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László Lakatos
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Preface

The development of queueing theory dates back more than a century. Originally
the concept was examined for the purpose of maximizing performance of telephone
operation centers; however, it was realized soon enough that issues in that field that
were solvable using mathematical models might arise in other areas of everyday
life as well. Mathematical models, which serve to describe certain phenomena,
quite often correspond with each other, regardless of the specific field for which
they were originally developed, be that telephone operation centers, planning and
management of emergency medical services, description of computer operation,
banking services, transportation systems, or other areas. The common feature in
these areas is that demands and services occur (also at an abstract level) with various
contents depending on the given questions. In the course of modeling, irrespective
of the meaning of demand and service in the modeled system, one is dealing
with only moments and time intervals. Thus it can be concluded that, despite the
diversity of problems, a common theoretical background and a mathematical toolkit
can be relied upon that ensures the effective and multiple application of a theory.
It is worth noting as an interesting aspect that the beginning of the development
of queueing theory is closely connected to the appearance of telephone operation
centers more than a century ago, as described previously; nevertheless, it still plays
a significant role in the planning, modeling, and analyzing of telecommunication
networks supplemented by up-to-date simulation methods and procedures.

The authors of this book have been conducting research and modeling in
the theoretical and practical field of queueing theory for several decades and
teaching in both bachelor’s, master’s, and doctoral programs in the Faculty of
Informatics, Eötvös Loránd University, Faculty of Engineering Sciences, Széchenyi
István University, John von Neuman Faculty of Informatics, Óbuda University
and the Faculty of Electrical Engineering and Informatics, Budapest University of
Technology and Economics (all located in Hungary).

The various scientific backgrounds of the authors complement each other; there-
fore, both mathematical and engineering approaches are reflected in this book. The
writing of this book was partly triggered by requests from undergraduate and Ph.D.
students and by the suggestions of supportive colleagues, all of whom expressed the
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necessity to write a book that could be directly applied to informatics, mathematics,
and applied mathematics education as well as other fields. In considering the
structure of the book, the authors tried to briefly summarize the necessary theoretical
basis of probability theory and stochastic processes, which provide a uniform system
of symbols and conventions to study and master the material presented here. At the
end of Part I, the book provides a systematic and detailed treatment of Markov
chains, renewal and regenerative processes, Markov chains, and Markov chains
with special structures. Following the introductory chapters on probability theory
and stochastic processes, we will disregard the various possible interpretations
concerning the examples to emphasize terms, methodology, and analytical skills;
therefore, we will provide the proofs for each of the given examples. We think that
this structure will help readers to study the material more effectively since they
may have different backgrounds and knowledge concerning this area. Regarding
the basics of probability theory, we refer the interested reader to the books
[21, 31, 38, 84]. With respect to the general results of stochastic processes and
Markov chains, we refer the reader to the following comprehensive literature:
[22, 26, 35, 36, 48, 49, 54, 71].

In Part II, the book introduces and considers the classic results of Markov
and non-Markov queueing systems. Then queueing networks and applied queueing
systems (analysis of ATM switches, conflict resolution methods of random access
protocols, queueing systems with priorities, and repeated orders queueing systems)
are analyzed. For more on the classic results of queueing theory, we refer the
reader to [8, 20, 39, 51, 55, 69, 82], whereas in connection with the modern theory
of queueing and telecommunication systems the following books may be consulted:
[6, 7, 14–16, 34, 41, 47, 83], as well as results published mainly in journals and
conference papers. The numerous exercises at the end of the chapters ensure a better
understanding of the material.

A short appendix appears at the end of the book that sums up those special
concepts and ideas that are used in the book and that help the reader to understand
the material better.

This work was supported by the European Union and cofinanced by the
European Social Fund under Grant TÁMOP 4.2.1/B-09/1/KMR-2010-0003 and by
the OTKA Grant No. K-101150. The authors are indebted to the Publisher for the
encouragement and the efficient editorial support.

The book is recommended for students and researchers studying and working in
the field of queueing theory and its applications.

Budapest, Hungary László Lakatos
László Szeidl
Miklós Telek
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Chapter 1
Introduction to Probability Theory

1.1 Summary of Basic Notions of Probability Theory

In this chapter we summarize the most important notions and facts of probability
theory that are necessary for an elaboration of our topic. In the present summary,
we will apply the more specific mathematical concepts and facts – mainly measure
theory and analysis – only to the necessary extent while, however, maintaining
mathematical precision.

Random Event We consider experiments whose outcomes are uncertain, where
the totality of the circumstances that are or can be considered does not determine
the outcome of the experiment. A set consisting of all possible outcomes is called
a sample space. We define random events (events for short) as certain sets of
outcomes (subsets of the sample space). It is assumed that the set of events is
closed under countable set operations, and we assign probability to events only;
they characterize the quantitative measure of the degree of uncertainty. Henceforth
countable means finite or countably infinite.

Denote the sample space by � D f!g. If � is countable, then the space �
is called discrete. In a mathematical approach, events can be defined as subsets
A � � of the possible outcomes � having the properties (�-algebra properties)
defined subsequently.

A given event A occurs in the course of an experiment if the outcome of the
experiment belongs to the given event, that is, if an outcome ! 2 A exists. An event
is called simple if it contains only one outcome !. It is always assumed that the
whole set � and the empty set ¿ are events that are called a certain event and an
impossible event, respectively.

Operation with Events; Notion of � -Algebra Let A and B be two events. The
union A [ B of A and B is defined as an event consisting of all elements ! 2 �
belonging to either event A or B , i.e., A [ B D f! W ! 2 A or ! 2 Bg.

The intersection (product)A\B .AB/ of eventsA andB is defined as an event
consisting of all elements ! 2 � belonging to both A and B , i.e.,
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4 1 Introduction to Probability Theory

A \ B D f! W ! 2 A and ! 2 Bg:

The difference AnB , which is not a symmetric operation, is defined as the set of
all elements ! 2 � belonging to event A but not to event B , i.e.,

AnB D f! W ! 2 A and ! … Bg:

A complementary event A of A is defined as a set of all elements ! 2 � that
does not belong to A, i.e.,

A D �nA:
If A \ B D ˛, then sets A and B are said to be disjoint or mutually exclusive.
Note that the operations [ and \ satisfy the associative, commutative, and

distributive properties

.A[ B/[ C D A [ .B [ C/; and .A\ B/\ C D A\ .B \ C/;
A [ B D B [ A; and A\ B D B \ A;

A\ .B [ C/ D .A\ B/[ .A\ C/; and A[ .B \ C/ D .A[ B/\ .A[ C/:

DeMorgan identities are valid also for the operations union, intersection, and
complementarity of events as follows:

A[ B D A \ B; A\ B D A [ B:

With the use of the preceding definitions introduced, we can define the notion of
�-algebra of events.

Definition 1.1. Let� be a nonempty (abstract) set, and let A be a certain family of
subsets of the set � satisfying the following conditions:

(1) � 2 A.
(2) If A 2 A, then A 2 A.
(3) If A1;A2; : : : 2 A is a countable sequence of elements, then

1[

iD1
Ai 2 A:

The family A of subsets of the set � satisfying conditions (1)–(3) is called a
�-algebra. The elements of A are called random events, or simply events.

Comment 1.2. The pair .�;A/ is usually called a measurable space, which forms
the general mathematical basis of the notion of probability.

Probability Space, Kolmogorov Axioms of Probability Theory Let � be a
nonempty sample set, and let A be a given �-algebra of subsets of �, i.e., the pair
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.�;A/ is a measurable space. A nonnegative number P .A/ is assigned to all events
A of �-algebra satisfying the axioms as follows.

A1. 0 � P .A/ � 1, A 2 A.
A2. P .�/ D 1.
A3. If the events Ai 2 A, i D 1; 2; : : :, are disjoint (i.e., AiAj D ˛; i ¤ j ), then

P

 1[

iD1
Ai

!

D
1X

iD1
P .Ai /:

The number P .A/ is called the probability of event A, axioms A1, A2, and A3
are called the Kolmogorov axioms, and the triplet .�;A;P/ is called the probability
space. As usual, axiom A3 is called the �-additivity property of the probability. The
probability space characterizes completely a random experiment.

Comment 1.3. In the measure theory context of probability theory, the function P
defined on A is called a probability measure. Conditions A1–A3 ensure that P is
nonnegative and that � is an additive and normed [P .�/ D 1] set function on A,
i.e., a normed measure on A. Our discussion basically does not require the direct
use of measure theory, but some assertions cited in this work essentially depend on
this theory.

Main Properties of Probability Let .�;A;P/ be a probability space. The follow-
ing properties of probability are valid for all probability spaces.

Elementary properties:

(a) The probability of an impossible event is zero, i.e.,
P .˛/ D 0.

(b) P
�
A
� D 1 � P .A/ for all A 2 A.

(c) If the relationship A � B is satisfied for given events A;B 2 A, then
P .A/ � P .B/,
P .B � A/ D P .B/ � P .A/.

Definition 1.4. A collection fAi ; i 2 I g of a countable set of events is called a
complete system of events if Ai ; i 2 I are disjoint (i.e., Ai \ Aj D ˛ if i ¤ j ,
i; j 2 I ) and

S

i2I
Ai D �.

Comment 1.5. If the collection of events fAi ; i 2 I g forms a complete system of
events, then

P

 
[

i2I
Ai

!

D 1:

Probability of Sum of Events, Poincaré Formula For any events A and B it is
true that

P .A [ B/ D P .A/C P .B/� P .AB/:
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Using this relation, a more general formula, called the Poincaré formula, can be
proved. Let n be a positive integer number; then, for any eventsA1;A2; : : : ; Ai 2 A,

P .A1 C : : :C An/ D
nX

kD1
.�1/k�1S.n/k ;

where S.n/k D
P

1�i1�:::�ik�n
P
�
Ai1 : : : Aik

�
.

Subadditive Property of Probability For any countable set of events fAi ; i 2 I g
the inequality

P

 
[

i2I
Ai

!

�
X

i2I
P .Ai /

is true.

Continuity Properties of Probability Continuity properties of probability are
valid for monotonically sequences of events, each of which is equivalent to
axiom A3 of probability. A sequence of events A1;A2; : : : is called monotonically
increasing (resp. decreasing) if A1 � A2 � : : : (resp. A1 � A2 � : : :).
Theorem 1.6. If the sequence of events A1;A2; : : : is monotonically decreasing,
then

P

 1\

iD1
Ai

!

D lim
n!1P .An/:

If the sequence of events A1;A2; : : : is monotonically increasing, then

P

 1[

iD1
Ai

!

D lim
n!1P .An/:

Conditional Probability and Its Properties, Independence of Events In prac-
tice, the following obvious question arises: if we know that event B occurs (i.e.,
the outcome is in B 2 A), what is the probability that the outcome is in A 2 A?
In other words, how does the occurrence of an event B influence the occurrence of
another eventA? This effect is characterized by the notion of conditional probability
P .AjB/ as follows.

Definition 1.7. Let A and B be two events, and assume that P .B/ > 0. The
quantity

P .AjB/ D P .AB/=P .B/

is called the conditional probability of A given B .
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It is easy to verify that the conditional probability possesses the following
properties:

1. 0 � P .AjB/ � 1.
2. P .BjB/ D 1.
3. If the events A1;A2; : : : are disjoint, then

P

 1X

iD1
Ai jB

!

D
1X

iD1
P .Ai jB/:

4. The definition of conditional probability P .AjB/ D P .AB/=P .B/ is equiva-
lent to the so-called theorem of multiplication

P .AB/ D P .AjB/P .B/ and P .AB/ D P .BjA/P .A/:

Note that these equations are valid in the cases P .B/ D 0 and P .A/ D 0 as well.
One of the most important concepts of probability theory, the independence of

events, is defined as follows.

Definition 1.8. We say that events A and B are independent if the equation

P .AB/ D P .A/P .B/

is satisfied.

Comment 1.9. If A and B are independent events and P .B/ > 0, then the
conditional probability P .AjB/ does not depend on event B since

P .AjB/ D P .AB/
P .B/

D P .A/P .B/
P .B/

D P .A/:

This relation means that knowing that an event B occurs does not change the
probability of another event A.

The notion of independence of an arbitrary collection Ai ; i 2 I of events is
defined as follows.

Definition 1.10. A given collection of events Ai ; i 2 I is said to be mutually
independent (independent for short) if, having chosen from among them any finite
number of events, the probability of the product of the chosen events equals the
product of the probabilities of the given events. In other words, if fi1; : : : ; ikg is any
subcollection of I , then one has

P
�
Ai1 \ . . . \ Aik

� D P .Ai1/ : : :P
�
Aik
�
:
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This notion of independence is stricter when pairs are concerned since it is easy
to create an example where pairwise independence occurs but mutual independence
does not.

Example 1.11. We roll two dice and denote the pair of results by

.!1; !2/ 2 � D f.i; j /; 1 � i; j � 6g:

The number of elements of the set � is j�j D 36, and we assume that the dice are
standard, that is, P f.!1; !2/g D 1=36 for every .!1; !2/ 2 �. Events A1, A2, and
A3 are defined as follows:

A1 D fthe result of the first die is eveng;
A2 D fthe result of the second die is oddg;
A3 D fboth the first and second dice are odd or both of them are eveng:

We check that events A1, A2, and A3 are pairwise independent, but they are not
(mutually) independent. It is clear that

A1 D f.2; 1/; : : : ; .2; 6/; .4; 1/; : : : ; .4; 6/; .6; 1/; : : : ; .6; 6/g;
A2 D f.1; 1/; : : : ; .6; 1/; .1; 3/; : : : ; .6; 3/; .1; 5/; : : : ; .6; 5/g;
A3 D f.1; 1/; .1; 3/; .1; 5/; .2; 2/; .2; 4/; .2; 6/; .3; 1/; .3; 3/;

.3; 5/; : : : ; .6; 2/; .6; 4/.6; 6/g;

thus
jA1j D 3 � 6 D 18; jA2j D 6 � 3 D 18; jA3j D 6 � 3 D 18:

We have, then, P .Ai/ D 1
2
; i D 1; 2; 3, and the relations

P
�
AiAj

� D 1

4
D P .Ai /P

�
Aj
�
; 1 � i; j � 3; i ¤ j;

which means events A1, A2, and A3 are pairwise independent. On the other hand,

P .A1A2A3/ D 0 ¤ 1

8
D P .A1/P .A2/P .A3/I

consequently, the mutual independence of events A1, A2, and A3 does not follow
from their pairwise independence.

Formula of Total Probability, Bayes’ Rule Using the theorem of multiplication
for conditional probability we can easily derive the following two theorems. Despite
the fact that the two theorems are not complicated, they represent quite effective
tools in the course of the various considerations.
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Theorem 1.12 (Formula of total probability). Let the sequence fAi; i 2 I g be a
complete system of events with P .Ai > 0/; i 2 I ; then for all events B

P .B/ D
X

i2I
P .BjAi/P .Ai /

is true.

Theorem 1.13 (Bayes’ rule). Under the conditions of the preceding theorem, the
following relation holds for all indices n 2 I :

P .AnjB/ D P .BjAn/P .An/P

i2I
P .BjAi/P .Ai / :

Concept of Random Variables Let .�;A;P/ be a probability space that is to
be fixed later on. In the course of random experiments, the experiments usually
result in some kind of value. This means that the occurrence of a simple event !
results in a random X.!/ value. Different values might belong to different simple
events; however, the function X.!/, depending on the simple event !, will have
a specific property. We must answer such basic questions as, for example, what is
the probability that the result of the experiment will be smaller than a certain given
value x? We have only determined probabilities of events (only for elements of the
set A) in connection with the definition of probability space; therefore, it has the
immediate consequence that we may only consider the probability of the set if the
set f! W X.!/ � xg is an event, which means that the set belongs to �-algebra A:

f! W X.!/ � xg 2 A.

This fact led to one of the most important notions of probability theory.

Definition 1.14. The real-valued functionX W �! R is called a random variable
if the relationship

f! W X.!/ � xg 2 A

is valid for all real numbers x 2 R. A function satisfying this condition is called A
measurable.

A property of random variables should be mentioned here. Define by B D B1
the �-algebra of Borel sets of R as the minimal �-algebra containing all intervals
of R; the elements of B are called the Borel sets of R. If X is A measurable, then
for all Borel sets D of R the set f! W X.!/ 2 Dg is also an element of A, i.e.,
f! W X.!/ 2 Dg is an event. Thus the probability PX ŒD� D P .f! W X.!/ 2 Dg/,
and so P .f! W X.!/ � xg/ are well defined. An important special case of random
variables are the so-called indicator variables defined as follows. Let A 2 A be an
event, and let us introduce the random variable IfAg, A 2 A:
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IfAg D IfAg.!/ D
�
1; if ! 2 A;
0; if ! … A:

Distribution Function Let X D X.!/ be a random variable; then the probability
P .X � x/, x 2 R, is well defined.

Definition 1.15. The function FX.x/ D P .X � x/ for all real numbers x 2 R is
called a cumulative distribution function(CDF) of random variable X .

Note that the CDFs FX and function PX determine each other mutually and
unambiguously. It is also clear that if the real line R is chosen as a new sample
space, and B is a �-algebra of Borel sets as the �-algebra of events, then the
triplet .R;B;PX/ determines a new probability space, where PX is referred to as
a probability measure induced by the random variable X .

The CDF FX has the following properties.

(1) In all points of a real line �1 < x0 < 1 the function FX.x/ is continuous
from the right, that is,

lim
x!x0C0

FX.x/ D FX.x0/.

(2) The function FX.x/; �1 < x <1 is a monotonically increasing function of
the variable x, that is, for all�1 < x < y <1 the inequalityFX.x/ � FX.y/
holds.

(3) The limiting values of the function FX.x/ exist under the conditions x ! �1
and x !1 as follows:

lim
x!�1FX.x/ D 0 and lim

x!1FX.x/ D 1:

(4) The set of discontinuity points of the function FX.x/, that is, the set of points
x 2 R for which FX.x/ ¤ FX.x � 0/, is countable.

Comment 1.16. It should be noted in connection with the definition of the CDF
that the literature is not consistent. The use of FX.x/ D P .X < x/; �1 < x <1
as a CDF is also widely applied. The only difference between the two definitions
lies within property (1) (see preceding discussion), which means that in the latter
case the CDF is continuous from the left and not from the right, but all the other
properties remain the same. It is also clear that if the CDF is continuous in all
x 2 R, then there is no difference between the two definitions.

Comment 1.17. From a practical point of view, it is sometimes useful to allow that
property (3) (see preceding discussion) does not satisfy the CDF FX of random
variable X , which means that, instead, one or both of the following relations hold:
In this case P .jX j <1/ < 1, and the CDF of random variable X has a defective
distribution function.
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Let a and b be two arbitrary real numbers for which �1 < a < b < 1; then
we can determine the probability of some frequently occurring events with the use
of the CDF of X as follows:

P .X D a/ D FX.a/ � FX.a � 0/;
P .a < X < b/ D FX.b � 0/� FX.a/;
P .a � X < b/ D FX.b � 0/� FX.a � 0/;
P .a < X � b/ D FX.b/ � FX.a/;
P .a � X � b/ D FX.b/ � FX.a � 0/:

These equations also determine the connection between the CDF FX and the
distribution PX for special Borel sets of a real line.

Discrete and Continuous Distribution, Density Function We distinguish two
important types of distributions in practice, the so-called discrete and continuous
distributions. There is also a third type of distribution, the so-called singular
distribution, in which case the CDF is continuous everywhere and its derivative
(with respect to the Lebesgue measure) equals 0 almost everywhere; however, we
will not consider this type. This classification follows from the Jordan decomposi-
tion theorem of monotonically functions, that is, an arbitrary CDF F can always
be decomposed into the sum of three functions – the monotonically increasing
absolutely continuous function, the step function with finite or countably infinite sets
of jumps (this part corresponds to a discrete distribution), and the singular function.

Definition 1.18. Random variable X is discrete or has a discrete distribution if
there is a finite or countably infinite set of values fxk; k 2 I g such that

P

k2I
pk D 1,

where pk D P .X D xk/; k 2 I . The associated function

fX.x/ D
�
pk; if x D xk; k 2 I;
0; if x ¤ xk; k 2 I; x 2 R;

is termed a probability density function (PDF) or probability mass function
(PMF).

It is easy to see that if random variable X is discrete with possible values
fxk; k D 0; 1; : : :g and with distribution fpk; k D 0; 1; : : :g, then the relationship
between the CDF FX and the PMF can be given as

FX.x/ D
X

xk<x

pk; �1 < x <1:
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Definition 1.19. A random variable X is continuous or has a continuous distri-
bution if there exists a nonnegative integrable function fX.x/; �1 < x <1 such
that for all real numbers a and b, �1 < a < b <1,

FX.b/� FX.a/ D
bZ

a

fX.x/dx

holds. The function fX.x/ is called the PDF of random variable X , or just the
density function of X .

Comment 1.20. It is clear that

FX.x/ D
xZ

�1
fX.u/du; �1 < x <1;

and it is also true that the PDF is not uniquely defined since if we take instead of
fX.u/ the function fX.u/Cg.u/, where the function g.u/ is nonnegative, integrable,

and
xR

�1
g.u/du D 0, then the function fX.u/ C g.u/ is also a PDF of random

variable X , which can naturally differ from the original fX .

An arbitrary PDF fX.x/ is nonnegative and integrable,

1Z

�1
fX.x/dx D 1;

and almost everywhere in R (with respect to the Lebesgue measure) the equation
F 0
X.x/ D fX.x/ is true.

Distribution of a Function of a Random Variable Let X D X.!/ be a random
variable. Let h.x/; x 2 R be a real-valued function, and let us define it as Y D
h.X/. The equation Y D h.X/ determines a random variable if for all y 2 R the
set f! W Y.!/ D h.X.!// � yg is an event that is an element of �-algebra A. If h is
a continuous function or, more generally, is a Borel-measurable function (h is Borel
measurable if for all x the relationship fu W h.u/ � xg 2 B is true), then Y , which is
determined by the equation Y D h.X/, is a random variable. The question is how
the CDF and the density function (if the latter exists) of random variable Y can be
determined. It is usually true that

FX.y/ D P .Y � y/ D P .h.X/ � y/ D PX Œfx W h.x/ � yg�; �1 < y <1:

If h is a strictly monotonically increasing function, then this formula can be given
in a simpler form. Let us denote by h�1 the inverse function of h, which in this case
must exist. Then
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FX.y/ D P .h.X/ � y/ D P
�
X � h�1.y/

� D FX.h�1.y//; �1 < y <1:

If h is a strictly monotonically decreasing function, then

FX.y/ D P .h.X/ � y/ D P
�
X 	 h�1.y/

� D 1�FX.h�1.y/�0/; �1 < y <1:

With these relations, a formula can be given for the PDF of Y in special cases.

Theorem 1.21. Let us suppose that random variable X has a PDF fX and h is a
strictly monotonically, differentiable real function. Then

fY .y/ D fX.h�1.y//
ˇ
ˇ
ˇ
ˇ

d

dy
h�1.y/

ˇ
ˇ
ˇ
ˇ ; �1 < y <1:

Comment 1.22. If h is a linear function, that is, h.y/ D ayCb; a ¤ 0, andX has
a PDF fX , then the random variable Y D h.X/ also has a PDF and the formula

fY .y/ D 1

jajfX
�y � a

b

�
; �1 < y <1;

is true.

Joint Distribution and Density Function of Random Variables, Marginal
Distributions In the majority of problems arising in practice, we have not one but
several random variables, and we examine the probability of events where random
variables simultaneously satisfy certain conditions.

Let .�;A;P/ be a probability space, and let there be two random variables X
and Y on that space. The joint statistical behavior of the two random variables can
be determined by a joint CDF. We should note that the joint analysis of the random
variables X and Y corresponds to the examination of two-dimensional random
vector variables such as .X; Y / that have random variable coordinates.

Definition 1.23. The function

FXY .x; y/ D P .X � x; Y � y/; �1 < x; y <1;

is called the joint CDF of random variablesX and Y .

From a practical point of view, the two most important types of distributions are
the discrete and the continuous ones, as in the one-dimensional case.

Definition 1.24. The joint distribution function of random variables X and Y

is called discrete; in other words, the random vector .X; Y / has a discrete
distribution if random variables X and Y are discrete. If we denote the values
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of random variables X and Y by fxi ; i 2 I g and
˚
yj ; j 2 J

�
, respectively, then

the function

fX;Y .x; y/ D
�
pi;j ; if x D xi ; y D yj ; i 2 I; j 2 J;
0; if x ¤ xi ; y ¤ yj ; i 2 I; j 2 J; x 2 R;

is called a joint PMF or joint PDF.

It is clear that in the discrete case the joint distribution function is

FXY .x; y/ D
X

xi�x; yj�y
pij :

The case of a joint continuous distribution is analogous to the discrete one.

Definition 1.25. The joint distribution of random variables X and Y is called con-
tinuous; in other words, the random vector .X; Y / has a continuous distribution if
there exists a nonnegative, real-valued integrable function on the plane fXY .x; y/,
�1 < x; y <1, for which the relation

FXY .x; y/ D
xZ

�1

yZ

�1
fXY .u; v/dudv

holds for all �1 < x; y <1.

Definition 1.26. If FXY denotes the joint CDF of random variables X and Y , then
the CDFs

FX.x/ D lim
y!1FXY .x; y/;

FY .y/ D lim
x!1FXY .x; y/

are called marginal distribution functions.

It is not difficult to see that marginal distribution functions do not determine the
joint CDF. It is also clear that if a joint PDF fXY .x; y/ of random variables X and
Y exists, then marginal PDFs can be given in the form

fX.x/ D
1Z

�1
fXY .x; y/dy; �1 < x <1;

fY .y/ D
1Z

�1
fXY .x; y/dx �1 < y <1:

If there are more than two random variables X1; : : : ; Xn; n 	 3, i.e., in the
case of an n-dimensional random vector .X1; : : : ; Xn/, then the definitions of joint
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distribution function and density functions can be given analogously to the case
of two random variables, so there is no essential difference. We will return to this
question when we introduce the concept of stochastic processes.

Conditional Distributions Let A be an arbitrary event, with P.A/ > 0, and X an
arbitrary random variable. Using the notion of conditional probability, we can define
the conditional distribution of random variable X given event A as the function

FX.xjA/ D P .X � xjA/; x 2 R.

The function FX.xjA/ has all the properties of a distribution function mentioned
previously.

The function fX.xjAi / is called a conditional density function of random
variable X given event A if a nonnegative integrable function fX.xjA/ exists for
which the equation

FX.xjA/ D
xZ

�1
fX.ujA/du; �1 < x <1;

holds.
The result for the distribution function FX.x/ can be easily proved in the same

way as the theorem of full events. If the sequence of eventsA1;A2; : : : is a complete
system of events with the property P .Ai / > 0; i D 1; 2; : : :, then

FX.x/ D
1X

iD1
FX.xjAi/P .Ai /; �1 < x <1:

A similar relation holds for the conditional PDFs fX.xjAi/; i 	 1, if they exist:

fX.x/ D
1X

iD1
fX.xjAi/P .Ai /; �1 < x <1:

A different approach is required to define the conditional distribution function
FX jY .xjy/ of random variableX given Y D y, where Y is another random variable.
The difficulty is that if a random variable Y has a continuous distribution function,
then the probability of the event fY D yg equals zero, and therefore the conditional
distribution function FX jY .xjy/ cannot be defined with the help of the notion of
conditional probability. In this case the conditional distribution function FX jY .xjy/
is defined as follows:

FX jY .xjy/ D lim
�y!C0P .X � xjy � Y < y C�y/

if the limit exists.
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Let us assume that the joint density function fXY .x; y/ of random variables X
and Y exists. In such a case random variableX has the conditional CDF FX jY .xjy/
and conditional PDF fX jY .xjy/ given Y D y. If a joint PDF exists and fX.y/ > 0,
then it is not difficult to see that the following relation holds:

FX jY .xjy/ D lim
�y!C0P .X � xjy � Y < y C�y/

D lim
�y!C0

P .X � x; y � Y < y C�y/
P .y � Y < y C�y/

D lim
�y!C0

FXY .x;yC�y/�FXY .x;y/
�y

FY .yC�y/�FY .y/
�y

D 1

fY .y/

@

@y
FXY .x; y/:

From this relation we get the conditional PDF fX jY .xjy/ as follows:

fX jY .xjy/ D @

@x
FX jY .xjy/ D 1

fY .y/

@2

@x@y
FXY .x; y/ D fXY .x; y/

fY .y/
: (1.1)

Independence of Random Variables Let X and Y be two random variables. Let
FXY .x; y/ be the joint distribution function of X and Y , and let FX.x/ and FY .y/
be the marginal distribution functions.

Definition 1.27. Random variables X and Y are called independent of each other,
or just independent, if the identity

FXY .x; y/ D FX.x/FY .y/

holds for any x; y, �1 < x; y <1.

In other words, random variablesX and Y are independent if and only if the joint
distribution function of X and Y equals the product of their marginal distribution
functions.

The definition of independence of two random variables can be easily generalized
to the case where an arbitrary collection of random variables fXi; i 2 I g is given,
analogously to the notion of the independence of events.

Definition 1.28. A collection of random variables fXi; i 2 I g is called mutually
independent (or just independent), if for any choice of a finite number of elements
Xi1; : : : ; Xin the relation

FXi1 ;:::;Xin .x1; : : : ; xn/ D FXi1 .x1/ � : : : � FXin .xn/; x1; : : : ; xn 2 R

holds.
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Note that from the pairwise independence of random variables fXi; i 2 I g,
which means that the condition

FXi1 ;Xi2 .x1; x2/ D FXi1 .x1/FXi2 .x2/; x1; x2 2 R; i1; i2 2 I;

is satisfied, mutual independence does not follow.

Example 1.29. Consider Example 1.11 given earlier and preserve the notation.
Denote by Xi D IfAi g the indicator variables of the events Ai ; i D 1; 2; 3. Then
we can verify that random variables X1, X2, and X3 are pairwise independent, but
they do not satisfy mutual independence. The pairwise independence of random
variablesXi can be easily proved. Since the events A1;A2; A3 are independent and

fXi D 1g D Ai and fXi D 0g D Ai ;

then, using the relation proved in Example 1.11, we obtain for i ¤ j

P
�
Xi D 1;Xj D 1

� D P
�
AiAj

� D P .Ai /P
�
Aj
� D 1

4
;

P
�
Xi D 1;Xj D 0

� D P
�
AiAj

� D P .Ai /P
�
Aj
� D 1

4
;

P
�
Xi D 0;Xj D 0

� D P
�
AiAj

� D P
�
Ai
�
P
�
Aj
� D 1

4
;

while, for example,

P .X1 D 1;X2 D 1;X3 D 1/ D P .A1A2A3/ D 0 ¤ 1

8

D P .A1/P .A2/P .A3/ D P .X1 D 1/P .X2 D 1/P .X3 D 1/:

Consider how we can characterize the notion of independence for two random
variables in the discrete and continuous cases (if more than two random variables
are given, then we may proceed in a similar manner).

Firstly, let us assume that the sets of values of discrete random variables X and
Y are fxi ; i 	 0g and

˚
yj ; j 	 0

�
, respectively. If we denote the joint and marginal

distributions of X and Y by

˚
pij D P

�
X D xi ; Y D yj

�
; i; j 	 0� ; fqi D P .X D xi /; i 	 0g ;

and
˚
rj D P

�
Y D yj

�
; | 	 0� ;

then the following assertion holds. Random variables X and Y are independent if
and only if

pij D qi rj ; i; j 	 0:
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Now assume that random variables X and Y have joint density fXY .x; y/ and
marginal densities fX.x/ and fY .y/. Thus, in this case, random variables X and Y
are independent if and only if the joint PDF takes a product form, that is,

fXY .x; y/ D fX.x/fY .y/; �1 < x; y <1:

Convolution of Distributions Let X and Y be independent random variables
with distribution functions FX.x/ and FY .y/, respectively, and let us consider the
distribution of the random variableZ D X C Y .

Definition 1.30. The distribution (CDF, PDF) of the random variableZ D XCY is
called the convolution of the distribution (CDF, PDF), and the equations expressing
the relation among them are called convolution formulas.

Definition 1.31. Let X1;X2; : : : be independent identically distributed random
variables with the common CDF FX . The CDF F �n

X of the sumZn D X1C : : :CXn
.n 	 1/ is uniquely determined by FX and is called the n-fold convolution of the
CDF of FX .

Note that the CDF FZ.z/ of the random variable Z D X C Y , which is called
the convolution of CDFs FX.x/ and FY .y/, can be given in the general form

FZ.z/ D P .Z � z/ D P .X C Y � z/ D
1Z

�1
FX.z � y/ dFY .y/:

This formula gets a simpler form in cases where the discrete random variables X
and Y take only integer numbers, or if the PDFs fX.x/ and fY .y/ ofX and Y exist.

Let X and Y be independent discrete random variables taking values in
f0;˙1;˙2; : : :g with probabilities fqi D P .X D xi /g and

˚
rj D P

�
Y D yj

��
,

respectively. Then the random variableZ D XCY takes values in f0;˙1;˙2; : : :g,
and its distribution satisfies the identity

sk D
1X

nD�1
qk�nrn; k D 0;˙1;˙2; : : : :

If the independent random variablesX and Y have a continuous distribution with
the PDFs fX.x/ and fY .y/, respectively, then random variableZ is continuous and
its PDF fZ.z/ can be given in the integral form

fZ.z/ D
1Z

�1
fX.z � y/fY .y/dy:

Mixture of Distributions LetF1.x/; : : : ; Fn.x/ be a given collection of CDFs, and
let a1; : : : ; an be nonnegative numbers with the sum a1C : : :Can D 1. The function
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F.x/ D a1F1.x/C : : :C anFn.x/; �1 < x <1;

is called a mixture of CDFs F1.x/; : : : ; Fn.x/ with weights a1; :::; an .

Comment 1.32. Any CDF can be given as a mixture of discrete, continuous, and
singular CDFs, where the weights can also take a value of 0.

Clearly, the function F.x/ possesses all the properties of CDFs; therefore it is
also a CDF. In practice, the modeling of mixture distributions plays a basic role in
stochastic simulation methods. A simple way to model mixture distributions is as
follows.

Let us assume that the random variables X1; : : : ; Xn with distribution functions
F1.x/; : : : ; Fn.x/ can be modeled. Let Y be a random variable taking values in
f1; : : : ; ng and independent ofX1; : : : ; Xn. Assume that Y has a distributionP.Y D
i/ D ai ; 1 � i � n (ai 	 0; a1 C : : :C an D 1). Let us define random variable Z
as follows:

Z D
nX

iD1
IfYDigXi ;

where Ifg denotes the indicator variable. Then the CDF of random variableZ equals
F.z/.

Proof. Using the formula of total probability, we have the relation

P .Z � z/ D
nX

iD1
P .Z � zjY D i/P .Y D i/ D

nX

iD1
P .Xi � z/ai D F.z/:

ut
Concept and Properties of Expectation A random variable can be completely
characterized in a statistical sense by its CDF. To define a distribution functionF.x/,
one needs to determine its values for all x 2 R, but this is not possible in many cases.
Fortunately, there is no need to do so because in many cases it suffices to give some
values that characterize the CDF in a certain sense depending on concrete practical
considerations. One of the most important concepts is expectation, which we define
in general form, and we give the definition for discrete and continuous distributions
as special cases.

Definition 1.33. Let X be a random variable, and let FX.x/ be its CDF. The
expected value (or mean value) of random variable X is defined as

E .X/ D
1Z

�1
xdFX.x/

if the expectation exists.



20 1 Introduction to Probability Theory

Note that the finite expected value E .X/ exists if and only if
R1

�1 jxjdFX.x/ <1. It is conventional to denote the expected value of the random variableX by �X .

Expected Value of Discrete and Continuous Random Variables Let X be
a discrete valued random variable with countable values fxi ; i 2 I g and with
probabilities fpi D P .X D xi /; i 2 I g. The finite expected value E .X/ of random
variable X exists and equals

E .X/ D
X

i2I
pixi

if and only if the sum is absolutely convergent, that is,
P

i2I pi jxi j < 1. In
the case of continuous random variables, the expected value can also be given in
a simple form. Let fX.x/ be the PDF of a random variable X . If the conditionR1

�1 jxj fX.x/dx < 1 holds (i.e., the integral is absolutely convergent), then the
finite expected value of X exists and can be given as

E .X/ D
1Z

�1
xfX.x/dx:

From a practical point of view, it is generally enough to give two special,
discrete, and continuous cases. Let X be a random variable that has a mixed CDF
with discrete and continuous components F1.x/ and F2.x/, respectively, and with
weights a1 and a2, that is,

F.x/ D a1F1.x/C a2F2.x/; a1; a2 	 0; a1 C a2 D 1.

Assume that the set of discontinuities of F1.x/ is fxi ; i 2 I g and denote pi D
F1.xi / � F1.xi�/; i 2 I . In addition, we assume that the continuous CDF F2.x/
has the PDF f .x/. Then the expected value of random variable X is determined as
follows:

E .X/ D a1
X

i2I
pixi C a2

1Z

�1
xf .x/dx

if the series and the integral on the right-hand side of the last formula are absolutely
convergent. The expected values related to special and different CDFs will be given
later in this chapter.

The operation of expectation can be interpreted as a functional

E W X ! E .X/

that assigns a real value to the given random variable. We enumerate the basic
properties of this functional as follows.
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1. If random variableX is finite, i.e., if there are constants x1 and x2 for which the
inequality x1 � X � x2 holds, then

x1 � E .X/ � x2:

If random variable X is nonnegative and the expected value E .X/ exists, then

E .X/ 	 0.

2. Let us assume that the expected value E .X/ exists; then the expected value of
random variable cX exists for an arbitrary given constant c, and the identity

E .cX/ D cE .X/

is true.
3. If random variable X satisfies the condition P .X D c/ D 1, then

E .X/ D c:

4. If the expected values of random variablesX and Y exist, then the sum X C Y
has an expected value, and the equality

E .X C Y / D E .X/C E .Y /

holds. This relation can usually be interpreted in such a way that the operation
of expectation on the space of random variables is an additive functional.

5. The preceding properties can be expressed in a more general form. If there
are finite expected values of random variables X1; : : : ; Xn and c1; : : : ; cn are
constants, then the equality

E .c1X1 C : : :C cnXn/ D c1E .X1/C : : :C cnE .Xn/

holds. This property means that the functional E ./ is a linear one.
6. Let X and Y be independent random variables with finite expected value. Then

the expected value of the product of random variables X � Y exists and equals
the product of expected values, i.e., the equality

E .XY / D E .X/ � E .Y /

is true.

Expectation of Functions of Random Variables, Moments and Properties Let
X be a discrete random variable with finite or countable values fxi ; i 2 I g and with
distribution fpi ; i 2 I g. Let h.x/; x 2 R be a real-valued function for which the
expected value of the random variable Y D h.X/ exists; then the equality
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E .Y / D E .h.X// D
X

i2I
pih.xi /

holds.
If the continuous random variableX has a PDF fX.x/ and the expected value of

the random variable Y D h.X/ exists, then the expected value of Y can be given in
the form

E .Y / D
1Z

�1
h.x/fX.x/dx:

In cases where the expected value of functions of random variables (functions of
random vectors) are investigated, analogous results to the one-dimensional case can
be obtained. We give the formulas in connection with the two-dimensional case only.
Let X and Y be two random variables, and let us assume that the expected value of
the random variableZ D h.X; Y / exists. With the appropriate notation, used earlier,
for the cases of discrete and continuous distributions, the expected value of random
variable Z can be given in the forms

E .Z/ D
X

i2I

X

j2J
h.xi ; yj /P

�
X D xi ; Y D yj

�
;

E .Z/ D
1Z

�1

1Z

�1
h.x; y/fXY .x; y/dxdy:

Consider the important case where h is a power function, i.e., for a given positive
integer number k, h.x/ D xk . Assume that the expected value of Xk exists. Then
the quantity

�k D E
�
Xk
�
; k D 1; 2; : : : ;

is called the kth moment of random variable X . It stands to reason that the first
moment � D �1 D E

�
X1
�

is the expected value of X and the frequently used
second moment is �2 D E

�
X2
�
.

Theorem 1.34. Let j and k be integer numbers for which 1 � j � k. If the kth
moment of random variable X exists, then the j th moment also exists.

Proof. From the existence of the kth moment it follows that E
�jX jk� < 1. Since

k=j 	 1, the function xk=j ; x 	 0, is convex, and by the use of Jensen’s inequality
we get the relation

�
E
�jX jj �	k=j � E

��jX jj �k=j
�
D E

�jX jk� <1:

ut
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The kth central moment E
�
.X � E .X//k

�
is also used in practice; it is defined

as the kth moment of the random variable centered at the first moment (expected
value). The kth central moment E

�
.X � E .X//k

�
can be expressed by the noncen-

tral moments �i ; 1 � i � k of random variable X as follows:

E
�
.X � E .X//k

� D E

 
kX

iD0

 
k

i

!

Xi.�E .X//k�i
!

D
kX

iD0

 
k

i

!

E
�
Xi
�
.�E .X//k�i .

In the course of a random experiment, the observed values fluctuate around
the expected value. One of the most significant characteristics of the quantity of
fluctuations is the variance. Assume that the second moment of random variable X
is finite. Then the quantities

Var .X/ D E
�
.X � E .X//2

�

are called the variance of random variableX . The standard deviation of a random
variable X is the square root of its variance:

D .X/ D
p

E ..X � E .X//2/:

It is clear that the variance of X can be given with the help of the first and second
moments as follows:

D2 .X/ D Var .X/ D E
�
.X � E .X//2

� D E
�
X2
� � 2E .X/ � E .X/C .E .X/2/

D E
�
X2
� � .E .X//2 D �2 � �2.

It is conventional to denote the variance of the random variableX by �2X D D2 .X/.
It should be noted that the variance of a random variable exists if and only if its

second moment is finite. In addition, from the last inequality it follows that an upper
estimation can be given for the variance as

D2 .X/ � E
�
X2
�
:

It can also be seen that for every constant c the relation

E
�
.X � c/2� D E

�
Œ.X � E .X//C .E .X/� c/�2

�
D D2 .X/C .E .X/ � c/2

holds, which is analogous to the Steiner formula, well known in the field of
mechanics.
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As an important consequence of this identity, we have the following result: the
second moment E

�
.X � c/2� takes the minimal value for the constant c D E .X/.

We will now mention some frequently used properties of variance.

1. If the variance of random variable X exists, then for all constants a and b the
identity

D2 .aX C b/ D a2D2 .X/

is true.
2. Let X1; : : : ; Xn be independent random variables with finite variance; then

D2 .X1 C : : :CXn/ D D2 .X1/C : : :C D2 .Xn/: (1.2)

The independence of random variables that play a role in formula (1.2) is
not required for the last identity, and it is also true if instead of assuming
the independence of the random variables X1; : : : ; Xn we assume that they are
uncorrelated. The notion of correlation is to be defined later. If X1; : : : ; Xn are
independent and identically distributed random variables with finite variance � , then

D2 .X1 C : : :CXn/ D D2 .X1/C : : :C D2 .Xn/ D n�2;

from which
D .X1 C : : :CXn/ D �

p
n

follows.
In the literature on queueing theory, the notion of relative variance CV .X/2 is

applied, which is defined as

CV .X/2 D D2 .X/

E .jX j/2 :

Its square root CV .X/ D D .X/=E .jX j/ is called the coefficient of variation,
which serves as a normalized measure of variance of a distribution. The following
inequalities hold:

Exponential distribution: CV D 1;
Hyperexponential distribution: CV > 1;

Erlang distribution: CV < 1:

Markov and Chebyshev Inequalities The role of the Markov and Chebyshev
inequalities is significant, not only because they provide information concerning
distributions with the help of expected value and variance but because they are also
effective tools for proving certain results.

Theorem 1.35 (Markov inequality). If the expected value of a nonnegative random
variable X exists, then the following inequality is true for any constant " > 0;:
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P .X 	 "/ � E .X/
"

:

Proof. For an arbitrary positive constant " > 0 we have the relation

E .X/ 	 E
�
XIfX�"g

� 	 "E �IfX�"g
� D " P .X 	 "/;

from which the Markov inequality immediately follows. ut
Theorem 1.36 (Chebyshev inequality). If the variance of random variable X is
finite, then for any constant " > 0 the inequality

P .jX � E .X/j 	 "/ � D2 .X/

"2

holds.

Proof. Using the Markov inequality for a constant " > 0 and for the random variable
.X � E .X//2 we find that

P .jX � E .X/j 	 "/ D P
�
.X � E .X//2 	 "2

�
� E .X � E .X//2

"2
D D2 .X/

"2
;

from which the assertion of the theorem follows. ut
Comment 1.37. Let X be a random variable. If h.x/ is a convex function and
E .h.X// exists, then the Jensen inequality E .h.X// 	 h.E .X// is true. Using
this inequality we can obtain some other relations, similar to the case of the Markov
inequality.

Example 1.38. As a simple application of the Chebyshev inequality, let us consider
the average .X1 C : : : C Xn/=n, where the random variables X1; : : : ; Xn are
independent identically distributed with finite second moment. Let us denote the
joint expected value and variance by � and �2, respectively. Using the property
(1.2) of variance and the Chebyshev inequality and applying .n"/ instead of ", we
get the inequality

P .jX1 C : : :CXn � n�j 	 n"/ D P
�
.X1 C : : :CXn � n�/2 	 n2"2

�

� n�2

.n"/2
D �2

n"2
I

then

P

ˇˇ
ˇ̌X1 C : : :CXn

n
� �

ˇ
ˇ
ˇ̌ 	 "

�
� �2

n"2
:
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As a consequence of the last inequality, for every fixed positive constant " the
probability P

�ˇˇX1C:::CXn
n

� �ˇˇ 	 "� tends to 0 as n goes to infinity. This assertion is
known as the weak law of large numbers.

Generating and Characteristic Functions So far, certain quantities characteriz-
ing the distribution of random variables have been provided. Now such transfor-
mations of distributions will be given where the distributions and the functions
obtained by the transformations uniquely determine each other. The investigated
transformations provide effective tools for determining, for instance, distributions
and moments and for proving limit theorems.

Definition 1.39. Let X be a random variable taking values in f0; 1; : : :g, with
probabilities p0; p1; : : :. Then the power series

GX.z/ D E
�
zX
� D

1X

iD0
piz

i

is convergent for all z 2 Œ�1; 1�, and the function GX.z/ is called the probability
generating function (or just generating function) of the discrete random vari-
able X .

In engineering practice, the power series defining the generating function is
applied in a more general approach instead of in the interval Œ�1; 1�, and the
generating function is defined on the closed complex unit circle z 2 C; jzj � 1,
which is usually called a z-transform of the distribution fpi ; i D 0; 1; : : :g. This
notion is also applied if, instead of a distribution, a transformation is made to an
arbitrary sequence of real numbers.

It should be noted that jGX.z/j � 1 if z 2 C and the function GX.z/ is
differentiable on the open unit circle of the complex plane z 2 C; jzj < 1 infinitely
many times and the kth derivative of GX.z/ equals the sum of the kth derivative of
the members of the series.

