
AIAA JOURNAL
Vol. 36, No. 5, May 1998

Verification of Codes and Calculations

Patrick J. Roache*
Albuquerque, New Mexico 87031

Background discussion, definitions, and descriptions are given for some terms related to confidence building
in computational fluid dynamics. The two principal distinctions made are between verification vs validation and
between verification of codes vs verification of individual calculations. Also discussed are numerical errors vs
conceptual modeling errors; iterative convergence vs grid convergence (or residual accuracy vs discretization ac-
curacy); confirmation, calibration, tuning, and certification; error taxonomies; and customer illusions vs customer
care. Emphasis is given to rigorous code verification via systematic grid convergence using the method of manufac-
tured solutions, and a simple method for uniform reporting of grid convergence studies using the Grid Convergence
Index (GCI). Also discussed are surrogate single-grid error indicators.

Introduction

V ERIFICATION and the broader area of confidence building
in computational fluid dynamics (CFD) is a curious subject.

The growing recognition of its importance is attested to by the
policy statements given by the American Society of Mechanical
Engineers1"3 and AIAA4 and in other journals.5 (See Ref. 6 for my
experience in implementing the policy in Ref. 1.) The tone of arti-
cles can be fairly legalistic, yet the area is quite subjective, depen-
dent on opinions, world view, philosophy of science, philosophy
of engineering, and appeals based on common sense as much as
mathematics. This is partly due to the semantics involved.

Semantics
Semantic distinctions, in my experience, can have major project

consequences. For example, the choice of "verification" or "valida-
tion" was originally arbitrary and is now recommended solely be-
cause of common developing use. In a common English thesaurus,
"verify," "validate," and "confirm" are all synonyms, but the words
are used herein, and generally in code quality assurance (QA), as
technical terms with more context-specific meaning.

This is not a universally accepted attitude toward semantics. In
a widely quoted7'8 paper, Oreskes et al.9 think that we can find the
real meaning of a technical term by inquiring about its common
meaning. They make much of supposed intrinsic meaning in verify
and validate and agonize over truth. They come to the remarkable
conclusion that it is impossible to verify or to validate a numerical
model of a natural system! They clearly have no intuitive concept
of error tolerance, or of range of applicability, or of common sense.
Clearly, we are interested in practical definitions, applied in the
context of engineering and science accuracy, not in such worthless
semantics and effete philosophizing.

In the following, definitions and descriptions are given for some
terms related to confidence building in CFD. (I will not try to define
confidence building with any precision.)

Code Verification and Validation:
Numerical vs Conceptual Modeling

First and foremost, we must repeat the essential distinction be-
tween code verification and validation. Following Boehm10 and
Blottner,11 we adopt the succinct description of verification as "solv-
ing the equations right" and of validation as "solving the right equa-
tions." The code author defines precisely what partial differential
equations are being solved and convincingly demonstrates that they
are solved correctly, i.e., usually with some order of accuracy, and

Presented as Paper 95-2224 at the AIAA 26th Fluid Dynamics Confer-
ence, San Diego, CA, June 19-22, 1995; received Oct. 22, 1996; revision
received Feb. 6, 1998; accepted for publication Feb. 6, 1998. Copyright ©
1998 by Patrick J. Roache. Published by the American Institute of Aeronau-
tics and Astronautics, Inc., with permission.

*Consultant, P.O. Box 9229. Senior Member AIAA.

always consistently, so that as some measure of discretization A
(e.g., the mesh increments) —>• 0 the code produces a solution to
the continuum equations; this is verification. Whether or not those
equations and that solution bear any relation to a physical problem
of interest to the code user is the subject of validation.

In a meaningful sense, a code cannot be validated, but only a
calculation (or range of calculations with a code) can be validated.
In my experience, dealing with other than algorithm developers, this
is a difficult concept and requires continual reiteration. Validation
can be a multistep process and must include, for complex physical
problems, a list of features of the governing equations that have been
validated.

Another way to make the distinction, i.e., to get to the idea behind
the words, beyond mere semantics, is to speak of numerical errors
vs conceptual modeling errors. An example of conceptual modeling
vs numerical modeling is the assumption of incompressibility. This
is clearly a conceptual modeling assumption. Is it the code builder's
fault or any criticism of the code itself if the user incorrectly applies
it? For example, dynamic stall involves compressibility at a surpris-
ingly low freestream Mach number. Results from an incompressible
code may not agree with experiment very well, but we cannot say
that the code fails verification because it was applied to compress-
ible flow, although we may have some sympathy for the user who
is fooled by dynamic stall. But no one would have sympathy for
a user who applied an incompressible flow code to a re-entry ve-
hicle at Mach 20. The lack of agreement with experiment is not a
code problem but a modeling problem. The same is true of many
practical aspects of applying a CFD code. The model includes more
than the code. It includes conceptual modeling assumptions, e.g.,
incompressibility, symmetry, etc. It also includes data input to the
code, e.g., geometry data, which are not so easy to determine accu-
rately as many people assume, and boundary conditions and initial
conditions. These can lead to failure of validation of a model with
possibly no criticism of the code.

The typical computer science view of code verification is not
mine. Verification in my view does not include all aspects of code
QA or confidence building. For example, verification does not in-
clude the important and nagging concerns of version control, or
archiving of input data, or documentation (external and internal).
Likewise, extensive code application in a user community builds
confidence but is not part of verification per se. Less obviously, in
my opinion, verification defined as a technical term herein would not
include reading of source code. Blottner11 described his verification
of a Navier-Stokes code and included the fact that the Fortran source
code was examined. Although perhaps that is useful and contributes
to confidence building, I do not consider it to be part of code verifi-
cation per se (nor of confirmation; see the following text). Reading
the code could usefully ascertain (or verify in the general, nontech-
nical sense) that each subprogram is performing its intended task
and therefore could be required as part of a QA certification. How-
ever, we can read source code, either our own or someone else's,

696

ROACHE 697

interminably and still not be able to claim verification. On the other
hand, if the grid convergence tests prove that the code is, for ex-
ample, second-order accurate, it would take some strange coding to
nullify this test. (Perhaps some in-line limit on the parameter range
that was not hit in the grid convergence test is possible.) Except for
these unusual cases, reading of the code appears to me to be neither
necessary nor sufficient for verification.

Surely few would claim that reading of code is any substitute for
verification via grid convergence testing (although our customers
have tried). If we included reading of the source code as part of
code verification, then the code author's reading could be claimed
as a partial verification. We know it does not prove a thing. In my
view, verification (in this restricted, technical meaning) should treat
the code as a black box.

