no built-in 
artificial dissipation. It is, therefore, necessary that the 
applications to which they are (directly) applied be such 
that there is a (physically) well defined cutoff for the shortest 
scales. In other words the shortest scales should be deter- 
mined physically and not numerically. This rules out (direct) 
applications to problems with discontinuities (in variables 
and their derivatives). This is not to say that the present 
method is inapplicable to inviscid problems. It is, however, 
restricted to problems with smooth solutions. They may 
have a wide range of scales but the solution is required to be 
smooth. In the following an example is presented for 
resolving the structure of a shock wave and we note that the 
smallest length scale is determined by viscosity and heat 
conduction. In treating the viscous or diffusion terms the 
second derivative approximation (presented in Section 2.1) 
should be used. This non-conservative form of the viscous 
terms is chosen over the conservative form with two con- 
secutive applications of the first derivative operator. This 
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provides a finite damping of the grid to grid oscillations (or 
26 waves) which remain undamped otherwise. The viscous 
and diffusion terms involving fluid property variations are 
expanded out using chain rule and then differenced in the 
manner just indicated. The time step restrictions for stable 
time advancement with Runge-Kutta methods were 
summarized in Section 4.6. 

The spectral-like nature of the differencing schemes also 
makes it necessary to use accurate boundary conditions. 
Boundary conditions which may seem suitable with low 
order schemes (and with built-in dissipation) may not per- 
form well with the schemes described here. Adaptation of 
the “non-reflecting” boundary conditions described by 
Thompson [40] performs well. These were used in [ 36-371 
in applications to compressible mixing layers. A full discus- 
sion of the different boundary conditions, comparisons with 
other methods commonly used with low order schemes, and 
application to reacting and non-reacting flows are presented 
in [41]. Applications to 3D incompressible mixing layers 
and wakes (along with spectral methods in two directions) 
is described by Buell [42,43]. 

An example of compressible mixing layer evolution is 
presented in Fig. 11. The case displayed is a mixing layer 
between two supersonic streams of Mach number 2.0 and 
1.2. The static pressure and temperature of the two streams 
are equal, generating a convective Mach number [44] of 
0.4. The computation is conducted with 601 by 161 grid 
points in the streamwise (uniform mesh) and cross-stream 
direction (with clustering of points in the shearing region). 

Non-reflecting boundary conditions are imposed on the 
top, bottom, and outflow boundaries. The inflow is 
prescribed (hyperbolic tangent velocity profile, Crocco- 
Buseman relation for temperature) and contains 4 % (peak 
value relative to the velocity difference) fluctuations in the 
transverse velocity. The fluctuations are confined to the 
shearing region by means of a Gaussian shape function. 
The fluctuation has the fundamental and its first two sub- 
harmonic components. Additional details may be found in 
[36]. Figure 1 la shows the evolution of the vorticity field. 
The rollup and pairing of vortices can be clearly seen. In 
Fig. 11 b the evolution of a passive scalar field is shown 
which illustrates the formation of braid regions in between 
the vortices. The scalar gradients intensify in the braid 
region and their peak value is determined by an equilibrium 
between the straining and diffusion. The spectral-like 
property of the present schemes allows these sharpened 
gradients to be resolved with 7-8 grid points across the 
braid region. 

Another example where the viscous (diffusion) process 
determines the small scale cutoff is presented in Figs. 12-13. 
The compressible Navier-Stokes equations are solved to 
resolve the structure of a shock wave. For the example 
presented the supersonic flow upstream of the shock has a 
Mach number of 1.5 and y = s. The calculation uses a 
uniform mesh with seven to eight grid points across the 
shock wave and which is stationary in the calculation frame 
of reference. The profiles of pressure, temperature, density, 
velocity, and Mach number vary smoothly from the 
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FIG. 11. Spatial evolution of a compressible mixing layer: (a) vorticity field; (b) scalar field. 
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FIG. 12. Example of shock wave structure; M, = 1.5. Profiles of 
pressure, density, temperature, and velocity. 