It is clear that
pk D G.k/

X .0/=kŠ; k D 0; 1; : : : :
This formula makes it possible to compute the distribution if the generating function
is given. It is also true that if the first and second derivatives G0

X.1�/ and G00
X.1�/

exist on the left-hand side at z D 1, then the first and second moments of random
variable X can be computed as follows:

E .X/ D G0
X.1�/ and E

�
X2
� D �

zG0
X.z/

�0ˇˇ
ˇ
zD1 D G

00
X.1�/CG0

X.1�/:

From this we can obtain the variance of X as follows:

D2 .X/ D G00
X.1�/CG0

X.1�/� .G0
X.1�//2:
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It can also be verified that if the nth derivative of the generating function GX.z/
exists on the left-hand side at z D 1, then

E .X.X � 1/ : : : .X �mC 1// D
1X

kDm
k.k � 1/ : : : .k �mC 1/pk

D G.m/
X .1�/; 1 � m � n:

Computing the expected values on the left-hand side of these identities, we can
obtain linear equations between the moments �k D E.Xk/; 1 � k � m, and the
derivativesG.m/

X .1�/ for all 1 � m � n. The moments �m; m D 1; 2; : : : ; n can be

determined in succession with the help of the derivatives G.k/
X .1�/; 1 � k � m:

The special cases of k D 1; 2 give the preceding formulas for the first and second
moments.

Characteristic Function

Definition 1.40. The complex valued function

'X.s/ D E
�
eisX

� D E .cos.sX//C iE .sin.sX//; s 2 R;

is called the characteristic function of random variable X , where i D p�1.

Note that a characteristic function can be rewritten in the form

'X.s/ D
1Z

�1
eisxdFX.x/;

which is the well-known Fourier–Stieltjes transform of the CDF FX.x/.
Using conventional notation, in discrete and continuous cases we have

'X.s/ D
1X

kD0
pkeisxk , and 'X.s/ D

1Z

�1
eisxfX.x/dx:

The characteristic function and the CDFs determine each other uniquely. Now
some important properties of characteristic functions will be enumerated.

1. The characteristic function is real valued if and only if the distribution is
symmetric.

2. If the kth moment E
�
Xk
�

exists at point 0, then

E
�
Xk
� D '

.k/
X .0/

ik
:
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3. If the derivative '.2k/X .0/ is finite for a positive integer k, then the moment

E
�
X2k

�
exists. Note that from the existence of the finite derivative '.2kC1/

X .0/

only the existence of the finite moment E
�
X2k

�
follows.

4. Let X1; : : : ; Xn be independent random variables; then the characteristic func-
tion of the sum X1C : : :CXn equals the product of the characteristic functions
of the random variables Xi , that is,

'X1C:::CXn.s/ D E
�
eis.X1C:::CXn/

� D E
�
eisX1 : : : eisXn

�

D E
�
eisX1

� � : : : � E �eisXn� D 'X1.s/ : : : 'X1.s/:

Note that property 4 plays an important role in the limit theorems of probability
theory.

Laplace–Stieltjes and Laplace Transforms If, instead of the CDFs, the Laplace–
Stieltjes and Laplace transforms were used, the problem could be solved much
easier in many practical cases and the results could additionally often be given
in more compact form. Let X be a nonnegative random variable with the CDF
F.x/ .F.0/ D 0/. Then the real or, in general, complex varying function

F�.s/ D E
�
e�sX � D

1Z

0

e�sxdF.x/; Res 	 0; F�.0/ D 1

is called the Laplace–Stieltjes transform of the CDF F . Since
ˇ
ˇe�sX ˇˇ � 1 if Res 	

0, then the function F�.s/ is well defined. If f is a PDF, then the function

f �.s/ D
1Z

0

e�sxf .x/dx; Res 	 0;

is called the Laplace transform of the function f . These notations will be used
even if the functionsF and f do not possess the necessary properties of distribution
and PDFs but F�.s/ and f �.s/ are well defined. If f is a PDF related to the CDF
F , then the equality

F�.s/ D f �.s/ D sF �.s/ (1.3)

holds.

Proof. It is clear that

F�.s/ D
1Z

0

e�sxdF.x/ D
1Z

0

e�sxf .x/dx D f �.s/;

and integrating by parts we have
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F�.s/ D
1Z

0

e�sxdF.x/ D
1Z

0

se�sxF .x/dx D sF �.s/:

ut
Since the preceding equation is true between the two introduced transforms, it is

enough to consider the Laplace–Stieltjes transform only and to enumerate its main
properties.

(a) F�.s/; Res 	 0 is a continuous function and 0 � jF�.s/j � 1; Res 	 0.
(b) F�

aXCb.s/ D e�bsF�.as/.
(c) For all positive integers k

.�1/kF�.k/.s/ D
1Z

0

xke�sxdF.x/; Res > 0:

If the kth moment �k D E
�
Xk
�

exists, then �k D .�1/kF�.k/.0/.
(d) If the nonnegative random variablesX and Y are independent, then

F�
XCY .s/ D F�

X .s/F
�
Y .s/:

(e) For all continuity points of the CDF F the inversion formula

F.x/ D lim
a!1

X

n�ax
.�1/n.F�.a//.n/

an

nŠ

is true.

Covariance and Correlation Let X and Y be two random variables with finite
variances �2X and �2Y , respectively. The covariance between the pair of random
variables .X; Y / is defined as

cov.X; Y / D E ..X � E .X//.Y � E .Y ///:

The covariance can be rewritten in the simple computational form

cov.X; Y / D E .XY / � E .X/E .Y /:

If the variances �2X and �2Y satisfy the conditions D .X/ > 0; D .Y / > 0, then
the quantity

corr.X; Y / D cov



X � E .X/

D .X/
;
Y � E .Y /

D .Y /

�
D cov.X; Y /

D .X/D .Y /

is called the correlation between the pair of random variables .X; Y /.
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Correlation can be used as a measure of the dependence between random
variables. It is always true that

�1 � corr.X; Y / � 1;

provided that the variances of random variables X and Y are finite and nonzero.

Proof. Since by the Cauchy–Schwartz inequality for all random variables U and V
with finite second moments

.E .UV //2 � E
�
U 2
�
E
�
V 2
�
;

therefore

.cov.X; Y //2 � E
�
.X � E .X//2

�
E
�
.Y � E .Y //2

� D D2 .X/D2 .Y /;

from which the inequality jcorr.X; Y /j � 1 immediately follows. ut
It can also be proved that the equality jcorr.X; Y /j D 1 holds if and only if a

linear relation exists between random variablesX and Y with probability 1, that is,
there are two constants a and b for which P .Y D aX C b/ D 1.

Both covariance and correlation play essential roles in multivariate statistical
analysis. Let X D .X1; : : : ; Xn/T be a column vector whose n elementsX1; : : : ; Xn
are random variables. Here it should be noted that in probability theory and statistics
usually column vectors are applied, but in queueing theory row vectors are used if
Markov processes are considered. We define

E .X/ D .E .X1/; : : : ;E .Xn//T ;

provided that the expected values of components exist. The upper index T denotes
the transpose of vectors or matrices. Similarly, if a matrix W D �

Wij

� 2 R
k�m is

given whose elements Wij are random variables of finite expected values, then we
define

E .W / D �E �Wij

��
; 1 � i � k; 1 � j � m/:

If the variances of components of a random vectorX D .X1; : : : ; Xk/T are finite,
then the matrix

R D E
�
.X � E .X// .X � E .X//T

�
(1.4)

is called a covariance matrix ofX . It can be seen that the .i; j / entries of matrixR
areRij D cov.Xi ; Xj /;which are the covariances between the random variablesXi
and Xj .

The covariance matrix can be defined in cases where the components of X are
complex valued random variables replacing in definition (1.4) .X � E .X//T by
.X � E .X//�T the complex composed of transpose.
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An important property of a covariance matrix R is that it is nonnegative definite,
i.e., for all real or complex k-dimensional column vectors z D .z1; : : : ; zk/T the
inequality

zRzT 	 0
holds.

The matrix r D .ri;j / with components ri;j D corr.Xi ; Xj /; 1 � i � k; 1 �
j � m is called a correlation matrix of random vector X .

Conditional Expectation and Its Properties The notion of conditional expecta-
tion is defined with the help of results of set and measure theories. We present the
general concept and important properties and illustrate the important special cases.

Let .�;A;P/ be a fixed probability space, and letX be a random variable whose
expected value exists. Let C be an arbitrary sub-�-algebra of A. We wish to define
the conditional expectation Z D E .X jC/ of X given C as a C-measurable random
variable for which the random variable satisfies the condition E

�
E .X jC/IfC g

� D
E
�
XIfC g

�
for all C 2 C. As a consequence of the Radon–Nikodym theorem, a

random variable Z exists with probability 1 that satisfies the required conditions.

Definition 1.41. Random variable Z is called the conditional expectation of X
given �-algebra C if the following conditions hold:

(a) Z is a C-measurable random variable.
(b) E

�
E .X jC/IfC g

� D E
�
XIfC g

�
for all C 2 C.

Definition 1.42. Let A 2 A be an event. The random variable P .AjC/ D
E
�
IfAgjC

�
is called the conditional expectation of event A given �-algebra C.

Important Properties of Conditional Expectation Let C, C1, and C2 be sub-�-
algebras of A, and let X , X1, and X2 be random variables with finite expected
values. Then the following relations hold with probability 1:

1. E .E .X jC// D E .X/:
2. E .cX jC/ D cE .X jC/ for all constant c.
3. If C0 D f˛; �g is the trivial �-algebra, then E .X jC0/ D E .X/:
4. If C1� C2, then E .E .X jC1/jC2/ D E .E .X jC2/jC1/ D E .X jC1/:
5. If random variable X does not depend on the �-algebra C, i.e., if for all

Borel sets D 2 B and for all events A 2 C the equality P .X 2 D;A/ D
P .X 2 D/P .A/ holds, then E .X jC/ D E .X/.

6. E .X1 CX2jC/ D E .X1jC/C E .X2jC/:
7. If the random variable X1 is C-measurable, then E .X1X2jC/ D X1E .X2jC/:

Definition 1.43. Let Y be a random variable, and denote by AY the �-algebra
generated by random variable Y , i.e., let AY be the minimal sub-�-algebra of A for
which Y is AY -measurable. The random variable E .X jY / D E .X jCY / is called
the conditional expectation of X given random variable Y .

Main Properties of Conditional Expectation Firstly, consider the case where
random variable Y is discrete and takes values in the set Y D fy1; : : : ; yng and
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P .Y D yi / > 0; 1 � i � n. We then define the events Ci D fY D yi g; 1 �
i � n. It is clear that the collection of events fC1; : : : ; Cng forms a complete
system of events, i.e., they are mutually exclusive, P .Ci / > 0; � i � n and
P .C1/ C : : : C P .Cn/ D 1. The �-algebra CY D �.C1; : : : ; Cn/ � A, which is
generated by random variable Y , is the set of events consisting of all subsets of
fC1; : : : ; Cng. Note that here we can write “algebra” instead of “�-algebra” because
the set fC1; : : : ; Cng is finite. Since the events Ci have positive probability, the
conditional probabilities

E .X jCi/ D
E
�
XIfCi g

�

P .Ci/

are well defined.

Theorem 1.44. The conditional expectation E .X jCY / satisfies the relation

E .X jCY / D E .X jCY /.!/ D
nX

kD1
E .X jCk/IfCkg with probability 1. (1.5)

Note that Eq. (1.5) can also be rewritten in the form

E .X jY / D E .X jY /.!/ D
nX

kD1
E .X jY D yk/IfYDykg: (1.6)

Proof. Since the relation

fE .X jCY / � xg D [fCi W E .X jCi/ � xg 2 CY

holds for all x 2 R, then E .X jCY / is a CY -measurable random variable. On the
other hand, if C 2 CY ; C ¤ f¿g, then C D [fCi W i 2 Kg stands with an
appropriately chosen set of indices K � f1; : : : ; ng, and we obtain

E
�
E .X jCY /IfC g

� D E

 
X

k2K
E .X jCk/IfCkg

!

D
X

k2K
E .X jCk/P .Ck/ D

X

k2K
E
�
XIfCkg

� D E
�
XIfC g

�
:

If C D f˛g, then E
�
E .X jCY /IfC g

� D E
�
XIfC g

� D 0. Thus we have proved that
random variable (1.5) satisfies all the required properties of conditional expectation.

ut
Comment 1.45. From expression (1.6) the following relation can be obtained:
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E .X/ D E .E .X jY // D
1Z

�1
E .X jY D y/dFY .y/: (1.7)

This relation remains valid if, instead of the finite set Y D fy1; : : : ; yng, we choose
the countable infinite set Y D fyi ; i 2 I g for which P .Y D yi / > 0, i 2 I:
Comment 1.46. Denote the function g by the relation

g.y/ D
�

E .X jY D yk/; if y D yk for an index k,
0; otherwise.

(1.8)

Then, using formula (1.6), the conditional expectation ofX given Y can be obtained
with the help of the function g as follows:

E .X jY / D g.Y / (1.9)

with probability 1.

Continuous Random Variables .X; Y / Consider a pair of random variables
.X; Y / having joint density fX;Y .x; y/ and marginal densities fX.x/ and fY .y/,
respectively. Then the conditional density fX jY .xjy/ exists and, according to (1.1),
can be defined as

fX jY .xjy/ D
8
<

:

fXY .x; y/

fY .y/
; if fY .y/ > 0;

0; otherwise :

Define g.y/ D E .X jY D y/ D
1R

�1
xfX jY .xjy/dx. Then the conditional expecta-

tion of X given Y can be determined with probability 1 as follows:

E .X jY / D g.Y /;

and so we can define
E .X jY D y/ D g.y/:

Proof. It is clear that g.Y / is a CY -measurable random variable; therefore, it is
enough to prove that the equality

E
�
E .X jY /IfY2Dg

� D E
�
XIfY2Dg

�

holds for all Borel sets D of a real line. It is not difficult to see that

E
�
E .X jY /IfY2Dg

� D E
�
g.Y /IfY2Dg

�
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D
Z

D

1Z

�1
x
fXY .x; y/

fY .y/
fY .y/dxdy

D
Z

D

1Z

�1
xfXY .x; y/dxdy

and, on other hand,

E
�
XIfY2Dg

� D
Z

D

1Z

�1
xfXY .x; y/dxdy:

ut
Comment 1.47. In the case where a pair of random variables has a joint normal
distribution, the conditional expectation E .X jY / is a linear function of random
variable Y with probability 1, that is, the regression function g is a linear function
and the relation

E .X jY / D E .X/C cov.X; Y /

D .X/
.X � E .X//

holds.

General Case By the definition of conditional expectation, E .X jY / is CY -
measurable; therefore, there is a Borel-measurable function g such that E .X jY /
can be given with probability 1 in the form

E .X jY / D g.Y /: (1.10)

This relation makes it possible to give the conditional expectation E .X jY D y/ as
the function

E .X jY D y/ D g.y/;
which is called a regression function. It is clear that the regression function is not
necessarily unique and is determined on a Borel set of the real lineD satisfying the
condition P .Y 2 D/ D 1.

Comment 1.48. Let X and Y be two random variables. Assume that X has finite

variation. Consider the quadratic distance E
�
ŒX � h.Y /�2

�
for the set HY of

all Borel-measurable functions h, for which h.Y / has finite variation. Then the
assertion

min
n
E
�
ŒX � h.Y /�2

�
W h 2 HY

o
D E

�
ŒX � g.Y /�2

�
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holds. This relation implies that the best approximation of X by Borel-measurable
functions of Y in a quadratic mean is the regression E .X jY / D g.Y /.
Formula of Total Expected Value A useful formula can be given to compute the
expected value of random variable X if the regression function E .X jY D y/ can
be determined.

Making use of relation 1 given as a general property of conditional expectation
and Eq. (1.10), it is clear that

E .X/ D E .E .X jY // D E .g.Y //

D
1Z

�1
g.y/dFY .y/ D

1Z

�1
E .X jY D y/dFY .y/:

From this relation we have the so-called formula of total expected value. If random
variable Y has discrete or continuous distributions, then we have the formulas

E .X/ D
X

i2I
E .X jY D yi /P .Y D yi /

and

E .X/ D
1Z

�1
E .X jY D y/fY .y/dy:

1.2 Frequently Used Discrete and Continuous Distributions

In this part we consider some frequently used distributions and give their defini-
tions and important characteristics. In addition to the formal description of the
distributions, we will give appropriate mathematical models that lead to a given
distribution. If the distribution function of a random variable is given as a function
FX.xI a1; : : : ; an/ depending on a positive integer n and constants a1; : : : ; an, then
a1; : : : ; an are called the parameters of the density function FX .

1.2.1 Discrete Distributions

Bernoulli Distribution Be.p/; 0 � p � 1. The PDF of random variable X with
values f0; 1g is called a Bernoulli distribution if

pk D P .X D k/ D
�

p; if k D 1;
1� p; if k D 0:
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Expected value and variance: E .X/ D p; D2 .X/ D p.1 � p/I
Generating function: 1 � p C pzI
Characteristic function: 1 � p C pei t :

Example. Let X be the number of heads appearing in one toss of a coin, where

p D P .head appearing in a toss/:

Then X has a Be.p/ distribution.

Binomial Distribution B.n; p/. The distribution of a discrete random variable X
with values f0; 1; : : : ; ng is called binomial with the parameters n andp; 0 < p < 1,
if its PDF is

pk D P .X D k/ D
 
n

k

!

pk.1 � p/n�k; k D 0; 1; : : : ; n:

Expected value and variance: E .X/ D np; D2 .X/ D np.1 � p/I
Generating function: G.z/ D .pzC .1 � p//nI
Characteristic function: '.t/ D .1C p.ei t � 1//n:
Example. Consider an experiment in which we observe that an event A with
probability p D P .A/; 0 < p < 1, occurs (success) or not (failure). Repeating
the experiment n times independently, define random variable X by the frequency
of event A. Then the random variable has a B.n; p/ PDF.

Note that if the Be.n; p/ random variablesX1; : : : ; Xn are independent, then the
random variable X D X1 C : : :CXn has a B.n; p/ distribution.

Polynomial Distribution The PDF of a random vectorX D .X1; : : : ; Xk/T taking
values in the set f.n1; : : : ; nk/ W ni 	 0; n1 C : : :C nk D ng is called polynomial
with the parameters n and p1; : : : ; pk .pi : > 0; p1C : : :Cpk D 1/ if X has a PDF

pn1;:::;nk D P .X1 D n1; : : : ; Xk D nk/ D nŠ

n1Š : : : nkŠ
p
n1
1 : : : p

nk
k :

Note that each coordinate variable Xi of random vector X has a B.pi ; n/ binomial
distribution whose expected value and variance are npi and npi.1 � pi /.

Expected value E .X/ D .np1; : : : ; npn/TI
Covariance matrix R D .Rij /1�i;j�k, where Rij D

�
npi .1 � pi /; if i D j;
npipj ; if i ¤ j I

Characteristic function: '.t1; : : : ; tk/ D .p1ei t1 C : : :C pkei tk /n:

Example. Let A1; : : : ; Ak be k disjoint events for which pi D P.Ai / > 0; p1 C
: : :Cpk D 1:Consider an experiment with possible outcomesA1; : : : ; Ak and repeat
it n times independently. Denote by Xi the frequency of event Ai in the series of n



1.2 Frequently Used Discrete and Continuous Distributions 37

observations. Then the distribution of X is polynomial with the parameters n and
p1; : : : ; pk .

Geometric Distribution The PDF of random variableX taking values in f1; 2; : : :g
is called a geometric distribution with the parameter p; 0 < p < 1; if its PDF is

pk D P .X D k/ D .1 � p/k�1p; k D 1; 2; : : : :

Expected value and variance: E .X/ D 1
p
; D2 .X/ D 1�p

p2
I

Generating function: G.z/ D pz
1�.1�p/z I

Characteristic function: '.t/ D p

1�.1�p/ei t :

Theorem 1.49. If X has a geometric distribution, then X has a so-called
memoryless property, that is, for all nonnegative integer numbers i; j the following
relation holds:

P .X 	 i C j jX 	 i/ D P .X 	 j /:
Proof. It is easy to verify that for k 	 1

P .X 	 k/ D
1X

`Dk
P .X D `/ D

1X

`Dk
.1 � p/`�1p

D .1� p/k�1p
1X

`D0
.1 � p/` D .1� p/k�1;

therefore,

P .X 	 i C j jX 	 i/ D P .X 	 i C j;X 	 i/
P .X 	 i/

D P .X 	 i C j /
P .X 	 i/

D .1 � p/iCj�1

.1� p/i�1 D .1 � p/
j ; j D 0; 1; : : : :

ut
Note that a geometric distribution is sometimes defined on the set f0; 1; 2; : : :g

instead of f1; 2; : : : ; g; in this case, the PDF is determined by

pk D .1 � p/kp; k D 0; 1; 2; : : : :

Example. Consider a sequence of experiments and observe whether an event A,
p D P.A/ > 0, occurs (success) or does not (failure) in each step. If the event
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occurs in the kth step first, then define the random variable as X D k. In other
words, let X be the number of Bernoulli trials of the first success. Then random
variable X has a geometric distribution with the parameter p.

Negative Binomial Distribution The distribution of random variable X taking
values in f0; 1; : : :g is called a negative binomial distribution with the parameter
p; 0 < p < 1; if

pk D P .X D k C r/ D
 
r C k � 1

k

!

.1 � p/kpr ; k D 0; 1; : : : :

Expected value and variance: E .X/ D r 1
p
; D2 .X/ D r 1�p

p2
I

Generating function: G.z/ D
�

pz
1�.1�p/z

�r I
Characteristic function: '.t/ D pr �1 � .1 � p/ei t ��r :
Example. Let p; 0 < p < 1; and the positive integer r be two given constants.
Suppose that we are given a coin that has a probability p of coming up heads. Toss
the coin repeatedly until the r th head appears and define byX the number of tosses.
Then random variableX has a negative binomial distribution with parameters .p; r/.

Note that from this example it immediately follows that X has a geometric
distribution with the parameter p when r D 1.

Poisson Distribution The PDF of a random variable X is called a Poisson
distribution with the parameter � .� > 0/ if X takes values in f0; 1; : : :g and

pk D P .X D k/ D �k

kŠ
e��; k D 0; 1; : : : :

Expected value and variance: E .X/ D �; D2 .X/ D �I
Generating function: G.z/ D e�.z�1/I
Characteristic function: '.t/ D e�.e

i t�1/:

The following theorem establishes that a binomial distribution can be approxi-
mated with a Poisson distribution with the parameter � when the parameters .p; n/
of the binomial distribution satisfy the condition np ! �, n!1.

Theorem 1.50. Consider a binomial distribution with the parameter .p; n/. As-
sume that for a fixed constant �; � > 0, the convergence np ! �, n!1, holds;
then the limit of probabilities satisfies the relation

 
n

k

!

pk.1 � p/n�k ! �k

kŠ
e��; k D 0; 1; : : : :

Proof. For any fixed k 	 0 integer number we have
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n

k

!

pk.1 � p/n�k D .np/..n � 1/p/ : : : ..n � k C 1/p/
kŠ

e.n�k/ log.1�p/:

Since np ! �, n!1, therefore p ! 0, and we obtain

.np/..n � 1/p/ : : : ..n� k C 1/p/
1 � 2 � : : : � k ! �k

kŠ
; np ! �:

On the other hand, if p ! 0, then we get the asymptotic relation log.1 � p/ D
�p C o.p/. Consequently,

.n � k/ log.1� p/ D �.n � k/.p C o.p//! ��; np ! �; n!1I

therefore, using the last two asymptotic relations, the assertion of the theorem
immediately follows. ut

1.2.2 Continuous Distributions

Uniform Distribution Let a; b .a < b/ be two real numbers. The distribution of
random variable X is called uniform on the interval .a; b/ if its PDF is given by

f .x/ D
�

1
b�a ; ha x 2 .a; b/;
0; ha x … .a; b/:

Expected value and variance: E .X/ D aCb
2
; D2 .X/ D .b�a/2

12
I

Characteristic function: '.t/ D 1
b�a

ei tb�ei ta

i t
:

Note that if X has a uniform distribution on the interval .a; b/; then the random
variable Y D X�a

b�a is distributed uniformly on the interval .0; 1/.

Exponential Distribution Exp.�/; � > 0. The distribution of a random variable
X is called exponential with the parameter �; � > 0, if its PDF

f .x/ D
�
�e��x; if x > 0;
0; if x � 0:

Expected value and variance: E .X/ D 1
�
; D2 .X/ D 1

�2
I

Characteristic function: '.t/ D �
��i t :

The Laplace and Laplace–Stieltjes transforms of the density and distribution
function of an Exp.�/ distribution are determined as
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E
�
e�sX � D f �.s/ D F�.s/ D �

s C �:

The exponential distribution, similarly to the geometric distribution, has the
memoryless property.

Theorem 1.51. For arbitrary constants t; s > 0 the relation

P .X > t C sjX > t/ D P .X > s/

holds.

Proof. It is clear that

P .X > t C sjX > t/ D P .X > t C s; X > t/

P .X > t/
D

D P .X > t C s/
P .X > t/

D e��.tCs/

e��t D e��s:

ut
Hyperexponential Distribution Let the PDF of random variable X be a mixture
of exponential distributions with the parameters �1; : : : ; �n and with weights
a1; : : : ; an .ak > 0; a1 C : : :C an D 1/. Then the PDF

f .x/ D
8
<

:

nP

kD1
ak�ke��kx if x > 0;

0; if x � 0;

of random variable X is called hyperexponential.

Expected value and variance: E .X/D
nP

kD1
ak
�k
; D2 .X/D2

nP

kD1
ak
�2k
�



nP

kD1
ak
�k

�2
I

Characteristic function: '.t/ D
nP

kD1
ak

�k
�k�i t :

Denote by 	.x/ D
1R

0

yx�1e�ydy; x > �1 the well-known gamma function 	

in analysis, which is necessary for the definition of the gamma distribution.

Gamma Distribution Gamma.˛; �/; ˛; � > 0.
The distribution of a random variableX is called a gamma distribution with the

parameters ˛; � > 0, if its PDF is
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f .x/ D
(

�˛

	.˛/
x˛�1e��x; if x > 0;

0; if x � 0:

Expected value and variance: E .X/ D ˛
�
; D2 .X/ D ˛

�2
I

Characteristic function: '.t/ D � �
��i t

�˛
:

Comment 1.52. A gamma distribution with the parameters ˛ D n; � D n� is
called an Erlang distribution.

Comment 1.53. If the independent identically distributed random variables
X1;X2; : : : have an exponential distribution with the parameter �, then the
distribution of the sum Z D X1 C : : : C Xn is a gamma distribution with the
parameter .n; �/. This relation is easy to see because the characteristic function
of an exponential distribution with the parameter � is .1 � i t=�/�1; then the
characteristic function of its nth convolution power is .1 � i t=�/�n, which equals
the characteristic function of a Gamma.n; �/ distribution.

Beta Distribution Beta.a; b/; a; b > 0. The distribution of random variable X is
called a beta distribution if its PDF is

f .x/ D
(

	.aCb/
	.a/	.b/

xa�1.1 � x/b�1; if x 2 .0; 1/;
0; if x … .0; 1/:

Expected value and variance: E .X/ D a
aCb ; D2 .X/ D ab

.aCb/2.aCbC1/ I
Characteristic function in the

form of power series: '.t/ D 	.˛Cˇ/
	.˛/

1P
kD0

.i t/k

kŠ

	.˛Ck/
	.˛CˇCk/ :

Gaussian (Also Called Normal) Distribution N.�; �/; �1 < � <1; 0 < � <
1. The distribution of random variable X is called Gaussian with the parameters
.�;�/ if it has a PDF

f .x/ D 1p
2
�

e�.x��/2=2�2 ; �1 < x <1:

Expected value and variance: � D E .X/ and �2 D D2 .X/I
Characteristic function: '.t/ D exp

n
i�t � �2

2
t2
o
:

The N.0; 1/ distribution is usually called a standard Gaussian or standard normal
distribution, and its PDF is equal to

f .x/ D 1p
2


e�x2=2; �1 < x <1:
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It is easy to verify that if a random variable has an N.�; �/ distribution, then the
centered and linearly normed random variable Y D .X � �/=� has a standard
Gaussian distribution.

Multidimensional Gaussian (Normal) Distribution N.�;R/ Let Z D .Z1;

: : : ; Zn/ be an n-dimensional random vector whose coordinates Z1; : : : ; Zn are
independent and have a standard N.0; 1/ Gaussian distribution. Let V 2Rm�n be
an .m � n/ matrix and � D .�1; : : : ; �m/

T 2 R
m an m-dimensional vector. Then

the distribution of the m-dimensional random vector X defined by the equation
X D VZC � is called an m-dimensional Gaussian distribution.

Expected value and variance matrix:

E .X/ D �X D � and D2 .X/ D RX D E
�
.X � �/.X � �/T� D VVTI

Characteristic function:

'.t/ D exp

�
i tT��1

2
tTRXt

�
;where t D .t1; : : : ; tm/T 2 R

m:

If V is a nonsingular quadratic matrix (m D n and det V ¤ 0), then the random
vector X has a density in the form

fX.x/ D 1

.2
 det RX/n=2
exp

�
�1
2
.x��/TR�1

X .x��/
�
; x D .x1; : : : ; xn/T 2 R

n:

Example. If the random vector X D .X1;X2/
T has a two-dimensional Gaussian

distribution with expected value � D .�1; �2/T and covariance matrix

RX D

a b

b c

�
;

then its PDF has the form

fX.x/ D
p
ac � b2
2


exp

�
�1
2
Œa.x1 � �1/2 C 2b.x1 � �1/.x2 � �2/C c.x2 � �2/2�

�
;

where a; b; c; �1; �2 are constants satisfying the conditions a > 0; c > 0, and
b2 < ac.

Note that the marginal distributions of random variablesX1 andX2 areN.�1; �1/
and N.�2; �2/ Gaussian, respectively, where

�1 D
r

a

ac � b2 ; �2 D
r

c

ac � b2 and b D cov.X1;X2/:
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Distribution Functions Associated with Gaussian Distributions Let Z;Z1;
Z2; : : : be independent random variables whose distributions are standard Gaussian,
i.e., with the parameters .0; 1/. There are many distributions, for example the �2

and the logarithmically normal distributions defined subsequently (further examples
are the frequently used t , F , and Wishart distributions in statistics [46]), that can
be given as distributions of appropriately chosen functions of random variables
Z;Z1;Z2; : : :.

�2 Distribution The distribution of the random variable X D Z2
1 C : : : C Z2

n is
called a �2 distribution with parameter n. The PDF is

fn.x/ D
(

1

2n=2	.n=2a/
xn=2�1e�x=2; if x > 0;

0; if x � 0:

Expected value and variance: E .X/ D n; D2 .X/ D 2nI
Characteristic function: '.t/ D .1 � 2it/�n=2:

Logarithmic Gaussian (Normal) Distribution If random variable Z has an
N.�; �/ Gaussian distribution, then the distribution of the random variableX D eZ

is called a logarithmic Gaussian (normal) distribution. The PDF is

f .x/ D
(

1p
2
�x

exp
n
.logx��/2

2�2

o
; if x > 0;

0; if x � 0:

Expected value and variance: E .X/ D e�
2=2C�; D2 .X/ D e�

2=2C�
�

ee2 � 1
�
:

Weibull Distribution The Weibull distribution is a generalization of the expo-
nential distribution for which the behavior of the tail distribution is modified by
a positive constant k as follows:

F.x/ D
(
1 � e�.x=�/k ; if x > 0;
0; if x � 0I

f .x/ D
( �

k
�

� �
x
�

�k�1
e�.x=�/k ; if x > 0;

0; if x � 0:

Expected value and variance:

E .X/ D �	.1C 1=k/; D2 .X/ D �2 �	.1C 2=k/ � 	2.1C 1=k/� :
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Pareto Distribution Let c and � be positive numbers. The density function and the
PDF of a Pareto distribution are defined as follows:

F.x/ D
�
1 � . x

c
/��; if x > c;

0; if x � 0I

f .x/ D
( �

�
c

� �
x
c

����1
if x > c;

0; if x � c:

Since the PDF of the Pareto distribution is a simple power function in consequence
of this property, it tends to zero with polynomial order as x goes to infinity and the
nth moment exists if and only if n < �.

Expected value (if k > 1) and variance (if k > 2):

E .X/ D ck

k � 1 ; D .X/ D c2k

.k � 1/2.k � 2/ :

1.3 Limit Theorems

1.3.1 Convergence Notions

There are many convergence notions in the theory of analysis, for example,
pointwise convergence, uniform convergence, and convergences defined by various
metrics. In the theory of probability, several kinds of convergences are also used that
are related to the sequences of random variables or to their sequence of distribution
functions. The following notion is the so-called weak convergence of distribution
functions.

Definition 1.54. The sequence of distribution functions Fn; n D 1; 2; : : : weakly
converges to the distribution function F (abbreviated Fn

w! F; n ! 1) if the
convergenceFn.x/! F.x/; n!1, holds in all continuity points of F .

If the distribution function F is continuous, then the convergenceFn
w! F; n!

1 holds if and only if Fn.x/ ! F.x/; n ! 1 for all x 2 R. The weak
convergence of the sequence Fn; n D 1; 2; : : : is equivalent to the condition that
the convergence

1Z

�1
g.x/dFn.x/!

1Z

�1
g.x/dF.x/

is true for all bounded and continuous functions g.
In addition, the weak convergence of a distribution function can be given with

the help of an appropriate metric in the space F D fF g of all distribution functions.
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Let G and H be two distribution functions (i.e., G;H 2 F), and define the Levy
metric [96] as follows:

L.G;H/ D inff" W G.x/ � H.xC "/C "; H.x/ � G.xC "/C "; for all x 2 Rg:

Then it can be proved that the weak convergence Fn
w! F; n ! 1, of the

distribution functions F; Fn; n D 1; 2; : : :, holds if and only if lim
n!1L.Fn; F / D 0.

The most frequently used convergence notions in probability theory for a
sequence of random variables are the convergence in distribution, convergence in
probability, convergence with probability 1, or almost surely (a.s.), and convergence
in mean square (convergence inL2), which will be introduced subsequently. In cases
of the last three convergences, it is assumed that the random variables are defined
on a common probability space .�;A;P .//:

Definition 1.55. The sequence of random variablesX1;X2; : : : converges in distri-

bution to a random variable X (abbreviatedXn
d! X; n!1) if their distribution

functions satisfy the weak convergence

FXn
w! FX; n D 1; 2; : : : :

Definition 1.56. The sequence of random variablesX1;X2; : : : converges in prob-

ability to a random variable X (Xn
P! X; n!1) if the convergence

lim
n!1P .jXn �X j > "/ D 0

holds for all positive constants ".

Definition 1.57. The random variables X1;X2; : : : converge with probability 1
(or almost surely) to a random variable X (abbreviated Xn

a.s.! X; n ! 1) if the
condition

P
�

lim
n!1Xn D X

�
D 1

holds.

The limit lim
n!1Xn D X exists if there are defined random variables with

probability 1 X 0 D lim sup
n!1

Xn and X 00.!/ D lim inf
n!1 Xn for which the relation

P
�
X 0.!/ D X 00.!/ D X.!/� D 1

is true. This means that there is an event A 2 A, P .A/ D 0, such that the equality

X 0.!/ D X 00.!/ D X.!/; ! 2 � n A

holds.
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Theorem 1.58 ([84]). The convergence limn!1Xn D X with probability 1 is true
if and only if for all " > 0

P

 

sup
k�n
jXk �X j > "

!

D 0:

Definition 1.59. Let Xn; n 	 1 and X be random variables with finite variance.
The sequence X1;X2; : : : converges in mean square to random variable X

(abbreviatedXn
L2! X; n!1) if

E
�
jXn �X j2

�
! 0; n!1:

This type of convergence is often called an L2 convergence of random variables.

The enumerated convergence notions are not equivalent to each other, but we can
mention several connections between them. The convergence in distribution follows
from all the others. The convergence in probability follows from the convergence
with probability 1 and from the convergence in mean square. It can be proved that if
the sequenceX1;X2; : : : is convergent in probability to the random variable X , then
there exists a subsequence Xn1;Xn2; : : : such that it converges with probability 1 to
random variable X .

1.3.2 Laws of Large Numbers

The intuitive introduction of probability implicitly uses the limit behavior of the
average

Sn D X1 C : : :CXn
n

; n D 1; 2; : : : ;
of independent identically distributed random variables X1;X2; : : :. The main
question is: under what condition does the sequence Sn converge to a constant �
in probability (weak law of large numbers) or with probability 1 (strong law of large
numbers) as n goes to infinity?

Consider an experiment in which we observe that an event A occurs or not.
Repeating the experiment n times independently, define the frequency of event A
by Sn.A/ and the relative frequency by Sn.A/.

Theorem 1.60 (Bernoulli). The relative frequency of an event A tends in probabil-
ity to the probability of the event p D P.A/, that is, for all " > 0 the relation

lim
n!1P

�ˇˇSn.A/� p
ˇ
ˇ > "

� D 0

holds.
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If we introduce the notation

Xi D
�
1; if the i -th outcome in A;
0; otherwise,

then the assertion of the last theorem can be formulated as follows:

Sn D X1 C : : :CXn
n

p! p; n!1;

which is a simple consequence of the Chebyshev inequality because the Xi are
independent and identically distributed and E .Xi/ D p D P .A/; D2 .Xi / D p.1�
p/; i D 1; 2; : : :. This result can be generalized without any difficulties as follows.

Theorem 1.61. Let X1;X2; : : : be independent and identically distributed random
variables with common expected value � and finite variance �2. Then the conver-
gence in probability

Sn D X1 C : : :CXn
n

p! �; n!1;

is true.

Proof. Example 1.38, which is given after the proof of the Chebyshev inequality,
shows that for all " > 0 the inequality

P

ˇˇ
ˇ
ˇ
X1 C : : :CXn

n
� �

ˇ
ˇ
ˇ
ˇ 	 "

�
� �2

n"2

is valid. From this the convergence in probability Sn
p! �; n ! 1 follows. It is

not difficult to see that the convergence in L2 is also true, i.e., Sn
L2! �; n!1.

ut
It should be noted that the inequality P

�ˇˇX1C:::CXn
n

� �ˇˇ 	 "� � �2

n"2
, which

guarantees the convergence in probability, gives an upper bound for the probability
P
�ˇˇX1C:::CXn

n
� �ˇˇ 	 "� also.

The Kolmogorov strong law of large numbers gives a necessary and sufficient
condition for convergence with probability 1.

Theorem 1.62 (Kolmogorov). If the sequence of random variables X1;X2; : : : is
independent and identically distributed, then the convergence

X1 C : : :CXn
n

a:s:! �; n!1
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holds for a constant � if and only if the random variables Xi have finite expected
value and E .Xi/ D �:
Corollary 1.63. If Sn.A/ defines the relative frequency of an event A occurring in
n independent experiments, then the Bernoulli law of large numbers

Sn.A/
p! p D P .A/; n!1;

is valid. By the Kolmogorov law of large numbers, this convergence is true with
probability 1 also, that is,

Sn.A/
a:s:! p D P .A/; n!1:

1.3.3 Central Limit Theorem, Lindeberg–Feller Theorem

The basic problem of central limit theorems is as follows. Let X1;X2; : : : be in-
dependent and identically distributed random variables with a common distribution
functionFX.x/. The question is, under what conditions does a sequence of constants
�n and �n; �n ¤ 0; n D 1; 2; : : : exist such that the sequence of centered and
linearly normed sums

Sn D X1 C : : :CXn � �n
�n

; n D 1; 2; : : : (1.11)

converges in the distributions

FSn
w! F; n!1

and have a nondegenerate limit distribution function F ? A distribution function
F.x/ is nondegenerate if there is no point x0 2 R satisfying the condition F.x0/ �
F.x0�/ D 1, that is, the distribution does not concentrate at one point.

Theorem 1.64. If the random variablesX1;X2; : : : are independent and identically
distributed with finite expected value � D E .X1/ and variance �2 D D2.X1/, then

P


X1 C : : :CXn � n�p

n�
� x

�
! ˚.x/ D

xZ

�1

1p
2


e�u2=2du

holds for all x 2 R, where the function ˚.x/ denotes the distribution function of
standard normal random variables.

If the random variablesX1;X2; : : : are independent but not necessarily identically
distributed, then a general, so-called Lindeberg–Feller theorem is valid.
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Theorem 1.65. Let X1;X2; : : : be independent random variables whose variances
are finite. Denote

�n D E .X1/C : : :C E .Xn/; �n D
q

D2 .X1/C : : :C D2 .Xn/; n D 1; 2; : : : :

The limit

P


X1 C : : :CXn � �n

�n
� x

�
! ˚.x/; n!1;

is true for all x 2 R if and only if the Lindeberg–Feller condition holds:

lim
n!1 max

1�j�n
1

�2j
E
�
X2
jIfjXj j>"�ng

�
D 0; x 2 R; " > 0;

where Ifg denotes the indicator variable.

1.3.4 Infinitely Divisible Distributions and Convergence to the
Poisson Distribution

There are many practical problems for which model (1.11) and results related to
it are not satisfactory. The reason is that the class of possible limit distributions is
insufficiently large; for instance, it does not consist of discrete distributions. An
example of this is a Poisson distribution, which is an often-used distribution in
queueing theory.

As a generalization of model (1.11), consider the sequence of series of random
variables (sometimes called a sequence of random variables of triangular arrays)

fXn;1; : : : ; Xn;kng ; n D 1; 2; : : : ; kn !1;

satisfying the following conditions for all fixed positive integers n:

1. The random variablesXn;1; : : : ; Xn;kn are independent.
2. The random variablesXn;1; : : : ; Xn;kn are infinitesimal (in other words, asymp-

totically negligible) if the limit for all " > 0

lim
n!1 max

1�j�kn
P
�ˇˇXn;j

ˇ
ˇ > "

� D 0

holds.

Considering the sums of series of random variables

Sn D Xn;1 C : : :CXn;kn ; n D 1; 2; : : : ;
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the class of possible limit distributions (so-called infinitely divisible distributions)
is already a sufficiently large class containing, for example, a Poisson distribution.

Definition 1.66. A random variableX is called infinitely divisible if it can be given
in the form

X
dD Xn;1 C : : :CXn;n

for every n D 1; 2; : : :, where the random variables Xn;1; : : : ; Xn;n are independent
and identically distributed.

Infinitely divisible distributions (to which, for example, the normal and Poisson
distributions belong) can be given with the help of their characteristic functions.

Theorem 1.67. If random variable X is infinitely divisible, then its characteristic
function has the form (Lévy–Khinchin canonical form)

logf .t/ D i�t � �
2

2
t2 C

0Z

�1



ei tx � 1 � i tx

1C x2
�

dL.x/

C
1Z

0



ei tx � 1 � i tx

1C x2
�

dR.x/;

where the functionsL and R satisfy the following conditions:

(a) � and � .� 	 0/ are real constants.
(b) L.x/; x 2 .�1; 0/ and R.x/; x 2 .0;1/ are monotonically increasing

functions on the intervals .�1; 0/ and .0;1/, respectively.
(c) L.�1/ D R.1/ D 0 and the inequality condition

0Z

�1
x2dL.x/C

1Z

0

x2dR.x/ <1

holds.

If an infinitely divisible distribution has finite variation, then its characteristic
function can be given in a more simple form (Kolmogorov formula):

logf .t/ D i�t C
1Z

�1

�
ei tx � 1 � i tx� 1

x2
dK.x/;

where � is a constant and K.x/ (K.�1/ D 0) is a monotonically nondecreasing
function.
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As special cases of the Kolmogorov formula, we get the normal and Poisson
distributions.

(a) An infinitely divisible distribution is normal with the parameters .�,�/ if the
functionK.x/ is defined as

K.x/ D
�
0; if x � 0;
�2; if x > 0:

Then the characteristic function is

f .t/ D i�t � �
2

2
t2:

(b) An infinitely divisible distribution is Poisson with the parameter � (� > 0) if
� D � and the functionK.x/ is defined as

K.x/ D
�
0; if x � 1;
�; if x > 1:

In this case the characteristic function can be given as follows:

f .t/ D i�t C
1Z

�1

�
ei tx � 1 � i tx� 1

x2
dK.x/ D �.ei t � 1/:

The following theorem gives an answer to the question of the conditions under
which the limit distribution of sums of independent infinitesimal random variables is
Poisson. This result will be used later when considering sums of independent arrival
processes of queues.

Theorem 1.68 (Gnedenko, Marczinkiewicz). Let fX1;n; : : : ; Xkn;ng ; n D 1; 2; : : :,
be a sequence of series of independent infinitesimal random variables. The sequence
of distributions of sums

Xn D Xn1 C : : :CXn;kn ; n 	 1;

converges weakly to a Poisson distribution with the parameter � (� > 0) as n!1
if and only if the following conditions hold for all " .0 < " < 1/:

(A)
knP

jD1
R

R"

dFnj .x/! 0.

(B)
knP

jD1
R

jx�1j<"
dFnj .x/! �.
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(C)
knP

jD1
R

jxj<"
dFnj .x/! 0.

(D)
knP

jD1

2

4 R

jxj<"
x2dFnj .x/ �

 
R

jxj<"
xdFnj .x/

!23

5! 0,

where Fnj .x/ D P
�
Xnj � x

�
and R" D R n .fjxj < "g [ fjx � 1j < "g/ :

Note that conditions (A) and (B) guarantee the convergence of the Poisson part
to the appropriate Poisson distribution of the limit, (C) means that there is no
centralization, and from (D) it follows that the limit distribution does not contain
a Gaussian part.

1.4 Exercises

Exercise 1.1. Let X be a nonnegative random variable with CDF FX . Given 0 �
t � X [P .X > t/ ¤ 0], find the CDF of residual lifetime X .

Exercise 1.2. Let X and Y be independent random variables with a Poisson
distribution of parameters � and �, respectively. Verify that

(a) The sum X C Y has a Poisson distribution with the parameter �C �;
(b) For any nonnegative integers m � n the conditional distribution P.X D m j

X C Y D n/ is binomial with the parameter .n; �
�C�/, i.e.,

P .X D m j X C Y D n/ D
 
m

n

!

�

�C �
�m 


1 � �

�C �
�n�m

:

Exercise 1.3. Let X and Y be independent random variables having a uniform
distribution on the interval .0; 1/ and an exponential distribution with the parameter
1, respectively. Find the probability (concrete number) that X < Y .

Exercise 1.4. Divide the interval .0; 1/ into three parts with two independently and
randomly chosen points U1 and U2 of the interval .0; 1/. Find the probability of
event A that the three parts can determine a triangle.

Exercise 1.5. Show that for a nonnegative random variableX with a finite nth (n 	
1) moment it is true that E .Xn/ D

1R

0

P .x < X/nxn�1dx.

Exercise 1.6. Let X and Y be independent random variables with a uniform
distribution on the interval .0; 1/. Find the quantities

(a) E .jX � Y j/, D2 .jX � Y j/,
(b) P .jX � Y j/ > 1

2
.
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Exercise 1.7. LetX and Y be independent random variables having an exponential
distribution with the parameters � and �, respectively.

(a) Determine the density function of the random variableZ D X C Y .
(b) Find the density function of the random variableW D min.X; Y /.

Exercise 1.8. LetX1; : : : ; Xn be independent random variables having an exponen-
tial distribution with the parameter �.
Find the expected values of the random variables Vn D max.X1; : : : ; Xn/; and
Wn D min.X1; : : : ; Xn/.

Exercise 1.9. Let X and Y be independent random variables with density func-
tions fX.x/ and fY .x/, respectively. Determine the conditional expected value
E.X j X < Y /.