Note I do not consider a code bomb, i.e., a divide by zero, or
instability, to be a failure of code verification in the present context.
As long as the code does not lie to the user, code verification has
not been breached. Code robustness is certainly desirable and is
properly part of QA and overall code evaluation, but in my use of
the terms it is not an issue in verification. (Also, it is well known that
robustness is often achieved at the expense of numerical accuracy.)

Also, I believe strongly that code verification can and should be
completed (it is not an ongoing exercise) without physical experi-
ments. Experimental agreement is part of validation, not verification,
and the concepts are distinct enough to be worth preserving. Verifi-
cation and validation are as distinct as mathematics and physics, on
which they are based.

Validation has highest priority (to engineers and scientists) be-
cause nature is the final jury. But any experience with laboratory ex-
periments will quickly disavow the absolute quality of experimental
data. (It is asking too much of a CFD code to agree with wind-tunnel
test data when these data do not agree with other wind-tunnel data,
nor even from one run to another in the same wind tunnel.) Thus, I
strongly believe that complete verification of a code should precede
any comparisons with experimental data. (However, failure of a code
to agree with an experimental benchmark with well-established er-
ror bounds would obviously raise suspicions about either the code
or the experiments.)

This brings up another complaint with experiments. One some-
times hears complaints that a "CFD code needs additional data"
that experimentors typically do not measure. For example, data are
published on turbulent flow in channel expansions that do not char-
acterize the details of the boundary layer ahead of the expansion
(nor sometimes elementary quantities like boundary-layer thick-
ness). But a CFD code needs no more information than the physics
(and usually less, due to simplifying approximations in the turbu-
lence theory). If experimenters have not measured these quantities,
then they have an uncontrolled experiment, regardless of whether
CFD codes will be used. The question, of course, is whether these
unmeasured quantities are important to the physics of interest. This
seems to me to be a major opportunity for CFD to contribute to
experimental work; CFD can be used to predict the importance
of difficult-to-measure quantities like wind-tunnel flow angularity,
nonuniform stagnation enthalpy, surface waviness, etc., as discussed
lucidly by Aeshliman et al.12 A premier example given by Haynes
et al.13 is the sensitivity of boundary-layer transition to freestream
vorticity, which is "an unusually difficult experiment" but which can
be modeled by CFD.

Verification of Calculations
The second major distinction to be made is less recognized than

the distinction between verification and validation. It is the distinc-
tion between verification of codes vs verification of (individual)
calculations.

A code may be rigorously verified to be, for example, second-
order accurate, but when the code is applied to a new problem, this
fact provides no estimate of accuracy or confidence interval. It is
still necessary to perform grid convergence tests to band the nu-
merical error. (It would be preferable to have different words for
these two verification activities, but I am at a loss for a clarifying
term.) The very important point, independent of the semantics, is
that use of a verified code is not enough. This point is probably well
recognized by present readers but is not universally so. Especially

in the commercial CFD arena, user expectations are often that pur-
chase and use of a "really good code" will remove from the user the
obligation of "doing his homework," i.e., the tedious work of verifi-
cation of calculations via systematic grid convergence studies. This
unrealistic expectation is sometimes encouraged by salespeople and
by advertising.

Code Confirmation and Certification
Some computer science or QA people would have code verifica-

tion necessarily performed by someone other than the code devel-
oper, sort of an arm's length transaction philosophy. In my view, it
is ridiculous to expect code builders to not verify their code! Verifi-
cation is a necessary part of code development. Code authors would
be remiss in their duty if they released a code without verification. I
would trust a code builder's verification results if presented in full;
fraud is not usually the issue. But if it is, and if further tests are
required (or repeats of the original verifications to check for fraud),
then I would suggest the use of the term confirmation for calcu-
lations independently run by someone other than the code builder.
Also, the suite of problems can be used for reverification (e.g., after
porting to a new computer or a new compiler or to run through after
the addition of new options) and for user training.

We14 recognize five distinct regimes where errors can be made in
benchmarking a CFD code, even without considering the validation
question of whether the right equations are being solved for the target
problem. The error regimes are 1) in code generation (either by hand
or using computer symbolic manipulation; see the following text),
2) in code instructions, e.g., in a user manual or comment cards, 3) in
problem setup, 4) in the definition and coding of a benchmark case
(analytical solutions are often more difficult to code than numerical
solutions), and 5) in the interpretation of code results. The first two
are errors of the code author. The last three are errors of the code user,
although ambiguous or scant code documentation can put some of
the responsibility back onto the code author. Verification of a code
removes regime 1 and, if done thoroughly, regime 2, but 3-5 still con-
tain the potential for errors in any new application. We reluctantly
conclude that there will be a continuing need for users to construct
and exercise benchmark cases even when using verified codes.

I am not so clear on the concept of code certification, and I de-
fer to others15"20 for their definitions. My inclination would be to
include in code certification the activity of code verification inde-
pendent of the code authors (confirmation), other aspects of code
QA including documentation, and validation for a project-oriented
range of parameters.

Grid Convergence vs Iterative Convergence
The literature commonly uses the term convergence in two com-

pletely different ways. Readers of this paper will know the distinc-
tion between iterative convergence vs grid convergence (or residual
accuracy vs discretization accuracy). Usually, the meaning is clear
from the context, but sometimes confusion occurs, e.g., when some
new variant of the SIMPLE algorithm21 is presented as being more
accurate. The accuracy claimed here is residual accuracy, i.e., what
is better called iterative convergence accuracy or iterative speed, and
has nothing to do with the order of accuracy of the discretization.
Also, inadequate iterative convergence will pollute grid convergence
results.

For the present subject, we note that iterative convergence can
muddy the distinction between code verification and calculation
verification because iterative tuning parameters, e.g., multigrid cy-
cles, relaxation factors, etc., can be problem dependent.

Error Taxonomies
Several taxonomies of errors given in the literature are inade-

quate and misleading, in my opinion. Not all lists are taxonomies.
For example, so-called "grid generation errors"22 are not separate
from discretization errors. For the verification of a code or a calcula-
tion, there are no such things as grid generation errors (nor are there
"errors associated with coordinate transformations"22). Indeed, bad
grids add to discretization error size but do not add new terms. This
does not mean that one grid is as good as another, or that a really
bad grid cannot magnify errors, but only that these so-called grid
generation errors do not have to be considered separately from other

698 ROACHE

discretization errors in a grid convergence test. If the grid conver-
gence test is performed, and the errors are shown to reduce as O (A2),
for example, then all discretization errors are verified. One does not
need to separately estimate or band the grid generation errors.