upstream to downstream values. The profiles of dilatation, 
entropy, and total pressure through the shock wave are a 
more sensitive test of the resolution. The non-monotone 
behaviour of these is expected on physical grounds. For 
weak shocks (small pressure jump across the shock) the 
structure of the shock wave is analytically known and agrees 
perfectly with the computations. It may be noted that the 
Reynolds number based on the shock thickness R is about 
six to seven (R= AUGJv,, where 6, = J? 2 ($x)/r,,,) dx is 
the shock thickness based on the normal viscous stress T, ?m 
is the maximum value of the normal viscous stress, and v* 
is the kinematic viscosity evaluated at the sonic reference 
temperature T,). For weak shocks asymptotic theory [45] 
gives a falue 32y/3(y + 1) for this Reynolds number which 
for a diatomic gas is 6.222. Other definitions of shock thick- 
ness (e.g., based on the maximum dilatation) also give a 

dl 
0.0 I.0 2.0 3.0 4.0 5.0 6.0 7.0 6.0 9.0 

FIG. 13. Example of shock wave structure; MI = 1.5. Profiles of Mach 
number, dilatation, total pressure, and entropy. 

Reynolds number in the range 5.8-6.4 over a Mach number 
range 1.05-2.0. As may be expected, the thickness measures 
based on maximum gradients in velocity, density, tem- 
perature, pressure or the measures based on viscous stresses 
or heat flux underestimate (by a factor of 3 or so) the 
“visual” extent of the shock wave structure due to the 
curvature of the profiles. 

It should be stressed that the resolution with which 
localized regions of sharp gradients are treated depends not 
on the order of the scheme but on the resolution charac- 
teristics (w’ vs w) for the intermediate wavenumbers. We 
further note that the schemes described here are not 
monotone (or TVD). If they are used to differentiate a step 
function the computed derivative has grid to grid (26) 
oscillation (even with an arbitrarily line mesh); however, 
these oscillations are exponentially damped away from the 
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location of the step change. This may be contrasted with 
spectral differentiation which has the well-known Gibbs 
phenomena and the associated oscillations (in derivative) 
are damped only algebraically like x-r. 

Physical discussion of the results obtained by using the 
schemes discussed here for non-reacting and reacting 
compressible turbulent flows will be described in future 
publications. 

6. SUMMARY 

Compact finite difference schemes for the evaluation of 
derivatives, interpolation, and filtering have been presented 
and analyzed. Comparisons were made throughout with 
other well-known schemes. The emphasis has been on 
improving the representation of a range of wavenumbers 
rather than accurate resolution of a single wave. Fourier 
analysis provides the tool for this kind of optimization and 
leads to a definition of resolving efficiency. The family of 
schemes presented reduce to the Pade schemes if the 
constraint of maximal formal accuracy with a specified 
computational stencil is imposed. In this sense the schemes 
presented may be considered modified or generalized 
Padt schemes. Their improved resolution (spectral-like 
behaviour) has been demonstrated in a variety of applica- 
tions. The present approach may fruitfully be extended to 
treat more general operators. 

APPENDIX A: HIGHER DERIVATIVES 

Compact approximations for third and higher derivatives 
can be constructed analogous to the discussion in Sec- 
tions 2.1 and 2.2. In the following we restrict our discussion 
to tridiagonal approximations with at least fourth-order 
formal accuracy. Once again the starting point is a relation 
of the form: 

af :” ] + f:” + cq-:+ 1 

=bfi+r3&+,+3f,-,-f,-, 
8h3 

+afi+2-2f,+l+2tf-l-fi-2 
2h3 3 (A.1) 

where f ,“’ represents the finite difference approximation to 
the third derivative at node i. Each term on the r.h.s. is 
formally second-order accurate. The relations between the 
coefficients a, b and cx are derived by matching the Taylor 
series coefficients of various orders. 

The constraints of fourth-order formal accuracy lead to a 
one-parameter family of schemes defined by 

a=2, b=2u- 1. (A-2) 

The truncation error of this approximation (on the r.h.s. of 
(A.l)) is (42/7!)(16a-7) h4fc7’. 