Exercise 1.10. Determine the conditional expectations E .X jY D y/ and
E .X jY / if the joint PDF of the random variables X and Y has the form

(a) fX;Y .x; y/ D
�
2; if 0 < x; y and x C y < 1;
0; otherwise;

(b) fX;Y .x; y/ D
�
3.x C y/; if 0 < x; y and x C y < 1;
0; otherwise:

Exercise 1.11. Let X1;X2; : : : be independent random variables with an exponen-
tial distribution of the parameter �. Let N be a geometrically distributed random
variable with the parameter p [pk D P .N D k/ D p.1 � p/k; k D 1; 2; : : :],
which does not depend on random variables (X1;X2; : : :). Prove that the sum
Y D X1 C : : :CXN has an exponential distribution with the parameter p�.

Exercise 1.12. Consider the distribution function of the sum Y40 of independent
random variables X1; : : : ; X40 having an exponential distribution with the parame-

ter 1. Give an estimate for the probability p D P
� jY40�E.Y40/j

D.Y40/
> 0:05

�
calculated

with the help of the central limit theorem. We can numerically calculate this
probability because the random variable Y40 has a gamma distribution with the
parameter .40; 1/. Using this fact, what result can we obtain for the considered
probability? (On the numerical calculation of the gamma distribution see, for
example, [72] or [63].)



Chapter 2
Introduction to Stochastic Processes

2.1 Stochastic Processes

When considering technical, economic, ecological, or other problems, in several
cases the quantities fXt ; t 2 T g being examined can be regarded as a collection
of random variables. This collection describes the changes (usually in time and
in space) of considered quantities. If the set T is a subset of the set of real
numbers, then the set ft 2 T g can be interpreted as time and we can say that the
random quantities Xt vary in time. In this case the collection of random variables
fXt ; t 2 T g is called a stochastic process. In mathematical modeling of randomly
varying quantities in time, one might rely on the highly developed theory of
stochastic processes.

Definition 2.1. Let T � R. A stochastic process X is defined as a collection
X D fXt; t 2 T g of indexed random variables Xt , which are given on the same
probability space .�;A;P .//.

Depending on the notational complexity of the parameter, we occasionally
interchange the notation Xt with X.t/.

It is clear that Xt D Xt.!/ is a function of two variables. For fixed t 2 T , Xt
is a random variable, and for fixed ! 2 �, Xt is a function of the variable t 2 T ,
which is called a sample path of the stochastic process.

Depending on the set T , X is called a discrete-time stochastic process if the
index set T consists of consecutive integers, for example, T D f0; 1; : : :g or T D
f: : : ;�1; 0; 1; : : :g. Further, X is called a continuous-time stochastic process if T
equals an interval of the real line, for example, T D Œa; b�, T D Œ0;1/ or T D
.�1;1/.

Note that in the case of discrete time, X is a sequence fXn; n 2 T g of random
variables, while it determines a random function in the continuous-time case. It
should be noted that similarly to the notion of real-valued stochastic processes, we
may define complex or vector valued stochastic processes also if Xt take values in
a complex plane or in higher-dimensional Euclidean space.

L. Lakatos et al., Introduction to Queueing Systems with Telecommunication Applications,
DOI 10.1007/978-1-4614-5317-8 2, © Springer Science+Business Media, LLC 2013
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2.2 Finite-Dimensional Distributions of Stochastic Processes

A stochastic process fXt; t 2 T g can be characterized in a statistical sense by its
finite-dimensional distributions.

Definition 2.2. The finite-dimensional distributions of a stochastic process
fXt ; t 2 T g are defined by the family of all joint distribution functions

Ft1;:::;tn .x1; : : : ; xn/ D P .Xt1 < x1; : : : ; Xtn < xn/;

where n D 1; 2; : : : and t1; : : : ; tn 2 T .

The family of introduced distribution functions

F D fFt1;:::;tn ; t1; : : : ; tn 2 T ; n D 1; 2; : : :g

satisfies the following, specified consistency conditions:

(a) For all positive integers n, m and indices t1; : : : ; tnCm 2 T

lim
xnC1!1 : : : lim

xnCm!1Ft1;:::;tn;tnC1;:::;tnCm
.x1; : : : ; xn; xnC1; : : : ; xnCm/

D Ft1;:::;tn .x1; : : : ; xn/; x1; : : : ; xn 2 R :

(b) For all permutations .i1; : : : ; in/ of the numbers f1; 2; : : : ; ng

Fs1;:::;sn .xi1 ; : : : ; xin / D Ft1;:::;tn .x1; : : : ; xn/; x1; : : : ; xn 2 R ;
where sj D tij ; j D 1; : : : ; n:

Definition 2.3. If the family F of joint distribution functions defined previously
satisfies conditions (a) and (b), then we say that F satisfies the consistency
conditions.

The following theorem is a basic one in probability theory and ensures the
existence of a stochastic process (in general of a collection of random variables) with
given finite-dimensional distribution functions satisfying the consistency conditions.

Theorem 2.4 (Kolmogorov consistency theorem). Suppose a family of distribu-
tion functionsF D fFt1;:::;tn ; t1; : : : ; tn 2 T ; n D 1; 2; : : :g satisfies the consistency
conditions (a) and (b). Then there exists a probability space .�;A;P/, and on that a
stochastic process fXt; t 2 T g, whose finite-dimensional distributions are identical
to F .

For our considerations, it usually suffices to provide the finite-dimensional
distribution functions of the stochastic processes, in which case the process is
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defined in a weak sense and it is irrelevant on which probability space it is given.
In some instances the behavior of the random path is significant (e.g., continuity
in time), which is related to a given probability space .�;A; P / where the process
fXt ; t 2 T g is defined. In this case the process is given in a strict sense.

2.3 Stationary Processes

The class of stochastic processes that show a stationary statistical property in time
plays a significant role in practice. Among these processes the most important ones
are the stationary processes in strict and weak senses. The main notions are given
here for one-dimensional processes, but the notion for high-dimensional processes
can be introduced similarly.

Definition 2.5. A process fXt ; t 2 T g is called stationary in a strict sense if the
joint distribution functions of random variables

.Xt1 ; : : : ; Xtn/ and .Xt1Ct ; : : : ; XtnCt /

are identical for all t , positive integer n, and t1; : : : ; tn 2 T satisfying the conditions
ti C t 2 T ; i D 1; : : : ; n.

Note that this definition remains valid in the case of vector-valued stochastic
processes. Consider a stochastic process X with finite second moment, that is,
E.X2

t / <1, for all t 2 T . Denote the expected value and covariance functions by

�X.t/ D E .Xt / ; t 2 T ;

RX.s; t/ D cov.Xs;Xt/

D E ..Xt � �X.t//.Xs � �X.s/// ; s; t 2 T :

Definition 2.6. A process fXt; t 2 T g is called stationary in a weak sense if Xt
has finite second moment for all t 2 T and the expected value and covariance
function satisfy the following relation:

�X.t/ D �X ; t 2 T ;

RX.s; t/ D RX.t � s/; s; t 2 T :

The functionRX is called the covariance function.

It is clear that if a stochastic process with finite second moment is stationary
in a strict sense, then it is stationary in a weak sense also, because the expected
value and covariance function depend also on the two-dimensional joint distribution,
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which is time-invariant if the time shifts. Besides the covariance functionRX.t/, the
correlation function rX.t/ is also used, which is defined as follows:

rX.t/ D 1

RX.0/
RX.t/ D 1

�2X
RX.t/:

2.4 Gaussian Process

In practice, we often encounter stochastic processes whose finite-dimensional
distributions are Gaussian. These stochastic processes are called Gaussian. In
queueing theory Gaussian processes often appear when asymptotic methods are
applied.

Note that the expected values and covariances determine the finite-dimensional
distributions of the Gaussian process; therefore, it is easy to verify that a Gaussian
process is stationary in a strict sense if and only if it is stationary in a weak sense. We
also mention here that the discrete-time Gaussian process consists of independent
Gaussian random variables if these random variables are uncorrelated.

2.5 Stochastic Process with Independent and Stationary
Increments

In several practical modeling problems, stochastic processes have independent and
stationary increments. These processes play a significant role both in theory and
practice. Among such processes the Wiener and the Poisson processes are defined
below.

Definition 2.7. If for any integer n 	 1 and parameters t0; : : : ; tn 2 T ; t0 < : : : <
tn, the increments

Xt1 � Xt0; : : : ; Xtn � Xtn�1

of a stochastic process X D fXt; t 2 T g are independent random variables, then
X is called a stochastic process with independent increments. The process X has
stationary increments if the distribution of XtCh � Xt; t; t C h 2 T does not
depend on t .

2.6 Wiener Process

As a special but important case of stochastic processes with independent and
stationary increments, we mention here the Wiener process (also called process
of Brownian motion), which gives the mathematical model of diffusion. A process
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X D fXt; t 2 Œ0;1/g is called a Wiener process if the increments of the process
are independent and for any positive integer n and 0 � t0 < : : : < tn the joint
density function of random variables Xt0; : : : ; Xtn can be given in the form

f .x0; : : : ; xnI t0; : : : ; tn/ D .2
/�n=2 Œt0.t1 � t0/ : : : .tn � tn�1/��1=2

� exp

�
�1
2



x20
t0
C .x1 � x0/2

t1 � t0 C : : :C
.xn � xn�1/2

tn � tn�1

��
:

It can be seen from this formula that the Wiener process is Gaussian and the
increments

Xtj �Xtj�1 ; j D 1; : : : ; n;
are independent Gaussian random variables with expected values 0 and variances
tj �tj�1: The expected value function and the covariance function are determined as

�X.t/ D 0; RX.s; t/ D min.t; s/; t; s 	 0:

2.7 Poisson Process

2.7.1 Definition of Poisson Process

Besides the Wiener process defined above, we discuss in this chapter another
important process with independent increments in probability theory, the Poisson
process. This process plays a fundamental role not only in the field of queueing
theory but in many areas of theoretical and applied sciences, and we will deal with
this process later as a Markov arrival process, birth-and-death process, and renewal
process. Its significance in probability theory and practice is that it can be used
to model different event occurrences in time and space in, for example, queueing
systems, physics, insurance, population biology. There are several introductions
and equivalent definitions of the Poisson process in the literature according to its
different characterizations. First we present the notion in the simple (classical) form
and after that in a more general context.

In queueing theory, a frequently used model for the description of the arrival
process of costumers is as follows. Assume that costumers arrive at the system one
after another at t1 < t2 < : : :; tn ! 1 as n ! 1. The differences in occurrence
times, called interarrival times, are denoted by

X1 D t1; X2 D t2 � t1; : : : ; Xn D tn � tn�1; : : : :

Define the process fN.t/; t 	 0g with N.0/ D 0 and

N.t/ D maxfn W tn � tg D maxfn W X1 C : : :CXn � tg; t > 0:
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This process counts the number of customers arriving at the system in the time
interval .0; t � and is called the counting process for the sequence t1 < t2 < : : :.
Obviously, the process takes nonnegative integer values only, is nondecreasing, and
N.t/ � N.s/ equals the number of occurrences in the time interval .s; t � for all
0 < s < t .

In the special case, whenX1;X2; : : : is a sequence of independent and identically
distributed random variables with exponential distribution Exp.�/, the increments
N.t/ � N.s/ have a Poisson distribution with the parameter �.t � s/. In addition,
the counting process N.t/ possesses an essential property, that is, it evolves in time
without aftereffects. This means that the past and current occurrences have no
effect on subsequent occurrences. This feature leads to the property of independent
increments.

Definition 2.8. We say that the process N.t/ is a Poisson process with rate � if

1. N.0/ D 0,
2. N.t/; t 	 0 is a process with independent increments,
3. The distribution of increments is Poisson with the parameter �.t � s/ for all
0 < s < t .

By definition, the distributions of the incrementsN.t C h/�N.t/, t 	 0, h > 0,
do not depend on the moment t ; therefore, it is a process with stationary increments
and is called a homogeneous Poisson process at rate �. Next, we introduce the
Poisson process in a more general setting, and as a special case we have the
homogeneous case. After that we will deal with the different characterizations of
Poisson processes, which in some cases can serve as a definition of the process. At
the end of this chapter, we will introduce the notion of the high-dimensional Poisson
process (sometimes called a spatial Poisson process) and give its basic properties.

Let fƒ.t/; t 	 0g be a nonnegative, monotonically nondecreasing, continuous-
from-right real-valued function for whichƒ.0/ D 0.

Definition 2.9. We say that a stochastic process fN.t/; t 	 0g taking nonnegative
integers is a Poisson process if

1. N.0/ D 0,
2. N.t/ is a process with independent increments,
3. The CDFs of the incrementsN.t/�N.s/ are Poisson with the parameterƒ.t/�
ƒ.s/ for all 0 � s � t , that is,

P .N.t/ �N.s/ D k/ D .ƒ.t/ �ƒ.s//k
kŠ

e�.ƒ.t/�ƒ.s//; k D 0; 1; : : : :

Since for any fixed t > 0 the distribution ofN.t/ D N.t/�N.0/ is Poisson with
mean ƒ.t/, that is the reason that N.t/ is called a Poisson process. We can state
that the process N.t/ is a monotonically nondecreasing jumping process whose
increments N.t/ � N.s/; 0 � s < t , take nonnegative integers only and the
increments have Poisson distributions with the parameter .ƒ.t/ � ƒ.s//. Thus the
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random variables N.t/; t 	 0 have Poisson distributions with the parameter ƒ.t/;
therefore, the expected value of N.t/ is E .N.t// D ƒ.t/; t 	 0, which is called a
mean value function.

We also note that using the property of independent increments, the joint
distribution of the random variablesN.t1/; : : : ; N.tn/ can be derived for all positive
integers n and all 0 < t1 < : : : < tn without difficulty because for any integers
0 � k1 � : : : � kn we get

P .N.t1/ D k1; : : : ; N.tn/ D kn/
D P .N.t1/ D k1;N.t2/ �N.t1/ D k2 � k1; : : : ; N.tn/ �N.tn�1/ D kn � kn�1/

D .ƒ.t1//
k1

k1Š
e�ƒ.t1/

nY

iD2

.ƒ.ti / �ƒ.ti�1//ki�ki�1
.ki � ki�1/Š e�.ƒ.ti /�ƒ.ti�1//:

Since the mean value functionƒ.t/ D E .N.t// is monotonically nondecreasing,
the set of discontinuity points f�ng of ƒ.t/ is finite or countably infinite. It can
happen that the set of discontinuity points f�ng has more than one convergence point,
and in this case we cannot give the points of f�ng as an ordered sequence �1 < �2 <
: : :. Define the jumps of the functionƒ.t/ at discontinuity points �n as follows:

�n D ƒ.�n C 0/�ƒ.�n � 0/ D ƒ.�n/�ƒ.�n � 0/:

By definition, the increments of a Poisson process are independent; thus it is easy to
check that the following decomposition exists:

N.t/ D Nr.t/CNs.t/;

where Nr.t/ and Ns.t/ are independent Poisson processes with mean value
functions

ƒr.t/ D ƒ.t/ �
X

�n<t

�n and ƒs.t/ D
X

�n<t

�n:

The regular part Nr.t/ of N.t/ has jumps equal to 1 only, whose mean value
functionƒr.t/ is continuous. Thus we can state that the processNr.t/ is continuous
in probability, that is, for any point t , 0 � t <1, the relation

lim
s!0

P .Nr.t C s/ �Nr.t/ > 0/ D lim
s!0

P .Nr.t C s/ �Nr.t/ 	 1/ D 0

is true. The second part Ns.t/ of N.t/ is called a singular Poisson process because
it can have jumps only in discrete points f�ng. Then

P .Ns.�n/�Ns.�n � 0// D k/ D �kn
kŠ

e��n ; k D 0; 1; 2; : : : :
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Definition 2.10. If the mean value function ƒ.t/ of a Poisson process
fN.t/; t 	 0g is differentiable with the derivative �.s/; s 	 0 satisfying
ƒ.t/ D R t

0
�.s/ds, then the function �.s/ is called a rate (or intensity) function of

the process.

In accordance with our first definition (2.8), we say that the Poisson processN.t/
is homogeneous with the rate � if the rate function is a constant �.t/ D �; t 	 0.
In this case, ƒ.t/ D �t; t 	 0 is satisfied; consequently, the distributions of all
increments N.t/ � N.s/; 0 � s < t are Poisson with the parameter �.t � s/ and
E .N.t/�N.s// D �.t � s/. This shows that the average number of occurrences
is proportional to the length of the corresponding interval and the constant of
proportionality is �. These circumstances justify the name of the rate �.

If the rate can vary with time, that is, the rate function does not equal a constant,
the Poisson process is called inhomogeneous.

2.7.2 Construction of Poisson Process

The construction of Poisson processes plays an essential role both from a theoretical
and a practical point of view. In particular, it is essential in simulation methods. The
Poisson process N.t/ and the sequence of the random jumping points t1 < t2 < : : :
of the process uniquely determine each other. This fact provides an opportunity to
give another definition of the Poisson process on the real number line. We prove that
the following two constructions of Poisson processes are valid (see, for example, pp.
117–118 in [85]).

Theorem 2.11 (Construction I). Let X1;X2; : : : be independent and identically
distributed random variables whose common CDF is exponential with parameter 1.
Define

M.t/ D
1X

mD1
IfX1C:::CXm�tg; t 	 0: (2.1)

Then the process M.t/ is a homogeneous Poisson process with an intensity rate
equal to 1.

Theorem 2.12 (Construction II). Let U1; U2; : : : be a sequence of independent and
identically distributed random variables having common uniform distribution on the
interval .0; T /, and let N be a random variable independent of Ui with a Poisson
distribution with the parameter �T . Define

N.t/ D
NX

mD1
IfUm�tg; 0 � t � T: (2.2)

Then N.t/ is a homogeneous Poisson process on the interval Œ0; T � at rate �.



2.7 Poisson Process 63

We begin with the proof of Construction II. Then, using this result, we verify
Construction I.

Proof (Construction II). LetK be a positive integer and t1; : : : ; tK positive constants
such that t0 D 0 < t1 < t2 < : : : < tK D T . Since, by Eq. (2.2), N.T / D N

and N.t/ D
NP

mD1
IfUm�tg; the increments of N.t/ on the intervals .tk�1; tk �; k D

1; : : : ; K , can be given in the form

N.tk/�N.tk�1/ D
NX

nD1
Iftk�1<Un�tkg; k D 1; : : : ; K:

Determine the joint characteristic function of the increments N.tk/ � N.tk�1/. Let
sk 2 R; k D 1; : : : ; K , be arbitrary; then

'.s1; : : : ; sK/ D E

 

exp

(
KX

kD1
isk.N.tk/ �N.tk�1//

)!

D P .N D 0/C
1X

nD1
E

 

exp

(
KX

kD1
isk.N.tk/�N.tk�1//

) ˇˇ
ˇ
ˇ
ˇ
N D n

!

P .N D n/

D e��T C
1X

nD1
E

 

exp

(
KX

kD1
isk

nX

`D1
Iftk�1<U`�tkg

)!

P .N D n/

D e��T C
1X

nD1

nY

`D1
E

 

exp

(
KX

kD1
iskIftk�1<U`�tkg

)!
.�T /n

nŠ
e��T

D e��T
1X

nD0

 
KX

kD1

tk � tk�1
T

eisk

!n
.�T /n

nŠ
D e��T exp

(
KX

kD1
eisk �.tk � tk�1/

)

;

and using the relation T D tK � t0 D
KP

kD1
.tk � tk�1/ we get

'.s1; : : : ; sK/ D
KY

kD1
exp

˚
�.tk � tk�1/.eisk � 1/

�
:

Since the characteristic function '.s1; : : : ; sK/ derived here is equal to the joint char-
acteristic function of independent random variables having a Poisson distribution
with the parameters �.tk � tk�1/; k D 1; : : : ; K , the proof is complete. ut

For the proof of Construction I we need the following well-known lemma of
probability theory.
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Lemma 2.13. Let T be a positive constant and k be a positive integer. Let
U1; : : : ; Uk be independent and identically distributed random variables having a
common uniform distribution on the interval .0; T /. Define by U1k � : : : � Ukk
the ordered random variables U1; : : : ; Uk . Then the joint PDF of random variables
U1k; : : : ; Ukk is

fU1k ;:::;Ukk .t1; : : : ; tk/ D
(

kŠ
T k
; if 0 < t1 � t2 � : : : � tk < T;
0; otherwise.

Proof. Since U1k � : : : � Ukk, it is enough to determine the joint PDF of random
variables U1k; : : : ; Ukk on the set

K D f.t1; : : : ; tk/ W 0 � t1 � : : : � tk < T g:

Under the assumptions of the lemma, the random variables U1; : : : ; Uk are inde-
pendent and uniformly distributed on the interval .0; T /; thus for every permutation
i1; : : : ; ik of the numbers 1; 2; : : : ; k (the number of all permutations is equal to kŠ)

P
�
Ui1 � : : : � Uik ; Ui1 � t1; : : : ; Uik � tk

�

D P .U1 � : : : � Uk; U1 � t1; : : : ; Uk � tk/;

then

FU1k ;:::;Ukk .t1; : : : ; tk/ D P .U1k � t1; : : : ; Ukk � tk/
D kŠP .U1 � : : : � Uk; U1 � t1; : : : ; Uk � tk/

D kŠ
t1Z

0

: : :

tkZ

0

1

T k
Ifu1�::::�ukgduk : : : du1

D kŠ

T k

t1Z

0

t2Z

u1

: : :

tkZ

uk�1

duk : : : du1:

From this we immediately have

fU1k;:::;Ukk .t1; : : : ; tk/ D
kŠ

T k
; .t1; : : : ; tk/ 2 K;

which completes the proof. ut
Proof (Construction I). We verify that for any T > 0 the processM.t/; 0 � t � T
is a homogeneous Poisson process with rate �. By Construction II, N.T / D N;
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where the distribution of random variable N is Poisson with the parameter �T .
From Eq. (2.2) it follows that the process N.t/; 0 � t < T , can be rewritten in
the form

N.t/ D
NX

mD1
IfUm�tg D

NX

nD1
IfUnN�tg;

where for every k 	 1 and under the condition N.T / D k the random variables
U1; : : : Uk are independent and uniformly distributed on the interval .0; T / and
U1k � U2k � : : : � Ukk are the ordered random variables U1; : : : Uk . Note that
we used these properties only to determine the joint characteristic function of the
increments. Define

Tn D X1 C : : :CXn; n D 1; 2; : : : ;

where, by assumption, X1;X2; : : : are independent and identically distributed
random variables with a common exponential CDF of parameter 1. Then, using
the relation (2.1), for any 0 � t � T ,

M.t/ D
1X

nD1
IfTn�tg D

8
<

:

M.T /P

nD1
IfTn�tg; if T 	 T1;
0; if T < T1:

By the previous note it is enough to prove that

(a) The random variableM.T / has a Poisson CDF with the parameter �T ;
(b) For every positive integer k and under the condition M.T / D k, the joint CDF

of the random variables T1; : : : ; Tn are identical with the CDF of the random
variables U1k; : : : ; Ukk.

(a) First we prove that for any positive t the CDF of the random variable M.t/ is
Poisson with the parameter .�T /. Since the common CDF of independent and
identically distributed random variables Xi is exponential with the parameter
�, the random variable Tn has a gamma.n; �/ distribution whose PDF (see the
description of gamma distribution in Sect. 1.2.2.) is

fTn.x/ D
(

�n

	.n/
xn�1e��x; if x > 0;

0; if x � 0:

From the exponential distribution of the first arrival we have

P .M.t/ D 0/ D P .X1 > t/ D e��t :
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Using the theorem of the total expected value, for every positive integer k we
obtain

P .M.t/ D k/ D P .X1 C : : :CXk � t < X1 C : : :CXkC1/

D P .Tk � t < Tk CXkC1/

D
tZ

0

P .Tk � t < Tk CXkC1 jTk D z/
�k

	.k/
zk�1e��zdz

D
tZ

0

P .t � z < XkC1/
�k

	.k/
zk�1e��zdz

D
tZ

0

e��.t�z/ �
k

	.k/
zk�1e��zdz

D �k

	.k/
e��t

tZ

0

zk�1dz D .�t/k

	.k/k
e��t D .�t/k

kŠ
e��t I

thus the random variable M.t/; t 	 0 has a Poisson distribution with the
parameter �t .

(b) Let T be a fixed positive number and let U1; : : : Uk be independent random
variables uniformly distributed on the interval .0; 1/. Denote by U1k � : : : �
Ukk the ordered random variables U1; : : : Uk . Now we verify that for every
positive integer k the joint CDF of random variables T1; : : : ; Tk under the
condition M.T / D k is identical with the joint CDF of the ordered random
variables U1k; : : : ; Ukk (see Theorem 2.3 of Ch. 4. in [48]).

For any positive numbers t1; : : : ; tk , the joint conditional CDF of random
variables T1; : : : ; Tk givenM.t/ D k can be written in the form

P .T1 � t1; : : : ; Tk � tk jM.T / D k/ D P .T1 � t1; : : : ; Tk � tk;M.T / D k/
P .M.T / D k/ :

By the result proved in part (a), the denominator has the form

P .M.T / D k/ D .�T /k

kŠ
e��T ; k D 0; 1; : : : ;

while the numerator can be written as follows:
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P .T1 � t1; : : : ; Tk � tk;M.T / D k/
D P .X1 � t1; X1 CX2 � t2; : : : ; X1 C : : :CXk � tk; X1 C : : :CXkC1 > T /

D
t1Z

0

t2�u1Z

0

t3�.u1Cu2/Z

0

: : :

tk�.u1C:::Cuk�1/Z

0

1Z

T�.u1C:::Cuk/

kC1Y

iD1

�
�e��ui

�
dukC1 : : : du1

D �k
t1Z

0

t2�u1Z

0

t3�.u1Cu2/Z

0

: : :

tk�.u1C:::Cuk�1/Z

0

e��.u1C:::Cuk/e��.T�u1C:::Cuk/dukC1 : : : du1

D �ke��T
t1Z

0

t2�u1Z

0

t3�.u1Cu2/Z

0

: : :

tk�.u1C:::Cuk�1/Z

0

duk : : : du1:

Setting v1 D u1; v2 D u1 C u2; : : : ; vk D u1 C : : : C uk, the last integral takes
the form

.�T /k

kŠ
e��T kŠ

T k

t1Z

0

t2Z

v1

t3Z

v2

: : :

tkZ

vk�1

dvk : : : dv1;

thus

P .T1 � t1; : : : ; Tk � tk jM.T / D k/ D kŠ

T k

t1Z

0

t2Z

v1

t3Z

v2

: : :

tkZ

vk�1

dvk : : : dv1:

From this we get that the joint conditional PDF of random variables T1; : : : ; Tk
given M.T / D k equals the constant value kŠ

T k
, which, by the preceding lemma,

is identical with the joint PDF of random variables U1k; : : : ; Ukk . Using the proof
of Construction II, we obtain that Construction I has the result of a homogeneous
Poisson process at rate � on the interval .0; T �, and at the same time on the whole
interval .0;1/, because T was chosen arbitrarily. ut

2.7.3 Basic Properties of a Homogeneous Poisson Process

Let N.t/; t 	 0 be a homogeneous Poisson process with a rate �. We enumerate
below the main properties of N.t/.

(a) For any t 	 0 the CDF of N.t/ is Poisson with the parameter �t , that is,

P .N.t/ D k/ D .�t/k

kŠ
e��t ; k D 0; 1; : : : :
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(b) The increments ofN.t/�N.s/; 0 � s < t , are independent and have a Poisson
distribution with the parameter �.t � s/.

(c) The sum of two independent homogeneous Poisson processes N1.t I�1/ and
N2.t I�2/ at rates �1 and �2, respectively, is a homogeneous Poisson process
with a rate .�1 C �2/.

(d) Given 0 < t < T < 1, a positive integer N0 and an integer k satisfy the
inequality 0 � k � N0. The conditional CDF of the random variable N.t/
given N.T / D N0 is binomial with the parameters .N0; 1=T /.

Proof.

P .N.t/ D k j N.T / D N0/ D P .N.t/ D k;N.T / D N0/
P .N.T / D N0/

D P .N.t/ D k;N.T / �N.t/ D N0 � k/
P .N.T / D N0/

D .�t/k

kŠ
e��t .�.T � t //N0�k

.N0 � k/Š e��.T�t /



.�T /N0

N0Š
e��T

��1

D
 
N0

k

!

t

T

�k 

1 � t

T

�N0�k
:

ut
(e) The following asymptotic relations are valid as h! C0:

P .N.h/ D 0/ D 1 � �hC o.h/;
P .N.h/ D 1/ D �hC o.h/;
P .N.h/ 	 2/ D o.h/: .orderliness/

Lemma 2.14. For every nonnegative integerm the inequality

ˇ
ˇ
ˇ
ˇ
ˇ
ex �

mX

kD0

xk

kŠ

ˇ
ˇ
ˇ
ˇ
ˇ
<
jxjmC1

.mC 1/Še
jxj D o.jxjm/; x ! 0;

holds.

Proof. The assertion of the lemma follows from the nth-order Taylor approximation
to ex with the Lagrange form of the remainder term (see Sect. 7.7 of [4]), but one
can obtain it by simple computations. Using the Taylor expansion

ex D
1X

kD0

xk

kŠ
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of the function ex , which implies that

ˇ̌
ˇ
ˇ̌ex �

mX

kD0

xk

kŠ

ˇ̌
ˇ
ˇ̌ D

ˇ̌
ˇ̌
ˇ
ˇ

1X

kDmC1

xk

kŠ

ˇ̌
ˇ̌
ˇ
ˇ
� jxj

mC1

.mC 1/Š
1X

kD0

.mC 1/Š
.mC 1C k/Š jxj

k <

<
jxjmC1

.mC 1/Š
1X

kD0

jxjk
kŠ
D jxjmC1

.mC 1/Š e
jxj D o.jxjm/; x ! 0:

ut
Proof of Property (e). From the preceding lemma we have as h! C0

P .N.h/ D 0/ D e��h D 1 � �hC o.h/;

P .N.h/ D 1/ D �h

1Š
e��h D �h.1 � �hC o.h// D �hC o.h/;

P .N.h/ 	 2/ D 1 �



e��h C .�h/1

1Š
e��h

�
D �



e��h � 1C .�h/1

1Š
e��h

�
D o.h/:

ut
(f) Given that exactly one event of a homogeneous Poisson process [N.t/; t 	 0]

has occurred during the interval .0; t �, the time of occurrence of this event is
uniformly distributed over .0; t �.

Proof of Property (f). Denote by � the rate of the process N.t/: Immediate
application of the conditional probability gives for all 0 < x < t

P .X1 � xjN.t/ D 1/ D P .X1 � x; N.t/ D 1/
P .N.t/ D 1/

D P .N.x/ D 1;N.t/�N.x/ D 0/
P .N.t/ D 1/

D P .N.x/ D 1/P .N.t � x/ D 0/
P .N.t/ D 1/

D
 
.�x/1

1Š
e��x Œ�.t � x/�0

0Š
e��.t�x/

!

.�t/1

1Š
e��t

��1
D x

t
:

ut
(g) Strong Markov property. Let fN.t/; t 	 0g be a homogeneous Poisson

process with the rate �, and assume that N.t/ is At measurable for all t 	 0,
where At � A; t 	 0, is a monotonically increasing family of �-algebras.
Let � be a random variable such that the condition f� � tg 2 At holds for all
t 	 0. This type of random variable is called a Markov point with respect to
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the family of �-algebra At ; t 	 0. For example, the constant � D t and the so-
called first hitting time, �k D sup fs W N.s/ < kg, where k is a positive integer,
are Markov points. Denote

N�.t/ D N.t C �/�N.�/; t 	 0:

Then the process N�.t/; t 	 0, is a homogeneous Poisson process with
the rate �, which does not depend on the Markov point � or on the process
fN.t/; 0 � t � �g.

(h) Random deletion (filtering) of a Poisson process. Let N.t/; t 	 0 be a
homogeneous Poisson process with intensity � > 0. Let us suppose that
we delete points in the process N.t/ independently with probability .1 � p/,
where 0 < p < 1 is a fixed number. Then the new process M.t/; t 	 0,
determined by the undeleted points of N.t/ constitutes a homogeneous Poisson
process with intensity p�.

Proof of the Property (h). Let us represent the Poisson process N.t/ in the form

N.t/ D
1X

kD1
Iftk�tg; t 	 0;

where tk D X1 C : : : C Xk; k D 1; 2; : : : and X1;X2; : : : are independent
exponentially distributed random variables with the parameter �. The random
deletion in the process N.t/ can be realized with the help of a sequence of
independent and identically distributed random variables I1; I2; : : : ; which do not
depend on the process N.t/; t 	 0 and have a distribution P .Ik D 1/ D p,
P .Ik D 0/ D 1 � p. The deletion of a point tk in the process N.t/ happens only in
the case Ik D 0. Let T0 D 0, and denote by 0 < T1 < T2 < : : : the sequence of
remaining points. Thus the new process can be given in the form

M.t/ D
1X

kD1
IfTk�tg D

1X

kD1
Iftk�t; IkD1g; t 	 0:

Using the property of the process N.t/ and the random sequence Ik; k 	 1, it
is clear that the sequence of random variables Yk D Tk � Tk�1; k D 1; 2; : : :,
are independent and identically distributed; therefore, it is enough to prove that they
have an exponential distribution with the parameter p�, i.e., P .Yk < y/ D 1�ep�y .

The sequence of the remaining points Tk can be given in the form Tk D tnk ; k D
1; 2; : : : ; where the random variables nk are defined as follows:

n1 D minfj W j 	 1; Ij D 1g;
nk D minfj W j > nk�1; Ij D 1g; k 	 2:
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Let us compute the distribution of the random variable

Y1 D T1 D X1 C : : :CXn1:

By the use of the formula of total probability, we obtain

P .Y1 < y/ D P .X1 C : : :CXn1 < y/

D
1X

kD1
P .X1 C : : :CXn1 < yjn1 D k/P .n1 D k/

D
1X

kD1
P .X1 C : : :CXk < y/P .n1 D k/:

The sum X1 C : : :CXk of independent exponentially distributed random variables
Xi has a gamma distribution with the density function

f .yI k; �/ D �k

.k � 1/Šy
k�1e��y; y > 0;

whereas, on the other hand, the random variable n1 has a geometric distribution with
the parameter p, i.e.,

P .n1 D k/ D .1 � p/k�1pI
therefore, we get

1X

kD1
P .X1 C : : :CXk < y/P .n1 D k/ D

1X

kD1

yZ

0

�k

.k � 1/Šx
k�1e��x.1 � p/k�1pdx

D �p
yZ

0

 1X

kD0

Œ.1 � p/�x�k
kŠ

!

e��xdx D �p
yZ

0

e.1�p/�xe��xdx

D �p
yZ

0

e�p�xdx D 1 � e�p�y:

ut
(1) Modeling an inhomogeneous Poisson process. Let fƒ.t/; t 	 0g be a non-

negative, monotonically nondecreasing, continuous-from-left function such that
ƒ.0/ D 0. Let N.t/; t 	 0, be a homogeneous Poisson process with rate 1.
Then the process defined by the equation

Nƒ.t/ D N.ƒ.t//; t 	 0;
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is a Poisson process with mean value functionƒ.t/; t 	 0.

Proof of Property (i). Obviously, N.ƒ.0// D N.0/ D 0, and the increments of
the process Nƒ.t/ are independent and the CDF of the increments are Poissonian,
because for any 0 � s � t the CDF of the incrementNƒ.t/�Nƒ.s/ is Poisson with
the parameterƒ.t/ �ƒ.s/,

P .Nƒ.t/ �Nƒ.s/ D k/ D P .N.ƒ.t// �N.ƒ.s///

D .ƒ.t/ �ƒ.s//k
kŠ

e�.ƒ.t/�ƒ.s//; k D 0; 1; : : : :

ut

2.7.4 Higher-Dimensional Poisson Process

The Poisson process can be defined, in higher dimensions, as a model of random
points in space. To do this, we first concentrate on the process on the real number
line, from the aspect of a possible generalization.

Let fN.t/; t 	 0g be a Poisson process on a probability space .�;A; P /.
Assume that it has a rate function �.t/; t 	 0; thus, the mean value function has the
form

ƒ.t/ D
tZ

0

�.s/ds; t 	 0;

where the function �.t/ is nonnegative and locally integrable function. Denote by
t1; t2; : : : the sequence of the random jumping points of N.t/. Since the mean value
function is continuous, the jumps ofN.t/ are exactly 1; moreover, the processN.t/
and the random points … D ft1; t2; : : :g determine uniquely each other. If we can
characterize the countable set… of random points ft1; t2; : : :g, then at the same time
we can give a new definition of the Poisson processN.t/.

Denote by BC D B.RC/ the Borel �-algebra of the half line RC D Œ0;1/,
i.e., the minimal �-algebra that consists of all open intervals of RC. Let Bi D
.ai ; bi � ; i D 1; : : : ; n, be nonoverlapping intervals of RC; then obviouslyBi 2 BC.
Introduce the random variables

….Bi/ D # f… \ Bi g D #
˚
tj W tj 2 Bi

�
; i D 1; : : : ; n;

where # f�g means the number of elements of a set; then

….Bi / D N.bi/�N.ai /:
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By the use of the properties of Poisson processes, the following statements hold:

(1) The random variables ….Bi/ are independent because the increments of the
processN.t/ are independent.

(2) The CDF of ….Bi/ is Poisson with the parameterƒ.Bi /, i.e.,

P .….Bi / D k/ D .ƒ.Bi //
k

kŠ
e�ƒ.Bi /;

whereƒ.Bi / D
R
Bi
�.s/ds; 1 � i � n.

Observe that by the definition of random variables ….Bi/, it is unimportant
whether or not the set of random points … D fti g is ordered and ….Bi/ is
determined by the number of points ti only, which is included in the interval .ai ; bi �.
This circumstance is important because we want to define the Poisson processes on
higher-dimensional spaces, which do not constitute an ordered set, contrary to the
one-dimensional case.

More generally, let Bi 2 B.RC/; 1 � i � n, be disjoint Borel sets and denote
….Bi/ D # f… \ Bi g. It can be checked that….Bi/ are random variables defined by
the random points … D ft1; t2; : : :g and they satisfy properties (1) and (2). On this
basis, the Poisson process can be defined in higher-dimensional Euclidean spaces
and, in general, in metric spaces also (see Chap. 2. of [54]).

Consider the d -dimensional Euclidean space S D R
d and denote by B.S/

the Borel �-algebra of the subset of S . We will define the Poisson process … as
a random set function satisfying properties (1) and (2). Let … W � ! S be a
random point set in S, where S denotes the set of all subsets of S consisting of
countable points. Then the quantities ….A/ D # f… \Ag define random variables
for all A 2 B.S/.

Definition 2.15. We say that … is a Poisson process on the space S if … 2 S is a
random countable set of points in S and the following conditions are satisfied:

(1) The random variables….Ai/ D # f… \Ai g are independent for all disjoint sets
A1; : : : ; An 2 B.S/.

(2) For any A 2 B.S/ the CDF of random variables ….A/ are Poisson with the
parameterƒ.A/, where 0 � ƒ.A/ � 1.
The function ƒ.A/; A 2 B.S/ is called a mean measure of a Poisson process
(see [54], p. 14).

Properties:

1. Since the random variable ….A/ has a Poisson distribution with the parameter
ƒ.A/, then E .….A// D ƒ.A/ and D2 .….A// D ƒ.A/.

2. If ƒ.A/ is finite, then the random variable ….A/ is finite with probability 1, and
if ƒ.A/ D 1, then the number of elements of the random point set … \ A is
countably infinite with probability 1.

3. For any disjoint sets A1;A2; : : : 2 B.S/,
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….A/ D
1X

iD1
….Ai / and ƒ.A/ D

1X

iD1
ƒ.Ai /;

where A D [1
iD1Ai . The last relation means that the mean measure ƒ.B/; B 2

B.S/ satisfies the conditions of a measure, i.e., it is a nonnegative, �-additive set
function on the measurable space .S;B.S//, which justifies the name of ƒ.

Like the one-dimensional case, when the Poisson process has a rate function, it is
an important class of Poisson processes for which there exists a nonnegative locally
integrable function � with the property

ƒ.B/ D
Z

B

�.s/ds; B 2 B.S/

(here the integral is defined with respect to the Lebesgue measure ds). Then the
mean measure ƒ is nonatomic, that is, there is no point s0 2 B.S/ such that
ƒ.fs0g/ > 0.

4. By the use of properties 1 and 3, it is easy to obtain the relation

D2 .….A// D
1X

iD1
D2 .….Ai // D

1X

iD1
ƒ.Ai / D ƒ.A/:

5. For any B;C 2 B.S/,

cov.….B/;….C // D ƒ.B \ C/:

Proof. Since….B/ D ….B\C/C….BnC/ and….C/ D ….B\C/C….CnB/,
where the sets A \ C; AnC and CnA are disjoint, the ….A \ C/, ….AnC/, and
….CnA/ are independent random variables, and thus

cov.….A/;….C // D cov.….A\ C/;….A\ C//
D D2 .….A \ C// D ƒ.A \ C/:

ut
6. For any (not necessarily disjoint) sets A1; : : : ; An 2 B.S/ the joint distribution

of random variables ….A1/; : : : ;….An/ is uniquely determined by the mean
measure ƒ.

Proof. Denote the set of the 2n pairwise disjoint sets by

C D fC D B1 \ : : : \ Bn; where Bi means the set either Ai , or NAi gI

then the random variables ….C/ are independent and have a Poisson distribution
with the parameter ƒ.C/. Consequently, the random variables ….A1/; : : : ;….An/
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can be given as a sum from a 2n number of independent random variables
….C/; C 2 C, having a Poisson distribution with the parameter ƒ.C/; there-
fore, the joint distribution of random variables ….Ai/ is uniquely determined by
….C/; C 2 C, and the mean measureƒ. ut
Comment 2.16. Let S D R

d , and assume

ƒ.A/ D
Z

A

�.x/dx; A 2 B.S/;

where �.x/ is a nonnegative and locally integrable function and dx D dx1:::dxn. If
jAj denotes the n-dimensional (Lebesgue) measure of a set A and the function �.x/
is continuous at a point x0 2 S , then

ƒ.A/ 
 �.x0/ jAj

if the set A is included in a small neighborhood of the point x0.
The Poisson process … is called homogeneous if �.x/ D � for a positive

constant �. In this case for any A 2 B.S/ the inequalityƒ.A/ D � jAj holds.

The following three theorems state general assertions on the Poisson processes
defined in higher-dimensional spaces (see Chap. 2 of [54]).

Theorem 2.17 (Existence theorem). If the mean measure ƒ is nonatomic on the
space S and it is �-finite, i.e., it can be expressed in the form

ƒ D
1X

iD1
ƒi ; where ƒi.S/ <1;

then there exists a Poisson process… on the space S and has mean measure ƒ.

Theorem 2.18 (Superposition theorem). If …i; i D 1; 2; : : :, is a sequence of
independent Poisson processes with mean measure ƒ1;ƒ2; : : : on the space S ,
then the superposition … D [1

iD1…i is a Poisson process with mean measure
ƒ DP1

iD1 ƒi :

Theorem 2.19 (Restriction theorem). Let … be a Poisson process on the space S
with mean measure ƒ. Then for any S0 2 B.S/ the process

…0 D … \ S0
can be defined as a Poisson process on S with mean measure

ƒ0.A/ D ƒ.A \ S0/:

The process …0 can be interpreted as a Poisson process on the space S0 with mean
measure ƒ0, where ƒ0 is called the restriction of mean measure ƒ to S0.
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2.8 Exercises

Exercise 2.1. Let X1;X2; : : : be independent identically distributed random vari-
ables with finite absolute moment E .jX1j/ <1. LetN be a random variable taking
positive integer numbers and independent of the random variable .Xi ; i D 1; 2; : : :/.
Prove that

(a) E .X1 C : : :CXN/ D E .X1/E .N /,
(b) D2 .X1 C : : :CXN/ D D2 .X1/C .E .X1//2 .E .N //2

(Wald identities or Wald lemma).

Exercise 2.2. Let X0;X1; : : : be independent random variables with joint distribu-
tion P .Xi D 1/ D P .Xi D �1/ D 1

2
.

Define Z0 D 0, Zk D Zk�1 CXk; k D 0; 1; : : :. Determine the expectation and
covariance function of the process .Zk; k D 1; 2; : : :/ (random walk on the integer
numbers).

Let a and b be real numbers, jbj < 1. Denote W0 D aX0; Wk D bWk�1 C
Xk; k D 1; 2; : : : [here the process .Wk; k D 0; 1; : : :/ constitutes a first-degree
autoregressive process with the initial value aX0 and with the innovation process
.Xk; k D 1; 2; : : :/]. If we fix the value b, for which value of a will the process Wk

be stationary in a weak sense?

Exercise 2.3. Let a and b be real numbers, and let U be a random variable
uniformly distributed on the interval .0; 2
/. Denote Xt D a cos.bt C U /, �1 <

t <1. Prove that the random cosine process .Xt ; �1 < t <1/ is stationary.

Exercise 2.4. Let N.t/; T 	 0 be a homogeneous Poisson process with inten-
sity �.

(a) Determine the covariance and correlation functions of N.t/.
(b) Determine the conditional expectation E .N.t C s/ j N.t//.



Chapter 3
Markov Chains

In the early twentieth century, Markov (1856–1922) introduced in [67] a new
class of models called Markov chains, applying sequences of dependent random
variables that enable one to capture dependencies over time. Since that time,
Markov chains have developed significantly, which is reflected in the achievements
of Kolmogorov, Feller, Doob, Dynkin, and many others. The significance of the
extensive theory of Markov chains and the continuous-time variant called Markov
processes is that it can be successfully applied to the modeling behavior of many
problems in, for example, physics, biology, and economics, where the outcome of
one experiment can affect the outcome of subsequent experiments. The terminology
is not consistent in the literature, and many authors use the same name (Markov
chain) for both discrete and continuous cases. We also apply this terminology.

Heuristically, the property that characterizes Markov chains can be expressed by
the so-called memoryless notion (Markov property) as follows: a Markov chain is a
stochastic process for which future behavior, given the past and the present, depends
only on the present and not on the past.

This chapter presents a brief introduction to the theory of discrete-time Markov
chains (DTMCs) and to the continuous-time variant, continuous-time Markov
chains (CTMCs), that will be applied to the modeling and analysis of queueing
systems. Note that DTMCs and CTMCs taking values in a set of countable elements
have many similar properties; however, in contrast to discrete-time processes, the
characteristics of a sample path essentially differ in continuous cases.

We limit ourselves here to the definition of Markov processes and to their basic
properties with countable state space in discrete time T D f0; 1; : : :g and continuous
time T D Œ0;1/. In connection with the classic results discussed in this chapter,
we refer mainly to the classic works [35, 36].

Consider a discrete-time or continuous-time stochastic processX D .Xt ; t 2 T /
given on a probability space .�;A; P / and taking values in a countable set, called
the state space, X D fx0; x1; : : :g. The state space X is called finite if it consists of a
finite number of elements. The sample path of a discrete-time process with discrete

L. Lakatos et al., Introduction to Queueing Systems with Telecommunication Applications,
DOI 10.1007/978-1-4614-5317-8 3, © Springer Science+Business Media, LLC 2013
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sample space is defined in the space of sequences S D fxk0 ; xk1 ; : : :g, xki 2 X ,
while it is an element of the space of all functions S D fxt W xt 2 X ; t 	 0g in
continuous-time cases.

We say that the process is in the state x 2 X at the time t 2 T if Xt D x.
The process starts from a state x0 2 X determined by the distribution of the random
variable X0, which is the initial distribution of the process. If there exists a state
x0 2 X for which P.X0 D x0/ D 1, then the state x0 is called the initial state.
The state of the process can change from time to time, and these changes in state are
known as transitions. The probabilities of these state changes are called transition
probabilities, which with the initial distribution determine the statistical behavior
of the process.