Likewise for the proposed numerical error bar of Refs. 23 and 24,
which consists of separately estimated numerical errors from bound-
ary conditions, computational domain size, temporal errors, and
spatial errors. This is clearly a false taxonomy. Numerical errors at
boundaries can be ordered in A (e.g., the various approaches for wall
vorticity25) or possibly can be nonordered in A, e.g., the boundary-
layer-like dp/dn = 0 or the downstream (outflow) boundary lo-
cation. Ordered errors will tend to zero as the discretization im-
proves, so that a boundary error from wall vorticity evaluation
need not be considered separately from the grid convergence study.
That taxonomy23 already includes temporal errors and spatial er-
rors and computational domain size errors, so that both ordered and
nonordered boundary errors are already counted elsewhere in the
taxonomy. Because the intention in Ref. 23 is to provide a quantita-
tive breakdown in the sources of numerical error in an error band,
the proposed taxonomy is not only confused but misleading.

Note, however, that outflow boundary errors may prove to be
ordered not in A but in I / / where / is the distance from the region
of interest, e.g., an airfoil, to the outflow boundary. (See Zingg's
data,26 shown in Ref. 27 to be first order in I//.)

The subject of outflow boundary conditions does produce some
fuzziness in categorization of verification vs validation, in my opin-
ion. The error can be ordered, as before, and therefore can be part of
verification. That is, it is up to the user (who is doing the conceptual
modeling) to estimate or band the error caused by the position of
the outflow boundary. But if the code has some sophisticated out-
flow condition, e.g., a simple vortex condition for Euler equations,
then the distinction is not so clear. Certainly the equations used are
clear, and the code may solve the equations right (i.e., verification),
yet there exists another benchmark solely from the mathematics (the
case with infinite boundary distance) that could be used to justify the
outflow condition without recourse to physical experiment (which
would clearly be validation).

Another example of semantic failure or fuzzy taxonomy arises
when we consider benchmarking a turbulent boundary-layer code
or Parabolized Navier-Stokes (PNS) code against a Reynolds-stress
averaged full Navier-Stokes (NS) code. Presume that both codes are
convincingly "verified," i.e., they correctly solve their respective
equations. Suppose that the PNS code results agree well with the
NS code results for some range of parameters, e.g., including angle
of attack. This agreement is not included in the term "verification"
because the verification of the PNS code has already been completed
prior to the NS benchmarking. Then we could say that the agreement
has demonstrated that the PNS code is "solving the right equations"
in one sense; i.e., it justifies the use of parabolic marching equations.
Yet to claim "validation" would be overreaching because we have
not demonstrated the adequacy of the turbulence model by compar-
ison with experiment. We have "solved the right equations" in an
intermediate sense of demonstrating that the PNS equations ade-
quately represent the full NS equations but not in the ultimate sense
of "solving the right physical equations." In situations dictating a
legalistic distinction, one could claim "justification" of the simpli-
fication of mathematical models (full Navier-Stokes to boundary
layer, compressible to incompressible, variable property to constant
property, etc.) while making it clear that the physical "validation"
remains to be accomplished.

Unfortunately, such "mere semantics" may become of vital inter-
est when dealing with regulatory agencies, such as the Environmen-
tal Protection Agency, or with legal definitions in a NASA contract.

Truncation Error vs Discretization Error
Truncation error is an unfortunate term. Strictly speaking, it refers

to the truncation at some finite value of a series, which could be an-
alytical, e.g., the Sudicky-Frind solution,28 or more commonly, in
the present context, to the basis of developing the finite difference
equations, the Taylor series expansion of the solution. It is a worth-
while concept because it allows one to define the order of the finite
difference (or finite element, finite volume, etc.) method. Unfortu-

nately, it is often used loosely in the sense of discretization error,
i.e., the error that is caused by the fact that we can only use a finite
number of grid points (or another measure of discretization). In a
finite difference method (FDM), one cannot take the limit of infinite
order (i.e., limit of zero truncation error) without also taking the
limit of infinite number of grid points because high-order methods
require higher support. This terminology makes the limit process
somewhat misleading, in my opinion. Also, it confuses the issue
of solution smoothness with discretization error because the Taylor
series expansion depends on smoothness.

In the context of grid convergence tests, it is preferable to not
speak of evaluating the truncation error of a numerical approximate
solution but rather the discretization error that arises because of the
finite discretization of the problem. This terminology applies to ev-
ery consistent methodology, FDM, finite volume method (FVM),
finite element method (FEM), spectral, pseudospectral, vortex-in-
cell, etc., regardless of solution smoothness. (By consistent we
mean, of course, that the continuum equations are recovered in the
limit of infinite discretization.) The term truncation error is then
reserved just for the examination of the order of convergence rate
of the discretization. Note again the point of a taxonomy; these two
errors are not independent. For any finite grid calculation, we do not
have a truncation error (arising from the use of finite ordered FDM,
for example) that we add to the discretization error (arising from
the use of a finite number of grid points). And it is not possible to
approach the limit of zero truncation error by arbitrarily increasing
the order of the FDM or FEM without increasing the discretization.
(Note that in the FEM we could fix a finite number of elements, but
we would still have to increase the discretization, i.e., the support
within the elements.) However, the alternate is true: we can in fact
approach the limit of eliminating all the discretization error by ar-
bitrarily increasing the number of grid points without changing the
order of the method. Thus, discretization error is the preferable term
for speaking of the numerical error of a calculation, and truncation
error is not separate in the taxonomy of an error estimate for a cal-
culation. (However, the order of the truncation error is still verified
in the code verification.)

Truncation error has also been defined22 as the residual result-
ing from substitution of the continuum (exact) solution values into
the discrete equations on some grid. This definition can be use-
ful for analysis of discrete methods. But, again, it is not distin-
guishable from discretization error in an accuracy estimate of a real
calculation.

Calibration and Tuning
I prefer to use the term code calibration to mean the adjustment

of parameters needed to fit experimental data, e.g., the six closure
coefficient values necessary for two-equation turbulence models.
However, colleagues assure me that the term is used in experimental
studies just as a means of ascertaining accuracy, e.g., of a pressure
probe. If extended to codes,12 this definition, in my mind, makes
code calibration almost indistinguishable from validation, or per-
haps validation for a more restricted range of parameters.

The adjustment of parameters can be called tuning, which has
a faintly pejorative association, deservedly if every new data set
requires retuning, unfairly if reasonable universality is obtained.