It may be noted that as a + 0 the explicit fourth-order 
accurate form for the third derivative is recovered. For ct = 4 
the coefficient b vanishes, generating the most compact 
tridiagonal scheme 

c(= 4, a=2, b=O (A.3) 

for the third derivative. This scheme is also given by Collatz 
[22, p. 5393. For LY = & a sixth-order tridiagonal scheme is 
obtained. This scheme with coefftcients 

7 “=a, a=& b=-9 (A-4) 

is the scheme with the highest formal accuracy amongst the 
schemes (A.1 ). Its truncation error is (36/9 !) h6ft9’. 

We now summarize the resolution characteristics of 
the third derivative schemes. By taking the exact third 
derivative of (3.1.1) (with respect to s) a function with 
Fourier coefficients p;, = iw3fk. The numerical approxima- 
tions (A.1 ) correspond to (&‘),, = -iw”‘fk, where 

w”‘(W) = 
cx(2 sin(w) - sin(2w)) + (b/4)(3 sin(w) - sin(3w)) 

1 + 2a cos(w) 

(A.5) 
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FIG. 14. Differencing error for third derivative vs wavenumber: 
(a) second-order central differences; (b) fourth-order central differences; 
(c) fourth-order tridiagonal scheme; (d) sixth-order tridiagonal scheme; 
(e) exact differentiation. 



36 SANJIVA K. LELE 

Plots of w”‘(w) vs. w  for different finite difference schemes 
are presented in Fig. 14. The most compact tridiagonal 
scheme improves over the explicit schemes but becomes 
singular as w  -+ rr. This singular nature is absent in the sixth- 
order tridiagonal scheme and the differencing errors are 
further reduced. 

For the fourth derivatives the starting point is a relation 
of the form 

=bfi+s-%+, + lffi-%, +L3 
6h4 

+afi+z-4~+,+6f,-4f,-,+~-, (A6) 

h4 3 . 

where f I”’ represents the finite difference approximation to 
the fourth derivative at node i. Once again each term on the 
r.h.s. is formally second-order accurate. 

The constraints of fourth-order formal accuracy lead to a 
one-parameter family of schemes defined by 

a=2(1 -cc), b=4cE- 1. (A.7) 

The truncation error of this approximation (on the r.h.s. of 
(A.6)) is ((7 - 26a)/240) h4f’*‘. 

As ~1-+ 0 the explicit fourth-order accurate form for the 
fourth derivative is recovered. For tl = a the coefficient b 
vanishes and the most compact tridiagonal scheme for the 
fourth derivative 

u=+, a=;, b=O, (A.81 

is obtained. This scheme was given by Collatz [22, p. 5393. 
For u = & a sixth-order tridiagonal scheme is obtained. This 
scheme with coefficients 

7 
u=26, a=+& b=& (A.9) 

is the scheme with the highest formal accuracy amongst the 
schemes (A.6). Its truncation error is & h6f(10). 

Finally, the exact fourth derivative of (3.1.1) (with respect 
to s) is a function with Fourier coefficients.I‘r = ~“1~. The 
numerical approximations (A.6) correspond to (fr)fd = 
w”“fk, where 

/2a(cos(2w) - 4 cos( w) + 3) \ 

w”“(W) = \ + (b/3)(cos( 3w) - 9 cos( w) + 8)) 

1 + 2u cos(w) 
. (A.lO) 
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Plots of w”“(w) vs. w  for different finite difference schemes 
are presented in Fig. 15, showing the improvement of the 
compact schemes over explicit central differences. 

Wovenumber 

FIG. 15. Differencing error for fourth derivative vs wavenumber: 
(a) second-order central differences; (b) fourth-order central differences; 
(c) fourth-order tridiagonal scheme; (d) sixth-order tridiagonal scheme; 
(e) exact differentiation. 