If we denote by BX the �-algebra of all subsets of the state space X , then the
pair .X ;BX/ is a measurable space and the connection fXt 2 Ag 2 A holds for all
t 2 T and fA 2 BX g 2 A.

Definition 3.1. A stochastic process .Xt ; t 2 T / with the discrete state space X is
called a Markov chain if for every nonnegative integer n and for all t0 < : : : <

tn < tnC1; ti 2 T ; x0; : : : ; xnC1 2 X

P
�
XtnC1

D xnC1 j Xt0 D x0; : : : ; Xtn D xn
� D P

�
XtnC1

D xnC1 j Xtn D xn
�
;

(3.1)

provided that this conditional probability exists. Let x; y 2 X ; s � t; s; t 2 T ;
then the function

px;y.s; t/ D P .Xt D y j Xs D x/
is called a transition probability function of a Markov chain. If the equation
px;y.s; t/ D px;y.t � s/ holds for all x; y 2 X ; s � t; s; t 2 T , then the Markov
chain is called (time) homogeneous; otherwise it is known as inhomogeneous.

In both discrete- and continuous-time cases, this definition expresses the
aforementioned memoryless property of a Markov chain, and it ensures that the
transition probabilities depend only on the present state Xs, not on how the present
state was reached. We start with a discussion of DTMCs.

3.1 Discrete-Time Markov Chains with Discrete State Space

Given a Markov chain X D .Xt ; t 2 T /, T D f0; 1; : : :g on a probability
space .�;A; P / taking values in a finite or countably infinite set of elements X .
It is conventional to denote the finite state space by the set X D f0; 1; : : : ; Kg
.0 < K < 1/ and the countably infinite one by X D f0; 1; : : :g. This notation
is quite reasonable for queueing systems, and in general, it does not lead to a
separate problem if the elements of X serve to distinguish the states only; otherwise,
the state space is chosen based on practical requirements. Assume that the events
fXt D ig; i 2 X , are disjoint for all t 2 T .
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In the discrete-time case we can give an alternative definition of a Markov chain
instead of Eq. (3.1).

Definition 3.2. A discrete-time stochastic process X with state space X is called a
Markov chain if for every n D 0; 1; : : : and for all states i0; : : : ; inC1 2 X

pin;inC1
.n; nC 1/ D P .XnC1 D inC1 j X0 D i0; : : : ; Xn D in/

D P .XnC1 D inC1 j Xn D in/ ; (3.2)

provided that a conditional probability exists. The probability

pi;j .n; nC 1/ D P .XnC1 D j j Xn D i/ ; i; j 2 X , n D 0; 1; : : : ;
is called a one-step transition probability, which is the probability of a transition
from a state i to a state j in a single step from time n to time nC 1.

Relation (3.2) is simpler in our case than that of Eq. (3.1), but it can be easily
checked that they are equivalent to each other. Here we can define, from a practical
point of view, the transition probability pi;j .s; t/ D 0, when the probability of the
event fXs D ig equals 0 at the time point s because if PfXs D ig D 0 holds, then the
sample path arrives at the state i with probability 0 at time s; therefore, the quantity
pi;j .s; t/ can be defined freely in this case.

Definition 3.3. We say that a stochastic process X with state space X is a Markov
chain of m-order (or a Markov chain with memory m) if for every n D 1; 2; : : :

and for arbitrary states ik 2 X ; k D 0; : : : ; nCm,

P .XnCm D inCm j X0 D i0; : : : ; XnCm�1 D inCm�1/

D P .XnCm D inCm j Xn D in; : : : ; XnCm�1 D inCm�1/ ;

provided that a conditional probability exists.

It is not difficult to verify that an m-order Markov chain can be represented as a
first-order one if we introduce a new m-dimensional process as follows. Define the
vector-valued process Y D .Y0; Y1; : : :/;

Yn D .Xn; : : : ; XnCm�1/; n D 0; 1; : : : ;
with state space

X 0 D f.k1; : : : ; km/ W k1; : : : ; km 2 X g:
Then the process Y is a first-order Markov chain because

P .YnC1 D .inC1; : : : ; inCm/ j Y0 D .i0; : : : ; im�1/; : : : ; Yn D .in; : : : ; inCm�1//

D P .XnCm D inCm; : : : ; XnC1 D inC1 j X0 D i0; : : : ; XnCm�1 D inCm�1/

D P .XnCm D inCm; : : : ; XnC1 D inC1 j Xn D in; : : : ; XnCm�1 D inCm�1/

D P .YnC1 D .inC1; : : : ; inCm/ j Yn D .in; : : : ; inCm�1//:
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This is why we consider only first-order Markov chains and why, later on, we
will write only Markov chain instead of Markov chain of first order.

In the theory of DTMCs, the initial distribution

P D .pi ; i 2 X /; where pi D P .X0 D i/;
and the transition probabilities [see Eq. (3.2)]

pij .n; nC 1/; i; j 2 X ; n D 0; 1; : : : ;
play a fundamental role because the statistical behavior of a Markov chain is
completely determined by them (Theorem 3.4).

The states i and j , which play a role in Definition 3.2, can be identical, which
means that the process can remain in the same state at the next time point. We say
that a Markov chain X is (time) homogeneous if the transition probabilities do not
depend on time shifting, that is,

pij D P .XnC1 D j j Xn D i/ D P .X1 D j j X0 D i/; i; j 2 X ; n D 0; 1; : : ::
If a Markov chain is not homogeneous, then it is called inhomogeneous.

3.1.1 Homogeneous Markov Chains

From a practical point of view, the class of homogeneous Markov chains plays a
significant role; therefore, in this chapter we will investigate the properties of this
class of processes. However, many results for homogeneous cases remain valid in
the inhomogeneous case, too.

By definition, for a homogeneous Markov chain the one-step transition proba-
bility (or simply transition probability) pi;j ; i; j 2 X , equals the probability that,
starting from the initial state X0 D i at time 0, the process will be in the state j at
the next time point 1, and this probability does not change if we take the transition
probability in arbitrary time n D 1; 2; : : :,

pij D PfX1 D j j X0 D ig D PfXnC1 D j j Xn D ig:
The transition probabilities satisfy the equation

X

j2X
pij D 1:

This equation expresses the obvious fact that starting in a state i at the next time
point the process takes certainly some state j 2 X . The following theorem states
that the initial distribution and the transition probabilities determine the finite-
dimensional distribution of a homogeneous Markov chain, and as a consequence we
obtain that a Markov chain can be given in a statistical sense with the state space,
the initial distribution, and the transition probabilities.
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Theorem 3.4. The finite-dimensional distributions of a Markov chain X are
uniquely determined by the initial distribution and the transition probabilities and

P .X0 D i0; : : : ; Xn D in/ D pin�1inpin�2in�1 � : : : � pi0i1pi0 : (3.3)

Proof. Let n be a positive integer, and let i0; : : : ; in 2 X . First, assume that
P .X0 D i0; : : : ; Xn D in/ > 0. By the definition of conditional probability,

P .X0 D i0; : : : ; Xn D in/
D P .Xn D in j X0 D i0; : : : ; Xn�1 D in�1/P .X0 D i0; : : : ; Xn�1 D in�1/ D : : :
D P .Xn D in j X0 D i0; : : : ; Xn�1 D in�1/

� P .Xn�1 D in�1 j X0 D i0; : : : ; Xn�2 D in�2/ � : : : � P .X1 D i1 j X0 D i0/
P .X0 D i0/:

Using the Markov property we can rewrite this formula in the form

P .X0 D i0; : : : ; Xn D in/
D P .Xn D in j Xn�1 D in�1/ � : : : � P .X1 D i1 j X0 D i0/P .X0 D i0/
D pin�1inpin�2in�1 � : : : � pi0i1pi0 :

If P .X0 D i0; : : : ; Xn D in/ D 0, then either P .X0 D i0/ D pi0 D 0 or there
exists an indexm, 0 � m � n � 1, for which

P .X0 D i0; : : : ; Xm D im/ > 0 and P .X0 D i0; : : : ; XmC1 D imC1/ D 0:
Consequently,

P .X0 D i0; : : : ; XmC1 D imC1/

D P .XmC1 D imC1 j X0 D i0; : : : ; Xm D im/P .X0 D i0; : : : ; Xm D im/
D pimimC1

P .X0 D i0; : : : ; Xm D im/;
and therefore pimimC1

D 0. This means that the product pin�1inpin�2in�1 � : : : �pi0i1pi0
equals 0 in both cases, and so assertion (3.3) of the theorem is true. ut
Comment 3.5. From relation (3.4) it immediately follows that for any Ai �
X ; 0 � i � n the probability P .X0 2 A0; : : : ; Xn 2 An/ can be given in the form

P .X0 2 A0; : : : ; Xn 2 An/ D
X

i02A0
: : :

X

in2An
P .X0 D i0; : : : ; Xn D in/;

where the probabilities are determined by relation (3.3), that is, with the help of the
initial distribution and the transition probabilities.
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The following remark clarifies an essential property of the homogeneous Markov
chain, and on that basis limit theorems can be proved. This property relates the
behavior of Markov chains to renewal and regenerative processes, which we will
discuss later on in Sects. 4.1 and 4.2.

Comment 3.6. From the memoryless property of a Markov chain X it follows that
we can divide the time access into disjoint parts where the process behavior is
mutually independent and follows the same probabilistic rules. We define the limits
of these independent parts by the time instants when the process stays in the state
i0 2 X .

Formally, we define the sequence of random time points 0 � �1 < �2 < : : : by
the condition X�n D i0, n D 1; 2; : : :, and Xs ¤ i0 if s 62 f�1; �2; : : :g. In this
way 0 � �1 < �2 < : : : are the times of the first, second, etc. visits to the state
i0, and i0 is not visited between �n and �nC1, n D 1; 2; : : :. We define Yn and Zn;k
by Yn D �nC1 � �n and Zn;k D X�nCk; 0 � k < Yn. Yn is the time between
the nth and the n C 1th visits to i0, and Zn;k is the state of the process at k steps
after the nth visit to i0, having that the next visit to i0 is after �n C k. Using the
memoryless property of the Markov chain X we obtain that the random variables
.Yn; Zn;k ; 0 � k < Yn/; n D 1; 2; : : :, are independent and their stochastic
behaviors are identical. This fact ensures that the process is regenerative (Sect. 4.2).

In many cases, the study of Markov chains will be made simpler by the use of
transition probability matrices.

Definition 3.7. The matrices associated with the transition probabilities of a
Markov chain X with finite or countably infinite elements are

… D

2

6
6
6
4

p00 p01 � � � p0N
p10 p11 � � � p1N
:::

:::
: : :

:::

pN0 pN1 � � � pNN

3

7
7
7
5

and … D

2

6
6
6
4

p00 p01 p12 � � �
p10 p11 p12 � � �
p20 p21 p22 � � �
:::

:::
:::
: : :

3

7
7
7
5
:

These matrices are called (one-step) transition probability matrices.

A matrix with nonnegative entries A D �
aij
	
i;j2X is called a stochastic matrix

if for every row the sum of row elements equals 1. Then all transition probability
matrices are stochastic ones:

(a) The elements of … are obviously nonnegative,

pij 	 0; i; j 2 X :

(b) For every i the sum of the i th row elements of … equals 1,

X

j2X
pij D 1; i 2 X :
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The first of the following three examples shows that a sequence of independent
and identically distributed discrete random variables is a homogeneous Markov
chain. The second one shows that the sequence of sums of these random variables
also constitutes a homogeneous Markov chain. If in the second case the random
variables are independent, but not identically distributed, then the defined sequences
will be an inhomogeneous Markov chain. The third example describes the stochastic
behavior of a random walk on the real number line; in this case it is reasonable
to choose the state space to be the set of all integer numbers, that is, X D
f0;˙1;˙2; : : :g.

Let Z0;Z1; : : : be a sequence of independent and identically distributed random
variables with a common CDF

P .Zm D k/ D pk; pk 	 0; k D 0; 1; : : : ; m D 0; 1; : : : :

Example 3.8. Define the discrete-time stochastic process X with the relation Xn D
Zn; n D 0; 1; : : :. Then X is a homogeneous Markov chain with initial distribution
P .X0 D k/ D pk; k D 0; 1; : : : and transition probability matrix

… D

2

6
66
4

p0 p1 p2 � � �
p0 p1 p2 � � �
p0 p1 p2 � � �
:::
:::
:::
: : :

3

7
77
5
:

Example 3.9. Consider the process Xn D Z1 C : : : C Zn; n D 0; 1; : : :, with the
initial distribution P .X0 D 0/ D 1, i.e., the initial state is 0. The one-step transition
probabilities are

pij .n; nC 1/ D P .XnC1 D j j Xn D i/
D P .Z1 C : : :CZnC1 D j j Z1 C : : :CZn D i/

D P .ZnC1 D j � i/ D
�
pj�i ; ha j 	 i;
0; ha j < i:

This means that the process X is a homogeneous Markov chain with the transition
probability matrix

… D

2

66
6
6
6
4

p0 p1 p2 p3 p4 � � �
0 p0 p1 p2 p3 � � �
0 0 p0 p1 p2 � � �
0 0 0 p0 p1 � � �
:::
: : :

: : :
: : :

: : :
: : :

3

77
7
7
7
5
:

Example 3.10. Now let
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Fig. 3.1 Random walk

P .Zi D C1/ D p; P .Zi D �1/ D 1 � p .0 < p < 1/; i D 1; 2; : : : ;

be the common distribution function of a sequence of independent random variables
Z0;Z1; : : :, and define the process Xn D Z1 C : : : C Zn; n D 1; 2; : : :.
Let P .X0 D 0/ D 1 be the initial distribution of the processX . Then the processX
is a homogeneous Markov chain with initial state X0 D 0 and transition probability
matrix

pij .n; nC 1/ D P .XnC1 D j j Xn D i/
D P .Z1 C : : :CZnC1 D j j Z1 C : : :CZn D i/

D P .ZnC1 D j � i/ D
8
<

:

p; if j D i C 1;
1 � p; if j D i � 1;
0; if ji � j j ¤ 1:

The process X describes the random walk on the number line starting from the
origin and moves at every step one unit to the right with probability p and to the
left with probability .1�p/, with these moves being independent of each other. The
case p D 1=2 corresponds to the symmetric random walk.

Figure 3.1 demonstrates the transitions of the random walk, while Fig. 3.2 shows
the transitions of a Markov chain with a finite state space.

3.1.2 The m-Step Transition Probabilities

Let X be a DTMC with discrete state space X . Denote by

pij .s; t/ D P .Xt D j j Xs D i/
the transition probabilities of X and by
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Fig. 3.2 Markov chain with finite state space

….s; t/ D �pij .s; t/
	
i;j2X ; i; j 2 X and 0 � s � t <1

the transition probability matrices. We set for s D t

pij .s; s/ D
�
1; if i D j;
0; if i ¤ j:

If the Markov chain X is homogeneous, then the transition probability pij .s; t/
depends only on the difference t � s. Thus, using the notation t D s Cm, we have

pij .s; s Cm/ D pij .m/; s;m D 0; 1; : : : ; i; j 2 X :

Definition 3.11. The quantities pij .m/; m D 0; 1; : : : ; i; j 2 X are called the
m-step transition probabilities of the Markov chain X , and the matrix ….m/ D�
pij .m/

	
i;j2X associated with them is called an m-step transition probability

matrix.

Theorem 3.12 (Chapman–Kolmogorov equation). For every nonnegative integer
number r; s, the .r C s/-step transition probabilities of the homogeneous Markov
chain satisfy the equation

pij .r C s/ D
X

k2X
pik.r/pkj .s/: (3.4)

Proof. Assume the initial state of the process is i , that is, the process starts from the
state i at the time point 0. First we note that the relation

pik.r/ D P .Xr D k j X0 D i/ D P .X0 D i; Xr D k/
P .X0 D i/ D 0
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holds for some state k if and only if P .X0 D i; Xr D k/ D 0. On the other hand,
since fXr D kg; k 2 X form a complete system of events,

P
k2X P .Xr D k/ D 1,

and, in accordance with the definitions of the .r C s/-step transition probability and
the conditional probability, we obtain

pij .r C s/ D P .XrCs D j j X0 D i/

D P .XrCs D j; X0 D i/
P .X0 D i/ D

X

k2X

P .XrCs D j;X0 D i; Xr D k/
P .X0 D i/

D
X

k2X
Ifpik¤0g

P .X0 D i; Xr D k/
P .X0 D i/

P .XrCs D j;X0 D i; Xr D k/
P .X0 D i; Xr D k/

D
X

k2X
Ifpik¤0gP .Xr D k j X0 D i/P .XrCs D j j Xr D k;X0 D i/

D
X

k2X
Ifpik¤0gpik.0; r/pkj .r; r C s/ D

X

k2X
pik.r/pkj .s/:

ut
If we use the matrix notation ….s; t/ D �

pij .s; t/
	
i;j2X , then the Chapman–

Kolmogorov equation can be rewritten in the matrix form

….s; t/ D ….s; r/….r; t/;
where s; r; t , and n are integer numbers satisfying the inequality 0 � s � r � t; n 	
1. Successively repeating this relation we have

….0; n/ D ….0; 1/….1; n/ D : : : D ….0; 1/….1; 2/ � : : : �….n � 1; n/:
Consequently, the m-step transition probability matrix of a homogeneous Markov
chain can be given in the form

….m/ D …m;

where … D ….0; 1/ is the (one-step) transition probability matrix of the Markov
chain.

3.1.3 Classification of States of Homogeneous Markov Chains

The behavior of a Markov chain and its asymptotic properties essentially depend on
the transition probabilities, which reflect the connections among the different states.

Denote by Pi.t/ D P .Xt D i/; i 2 X the distribution of the Markov chain X at
the time t 	 0. One of the most important questions in the theory of Markov chains
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concerns the conditions under which a limit distribution exists for all initial states
X0 D k 2 X ,

lim
t!1P.t/ D 
 D .
i ; i 2 X /;

of the time-dependent distribution P.t/D .Pi .t/; i 2 X /, where 
i	0; P
i2X


i D 1.

In the answer to this question, the arithmetic properties of the transition probabilities
play an important role.

To demonstrate this fact, consider the case where the sample space X can be
divided into two disjoint (nonempty) sets X1 and X2 such that

pij D pji D 0; for all i 2 X1 and j 2 X2:

Obviously, if X0 D i0 2 X1 is the initial state, then the relation Xt 2 X1 is valid for
all t 	 0, and in the opposite case, Xt 2 X2 for all t 	 0 holds if the initial state i0
satisfies the condition i0 2 X2. This means that in this case we can in fact consider
two Markov chains .Xk; .Pi .0/; i 2 Xk/;…k/, k D 1; 2, that can be investigated
independently of each other.

Definition 3.13. The state j 2 X is accessible from the state i 2 X (denoted by
i ! j ) if there exists a positive integer m such that pij .m/ > 0. If the states i; j 2
X are mutually accessible from each other, then we say that they communicate
(denoted by i  ! j ).

pii .0/ D 1; i 2 X represents the assumption that “every state is accessible in 0
steps from itself.” If the state j 2 X is not accessible from the state i 2 X (denoted
by i ¹ j ), then pij .m/ D 0; m 	 1. It is easy to check that i  ! j is an
equivalence relation: it is reflexive, transitive, and symmetric. Furthermore, if the
states i and j do not communicate, then either pij .m/ D 0; m 	 1, or pji .m/ D 0,
m 	 1. If a state i satisfies the condition pii D pii .1/ D 1, then the state i is called
absorbing. This means that if the process visits an absorbing state at time t , then it
remains there forever and no more state transitions occur.

If the state space X does not consist of the states i and j such that i ! j , but
j ¹ i , then X can be given as a union of finite or countable disjoint sets

X D X1 [ X2 [ : : : ;
where for every k the states of Xk communicate, while for every k; n, k ¤ n, the
states of Xk cannot be accessible from the states of Xn.

Definition 3.14. A set of states is called irreducible if all pairs of its elements
communicate.

In the theory of Markov chains, irreducible classes play an important role because
they can be independently analyzed.

Definition 3.15. A Markov chain is called irreducible if all pairs of its states
communicate.
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Clearly, if a Markov chain is irreducible, then it consists of only one irreducible
class of states, that is, for every i; j 2 X there exists an integer m 	 1 (depending
on i and j ) such that pij .m/ > 0.

Definition 3.16. For every i denote by d.i/ the greatest common divisor of integer
numbers m 	 1 for which pii .m/ > 0. If pii .m/ D 0 for every m, then we set
d.i/ D 0. Then the number d.i/ is called the period of the Markov chain. If d.i/D1
for every state, then the Markov chain is called aperiodic.

Example 3.17 (Periodic Markov chain). Consider the random walk on the number
line demonstrated earlier in Example 3.10. Starting from an arbitrary state i we can
return to state i with positive probabilities in steps 2; 4; : : : only. It is clear that in
this case, pii .2k/ > 0 and pii .2.k�1/C1/ D 0 for every i 2 X and k D 1; 2; : : :;
therefore, d.i/ D 2. At the same time, the Markov chain is obviously irreducible.

Theorem 3.18. Let X be a homogeneous Markov chain with state space X , and let
X 0 � X be a nonempty irreducible class. Then for every i; j 2 X 0, the periods of i
and j are the same, i.e., d.i/ D d.j /.
Proof. Let i; j 2 X 0, i ¤ j , be two arbitrary states. Since X 0 is an irreducible class,
there exist t; s 	 1 integers such that the inequalities pij .t/ > 0 and pji .s/ > 0

hold. From this, by the Chapman–Kolmogorov equation, we obtain

pii .t C s/ 	 pij .t/pj i .s/ > 0 and pjj .t C s/ 	 pji .s/pij .t/ > 0I

therefore, the numbers d.i/ and d.j / differ from 0. Choose arbitrarily an integer
m 	 1 such that pii .m/ > 0. Repeatedly applying the Chapman–Kolmogorov
equation, we have for any k 	 1

pjj .t C s C km/ 	 pji .s/pii .km/pij .t/ 	 pji .t/ .pi i .m//k pij .s/ > 0:

Thus by the definition of the period of the state j , d.j / is a divisor of both .tCsCm/
and .tCsC2m/, and hence it is also a divisor of their difference .tCsC2m/�.tC
s Cm/ D m. From this it immediately follows that d.j / is a divisor of everym for
which pii .m/ > 0, and thus it is a divisor of d.i/; therefore, d.j / � d.i/. Changing
the role of i and j we get the reverse inequality d.j / 	 d.i/, and consequently
d.j / D d.i/. ut

Notice that from this theorem it follows that the states of an irreducible class have
a common period d.X 0/ called the period of the class. As a consequence, we have
the following assertion.

Corollary 3.19. If the Markov chain X is homogeneous and irreducible with state
space X , then every state has the same period d D d.X / > 0 and is periodic or
aperiodic depending on d > 1 or d D 1, respectively.

The main property of the numbers for which the probabilities of returning to a
state i in k steps are positive, i.e., pii .k/ > 0, is given by the following assertion.
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Theorem 3.20. LetX be a homogeneous irreducible Markov chain with state space
X . Then for every state i 2 X there exists an integer Mi such that pii .d.i/m/ > 0
if m 	Mi .

Proof. By the previous theorem, d.i/ 	 1. Let m1; : : : ; mL be different positive
integer numbers such that, on the one hand, pii .mk/ > 0, 1 � k � L, and
on the other hand, d.i/ can be given as the greatest common divisor of integers
m1; : : : ; mL. Then, using the well-known assertion from the number theory that
there exists an integer Mi such that for every integer m 	 Mi , the equation
md.i/ D r1m1 C : : : C rLmL has a solution with nonnegative integers i1; : : : ; iL.
Applying this fact and the Chapman–Kolmogorov equation we obtain

pii .md.i// 	 .pii .m1//
r1 � : : : � .pii .mL//

rL > 0;

and consequently the assertion of the theorem is true. ut
Consider now the homogeneous irreducible Markov chain with period d.X / > 1.

We show that for the transitions among the states there exists a cyclic property,
demonstrated in Example 3.28, of the random walk on a number line: if the walk
starts from state 0, then the process can take only even integers in even steps and
only odd integers in odd steps. The cyclic property in this case means that after even
numbers follow odd numbers and after odd numbers follow even numbers as states.
This division of states is generalized subsequently for Markov chains with arbitrary
period d .

Let i0 2 X be an arbitrarily fixed state, and define the sets

Xk D fj 2 X W pi0j .k Cmd/ > 0; for some m 	 0g, k D 0; 1; : : : ; d � 1:

That is, Xk is the set of states that are available from i0 in k Cmd (m D 0; 1; : : : ;)
steps.

Theorem 3.21. The sets X1; : : : ;Xd�1 are disjoint, X D X0 [ : : :[Xd�1, and the
Markov chain allows for only the following cyclic transitions among the sets Xk:

X0 ! X1 ! : : :! Xd�1 ! X0: (3.5)

Proof. First we prove that the sets X0; : : : ;Xd�1 are disjoint and their union is X .
In contrast, assume that there exist integers k1; k2;m1;m2 such that 0 � k1 < k2 �
d�1; m1;m2 	 1; pi0j .k1Cm1d/ > 0, and pi0j .k2Cm2d/ > 0. Since the Markov
chain is irreducible, there exists an integerK 	 1 such that pii0.K/ > 0. Using the
Chapman–Kolmogorov equation we have

pi0i0 .k1 Cm1d CK/ 	 pi0j .k1 Cm1d/pj i0.K/ > 0;

pi0i0 .k2 Cm2d CK/ 	 pi0j .k2 Cm2d/pj i0.K/ > 0:
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By the definition of the period d , d is a divisor of both .k1 Cm1d CK/ and .k2 C
m2dCK/, thus it is also a divisor of their difference, that is, .k2�k1/C.m2�m1/d .
Consequently, d is a divisor of the difference .k2 � k1/, which is a contradiction,
because 0 < k2 � k1 � d � 1. The irreducibility condition ensures that if all states
i 2 X are accessible from the state i0, then X D X0 [ : : : [ Xd�1.

We now verify that for every k; 0 � k � d � 1; i 2 Xk and j 2 X such that
pij > 0, the relation j 2 XK , 0 � K < d , is true, where

K D
�
k C 1; if 0 � k < d � 1;
0; if k D d � 1:

This property guarantees the transitions between the states in (3.5).
Since j 2 Xk , then, by the definition of the sets Xk , there exists an integerm 	 0

such that pi0j .k C md/ > 0. From this, by the use of the Chapman–Kolmogorov
equality, we have

pi0`.k C 1Cmd/ 	 pi0j .k Cmd/pj` > 0:

In view of the fact that

k C 1Cmd D
�
K Cm d; if 0 � k < d � 1;
0C .mC 1/ d; if k D d � 1;

from the definition of XK follows the relation j 2 XK . ut
As a consequence of Theorem 3.21, we have the next important corollary, which

allows us to consider an aperiodic Markov chain instead of a periodic one.

Corollary 3.22. Theorem 3.21 states that starting from a state of Xk , k D
0; 1; : : : ; d � 1, after exactly d steps the process returns to a state of Xk . If we
define the quantities

p
.k/
ij D P .Xd D i j X0 D j /; i; j 2 Xk;

then
P

j2Xk

p
.k/
ij D 1; i 2 Xk follows. This means that the matrices P.k/ D

h
p
.k/
ij

i

i;j2Xk

are stochastic; they can be interpreted as one-step transition proba-

bility matrices, and consequently the processes

Y .k/ D .Y0; Y1; : : :/; k D 0; 1; : : : ; d � 1;

with the state space Xk and transition probability matrix P.k/, are homogeneous and
irreducible Markov chains, and so, instead of the original chain, d homogeneous
irreducible Markov chains can be considered independently.
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If the states of the Markov chain are numbered according to the Xk , k D
0; 1; : : : ; d � 1, sets, then the transition probability matrix has the following
structure:

X0f 0 P0!1

X1f 0 P1!2

: : :
: : :

Xd�2f 0 Pd�2!d�1
Xd�1f Pd�1!0 0

:

3.1.4 Recurrent Markov Chains

We consider the question of what conditions ensure the existence of limit theorems
for homogeneous aperiodic Markov chains, that is, under what conditions does there
exist the limit distribution 
 D .
i ; i 2 X /; .
i 	 0;

P

i2X

i D 1/, such that,

independently of the initial distribution .pi ; i 2 X /, the limit is

lim
n!1Pi.n/ D lim

n!1P .Xn D i/ D 
i ; i 2 X ‹

To provide an answer to this question, it is necessary to consider some quantities
such as the probability and the expected value of returning to a given state of a
Markov chain or arriving at a state j from another state i . Let i; j 2 X be two
arbitrary states, and introduce the following notations:

Tij D inffn W n > 1; Xn D j j X0 D ig;
fij .0/ D 0;

fij .1/ D P .X1 D j j X0 D i/;
fij .n/ D P .X1 ¤ j;X2 ¤ j; : : : ; Xn�1 ¤ j;Xn D j j X0 D i/; n D 2; 3; : : ::

If i ¤ j , then the quantities fij .n/ D PfTij D ng mean the first hit (or first
passage) probabilities for the state j from i , which is the probability that starting
from the state i at time point 0, the process will be first in the state j during n steps
(or in time n). If i D j , then the quantity fii .n/ means the first return probability
in the state i in n steps.

Denote fij D
1P
kD1

fij .k/; i; j 2 X . Obviously, the quantity fij means the

probability that the Markov chain starts from a state i at time 0 and at some time
arrives at the state j , that is, fij D PfTij <1g.
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Definition 3.23. A state i is called recurrent if the process returns to the state i
with probability 1, that is, fii D PfTii < 1g D 1. If fii < 1, then the state i is
called transient.

From the definition it follows that when i is a transient state, then a process
with positive probability will never return to the state i . The following theorem
describes the connection between the return probabilities and the m-step transition
probabilities of a Markov chain in the form of a so-called discrete renewal equation.

Theorem 3.24. For every i; j 2 X ; n D 1; 2; : : :,

pij .n/ D
nX

kD1
fij .k/pjj .n � k/: (3.6)

Proof. By the definition pjj .0/ D 1, in the case n D 1 we have pij .1/ D
fij .1/pjj .0/ D fij .1/. Now let n 	 2. Using conditional probability and the
Markov property we get

P .XnD j;X1D j j X0D i/ D P .XnD j j X1D j;X0D i/P .X1D j j X0D i/
D pjj .n � 1/pij .1/ D fij .1/pjj .n � 1/:

Similarly, we obtain

P .Xn D j;Xk D j;Xm ¤ j; 1 � m � k � 1 j X0 D i/
D fij .k/pjj .n � k/; n D 1; 2; : : ::

On the basis of the last two equations, it follows that

pij .n/ D P .Xn D j;X1 D j j X0 D i/

C
nX

kD2
P .Xn D j;Xk D j;Xm ¤ j; 1 � m � k � 1 j X0 D i/

D fij .1/pjj .n � 1/C
nX

kD2
fij .k/pjj .n � k/; n D 1; 2; : : ::

ut
The notion of the recurrence of a state is defined by the return probabilities, but

the following theorem makes it possible to provide a condition for it with the use of
n-step transition probabilities pii .n/ and to classify the Markov chains.

Theorem 3.25. (a) The state i 2 X is recurrent if and only if

1X

nD1
pi i .n/ D 1:
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(b) If i and j are communicating states and i is recurrent, then j is also recurrent.

(c) If a state j 2 X is transient, then for arbitrary i 2 X
1X

nD1
pij .n/ <1 and consequently lim

n!1pij .n/ D 0:

Proof. (a) By the definition pii .0/ D 1 and using relation (3.6) of the preceding
theorem we obtain

1X

nD1
pi i .n/ D

1X

nD1

nX

kD1
fi i .k/pii .n � k/ D

1X

kD1

1X

nDk
fi i .k/pii .n � k/

D
1X

kD1
fi i .k/

 

pii .0/C
1X

nD1
pi i .n/

!

:

From this equation, if the sum
1P
nD1

pi i .n/ is finite, then we get

fii D
 

1C
1X

nD1
pi i .n/

!�1 1X

nD1
pi i .n/ < 1I

consequently, i is not a recurrent state.
If
P1

nD1 pi i .n/ D 1, then obviously lim
N!1

PN
nD1 pi i .n/ D 1. Since for all

positive integersN the relation

NX

nD1
pi i .n/ D

NX

nD1

nX

kD1
fi i .k/pii .n � k/

D
NX

kD1

NX

nDk
fi i .k/pii .n � k/ �

NX

kD1
fi i .k/

NX

nD0
pi i .n/

�
 

1C
NX

nD1
pi i .n/

!
NX

kD1
fi i .k/

holds, from the limit
NP

nD1
pi i .n/!1

1	fii D
1X

kD1
fi i .k/	

NX

kD1
fi i .k/	

 

1C
NX

kD1
pi i .k/

!�1 NX

kD1
pi i .k/!1; N !1

follows. Consequently, fii D 1, and thus the state i is recurrent.
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(b) Since the states i and j communicate, there exist integers n;m 	 1 such that
pij .m/ > 0 and pji .n/ > 0. By the Chapman–Kolmogorov equation for every
integer k 	 1,

pii .mC k C n/ 	 pij .m/pjj .k/pj i .n/;
pjj .mC k C n/ 	 pji .n/pii .k/pij .m/:

From this

1X

kD1
pi i .k/ 	

1X

kD1
pi i .mC nC k/ 	 pij .m/pj i.n/

1X

kD1
pjj .k/;

1X

kD1
pjj .k/ 	

1X

kD1
pjj .mC nC k/ 	 pij .m/pj i.n/

1X

kD1
pi i .k/:

Both series
1P
kD1

pi i .k/ and
1P
kD1

pjj .k/ are simultaneously convergent or

divergent because pij .m/ > 0 and pji .n/ > 0; thus, by assertion (a) of
the theorem, the states i and j are recurrent or transient at the same time.

(c) Applying the discrete renewal Eq. (3.6) and result (a), assertion (c) immediately
follows.

ut
Definition 3.26. A Markov chain is called recurrent or transient if every state is
recurrent or transient.

Comment 3.27. Using the n-step transition probabilities pii .n/, a simple formula
can be given for the expected value of the number of returns to a state i 2 X . Let
X0 D i be the initial state of the Markov chain. The expected value of the return
number is expressed as

E

 1X

kD1
IfXkDigjX0 D i

!

D
1X

kD1
E
�
IfXkDigjX0 D i

�

D
1X

kD1
P .Xk D i j X0 D i/ D

1X

kD1
pi i .k/:

The assertion of Theorem 3.25 can be interpreted in another way: a state i 2 X is
recurrent if and only if the expected value of the number of returns equals infinity.

Example 3.28 (Recurrent Markov chain). Consider the random walk process X D
.Xn; n D 0; 1; : : :/ described in Example 3.10. The process, starting from the
origin, at all steps moves one unit to the right with probability p and to the left
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with probability .1 � p/, independently of each other. We have proved earlier that
the processX is a homogeneous, irreducible, and periodic Markov chain with period
2. Here we discuss the conditions under which the Markov chain will be recurrent.

By the condition X0 D 0, it is clear that p00.2k C 1/ D 0; k D 0; 1; : : :.
The process can return in 2k steps to the state 0 only if it moves, in some way, k
times to the left and k times to the right, the probability of which is

p00.2k/ D
 
2k

k

!

pk.1 � p/k D .2k/Š

kŠkŠ
Œp.1 � p/�k:

Using the well-known Stirling’s formula, which gives an asymptotic relation for kŠ
as k !1 as follows (see p. 616 of [5]):

p
2
kkC1=2e�k < kŠ <

p
2
kkC1=2e�k



1C 1

4k

�
I

then

kŠ �


k

e

�kp
2
kI

and thus we have

p00.2k/ �


2k

e

�2kp
2
.2k/

 

k

e

�kp
2
k

!�2
Œp.1 � p/�k D Œ4p.1 � p/�kp


k
:

By the inequality between arithmetic and geometrical means, the numerator has an
upper bound

4 Œp.1 � p/� � 4

p C .1� p/

2

�2
D 1;

where the equality holds if and only if p D 1�p, that is, p D 1=2. In all other cases
the product is less than 1; consequently, the sum of return probabilities p00.2k/
is divergent if and only if p D 1=2 (symmetric random walk); otherwise, it is
convergent. As a consequence of Theorem 3.25, we obtain that the state 0, and
together with it all states of the Markov chain, is recurrent if and only if p D 1=2.

Note that a similar result is valid if we consider the random walk with integer
coordinates in a plane. It can be verified that only in the case of a symmetric random
walk will the state .0; 0/ be recurrent, when the probabilities of the movements left-
right-up-down are 1=4 � 1=4. In addition, if a random walk is defined in a similar
way in higher-dimensional (	 3) spaces, then the Markov chain will no longer be
recurrent.
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3.2 Fundamental Limit Theorem of Homogeneous
Markov Chains

3.2.1 Positive Recurrent and Null Recurrent Markov Chains

Let X be a homogeneous Markov chain with the finite (N < 1) or countably
infinite (N D 1) state space X D f0; 1; : : : ; N g and (one-step) transition
probability matrix … D �

pij
	
i2X . Let P D .pi D P .X0 D i/; i 2 X / be the

initial distribution. Denote by P.n/ D .Pi .n/ D P .Xn D i/; i 2 X /; n D 0; 1; : : :,
the time-dependent distribution of the Markov chain; then P.0/ D P:

The main question to be investigated here concerns the conditions under which
there exists a limit distribution of m-step transition probabilities

lim
m!1pij .m/ D 
j ; where 
j 	 0 and

X

i2X

i D 1

and how it can be determined. The answer is closely related to the behavior of
the recurrent states i of a Markov chain. Note that the condition of recurrence
fii D P1

kD1 fi i .k/ D 1 does not ensure the existence of a limit distribution.
The main characteristics are the expected values of the return times �i D Tii DP1

kD1 kfii .k/, and the recurrent states will be classified according to whether or not
the �i are finite because the condition �i <1; i 2 X , guarantees the existence of
a limit distribution.

Definition 3.29. A recurrent state i 2 X is called positive recurrent (or nonnull
recurrent) if the return time has a finite expected value �i ; otherwise, if �i D 1,
then it is called null recurrent.

Theorem 3.30. Let X be a homogeneous, irreducible, aperiodic, and recurrent
Markov chain. Then for all states i; j 2 X ,

lim
m!1pij .m/ D

1

�j
:

Note that this theorem not only gives the limit of the m-step transition
probabilities with the help of the expected value of the return times, but it
interprets the notion of positive and null recurrence. By definition, a recurrent
state j is positive recurrent if 1=�j > 0 and null recurrent if 1=�j D 0 (here and
subsequently, we write 1=1 D 0). The assertion given in the theorem is closely
related to the discrete renewal Eq. (3.6), and using it we can prove a limit theorem,
as the following lemma shows (see [29] and Chap. XIII of [31]).

Lemma 3.31 (Erdős, Feller, Pollard). Let .qi ; i 	 0/ be an arbitrary distribution
on the natural numbers, i.e., qi 	 0;

P1
iD0 qi D 1. Assume that the distribution

.qi ; i 	 0/ is not latticed, that is, the greatest common divisor of the indices with
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the probabilities qi > 0 equals 1. If the sequence fvn; n 	 0g, satisfies the discrete
renewal equation

v0 D 1; vn D
nX

kD1
qkvn�k; n 	 1;

then

lim
n!1vn D 1

�
;

where � D
1P
kD1

kqk and 1
�
D 0 if � D 1.

The proof of Theorem 3.30 uses the following result from analysis.

Lemma 3.32. Assume that the sequence .q1; q2; : : :/ of nonnegative real numbers
satisfies the condition

P1
iD0 qi D 1. If the sequence of real numbers .wn; n 	 0/ is

convergent, lim
n!1wn D w, then

lim
n!1

nX

kD0
qn�kwn D w:

Proof. It is clear that the elements of fwng are bounded; then there exists a number
W such that jwn j � W; n 	 0. From the conditions lim

n!1wn D w and
P1

iD0 qi D 1
it follows for any " > 0 that there exist integers N."/ and K."/ such that

jwn � w j < " and
1X

kDK."/
qk < ":

It is easy to check that for every n > n."/ D max.N."/;K."//,

jwn � w j �
ˇ
ˇ
ˇ
ˇ̌
nX

kD0
qkwn�k �

nX

kD0
qkw

ˇ
ˇ
ˇ
ˇ̌

�
n."/X

kD0
qkjwn�k � w j C

nX

kDn."/C1
qkjwn�k � w j C

1X

kDnC1
qkjw j

�
n."/X

kD0
qk"C

nX

kDn."/C1
qk.W C jwj/C

1X

kDnC1
qkjw j

� "C ".W C jwj/C "jw j D ".1CW C 2jwj/:

Since " > 0 can be chosen freely, we get the convergence wn ! w; n!1. ut
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Proof (Theorem 3.30).

(a) We prove firstly the assertion for the case i D j . By the discrete renewal
equation

pii .0/ D 1; pii .n/ D
nX

kD1
fi i .k/pii .n � k/; n D 1; 2; : : : ;

where the state i is recurrent, fii D
1P
kD1

fi i .k/ D 1 (fii 	 0). Using the

assertion of Lemma 3.31 we have

lim
n!1pii .n/ D

1

�i
:

(b) Now let i ¤ j , and apply Lemma 3.32. Since the Markov chain is irreducible

and recurrent, fij D
1P
kD1

fij .k/ D 1 (fij 	 0). Then, as n!1,

lim
n!1pij .n/ D lim

n!1

nX

kD1
fij .k/pjj .n�k/ D

1X

kD1
fij .k/

1

�j
D 1

�j
: ut

Similar results can be easily proven for periodic cases. LetX be a homogeneous,
irreducible, and recurrent Markov chain with period d > 1. Then the state space
X can be decomposed into disjoint subsets X0; : : : ;Xd�1 [see Eq. (3.21)] such that
the Markov chain allows only for cyclic transitions between the states of the sets
Xi : X0 ! X1 ! : : : ! Xd�1 ! X0. Let 0 � k; m � d � 1 be arbitrarily fixed
integers; then, starting from a state i 2 Xk , the process arrives at a state of Xk in
exactly

` D
�

m� k; if k < m;
m � k C d; if m � k;

steps. From this follows pij .s/ D 0 if s � 1 is divisible by d .

Theorem 3.33. Let X be a homogeneous, irreducible, and recurrent Markov chain
with period d > 1 and i 2 Xk , j 2 Xm arbitrarily fixed states. Then

lim
n!1pij .`C nd/ D

d

�j
;

where �j D
1P
kD1

k fjj .k/ D
1P
rD1

rd fjj .rd/:

Proof. First assume k D m, and consider the transition probabilities pij .nd/
for i; j 2 Xk . This is equivalent to the case (see Conclusion 3.22 according to
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the cyclic transitions of a Markov chain) where we investigate the Markov chain
X with the state space Xk and it has the (one-step) transition probability matrix
… D Œpij �i;j2Xk

, pij D pij .d/; i; j 2 Xk . Obviously, the Markov chain X that
originated from X is a homogeneous, irreducible, recurrent, and aperiodic Markov
chain. Using the limit theorem 3.31 we obtain

lim
n!1pii .n/ D lim

n!1pii .nd/ D
1

1P
kD1

kfi i .kd/

D d
1P
kD1

kdfi i .kd/

D d
1P
kD1

kfi i .k/

D d

�i
;

where fii .r/ D 0 if r ¤ d; 2d; : : :.
Assume now that k ¤ m. Then fij .k/ D 0 and pij .k/ D 0 if k ¤ `Cnd; n 	 0;

moreover, the Markov chain X is recurrent because

fij D
1X

sD1
fij .s/ D

1X

kD1
fij .`C rd/ D 1I

then

pij .`Cnd/ D
`CndX

kD1
fij .k/pjj .`Cnd �k/ D

`CndX

rD1
fij .`C rd/pjj .rd/! d

�j
; n!1:

ut
Theorem 3.34. If the homogeneous Markov chain X is irreducible and has a
positive recurrent state i 2 X , then all its states are positive recurrent.

Proof. Let j 2 X be arbitrary. Since the Markov chain is irreducible, there exist
integers s; t > 0 such that pij .s/ > 0; pj i .t/ > 0. Denote by d the period of
the Markov chain. It is clear that d > 0 because pii .s C t/ 	 pij .s/pj i .t/ > 0.
Moreover,

pii .s C nd C t/ 	 pij .s/pjj .nd/pj i .t/;
pjj .s C nd C t/ 	 pji .t/pi i .nd/pij .s/:

Applying Theorem 3.33 and taking the limit as n!1 we have

1

�i
	 pij .s/ 1

�j
pj i .t/;

1

�j
	 pij .s/ 1

�i
pj i .t/I

thus

1

�i
	 pij .s/pj i .t/ 1

�j
	 Œpij .s/pj i .t/�2 1

�i
:

From the last inequality it immediately follows that when the state i is recurrent, at
the same time j is also recurrent. ut

Summing up the results derived previously, we can state the following theorem.
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Theorem 3.35. Let X be a homogeneous irreducible Markov chain; then

1. All states are aperiodic or all states are periodic with the same period,
2. All states are transient or all states are recurrent, and in the latter case

– All are positive recurrent or all are null recurrent.

3.2.2 Stationary Distribution of Markov Chains

Retaining the notations introduced previously, P.n/ D .Pi .n/ D P .Xn D i/; i 2
X / denotes the distribution of a Markov chain depending on the time n 	 0. Then
P.0/ D .Pi .0/ D pi ; i 2 X / is the initial distribution.

Definition 3.36. Let 
 D .
i ; i 2 X / be a distribution, i.e., 
i 	 0 andP

i2X

i D 1. 
 is called a stationary distribution of the Markov chain X if by

choosing P.0/ D 
 as the initial distribution, the distribution of the process does
not depend on time, that is,

P.n/ D 
; n 	 0:
A stationary distribution is also called an equilibrium distribution of a chain.

With Markov chains, the main problem is the existence and determination of
stationary distributions. Theorem 3.30 deals with the convergence of the sequence
of n-step transition probabilities P.n/ as n!1, and if it converges, then the limit
gives the stationary distribution of the chain. The proofs of these results are not too
difficult but consist of many technical steps [35, 36], and so we omit them here.

Theorem 3.37. Let X be a homogeneous, irreducible, recurrent, and aperiodic
Markov chain. Then the following assertions hold:

(A) The limit


i D lim
n!1Pi .n/ D

1

�i
; i 2 X ;

exists and does not depend on the initial distribution.

(B) If all states are recurrent null states, then the stationary distribution does not
exist and 
i D 0 for all i 2 X .

(C) If all states are positive recurrent, then the stationary distribution 
 D .
i ; i 2
X / does exist and 
i D 1=�i > 0 for all i 2 X and P.n/ ! 
; as n ! 1.
The stationary distribution is unique and satisfies the system of linear equations

X

i2X

i D 1; (3.7)


i D
X

j2X

jpj i ; i 2 X : (3.8)
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Comment 3.38. Since the Markov chain is irreducible, it is enough to require in
part (B) the existence of a positive recurrent state because from the existence of a
single positive recurrent state and the fact that the Markov chain is irreducible it
follows that all states are positive recurrent.

Equation (3.8) of Theorem 3.37 can be rewritten in the more concise form 
 D

…, where … is the one-step transition probability matrix of the chain.

The initial distribution does not play a role in Eqs. (3.7) and (3.8); therefore,
when the stationary distribution 
 exists, it does not depend on the initial distribu-
tion, only on the transition probability matrix ….