Customer Illusions vs Customer Care
Catering to customer illusions can be antithetical to true customer

care. This distinction is pertinent to CFD in code user training and
education. The limits of applicability of CFD codes must be made
clear. A CFD code cannot be an aerodynamicist on a chip; i.e., the
code cannot substitute for user expertise in the technical area. True
customer care is most important in the area of code robustness.
We all know how to build a robust CFD code, following what has
become a CFD joke.29 "The good news about first-order upstream
differencing is that it always gives you an answer. The bad news
is that it always gives you the same answer, no matter what the
Reynolds number." It is remarkable and disheartening to see how
many industrial CFD practitioners will freely admit to caring little
about numerical accuracy. For those who do, we must not gloss over
the limitations of CFD and give them a false sense of security.

ROACHE 699

Other Distinctions
Another way to make distinctions is between the code author or

code builder (which may of course be a team, including algorithm
developers and programmers) and the code user or analyst. In many
past situations, the same person performed both functions and there-
fore took the blame or credit for all aspects, but it is still worthwhile
to make the distinction in functionality, especially with the rise of
commercial general-purpose CFD software.

Another distinction is constitutive equation developer most typi-
fied in AIAA-type fluid dynamics by the turbulence modeler. Again,
the same person could and has functioned in all three capacities
(code builder, code user, and constitutive equation developer), but I
agree with Blottner11 that it is too much burden on one person.

Code Verification via Systematic Grid
Convergence Testing

In this section, emphasis is given to convincing, rigorous code
verification via systematic grid convergence testing. Reference 30
presented a general approach to rigorous code verification via sys-
tematic grid convergence, now called the method of manufactured
solutions. This procedure is straightforward though somewhat te-
dious to apply and verifies all aspects of the code: formulation of
the discrete equations (interior and boundary conditions) and their
order of accuracy, the solution procedure, and the user instructions.

The basic idea is to include in the code a general source term
Q(x, y, z, t) and to use it to generate a nontrivial but known solu-
tion structure. Following the counsel of Poly a31 (only a fool starts
at the beginning; a wise man starts at the end...), we first chose
a continuum solution. We want one that is nontrivial but analytic
and exercises all ordered derivatives in the error expansion and all
terms, e.g., cross-derivative terms. For example, choose a solution
involving the hyperbolic tangent function tanh. This solution also
defines boundary conditions, to be applied in any (all) forms, i.e.,
Dirichlet, Neuman, Robin, etc. Then the solution is passed through
the governing partial differential equations (Ref. 30 used symbolic
manipulation) to give the production term Q(x, y, z, t) that pro-
duces this solution. (This procedure is much easier and more general
than looking for solutions to real problems; see additional references
in Ref. 6.) We then monitor the numerical error as the grid is sys-
tematically refined. (Successive grid halving is not required, just
refinement. Thorough iterative convergence is required.) Theoreti-
cally, values of c = error/ Ap should become constant as the grid is
refined for a uniformly /?th-order method ("uniformly" implying at
all points for all derivatives). When this systematic grid convergence
test is verified, we have verified 1) any equation transformations used
(e.g., nonorthogonal boundary fitted coordinates), 2) the order of the
discretization, 3) its encoding, and 4) the solution procedure.

This technique was originally applied30"33 to long Fortran code
produced by artificial intelligence methods. The first versions of the
code produced extremely long subroutines because the symbol ma-
nipulation code MACS YMA did not know the rules for intermediate
expressions in the chain rule expansions and for the derivative of
the inverse of a matrix function. (Steinberg30 later taught these to
MACSYMA.) The original three-dimensional nonorthogonal coor-
dinate code contained about 1800 lines of dense Fortran. It would
be impossible to check this code by reading the source, yet the pro-
cedure described verified it convincingly. (Surprisingly, round-off
error was not a problem.)

If the code to be verified does not treat source terms, this capabil-
ity must be added. Although often trivial, this can be difficult (and
therefore an impediment to applying this method), notably for time
accurate treatment of boundary conditions in approximate factoriza-
tion algorithms. A related approach is to choose solution forms that
are quadratic, for which a second-order code may (but not always)
generate exact solutions on a finite grid. When this approach works,
the verification can be accomplished without multiple grid solutions,
but it still requires that the code treat a source term. An approach that
does not require source terms is to manufacture the solution by ma-
nipulating spatially varying coefficients of the governing equations,
e.g., the conductivity in a heat conduction equation.

There seems to be no chance for a really sweeping theorem prov-
ing correctness of CFD code by this technique in any general sense.
However, like any analysis, it seems that there could be a useful

theorem for a properly defined and limited scope. For codes like
the one described earlier, treating only the well-behaved Poisson
equation in general nonorthogonal coordinates, the exercise is com-
pelling. I claim that this technique with this code (and a similar class
of codes, which unfortunately I cannot define with sufficient math-
ematical theorem-like precision) is correct; i.e., the code is verified,
beyond a reasonable doubt.

Grid Convergence Index
The Grid Convergence Index or GCI27>34>35 presents a simple

method for uniform reporting of grid convergence studies without
any restriction to integer refinement, e.g., grid doubling. The GCI
is based on generalized Richardson extrapolation involving com-
parison of discrete solutions at two different grid spacings. There
may be good reasons27 >34>35 for not using the solution indicated by
Richardson extrapolation, including lack of conservation. (Earlier,
de Vahl Davis36 pointed out the more fundamental problem that the
extrapolated solution is "no longer internally consistent; the val-
ues of all the variables do not satisfy a system of finite difference
approximations.") Richardson extrapolation is used herein only to
obtain the error estimate, not to obtain a new solution.

A coarse grid Richardson error estimator approximates the error
in a coarse grid solution, 'fa, by comparing this solution to that of a
fine grid, fa, and is defined as

^coarse = (1)

whereas a fine grid Richardson error estimator approximates the
error in a fine grid solution, fa, by comparing this solution to that
of a coarse grid, fa, and is defined as

where

= /2 - /I

(2)

(3)

and where
fa = a coarse grid numerical solution obtained with grid spacing

h2
f\ = a fine grid numerical solution obtained with grid spacing h\
r = refinement factor between the coarse and fine grid [r =

p = formal (or observed) order of accuracy of the algorithm.
It is neither necessary nor often desirable to use r = 2, or grid

doubling; see Ref. 27 for discussion.
Accurate application of these generalized Richardson-based grid

error estimators with theoretical p requires that the observed con-
vergence rate equals the formal convergence rate. This implies that
the leading order truncation error term in the error series truly dom-
inates the error. In fact, these Richardson error estimators can be
simply derived by considering a generic convergence curve for a
pth-order approximation in the asymptotic range, without need for
the Taylor series assumption of smoothness. This assumption would
be needed only to evaluate coefficients from theory, which is not a
requirement for grid convergence studies, nor is it even a practical
possibility in a nontrivial CFD problem.