APPENDIX B: COMPACT SCHEMES ON A 
CELL-CENTERED MESH 

This appendix presents the compact finite difference 
schemes for the first and second derivatives on a cell-cen- 
tered mesh. In the formulation presented below the nodes 
on which the derivatives are evaluated are staggered by a 
half-cell (h/2) from the nodes on which the function values 
are prescribed. Such grid configurations arise naturally from 
a finite-volume discretization of conservation equations. As 
shown below the cell-centered schemes have better resolu- 
tion characteristics for wavenumbers (w) near n than the 
schemes discussed in Section 2. It should be further noted 
that the use of cell-centered schemes for differentiation 
also makes it necessary to use accurate interpolation 
schemes. Compact schemes for mid-point interpolation are 
presented in Appendix C. 1. The resolution characteristics 
of the interpolation scheme when combined with those of 
the cell-centered differentiation determine the resolution 
characteristics of the overall scheme. 
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B.1. First Derivative on a Cell-Centered Mesh 

Starting from an approximation of the form 

f 
=C 

,+5,2-fi-5,2+bfi+3,2-fr~3:2 
5h 3h 

+af’ I f If2 - .fl - l/2 

h ’ 

the constraints on the coefficients are derived by matching 
the Taylor series coefficients (at least up to fourth order). 
Tridiagonal schemes analogous to the standard Pade 
scheme are obtained with 1-3 = 0, c = 0. These fourth-order 
schemes are defined by 

B=O, a=f(3-2a), b=i(22~--1). (B.1.2) 

The truncation error (on the r.h.s. of B.l.l)) is 
((9 - 62~)/1920) h4fc5’. 
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FIG. 16. Plot of modified wavenumber vs wavenumber for the cell- 
centered first derivative approximations.: (a) second-order central differen- 
ces; (b) fourth-order central differences; (c) sixth-order central differences; 
(d) fourth-order tridiagonal scheme (p = b = c = 0, a = &; (e) sixth-order 
tridiagonal scheme (/3 = c = 0); (f) eighth-order tridiagonal scheme (j? = 0, 
a= g); (g) eighth-order pentadiagoaal scheme (c=O); (h) tenth-order 
pentadiagonal scheme; (i) exact dilferentiation. 

For ct = & the coeffkient b vanishes, generating the most 
compact scheme. For a = $ a sixth-order tridiagonal 
scheme is generated. This sixth-order scheme has small 
differencing errors over a larger range of wavenumbers. 
Characterization of the differencing error via a plot of the 
modified wavenumber of the scheme is presented in Fig. 16. 
Also shown on this figure are other higher order schemes 
generated by (B.l.l.). As expected the schemes on the cell- 
centered mesh have considerably lower differencing errors 
compared to the unstaggered schemes (Fig. 1). The sixth 
order tridiagonal scheme (a = & with (B.1.2)) is quite close 
to exact differentiation. Further improvements can be 
obtained by allowing for /3 # 0 and c # 0. Once again it is 
observed that the resolution of the short scales is not very 
sensitive to the formal accuracy or truncation error of the 
scheme. 

Coefficients of the higher order schemes obtained from 
(B.l.l) and their truncation error (on the r.h.s. of (B.l.l)) 
are summarized in Table VI. 

TABLE VI 

Cell-Centered First Derivative Schemes 

Scheme Parameters Truncation error in (B.l.l) 

(B.1.3) 

(B.1.4) 

(B.1.5) 

(B.1.6) 

*= 
225 -206~~ - 2548 

192 

b=414a-114p-25 

128 

9 -62a + 1618s (‘= 
384 

354a - 75 
/j=--.-..- 

2614 

37950 - 39275~ 
a= 

31368 

b=65115a-3550 

20912 

25669~ - 6114 
C= 

62736 

9675 96850 
p=- - 

577058’ CL = 288529 

(75 - 3;;;5;02614b) h6/,,) 

683425 505175 
a=-,b=- 

865587 577058 

69049 
c=iziiT4 
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B.2. Second Derivative on a Cell-Centered Mesh 

For obtaining compact approximations for the second 
derivatives we start from the equation: 

Pf:‘- 2 + Nf”- , + fl’ + a*:‘+ 1+ p*;+ * 

dJ ,+5;2-2f,+f,-siz+46f’t3;2-2fi+fi-3iZ 

25h2 9h2 

+4a*’ r+1/2-vi+*;-l/2 

h2 ’ 
(B.2.1) 

the constraints on the coefficients are derived by matching 
the Taylor series coefficients (at least up to fourth order). 
Tridiagonal schemes analogous to the standard Pade 
scheme are obtained with /I = 0, c = 0. These fourth-order 
schemes are defined by 

a = 0, a = i (3 - lOcr), b = $ (46~l- 1). (~2.2) 

The truncation error (on the r.h.s. of (B.2.1)) is 
&(l +2cl)h4f’@. 