Given that the stationary distribution 
 exists, it can be easily proven that 

satisfies the system of linear Eq. (3.8), and at the same time, these circumstances
lead to an iterative method of solution [see Eq. (3.9) below]. This iterative procedure
to determine the stationary distribution can be applied to chains with finite state
spaces.

The time-dependent distribution P.n/ D .P0.n/; P1.n/; : : :/ satisfies the equa-
tion for all n D 0; 1; : : :,

P.n/ D P.n � 1/…: (3.9)

Repeating this equation n times, we have

P.n/ D P.0/…n; n D 0; 1; : : ::
Since it is assumed that the stationary distribution 
 exists, we can write


 D lim
n!1P.n/I

thus from the equation

lim
n!1P.n/ D lim

n!1P.n � 1/…

it follows that


 D 
…:
Definition 3.39. A state i of an irreducible homogeneous Markov chainX is called
ergodic if the state i is aperiodic and positive recurrent, i.e., d.i/ D 1; �i < 1.
If all states of the chain are ergodic, then the Markov chain is called ergodic.

Here we define the ergodic property only of Markov chains. This property can be
defined for much more complex stochastic processes as well.

By Theorem 3.37, a homogeneous, aperiodic, positive recurrent Markov chain is
always ergodic. Since an irreducible Markov chain with finite state space is positive
recurrent, the following statement is also true.

Theorem 3.40. A homogeneous, irreducible, aperiodic Markov chain with finite
state space is ergodic.
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In practical applications, the equilibrium distributions of Markov chains play
an essential role. In what follows, we give two theorems without proofs whose
conditions ensure the existence of the stationary distribution of a homogeneous,
irreducible, aperiodic Markov chain X with state space X D f0; 1; : : :g. The third
theorem gives an upper bound for the convergence rate to the stationary distribution
of the iterative procedure (3.9).

Theorem 3.41 (Klimov [56]). If there exists a function g.i/; i 2 X , a state i0 2 X ,
and a positive constant " such that the relations

E .g.XnC1/ j Xn D i/ � g.i/ � "; i 	 i0; n 	 0;
E .g.XnC1/ j Xn D i/ <1; i 	 0; n 	 0;

hold, then the chain X is ergodic.

Theorem 3.42 (Foster [33]). Assume that there exist constants a; b > 0 and ` 	 0
such that the inequalities

E .XnC1 j Xn D i/ � a; i � `;
E .XnC1 j Xn D i/ � i � b; i > `;

are valid. Then the Markov chain X is ergodic.

Theorem 3.43 (Bernstein [10]). Assume that there exist a state i0 2 X and a
constant � > 0 such that for all i 2 X the inequality pii0 	 � holds. Then

lim
n!1pij .n/ D 
j ; i; j 2 X ;

where 
 D .
i ; i 2 X / denotes the stationary distribution of the Markov chain;
moreover,

X

i2X

ˇ
ˇpij .n/ � 
j

ˇ
ˇ � 2.1� �/n; n 	 1:

3.2.3 Ergodic Theorems for Markov Chains

Let X be a homogeneous irreducible and positive recurrent Markov chain with
state space X D f0; 1; : : :g and i a fixed state. Compute the time and the relative
frequencies when the process stays in the state i on the time interval Œ0; T � as
follows:

Si.T / D
TX

nD0
IfXnDig;

S i .T / D 1

T

TX

nD0
IfXnDig D 1

T
Si.T /:



3.2 Fundamental Limit Theorem of Homogeneous Markov Chains 103

Let us consider when and in what sense there exists a limit of the relative
frequencies Si .T / as T ! 1 and, if it exists, how it can be determined. This
problem has, in particular, practical importance when applying simulation methods.
To clarify the stochastic background of the problem, we introduce the following
notations.

Assume that a process starts at time 0 from the state i . Let 0 D T
.i/
0 < T

.i/
1 <

T
.i/
2 < : : : be the sequence of the consecutive random time points when a Markov

chain arrives at the state i , that is, T .i/k ; k D 1; 2; : : :, are the return time points to
the state i of the chain. This means that

X.T .i/n / D i; n D 0; 1; : : : and X.k/ ¤ i; if k ¤ T .i/0 ; T
.i/
1 ; : : ::

Denote by

�
.i/

k D T .i/k � T .i/k�1; k D 1; 2; : : : ;
the time length between the return time points. Since the Markov chain has the
memoryless property, these random variables are independent; moreover, from
the homogeneity of the Markov chain it follows that �.i/n ; n 	 1, are also
identically distributed. The common distribution of these random variables �.i/n is
the distribution of the return times from the state i to i , namely, .fi i .n/; n 	 1/.

Heuristically, it is clear that when the return time has a finite expected value �i ,
then during the time T the process returns to the state i on average T=�i times. This
means that the quantity Si .T / fluctuates around the value 1=�i and has the same
limit as T ! 1. This result can be given in exact mathematical form on the basis
of the law of large numbers as follows.

Theorem 3.44. If X is an ergodic Markov chain, then, with probability 1,

lim
T!1Si .T / D

1

�i
; i 2 X : (3.10)

If the Markov property is satisfied, then not only are the return times independent
and identically distributed, but the stochastic behaviors of the processes on the return
periods are identical as well. This fact allows us to prove more general results for an
ergodic Markov chain as Eq. (3.10).

Theorem 3.45. Let X be an ergodic Markov chain and g.i/; i 2 X , be a real-
valued function such that

P

i2X

i jg.i/ j <1. Then the convergence

lim
T!1

1

T

TX

nD1
g.Xn/ D

X

i2X

ig.i/

is true with probability 1, where 
i ; i 2 X , denotes the stationary distribution of the
Markov chain, which exists under the given condition.
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3.2.4 Estimation of Transition Probabilities

In modeling ergodic Markov chains an important question is to estimate the
transition probabilities by the observation of the chain. The relative frequencies give
corresponding estimates of the probabilities because by Theorem 3.44 they tend to
them with probability 1 under the given conditions. Note that from the heuristic
approach discussed previously it follows under quite general conditions that not
only can the law of large numbers be derived for the relative frequencies, but the
central limit theorems can as well.

Consider now the estimate of transition probabilities with the maximum like-
lihood method. Let X be an ergodic Markov chain with finite state space X D
f0; 1; : : : ; N g and with the (one-step) transition probability matrix … D .pij /i;j2X .
Assume that we have an observation of n elements X1 D i1; : : : ; Xn D in starting
from the initial state X0 D i0, and we will estimate the entries of the matrix …. By
the Markov property, the conditional likelihood function can be given in the form

P .X1 D i1; : : : ; Xn D in j X0 D i0/ D pi0i1 : : : pin�1in :

Denote by nij ; i; j 2 X , the number of one-step transitions from the state i to j
in the sample path i0; i1; : : : ; in, and let 00 D 1; 0=0 D 0. Then the conditional
likelihood function given the X0 D i0 initial state is

L.i1; : : : ; inI… j i0/ D
NY

iD0

0

@
NY

jD0
p
nij
ij

1

A : (3.11)

Applying the maximum likelihood method, maximize the expression in pij under
the conditions

pij 	 0; i; j 2 X ;
X

j2X
pij D 1; i 2 X :

It is clear that there are no relations between the products playing a role in the
parentheses of Eq. (3.11) for different i ; therefore, the maximization problem can
be solved by means of N C 1 different, but similar, optimization problems:

max

8
<

:

NY

jD0
p
nij
ij W pij 	 0;

X

j2X
pij D 1

9
=

;
; i D 0; 1; : : : ; N:

Obviously it is enough to solve it only for one state i since the others can be derived
analogously to that one.

Let i 2 X be a fixed state, and denote ni D P

j2X
nij . Apply the Lagrange

multiplier method; then for everym D 0; : : : ; N ,
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@

@pim

0

@
NY

jD0
p
nij
ij C �.pi0 C p11 C : : :C piN � 1/

1

A D nim

pim

NY

jD0
p
nij
ij C � D 0I

consequently, for a constant �i we have

nim

pim
D �

NY

jD0
p

�nij
ij D �i ; m D 0; : : : ; N:

From this it follows that the equations

nim D �ipim; m D 0; : : : ; N;
hold; then

NX

mD0
nim D ni D �i

NX

mD0
pim D �i :

These relations lead to the conditional maximum likelihood estimates for the
transition probabilities pim as follows:

bpim D nim

�i
D nim

ni
; 0 � i; m � N:

It can be verified that these estimates bpim converge to pim with probability 1 as
!1.

3.3 Continuous-Time Markov Chains

Like the case of the DTMCs, we assume that the state space X is a finite
f0; 1; : : : ; N g or countably infinite set f0; 1; : : :g and assume that the time parameter
varies in T D Œ0;1/. According to the general definition (3.1), a process X D
.Xt ; t 	 0/ is said to be CTMC with state space X if for every positive integer n
and 0 � t0 < t1 < : : : < tn, i0; : : : ; in 2 X , the equation

P .Xtn D in j Xtn�1 D in�1; : : : ; Xt0 D i0/
D P .Xtn D in j Xtn�1 D in�1/ D pin�1;in .tn�1; tn/

holds, provided that a conditional probability exists. The Markov chain X is (time)
homogeneous if the transition probability function pij .s; t/ satisfies the condition
pij .s; t/ D pij .t � s/ for all i; j 2 X , 0 � s � t . Denote by ….s; t/ D�
pij .s; t/; i; j 2 X

	
the transition probability matrix.



106 3 Markov Chains

In the case of a CTMC the time index t 2 Œa; b� can take uncountably many
values for arbitrary 0 � a < b < 1; therefore, the collection of random
variables Xt ; t 2 .a; b�, is also uncountable. If we consider the questions in
accordance with the sample paths of the chain, then these circumstances can lead
to measurability problems (discussed later). However, the Markov processes that
will be investigated later are the so-called stepwise processes, and they ensure the
necessary measurability property.

We will deal mainly with the part of the theory that is relevant to queueing theory,
and we touch upon only some questions in general cases showing the root of the
measurability problems. A discussion of jumping processes, which is more general
than the investigation of stepwise Markov chains, can be found in [36, Chap. III].

If the Markov chain fXt; t 	 0g, is homogeneous, then the transition probability
functions pij .s; t/ can be given in a simpler form:

pij .s; s C t/ D pij .t/; i; j 2 X ; s; t 	 0;
and thus the matrix form of transition probabilities is

….s; s C t/ D ….t/; s; t 	 0:
As was done previously, denote by

P.t/ D .P0.t/; P1.t/; : : :/; t 	 0;
the time-dependent distribution of the chain, where Pi .t/ D P .Xt D i/; i 2 X ;
then P.0/means the initial distribution, while if there exists a state k 2 X such that
P .X0 D k/ D 1, then k is the initial state.

3.3.1 Characterization of Homogeneous Continuous-Time
Markov Chains

We now deal with the main properties of homogeneous CTMCs. Similarly to the
discrete-time case, the transition probabilities satisfy the following conditions.

(A) pij .s/ 	 0; s 	 0; pij .0/ D ıij ; i; j 2 X , where ıij is the Kronecker
ı-function (which equals 1 if i D j and 0 if i ¤ j ).

(B)
P

j2X
pij .s/ D 1; s 	 0; i 2 X .

(C) pij .s C t/ D P

k2X
pik.s/pkj .t/; s; t 	 0; i; j 2 X .

An additional condition is needed for our considerations.
(D) The transition probabilities of the Markov chain X satisfy the conditions

lim
h!0Cpij .h/ D pij .0/ D ıij ; i; j 2 X : (3.12)
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Comment 3.46. Condition (B) expresses that ….s/; s 	 0, is a stochastic matrix.
We will not consider the so-called killed Markov chains, where the lifetime Œ0; �� of
the chain is random (where the process is defined) and with probability 1 is finite,
i.e., Pf� < 1g D 1. It should be noted that condition (B) ensures that the chain is
defined on the whole interval Œ0;1/ because the process will be certainly in some
state i 2 X for any time s 	 0.

Condition (C) is the Chapman–Kolmogorov equation related to the continuous-
time case. It can be given in matrix form as follows:

….s C t/ D ….s/….t/, s; t 	 0:
Similarly to the discrete-time case, the time-dependent distribution of the chain
satisfies the equation

P.s C t/ D P.s/….t/; s; t 	 0;
and thus for all t > 0

P.t/ D P.0/….t/:
The last relation means that the initial distribution and the transition probabilities
uniquely determine the distribution of the chain at all time points t 	 0.

Instead of (D) it is enough to assume that the condition

lim
h!0Cpii .h/ D 1; i 2 X ;

holds, because for every i; j 2 X , i ¤ j , the relation

0 � pij .h/ �
X

j¤i
pij .h/ D 1 � pii .h/! 0; h! 0C;

is true.

Under conditions (A)–(D), the following relations are valid.

Theorem 3.47. The transition probabilities pij .t/; 0 � t < 1; i ¤ j , are
uniformly continuous.

Proof. Using conditions (A)–(D) we obtain

ˇ
ˇpij .t C h/ � pij .t/

ˇ
ˇ D

ˇ̌
ˇ
ˇ
ˇ

X

k2X
pik.h/pkj .t/ �

X

k2X
ıikpkj .t/

ˇ̌
ˇ
ˇ
ˇ

�
X

k2X
jpik.h/ � ıikjpkj .t/

� 1�pii .h/C
X

k¤i
pik.h/ D 2.1�pii .h//! 0; h! 0C :

ut
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Theorem 3.48 ([36, p. 200]). For all i; j 2 X , i ¤ j , the finite limit

qij D lim
h!0C

pij .h/

h

exists.
For every i 2 X there exists a finite or infinite limit

qi D lim
h!0C

1 � pii .h/
h

D �p0
i i .0/:

The quantities qij and qi are the most important characteristics of a homogeneous
continuous-time Markov chain. Subsequently we will use the notation qii D �qi ,
i 2 X , also and interpret the meaning of these quantities.

Definition 3.49. The quantity qij is called the transition rate of intensity from the
state i to the state j , while qi is called the transition rate from the state i .

We classify the states in accordance with whether or not the rate qi is finite. If
qi < 1, then i is called a stable state, while if qi D C1, then we say that i
is an instantaneous state. Note that there exists a Markov chain with the property
qi D C1 [36, pp. 207–210].

Definition 3.50. A stable noninstantaneous state i is called regular if
X

i¤j
qij D �qii D qi ;

and a Markov chain is locally regular if all its states are regular.

Corollary 3.51. As a consequence of Theorem 3.48, we obtain that locally regular
Markov chains satisfy the following asymptotic properties as h! 0C:

P .XtCh ¤ i j Xt D i/ D qihC o .h/;
P .XtCh D i j Xt D i/ D 1 � qihC o .h/;
P .XtCh D j j Xt D i/ D qij hC o .h/; j ¤ i:

From Theorem 3.48 it also follows that Markov chains with a finite state space are
locally regular because all qij ; i ¤ j , are finite and, consequently, all qi are also
finite.

The condition

q D sup
i2X

qi <1 (3.13)

will play an important role in our subsequent investigations. We introduce the
notation
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Q D �qij
	
i;j2X D

h
p0
ij .0/

i

i;j2X D …
0.0/

for locally regular Markov chains. Recall that

lim
t!0C….t/ D ….0/ D I; (3.14)

where I is the identity matrix with suitable dimension.

Definition 3.52. The matrix Q is called a rate or infinitesimal matrix of a
continuous-time Markov chain.

The following assertions hold for all locally regular Markov chains under the
initial condition (3.14) [36, pp. 204–206].

Theorem 3.53. The transition probabilities of a locally regular Markov chain
satisfy the Kolmogorov backward differential equation

…0.t/ D Q ….t/; t 	 0 (I).

If condition (3.13) is fulfilled, then the Kolmogorov forward differential equation

…0.t/ D ….t/ Q; t 	 0 (II)

is valid. Under condition (3.13) differential Eqs. (I) and (II), referred to as first- and
second-system Kolmogorov equations, have unique solutions.

3.3.2 Stepwise Markov Chains

The results of Theorem 3.53 are related to the analytical properties of transition
probabilities and do not deal with the stochastic behavior of sample paths. In this
part we investigate the so-called stepwise Markov chains and their sample paths.
We introduce the embedded Markov chain and consider the transition probabilities
and holding times. In the remaining part of this chapter we assume that the Markov
chain is locally regular and condition (3.13) holds.

Definition 3.54. A Markov chain X is a jump process if for any t 	 0 there exists
a random time � D �.t; !/ > 0 such that

Xs D Xt ; if s 2 Œt; t C�/:

In the definition, � can be the remaining time the process stays at state X.t/, and
the definition requires that this time be positive.
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Definition 3.55. We say that a Markov chain has a jump at time t0 > 0 if there
exists a monotonically increasing sequence t1; t2; : : : such that tn ! t0; n ! 1
and at the same time Xtn ¤ Xt0; n D 1; 2; : : :. A Markov chain is called a stepwise
process if it is a jump process and the number of jumps is finite for all sample paths
on all finite intervals Œ0; t �.

It should be noted that a stepwise process is continuous from the right and has a
limit from the left at all jumping points.

Denote by .�0 D/0 < �1 < �2 < : : : the sequence of consecutive jumping points;
then all finite time intervals consist, at most, of finite jumping points. Between two
jumping points the state of the process does not change, and this time is called the
holding time.

Definition 3.56. A stepwise Markov chain is called regular if the sequence of
holding times k D �kC1 � �k; k D 0; 1; : : :, satisfies the condition

P

 1X

kD0
k D1

!

D 1:

By the definition of stepwise process, we have

Xs � X�i ; s 2 Œ�i ; �iC1/; i D 0; 1; : : ::
Denote by Yk D X�

k
; k D 0; 1; : : :, the states at time points where the transitions

change, and define for i ¤ j


ij D
(

qij
qi
; if qi > 0;

0; if qi D 0: (3.15)

In addition, let


ii D 1 �
X

j¤i

ij : (3.16)

By the Markov property, the process .Yk; k 	 0/, is a discrete-time homogeneous
Markov chain with the state space X D f0; 1; : : :g and the transition probabilities

P .YnC1 D j j Yn D i/ D 
ij ; ij 2 X ; n 	 0:
The process .Yk; k 	 0/ is called an embedded Markov chain of the continuous-
time stepwise Markov chain X .

Note that the condition qi D 0 corresponds to the case where i is an absorbing
state, and in other cases the holding times for arbitrary state i have an exponential
distribution with parameter qi whose density function is qi e�qi x; x > 0.
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3.3.3 Construction of Stepwise Markov Chains

The construction derived here gives a method for simulating stepwise Markov
chains at the same time. Thus, we construct a CTMC fXt; t 	 0g, with initial
distribution P.0/ D .P0.0/; P1.0/; : : :/ and transition probability matrix ….t/ D�
pij .t/

	
; t 	 0, satisfying condition (3.13).

Using notations (3.15) and (3.16), define the random time intervals with length
S0; S1; : : :, nonnegative random variables K0;K1; : : :, taking integer numbers and
the random jumping points �m D S0 C : : :C Sm�1; m D 1; 2; : : : ; by the following
procedure.

(a) Generate a random variable K0 with distribution P.0/ [i.e., P .K0 D k/ D
Pk.0/; k 2 X ] and a random variable S0 distributed exponentially with
parameter qK0 conditionally dependent onK0. Define Xt D K0 if 0 � t < S0.

(b) In themth steps (m D 1; 2; : : :) generate a random variableKm with distribution
P .m/ D .
Km�1;j ; j 2 X /, and a random variable Sm distributed exponentially
with the parameter qKm . Define Xt D Km if �m � t < �mC1; m D 0; 1; : : :.

Then the stochastic process fXt; t 	 0g is a stepwise Markov chain with initial
distribution P.0/ and transition probability matrix….t/; t 	 0.

3.3.4 Some Properties of the Sample Path of Continuous-Time
Markov Chains

By the considerations of the sample paths of CTMCs, there are problems that cannot
arise in the case of discrete-time chains. For example, Xt ; t 	 0, are random
variables; therefore, fXt � xg 2 A is an event for all t 	 0 and x 2 R. But at
the same time, for example, the set

\

a�t<b
f! 2 � W Xt.!/ � xg

is not necessarily an event (element of A). This question is closely connected to the
separability property of the processes (see, for example, [35, Chap. III]). The root
essence is whether a countable and everywhere dense subset S �Œ0;1/ exists such
that the statistical behavior of the processX can be characterized by a countable set
of the random variablesXt; t 2 S. The notion of separability is given in general by
the following definition.

Definition 3.57. A process X D .Xt ; t 	 0/ is called separable if there exists an
event N 2 A with probability 0 and a countable subset S D fri ; i D 1; 2; : : :g of
RC D Œ0;1/ that is always dense in RC such that for any open setG � RC and for
any closed set F � X the sets f! W Xri 2 F; ri 2 Gg and f! W Xt 2 F; t 2 Gg
can differ only on the subset of N .
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With the help of transition probabilities one can easily give a simple condition
that ensures the continuity in probability of the process and, at the same time, the
separability property.

Definition 3.58. A stochastic process .Xt ; t 	 0/ is called continuous in
probability (or stochastically) at the point t0 	 0 if for all positive numbers "
the convergence

lim
t!t0

P .jXt �Xt0 j > "/ D 0
holds. A process is said to be continuous in probability if it is continuous in
probability everywhere.

Theorem 3.59. If a Markov chain X is locally regular and condition (3.13) is
satisfied, then it is continuous in probability.

Proof. First we check that

ı.h/ D sup
k2X

.1 � pkk.h//! 0; h! 0C : (3.17)

Since by the relation in [36, p. 201]

1 � pkk.h/
h

� lim
h!0C

1 � pkk.h/
h

D qk � q;

then

sup
k2X

.1� pkk.h// � qh! 0; h! 0C :

It is not difficult to see that for arbitrary u; h 	 0 and " > 0 we have

P .jXuCh � Xu j > "/ � P .jXuCh � Xu j > 0/
D
X

k2X
P .jXuCh �Xu j > 0 j Xu D k/P .Xu D k/

D
X

k2X
Œ1 � P .jXuCh �Xu j D 0 j Xu D k/P .Xu D k/

D
X

k2X
.1 � pkk.h//P .Xu D k/ � ı.h/! 0; h! 0C;

which means actually the continuity in probability of the chain X . ut
Definition 3.60. The stochastic processes .Xt ; t 	 0/ and .X 0

t ; t 	 0/, given on
the same probability space, are said to be equivalent if

P
�
Xt D X 0

t

� D 1; t 	 0:

The following theorem ensures that under the condition of continuity in
probability, one can consider the separable version of the original process.
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Theorem 3.61. If a process .Xt ; t 	 0/ is continuous in probability, then
there exists a continuous-in-probability separable version .X 0

t ; t 	 0/ that is
stochastically equivalent to .Xt ; t 	 0/.
Theorem 3.62. If a Markov chain satisfies condition (3.13), then there exists a
separable and stochastically equivalent version of this Markov chain.

Proof. From Theorem 3.59 it follows that the Markov chain is continuous in
probability; therefore, as a consequence of Theorem 3.61, we have the assertion
of the present theorem. ut

We assume later on that condition (3.13) is fulfilled because this condition with
Theorem 3.62 guarantees that the Markov chain has a stochastically equivalent
separable version. Assuming that condition (3.13) holds, one can bypass the
measurability problems that can arise in the case of CTMCs, and the holding times
are positive for all states.

Theorem 3.63. If a homogeneous Markov chain X satisfies condition (3.13), then
X has an equivalent stepwise version.

Proof. Since from condition (3.13) follows Eq. (3.17), then by the use of the
theorem of [36, p. 281], we obtain that there exists a stepwise version of the Markov
chain that is equivalent to the original Markov chain. ut

3.3.5 Poisson Process as Continuous-Time Markov Chain

Theorem 3.64. Let .Nt ; t 	 0/ be a homogeneous Poisson process with intensity
rate �, N0 D 0. Then the process Nt is a homogeneous Markov chain.

Proof. Choose arbitrarily a positive integer n, integers 0 � i1 � : : : � inC1, and
real numbers t0 D 0 < t1 < : : : < tnC1. It can be seen that

P
�
NtnC1

D inC1 j Ntn D in; : : : ; Nt1 D i1
�

D P
�
NtnC1

D inC1; Ntn D in; : : : ; Nt1 D i1
�

P .Ntn D in; : : : ; Nt1 D i1/

D P
�
NtnC1

�Ntn D inC1 � in; : : : ; Nt2 �Nt1 D i2 � i1; Nt1 D i1
�

P .Ntn �Ntn�1 D in � in�1; : : : ; Nt2 �Nt1 D i2 � i1; Nt1 D i1/
:

Since the increments of the Poisson process are independent, the last fraction can
be written in the form

P
�
NtnC1

�Ntn D inC1 � in
� � : : : � P .Nt2 �Nt1 D i2 � i1/P .Nt1 D i1/

P .Ntn �Ntn�1 D in � in�1/ � : : : � P .Nt2 �Nt1 D i2 � i1/P .Nt1 D i1/
D P

�
NtnC1

�Ntn D inC1 � in
�
:
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From the independence of the incrementsNtnC1
�Ntn andNtn D Ntn�N0 it follows

that the events
˚
NtnC1

�Ntn D inC1 � in
�

and fNtn D ing are also independent,
and thus

P
�
NtnC1

�Ntn D inC1 � in
� D P

�
NtnC1

�Ntn D inC1 � in jNtn D in
�

D P
�
NtnC1

D inC1jNtn D in
�
;

and finally we have

P
�
NtnC1

D inC1jNtn D in; : : : ; Nt1 D i1
� D P

�
NtnC1

D inC1jNtn D in
�
:

ut
It is easy to determine the rate matrix of a homogeneous Poisson process with

intensity �. Clearly, the transition probability of the process is

pij .h/ D P .NtCh D j j Nt D i/ D P .Nh D j � i/ D .�h/j�i

.j � i/Še
��h; j 	 i;

and

pij .h/ � 0; j < i:
If j < i , then obviously qij � 0. Let now i � j ; then

qij D lim
h!0C

pij .h/

h
D lim

h!0C
1

h

.�h/j�i

.j � i/Še
��h D

�
�; if j D i C 1;
0; if j > i C 1:

Finally, let i D j . By the use of the L’Hospital rule

qi D lim
t!0C

1 � pii .h/
h

D lim
t!0C

1 � e��h

h
D �:

Thus, summing up the obtained results, we have the rate matrix

Q D

2

6
6
4

�� � 0 0 �
0 �� � 0 �
0 0 �� � �
� � � � �

3

7
7
5 : (3.18)

The Poisson process is regular because for all i 2 X
X

j¤i
qij D � D qi <1:
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3.3.6 Reversible Markov Chains

Definition 3.65. A discrete-time Markov process is called reversible if for every
state i; j the equation


ipij D 
jpj i
holds, where 
i is the equilibrium probability of the states i 2 X .

The equation of the definition is usually called a local (or detailed) balance
condition because of its similarity to the (global) balance Eq. (3.8) or, more
precisely, to its form

X

j2X

ipij D

X

j2X

jpj i ; i 2 X :

The notation of reversibility of Markov chains originates from the fact that if
the initial distribution of the chain equals the stationary one, then the forward and
reverse conditional transition probabilities are identical, that is,

P .Xn D i j XnC1 D j / D P .XnC1 D i j Xn D j /:
Indeed,

P .Xn D i j XnC1 D j / D P .Xn D i; XnC1 D j /
P .XnC1 D j /

D P .Xn D i/P .XnC1 D j j Xn D i/
P .XnC1 D j /

D 
ipij


j
D 
jpj i


j
D pji

D P .XnC1 D i j Xn D j /:

In the case of CTMCs, a definition can be applied analogously to the
discrete-time case.

Definition 3.66. A CTMC is called reversible if for all pairs i; j of states the
equation


iqij D 
j qj i
holds, where 
i is the equilibrium probability of the state i 2 X .

The reversibility property and the local balance equations are often valid for
Markov chains describing the processes in queueing networks (Sect. 10.1); in
consequence the equilibrium probabilities can be computed in a simple, so-called
product form.
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3.4 Birth-Death Processes

Definition 3.67. The right-continuous stochastic process f�.t/; t 	 0g is a
birth-death process if

1. Its set of states is I D f0; 1; 2; : : :g [that is, �.t/ 2 I ];
2. The sojourn time in the state k 2 I; k > 0, is exponentially distributed with the

parameter

˛k D ak C bk; ak; bk 	 0; k > 0;
and it is independent of the trajectory before arriving at the state k;

3. After the state k 2 I , k 	 1, the process visits the state k C 1 with probability

pk D ak

˛k
and state k � 1 with probability qk D 1 � pk D bk

˛k
;

4. For the state 0 we consider the following two cases:

• The process stays an exponentially distributed amount of time in state 0 with
parameter ˛0 D a0 > 0 and after that visits state 1 (with probability p0 D 1).

• Once the process arrives at state 0 it remains there forever (q0 D 1; p0 D 0).

Pk.0/ D P .�.0/ D k/ D 'k; k 2 I , denotes the initial distribution of the
process.

If f�.t/; t 	 0g is a birth-death process, then it is an infinite-state
continuous-time (time-homogeneous) Markov chain. The parameters ak and bk
are referred to as the birth rate and the death rate in the state k, respectively, and k
is referred to as the population. The special case where bk � 0 is referred to as the
birth process and where ak � 0 as the death process.

Let T0 D 0 < T1 < T2 < : : : denote the time instants of the population changes
(birth and death). The discrete-time f�n; n 	 0g process, where �n D �.Tn/ is the
population after the nth change in population [nth jump of �.t/], is referred to as
the Markov chain embedded in the population changes of f�.t/; t 	 0g. The state-
transition probability matrix of the embedded Markov chain is

2

6
66
6
6
4

q0 p0 0 0 0 � � �
q1 0 p1 0 0 � � �
0 q2 0 p2 0 � � �
0 0 q3 0 p3 � � �
:::
:::
:::
:::
:::
: : :

3

7
77
7
7
5
:

3.4.1 Some Properties of Birth-Death Processes

The transient state probability, its Laplace transform, and the initial probabilities for
k 	 0, t 	 0, and Re s > 0 are denoted by
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Pk.t/ D P .�.t/ D k/; p�
k .s/ D

1Z

0

e�stPk.t/ dt; Pk.0/ D P .�.0/ D k/ D 'k:

In special cases, the following theorems are true. ([69])

Theorem 3.68. If p0 D 1; 0 < pk < 1; k 	 1, then the following statements
hold:

1. Pk.t/ satisfies the following ordinary differential equations:

P 0
0.t/ D �a0P0.t/C b1P1.t/;

P 0
k.t/ D ak�1Pk�1.t/ � .ak C bk/Pk.t/C bkC1.t/PkC1.t/; k 	 1:

2. For 'k; k 	 0, and Re s > 0 the following linear system defines p�
k .s/:

sp�
0 .s/� '0 D �a0p�

0 .s/C b1p�
1 .s/;

sp�
k .s/ � 'k D ak�1p�

k�1.s/ � .ak C bk/p�
k .s/C bkC1p�

kC1.s/; k 	 1:
3. For k 	 0 the limits

lim
t!1Pk.t/ D 
k

exist and are independent of the initial distribution of the process.


k D 0; k 	 0;
if

1X

kD0
�k <1; (3.19)

where �0 D 1 and �k D a0a1 � � �ak�1
b1b2 � � �bk ; k 	 1. Otherwise, 
k > 0; k 	 0, and


0 D
0

@
1X

jD0
�j

1

A

�1

; (3.20)


k D �k
0: (3.21)

Theorem 3.69 (Finite birth-death process). Let the state space of �.t/ be
f0; 1; 2; : : : ; ng, p0 D 1, 0 < pk < 1, for 1 � k � n � 1 and pn D 0; then
the following statements hold:

1. Pk.t/ satisfies the following ordinary differential equations:

P 0
0.t/ D �a0P0.t/C b1P1.t/;

P 0
k.t/ D ak�1Pk�1.t/ � .ak C bk/Pk.t/C bkC1PkC1.t/; 1 � k � n � 1;
P 0
n.t/ D an�1Pn�1.t/ � bnPn.t/:
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2. If the initial distribution of the process is 'k D P .�.0/ D k/; 0 � k � n, then
for Re s > 0 the Laplace transforms of the transient state probabilities p�

k .s/

satisfy

sp�
0 .s/ � '0 D �a0p�

0 .s/C b1p�
1 .s/;

sp�
k .s/� 'k D ak�1p�

k�1.s/� .ak C bk/p�
k .s/C bkC1p�

kC1.s/; 1 � k � n � 1;
sp�
n .s/� 'n D an�1p�

n�1.s/ � bnp�
n .s/:

3. For 0 � k � n the

lim
t!1Pk.t/ D 
k > 0

limit exists and is independent of the initial distribution:


j D �j 
0; 
0 D
0

@
1X

jD0
�j

1

A

�1

;

where

�0 D 1; �j D a0a1 � � �aj�1
b1b2 � � �bj ; 1 � j � n:

Theorem 3.70. The following equations hold.

1. Let p0 D 0; 0 < pk < 1; k 	 1; then for Pk.t/ we have

P 0
0.t/ D b1P1.t/;

P 0
1.t/ D �.a1 C b1/P1.t/C b2P2.t/;

P 0
k.t/ D ak�1Pk�1.t/ � .ak C bk/Pk.t/C bkC1PkC1.t/; k 	 2;

and for Re s > 0 and the initial distribution 'k; k 	 0, we have

sp�
0 .s/ � '0 D b1p�

1 .s/;

sp�
1 .s/ � '1 D �.a1 C b1/p�

1 .s/C b2p�
2 .s/;

sp�
k .s/ � 'k D ak�1p�

k�1.s/ � .ak C bk/p�
k .s/C bkC1p�

kC1.s/; k 	 2:

2. Let �.t/ 2 f0; 1; 2; : : : ; ng, p0 D 0, 0 < pk < 1 if 1 � k � n � 1, and pn D 0;
then for Pk.t/ we have

P 0
0.t/ D b1P1.t/;
P 0
1.t/ D �.a1 C b1/P1.t/C b2P2.t/;
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P 0
k.t/ D ak�1Pk�1.t/ � .ak C bk/Pk.t/C bkC1PkC1.t/; 2 � k � n � 1;
P 0
n.t/ D an�1Pn�1.t/ � bnPn.t/;

and for p�
k .s/, Re s > 0, we have ['k D P .�.0/ D k/; 0 � k � n]

sp�
0 .s/ � '0 D b1p�

1 .s/;

sp�
1 .s/ � '1 D �.a1 C b1/p�

1 .s/C b2p�
2 .s/;

sp�
k .s/ � 'k D ak�1p�

k�1.s/ � .akCbk/p�
k .s/CbkC1p�

kC1.s/; 2� k� n � 1;
sp�
n .s/� 'n D an�1p�

n�1.s/� bnp�
n .s/:

Comment 3.71. In Theorems 3.68–3.70 the differential equations for Pj .t/ are
indeed the Kolmogorov (forward) differential equations for the given systems. The
equations for p�

j .s/ can be obtained from the related differential equations forPj .t/
using

1Z

0

e�stP 0
j .t/ dt D sp�

j .s/� P 0
j .0/ :

In Theorem 3.70 state 0 is an absorbing state. In this way, the theorem allows one
to compute the parameters of the busy period of birth-death Markov chains starting
from state k ('k D 1), where the busy period is the time to reach state 0 (which
commonly represents the idle state of a system, where the server is not working, in
contrast to the i > 0 states, where the server is commonly busy). Let …k denote the
length of the busy period starting from state k; then

…k.t/ D P .…k � t/ D P .�.t/ D 0/ D P0.t/
defines the distribution of the length of the busy period, and from Theorem 3.70.1
we have

…0
k.t/ D P 0

0.t/ D b1P1.t/;
from which the Laplace–Stieltjes transform of the distribution of …k.t/, 
k.s/, is


k.s/ D
1Z

0

e�st d…k.t/ D
1Z

0

e�st…0
k.t/ dt

D
1Z

0

e�st b1P1.t/ dt D b1p�
1 .s/:

If the arrival intensity is constant in all states, i.e., ak D � > 0 (8k 	 0), then
the arrival process is a Poisson process at rate �. Further results on the properties of
special birth-death processes can be obtained, e.g., in [48].
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3.5 Exercises

Exercise 3.1. Compute the probability that a CTMC with the generator matrix0

@
�1 0:5 0:5
1 �2 1

1 0 �1

1

A stays in state 1 after the second state transition if the initial

distribution is .0:5; 0:5; 0/.

Exercise 3.2. Compute the stationary distribution of a CTMC with the generator

matrix

0

@
�3 3 0

4 �4 0
0 0 0

1

A if the initial distribution is .0:5; 0; 0:5/.

Exercise 3.3. Zn and Yn, n D 1; 2; : : : ; are discrete independent random variables.
P .Zn D 0/ D 1�p, P .Zn D 1/ D p and P .Yn D 0/ D 1�q, P .Yn D 1/ D q.
Define the transition probability matrix of the DTMC Xn if

XnC1 D .Xn � Yn/C CZn;

where .x/C D max.x; 0/. This equation is commonly referred to as the evolution
equation of a DTMC.

Exercise 3.4. Xn, n D 1; 2; : : : ; is a DTMC with the transition probability

matrix P D
0

@
3=6 1=6 2=6

3=4 0 1=4

0 1=3 2=3

1

A. Compute E .X0X1/ and corr.X0;X1/ if the initial

distribution is .0:5; 0; 0:5/ and the state space is S D f0; 1; 2g.
Exercise 3.5. The generator of a CTMC is defined by

q0j D

8
ˆ̂<

ˆ̂
:

1
3

if j D 1;
1
3

if j D 2;
� 2
3

if j D 0;
0 otherwiseI

qij D

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂̂
:

1
3i

if j D i C 1;
1
3i

if j D i C 2;
� 2
3i
� � if j D i;

� if j D i � 1;
0 otherwise;

for i D 1; 2; : : : :

Evaluate the properties of this Markov chain using, e.g., the Foster theorem.

Exercise 3.6. Show examples of

• Reducible
• Periodic (and irreducible)
• Transient (and irreducible)

DTMCs. Evaluate limn!1 P .Xn D i/ for these DTMCs, where i is a state of the
Markov chain.
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Exercise 3.7. Two players, A and B, play with dice according to the following rule.
They throw the dice, and if the number is 1, then A gets £2 from B; if the number
is 2 or 3, then A gets £1 from B; and if the number is greater than 3, then B gets £1
from A. At the beginning of the game both A and B have £3. The game lasts until
one of the players can no longer pay. What is the probability that A wins?

Exercise 3.8. Two players, A and B, play with dice according to the following rule.
They throw the dice, and if the number is 1, then A gets £2 from B; if the number
is 2 or 3, then A gets £1 from B; and if the number is greater than 3, then B gets £1
from A. At the beginning of the game both A and B have £3. If one of them cannot
pay the required amount, then he must give all his money to the other player and the
game goes on. What is the expected amount of money A will have after a very long
run? What is the probability that B will not be able to pay the required amount in
the next step of the game after a very long run?

Exercise 3.9. There are two machines, A and B, at a production site. Their failure
times are exponentially distributed with the parameters �A and �B , respectively.
Their repair times are also exponentially distributed with the parameters �A and
�B , respectively. A single repairman is associated with the two machines; he can
work on only one machine at a time. Compute the probability that at least one of the
machines works.

Exercise 3.10. Let X D .X0;X1; : : :/ be a two-state Markov chain with the state

space X D f0; 1g and with the probability transition matrix P D


a 1 � a
1 � b b

�
,

where 0 < a; b < 1. Prove that Pn D 1
2�a�b… C .aCb�1/n

2�a�b .I � P/, where … D

1� b 1 � a
1� b 1 � a

�
and I D


1 0

0 1

�
.



Chapter 4
Renewal and Regenerative Processes

4.1 Basic Theory of Renewal Processes

Let fN.t/; t 	 0g be a nonnegative-integer-valued stochastic process that counts
the occurrences of a given event. That is, N.t/ is the number of events in the time
interval Œ0; t/. For example,N.t/ can be the number of bulb replacements in a lamp
that is continuously on, and the dead bulbs are immediately replaced (Fig. 4.1).

Let 0 � t1 � t2 � : : : be the times of the occurrences of consecutive events and
t0 D 0 and Ti D ti � ti�1, i D 1; 2; 3; : : : be the time intervals between consecutive
events.

Definition 4.1. t1 � t2 � : : : is a renewal process if the time intervals between
consecutive events Ti D ti � ti�1, i D 2; 3; : : :, are independent and identically
distributed (i.i.d.) random variables with CDF

F.x/ D P .Tk � x/; k D 1; 2; : : : :

The nth event time, tn; n D 1; 2; : : :, is referred to as the nth renewal point
or renewal time. According to the definition, the first time interval might have a
different distribution.

We assume that F.0/ D 0 and F.C0/ D P .Tk D 0/ < 1. In this case

t0 D 0; tn D T1 C : : :C Tn; n D 1; 2; : : : ;

N.0/ D 0; N.t/ D supfn W tn � t; n 	 0g D
1X

iD1
Ifti�tg; t > 0:

Remark 4.2. fN.t/; t 	 0g and ftn; n 	 1g mutually and univocally determine
each other because for arbitrary t 	 0 and k 	 1 we have

N.t/ 	 k , tk � t:

L. Lakatos et al., Introduction to Queueing Systems with Telecommunication Applications,
DOI 10.1007/978-1-4614-5317-8 4, © Springer Science+Business Media, LLC 2013
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t4t0  =0 t1 t2 t3
t

N(t)Fig. 4.1 Renewal process

Definition 4.3. When P .Tk � x/ D F.x/; k D 2; 3; : : :, but F1.x/ D
P .T1 � x/ 6� F.x/, the process is referred to as a delayed renewal process.

Remark 4.4. T1; T2; : : : are i.i.d. random variables and from tn D T1C : : :CTn, and
we can compute the distribution of the time of the nth event F .n/.x/ D P .tn � x/
using the convolution formula

F .n/.x/ D
1Z

0

F .n�1/.x � y/dF.y/ D
xZ

0

F .n�1/.x � y/dF.y/; n 	 2; x 	 0;

F .n/.x/ � 0; if x � 0 and n 	 1:

Starting from F .1/.x/ D F1.x/ the same formula applies in the delayed case.

Definition 4.5. The functionH.t/ D E .N.t//; t 	 0, is referred to as a renewal
function.

One of the main goals of renewal theory is the analysis of the renewal function
H.t/ and the description of its asymptotic behavior. Below we discuss the related
results for regular renewal processes. The properties of delayed renewal processes
are similar, and we do not provide details on them here. We will show that the law of
large numbers and the central limit theorem hold for the renewal process (see also
Ch. 5. in [48]).

Theorem 4.6. If fTn; n D 1; 2; : : :g is a series of nonnegative i.i.d. random
variables and P .T1 D 0/ < 1, then there exists �0 > 0 such that for all 0 < � < �0
and t 	 0

E
�
e�N.t/

�
<1

holds.

Proof (Proof 1 of Theorem 4.6). From the Markov inequality (Theorem 1.35)
we have

E
�
e�N.t/

� D
1X

kD0
e�kP .N.t/ D k/ �

1X

kD0
e�kP .N.t/ 	 k/

D
1X

kD0
e�kP .tk � t/ �

1X

kD0
e�ket�k� D et .1 � e�.���//�1;
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where � < �0 D �, � D log 1
h

, and h D E
�
e�T1�. Additionally, h < 1 because

F.0/ D 0 and P .T1 D 0/ < 1. ut
Proof (Proof 2 of Theorem 4.6). According to the condition of the theorem,
there exist � and ı positive numbers such that P .Tk 	 ı/ > �. Introducing
fT 0

k D ıIfTk�ıg; k D 1; 2; : : :g (where T 0
n; n D 1; 2; : : :, is a series of i.i.d.

random variables) and the related fN 0.t/; t 	 0g renewal process we have that
P
�
T 0
k � Tk

� D 1; k 	 1, and consequently P .N 0.t/ 	 N.t// D 1; t 	 0.
The distribution of N 0.t/ is negative binomial with the parameter p D P

�
T 0
k 	 ı

�

and order r D bt=ıc,

P
�
N 0.t/ D k C r� D

 
k C r � 1
r � 1

!

pr.1 � p/k; k D 0; 1; 2; : : : ;

from which the statement of the theorem follows. ut
Corollary 4.7. All moments of N.t/ .t 	 0/ are finite, and the renewal function
H.t/ is also finite for all t 	 0.

Proof. The corollary comes from Theorem 4.6 and the inequality xn � nŠex;
n 	 1; x 	 0. ut

Before conducting an analysis of the renewal function we recall some properties
of convolution.

Let A.t/ and B.t/ be monotonically nondecreasing right-continuous functions
such that A.0/ D B.0/ D 0.

Definition 4.8. The convolution of A.t/ and B.t/ [denoted by A  B.t/] is

A  B.t/ D
tZ

0

B.t � y/dA.y/; t 	 0:

Lemma 4.9. A  B.t/ D B  A.t/.

Proof. From B.0/ D 0 we have B.t � y/ D
t�yR

0

dB.s/, and consequently

A  B.t/ D
tZ

0

8
<

:

t�yZ

0

dB.s/

9
=

;
dA.y/ D

tZ

0

tZ

0

Ifs<t�ygdA.y/dB.s/

D
tZ

0

tZ

0

Ify<t�sgdA.y/dB.s/ D
tZ

0

8
<

:

t�sZ

0

dA.y/

9
=

;
dB.s/

D B  A.t/:
ut
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Remark 4.10. The definition of the renewal functionH.t/

H.t/ D E .N.t// D E

 1X

iD1
Ifti�tg

!

D
1X

iD1
P .T1 C : : :C Ti � t/

immediately determines the relation between the renewal function and the order k
of the convolutions of the event time distribution

H.t/ D
1X

kD1
F .k/.t/:

Theorem 4.11. If fTn; n D 1; 2; : : :g is a series of i.i.d. random variables and
P .T1 < 0/ D 0; P .T1 D 0/ < 1, then H.t/ satisfies the renewal equation

H.t/ D F.t/C
tZ

0

H.t � y/dF.y/; t 	 0:

Proof. According to Remarks 4.4 and 4.10, the renewal function can be written as

H.t/ D F .1/.t/C
1X

kD1

tZ

0

F .k/.t � y/dF.y/

D F.t/C
tZ

0

 1X

kD1
F .k/.t � y/

!

dF.y/

D F.t/C
tZ

0

H.t � y/dF.y/ ;

where the order of the summation and the integration are interchanged based on
Corollary 4.7. ut

In the case of a delayed renewal process, the renewal function is denoted
by H1.t/, and the same composition holds as for the regular renewal process
(Remark 4.10)

H1.t/ D
1X

kD1
F .k/.t/; t 	 0; .F .k/.t/ D P .tk � t//;

but in this case F1 6� F .
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Theorem 4.12. The renewal function can be written in the following forms:

H1.t/ D F1.t/CH1  F.t/ D F1.t/C F H1.t/;

H1.t/ D F1.t/CH  F1.t/ D F1.t/C F1 H.t/;
H.t/ D F.t/CH  F.t/ D F.t/C F H.t/:

Renewal Equations

Definition 4.13. An integral equation of the type

A.t/ D a.t/C
tZ

0

A.t � x/dF.x/; t 	 0;

where a.t/ and F.t/ are known functions and A.t/ is unknown, is referred to as a
renewal equation (see also Theorem 4.1 of Ch. 5. in [48]).

Theorem 4.14. If a.t/; t 	 0, is a bounded real function that is Riemann–Stieltjes
integrable according to H.t/ over any finite interval, then there uniquely exists the
functionA.t/; t 	 0, which is finite over any finite interval and satisfies the renewal
equation

.i/ A.t/ D a.t/C
tZ

0

A.t � x/dF.x/; t 	 0;

and furthermore it satisfies

.ii/ A.t/ D a.t/C
tZ

0

a.t � x/dH.x/; t 	 0;

where H.t/ D
1P
kD1

F .k/.t/; t 	 0, is the renewal function.