To account for the uncertainty in these generalized Richardson-
based error estimates due to various factors, and to put all grid con-
vergence studies on the same basis as grid doubling with a second-
order method, we incorporate a safety factor into these estimators
and define the GCI for coarse and fine grids as

GCIc
2
oarse = FS\E2[(4)

(5)

The term Fs > I can be interpreted as a safety factor because Fs = 1
gives GCI = | E \. That is, the error band reduces to the best estimate
of the error, analogous to a 50% error band of experimental data.
For a minimal two-grid convergence study, I recommended27'34'35

a more conservative value of Fs = 3. This value also has the advan-
tage of relating any grid convergence study (any r and p) to one with
a grid doubling and a second-order method (r = 2, p — 2). I empha-
size that the GCIs are not error estimators but are 3 (or Fy) times the
error estimators, representing error bands in a loose statistical sense.

700 ROACHE

The motivation for using Fv > 1 is that Fs = 1 is analogous to a
50% error band on experimental data, which is not adequate. My
originally recommended value27'34'35 of Fs = 3 is conservative and
relates the grid convergence study to one with a grid doubling with
a second-order method. For many reasons37'38 this is not unduly
conservative when only two grids are used in the study. However, it
is now clear that Fv = 3 is overly conservative for scrupulously per-
formed grid convergence studies using three or more grid solutions
to experimentally determine the observed order of convergence /?,
e.g., see the papers in Ref. 39. For such high-quality studies, a mod-
est and more palatable value of Fs = 1.25 appears to be adequately
conservative. However, for the more common two-grid study (often
performed reluctantly, at the insistence of journal editors), I still
recommend the value Fs = 3 for the sake of uniform reporting and
adequate conservatism.

A recent application of the GCI to airfoil calculations is given by
Lotz et al.,40 which demonstrates the power of the method without
the need for integer grid refinement and its application with solution-
adaptive grids.

Sensitivity of Grid Convergence Testing
In our experience, this method of code verification via system-

atic grid convergence testing (whether or not the GCI is used) is
remarkably sensitive in revealing code problems, as indicated by
the following examples.

1) In verification tests of a commercial groundwater flow code, a
first-order error in a single corner cell in a strongly elliptic problem
caused the observed convergence to be first-order accurate.12

2) In verification tests of our SECO-FLOW-2D variable density
groundwater flow code, first-order extrapolation for ghost cell values
of only one quantity (aquifer thickness) along one boundary caused
the observed convergence to be first-order accurate.41

3) In groundwater contaminant transport calculations (advection-
diffusion + decay, retardation, and matrix diffusion), use of a plau-
sible single-grid-block representation for a point source as the grid
is refined introduces error in a finite volume (or block-centered fi-
nite difference) formulation. In this cell configuration, the cell faces
align with the boundaries of the computational domain, and dou-
bling the number of cells requires the location of the single cell
representing the source to shift by A/2. It is to be expected that the
solution accuracy in the neighborhood of the source would be af-
fected. But surprisingly, the accuracy of time-integrated discharge
across boundaries far from the source was also degraded to first-
order accuracy.42

4) The observed convergence rate of ostensibly second-order ac-
curate turbulent boundary-layer codes43 can be degraded, apparently
by conditional statements limiting eddy viscosity and defining the
boundary-layer edge.

5) Airfoil codes can exhibit the expected second-order conver-
gence rates for lift and drag, but less for moment, possibly because
of approximations involved in applying quasiperiodicity across cut-
planes of a C-grid.

Esoteric Coding Errors
General CFD (or computational physics) codes (more general

than the simple Poisson equation in nonorthogonal coordinates30)
would be difficult to include in a theorem because of esoteric coding
errors. The difficult aspects of the codes are not algebraic complexity
(we convincingly verified 1800 lines of dense Fortran30). The more
difficult and vexing problems come from option combinations and
conditional differencing. Esoteric errors can arise because of nonlin-
ear flux limiters like FCT, TVD, hybrid or type-dependent differenc-
ing, etc.30 Other examples of error types that might escape detection
during incomplete verification exercises are neglected REAL decla-
rations that still produce correct results but only for integer values of
some parameters44'45 and near-conformal grid generation that does
not exercise cross-derivative terms.46'47

Special Considerations for Turbulence Modeling
There are special considerations required for turbulence modeling

and for other fields with multiple scales. Here, the code theoretical
performance can be verified (within a tolerance) for a range of pa-
rameters but could fail in another range.

It is necessary to get the grid resolution into the asymptotic range
to do grid convergence testing. Virtually any grid is in the asymp-
totic range for a simple Laplace equation. For any boundary-layer
calculation, it is clear that the initial (coarse) grid must get some
points into the boundary layer. For turbulence modeling without wall
functions,43'48 the grid must get some points into the wall layer. For
turbulence modeling with wall functions, the grid should not get into
the wall layer.49 In my interpretation, effectively the wall functions
should be viewed as an elaborate nonlinear boundary condition, and
the grid convergence exercise should be done from the edge of the
wall layer out. Similarly, for large eddy simulations (LES) as used
in aerodynamic turbulence research and in atmospheric and ocean
modeling with subgrid turbulence modeling, the grid convergence
must not go to zero or else the Reynolds stresses will be counted
twice, once from the full Navier-Stokes terms and again modeled
from the LES terms. Also, the presence of any switching functions,
such as length determinations for the Baldwin-Lomax turbulence
model,43 can easily corrupt second-order convergence rates.

Finally, the grid resolution requirements are much more demand-
ing for turbulent boundary layers, just as laminar boundary layers
are much more demanding than inviscid flows. For example, Claus
and Vanka50 found that 2.4 million nodes (256 x 96 x 96) did not
demonstrate grid independence of the computed velocity and turbu-
lence fields of crossflow jets.

Extraction of Observed Order from
Grid Convergence Tests

If an exact solution is known or constructed (see the preceding
text), it is straightforward to extract the order of convergence from
results of a systematic grid convergence test using a minimum of
two grid solutions. This serves to verify a code. However, it is also
desirable to verify the order for an actual problem because the ob-
served order of convergence depends on achieving the asymptotic
range, which is problem dependent, and because the observed order
may differ from the theoretical order, or from the order verified for
a test case, for a variety of reasons. (See the discussion in Ref. 38.)

Blottner11 and others use graphical means, plotting the error on
log paper and extracting the order from the slope. This procedure
requires evaluation of the error, which is generally not known. If the
finest grid solution is taken to be the reference value (unfortunately,
often called the exact value, which it obviously is not), then the ob-
served order will be accurate only for those grids far from the finest,
and the calculated order approaching the finest grid will be indeter-
minate. Blottner11 improves on this by estimating the exact value
by Richardson extrapolation (see also Ref. 48), but this procedure
is somewhat ambiguous because the order is needed to perform the
Richardson extrapolation.