For c( = &, the coefficient b vanishes generating the 
“standard” Pad& scheme. For c1= - 4 a sixth-order tri- 
diagonal scheme is generated. This sixth-order scheme is 
singular at w  = I. The singular nature may be removed by 
either using a # - i for tridiagonal schemes or by using 

TABLE VII 

Cell-Centered Second Derivative Schemes 

Scheme Parameters Truncation error in (8.2.1) 

(B.2.3) 0=;(9-30a-174flfl6~) 

(B.2.4) n=75-23~4+534~ 

b = 718~ ~ 2738p - 25 

128 

3+6u+19268 c= 
128 

(225 + 1234a - 98548) h~,R’ 

1290240 

(B.2.5) 
1234~ + 225 p=- 

9854 

26850 - 5146% 
ll= 

19708 

b=115515a-26950 

39416 

76119a-14466 
C= 

39416 

-(28750 + 81583a) hRf”O, 

3178506240 

(8.2.6) 

186225 

a=81583' 
b= -E 

51159 

<= -163166 

schemes with c # 0 or @ ~0. Characterization of the dif- 
ferencing error of schemes generated by (B.2.1) is presented 
in Fig. 17. Also shown on this figure are other higher order 
schemes generated by (B.2.1). It may be noted that even the 
fourth- and sixth-order explicit forms have quite small 
differencing errors. Thus on a cell-centered mesh compact 
schemes can provide almost exact second derivatives. The 
eighth-order tridiagonal scheme slightly overpredicts the 
second derivative for w  = 7t and the pentadiagonal schemes 
are virtually indistiguishable from the exact differentiation. 
The coefficients of the higher order schemes are summarized 
in Table VII. 

11.0 I'S i.0 2's i.0 
Wovenumber 

FIG. 17. DitTerencing error vs wavenumber for the cellcentered 
second derivative approximations: (a) secoxid-order central differences; 
(b) fourth-order central differences; (c) sixth-order central differences; 
(d) fourth-order tridiagonal scheme (B = c = 0, 01= &); (e) eighth-order 
tridiagonal scheme (/I = 0); (f) eighth-order pentadiagonal scheme (c = 0); 
(g) tenth-order pentadiagonal scheme; (h) exact differentiation. 

APPENDIX c: COMPACT SCHEMES FOR 
INTERPOLATION AND FILTERING 

Compact schemes can be easily constructed for inter- 
polation and filtering applications. It is useful to analyze 
such operations in the wavenumber (Fourier) space of the 
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modes represented on the mesh [24, Chap. 5-j. It may be 
anticipated that the compact schemes provide a greater 
control over the shape of the transfer function (in the wave- 
number space). Once again the desirable characteristics of 
the transfer function may be optimized more effectively by 
not insisting on the highest formal accuracy. Compact 
schemes for mid-point interpolation are presented first. 
Similar schemes may be derived for interpolation at other 
(uncentered) points. Filtering applications are described 
next. 

C.l. Midpoint Interpolation 

Beginning with an approximation of the form 

= i (fi + 512 +h-S/2)+! (f,+3/2+fi-X/2) 

+~Cfi+l/*+L--l/l)3 (C.1.1) 

where ii represents the interpolated values at node xi, 
schemes of different formal accuracy may be derived by 
matching the Taylor series coefficients of various order. 
Typically we require at least a fourth-order formal accuracy. 
The transfer function associated with (C.l.l ), 

T(w)= 
a cos(w/2) + b cos(3w/2) + c cos(5w/2) 

1 + 2lY. cos(w) + 28 cos(2w) 
) (C.1.2) 

is used to further optimize the schemes. 
The fourth-order family (with three parameters) is 

defined by 

a = $ (9 + 10~ - 148 + 16c), 

6=$(-l +6c(+30P-24~). 
(C.1.3) 