Proof. First we show that the function A.t/, t 	 0, defined by equation (ii), is (a)
bounded on the Œ0; T � interval for all T > 0 and (b) satisfies (i). Next we prove that
(c) all solutions of (i) that are bounded on Œ0; T � can be given in form (ii), i.e., the
solution is unique.
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(a) Since a.t/ is bounded and H.t/ is monotonically nondecreasing, we have

sup
0�t�T

jA.t/j � sup
0�t�T

ja.t/j C
TZ

0

Œ sup
0�y�T

ja.y/jdH.x/

� sup
0�t�T

ja.t/j.1CH.T // <1:

(b) Furthermore, we have

A.t/ D a.t/CH  a.t/ D a.t/C
 1X

kD1
F .k/

!

 a.t/

D a.t/C F  a.t/C
 1X

kD2
F .k/

!

 a.t/

D a.t/C F  Œa.t/C
 1X

kD1
F .k/

!

 a.t/�

D a.t/C F  A.t/:
(c) We prove this by successive approximation. According to equation (i), A D

aC F  A. Substituting this into (i) we have

A D a.t/C F  .aC F  A/ D aC F  aC F  .F  A/
D aC F  aC F .2/  A:

Continuously substituting equation (i) we obtain for n 	 1 that

A D aC F  aC F .2/  .aC F A/ D : : : D aC
n�1X

kD1
.F .k/  a/C F .n/ A:

Since A.t/ is bounded on every finite interval according to (a), F .n/.0�/ D 0;

F .n/.y/ is monotonically nondecreasing, and F .n/.t/ ! 0; n ! 1, for all
fixed t , we have that for a fixed t

jF .n/A.t/j D
ˇ
ˇ
ˇ
ˇ
ˇ̌

tZ

0

A.t � y/dF .n/.y/

ˇ
ˇ
ˇ
ˇ
ˇ̌� sup

0�y�t
jA.t�y/jF .n/.t/! 0; n!1:

From the fact that a.t/ is bounded it follows that

lim
n!1

 
n�1X

kD1
F .k/

!

 a.t/ D
 1X

kD1
F .k/

!

 a.t/ D H  a.t/;
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and consequently

A.t/ D a.t/C lim
n!1

" 
n�1X

kD1
F .k/

!

 a.t/C F .n/A.t/

#

D a.t/CH  a.t/:

This means that if A is a bounded solution of (i), then it is identical with (ii).

ut

Analysis of the Renewal Function

One of the main goals of the renewal theorem is the analysis of the renewal function.
According to Theorem 4.12, in the case of delayed renewal processes the renewal
function H1.t/ can be obtained from F1.t/ and H.t/. In the rest of this section we
focus on the analysis of the renewal function of an ordinary renewal process, H.t/,
that is, Fk D F; k 	 1. During the subsequent analysis we assume that F.t/ is
such that F.0�/ D 0 and F.0C/ < 1.

Theorem 4.15 (Elementary renewal theorem). There exists the limit

lim
t!1

H.t/

t
D 1

E .T1/
;

and it is 0 if E .T1/ D 1.

Definition 4.16. The random variable X has a lattice distribution if there exists
d > 0 and r 2 R such that the random variable 1

d
.X � r/ is distributed on the

integer numbers, that is, P
�
1
d
.X � r/ 2 Z

� D 1. The largest d with that property is
referred to as the step size of the distribution.

Remark 4.17. If X has a lattice distribution with step size d , then

d D minfs W j .2
=s/j D 1g;

where  .u/ D E
�
eiuX

�
; u 2 R, denotes the characteristic function of X . In this

case, j .u/j < 1 if 0 < juj < 2
=d . If the distribution of X is not lattice, then
j .u/j < 1 if u ¤ 0.

Theorem 4.18 (Blackwell’s theorem). If F.t/ is a lattice distribution with step
size d , then

lim
n!1 qn D d

E .T1/
;
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where qn D H.nd/�H..n� 1/d/. If F.t/ is not a lattice distribution, then for all
h > 0

lim
t!1.H.t C h/�H.t// D

h

E .T1/

holds.

The following theorems require the introduction of direct Riemann integrability,
which is more strict than Riemann integrability.

Let g be a nonnegative function on the interval Œ0;1/ and

s.ı/ D ı
1X

nD1
inffg.x/ W .n� 1/ı � x � nıg;

S.ı/ D ı
1X

nD1
supfg.x/ W .n � 1/ı � x � nıg:

Definition 4.19. The function g is directly Riemann integrable if s.ı/ and S.ı/ are
finite for all ı > 0 and

lim
ı!0

ŒS.ı/� s.ı/� D 0:
Remark 4.20. If the function g is directly Riemann integrable, then g is bounded,
and the limit of s.ı/ and S.ı/ at ı ! 0 is equal to the infinite Riemann integral,
that is,

lim
ı!0

s.ı/ D lim
ı!0

S.ı/ D
1Z

0

g.x/dx D lim
y!1

yZ

0

g.x/dx:

Sufficient and necessary conditions for direct Riemann integrability:

(a) There exists ı > 0 such that S.ı/ <1.
(b) g is almost everywhere continuous along the real axes according to the

Lebesgue measure (that is, equivalent to Riemann integrability on every finite
interval).

Sufficient conditions for direct Riemann integrability:
g is bounded and has a countable number of discontinuities, and at least either

condition (a) or (b) holds:

(a) g equals 0 apart from a finite interval.

(b) g is monotonically decreasing and
1R

0

g.x/dx <1.

Theorem 4.21 (Smith’s renewal theorem). If g.x/ 	 0, x 	 0, is a nonincreasing
directly Riemann integrable function on the interval Œ0;1/, then for t !1 one of
the following identities holds:
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(a) If F is a nonlattice distribution, then

lim
t!1H  g.t/ D lim

t!1

tZ

0

g.t � u/dH.u/ D 1

E .T1/

1Z

0

g.u/du:

(b) If F is a lattice distribution with step size d , then

lim
n!1Hg.xCnd/ D lim

n!1

xCndZ

0

g.xCnd�u/dH.u/ D d

E .T1/

1X

kD0
g.xCkd/:

Remark 4.22. Blackwell’s theorem (Theorem 4.18) follows from Smith’s renewal
theorem (Theorem 4.21) assuming that g.u/ D If0<u�hg. The reverse direction is an
implicit consequence of the proof of Blackwell’s theorem provided by Feller in [31].

Before proving Theorem 4.21 we collect some simple properties of the renewal
functionH.t/.

Lemma 4.23. H is monotonically nondecreasing and continuous from the right.

Proof. F .k/.t/ is monotonically nondecreasing and continuous from the right for all
k 	 1, and the series

P1
kD1 F .k/.t/ is uniformly convergent on every finite interval,

from which the lemma follows. ut
Lemma 4.24. The functionH is subadditive, that is,

H.t C h/ � H.t/CH.h/ (4.1)

for t; h 	 0.

Proof. Since H.0/ D 0, it is enough to consider the case where t; h > 0. Let
n.t/ D inffn W tn 	 t; n 	 0g. If tn � t for all n 	 0, then let n.t/ D 1. This case
can occur only on a set with measure 0.

Due to the fact that P .T1 D 0/ might be positive, the relation of n.t/ and N.t/
is not deterministic. It holds that n.t/ 	 N.t/C 1 and the right continuity of N.t/
implies N.tn.t// D N.t/; t 	 0. Using that we have

N.t C h/ �N.t/ D N.t C h/ �N.tn.t// � N.tn.t/ C h/�N.tn.t//;
and using the total probability theorem, we obtain

E .N.t C h/ �N.t// � E
�
N.tn.t/ C h/�N.tn.t//

�

D
1X

kD1
E
�
N.tn.t/ C h/�N.tn.t//jn.t/ D k

�
P .n.t/ D k/

D
1X

kD1
E .N.tk C h/�N.tk/jn.t/ D k/P .n.t/ D k/:
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Since tk is a renewal point, the conditional expected value in the last summation
does not depend on the condition

E .N.tk C h/ �N.tk/jn.t/ D k/ D E .N.h/�N.0// D E .N.h//;

and in this way we have

E .N.t C h/ �N.t// �
1X

kD1
E .N.h//P .n.t/ D k/

D E .N.h//
1X

kD1
P .n.t/ D k/ D E .N.h//;

from which the lemma follows. ut
Lemma 4.25. For the renewal functionH the following inequality holds:

H.t/ � H.1/.1C t/; t 	 0: (4.2)

Proof. From the previous statement and the monotonicity of H

H.t/ � H.btc C 1/ � H.1/CH.btc/ � H.1/C .H.1/CH.btc � 1// �
� : : : � H.1/C btcH.1/ � H.1/C tH.1/ D H.1/.1C t/:

ut
Remark 4.26. The nonnegative subadditive functions can be estimated from the
preceding expression by a linear function.

Lemma 4.27. For arbitrary � > 0 the Laplace–Stieltjes transform H�.�/ DR1
0

e��tdH.t/, � 	 0, of the functionH can be represented in the Laplace–Stieltjes
transform as

H�.�/ D .1 � '�.�//�1;

where '�.�/ D E
�
e��T1� is the Laplace–Stieltjes transform of the distribution

function F .

Proof. For � > 0 there obviously exists H�.�/ since, according to Eqs. (1.3)
and (4.2),

H�.�/ D �
1Z

0

e��tH.t/dt � �H.1/
1Z

0

e��t .1C t/dt <1:

It is clear that

1Z

0

e��tdN.t/ D
1X

kD0
e��tk D 1C

1X

kD1

kY

iD1
e��Ti :



4.1 Basic Theory of Renewal Processes 133

Using this equality we obtain

E

0

@
1Z

0

e��tdN.t/

1

A D E

0

@�

1Z

0

N.t/e��tdt

1

A

D �
1Z

0

H.t/e��tdt D
1Z

0

e��tdH.t/ D .h.�/ D/

D E

 

1C
1X

kD1

kY

iD1
e��Ti

!

D 1C
1X

kD1
.'.�//k D 1

1 � '.�/ ;

where 0 < '.�/ < 1 if � > 0. ut
Proof of Elementary Renewal Theorem. First we prove that the limit exists. If t 	 1,
then we have that 0 � H.t/

t
� 1Ct

t
H.1/ � 2H.1/ is bounded. Let c D inf

t�1
H.t/

t
.

Then for arbitrary � > 0 there exists a number t0 > 0 such that

H.t0/

t0
< c C �:

Moreover, for all integers k 	 1 and � 	 0
H.kt0 C �/
kt0 C � � kH.t0/CH.�/

kt0
� c C � C H.�/

kt0
;

and consequently

lim sup
t!1

H.t/

t
� c C �;

and

c � lim inf
t!1

H.t/

t
� lim sup

t!1
H.t/

t
� c

follows. We have proved the existence of the limit.
Using the preceding expression for the Laplace–Stieltjes transform h.�/,

1Z

0

e��tH.t/dt D 1

�

1Z

0

e��tdH.t/ D 1

�
h.�/ D 1

�

1

1 � '.�/ ;

and we obtain

�

1 � '.�/ D �
2

1Z

0

e��tH.t/dt D
1Z

0

e�t �H


t

�

�
dt: (4.3)
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By means of the relation for the derivative of the Laplace–Stieltjes transform

lim
�!C0

�

1 � '.�/ D lim
�!C0



E


1 � e��T1

�

���1
D
(
0; if E .T1/ D 1;
1

E.T1/
; if E .T1/ <1:

On the other hand, in the case 0 < � � 1, we can give a uniform upper estimation
for the integrand in Eq. (4.3):

e�t �H


t

�

�
� e�t �



1C t

�

�
H.1/ � e�t .1C t/H.1/I

furthermore,

lim
�!C0 �H



t

�

�
D t lim

�!C0
H
�
t
�

�

t
�

D tc;

so from the Lebesgue majorated convergence theorem

lim
�!C0

1Z

0

e�t �H


t

�

�
dt D

1Z

0

e�t ctdt D c:

Summing up the previous results we obtain

c D lim
�!C0

�

1 � '.�/ D
(
0 if E .T1/ D 1;
1

E.T1/
if E .T1/ <1:

ut

4.1.1 Limit Theorems for Renewal Processes

Theorem 4.28. Let 0 < E .T1/ D � < 1; then the following stochastic
convergence holds:

N.t/

t

P! 1

�
; t !1:

Proof. The proof of Theorem 4.28 is based on the relation

fN.t/ > kg D ftk � tg

from Comment 4.2. Let us estimate the probability P .jN.t/=t � 1=�j > �/ for
arbitrary � > 0. Let n D n.t/ D bt=�C �tc; then
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P


N.t/

t
� 1

�
> �

�
D P



N.t/ >

t

�
C �t

�
� P .N.t/ > n/

D P .tn � t/ D P


tn

n
� t

bt=�C �tc
�

� P


tn

n
� t

t=�C �t � 1
�

D P


tn

n
� 1

1=�C � � 1=t
�

� P


tn

n
� �

1C ��=2
�

if t 	 2=�;

which by Bernoulli’s law of large numbers tends to 0 for the sequence tn,
n D 1; 2; : : :, as t ! 1. The probability P .N.t/=t � 1=� < ��/ is estimated in
a similar way. ut
Remark 4.29. By the strong law of large numbers, tk

k
! �, k ! 1, with

probability 1. Using this fact one can prove that with probability 1

N.t/

t
! 1

�
; t !1:

The convergence with probability 1 remains valid for delayed renewal processes if
the first time interval is finite with probability 1.

Theorem 4.30. If E .T1/ D � > 0; D2 .T1/ D �2 <1, then as t !1

lim
t!1 P

 
N.t/� t=�
p
t�2=�3

� x
!

D ˆ.x/ D 1p
2


xZ

�1
e�u2=2du:

Proof. Let x be a real number and denote

r.t/ D bt=�C x
p
t�2=�3c:

Note that r.t/ 	 1 if
p
t C x�=p���=pt 	 0. Since r.t/!1 as t !1, then

from the central limit theorem it follows that for all x 2 R

P

 
tr.t/ � �r.t/
�
p
r.t/

� x
!

! ˆ.x/ D 1p
2


xZ

�1
e�u2=2du; t !1: (4.4)
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Using the relation fN.t/ � r.t/g D ftr.t/ > tg we have

P

 
N.t/� t=�
p
t�2=�3

� x
!

D P
�
N.t/ � t=�C x

p
t�2=�3

�

D P .N.t/ � r.t// D P
�
tr.t/ > t

�

D P

 
tr.t/ � �r.t/
�
p
r.t/

>
t � �r.t/
�
p
r.t/

!

D 1 � P

 
tr.t/ � �r.t/
�
p
r.t/

� t � �r.t/
�
p
r.t/

!

:

It can be easily checked that

t � �r.t/
�
p
r.t/

! �x; t !1;

and the continuity of the standard normal distribution function implies the
convergence

P

 
N.t/� t=�
p
t�2=�3

� x
!

! 1 �ˆ.�x/ D ˆ.x/; t !1:

The equation 1�ˆ.�x/ D ˆ.x/ follows from the symmetry of the standard normal
distribution. ut

The following results (without proof) concerning the mean value and variance of
the renewal process N.t/ are a generalization of previous results and are valid for
the renewal processes with delay, too.

Theorem 4.31. If �2 D E
�
T 21
�
<1 and T1 has a nonlattice distribution, then as

t !1 [31, XIII-12�]

E .N.t// � t

�
D H.t/ � t

�
! �2

2�2
� 1;

D2 .N.t// D �2 � �2
�3

t C o.t/:

If, additionally, �3 D E
�
T 31
�
<1, then [31]

D2 .N.t// D �2 � �2
�3

t C


5�22
4�4
� 2�3
3�3
� �2

2�2

�
C o .1/:



4.2 Regenerative Processes 137

4.2 Regenerative Processes

Many queueing systems can be described by means of regenerative processes. This
property makes it possible to prove the limit and stability theorems in order to use
the method of simulation.

Definition 4.32. Let T be a nonnegative random variable and Z.t/; t 2 Œ0; T / be
a stochastic process. The pair .T;Z.t//, taking on values in the measurable space
.Z;B/, is called a cycle of length T .

Definition 4.33. The stochastic process Z.t/, t 	 0, taking on values in the
measurable space .Z;B/, is called a regenerative process with moments of
regeneration t0 D 0 < t1 < t2 < : : : if there exists a sequence of independent
cycles .Tk;Zk.t//; k 	 1, such that

(1) Tk D tk � tk�1; k 	 1;
(2) P .Tk > 0/ D 1; P .Tk <1/ D 1;
(3) All cycles are stochastically equivalent.
(4) Z.t/ D Zk.t � tk�1/ if t 2 Œtk�1; tk/; k 	 1.

Definition 4.34. If property (3) is fulfilled only starting with the second cycle
(analogously to the renewal processes), then we have a delayed regenerative
process.

Remark 4.35. tk; k 	 1, is a renewal process.

In the case of regenerative processes, an important task is to find conditions assuring
the existence and possibility of determining the limit

lim
t!1 P .Z.t/ 2 B/; B 2 B:

It is also important to estimate the rate of convergence (especially upon examination
of the stability problems of queueing systems and simulation procedures).

Let fZ.t/; t 	 0g be a regenerative process taking on values in the measurable
space .Z;B/ with regeneration points t0 D 0 < t1 < t2 < : : :, Tn D tn� tn�1; n D
1; 2; : : :. Assume that Z.t/ is right continuous and there exists a limit from the left.
Then the cycles fTn; fZ.tn�1 C u/ W 0 � u < Tngg; n D 1; 2; : : :, are independent
and stochastically equivalent; ftn; n 	 1g; and the corresponding counting process
fN.t/; t 	 0g is a renewal process. Let F denote the common distribution of
random variables fTn; n 	 1g.

The most important application of Smith’s theorem is the determination of limit
values limt!1 E .W.t// for the renewal and regenerative processes, whereW.t/ D
‰.t;N;Z/ is the function of t , the renewal processN , and the regenerative process
Z. The determination of the limit value is based on a more general theorem.
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Theorem 4.36. Let fV.t/; t 	 0g be a real-valued stochastic process on the same
probability space as the process fN.t/; t 	 0g, and for which the mean value
f .t/ D E .V .t// is bounded on each finite interval. Let

g.t/ D E
�
V.t/IfT1>tg

�C
tZ

0

ŒE .V .t/jT1 D s/� E .V .t � s//� dF.s/; t 	 0:

Assume that the positive and negative parts of g are directly Riemann integrable.
If F is a nonlattice distribution, then

lim
t!1f .t/ D lim

t!1 E .V .t// D 1

�

1Z

0

g.x/dx:

A similar result is valid if F is a lattice distribution.

Remark 4.37. In the theorem, the property of direct Riemann integrability was
required separately for the positive and negative parts of the function g. The reason
is that the property is defined only for nonnegative functions.

Proof. It is clear that

f .t/ D E
�
V.t/IfT1>tg

�C E
�
V.t/IfT1�tg

�

D E
�
V.t/IfT1>tg

�C
tZ

0

E .V .t/jT1 D s/dF.s/:

Let us add and subtract F  f .t/; then we get the renewal equation

f D g C F  f:
The solution of the equation is f .t/ D g C H  g.t/, which because of the
convergence g.t/ ! 0; t ! 1, and the elementary renewal theorem as a simple
consequence of direct Riemann integrability tends to 1

�

R1
0
g.x/dx as t !1. ut

Remark 4.38. From the proof it is clear that under the condition of Theorem 4.36
for an arbitrary process V.t/ there exists the representation E .V .t// D H  g.t/
and for the existence of the limit the direct Riemann integrability is required. This
representation is interesting if V.t/ depends on Z.t/.

Special Case Let h W Z ! R be a measurable function for which, for all t ,
E .jh.Z.t//j/ < 1. Z.t/ is a regenerative process, and the part starting with the
second cycle is independent of the first cycle of length T1, so for arbitrary 0 < s < t

E ..h.Z.t//jT1 D s// D E .h.Z.t � s///:
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Using the previous notation

g.t/ D E
�
h.Z.t//IfT1>tg

�
:

Theorem 4.39. If gC and g� are directly Riemann integrable, then

lim
t!1 E .h.Z.t/// D ��1

1Z

0

g.s/ ds

D ��1
1Z

0

E
�
h.Z.s/IfT1>sg

�
ds

D ��1E

0

@
T1Z

0

h.Z.s//

1

A ds:

For arbitrary A 2 B the following equality holds:

lim
t!1 P .Z.t/ 2 A/ D ��1

1Z

0

P .Z.s/ 2 A; T1 > s/ ds

D ��1E

0

@
T1Z

0

IfZ.s/2Ag ds

1

A:

Proof. The first relation follows from the previous theorem, and for the second
one it is necessary to mention that, since the trajectories of Z are right continuous
and have left limits, the (integrable, bounded) function P .Z.s/ 2 A; T1 > s/ has
a countable number of discontinuities and, consequently, is directly Riemann
integrable. ut

We give one more limit theorem (without proof) that is often useful in practice.

Theorem 4.40. Let F be a nonlattice distribution, and let at least one of the
following conditions be fulfilled:

(a) P .Z.t/ 2 A/ is Riemann integrable on an arbitrary finite interval, and � DR1
0
x dF.x/ < 1 holds.

(b) Starting with a certain integer n 	 1 the distribution functions defined by
F .1/ D F; F .nC1/ D F .n/  F , are absolute continuous and � DR1
0
x dF.x/ <1.
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Then the following relation holds:

lim
t!1 P .Z.t/ 2 A/ D ��1

1Z

0

P .Z.s/ 2 A; T1 > s/ ds

D ��1E

0

@
T1Z

0

IfZ.s/2Ag ds

1

A:

Example 4.41. Let us consider the renewal process fN.t/; t 	 0g; the renewal
moments are

t0 D 0; tn D T1 C T2 C : : :C Tn; n 	 1;
and, furthermore, P .Tk � x/ D F.x/; k 	 1 , � D R1

0
x dF.x/. For arbitrary

t > 0 we define

ı.t/ D t � tN.t/; the age;
�.t/ D tN.t/C1 � t; the residual lifetime;
ˇ.t/ D �.t/ � ı.t/ D tN.t/C1 � tN.t/; the total lifetime:

(For example, at instant t , ı.t/ indicates how much time passed without a car
arriving at the station, and �.t/ indicates how long it was necessary to wait till the
arrival of the next car, on the condition that the interarrival times are i.i.d. random
variables with the common distribution function F .)

Theorem 4.42. fı.t/; t 	 0g and f�.t/; t 	 0g are regenerative processes, and in
the case of the nonlattice distribution F ,

lim
t!1 P .ı.t/ � x/ D lim

t!1 P .�.t/ � x/ D 1

�

xZ

0

.1 � F.u// du;

lim
t!1 P .ˇ.t/ � x/ D 1

�

xZ

0

s dF.s/:

Proof. Both processes are obviously regenerative with common regeneration points
tn; n 	 1. By our previous theorem,

lim
t!1 P .ı.t/ � x/ D 1

�

1Z

0

P .ı.s/ � x; T1 > s/ dsI

furthermore,

P .ı.s/ � x; T1 > s/ D P .s � x; T1 > s/ D
�
1 � F.s/; if s < x;
0; if s 	 x;
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so

lim
t!1 P .ı.t/ � x/ D 1

�

xZ

0

.1 � F.s//ds D 1

�

xZ

0

.1 � F.s//ds

using the identity � D R1
0
.1 � F.s//ds (Exercise 1.5). Similarly, for the process

f�.t/; t 	 0g we obtain

lim
t!1 P .�.t/ � x/

D 1

�

1Z

0

P .�.s/ � x; T1 > s/ds D 1

�

1Z

0

P .T1 � s � x; T1 > s/ds

D 1

�

1Z

0

P .s � T1 < s C x/ds D 1

�

1Z

0

.F.s C x/ � F.s//ds

D � 1
�

0

@
1Z

x

.1 � F.s//ds �
1Z

0

.1 � F.s//ds
1

A D 1

�

xZ

0

.1 � F.s//ds:

The statement for f�.t/; t 	 0g can be obtained analogously. ut
Similarly to the renewal processes, the law of large numbers and the central limit

theorem can be proved for the regenerative processes, too. Here we will not deal
with these questions.

4.2.1 Estimation of Convergence Rate for Regenerative
Processes

For a wide class of regenerative processes (e.g., stochastic processes describing
queueing systems) one can estimate the rate of convergence of distributions of
certain parameters to a stationary distribution by means of the so-called coupling
method [65].

Lemma 4.43 (Coupling lemma). For the arbitrary random variablesX and Y and
an arbitrary Borel set A of the real line the following statements hold:

(i) jP .X 2 A/ � P .Y 2 A/j � P .X ¤ Y /:
(ii) IfX D X1C : : :CXn and Y D Y1C : : :CYn, then jP .X 2 A/�P .Y 2 A/j �

nP

kD1
P .Xk ¤ Yk/:

Proof. If P .X 2 A/ D P .Y 2 A/, then (i) is obviously true.
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Suppose that P .X 2 A/ > P .Y 2 A/ (if one changes the notation, then this can
always be done if the two probabilities differ). Then

jP .X 2 A/ � P .Y 2 A/j D P .X 2 A/ � P .Y 2 A/
� P .X 2 A/ � P .Y 2 A;X 2 A/
D P .X 2 A; Y 2 Ac/ � P .X ¤ Y /:

Proof of relation (ii). Since fX ¤ Y g �
nS

kD1
fXk ¤ Ykg, we have

P .X ¤ Y / � P

 
n[

kD1
fXk ¤ Ykg

!

�
nX

kD1
P .Xk ¤ Yk/:

ut
Application of Coupling Lemma Let Z D fZ.j /; j 	 1g be the discrete-time,
real-valued regenerative process under consideration. Assume that there exists the
weak stationary limit of the process QZ D fZ.j C n/; j 	 1g as n!1 (its finite-
dimensional distributions weakly converge to the finite-dimensional distributions
of a stationary process), which is also regenerative, and let Y D fY.j /; j 	 1g
be its realization, not necessarily different from Z on the same probability space.
Let � denote the first instant when the processes Z and Y are regenerated at the
same time (in many concrete cases the distribution of � can be easily estimated).
Then the convergence rate of the distribution of Z.j / can be estimated by means
of the distribution of � as follows: if after the regeneration point � the process Z is
replaced by the next part of process Y following the common regeneration point � ,
then the finite-dimensional distributions of process Z do not change. It is clear that
f� < j g � fZ.j / D Y.j /g, i.e., fZ.j / ¤ Y.j /g � f� 	 j g, from which, using
the coupling lemma for the arbitrary Borel set A of the real line, the estimation

jP .Z.j / 2 A/� P .Y.j / 2 A/j � P .Z.j / ¤ Y.j // � P .� 	 j /
holds.

4.3 Analysis Methods Based on Markov Property

Definition 4.44. A discrete-state, continuous-time stochastic process, X.t/, pos-
sesses the Markov propety at time tn if for all n;m 	 1, 0 � t0 < t1 < : : : < tn <
tnC1 < : : : < tnCm, and x0; x1; : : : ; xn; xnC1; : : : ; xnCm 2 S we have

P .X.tnCm/ D xnCm; : : : ; X.tnC1/ D xnC1jX.tn/ D xn; : : : ; X.t0/ D x0/
D P .X.tnCm/ D xnCm; : : : ; X.tnC1/ D xnC1jX.tn/ D xn/: (4.5)

In this case tn is referred to as a regenerative point.
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A commonly applied interpretation of the Markov property is as follows.
Assuming that the current time is tn (present), which is a regenerative point, and
we know the current state of the process X.tn/, then the future of the stochastic
process X.t/ for tn � t is independent of the past history of the process X.t/ for
0 � t < tn, and it only depends on the current state of the process X.tn/. That is, if
one knows the present state, the future is independent of the past.

In the case of discrete-time processes, it is enough to check if the one-step state
transitions are independent of the past, i.e., it is enough to check the condition for
m D 1.

Usually, we restrict our attention to stochastic processes with nonnegative
parameters (positive half of the time axes), and in these cases we assume that t D 0
is a regenerative point.

4.3.1 Time-Homogeneous Behavior

Definition 4.45. The stochastic process X.t/ is time homogeneous if the stochastic
behavior ofX.t/ is invariant for time shifting, that is, the stochastic behavior ofX.t/

and X 0.t/ D X.t C s/ are identical in distribution X.t/
dD X 0.t/.

Corollary 4.46. If the time-homogeneous stochastic process X.t/ possesses the

Markov property at time T and X.T / D i , then X.t/
dD X.t � T / if X.0/ D i .

The corollary states that starting from two different Markov points with the same
state results in stochastically identical processes.

4.4 Analysis of Continuous-Time Markov Chains

Definition 4.47. The discrete-state, continuous-time stochastic process X.t/ is a
continuous-time Markov chain (CTMC) if it possesses the Markov property for all
t 	 0.

Based on this definition and assuming time-homogeneous behavior we obtain the
following properties.

Corollary 4.48. An arbitrary finite-dimensional joint distribution of a CTMC
is composed of the product of transition probabilities multiplied by an initial
probability.

Corollary 4.49. For the time points t < u < v the following Chapman–
Kolmogorov equation holds:

Opij .t; v/ D
X

l2S
Opil .t; u/ Oplj .u; v/I O….t; v/ D O….t; u/ O….u; v/; (4.6)
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where Opij .t; u/ D P .X.u/ D j j X.t/ D i/ for all i; j 2 S; 0 � t � u, O….t; u/ D� Opij .t; u/
	
. In the case of time-homogeneous processes the time shifts u � t D �1

and v � u D �2 play a role:

pij .�1 C �2/ D
X

l2S
pil.�1/plj .�2/I ….�1 C �2/ D ….�1/….�2/; (4.7)

where ….�/ D �
pij .�/

	
; pij .�/ D P .X.�/ D j j X.0/ D i/; for all

i; j 2S; 0 � � .

Definition 4.50. The stochastic evolution of a CTMC is commonly characterized
by an infinitesimal generator matrix (commonly denoted byQ) that can be obtained
from the derivative of the state-transition probabilities as follows:

d

dt
….t/ D lim

ı!0

….t C ı/�….t/
ı

D ….t/ lim
ı!0

….ı/� I
ı„ ƒ‚ …

Q

D ….t/Q: (4.8)

Corollary 4.51. The sojourn time of a CTMC in a given state i is exponentially
distributed with the parameter qi D �qii . The probability that after state i the next
visited state will be state j is qij =qi , and it is independent of the sojourn time in
state i .

Remark 4.52. Based on Corollary 4.51 and the properties of the exponential
distribution, the state transitions of a CTMC can also be interpreted in the following
way. When the CTMC moves to state i , several exponentially distributed activities
start, exactly one for each nonzero transition rate. The time of the activity associated
with the state transition from state i to state j is exponentially distributed with the
parameter qij . The CTMC leaves state i and moves to the next state when the first
one of these activities completes. The next visited state is the state whose associated
activity finishes first.

Corollary 4.53 (Short-term behavior of CTMCs). During a short time period �,
the behavior of a CTMC is characterized by the following transition probabilities:

(a) P .X.t C�/ D i jX.t/ D i/ D 1 � qi�C o .�/;
(b) P .X.t C�/ D j jX.t/ D i/ D qij�C o .�/ for i ¤ j ;
(c) P .X.t C�/ D j;X.u/ D kjX.t/ D i/ D o .�/ for i ¤ k, j ¤ k, and t <

u < t C�,

where o .x/ denotes the set of functions with the property limx!0 o .x/ =x D 0.

According to the corollary, two main events can happen with significant proba-
bility during a short time period:

• The CTMC stays in the initial state during the whole period [(a)].
• It moves from state i to j [(b)].
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The event that more than one state transition happens during a short time period
[(c)] has a negligible probability as �! 0.

Corollaries 4.51 and 4.53 allow different analytical approaches for the descrip-
tion of the transient behavior of CTMCs.

4.4.1 Analysis Based on Short-Term Behavior

Let X.t/ be a CTMC with state space S , and let us consider the change in state
probability Pi.t C�/ D P .X.t C�/ D i/ (i 2 S ) considering the possible events
during the interval .t; t C�/. The following cases must be considered:

• There is no state transition during the interval .t; tC�/. In this case Pi.tC�/ D
Pi .t/, and the probability of this event is 1� qi�C o .�/.

• There is one state transition during the .t; t C�/ interval from state k to state i .
In this case Pi.tC�/ D Pk.t/, and the probability of this event is qki�Co .�/.

• The process stays in state i at time t C � such that there is more than one state
transition during the interval .t; t C�/. The probability of this event is o .�/.

Considering these cases we can compute Pi.t C �/ from Pk.t/, k 2 S , as
follows:

Pi .t C�/ D .1 � qi�C o .�//Pi .t/C
X

k2S;k¤i
.qki�C o .�//Pk.t/C o .�/

D .1 � qi�/Pi .t/C
X

k2S;k¤i
.qki�/Pk.t/C o .�/ ;

from which

Pi.tC�/�Pi.t/
�

D �qiPi .t/C
X

k2S;k¤i
qkiPk.t/Co .�/

�
D
X

k2S
qkiPk.t/Co .�/

�
:

Finally, setting the limit �! 0 we obtain that

dPi.t/

dt
D
X

k2S
qkiPk.t/:

Introducing the row vector of state probabilities P.t/ D fPi.t/g; i 2 S , we obtain
the vector-matrix form of the previous equation:

d

dt
P.t/ D P.t/Q: (4.9)

A differential equation describes the evolution of a transient state probability
vector. To define the state probabilities, we additionally need to have an initial
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condition. In practical applications, the initial condition is most often the state
probability distribution at time 0, i.e., P.0/. The solution of Eq. (4.9) with initial
condition P.0/ is [55]

P.t/ D P.0/eQt D P.0/
1X

nD0

Qn tn

nŠ
:

Transform Domain Description The Laplace transform of the two sides of
Eq. (4.9) gives

s P �.s/ � P.0/ D P �.s/Q;

from which we can express P �.s/ in the following form:

P �.s/ D P.0/ŒsI �Q��1:

Comparing the time and transform domain expressions we have that eQt and
ŒsI �Q��1 are Laplace transform pairs of each other.

Stationary Behavior If limt!1 Pi.t/ exists, then we say that limt!1Pi.t/ D Pi
is the stationary probability of state i . In this case, limt!1 dPi.t/=dt D 0, and the
stationary probability satisfies the system of linear equations

P
k2S qkiPk.t/ D 0

for all k 2 S .

4.4.2 Analysis Based on First State Transition

Let X.t/ be a CTMC with state space S , and let T1; T2; T3; : : : denote the
time of the first, second, etc. state transitions of the CTMC. We assume that
T0 D 0, and �1; �2; �3; : : : are the sojourn times spent in the consecutively visited
states (�i D Ti � Ti�1). We compute the state-transition probability 
ij .t/ D
P .X.t/ D j j X.0/ D i/ assuming that T1 D h, i.e., we are interested in


ij .t jT1 D h/ D P .X.t/ D j j X.0/ D i; T1 D h/:
We have


ij .t jT1 D h/ D

8
<̂

:̂

ıij ; h 	 t;
X

k2S;k¤i

qik

�qii 
kj .t � h/; h < t;
(4.10)

where ıij is the Kronecker delta ( ıij D 1 if i D j and ıij D 0 if i ¤ j ), and qik
�qii

is the probability that after visiting state i the Markov chain moves to state k. In the
case of general stochastic processes, this probability might depend on the sojourn
time in state i , but in the case of CTMCs, it is independent.
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Equation (4.10) has two cases:

• If the time point of interest, t , is before the first state transition of the CTMC,
h 	 t , then the conditional state-transition probability is either 1 (if the initial
and final states are identical i D j ) or 0 (if i ¤ j ).

• If the time point of interest, t , is after the first state transition of the CTMC,
T1 < t , then we can analyze the evolution of the process from T1 to t using the
fact that the process possesses the Markov property at time T1. In this case we
need to consider all possible states that might be visited at time T1, k 2 S; k ¤ i ,
with the associated probability qik

�qii . The state-transition probabilities from T1 to
t are identical with the state-transition probabilities of the original process from
0 to T1 � t , assuming that the original process starts from state k.

The distribution of T1 is known. It is exponentially distributed with the parameter
�qii . Its cumulated and probability density functions are FT1.x/ D 1 � eqii x and
fT1.x/ D �qiieqii x , respectively. With that we can apply the total probability
theorem to compute the (unconditional) state-transition probability 
ij .t/:


ij .t/ D
Z 1

hD0

ij .t jT1 D h/ fT1.h/ dh

D
Z 1

hDt
ıij fT1 .h/ dhC

Z t

hD0

X

k2S;k¤i

qik

�qii 
kj .t � h/ fT1.h/ dh

D ıij .1 � FT1.t//C
Z t

hD0

X

k2S;k¤i

qik

�qii 
kj .t � h/ fT1.h/ dh

D ıij eqii t C
X

k2S;k¤i
qik

Z t

hD0

kj .t � h/ eqii h dh: (4.11)

The obtained integral equation is commonly referred to as a Volterra integral
equation. Its only unknown is the state-transition probability function 
ij .t/.
The numerical methods developed for the numerical analysis of Volterra integral
equations can be used to compute the state-transition probabilities of a CTMC.

Relation of Analysis Methods We can rewrite Eq. (4.11) in the following form:


ij .t/ D ıij eqii t C
X

k2S;k¤i
qik

Z t

hD0

kj .t � h/ eqii h dh

D ıij eqii t C
X

k2S;k¤i
qik

Z t

hD0

kj .h/ eqii .t�h/ dh

D ıij eqii t C
X

k2S;k¤i
qik eqii t

Z t

hD0

kj .h/ e�qii h dh: (4.12)
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The derivation of the two sides of Eq. (4.12) according to t is as follows:


 0
ij .t/ D ıij qi i eqii tC

X

k2S;k¤i
qik



qi i eqii t

Z t

hD0

kj .h/ e�qii h dhC eqii t 
kj .t/ e�qii t

�

D
X

k2S;k¤i
qik 
kj .t/C qi i



ıij eqii t C

X

k2S;k¤i
qik eqii t

Z t

hD0

kj .h/ e�qii h dh

„ ƒ‚ …

ij .t/

�

D
X

k2S
qik
kj .t/;

where we used Eq. (4.11) for the substitution of the integral expression. The
obtained differential equation is similar to that provided by the analysis of the short-
term behavior.

Transform Domain Description To relate the two transient descriptions of
the CTMC, one with a differential equation and one with an integral equation,
we transform these descriptions into a Laplace transform domain. It is easy to
take the Laplace transform from the last line of Eq. (4.11) because the second term
of the right-hand side is a convolution integral. That is,


�
ij .s/ D ıij

1

s � qii C
X

k2S;k¤i
qik 


�
kj .s/

1

s � qii :

Multiplying by the denominator and using that �qii D
X

k2S;k¤i
qik we obtain

s 
�
ij .s/ D ıij C

X

k2S
qik 


�
kj .s/;

which can be written in the matrix form

s …�.s/ D ICQ…�.s/:

Finally, we have

…�.s/ D ŒsI �Q��1;

which is identical to the Laplace transform expression obtained from the differential
equation.

Embedded Markov Chain at State Transitions Let Xi 2 S; i D 0; 1; : : :,
denote the i th visited state of the Markov chain X.t/, which is the state of the
Markov chain in the interval .Ti ; TiC1/ (Fig. 4.2). The X0;X1; : : : series of random
variables is a discrete-time Markov chain (DTMC) due to the Markov property of
X.t/. This DTMC is commonly referred to as a Markov chain embedded at the
state transitions or simply an embedded Markov chain (EMC). The state-transition
probability matrix of the EMC is
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…ij D
8
<

:

qij

�qii ; i ¤ j;
0; i D j:

Stationary Analysis Based on the EMC The stationary distribution of the EMC
OP (which is the solution of OP D OP…;Pi

OPi D 1) defines the relative frequency of
the visits to the state of the Markov chain. The higher the stationary probability is,
the more frequently the state is visited. The stationary behavior of the CTMC X.t/
is characterized by two main factors: how often the state is visited (represented by
OPi ) and how long a visit lasts. If state i is visited twice as frequently as state j

but the mean time of a visit to state i is half the mean time of a visit to j , then
the stationary probabilities of states i and j are identical. This intuitive behavior is
summarized in the following general rule of renewal theory [58]:

Pi D
OPi O�iX

j

OPj O�j
;

where O�j is the mean time spent in state j , which is known from the diagonal
element of the infinitesimal generator, O�j D �1=qjj .

Discrete-Event Simulation of CTMCs There are at least two possible
approaches.

• When the CTMC is in state i , first draw an exponentially distributed random
sample with parameter �qii for the sojourn time in state i , then draw a discrete
random sample for deciding the next visited state with distribution…ij , j 2 S .

• When the CTMC is in state i , draw an exponentially distributed random sample
with parameter qij , say �ij , for all positive transition rates of row i of the
infinitesimal generator matrix. Find the minimum of these samples, minj �ij .
The sojourn time in state i is this minimum, and the next state is the one whose
associated random sample is minimal.

4.5 Semi-Markov Process

Definition 4.54. The discrete-state, continuous-time random process X.t/ is a
semi-Markov process if it is time homogeneous and it possesses the Markov
property at the state-transition instances (Fig. 4.2).

The name semi-Markov process comes from the fact that such processes do not
always possess the Markov property (during its sojourn in a state), but there are
particular instances (state-transition instances) when they do.
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Fig. 4.2 Semi-Markov
process that possesses the
Markov property at the
indicated time points

Corollary 4.55. The sojourn time in state i can be any general real-valued positive
random variable. During a sojourn in state i , both the remaining time in both that
state and the next visited state depend on the elapsed time since the process entered
state i .

k

j

i

Z.t/

t
�

�k

�j

�i

Example 4.56. A two-state (up/down) system fails at a rate � (the up time of the
system is exponentially distributed with parameter �) and gets repaired at a rate
�. To avoid long down periods, the repair process is stopped and a replacement
process is initialized after a deterministic time limit d . The time of the replacement
is a random variable with a distribution G.t/. Define a system model and check if
it is a semi-Markov process.

Because a CTMC always possesses the Markov property, it follows that the
sojourn time in a state is exponentially distributed and that the distribution of the
next state is independent of the sojourn time. For example, considering the first
state transition and the sojourn time in the first state we have

P .X1 D j; T1 D cjX0 D i/ D P .X1 D j jX0 D i/P .T1 D cjX0 D i/:
This property does not hold for semi-Markov processes in general. The most

important consequences of the definition of semi-Markov processes are the follow-
ing ones. The sojourn time in a state can have any positive distribution, and the
distribution of the next state and the time spent in a state are not independent in
general. Consequently, to define a semi-Markov process, this joint distribution must
be given. This is usually done by defining the kernel matrix of a process whose i; j
element is

Qij .t/ D P .X.TiC1/ D j; �iC1 � t jX.Ti/ D i/:
Utilizing the time homogeneity of the process we further have for Ti that

Qij .t/ D P .X.TiC1/Dj; �iC1 � t jX.Ti/Di/DP .X.T1/Dj; T1 � t jX.0/ D i/:
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The analysis of semi-Markov processes is based on the results of renewal theory
and the analysis of an EMC (of state-transition instances). The definition of a
semi-Markov process requires knowledge of the kernel matrix Q.t/ D fQij .t/g
(for t 	 0) and an initial distribution. It is commonly assumed that X.t/ possesses
the Markov property at time t D 0.

4.5.1 Analysis Based on State Transitions

Let X.t/ 2 S be a continuous-time semi-Markov process, T1; T2; T3; : : : the state-
transition instances, and �1; �2; �3; : : : the consecutive sojourn times (�i D Ti�Ti�1).
We assume T0 D 0. We intend to compute the state-transition probability 
ij .t/ D
P .X.t/ D j j X.0/ D i/ assuming that the sojourn in the first state finishes at time
h (T1 D h), that is,


ij .t jT1 D h/ D P .X.t/ D j j X.0/ D i; T1 D h/:
In this case


ij .t jT1 D h/ D

8
<̂

:̂

ıij ; h 	 t;
X

k2S
P .X.T1/ D k j X.0/ D i; T1 D h/ 
kj .t � h/; h < t;

(4.13)
where P .X.T1/ D j j X.0/ D i; T1 D h/ is the probability that the process will
start from state i at time 0 and is in state j right after the state transition at time
T1 assuming T1 D h. In contrast with CTMCs, this probability depends on the
sojourn time in state i :

P.X.T1/ D j j X.0/ D i; T1 D h/

D lim
�!0

P .X.T1/ D j; h < T1 � hC� jX.0/ D i/
P .h < T1 � hC� jX.0/ D i/

D lim
�!0

Qij .hC�/�Qij .h/

Qi.hC�/�Qi.h/
D dQij .h/

dQi.h/
; (4.14)

whereQi.h/ denotes the distribution of time spent in state i ,

Qi.t/ D P .T1 � t jZ.0/Di/D
X

j

P .Z.T1/Dj; T1 � t jZ.0/Di/D
X

j

Qij .t/:

It is commonly assumed that state transitions are real, which means that
after staying in state i a state transition moves the process to a different state.
This means that Qii .t/ D 0; 8i 2 S . It is also possible to consider virtual state
transitions from state i to state i , but this does not expand the set of semi-Markov
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processes and we do not consider it here. Note that the meaning of a diagonal
element of a semi-Markov kernel matrix is completely different from that of a
diagonal element of an infinitesimal generator of a CTMC. One of the technical
consequences of this difference is the fact that we do not need to exclude the
diagonal element from the summations over the set of states.

Two cases are considered in Eq. (4.13):

• If the time point of interest, t , is before the first state transition of the process
(h 	 t), then the conditional state-transition probability is either 0 or 1 depending
on the initial and final states. If the initial state i is identical with the final state
j , then the transition probability is 1 because there is no state transition up to
time t , otherwise it is 0.

• If the time point of interest, t , is after the first state transition of the process (h <
t), then we need to evaluate the distribution of the next state k, assuming that the
state transition occurs at time h, and after that the state-transition probability from
the new state k to the final state j during time t�h, using the Markov property of
the process at time h. The probability that the process moves to state k assuming
it occurs at time h is dQij .h/

dQi .h/
, and the probability of its moving from state k to

state j during an interval of length t � h is 
ij .t � h/.
The distribution of the condition of Eq. (4.13) is known. The distribution of the

sojourn time in state i is Qi.h/. Using the law of total probability we obtain


ij .t/ D
Z 1

hD0

ij .t jT1 D h/ dFT1.h/

D
Z 1

hDt
ıij dQi.t/C

Z t

hD0

X

k2S

dQik.h/

dQi.h/

kj .t � h/ dQi.h/

D ıij .1 �Qi.t//C
Z t

hD0

X

k2S

kj .t � h/ dQik.h/: (4.15)

Similar to the case of CTMCs, analysis based on the first state transition resulted
in a Volterra integral equation also in the case of semi-Markov processes. The
transient behavior of semi-Markov processes can be computed using the same
numerical procedures.