If the grid refinement is performed with constant r (not necessarily
r = 2), the observed order can be extracted directly from three grid
solutions, without a need for estimating the exact solution, following
de Vahl Davis.36 With 1 being the finest grid in the present notation,

(6)

A generalization of this procedure, not restricted to constant r,
is possible using the generalized theory of Richardson extrapola-
tion.27'34'35 Equation (19) of Ref. 27 (typo corrected) may be used
to verify an assumed order p. (It is not necessary to use the GCI
itself.) One calculates

j_
ot (7)

If a « rp, then p is the observed order. However, Eq. (7) requires
r to be constant over the three grid set, and it cannot be used to
calculate p directly because p is implicitly present in the GCIs. The
more general procedure is to solve the equation

(8)

for p. This is simple for r constant (not necessarily 2 or integer),
giving

p = &v(£23M2) (9)

ROACHE 701

But if r is not constant during the grid refinement, Eq. (8) is tran-
scendental in p. Usual solution techniques (e.g., Newton-Raphson)
can apply, but one should allow for observed p < 1. This can hap-
pen even for simple problems at least locally36 and in some cases the
observed p is < 0 (unfortunately, behavior far away from asymp-
totic convergence can be nonmonotone). Also, r ~ 2 will be easier
to solve than r ~ 1+5, and r ^> 2 is probably not of much interest.
For well-behaved synthetic cases, simple substitution iteration with
a relaxation factor co ~ 0.5 works well. With p = previous iterate
for p, the iteration equation is

(lOa)

- 1) *12
(10b)

Note this form of the iteration gives the exact answer in one step for
the case of r = 2.

Once p is known with some confidence, one may predict the next
level of grid refinement r* necessary to achieve a target accuracy,
expressed as a target error estimate E\ or GCIi, call it GCI*. With
GCI23 being the value from Eq. (2) for the previous two grids,

= </GCr/GCI23 (11)

(This result, of course, depends only on the assumed definition of
order of the discretization error, i.e., only on c = error/A7', and not
on the GCI theory itself.)

The theoretical p may be directional, e.g., perhaps a boundary-
layer code that is first order in the streamwise direction and second
order otherwise. The preceding procedure may be applied either to
the overall observed p (producing some observed value of p that is
intermediate) or to each direction refined independently.

Cumulative Area Fraction Error Curves
Cumulative area fraction error curves introduced by Luettich and

Westerink51 present domain errors in a complete and meaningful
way, plotting the fraction of the total domain that exceeds a particular
error level against that error level. See also Refs. 37 and 52.

Surrogate Single-Grid Indexes
Many attempts have been made to estimate ordered numerical

error using only a single solution on a single grid. (The original
Richardson paper53 in 1908 included examination of the difference
between a low-order solution and a high-order solution on the same
grid, which is obviously a low-ordered error estimator but is ex-
pensive.) More modern attempts try for a single grid solution with
some inexpensive postprocessing, e.g., residuals of an FEM. These
attempts are usually focused on directing solution adaptive grid gen-
eration, and they are usually successful for this purpose.54 However,
almost anything is successful for adaptation purposes, e.g., minimiz-
ing solution curvature or adapting to solution gradients (even though
solution gradients cause no discretization error). Estimates of local
errors usually are not what we want for verification of calculations;
we need global errors.

Note that even lift and drag coefficients converge at different rates,
so that a percentage error in one cannot naively be used for the other
unless a quantitative correlation is established. Commonly, authors
speak of a calculation being converged as though it had some general
sense, when in fact convergence must be evaluated separately for
each quantity of interest.

What is needed then is to establish a quantitative correlation be-
tween these local error estimates (or other functionals) and the errors
of interest. If a reliable correlation can be established, then such a
local inexpensive error estimate obtained on a single grid can be
used as a surrogate for error estimates that would otherwise require
multiple grid solutions.

Such a single-grid error index is provided by the energy imbal-
ance method of Refs. 55 and 56. As noted earlier,25 any noncon-
served quantity can be used as grid convergence check. And we can
always create a higher moment that is not conserved (because if all
were conserved, the solution would be exact). Haworth et al.55 use
a kinetic energy (KE) equation. Note the importance of production

and inflow terms, consistently evaluated. They set up the "KE equa-
tion imbalance" (like a residual), the evaluation of which gives an
indication of lack of convergence. Because the limit is known with-
out an exact solution, i.e., KE imbalance -> 0 as A -> 0, it takes
one less grid solution to establish the order of discretization error
convergence by monitoring this functional than some term like a lift
coefficient. That is, it takes three distinct grid solutions to establish
the order of convergence when examining something like CL or pres-
sure at a point (or L2 or L^ norms), but it requires only two grids to
establish the order when examining KE imbalance or a similar term.

As noted, the problem is that KE imbalance or other conserved
functionals are not often of intrinsic interest. We want to know error
bands for CL, for example. The utility of the single-grid evaluation
can only be established by quantitative correlation with quantities of
interest (e.g., CL\ and this requires complete convergence testing.
(The same is true, I maintain, for the various single-grid solution
approaches based on FEM theory.) The usefulness will be significant
when such a correlation is established for a class of problems and
when one can use this single-grid index as a surrogate for a suite of
nearby problems, e.g., hundreds to thousands of Monte Carlo runs
required for performance assessment of the WIPP (Waste Isolation
Pilot Plant).57

The definitions used herein are sometimes at variance with other
discussions,58 notably in the present title subject of verification.

For a more complete discussion of the ideas in this paper, see
Refs. 38 and 59.

Conclusion
The semantic distinctions involved in the general area of confi-

dence building in CFD are important and worthwhile. Although the
distinctions are sometimes arbitrary, it is worthwhile to try to main-
tain uniformity of terminology or at least to recognize the underlying
conceptual distinctions and to define one's terms with appropriate
precision.

My position is that we verify a code by convincingly demonstrat-
ing (if not proving as in a mathematical theorem) that the code can
solve the equations right. (When done properly, the exercise also
verifies the order of convergence of the code.) Then, we verify a
calculation by convincingly demonstrating that the code has solved
the equations right to a rationally estimated accuracy or error band.
Neither of these exercises appeals to experimental data for their jus-
tification. Only in validation do we demonstrate that we have solved
the right equations with an understood context of engineering or sci-
entific accuracy.

Finally, techniques are already available to convincingly verify
the numerical accuracy of CFD codes and calculations without un-
due stress on computer resources.