TABLE VIII 

Truncation Error for the Interpolation Scheme 

Max. 1.h.s. Max. r.h.s. 
Scheme stencil size stencil size Truncation error in (C.l.l) 

(C.1.3) 5 6 & (3 - 10~ + 708- 128~) h4f14’ 

(C.1.4) 5 

(C.1.5) 5 6 

& (5 - 14~ + 428) h6f’6’ 

(C.1.6) 5 6 

Its formal truncation error (on r.h.s. of (C.l.l)) is tabulated 
in Table VIII along with those of other schemes. The 
sixth-order family (with two parameters) is defined by 

a = & (75 + 70~ -42/Q, b = & (2708 + 126~ - 25), 

c=&(708-lOa+3). (Cl.4 ) 

This may be specialized into an eighth-order (one 
parameter) family 

14GI-5 
P=yijY 

7a + 10 
a=--c’ 

(C.1.5) 

b= 
189u - 50 5a-2 

112 ’ c=48 

and, further, into a single tenth-order scheme, 

u=g, b=&, a=$, b=$,, c=&. (C.1.6) 

The transfer function of several interpolation schemes is 
plotted in Fig. 18 against the wavenumber w. The improve- 
ment of the compact schemes over the explicit interpolation 
schemes is evident. Also shown on the figure is a “spectral- 

I.0 1.5 2.0 2.5 3.0 
Wovenumber 

FIG. 18. Interpolation transfer function vs wavenumber for different 
explicit and compact schemes: (a) second-order explicit; (b) sixth-order 
explicit; (c) sixth-order tridiagonal scheme (B = c = 0); (d) eighth-order 
tridiagonal scheme (/I = 0); (e) eighth-order pentadiagonal scheme (c = 0); 
(f) tenth-order pentadiagonal scheme; (g) spectral-like pentadiagonal 
scheme (C.1.8); (h) exact. 
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like” interpolation scheme. This (formally fourth-order) 
scheme is obtained by requiring 

T(w*) = 1, 
dT(w = w*) dw =o. (C.1.7) 

The scheme shown in the figure is obtained for w* = 2.5. Its 
parameters are 

u = 0.5579841, /? = 0.07425165, a = 1.733442, 

b = 0.5105776, c = 0.02045137. 
(C.1.8) 

C.2. Filtering 

Beginning with an approximation of the form 

wherefi represents the filtered values at node xi, the filtering 
application discussed here is the removal of short length 
scales. The problem is most naturally formulated in terms of 
the transfer function associated with (C.2.1) 

T(w) = 
a + b cos(w) + c cos(2w) + d cos(3w) 

1 + 2u cos(w) + 28 cos(2w) ’ 
(C.2.2) 

For the filters we require T(n) = 0. For all schemes 
discussed here this constraint automatically provides 
(dT/dw)(n) = 0. For some of the filtering schemes discussed 
here we pose additional constraints 

d2T 
-+x)=0, g&o. (C.2.3) 

Schemes of different formal accuracy may be derived by 
matching the Taylor series coefficients of various orders, 
along with the filtering constraints. Typically we require at 
least a fourth-order formal accuracy. If the constraints 
(C.2.3) are not imposed a three-parameter family of fourth- 
order schemes is generated. Its coefficients are 

a=$(5+6a-68+16d), b=i(1+2cr+2/?-2d), 

c=+(l-2a-14/?+16d). (C.2.4) 

The truncation error for this scheme is listed in Table IX 

TABLE IX 

Truncation Error for the Filtering Schemes 

Max. 1.h.s. Max. r.h.s. 
Scheme stencil size stencil size Truncation error in (C.2.1) 

(C.2.4) 5 I $-2@+28-32d)h’f”’ 

(C.2.5) 

(C.2.6) 

(C.2.7) 

5 I i (1 - 2c( + 28) h4f’“’ 

5 I k (3 -2a - lop) h4f14’ 

5 7 & (2 -3a) hy16’ 

(C.2.8) 5 

along with those for other schemes. If the sixth-order coef- 
ficients in (C.2.1) are also matched then (C.2.4) reduces to 

a=h(ll+lOcr-10/I), b=$(15+34a+308), 

c=&(-3+6c1+26p), d=&(1-22c(+2/j). 
(C.2.5) 

Attempts to match any further Taylor series coefficients 
reduce (C.2.1) to an identity. 