Transform Domain Description We take the Laplace transform of both sides of
the Volterra integral Eq. (4.15). The only nontrivial term is a convolution integral on
the right-hand side:


�
ij .s/ D ıij .1 �Q�

i .s//C
X

k2S
q�
ik.s/ 


�
kj .s/;

where qik.t/ D dQik.t/=dt and the transform domain functions are defined as
f �.s/ D R1

0
f .t/e�stdt .
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Introducing the diagonal matrix D�.s/ composed of the elements 1 � Q�
i .s/,

that is , D�.s/ D diagh1 � Q�
i .s/i, the Laplace transforms of the state transition

probabilities are obtained in matrix form,

…�.s/ D D�.s/C q�.s/…�.s/;

from which

…�.s/ D ŒI � q�.s/��1D�.s/:

Stationary Behavior The stationary analysis of a semi-Markov process is very
similar to the stationary analysis of a CTMC based on an EMC. Let the transition
probability matrix of the EMC be …. It is obtained from the kernel matrix through
the following relation:

…ij D P .Z.T1/ D j jZ.0/ D i / D lim
t!1

P .Z.T1/ D j; T1 � t jZ.0/ D i / D lim
t!1

Qij .t/:

The stationary distribution of the EMC OP is the solution of the linear system
OP D OP…;Pi

OPi D 1. The stationary distribution of the semi-Markov process is

Pi D
OPi O�iX

j

OPj O�j
; (4.16)

where O�i is the mean time spent in state i . It can be computed from a kernel matrix
using O�i D

R1
0
.1 �Qi.t//dt .

Discrete-Event Simulation of Semi-Markov Processes The initial distribution
and the Qij .t/ kernel completely define the stochastic behavior of a semi-Markov
process. As a consequence, it is possible to simulate the process behavior based
on them.

The key step of the simulation is to draw dependent samples for the sojourn
time and the next visited state. This can be done based on the marginal distribution
of one of the two random variables and a conditional distribution of the other one.
Depending on which random variable is sampled first, there are two ways to simulate
a semi-Markov process:

• When the process is in state i , first draw a Qi.t/ distributed sample for
the sojourn time, denoted by � , then draw a sample for the next state as-
suming that the sojourn is � based on the discrete probability distribution
P .X.T1/ D j jX.0/ D i; T1 D �/ (8j 2 S ) given in Eq. (4.14).

• When the process is in state i , first draw a sample for the next visited state
based on the discrete probability distribution …ij D P .X.T1/ D j jX.0/ D i/
(8j 2 S ), then draw a sample for the sojourn time given in the next state with a
distribution

P .T1 � t jZ.0/ D i; Z.T1/ D j / D Qij .t/

…ij

: (4.17)
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Fig. 4.3 Analysis of
semi-Markov process with
supplementary variable

4.5.2 Transient Analysis Using the Method of Supplementary
Variables

A semi-Markov process does not possess the Markov property during its sojourn in
a state. For example, the distribution of the time till the next state transition may
depend on the amount of time that has passed since the last state transition. It is
possible to extend the analysis of semi-Markov processes so that all information
that makes the future evolution of the process conditionally independent of its past
history is involved in the process description for 8t 	 0. It is indeed the Markov
property for 8t 	 0. In the case of semi-Markov processes, this means that the
discrete state of the process X.t/ and the time passed since the last state transition
Y.t/ D t � max.Ti � t/ need to be considered together because the vector-valued
stochastic process fX.t/; Y.t/g is already such that the future behavior of this vector
process is conditionally independent of its past given the current value of the vector.
That is, the fX.t/; Y.t/g process possesses the Markov property for 8t 	 0. The
behavior of the fX.t/; Y.t/g process is depicted in Fig. 4.3.

This extension of a random process with an additional variable such that the
obtained vector-valued process possesses the Markov property is referred to as the
method of supplementary variables [24].

With X.t/ and Y.t/ and the kernel matrix of the process we can compute the
distribution of time till the next state transition at any time instant; this is commonly
referred to as the remaining sojourn time in the given state. If at time t the process
stays in state i for a period of � [X.t/ D i , Y.t/ D �] and the distribution of the
total sojourn time in state i is Qi.t/, then the distribution of the remaining sojourn
time in state i , denoted by � , is

P .� � t/ D P .�t � t C � j �t > �/ D Qi.t C �/ �Qi.�/

1 �Qi.�/
;

where �t denotes the total time spent in state i during this visit in state i .
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To analyze the fX.t/; Y.t/g process, we need to characterize the joint distribution
of the following two quantities:

hi .t; x/ D P .X.t/ D i; x � Y.t/ < x C�/
�

:

It is possible to obtain hi .t; x/ based on the analysis of the short-term behavior of
CTMCs:

hi .t C�; x/
D PŒthere is no state transition in the interval .t; t C�/�
� hi .t C�; x j there is no state transition/

C PŒthere is one state transition in the interval .t; t C�/�
� hi .t C�; x j there is one state transition/C o .�/;

where hi.tC�; x j condition/ denotes
P .X.t/ D i; x � Y.t/ < x C� j condition/

�
.

The probability of the state transition can be computed based on the distribution of
the remaining sojourn time:

PŒthere is one state transition in the interval .t; t C�/�

D P .remaining sojourn time � �/ D Qi.x C�/�Qi.x/

1 �Qi.x/
;

from which

PŒthere is no state transition in the interval .t; t C�/� D 1 �Qi.x C�/
1 �Qi.x/

:

Immediately following a state transition Y.t/ is reset to zero. Consequently, the
probability that Y.tC�/ D x for a fixed x > 0 is zero when� is sufficiently small.
That is,

hi Œt C�; x j there is one state transition in the interval .t; t C�/� D 0 if x > 0:

It follows that

hi .t C�; x/
D PŒthere is no state transition in the interval .t; t C�/�
� hi Œt C�; x j there is no state transition in the interval .t; t C�/�

D 1 �Qi.x C�/
1 �Qi.x/

� hi .t; x ��/:
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Analysis of the process fX.t/; Y.t/g is made much simpler by the use of the
transition rate of ˛i instead of its distributionQi.t/. The transition rate is defined by

�i.t/ D lim
�!0

P .˛i � t C� j ˛i > t/
�

D lim
�!0

Qi.t C�/�Qi.t/

� .1 �Qi.t//
D Q0

i .t/

1 �Qi.t/
:

It is also referred to as the hazard rate in probability theory. The probability of a
state transition can be written in the following form:

PŒthere is one state transition in the interval .t; t C�/�

D Qi.x C�/�Qi.x/

1 �Qi.x/
D �i .x/�C o .�/ ;

from which

PŒthere is no state transition in the interval .t; t C�/� D 1 � �i .x/�C o .�/ :

Based on all of these expressions, hi .t; x/ satisfies

hi .t C�; x/ D


1 � �i.x/�C o .�/

�
hi.t; x ��/:

From this difference equation we can go through the usual steps to obtain the partial
differential equation for hi .t; x/. First we move hi .t; x ��/ to the other side,

hi .t C�; x/ � hi .t; x ��/ D


� �i .x/�C o .�/

�
hi .t; x ��/;

then we add and subtract hi .t; x/,

hi .t C�; x/� hi .t; x/C hi .t; x/� hi .t; x ��/ D



� �i .x/�C o .�/

�
hi .t; x ��/;

and reorder the terms,

hi .t C�; x/� hi .t; x/

�
C hi .t; x/� hi .t; x ��/

�
D



� �i .x/C o .�/

�

�
hi .t; x ��/:

Finally, the �! 0 transition results in

@hi .t; x/

@t
C @hi .t; x/

@x
D ��i .x/ hi .t; x/: (4.18)

This partial differential equation describes hi .t; x/ for x > 0. The case of x D 0
requires a different treatment:



4.5 Semi-Markov Process 157

P .X.t C�/ D i; Y.t/ � �/

D
X

k2S;k¤i

Z 1

xD0
P .X.t/ D k; Y.t/ D x; one transition to state i in .t; t C�// dx:

The probability that in the interval .t; t C�/ the process moves from state k to
state i is

PŒthere is one state transition in the interval .t; t C�/ from k to i �

D PŒone state transition in the interval .t; t C�/�
�PŒstate transition from k to i j one state transition in the interval .t; t C�/�

D Qk.x C�/�Qk.x/

1 �Qk.x/
� Qki .x C�/ �Qki.x/

Qk.x C�/ �Qk.x/
;

where the second term is already known from Eq. (4.14). We can also introduce the
intensity of transition from k to i :

�ki .x/ D lim
�!0

PŒthere is a transition in the interval .t; t C�/ from k to i �

�

D lim
�!0

Qki .x C�/�Qki .x/

�.1 �Qk.x//
D Q0

ki .x/

1 �Qk.x/
:

The transition probability can be written in the form

PŒthere is a transition in the interval .t; t C�/ from k to i � D �ki .x/�C o .�/ :
Using this we can write

P.X.t C�/ D i; Y.t/ � �/ D hi .t C�; 0/�

D
X

k2S;k¤i

Z 1

xD0
.�ki .x/�C o .�// hk.t; x/ dx;

from which a multiplication with � and the �! 0 transition result in

hi.t; 0/ D
X

k2S;k¤i

Z 1

xD0
�ki .x/ hk.t; x/ dx: (4.19)

In summary, the method of supplementary variable allows for the analysis of
the process fX.t/; Y.t/g through the function hi .t; x/, which is given by a partial
differential equation (4.18) for x > 0 and a boundary equation (4.19) for x D 0.
Based on these equations and the initial distributions of hi .0; x/ for 8i 2 S

numerical partial differential solutions methods can be applied to compute the
transient behavior of a semi-Markov process.
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Stationary Behavior If the limit limt!1 hi .t; x/ D hi .x/ exists for all states i 2
S , then we can evaluate the limit t !1 of Eqs. (4.18) and (4.19)

dhi .x/

dx
D ��i.x/ hi .x/; (4.20)

hi .0/ D
X

k2S;k¤i

Z 1

xD0
�ki .x/ hk.x/ dx: (4.21)

The solution of ordinary differential Eq. (4.20) is

hi.x/ D hi .0/e
R x

uD0 ��i .u/ du;

where the unknown quantity is hi .0/. It can be obtained from Eq. (4.21) as follows:

hi .0/ D
X

k2S;k¤i

Z 1

xD0
�ki .x/ hk.0/e

R x
uD0 ��k.u/ du dx

D
X

k2S;k¤i
hk.0/

Z 1

xD0
�ki .x/e

R x
uD0 ��k.u/ du dx;

where
Z 1

xD0
�ki .x/e

R x
uD0 ��k.u/ du dxDP .after state k the process moves to state i/ D …ki :

That is, we are looking for the solution of the linear system

hi .0/ D
X

k2S;k¤i
hk.0/ …ki 8i 2 S

with the normalizing condition

X

i2S

Z 1

xD0
hi .x/ dx D 1;

where the normalizing condition is the sum of the stationary-state probabilities.
From

X

i2S

Z 1

xD0
hi .x/ dx D

X

i2S
hi .0/

Z 1

xD0
e
R x

uD0 ��i .u/ du dx D
X

i2S
hi .0/ O�i D 1

and Eq. (4.16) we have that the required solution is
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hi .0/ D
OPiX

j

OPj O�j
:

4.6 Markov Regenerative Process

Definition 4.57. The X.t/ discrete-state, continuous-time, time-homogeneous
stochastic process is a Markov regenerative process if there exists a random
time series T0; T1; T2; : : : (T0 D 0) such that the X.t/ process possesses the Markov
property at time T0; T1; T2; : : : [23, 58] (Fig. 4.4).

Compared to the properties of semi-Markov processes, where the process
possesses the Markov property at all state-transition points, the definition of Markov
regenerative processes is less restrictive. It allows that at some state-transition point
the process does not possess the Markov property, but the analysis of Markov
regenerative processes is still based on the occurrence of time points where the
process possesses the Markov property.

Since Definition 4.57 does not address the behavior of the process between
the consecutive time points T0; T1; T2; : : :, Markov regenerative processes can be
fairly general stochastic processes. In practice, the use of a renewal theorem for the
analysis of these processes is meaningful only when the stochastic behavior between
the consecutive time points T0; T1; T2; : : : is easy to analyze.

A common method for analyzing Markov regenerative processes is based on the
next time point with the Markov property (T1).

Definition 4.58. The series of random variables fYn; TnIn 	 0g is a time-
homogeneous Markov renewal series if

P .YnC1 D y; TnC1 � Tn � t jY0; : : : ; Yn; T0; : : : ; Tn/

D P .YnC1 D y; TnC1 � Tn � t jYn/

D P .Y1 D y; T1 � T0 � t j y0/

for all n 	 0, y 2 S , and t 	 0.

tT2T1 T4T3

j

X(t)

k

i
Fig. 4.4 Markov
regenerative process; circles
denote points with Markov
property
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It can be seen from the definition of Markov renewal series that the series
Y0; Y1; : : : is a DTMC. According to Definition 4.57, the sequence of states X.Ti/
of a Markov regenerative process at the time sequence Ti instants with the Markov
property and the time sequence Ti instants with the Markov property form a Markov
renewal sequence fX.Ti/; Tig (i D 0; 1; : : :).

Analysis of Markov regenerative processes is based on this embedded Markov
renewal series. To this end the joint distribution of the next time point and the state
in that time point must be known. In contrast with the similar kernel of semi-Markov
processes, in the case of Markov regenerative processes, the kernel is denoted by

Kij .t/ D P .X1 D j; T1 � T0 � t jX0 D i/ ; i; j 2 S;
and the matrix K.t/ D fKij .t/g is referred to as the global kernel of a Markov
regenerative process. The global kernel of a Markov regenerative process com-
pletely defines the stochastic properties of the Markov regenerative process at time
points with the Markov property. The description of the process between those
time points is complex, but for a transient analysis of the process (more precisely
for computing transient-state probabilities) it is enough to know the transient-state
probabilities between consecutive time points with the Markov property. This is
given by the local kernel matrix of the Markov regenerative processE.t/ D fEij .t/g
whose elements are

Eij .t/ D P .X.t/ D j; T1 > t; jZ.0/ D i/;

where Eij .t/ is the probability that the process will start in state i , the first point
with the Markov property will be later than t , and the process will stay in state j at
time t .

4.6.1 Transient Analysis Based on Embedded Markov Renewal
Series

Let the transient-state transition probability matrix be ….t/ whose elements are

…ij .t/ D P .X.t/ D j jX.0/ D i/:
Assuming that T1 D h, we can compute the conditional state-transition

probability as follows:

…ij .t jT1 D h/ D

8
ˆ̂<

ˆ̂:

P .X.t/ D j jT1 D h; X.0/ D i/; h > t;

X

k2S

P .X.T1/ D k j X.0/ D i; T1 D h/ � …kj .t � h/; h � t:

(4.22)
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Similar to the transient analysis of semi-Markov processes, Eq. (4.22) describes
two exclusive cases: h � t and h > t . In the case of semi-Markov processes, the
h > t case results in 0 or 1; in the case of a Markov regenerative process, the
conditional probability for h > t can be different from 0 or 1 because the process
can have state transitions also before T1.

Using the distribution of T1 and the formula of total probability we obtain

…ij .t/ D
Z 1

hDt
P .X.t/ D j jT1 D h; X.0/ D i/ dKi.h/

C
Z t

hD0

X

k2S

dKik.t/

dKi .t/
…kj .t � h/ dKi.h/ : (4.23)

Let us consider the first term on the right-hand side:

Z 1

hDt
P .X.t/ D j jT1 D h; X.0/ D i/ dKi.h/

D
Z 1

hDt
lim
�!0

P .X.t/ D j j h � T1 < hC�; X.0/ D i/ dKi.h/

D
Z 1

hDt
lim
�!0

P .X.t/ D j; h � T1 < hC� jX.0/ D i/
P .h � T1 < hC�; jX.0/ D i/ dKi.h/

D
Z 1

hDt
dh P .X.t/ D j; T1 < h jX.0/ D i/

dKi.h/
dKi.h/

D P .X.t/ D j; t < T1 jX.0/ D i/;

from which

…ij .t/ D Eij .t/ C
X

k2S

Z t

hD0
…kj .t � h/ dKik.h/ : (4.24)

Assuming that K.t/ is derivable and dK.t/=dt D k.t/ we have

…ij .t/ D Eij .t/ C
X

k2S

Z t

hD0
…kj .t � h/ kik.h/ dh: (4.25)

Similar to the transient analysis of CTMCs and semi-Markov processes we obtain
a Volterra equation for the transient analysis of Markov regenerative processes.

Transform Domain Description The Laplace transform of Eq. (4.25) is

…�
ij .s/ D E�

ij .s/C
X

k2�
k�
ik.s/…

�
kj .s/; (4.26)

which can be written in matrix form:
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…�.s/ D E�.s/ C k�.s/…�.s/: (4.27)

The solution of Eq. (4.27) is

…�.s/ D ŒI � k�.s/��1 E�.s/: (4.28)

Based on Eq. (4.28), numerical inverse Laplace methods can also be used for the
transient analysis of Markov regenerative processes.

Stationary Behavior Despite the differences between semi-Markov and Markov
regenerative processes, their stationary analysis follows the same steps. The state-
transition probability of the DTMC embedded in time points with the Markov
property is

…ij D P .Z.T1/ D j jZ.0/ D i/ D lim
t!1 P .Z.T1/ D j; T1 � t jZ.0/ D i/ D lim

t!1Kij .t/:

The stationary distribution of the EMC is the solution of OP D OP…;Pi
OPi D 1.

Now we need to compute the mean time spent in the different states during the
interval .T0; T1/. Fortunately, the local kernel carries the necessary information.
Let �ij be the mean time the process spends in state j during the interval .T0; T1/
assuming that it starts from state i (X.T0/ D i ). Then

�ij D E

Z 1

tD0
IfX.t/Dj;T1>t j X.0/Digdt

�

D
Z 1

tD0
P .X.t/ D j; T1 > t j X.0/ D i/dt

D
Z 1

tD0
Eij .t/dt;

where If�g is the indicator of event �. The mean length of the interval .T0; T1/ is

�i D
X

j2S
�ij :

Finally, the stationary distribution of the process can be computed as

Pi D

X

j2S
OPj �j i

X

j2S
OPj �j

:
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4.7 Exercises

Exercise 4.1. Applying Theorem 4.42, find the limit (stationary) distributions of
age, residual lifetime, and total lifetime [ı.t/ D t � tN.t/; �.t/ D tN.t/C1 � t;
ˇ.t/ D tN.t/C1 � tN.t/] if the interarrival times are independent random variables
having a joint exponential distribution with the parameter �. Show the expected
values for the limit distributions.

Exercise 4.2 (Ergodic property of semi-Markov processes). Consider a system
with the finite state space X D f1; : : : ; N g. The system begins to work at the
moment T0 D 0 in a state X0 2 X and changes states at the random moments
0 < T1 < T2 < : : :. Denote by X1;X2; : : : the sequence of consecutive states
of the system, and suppose that it constitutes a homogeneous, irreducible, and
aperiodic Markov chain with initial distribution .pi D P .X0 D i/; 1 � i � N/

and probability transition matrix … D �
pij
�n
i;jD1. Define the process X.t/ D

Xn�1; Tn�1 � t < Tn; n D 1; 2; : : :, assume that the sequence of holding times
Yk D Tk � Tk�1; k D 1; 2; : : :, depends only conditionally on the states Xk�1 D i

and Xk D j , and denote Fij .x/ D P .Yk � x j Xk�1 D i; Xk D j / if pij > 0,
where �ij D

R1
0
xdFij .x/ <1.

Find the limits for

(a) The average number of transitions/time;
(b) The relative frequencies of states i in the sequence X0;X1; : : :;
(c) The limit distribution P .Xt D i/; i 2 X ;
(d) The average time spent in a state i 2 X .



Chapter 5
Markov Chains with Special Structures

The previous chapter presented methods for analyzing stochastic models where
some of the distributions were other than exponential. In these cases the analysis
of the models is more complex than the analysis of Markov models. In this chapter
we introduce a methodology to extend the set of models that can be analyzed by
Markov models while the distributions can be other than exponential.

5.1 Phase Type Distributions

Combination of exponential distributions, such as convolution and probabilistic
mixtures, was used for a long time to approximate nonexponential distributions such
that the composed model remained a Markov model. The most general class
of distributions fulfilling these requirement is the set of phase-type distributions
(commonly abbreviated as PH distributions) [73, 74].

Definition 5.1. Time to absorption in a Markov chain with N transient and 1

absorbing state is phase-type distributed (cf. Fig. 5.1).

5.1.1 Continuous-Time PH Distributions

Definition 5.1 is valid for both CTMCs and DTMCs. In this section we focus on the
case of CTMCs.

It is possible to define a PH distribution by defining the initial probability vector
p and the generator matrix Q of a Markov chain with N C1 states. Let states of the
Markov chain be numbered so that the firstN states are transient and theN C1th is
absorbing and let X.t/ be the state of the Markov chain at time t . The distributions
of the time to absorption, T , is related to the transient probabilities of the Markov

L. Lakatos et al., Introduction to Queueing Systems with Telecommunication Applications,
DOI 10.1007/978-1-4614-5317-8 5, © Springer Science+Business Media, LLC 2013
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1
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Fig. 5.1 Markov chain with
five transient and an
absorbing states defines a PH
distribution

chain, which can be computed from the initial probability vector and the generator
matrix as follows:

P .T < t/ D P .X.t/ D N C 1/ D peQt eTNC1;

where eNC1 is the row vector whose only nonzero element the N C 1th is one.
A multiplication of a row vector with eTNC1 results in the N C 1th element of the
row vector.

Analysis of PH distributions based on this expression results in technical
difficulties in more complex cases. A more convenient expression can be derived
from the partitioned generator matrix, where the set of states is divided into transient
states and an absorbing one

Q D


A a
0 0

�
;

where a D �A1 and 1 is a column vector whose elements equal to one. The size
of 1 is always assumed to be such that the multiplication is valid. A multiplication
of a row vector by 1 results in the sum of the elements of the row vector. A column
vector a that contains the transition rates to the absorbing state (Fig. 5.1) can be
computed from A due to the fact that the row sum of Q is zero. The last row of Q

is zero because the state N C 1 is absorbing.
Matrix A is called a transient generator (or PH generator). It inherits its main

properties from matrix Q. The diagonal elements of A are negative, the nondiagonal
elements are nonnegative, and the row sums of A are nonpositive. Due to the
fact that the first N states are transient, matrix A is nonsingular, in contrast with
matrix Q, which is singular because Q1 D 0.

In this book we restrict our attention to the case where a Markov chain starts from
one of the transient states with probability one. In this case, the partitioned form of
vector p is p D Œ˛ j 0�. Based on the partitioned form of p and Q, the CDF of the
PH distribution is

FT .t/ D P .T � t/ D P .T < t/ D P .X.t/ D N C 1/ D 1 � P .X.t/ < N C 1/

D 1 � Œ˛ j 0� eQt


1

0

�
D 1 � Œ˛ j 0�

1X

iD0

t i

i Š


A a
0 0

�i 
1

0

�
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D 1 � Œ˛ j 0�
1X

iD0

t i

i Š



Ai Ifi>0gAi�1a
0 0

� 
1

0

�

D 1 � Œ˛ j 0�


eAt �
0 0

� 
1

0

�
D 1 � ˛ eAt1;

where � denotes an irrelevant matrix block. Furthermore the PDF, the Laplace
transform, and the moments of the PH distribution can be computed as

fT .t/ D d

dt
FT .t/ D � d

dt
eAt1 D �˛

1X

iD0

d

dt

t i

i Š
Ai1

D �˛

1X

iD1

t i�1

.i � 1/Š Ai�1 A1 D �˛ eAt A1 D ˛ eAta;

f �
T .s/ D

1Z

tD0
e�st fT .t/dt D ˛

1Z

tD0
e�steAtdt a

D ˛

1Z

tD0
e.�sICA/tdt a D ˛ .sI �A/�1a;

E .T n/ D
1Z

tD0
tnfT .t/dt D ˛

1Z

tD0
tneAtdt a D ˛ nŠ.�A/�n�1 a

D ˛ nŠ.�A/�n�1 .�A/1 D ˛ nŠ.�A/�n1:

The infinite integrals of the preceding derivations are computed as follows:

1Z

tD0
e.�sICA/tdt D lim

�!1

�Z

tD0
e.�sICA/tdt D lim

�!1

�Z

tD0

1X

iD0

t i

i Š
.�sI CA/i dt

D lim
�!1

1X

iD0

� iC1

.i C 1/Š .�sI CA/.iC1/ .�sI CA/�1

D lim
�!1

�
e.�sICA/� � I

�
.�sI CA/�1 D .sI �A/�1; (5.1)

where e.�sICA/� vanishes in the convergence region of f �
T .s/. The moments can

also be computed from the Laplace transform
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E .T n/ D .�1/n dn

dsn
f �
T .s/

ˇ
ˇ
ˇ̌
sD0
D .�1/n˛ dn

dsn
.sI �A/�1

ˇ
ˇ
ˇ̌
sD0

a

D .�1/n˛ .�1/nnŠ.sI �A/�n�1ˇˇ
sD0 a D ˛ nŠ.�A/�n�1 a

D ˛ nŠ.�A/�n1:

The elements of .�A/�1 have an important stochastic interpretation. Let Tij be the
time spent in state j before moving to the absorbing state when the process starts in
state i :

E
�
Tij
� D

1Z

tD0
E
�
IfX.t/Dj jX.0/Dig

�
dt D

1Z

tD0
P .X.t/ D j jX.0/ D i/ dt

D
1Z

tD0

�
eAt
�
ij

dt D
0

@
1Z

tD0
eAtdt

1

A

ij

D �.�A/�1
�
ij
: (5.2)

Consequently, .�A/�1 is nonnegative. Some characteristics of PH distributions can
be seen from these expressions. From

f �.s/ D ˛.sI �A/�1a D ˛


det.sI � Ay/j i

det.sI �A/

�
a

we have that the Laplace transform is a rational function of s where the degree
of the polynomial in the numerator is at most N � 1 and in the denominator
it is at most N , where N is the number of transient states and det.sI � A/j i
denotes the subdeterminant associated with element i; j: The related properties of
PH distributions in the time domain can be obtained from the spectral decomposition
of A. Let � be the number of eigenvalues of A and �i the i th eigenvalue whose
multiplicity is �i . In this case

fT .t/ D ˛ eAta D
�X

iD1

�iX

jD1
aij t

j�1e�i t :

This means that in the case of distinct eigenvalues (� D N , �i D 1) fT .t/
is a combination of exponential functions with possibly negative coefficients,
and in the case of multiple eigenvalues fT .t/ is a combination of exponential
polynomial functions. As a consequence, as t goes to infinity, the exponential
function associated with the eigenvalue with maximal real part dominates the
density, meaning that PH distributions have asymptotically exponentially decaying
tail behavior.

A wide range of positive distributions can be approximated with PH distributions
of size N . A set of PH distributions approximating different positive distributions
are depicted in Fig. 5.2. The exponentially decaying tail behavior is not visible in
the figure, but there is another significant limitation of PH distributions of size N .
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Fig. 5.2 Approximation of different positive distributions with N D 2; 4; 8 (figure copied
from [13])

Theorem 5.2 ([3]). The squared coefficient of variation of T (cv2.�/ D
E
�
T 2
�
=E .T /2) satisfies

cv2.�/ 	 1

N
;

and the only CPH distribution that satisfies the equality is the Erlang (N)
distribution:

1 0

λλ

0

λ

Figure 5.2 shows several distributions with low coefficient of variation whose
approximation is poor due to this bound of the coefficient of variation. It is visible
that PH distributions with larger N approximate these distributions significantly
better. Theoretical results prove that as N tends to infinity, any positive distribution
can be approximated arbitrarily closely.
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5.1.2 Discrete-Time PH Distributions

The majority of the analysis steps and the properties of discrete-time PH
distributions are similar to those of continuous-time PH distributions. Using
a similar approach as for continuous-time PH distributions, the state-transition

probability matrix can be partitioned as P D


B b
0 1

�
; where b D 1 � B1 and

the initial probability vector p as p D Œ˛ j 0�. B is a sub-stochastic matrix, whose
elements are nonnegative and row sums are not greater than one. The probability
that the chain moves to the absorbing state in the kth step is

rk D P r.T D k/ D ˛Bk�1b;

which defines the probability mass function (PMF) of T . The CDF can be
obtained as

F.k/ D P r.T � k/ D P r.Xk D N C 1/ D 1 � P r.Xk < N C 1/ D 1 � ˛Bk1;

and the z-transform or generator function of T is

F.z/ D E
�
zT
� D

1X

kD0
zkrk D z ˛.I � zB/�1b:

The factorial moments are

�n D E .T .T � 1/ : : : .T � nC 1// D dn

dzn
F.z/jzD1 D nŠ ˛.I �B/�nBn�11:

Like the continuous-time case the z-transform is a rational function of z

F.z/ D E
�
zT
� D z ˛.I � zB/�1b D z ˛


det.I � zB/j i
det.I � zB/

�
b;

and based on the spectral decomposition of B, the PMF is a combination of
geometric series. The coefficient of variation of discrete PH (DPH) distributions
is also bounded from below, but one of the most significant differences between the
continuous and discrete PH distributions is that the bound in this case also depends
on the mean of the distribution, � D E .T /.

Theorem 5.3 ([92]). The squared coefficient of variation of T satisfies the
inequality

cv2.�/ 	

8
ˆ̂̂
<̂

ˆ̂̂
:̂

h�i.1 � h�i/
�2

if � < N;

1

N
� 1

�
if � 	 N;

(5.3)
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where hxi denotes the fraction part of x (x D bxc C hxi). For � � N , CVmin is
provided by the mixture of two deterministic distributions. Its DPH representation is

00

1 1 1

0μ

1

1 μ

For � > N , CVmin is provided by the discrete Erlang distribution, whose DPH
representation is

1 0

N
µ

N
µ

1 − N
µ1 − N

µ 1 − N
µ

0

N
µ

5.1.3 Special PH Classes

The set of PH distributions withN transient states is often too complex for particular
practical applications (e.g., derivations by hand). There are special subclasses with
restricted flexibility whose application is often more convenient. The most often
used subclasses are

• Acyclic PH distributions,
• Hyper-Erlang distributions,
• Hyperexponential distributions (“parallel,” “cv > 1”).

Acyclic PH Distributions

Definition 5.4. Acyclic PH distributions are PH distributions whose generator is an
upper triangular matrix.

A direct consequence of the structural property of acyclic PH distributions is that
the eigenvalues are explicitly given in the diagonal of the generator.

The practical applicability of acyclic PH distributions is due to the following
result.

Theorem 5.5 ([25]). Any acyclic PH distribution can be transformed into the
following canonical form. In the case of continuous-time acyclic PH distributions:
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a1 a2 a
n

n21λ λλ

in the case of discrete-time acyclic PH distributions:

a1 a2 a
n

p
n

p2p1

q1 q2 q
n

where the transition rates and probabilities are ordered such that �i � �iC1 and
pi � piC1.

This essential result allows one to consider only these canonical forms with 2N
parameters to represent the whole acyclic PH class with N transient states.

Hyper-Erlang Distributions

Definition 5.6. A hyper-Erlang distribution is a probabilistic mixture of Erlang
distributions.

Hyper-Erlang distributions are special acyclic PH distributions, and even fewer than
2N parameters can define them. Let # be the number of Erlang branches, pi the
probability of taking branch i , and �i and ni the parameters of the i th Erlang branch.
These 3# parameters completely define the hyper-Erlang distribution

f .t/ D
#X

iD1
pi
�
ni
i t

ni�1e��i t

.ni � 1/Š :

Hyperexponential Distributions

Definition 5.7. A hyperexponential distribution is a probabilistic mixture of
exponential distributions.

Hyperexponential distributions are special hyper-Erlang distributions where the
order parameter of the Erlang distribution is one (ni D 1). The PDF of hyperex-
ponential distributions

f .t/ D
#X

iD1
pi�ie��i t

is monotonically decreasing due to the fact that it is the mixture of monotonically
decreasing exponential density functions.
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5.1.4 Fitting with PH Distributions

As was mentioned in the introduction of this chapter, PH distributions are often
used to approximate experimental or exactly given but nonexponential positive
distributions in order to analyze the obtained system behavior with discrete-state
Markov chains. The engineering description of the fitting procedure is rather
straightforward: given a nonnegative distribution or a set of experimental data, find
a “similar” PH distribution, but for the practical implementation of this approach we
need to answer several underlying questions. First we formalize the problem as an
optimization problem:

min
PHparameters

(

Distance.FPH .t/; OFOriginal.t//

)

;

that is, we optimize the parameters of the PH distribution such that the distance
between the original distribution and the PH distribution is minimal. The two main
technical problems are finding a proper distance measure and solving the opti-
mization problem. Several solutions to these problems have been proposed in the
literature, but there is room for further improvement. Some of the typical distance
measures are

• Squared CDF difference:
Z 1

0

.F.t/ � OF .t//2dt ;

• Density difference:
Z 1

0

jf .t/ � Of .t/jdt ;

• Relative entropy:
Z 1

0

f .t/ log

 
f .t/

Of .t/

!

dt .

The optimization problems according to these distance measures are typically
nonlinear and numerically difficult. The close relation of the relative entropy
measure with commonly applied statistical parameters (likelihood) makes this
measure the most popular one in practice. It is worth mentioning that the complexity
of the optimization procedures largely depends on the number of parameters of
the PH distributions. That is why we discussed the number of parameters of the
aforementioned special PH subclasses. A few implemented fitting procedures are
available on the Internet. One fitting procedure that uses acyclic PH distributions
is PhFit [43], and one using hyper-Erlang distributions is G-fit [93]. The literature
of PH fitting is rather extended. Several other heuristic fitting approaches exist, e.g.,
combined with moment matching, that are left to the ambitions of interested readers.

5.2 Markov Arrival Process

A continuous-time Markov arrival process (MAP) is a generalization of a Poisson
process such that the interarrival times are PH distributed and can be dependent. One
of the simplest interpretations of MAPs considers a CTMC, J.t/, with N states and
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Fig. 5.3 Structure of Markov chain describing arrivals of a MAP

with generator D, which determines the arrivals in the following way. While the
Markov chain remains in state i , it generates arrivals according to a Poisson process
at rate �i . When the Markov chain experiences a state transition from state i to
j , then an arrival occurs with probability pij and does not occur with probability
1�pij . Based on generator D, rates �i (i D 1; : : : ; N ), and probabilitiespij (i; j D
1; : : : ; N; i ¤ j ), one can easily simulate the behavior of the MAP. Due to technical
convenience MAPs are most commonly defined by a pair of matrices D0;D1, which
are obtained from the previously introduced parameters in the following way:

D0ij D
�

Dij .1� pij / if i ¤ j;
Di i � �i if i D j; D1ij D

�
Dij pij if i ¤ j;
�i if i D j:

In this description, matrix D0 is associated with events that do not result in an
arrival, and matrix D1 is associated with events that result in arrivals. By these
definitions we have D0 CD1 D D.

Based on these two matrices, we can investigate the counting process of arrivals.
Let N.t/ be the number of arrivals of a MAP and J.t/ the state of the background
Markov chain at time t . The .N.t/; J.t// (N.t/ 2 N; J.t/ 2 f1; : : : ; N g) process is
a CTMC. The transition structure of this Markov chain is depicted in Fig. 5.3. The
set of states where the number of arrivals is n is commonly referred to as level n, and
the state of the background Markov chain (J.t/) is commonly referred to as phase.

If the states are numbered in lexicographical order (.0; 1/; : : : ; .0;N /; .1; 1/; : : : ;
.1;N /; : : :), then the generator matrix has the form
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where the matrix blocks are of size N . Comparing this with the CTMC describing
the number of arrivals of the Poisson process in Eq. (3.18), we have conspic-
uous similarities: only the diagonal elements/blocks and the first subdiagonal
elements/blocks are nonzero, and the transition structure of the arrival process is
independent of the number of arrivals.

It is commonly assumed that N.0/ D 0, and thus the initial probability is 0 for
all states .n; j / where n > 0. Let vector �0 be the initial probability for states
with n D 0. The arrival instants are determined by N.t/ as follows: ‚n D min.t W
N.t/ D n/, and the nth interarrival time is Tn D ‚n �‚n�1. Based on the simple
block structure of the CTMC, we can analyze the properties of N.t/ and Tn. For
example, the distribution of T1 is

P .T1 � t/ D 1 � P .T1 > t/ D 1 � P .N.t/ D 0/

D 1 �
NX

iD1
P .N.t/ D 0; J.t/ D i/ D 1 � �0eD0t1;

that is, T1 is PH distributed with initial vector � and generator D0. For the analysis
of the nth interarrival time we introduce the phase distributions vector after the
n � 1th arrivals, �n�1. The i th element of this vector is the probability that after
the n � 1th arrivals the background Markov chain is in state i , that is, .�n�1/i D
P .J.‚n�1/ D i/. Based on �n�1 the distribution of Tn is

P .Tn � t/ D 1 � P .Tn > t/ D 1 � P .N.t C‚n�1/ D n � 1/

D 1 �
NX

iD1

NX

jD1
P .J.‚n�1/ D i/P.N.t C‚n�1/

D 1 � ßn�1eD0t1;

that is, Tn is PH distributed with initial vector �n�1 and generator D0. The �n

vectors can be computed recursively. The i th element of �1 has the following
stochastic interpretation:

.�1/i D lim
�!0

1X

nD0

NX

jD1
P .J.n�/ D j; T1 > n�/

�P .J..nC1/�/ D i; n� < T1 � .nC1/�/
D lim

�!0

1X

nD0

NX

jD1

�
�eD0n�

�
j

�
D1j;i �C �.�/

�

D
1Z

tD0

NX

jD1

�
ßeD0t

�
j

D1j;i dt ;

where the first term on the right-hand side of the first row is the probability that there
is no arrival up to time n� and the background Markov chain is in state j at time
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n�, and the second term on the right-hand side of the first row is the probability that
there is an arrival between n� and .nC1/� such that the background Markov chain
is in state i at time .nC1/�. Using Eq. (5.1), we further have

ß1 D ß

1Z

tD0
eD0t dt D1 D ß.�D0/

�1D1: (5.4)

According to Eq. (5.4) we can compute the phase distribution after the first arrival
from the initial distribution and the phase-transition probability matrix P D
.�D0/

�1D1. P is a stochastic matrix because from .D0 C D1/1 D 0 we have
�D01 D D11, from which P1 D .�D0/

�1D11 D .�D0/
�1.�D0/1 D 1, and

.�D0/
�1 is nonnegative according to Eq. (5.2). Applying the same analysis for the

nth interval starting with initial phase distribution �n�1 we have �n D �n�1P .

5.2.1 Properties of Markov Arrival Processes

The basic properties of MAPs or the .N.t/; J.t// CTMC [with level processN.t/ 2
N and phase process J.t/ 2 f1; : : : ; N g] are as follows.

• The phase distribution at arrival instants form a DTMC with transition probability
matrix P D .�D0/

�1D1. As a consequence, the phase distributions might be
correlated at consecutive arrivals.

• The interarrival times are PH distributed with representation .�0;D0/, .�1;D0/,
.�2;D0/, . . . . The interarrival times can be correlated due to the correlation of
the initial phases.

• The phase process (J.t/) is a CTMC with generator D D D0 C D1, which
means that some properties of the phase process can be analyzed independent of
the level process.

• The (time) stationary phase distribution ˛ is the solution of ˛D D 0;˛1 D 1.
• The (embedded) stationary phase distribution right after an arrival � is the

solution of �P D �;�1 D 1.
• These stationary distributions are closely related. On the one hand, the row vector

of the mean time spent in the different phases during the stationary interarrival
interval is �.�D0/

�1 [cf. Eq. (5.2)], from which the portion of time spent in the
phases is

˛ D �.�D0/
�1

�.�D0/�11
:

On the other hand, when the phase process is (time) stationary, the arrival
intensities resulting in different initial phases for the next interarrival period are
given by ˛D1, and after normalizing the result we have

� D ˛D1

˛D11
:
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• The stationary interarrival time (T ) is PH distributed with representation
.�;D0/, and its nth moment is E .T n/ D nŠ�.�D0/

�n1.
• The stationary arrival intensity can be computed both from ˛ and � as follows:

� D ˛D11 D 1

E .X/
D 1

�.�D0/�11
:

The first equality is based on the arrival intensities in the (time) stationary phase
process. The second equality is based on the mean stationary interarrival time.

Further properties of stationary MAPs can be computed from the joint density
functions of consecutive interarrivals:

fT0;T1;:::;Tk .x0; : : : ; xk/ D �eD0x0D1eD0x1D1 : : : eD0xkD11:

This joint density function describes the probability density that the process starts
in phase i with probability � i at time 0, it does not generate an arrival until time
x0, and an arrival occurs at x0 according to the arrival intensities in D1. This arrival
results in the second interarrival period’s starting in phase j , and so on. If the MAP
starts from a different initial phase distribution, e.g., � , then the stationary embedded
phase distribution vector � needs to be replaced by � and the same joint density
function applies. For example, we can compute the joint pdf of T0 and Tk as

fT0;Tk .x0; xk/ D
Z

x1

: : :

Z

xk�1

fT0;T1;:::;Tk .x0; : : : ; xk/ dxk�1 : : : dx1

D �eD0x0D1P
k�1eD0xkD11;

where we used that
R
x

eD0xdx D .�D0/
�1 according to Eq. (5.1). This expression

indicates that T0 and Tk are dependent due to their dependent initial phases. It is also
visible that as k tends to infinity, this dependency vanishes according to the speed at
which the Markov chain of the initial vectors with transition probability matrix P

converges to its stationary distribution �.
The lag-k correlation of a MAP can be computed based on fT0;Tk .x0; xk/ as

follows:

E .T0Tk/ D
1Z

tD0

1Z

�D0
t � �eD0tD1P

k�1eD0�D11 d� dt

D �.�D0/
�2D1P

k�1.�D0/
�2 D11„ƒ‚…

�D01

D �.�D0/
�1Pk.�D0/

�11 D 1

�
˛Pk.�D0/

�11;
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since
1Z

tD0
t eD0tdt D �t .D0/

�1eD0t
	1
0„ ƒ‚ …

0

�
1Z

tD0
.D0/

�1 eD0tdt

and
1Z

tD0
eD0tdt D limT!1

P1
iD0

Di
0

i Š

TR

0

t idt D lim
T!1

1X

iD0

Di
0

i Š

T iC1

i C 1

D lim
T!1.D0/

�1
0

@ eD0T

„ƒ‚…
!0

�I
1

A D .�D0/
�1 :

Based on E .T0Tk/ the covariance is

Cov.T0; Tk/ D E .T0Tk/ � E .T /2 D 1

�
˛Pk.�D0/

�11 � 1

�2
;

and the coefficient of correlation is

Corr.T0; Tk/ D Cov.T0; Tk/

E .T 2/� E .T /2
D

E.T0Tk/
E.T /2

� 1
E.T 2/
E.T /2

� 1
D � ˛Pk.�D0/

�11 � 1
2� ˛.�D0/�11 � 1 :

Starting from the joint density function of consecutive interarrivals we compute
any joint moment for arbitrary series of interarrivals in a similar way as the lag-k
correlation. For the interarrival series a0 D 0 < a1 < a2 < : : : < ak we have

fTa0 ;Ta1 ;:::;Tak .x0; x1; : : : ; xk/

D �eD0x0D1P
a1�a0�1eD0x1D1P

a2�a1�1 : : : eD0xkD11;

and from that the joint moment E
�
T i0a0 ; T

i0
a1
; : : : ; T i0ak

�
is

E
�
T i0a0 ; T

i0
a1
; : : : ; T i0ak

�

D �i0Š.�D0/
�i0Pa1�a0 i1Š.�D0/

�i1Pa2�a1 : : : ikŠ.�D0/
�ik1:

5.2.2 Examples of Simple Markov Arrival Processes

In this section we describe some basic arrival processes with MAP notations.

• PH renewal process: Consider an arrival process whose interarrival times are
independent PH distributed with representation .˛;A/. This is a special MAP
characterized by D0 D A, D1 D a˛.
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• Interrupted Poisson process (IPP): Consider an arrival process determined by a
background CTMC with two states, ON and OFF. The transition rate from ON
to OFF is ˛ and from OFF to ON it is ˇ. There is no arrival in state OFF, and
customers arrive according to a Poisson process at rate � in state ON. The MAP
description of the process is

D0 D �˛�� ˛

0 �ˇ ; D1 D � 0

0 0
:

• Markov modulated Poisson process (MMPP): Consider the arrival process
determined by a background CTMC with generator Q. While the CTMC is in
state i , arrivals occur according to a Poisson process at rate �i . Let � be the vector
of arrival rates. This is a special MAP with representation D0 D Q � diagh�i,
D1 D diagh�i.

• Filtered MAP: Consider a MAP with representation OD0, OD1. The arrivals of this
MAP are discarded with probability p. The obtained process is a MAP with
representation D0 D OD0 C p OD1, D1 D .1 � p/ OD1.

• Cyclically filtered MAP: In the previous example, every MAP arrival is dis-
carded with probability p. Now we consider the same MAP such that only every
second arrival is discarded with probability p. It requires that we keep track of
odd and even arrivals of the original MAP. It can be done by duplicating the
phases such that the first half of them represents odd arrivals of the original MAP
and the second half of them the even arrivals of the original MAP. The obtained
process is a MAP with representation

D0 D
OD0 0

p OD1
OD0

; D1 D 0 OD1

.1�p/ OD1 0
:

• Superposition of MAPs: Consider two MAPs with representation OD0, OD1 and
QD0, QD1. The superposition of their arrival processes is a MAP with

D0 D OD0

M QD0; and D1 D OD1

M QD1;

where the Kronecker product is defined as A
N

B D
A11B : : : A1nB
:::

:::

An1B : : : AnnB

and

the Kronecker sum as A
L

B D A
N

IB C IA
N

B. This example indicates
one advantage of the D0, D1 description of MAPs. Using these matrices
the description of the superposed process inherits the related property of the
Cartesian product of independent Markov chains.

• Consider an arrival process where the interarrival time is either exponentially
distributed with parameter �1 or with parameter �2 (�1 ¤ �2). The arrivals are
correlated such that an interarrival period with parameter �1 is followed by one
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with parameter �1 with probability p or one with parameter �2 with probability
1 � p. The interarrival periods with parameter �2 follow the same behavior. The
obtained process is a MAP with

D0 D ��1 0

0 ��2 ; D1 D p�1 .1� p/�1
.1� p/�2 p�2

:

Probability p has a very intuitive meaning in this model. If p ! 1, then the
correlation of the consecutive interarrivals is increasing and vice versa.

5.2.3 Batch Markov Arrival Process

A batch Markov arrival process (BMAP) is an extension of MAP with batch arrivals.
It has an interpretation similar to that of a MAP.

A CTMC with generator D determines arrivals in the following way. While the
Markov chain stays in state i , arrivals of batch size k occur according to a Poisson
process at rate �.k/i . When the Markov chain experiences a state transition from

state i to j , arrivals of batch size k occur with probability p.k/ij and no arrival

occurs with probability 1 �Pk p
.k/
ij . Generator D, rates �.k/i (i D 1; : : : ; N ), and

probabilities p.k/ij (i; j D 1; : : : ; N; i ¤ j ) determine the stationary behavior of
BMAPs. Additionally, the initial distribution of the CTMC is needed for the analysis
of the transient behavior. A BMAP is commonly described by matrices Dk, which
are obtained from the previously introduced parameters in the following way:

D0ij D
(

Dij .1 �Pk p
.k/
ij / if i ¤ j;

Di i �Pk �
.k/
i if i D j; Dkij D

(
D ij p

.k/
ij if i ¤ j;

�
.k/
i if i D j:

Based on this description the .N.t/; J.t// (N.t/ 2 N; J.t/ 2 f1; : : : ; N g) process is
a CTMC with transition structure depicted in Fig. 5.4. If the states are numbered in
lexicographical order (.0; 1/; : : : ; .0;N /; .1; 1/; : : : ; .1;N /; : : :), then the generator
matrix has the form

Q =

D0 D1 D2 D3 D4

D0 D1 D2 D3

D0 D1 D2

D0 D1

;
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Fig. 5.4 Structure of Markov chain describing arrivals of a BMAP

To avoid complex cases it is commonly assumed that the considered BMAPs are
regular:

• The phase process (D) is irreducible.
• The mean interarrival time is positive and finite (D0 nonsingular).
• The mean arrival rate, d DP1

kD0 kDk1, is finite.