Acknowledgments
This work was partially supported by Sandia National Laborato-

ries and the U.S. Department of Energy under Contract DE-AC04-
76DP00789; M. G. Marietta and M. Fewell were the technical mon-
itors. I am indebted to F. G. Blottner and an another anonymous
reviewer for many improvements. D. C. Wilcox and K. Salari pro-
vided the fourth and fifth examples of the sensitivity of grid conver-
gence testing.

References
iRoache, P. J., Ghia, K., and White, R, "Editorial Policy Statement on the

Control of Numerical Accuracy," Journal of Fluids Engineering, Vol. 108,
No. 1, 1986, p. 2.

2Freitas, C. J., "Editorial Policy Statement on the Control of Numerical
Accuracy," Journal of Fluids Engineering, Vol. 115, No. 2, 1993, p. 339.

3Editorial Board, "Journal of Heat Transfer Editorial Policy Statement on
Numerical Accuracy," Journal of Heat Transfer, Vol. 116, Nov. 1994, pp.
797, 798.

4AIAA, "Editorial Policy Statement on Numerical Accuracy and Exper-
imental Uncertainty," AIAA Journal, Vol. 32, No. 1, 1994, p. 3.

5Gresho, P. M., and Taylor, C., "Editorial," International Journal for Nu-
merical Methods in Fluids, Vol. 19, 1994, p. hi.

6Roache, P J., "Need for Control of Numerical Accuracy," Journal of
Spacecraft and Rockets, Vol. 27, No. 2, 1990, pp. 98-102; also AIAA Paper
89-1669, 1989.

7Horgan, J., "From Complexity to Perplexity," Scientific American, Vol.
272, No. 6, 1995, pp. 104-109.

702 ROACHE

8Konikow, L. R, and Bredehoeft, J. D., "Groundwater Models Cannot be
Validated," Advances in Water Resources, Vol. 15, 1992, pp. 75-83.

9Oreskes, N., Shrader-Frechette, K., and Belitz, K., "Verification, Valida-
tion, and Confirmation of Numerical Models in the Earth Sciences," Science,
Vol. 263, Feb. 1994, pp. 641-646.

1()Boehm, B. W., Software Engineering Economics, Prentice-Hall, En-
glewood Cliffs, NJ, 1981.

HBlottner, F. G., "Accurate Navier-Stokes Results for the Hypersonic
Flow over a Spherical Nosetip," Journal of Spacecraft and Rockets, Vol. 27,
No. 2, 1990, pp. 113-122.

12Aeschliman, D. P., Oberkampf, W. L,, and Blottner, F. G., "A Pro-
posed Methodology for Computational Fluid Dynamics Code Verification,
Calibration, and Validation," Proceedings of the International Congress on
Instrumentation in Aerospace Simulation Facilities, 1995.

13Haynes, T. S., Reed, H. L., and Saric, W. S., "CFD Validation Issues in
Transition Modeling," AIAA Paper 96-2051, 1996.

14Roache, P. J., Knupp, P. M., Steinberg, S., and Blaine, R. L., "Experi-
ence with Benchmark Test Cases for Groundwater Flow," Benchmark Test
Cases for Computational Fluid Dynamics, edited by I. Celik and C. J. Fre-
itas, ASME FED, Vol. 93, Book H00598, American Society of Mechanical
Engineers, 1990, pp. 49-56.

15Mehta, U., "Computational Requirements for Hypersonic Flight Per-
formance Estimates," AIAA Paper 89-1670, June 1989.

16Melnik, R., and Siclari, M., "An Overview of a Recent Industry Effort
at CFD Code Validation," AIAA Paper 95-2229, 1995.

17Mehta, U., "Some Aspects of Uncertainty in Computational Fluid Dy-
namics Results," Journal of Fluids Engineering, Vol. 113, 1995, pp. 538-
543.

18Mehta, U., "Guide to Credible Computational Fluid Dynamics Simula-
tions," AIAA Paper 95-2225, 1995.

19Cosner, R. R., "CFD Validation Requirements for Technology Transi-
tion," AIAA Paper 95-2227, 1995.

2()Melnik, R. E., Siclari, M. J., Marconi, F, Barger, T., and Verhoff, A.,
"An Overview of a Recent Industry Effort at CFD Code Certification,"
AIAA Paper 95-2229, 1995.

21Patankar, S. V, Numerical Heat Transfer and Fluid Flow, McGraw-
Hill, New York, 1980.

22Ferziger, J. H., "Estimation and Reduction of Numerical Error," Quan-
tification of Uncertainty in Computational Fluid Dynamics, edited by
I. Celik, C. J. Chen, P. J. Roache, and G. Scheurer, ASME FED, Vol. 158,
American Society of Mechanical Engineers, 1993, p. 18.

23Karniadakis, G. E., "Toward a Numerical Error Bar in CFD," Journal
of Fluids Engineering, Vol. 117, No. 1, 1995, pp. 7-9.

24Vanka, P., "Comment on Toward a Numerical Error Bar in CFD," Jour-
nal of Fluids Engineering, Vol. 117, No. 1, 1995, pp. 9, 10.

25 Roache, P. J., Computational Fluid Dynamics, Hermosa Publishers, Al-
buquerque, NM, 1972; revised printing, 1976; also Fundamentals of Com-
putational Fluid Dynamics, 1998.

26Zingg, D. W., "Grid Studies for Thin-Layer Navier-Stokes Computa-
tions of Airfoil Flowfield," AIAA Journal, Vol. 30, No. 10, 1993, pp. 2561-
2564.

27Roache, P. J., "Perspective: A Method for Uniform Reporting of Grid
Refinement Studies," Journal of Fluids Engineering, Vol. 116, No. 3, 1994,
pp. 405-413.

28Sudicky, E. A., and Frind, E. O., "Contaminant Transport in Fractured
Porous Media: Analytical Solutions for a System of Parallel Fractures,"
Water Resources Research, Vol. 18, No. 6, 1982, pp. 1634-1642.

29Roache, P. J., "Response: To the Comments by Drs. W. Shyy and
M. Sindir," Journal of Fluids Engineering, Vol. 116, No. 2, 1994, pp. 198,
199.

30Steinberg, S., and Roache, P. J., "Symbolic Manipulation and Compu-
tational Fluid Dynamics," Journal of Computational Physics, Vol. 57, No. 2,
1985, pp. 251-284.

31 Poly a, G., How to Solve It; A New Aspect of Mathematical Method,
Princeton Univ. Press, Princeton, NJ, 1953.

32Roache, P. J., and Steinberg, S., "Symbolic Manipulation and Compu-
tational Fluid Dynamics," AIAA Paper 83-1952, 1983; also AIAA Journal,
Vol. 22, No. 10, 1984, pp. 1390-1394.