A different family of schemes is generated when the first of 
(C.2.3) is imposed in addition to formal fourth-order 
accuracy. This two-parameter family of schemes is defined 
by 

a=i(2+% b=~(9+16cr+lO~), 

c=:(cl+48), d=h(6/?-1). 
(C.2.6) 

Posing the sixth-order constraint on (C.2.6) generates 

3-2~ 
P=T’ 

2 + 3cr 6 + 7cr 
a=-, b=s, 

4 
(C.2.7) 

6+u d=2-3a 
c=-jp 

40 . 

If the second of the filtering constraints (C.2.3) is also 
imposed on (C.2.7), a single scheme with coefficients 

tx=O, /?=A, a=;, b=$, c=&, d=& (C.2.8) 

is obtained. 
A different way to optimize the schemes is to pose specific 

conditions on the shape of the transfer function T(w). This 
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allows the location of the cutoff to be adjusted. This may be 
done by requiring 

T(w,)=v,, T(w,)=u,, (C.2.9) 

where w,, w2, u,, and v2 are specified. These constraints 
along with (C.2.6) determine all the coefficients. 

Tridiagonal schemes may be obtained as special cases of 
(C.2.4) (C.2.5), or (C.2.6). In Fig. 19 the transfer function 
for the tridiagonal schemes with /I = 0 and d= 0 is com- 
pared to explicit filtering schemes of second-, fourth-, and 
sixth-order accuracy. Evidently the compact schemes are 
much better low pass filters. By reducing the coefficient cc 
towards 0.5 the filtering effect is confined more towards the 
shorter waves. In Fig. 20 the transfer function for the pen- 
tadiagonal schemes is shown. It is seen that the choice of the 
thresholds in (C.2.9) determines the cutoff wavenumber of 
the filtering. Schemes (b) and (c) on this figure correspond 
to the coefficients 

(Y = 0.4627507, fl= 0.2265509, a = 0.8470630, 

b = 1.166845, c = 0.3422386, d = 0.02245659, 
(C.2.10.a) 

CI = 0.6522474, fl = 0.1702929, a = 0.9891856, 

b= 1.321180, 0.3333548, d= 
(C.2.10.b) 

c = 0.001359850. 

1.0 1.5 2.0 2.5 3.0 

Wovenumber 

FIG. 19. Filtering transfer function vs wavenumber for different 
explicit and tridiagonal compact schemes: (a) second-order explicit; 
(b) fourth-order explicit; (c) sixth-order explicit; (d) fourth-order 
tridiagonal scheme (a = 0.4, B = d = 0); (e) fourth-order tridiagonal scheme 
(a = 0.45, /I = d = 0); (f) fourth-order tridiagonal scheme (a = 0.475. 
/? = d = 0); (g) no filtering. 

1.0 1.5 2.0 2.5 3.0 

Wovenumber 

FIG. 20. Filtering transfer function vs wavenumber for pentadiagonal 
compact schemes: (a) sixth-order scheme (C.2.7); (b) fourth-order scheme 
((X.6) with (w, = 1.5, u, =0.95, w2 = 2.0, u2 =0.5); (c) fourth-order 
scheme (C.2.6) with (w, = 2.0, u, = 0.95, wr = 2.5, u2 = 0.5); (d) no filtering. 

Implementation of the filtering schemes on domains with 
non-periodic boundaries requires the near boundary nodes 
to be treated separately. The boundary schemes can also be 
devised to exactly filter the w  = TI waves. Explicit near 
boundary formulas (of fourth-order formal accuracy and 
exact filtering of w  = rc) are 

~,=~fi+~(4f2-6f3+4f4-f5), (C.2.11.a) 

~*==f*+~(f,+6f3-4f4+f5), (C.2.11.b) 

~~==~f3+~(-f,+4f2+4f4-f5). (C.2.11.c) 

Their formal truncation errors are given by - (3/2.4!) h4fi4’, 
(11/8.4!)h4f:4’, and - (3/2 .4 ! ) h4fr’, respectively. 
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