33Steinberg, S., and Roache, P. J., "A Tool Kit of Symbolic Manipulation
Programs for Variational Grid Generation," AIAA Paper 86-0241, 1986.

34Roache, P. J., "A Method for Uniform Reporting of Grid Refinement
Studies," Quantification of Uncertainty in Computational Fluid Dynamics,
edited by I. Celik, C. J. Chen, P. J. Roache, and G. Scheurer, ASME FED,
Vol. 158, American Society of Mechanical Engineers, 1993, pp. 109-120.

35Roache, P. J., "A Method for Uniform Reporting of Grid Refinement
Studies," Proceedings of the AIAA 11th Computational Fluid Dynamics Con-
ference, Pt. 2, AIAA, Washington, DC, 1993, pp. 1057, 1058.

36de Vahl Davis, G., "Natural Convection of Air in a Square Cavity:
A Benchmark Numerical Solution," International Journal for Numerical
Methods in Fluids, Vol. 3, No. 3, 1983, pp. 249-264.

37Westerink, J. J., and Roache, P. J., "Issues in Convergence Studies
in Geophysical Flow Computations," Joint JSME-ASME Fluid Mechanics
Meeting, Session F137, 1995.

38Roache, P. J., "Quantification of Uncertainty in Computational Fluid
Dynamics," Annual Review of Fluid Mechanics, Vol. 29, 1997, pp. 123-
160.

39 Johnson, R. W., and Hughes, E. D., eds., Quantification of Uncertainty
in Computational Fluids Dynamics—1995, Joint JSME-ASME Fluid Me-
chanics Meeting, ASME FED, Vol. 213, American Society of Mechani-
cal Engineers, 1995.

40Lotz, R. D., Thompson, B. E., Konings, C. A., and Davoudzadeh, F,
"Numerical Uncertainties in Transonic Flow Calculations for Airfoils with
Blunt Trailing Edges," International Journal for Numerical Methods in
Fluids, Vol. 24, 1997, pp. 355-373.

41 Roache, P. J., "The SECO Code Algorithms for Groundwater Flow
and Transport," Finite Elements in Fluids: New Trends and Applications,
Part II, Proceedings VIII International Conference on Finite Elements in
Fluids, edited by K. Morgan, E. Onate, J. Periaux, J. Peraire, and O. C.
Zienkiewicz, 1993, pp. 939-948.

42Salari, K., Blaine, R. L., Economy, K., and Roache, P. J., "Grid Reso-
lution Studies of Radionuclide Transport in Fractured Porous Media," Joint
JSME-ASME Fluid Mechanics Meeting, ASME FED, Vol. 213, American
Society of Mechanical Engineers, 1995.

43Wilcox, D. C., Turbulence Modeling for CFD, DCW Industries, La
Canada, CA, 1993.

44Mueller, T. J., Hall, C. R., and Roache, P. J., "Influence of Initial Flow Di-
rection on the Turbulent Base Pressure in Supersonic Axisymmetric Flow,"
Journal of Spacecraft and Rockets, Vol. 7, No. 12, 1970, pp. 1484-1488.

45Roache, P. J., "Base Drag Calculations in Supersonic Turbulent Ax-
isymmetric Flows," Journal of Spacecraft and Rockets, Vol. 10, No. 4, 1973,
pp. 285-287.

46Roache, P. J., "Semidirect/Marching Methods and Elliptic Grid Gen-
eration," Proceedings of the Symposium on the Numerical Generation of
Curvilinear Coordinate Systems and Use in the Numerical Solution of
Partial Differential Equations, edited by J. F. Thompson, 1982, pp. 727-
737.

47Roache, P. J., Elliptic Marching Methods and Domain Decomposition,
CRC Press, Boca Raton, FL, 1995.

48Shirazi, S. A., and Truman, C. R., "Evaluation of Algebraic Turbulence
Models for PNS Predictions of Supersonic Flow Past a Sphere-Cone," AIAA
Journal, Vol. 27, No. 5, 1989, pp. 560-568.

49Celik, I., and Zhang, W.-M., "Calculation of Numerical Uncertainty
Using Richardson Extrapolation: Application to Some Simple Turbulent
Flow Calculations," Journal of Fluids Engineering, Vol. 117, Sept. 1995,
pp. 439-445.

50Claus, R. W., and Vanka, S. P., "Multigrid Calculations of a Jet in
Crossflow," Journal of Propulsion and Power, Vol. 8, 1992, pp. 185-193.

51Luettich, R. A., and Westerink, J. J., "Continental Shelf Scale Conver-
gence Studies with a Barotropic Tidal Model," Quantitative Skill Assessment
for Coastal Ocean Models, edited by D. R. Lynch and A. M. Davies, AGU
Press, 1995.

52Westerink, J. J., Luettich, R. A., and Muccino, J. C., "Modeling Tides in
the Western North Atlantic Using Unstructured Graded Grids," Tellus, 46A,
1994, pp. 187-199.

53Richardson, L. F, "The Approximate Arithmetical Solution by Finite
Differences of Physical Problems Involving Differential Equations, with an
Application to the Stresses in a Masonry Dam," Transactions of the Royal
Society of London, Series A, Vol. 210, 1908, pp. 307-357.

54Oden, J. T, Kennon, S. R., Tworzydlp, W W., Bass, J. M., and Berry,
C., "Progress on Adaptive h-p Finite Element Methods for the Incompress-
ible Navier-Stokes Equations," Computational Mechanics, Vol. 11, 1993,
pp. 421-432.

55Haworth, D. C., El Tahry, S. H., and Huebler, M.S., "A Global Approach
to Error Estimation and Physical Diagnostics in Multidimensional Compu-
tational Fluid Dynamics," International Journal for Numerical Methods in
Fluids, Vol. 17, 1993, pp. 75-97.

56Chang, S., and Haworth, D. C., "Adaptive Grid Refinement Using Cell-
Level and Global Imbalances," International Journal for Numerical Methods
in Fluids, Vol. 24, 1997, pp. 375-392.

57WIPP PA Department, Annual Performance Assessment for the Waste
Isolation Pilot Plant, Vol. 1, Preliminary Comparison with 40 CFR 191,
Subpart B, Vol. 2: Technical Basis, Performance Assessment Department,
Sandia National Lab., Albuquerque, NM, 1992.

58Oberkampf, W. L., "A Proposed Framework for Computational Fluid
Dynamics Code Calibration/Validation," AIAA Paper 94-2540, June 1994.

59Roache, P. J., Verification and Validation in Computational Science and
Engineering, Hermosa Publishers, Albuquerque, NM, 1998.

J. Kallinderis
Associate Editor