BMAP properties are similar to MAP properties. We refer the reader to [62] for
further details.

5.3 Quasi-Birth-Death Process

There are very few Markov chain structures that ensure solutions with convenient
analytical properties. One of these few Markov chain structures is the quasi-birth-
death (QBD) process.

Definition 5.8. A CTMC fN.t/; J.t/g with state space fn; j g (n 2 N, j 2
f1; : : : ; J g) is a QBD process if transitions are restricted to modify n by at most
one and the transitions are homogeneous for different n values for n 	 1, i.e., the
transition rate from fn; j g to fn0; j 0g is zero if jn � n0j 	 2 and the transition rate
from fn; j g to fn0; j 0g equals the transition rate from f1; j g to fn0 � nC 1; j 0g (cf.
Fig. 5.5).

These structural descriptions are relaxed subsequently by considering various
versions of this basic regular QBD model. Similar to the case of MAPs, N.t/ is
commonly referred to as a level process (it represents, e.g., the number of customers
in a queue), and J.t/ is commonly referred to as a phase process (it represents,
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Fig. 5.5 Transition structure of QBD processes

e.g., the state of a randomly changing environment). Henceforth we assume that
the considered QBD processes are irreducible with irreducible phase processes at
the n 	 1 levels (as detailed below).

Due to the structural properties of QBD processes, their state transitions can be
classified as forward (n! nC 1), local (n! n), and backward (n! n � 1). We
apply the following notations:

• Matrix F of size J � J contains the rates of the forward transitions. The i; j
element of F is the transition rate from fn; ig to fnC 1; j g (n 	 0).

• Matrix L of size J � J contains the rates of the local transitions for n 	 1.
• Matrix L0 of size J � J contains the rates of the local transitions for n D 0.

Level 0 is irregular because there is no backward transition from level 0.
• Matrix B of size J � J contains the rates of the backward transitions. The i; j

element of F is the transition rate from fnC 1; ig to fn; j g (n 	 0).

With these notations the structure of the generator matrix of a QBD process is

Q

L F

B L F

B L F

B L F

The name QBD process comes from the fact that on the matrix block level the
generator matrix has a birth–death structure.

Condition of Stability

The phase process of a QBD process in the regular part (n > 1) is a CTMC with
generator matrix A D F CLCB . Let A be irreducible with stationary distribution
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˛ (that is, ˛A D 0;˛1 D 1). The drift associated with the stationary distribution
of the regular phase process is d D ˛F1 � ˛B1. The sign of this drift indicates
whether the average tendency of the level process is increasing in the regular part.
If d < 0, then the QBD process is positive recurrent [74]. That is, the condition of
stability of QBD processes is d D ˛F1 � ˛B1 < 0, where ˛ is the solution of
˛.F CLCB/ D 0;˛1 D 1.

5.3.1 Matrix-Geometric Distribution

The stationary solution of a QBD process with generator Q is the solution of the
linear system of equations �Q D 0, �1 D 1, where � is the row vector of
stationary probabilities. To utilize the regular structure of matrix Q, we partition
vector � according to the levels of the QBD process: � D f�0;�1;�2; : : :g. Using
this partitioning the linear system of equations takes the following form:

�0L
0 C �1B D 0; (5.5)

�n�1F C �nLC �nC1B D 0 8n 	 1; (5.6)

1X

nD0
�n1 D 1: (5.7)

Theorem 5.9. The solution of Eqs. (5.5)–(5.7) in the case of a stable QBD process
is �n D �0R

n, where matrix R is the only solution of the quadratic matrix equation

F CRLCR2B D 0;

whose eigenvalues are inside the unit disk, and vector 
0 is the solution of a linear
system of size J

�0.L
0 CRB/ D 0

with normalizing condition

�0.I �R/�11 D 1:

Proof. In the case of stable irreducible CTMCs, the solution of the linear system
�Q D 0, �1 D 1 is unique and identical with the stationary distribution of the
CTMC. In this proof we only show that �n D �0R

n satisfies the linear system and
do not discuss the properties of the solutions of the quadratic matrix equations. The
details of the spectral properties of the solutions are discussed, for example, in [62].
Substituting the �n D �0R

n solution into Eq. (5.6) gives

�0R
n�1F C �0R

nLC �0R
nC1B D �0R

n�1.F CRLCR2B/ D 0 8n 	 1;
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which holds according to the definition of R. Due to the fact that the eigenvalues
of R are inside the unit disk, the infinite sum

P1
nD0 Rn is finite, and we haveP1

nD0 Rn D .I � R/�1. Using this and substituting the �n D �0R
n solution

into Eqs. (5.5) and (5.7) gives

�0L
0 C �0RB D 0;

1X

nD0
�0R

n1 D �0.I �R/�11 D 1;

which is the linear system defining �0. ut
The stationary distribution of the form �n D �0R

n are commonly referred to
as matrix geometric distributions. This terminology refers also to the relation of
homogeneous birth and death processes and QBD processes since the stationary
distribution of homogeneous birth and death processes is geometric. Similar to the
relation of Poisson processes and MAPs, QBD processes can be interpreted as an
extension of birth and death processes such that their generator matrices have the
same structure on the level of matrix blocks.

An extensive literature exists that deals with the properties of QBD processes
and the efficient computation of matrix R; therefore, we present here only two
computational methods for matrix R and refer interested readers to [12] and
references therein.

Linear algorithm

R WD 0I
REPEAT

Rold WD RI
R WD F .�L �RB/�1 I

UNTILjjR �Rold jj � �
Logarithmic algorithm

H WD F .�L/�1 I
K WD B .�L/�1 I
R WD HI
T WD KI
REPEAT

Rold WD RI
U WD HKCKHI
H WD H2 .I �U /�1 I
K WD K2 .I �U /�1 I
R WD R CHTI
T WD KTI

UNTILjjR �Rold jj � �
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The input data of these algorithms are matrices F , L, B, and a predefined
accuracy parameter �. The main differences between the algorithms are that the
linear algorithm has a simpler iteration step and is more sensitive to drift d . When
the drift is close to 0, the linear algorithm performs a huge number of iterations. The
properties of the logarithmic algorithm are different. It has a more complex iteration
step, but the number of iterations is tolerable also for drift values close to 0.

The following sections present different QBD variants whose stationary distribu-
tions are different variants of the matrix geometric distribution.

5.3.2 Quasi-Birth-and-Death Process with Irregular Level 0

Many practical examples exist where the system has a regular behavior when it is in
normal operation mode in some sense, but it has a different behavior (e.g., a different
state transition structure or rates or even a different number of phases) when it is idle
in some sense. Additionally, any CTMC that exhibits a regular QBD structure from
a given point on can be considered a QBD process with irregular level 0, where level
0 is defined such that it contains the whole irregular part of the state space.

In general, a QBD process with irregular level 0 has the following block structure

Q

L F

B L F

B L F

B L F

;

where the sizes of the blocks are identical for levels 1; 2; : : :, but the sizes of the
blocks at level 0 can be different from the regular block size. If J is the regular
block size and J0 the block size at level 0, then matrices F , L, and B are of size
J � J , matrix F 0 is of size J0 � J , matrix L0 is of size J0 � J0, and matrix B 0 is of
size J � J0.

In this case, the partitioned form of the linear system �Q D 0, �1 D 1 is

�0L
0 C �1B

0 D 0; (5.8)

�0F
0 C �1LC �2B D 0; (5.9)

�n�1F C �nLC �nC1B D 0 8n 	 2; (5.10)

1X

nD0
�n1 D 1: (5.11)
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Theorem 5.10. The solution of Eqs. (5.8)–(5.11) in the case of a stable QBD
process is �0 and �n D �1R

n�1 (n 	 1), where matrix R is the only solution
of the quadratic matrix equation

F CRLCR2B D 0

whose eigenvalues are inside the unit disk and vectors �0, �1 come from the solution
of the linear system of size J0 C J

�0L
0 C �1B

0 D 0;

�0F
0 C �1.L

0 CRB/ D 0;

with normalizing condition

�01C �1.I �R/�11 D 1:

Proof. The proof follows the same pattern as that of Theorem 5.9. Substituting
the matrix-geometric solution into the partitioned form of the stationary equations
indicates that the solution satisfies the stationary equations. ut

The linear system for �0 and �1 can be rewritten into the matrix form

Œ�0j�1�

L0 F0

B0 LCRB

D Œ 0 j 0 �:

5.3.3 Finite Quasi-Birth-and-Death Process

Another frequently applied variant of QBD processes is the case where the level
process has an upper limit. When the upper limit is at level m, the generator matrix
takes the form

Q

L F

B L

B F

L F

B L
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and the partitioned form of the stationary equation is

�0L
0 C �1B D 0; (5.12)

�n�1F C �nLC �nC1B D 0 1 � n � m � 1; (5.13)

�m�1F C �mL” D 0; (5.14)

mX

nD0
�n1 D 1: (5.15)

Theorem 5.11. The solution of Eqs. (5.12)–(5.15) in the case of a finite QBD
process with d < 0 is �n D ˛Rn C ˇSm�n (0 � n � m), where matrix R is
the only solution of the quadratic matrix equation

F CRLCR2B D 0

whose eigenvalues are inside the open unit disk, matrix S is the only solution of the
quadratic matrix equation

B C SLC S 2F D 0

whose eigenvalues are on the closed unit disk, and vectors ˛ and ˇ are the solution
of the size 2J linear system

˛
�
L0 CRB

�C ˇSm�1 �SL0 CB
� D 0;

˛Rm�1 �F CRL”�C ˇ
�
S F CL”� D 0;

with normalizing condition

˛

mX

nD0
Rn1C ˇ

mX

nD0
S n1 D 1:

Proof. The proof follows the same pattern as that of Theorem 5.9. Substituting
the solution into the partitioned form of the stationary equations indicates that the
solution satisfies the stationary equations. ut

The matrix form of the linear system for ˛ and ˇ is

[α|β]
L + RB Rm−1 F + RL”

Sm−1 (SL + B) SF + L”
=[ 0 | 0 ] .



188 5 Markov Chains with Special Structures

Matrix S can be computed by the same linear or logarithmic procedures as
matrix R. If the drift is positive (d > 0) in a finite QBD process, then the numbering
of the levels needs to be inverted (0! m; 1! m � 1; : : : ; m! 0), and we obtain
a new finite QBD process whose drift is negative. It is worth mentioning that due to
the fact that d < 0, matrix S has an eigenvalue on the unit circle, and consequentlyP1

nD0 S n does not converge. Fortunately, this does not affect the applicability of
Theorem 5.11 because we need to compute only the finite sum

Pm
nD0 S n.

5.4 Exercises

Exercise 5.1. X and Y are independent continuous-time PH distributed random
variables with representations .˛;A/ and .ˇ;B/, respectively. Define the distribu-
tion of the following random variables:

• Z1 D c1X ;
• Z2 equals X with probability p and to Y with probability 1 � p;
• Z3 D c1X C c2Y ;
• Z4 D Min.X; Y /;
• Z5 D Max.X; Y /.

Exercise 5.2. X and Y are independent discrete-time PH distributed random vari-
ables with representations .˛;A/ and .ˇ;B/, respectively. Define the distribution
of the following random variables:

• Z1 D c1X ;
• Z2 equals to X with probability p and to Y with probability 1 � p;
• Z3 D c1X C c2Y ;
• Z4 D Min.X; Y /;
• Z5 D Max.X; Y /.

Exercise 5.3. There are two machines, A and B, at a production site. Their
failure times are exponentially distributed with parameters �A and �B , respectively.
Their repair times are also exponentially distributed with parameters �A and �B ,
respectively. A lone repairman can work on only one machine at a time. At a given
time, both machines work. Compute the distribution and the moments of the time to
the first complete breakdown when both machines fail.
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Chapter 6
Introduction to Queueing Systems

6.1 Queueing Systems

The theory of queueing systems dates back to the seminal work of A. K. Erlang
(1878–1929), who worked for the telecom company in Copenhagen and studied
telephone traffic in the early twentieth century. To this day the terminology of
queueing theory is closely related to telecommunications (e.g., channel, call,
idle/busy, queue length, utilization).

Due to the wide range of potential application fields (e.g., vehicular traffic,
logistics, trade, banking, customer service, production lines, manufacturing systems,
stock-in-trade) queueing theory has attracted attention and developed quickly.
This attention is also apparent in the number of queueing-related publications.
The queueing theory book of Saaty [82], published in 1961, contained 896 refer-
ences, and its Russian translation, published in 1965, contained 1,115 references.

The early works of A.K. Erlang already contained the main elements of
queueing theory: the (stochastic) arrival process of requests (calls), the (stochastic)
service process of customers and, consequently, the departure process of customers,
rejected/waiting customers, servers, etc. Later on real physical systems broke away
from queueing and developed its own terminology and the theory was applied in a
wide range of application fields using the aforementioned basic terminology.

The mathematical description of queueing systems requires a description of the
following elements:

• Arrival process: the stochastic description of customer arrivals, where customers
might have any abstract or physical meaning depending on the considered
system.

Customer arrivals might depend on the current system’s properties, e.g., the
number of customers in the system. In the case of basic queueing models (where
the interarrival times are independent), the arrival process is characterized by
the interarrival time distribution.

• Service process: the stochastic description of customer service.

L. Lakatos et al., Introduction to Queueing Systems with Telecommunication Applications,
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Like customer arrival, customer service might also depend on the current
system’s properties, and in basic queueing models the service times are i.i.d.
random variables.

• System structure: the resources of the queueing system, typically the number of
servers and the size of the waiting room.

• Service discipline: a set of rules that determines the service order and service
mode of customers. The most common orders are FCFS (first come, first served),
FIFO (first in, first out), and LIFO (last in, first out). Service resources can
also be used to serve all customers in parallel. This discipline is referred to as
processor sharing (PS). Service order plays an important role when different
types of customers arrive at a system. In this case, priority (with and without
preemptions) can be used to provide faster service to one customer type.

• Performance parameters: to build an appropriately detailed model of a system,
one should consider those performance parameters that must be computed.
The most common performance parameters are system utilization, mean and
distribution of waiting time, loss probability (the probability that a customer will
be rejected by the system), etc. These measures are precisely defined later.

6.2 Classification of Basic Queueing Systems

The same queueing models might appear in completely different application fields.
To avoid the parallel development of the same models in different fields, in 1953,
Kendall proposed a classification and a standard notation of basic queueing systems.
The current version of this set of notations is composed by six elements – A/B/c/d/e-
x – where

A is the type of arrival process;
B is the type of service process;
c is the number of servers;
d is the system capacity, the maximum number of customers in the system;
e is the population of the set of customers (if it is finite, the arrival intensity
decreases with an increasing number of customers in the system); and
x defines the service discipline (the most common service disciplines – e.g.,
FCFS, LCFS, PS – are defined above).

In basic queueing systems A and B take one of the following options:

M – memoryless, refers to exponentially distributed interarrival or service time;
Er – order r Erlang distributed interarrival or service time;
Hr – order r hyperexponentially distributed interarrival or service time;
D— deterministic inter-arrival or service time;
G orGI – i.i.d. random interarrival or service time with any general distribution.
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Customer arrivals

Server(s)Buffer

Fig. 6.1 Common
representation of queueing
systems

The symbols d , e, and x are not indicated if they take their default values: d D 1
infinite system capacity, e D 1 infinite customer population, and x D FCFS

service in arrival order.
Additionally, queueing systems have the following properties. If there is an idle

server when a customer arrives at the system, then the service to the customer
starts immediately. It is assumed that c � d . If c D d (the system capacity is
identical to the number of servers), then there is no buffer position available for
customers that arrive at the system when all servers are busy. In this case, the arriving
customer leaves the system without service. These systems are also referred to as
loss systems. If c < d , then customers arrive at the system when all servers are busy
and there is still an available buffer position; customers are not lost but wait until
a server becomes available to start their service. The time period from the arrival
of such customers to the beginning of the service is referred to as the waiting time.
The elements of queueing systems are commonly depicted as in Fig. 6.1.

6.3 Queueing System Performance Parameters

The optimal operation of queueing systems can be analyzed through several
performance parameters, the most important of which follow.

1. Customer loss probability (of queuing systems with finite capacity, d <1): Let
0 � t1 � t2 � : : : be the arrival times of the first, second, . . . customers, and let
mn be the number of the first n customers that are lost. If limn!1mn=n D q in
a stochastic sense, then q is referred to as the loss probability. In finite-capacity
systems, it is also important to check if the limn!1mn=n limit exists at all.

2. Waiting time distribution: Let Wn; n 	 1, be the waiting time of the nth
customer; the number of the first n customers whose waiting time is less than
x is

Fn.x/ D 1

n

nX

iD1
IfWi�xg; x > 0:

Fn.x/ is the empirical distribution function of the waiting time based on the first
n customers. If limn!1 Fn.x/ D F.x/ in a stochastic sense for 8x > 0, then
F.x/ is the CDF of the waiting time distribution.

3. Mean waiting time: If limn!1 1
n
.W1 C : : :CWn/ D W .1/ in a stochastic sense,

then W .1/ is the mean waiting time. The higher moments of the waiting time are
defined by stochastic convergence in a similar way:

W .k/ D lim
n!1

1

n
.W k

1 C : : :CW k
n /; k 	 1:
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In a wide range of practical cases,

W .k/ D
1Z

0

xkdF.x/; k 	 1;

holds.
4. Distribution of a server’s busy period: Consider a server of a queueing system.

Let Œan; bn/; n 	 1, denote the consecutive intervals during which the server is
busy (serving a customer). an and bn are such that an < bn < anC1; n 	 1, and
the server is idle (serving no customers) during the intervals Œbn; anC1/; n 	 1.
In this case Œan; bn/ denotes the nth busy period of the given server. If

lim
n!1

1

n

nX

iD1
Ifbi�ai�xg D G.x/; 8x > 0;

in a stochastic sense, then G.x/ is the distribution of the busy period of the
given server. The distribution of the idle period can be defined in an analogous
way.

5. Queue length distribution: Let L.t/; t 	 0, be the number of customers in the
system (including those in the servers and those waiting in the buffer) at time t
and NLk.t/ be the portion of time in .0; t/ during which there were k customers
in the system:

NLk.t/ D 1

t

tZ

0

IfL.s/Dkgds:

If

pk D lim
t!1

NLk.t/; k 	 0;
exists in a stochastic sense, then .pk; k 	 0/ defines the queue length
distribution.

As was done previously, one can define the moments of the busy and idle periods
and the queue length.

Comment 6.1. If the state (e.g., number of customers in the system) of the queueing
system can be described by the discrete-state X � N

C homogeneous ergodic
Markov chainX.t/; t 	 0, and f .i/; i 2 X , is an arbitrary bounded function, then

Nf D lim
t!1

1

t

tZ

0

f .�.s//ds
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and

Nf D
X

i2X
f .i/
i ;

where f
i ; i 2 X g, denotes the stationary distribution of the Markov chain.

6.4 Little’s Law

Little’s law describes the relation of various performance parameters of queueing
systems. We need the following notations to present it.

N.t/; t 	 0: number of arrivals (number of customers arriving at system in
Œ0; t/);

M.t/; t 	 0: number of departures (number of customers leaving system in
Œ0; t/);

L.t/ D N.t/ �M.t/; t 	 0: queue length (number of customers in system at
time t).

Note that system can be replaced by any part of the queueing system in the foregoing
definitions, e.g., by the buffer or a subset of servers. Based on these quantities we
can compute the following ones.

NL.t/ D 1

t

tZ

0

L.s/ds; t > 0: mean number of customers in system in Œ0; t/;

�.t/ D N.t/

t
; t > 0: arrival intensity in Œ0; t/;

�n.t/; t > 0: time nth customer spends in system in Œ0; t/;

�.t/ D
N.t/P

nD1
�n.t/; t > 0: aggregate time customers that arrived before time t

spend in system in Œ0; t/.

T .t/ D �.t/

N.t/
; t > 0: the average time a customer spends in the system in Œ0; t/

considering the customers that arrived before time t .

Comment 6.2. These quantities have the following relations:

�.t/ D
tZ

0

ŒN.s/ �M.s/�ds D
tZ

0

L.s/ds; t 	 0;

NL.t/ D �.t/

t
; t > 0:
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In the analysis of queueing systems we are usually interested in the long-term or
stationary behavior. Little’s law defines the relation of the limiting values of these
quantities.

Theorem 6.3 (Little). If

lim
t!1�.t/ D lim

t!1
N.t/

t
D �; � > 0;

lim
t!1

NL.t/ D lim
t!1

1

t

tZ

0

L.s/ds D L

in a stochastic sense, then T .t/ converges to T in a stochastic sense as t !1 and

L D �T:

Proof. The stochastic convergence of T .t/ is obtained from

lim
t!1T .t/ D lim

t!1
�.t/

N.t/
D lim

t!1
�.t/=t

N.t/=t
D lim

t!1
NL.t/
�.t/

D T;

and it also results in the main statement of the theorem. ut
Comment 6.4. The L D �T relation was known as an experimental law for a long
time. It was first proved by J. Little [66] in 1961 and was later commonly referred
to as Little’s law [95]. In words, Little’s law can be expressed as

mean number of customers in a system

= arrival intensity * mean time a customer spends in the system

and is independent of the definition of the system (as discussed previously), the
arrival and service time distributions, number of servers, and buffer size.

Depending on the definition of system, we obtain the following versions of
Little’s law:

(a) If the system is the buffer only, then

Lw D �W;
where Lw is the mean number of waiting customers andW is the mean waiting
time.

(b) If the system is the set of all servers, then

Ls D � NY ;
where Ls is the mean number of busy servers and NY is the mean service time.
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6.5 Exercises

Exercise 6.1. Interpret the following Kendall’s notations:

• M=M=1=1=1� FIFO; M=M=1
• M=M=2==4

• M=M=1==m� PS
• M=M=m� LIFO
Exercise 6.2. In a single-server, infinite-buffer queueing model, the arrival rate is
� and the service time is exponentially distributed with the parameter �.

• Define Little’s law for the entire queueing system, for the buffer, and for the
server.

• Which one of these expressions defines the server utilization?
• What is the utilization?

Exercise 6.3. Which of the following queueing systems are lossless?

• M=M=1

• M=M=2=5=4

• M=M=1=2� PS
• M=M=m=m

• M=M=m

Exercise 6.4. Which of the following queueing systems provide immediate service
for customers?

• M=M=1

• M=M=4=5=3

• M=M=1=2� PS
• M=M=m=m

• M=M=m



Chapter 7
Markovian Queueing Systems

Queueing systems whose underlying stochastic process is a continuous-time
Markov chain (CTMCs) are the simplest and most often used class of queueing
systems. The analysis of these systems is based on the essential results available for
the analysis of CTMCs. As a consequence, several interesting properties of these
queueing systems can be described by simple closed-form analytical expressions
both in transient (as a function of time and initial state) and in steady state.

The most often studied property of basic queueing systems is the queue length
process, N.t/; t � 0, which represents the number of customers in the system at
time t . If customers belong to K different customer classes, then the vector-valued
function N.t/ D .N1.t/; : : : ; NK.t//, t � 0, describes the queue length process. In
this case the i th component of N.t/, Ni.t/, is the number of class i customers in
the system.

The queue length process of basic queueing systems with a single class of
customers is the birth-death process, which is a special CTMC. We will utilize the
previously introduced results of CTMCs and birth-death processes for the analysis
of queueing systems.

7.1 M=M=1 Queue

The most basic queueing system is the M=M=1 queue, which is composed of
a single server and an infinite buffer (see Fig. 7.1). Identical customers arrive
according to a time-homogeneous Poisson process at rate �, and the service time of a
customer is exponentially distributed at rate�. The customers are served in the order
of their arrival (FCFS). The server is always busy as there is at least one customer
in the system. This last property is referred to as a work-conserving property, which
we commonly assume in the sequel unless otherwise stated.

Let N.t/ be the number of customers in a system (either being served or waiting
in the buffer) at time t . Due to the memoryless property of the arrival and the service
process, N.t/ is a CTMC (Fig. 7.2). Its (nonvanishing) state-transition probabilities

L. Lakatos et al., Introduction to Queueing Systems with Telecommunication Applications,
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Service time distribution:
Exponetial with parameter

with rateλ
Poisson process

Customer arrivals:
μ

Fig. 7.1 M=M=1.=1/

queueing system

1 ...4320

λ

μ

λ

μ μ μ μ

λ λ λ

Fig. 7.2 Markov chain of number of customers in M=M=1 queue

are

pi;iC1.�/ D ��C o .�/ ; i D 0; 1; : : : ;
pi;i�1.�/ D ��C o .�/ ; i D 1; 2; : : : ;
pi i .�/ D 1 � .�C �/�C o .�/ ; i D 1; 2; : : : ;
p0;0.�/ D 1 � ��C o .�/ ;

where pi;j .t/ D P .N.t/ D j j N.0/ D i/. That is, N.t/ is an infinite state birth-
death process with �i D � .i D 0; 1; : : :/ and �i D � .i D 1; 2; : : :/. The Markov
chain is irreducible, and from its stationary equations we have


i D


�

�

�i
; i D 0; 1; : : : :

According to Eq. (3.19) this Markov chain is stable if

�

�
< 1;

that is,
� < �:

The intuitive explanation of this relation is straightforward. It means that the queue
is stable if the mean service time .1=�/ is less than the mean interarrival time .1=�/.
Introducing � D �

�
from Eqs. (3.21) and (3.20) we have

pi D lim
t!1 P .N.t/ D i/ D p0�i .i D 0; 1; : : :/;

where

p0 D 1
1X

jD0
�j

D 1
1
1��
D 1 � �
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and
pi D .1 � �/�i ; i D 0; 1; : : :

Consequently, the stationary number of customers in the system is geometrically
distributed on f0; 1; : : :g with parameter .1 � �/. The mean of this distribution is

NN D
1X

iD0
i pi D �

1 � � D
�

� � �: (7.1)

Now we compute the mean time a customer spends in the system in stationary
state. Let us consider that the customer arrives at time t . The number of customers
in the system at this time instant is N.t/. According to the FCFS service order, the
new customer must wait while all of the customers present in the system at time t
are served. Due to the memoryless property of the exponentially distributed service
time, the remaining service for the customer being served at time t (if any) is also
exponentially distributed with the same parameter. Furthermore, the service times of
the N.t/� 1 customers waiting in the buffer at time t [if N.t/ 	 1] and the service
time of the newly arrived customer are also exponentially distributed with parameter
�. Summing up all these, the total time the customer spends in the system is

D.t/ D
N.t/X

iD1
Yi C Y; (7.2)

where Y1; : : : ; YN.t/ and Y are i.i.d. exponentially distributed random variables with
parameter �. In stationary state, neither the distribution of N.t/ nor the distribution
of D.t/ depends on t , that is, E .D.t// D ND. ND can be computed using the
following lemma (see also Exercise 2.1).

Lemma 7.1 (Wald’s lemma). If N is a nonnegative-integer-valued random vari-
able and fYig are nonnegative, i.i.d. random variables, independent of N , then

E

 
NX

iD1
Yi

!

D E .Y1/ E .N /:

Proof.

E

 
NX

iD1
Yi

!

D E

 1X

iD1

!

Yi Ifi�N g D
1X

iD1
E
�
Yi Ifi�N g

�

D
1X

iD1
E .Yi /E

�
Ifi�N g

� D E .Y1/
1X

iD1
P .N 	 i/

D E .Y1/
1X

kD1
k � P .N D k/ D E .Y1/E .N / : ut
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Based on the Wald lemma and Eqs. (7.1) and (7.2) we have

ND D E .Y1/ � NN C E .Y / D 1

�
� �

� � � C
1

�
D 1

� � �:

We can also evaluate the stationary system time (time spent in the system by a
customer) distributionD.t/ � D because

P .D � s/ D
1X

iD0
P .D � sjN.t/ D i/ � P .N.t/ D i/;

where P .D � sjN.t/ D i/ is the distribution of the sum of .i C 1/ i.i.d. exponen-
tially distributed random variables with parameter � according to Eq. (7.2). Thus,

P .D < s/ D
1X

iD0

 Z s

0

�
.�u/i

i Š
e��udu

!

.1 � �/�i

D
Z s

0

 1X

iD0
�
�iui

i Š
e��u



1 � �

�

�

�

�

�i!

du

D �


1 � �

�

�Z s

0

 

e��u �
1X

iD0

.�u/i

i Š

!

du

D �


1 � �

�

�Z s

0

e��u � e�udu

D �


1 � �

�

�Z s

0

e�.���/udu

D � � � � �
�
� 1

� � �
�
1 � e�.���/s�

D 1 � e�.���/s; s 	 0;

where we used that the sum of .i C 1/ i.i.d. exponentially distributed random
variables with parameter � is Gamma (or Erlang) distributed with parameters� and
i C 1. We obtained that the system time is exponentially distributed with parameter
.� � �/ and its mean is

ND D 1

� � �;

as we saw previously.
The departure process of a stationary M=M=1 queue (the point process of the

consecutive departure instants) is a Poisson process with parameter �. This property
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is referred to as Burke’s theorem and plays an important role in the analysis of
queueing networks, as discussed in Sect. 10.1.

In single-server systems, the probability of finding the server busy is referred to
as utilization.

P .the server is busy/ D
1X

kD1
pk D 1 � p0 D 1 � .1 � �/ D �:

Let Xs be the number of customers being served in stationary state. In this case,
E .Xs/ D 0 � p0 C 1 � .1 � p0/, whence

E .Xs/ D �: (7.3)

According to Little’s law, if � < 1 (i.e., the system is stable), then

E .Xs/ D N� Nx D �

�
D � (7.4)

because N� D � and Nx D 1

�
.

The mean number of customers in the system is

E .X/ D
1X

kD0
k pk D

1X

kD0
k .1 � �/�k D �.1 � �/

1X

kD0
k �k�1

D �.1 � �/
1X

kD0

d

d�
�k D �.1 � �/ d

d�

1X

kD0
�k D �.1 � �/ 1

.1� �/2 ;

whence

E .X/ D �

1 � � : (7.5)

The mean number of waiting customers in the system is

E .Xw/ D
1X

kD1
.k � 1/ pk D

1X

kD1
k pk �

1X

kD1
pk

D
1X

kD1
k .1 � �/�k � .1 � p0/ D �

1� � � �;

whence

E .Xw/ D �2

1 � � : (7.6)
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By definition,
X D Xw CXs; (7.7)

and thus
E .X/ D E .Xw/C E .Xs/ ; (7.8)

E .Xw/ D E .X/� E .Xs/ D �

1 � � � � D
�2

1 � � : (7.9)

A customer’s system time, waiting time, and service time (T , W , and x,
respectively) fulfill

T D W C x (7.10)

and
NT D NW C Nx: (7.11)

According to Little’s law,

NT D E .X/
�
D 1

�.1� �/ ; (7.12)

NW D E .Xw/

�
D �

�.1 � �/ ; (7.13)

Nx D 1

�
; (7.14)

which confirms Eq. (7.11).
NT can also be computed as

NT D 1

�.1 � �/ D
1 � �C �
�.1 � �/ D

1

�
C �

�.1 � �/ D
1

�
C 1
�

�

1 � � D
1

�
C

1X

kD0
k
1

�
pk:

The probability that there are at least k customers in the system is

P .X 	 k/ D
1X

iDk
.1 � �/�i D .1 � �/�k

1X

jD0
�j D �k: (7.15)

Example 7.2. Let us consider a data packet transmission unit that receives data
packets from a set of terminals and transmits them to a destination unit through
a transmission line. The packets arrive according to a Poisson arrival process.
On average, one packet arrives every 4ms. The packet transmission time is
exponentially distributed. The mean packet transmission time is 3ms.

What is the mean number of packets in the transmission unit if it has an infinite
buffer?

� D 1

4
� 3 D 3

4
;
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E .X/ D �

1 � � D 3:

What is the mean system time of a customer?

E .T / D E .X/
�
D 3

1=4 1=ms
D 12ms:

By how much must the arrival rate increase for the mean system time to double?

E
�
T 0� D 24 ms D 1=�

1 � �0 D
3 ms

1 � �0 ;

�0 D 1 � 1
8
D 7=8;

whence

�0 D �0� D 7

8 � 3 D
7

24
:

This means that a small (17%) increase in the arrival rate doubles the mean system
time.

Example 7.3. Customers arrive at an infinite buffer queueing system according to
a Poisson process at rate K�, and the service time is exponentially distributed. The
mean service time of a high-capacity server is 1=.K�/, and the mean service time
of a low-capacity server is 1=�. Compare the performance of the single queue using
one high-capacity server with the performance of K parallel queues having low-
capacity servers. In the latter case, customers arrive at each queue according to a
Poisson process at rate � (cf. the decomposition of a Poisson process in Sect. 2.7.3).

Performance of a single high-capacity queue:

� D K�

K�
D �

�
;

E .T / D E .X/
1 � � D

1

K�.1� �/ I

Performance of the K low-capacity queues:

� D �

�
;

per server, and

E
�
T 0� D E .X/

1 � � D
1

�.1� �/ D K � E .T / :

Consequently, the system time is K times longer in the latter case.
The result demonstrates that aggregating the resources and demands in service

systems increases system performance.
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7.2 Transient Behavior of an M=M=1 Queueing System

Let A.x/ D 1 � e��x and B.x/ D 1 � e��x be the CDF of the interarrival and the
service time distribution, and L.t/; t 	 0 be the number of customers in the system
at time t . From the fact that L.t/ is a birth-death process (Sect. 3.4) we will derive
the following characteristics (Fig. 7.3):

(A) The parameters of fL.t/; t 	 0g.
(B) The distribution of L.t/ at an arbitrary t 	 0 instant (using point 2 of

Theorem 3.68).
(C) The distribution of the length of the busy period of the server (based on

Theorem 3.70).
(D) The distribution of the stationary virtual waiting time (the time required to serve

customers in the system at an arbitrary time instant).

(A) Parameters of birth-death process:

Let t be an instant when the system becomes idle. For this t we have

L.t/ D 0:
The next state change of the system happens at the arrival of the next customer
after t . The time till this state change is the time spent in state 0. This idle time is
exponentially distributed with parameter � > 0. Applying the notations of Sect. 3.4
we have

a0 D �; p0 D 1:
Due to the memoryless property of the exponential distribution, starting from t 0

such that the system was idle for a period of time does not modify the distribution of
the remaining time till the next customer arrival. The same holds for all other k > 0
states of the system.

Assuming that there are k; k 	 1, customers in the system at time t ; the next
state change occurs when a new customer arrives or when a customer’s service is
completed. The probability that these two events will occur at the same time is 0.

We need the following notations:

�t : the time to arrival of the next customer after time t ,
�t : the remaining service time of the customer being served at time t .

tτ  =0 τ
1 τ

2 τ
3

τ
4

τ
5

τ
6

τ
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τ
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t
1 t

20 3
t
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t
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t
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t
1
2
3
4
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Fig. 7.3 Number of
customers in the
M=M=1.=1/ queueing
system
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�t and �t are independent, and (due to the memoryless property of the exponential
distribution) their distributions are A.x/ and B.x/, respectively.

Let t D min.�t ; �t / be the time till the next state change at time t . The
distribution of t is

P .t � x/ D 1 � P .t > x/ D 1 � P .�t > x; �t > x/

D 1 � P .�t > x/P .�t > x/ D 1 � e�.�C�/x;

from which ˛k (the parameter of the sojourn time in state k) is ˛k D �C�; k 	 1.
After t the system moves to state .k C 1/ or .k � 1/, depending on the relation

of �t and �t . If �t < �t , then it moves to state .k C 1/; if �t > �t , then it moves to
state .k � 1/ [P .�t D �t / D 0].

P .t � x; �t � �t / D P .�t � x; �t � �t /

D
xZ

0

P .�t � x; �t � �t j�t D u/ dP .�t � u/

D
xZ

0

P .u � �t / d.1� e��u/ D
xZ

0

e��ud.1� e��u/

D �

�C �


1 � e�.�C�/x

�
;

and similarly

P .t � x; �t > �t / D P .t � x/ � P .t � x; �t � �t / D �

�C �


1 � e�.�C�/x

�
:

This means that, independently of state k, the parameter of the exponentially
distributed time spent in state k is ˛k D .�C�/, and the probabilities of moving to
.k C 1/ and .k � 1/ are pk D �

�C� and qk D �

�C� .k 	 1/, respectively.
Consequently, L.t/ is a birth-death process with parameters

ak D �; k 	 0; bk D �; k 	 1I

˛k D �C �; p0 D 1; pk D �

�C �; qk D
�

�C �; k 	 1:

(B) Distribution of L.t/:

We assume that the system is idle at time 0 [L.0/ D 0] with probability 1
('0 D 1, 'k D 0; k 	 1) and compute the distribution of L.t/; t 	 0. More
precisely, we evaluate
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Pk.t/ D P .L.t/ D k/ ; p�
k .s/ D

1Z

0

e�stPk.t/dt; Re s > 0:

The p�
k .s/ functions are given by point 2 of Theorem 3.68:

sp�
0 .s/ � 1 D ��p�

0 .s/C �p�
1 .s/; (7.16)

sp�
k .s/ D �p�

k�1.s/� .�C �/p�
k .s/C �p�

kC1.s/; k 	 1: (7.17)

Following the approach proposed in [69] we define the probability generating
function

p�.z; s/ D
1X

kD0
p�
k .s/ zk:

Multiplying both sides of Eq. (7.17) by zk (0 < jzj � 1; k 	 1) and summing up
the terms k D 1; 2; : : : we obtain

sp�.z; s/ � sp�
0 .s/ D �zp�.z; s/ � .�C �/Œp�.z; s/ � p�

0 .s/�

C1
z
�Œp�.z; s/ � p�

0 .s/� zp�
1 .s/�:

Further adding Eq. (7.16) and rearranging the terms we obtain

p�.z; s/

s � �zC .�C �/ � �

z

�
D 1C �p�

0 .s/ �
�

z
p�
0 .s/;

whence

p�.z; s/ D z � �.1 � z/p�
0 .s/

s z � .1 � z/.� � �z/
: (7.18)

The function p�.z; s/ is the Laplace transform of a generator function. It is analytic
and bounded for jzj � 1 and fixed Re s > 0. Consequently, on the right-hand side
of Eq. (7.18) the numerator must have a root at the root of the denominator. The
denominator has a root at

z D �1.s/ D �C �C s �p.�C �C s/2 � 4��
2�

:

Using that the numerator also has a root at z D �1.s/ we obtain that j�1.s/j < 1 if
Re s > 0. It is easy to see for real s > 0 because

�C �C s �
p
.�C �C s/2 � 4�� < 2�
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holds for � � �C s < 0 since in this case � � �C s < p
.�C �C s/2 � 4��. If

� � �C s 	 0, then the squares of the two sides of the equation remain equal and
we obtain a simple identity.

The numerator of p�.z; s/ in Eq. (7.18) must be zero at z D �1.s/, that is,

�1.s/� �.1 � �1.s//p�
0 .s/ D 0; that is; p�

0 .s/ D
�1.s/

�.1 � �1.s// :

Thus

p�.z; s/ D
z � .1 � z/ �1.s/

1��1.s/
s z � .1 � z/.� � �z/

D z � �1.s/
.1 � �1.s//.s z� .1 � z/.� � �z//

:

Introducing

�2.s/ D �C �C s Cp.�C �C s/2 � 4��
2�

and using

s z � .1 � z/.� � �z/ D ��.z � �1.s//.z � �2.s//
we modify the expression in the following way:

p�.z; s/ D 1

�.1 � �1.s//.�2.s/� z/
:

It can be seen that j�2.s/j > 1 [�2.s/ ¤ z; jzj � 1 since p�.z; s/ is bounded there]
and

�1.s/�2.s/ D �

�
:

The series expansion of the fraction 1
�2 .s/�z , according to z, gives

p�.z; s/ D Œ�.1 � �1.s//�2.s/��1
1X

kD0


z

�2.s/

�k
:

Comparing the coefficients of the zk terms and using the series expansion of the
fraction 1

1��1.s/ we have

p�
k .s/ D Œ�.1 � �1.s//.�2.s//kC1��1 D 1

�.�2.s//kC1
1X

jD0
.�1.s//

j
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D 1

� Œ�1.s/�2.s/�kC1
1X

jDkC1
.�1.s//

j D 1

�



�

�

�kC1 1X

jDkC1
.�1.s//

j

D 1

�



�

�

�kC1 1X

jDkC1

��
�

�j
.�2.s//

�j :

The last expression allows the explicit description of Pk.t/. Let Im.z/ be the
modified first-order Bessel function, i.e.,

Im.z/ D
1X

kD0

1

kŠ	.mC k C 1/
� z

2

�mC2k
:

Since the Laplace transform of

1Z

0

e�sxx�1Im.cx/dx

is (see [76])
cm

m
.s C

p
s2 � c2/�m;

the inverse Laplace transform of

 
s Cps2 � 4��

2�

!�m

is

m



�

�

�m=2
t�1Im.2

p
��t/:

Additionally, using e�st e�.�C�/t D e�.sC�C�/t the inverse Laplace transform of

�2.s/
�m D

 
s C �C �Cp.s C �C �/2 � 4��

2�

!�m

is

e�.�C�/tm


�

�

�m=2
t�1Im.2

p
��t/;

and finally we obtain

Pk.t/ D 1

�



�

�

�kC1
e�.�C�/t

1X

jDkC1
jt�1

��
�

�j=2
Ij .2

p
��t/:
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(C) Distribution of busy intervals:

Let …k random variables be the length of the busy period starting from state k, and
let

…k.t/ D P .…k � t/ ; and 
�
k .s/ D E

�
e�s…k

�

be its CDF and Laplace transform, respectively. To compute …k.t/ and 
�
k .s/, we

assume that state 0 is an absorbing state and put

'k D 1; a0 D 0; p0 D 0; an D �; ˛n D �C �; pn D �

�C �; n 	 1:

We note (Remark 3.71) that

P0.t/ D P .L.t/ D 0/ D P .…k � t/ D …k.t/; P
0
0.t/ D …0

k.t/:

According to Theorem 3.70 for p�
n .s/; n 	 1, we have

sp�
0 .s/ D �p�

1 .s/; (7.19)

sp�
1 .s/� ı1;k D �.�C �/p�

1 .s/C �p�
2 .s/; (7.20)

sp�
n .s/� ın;k D �p�

n�1.s/ � .�C �/p�
n .s/C �p�

nC1.s/; n 	 2: (7.21)

Furthermore, according to point 1 of Theorem 3.70 …0
k.t/ D P 0

0.t/ D �P1.t/, and
consequently


�
k .s/ D

1Z

0

e�sxd…k.x/ D
1Z

0

e�sx…0
k.x/dx D

1Z

0

e�sxbP1.x/dx D bp�
1 .s/:

Multiplying Eq. (7.21) by zn, summing it up for n 	 2, and adding Eq. (7.20) z
times, we obtain

s p�.z; s/ � zk D � zp�.z; s/ � .�C �/p�.z; s/C �

z
p�.z; s/ � �p�

1 .s/;

where p�.z; s/ D
1P
nD1

p�
n .s/ zn and znın;k D zkI.n D k/. Further rearranging the

expression gives

Œs z� .1 � z/.� � �z/�
p�.z; s/

z
D zk � �p�

1 :.s/: (7.22)

As was shown previously, the roots of s z � .1 � z/.� � �z/ D 0 are z D �1.s/ and
z D �2.s/. Since j�1.s/j < 1; if Re s > 0, then p�.z; s/=z is bounded for jzj � 1
and¤ 0; if z ¤ 0, then from Eq. (7.22) we get for �p�

1 .s/ that [because in the case
of jzj � 1 the only root of zk � �p�

1 .s/ D 0 is z D �1.s/]
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�p�
1 .s/ D �1.s/k D

��
�

�k
�2.s/

�k :

Using this and
R1
0

e�sx…0
k.x/dx D �p�

1 .s/ we have that

…0
k.t/ D

��
�

�k
e�.�C�/t

 s
�

�

!k

k t�1Ik.2
p
��t/

D

r

�

�

�k
k

t
e�.�C�/t Ik.2

p
��t/:

In the special case where k D 1, we have

…0
1.t/ D

r
�

�

1

t
e�.�C�/tI1.2

p
��t/:

(D) Distribution of virtual waiting time:

At time t the virtual waiting time, W.t/, satisfies

W.t/
dD
8
<

:

0; if L.t/ D 0;
kP

iD1
�i ; if L.t/ D k;

where
dD denotes the equality in distribution and �1; : : : ; �k are the i.i.d. service

times of the waiting customers (�i , i D 2; : : : ; k) and the remaining service time of
the customer being served (�1). Due to the memoryless property of the exponential
service time distribution, all of these random variables are exponentially distributed
with parameter �, and their CDF is 1 � e��x . According to the law of total
probability, this gives

W.x; t/ D P .W.t/ � x/ D
1X

kD0
P .W.t/ � xjL.t/ D k/P .L.t/ D k/ (7.23)

D P0.t/C
1X

kD1
Pk.t/P

 
kX

iD1
�i � x

!

; (7.24)

where Pk.t/ D P .L.t/ D k/.
Introducing the Laplace transformsW �.x; s/ D R1

0
e�stW.x; t/dt and p�

k .s/ DR1
0

e�stPk.t/dt from Eq. (7.24) we obtain
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W �.x; s/ D p�
0 .s/C

1X

kD1
p�
k .s/P

 
kX

iD1
�i < x

!

:

Since �i , i D 1; 2; : : : ; k, are independent exponentially distributed random
variables with parameter � we have

P

 
kX

iD1
�i � x

!

D P

 
kX

iD1
.��i / � �x

!

D
�xZ

0

uk�1

.k � 1/Š ; e
�udu

and according to point (B) we also have

p�
k .s/ D Œ�.1 � �1.s//.�2.s//kC1��1; k 	 0:

Using all these expressions we obtain the Laplace transform of W.x; t/:

W �.x; s/ D Œ�.1 � �1.s//�2.s/��1
0

@1C
1X

kD1
Œ�2.s/�

�k
�xZ

0

uk�1

.k � 1/Še
�udu

1

A

D Œ�.1 � �1.s//�2.s/��1
0

@1C
1X

kD1
.�2.s//

�1
�xZ

0

Œu = �2.s/�k�1

.k � 1/Š e�udu

1

A

D Œ�.1 � �1.s//�2.s/��1


1C 1

�2.s/ � 1.1 � e��.1���1
2 .s//x/

�
:

According to Eq. (7.24), in the case of a stable system (�=� < 1) there exists the
limit

NW .x/ D lim
t!1W.x; t/ D 
0 C

1X

kD1

kP

 
kX

iD1
�i < x

!

;

where according to Theorem 3.68


k D lim
t!1Pk.t/ D



1 � �

�

�

�

�

�k
; k 	 0:

Thus

NW .x/ D


1 � �

�

�
0

@1C
1X

kD1



�

�

�k �xZ

0

uk�1

.k � 1/Še
�udu

1

A
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D


1 � �

�

�
0

@1C �

�

�xZ

0

e�.1��=�/udu

1

A D 1 � �
�

e�.���/x; x > 0;

and

lim
t!1 P .W.t/ D 0/ D lim

t!1 P .L.t/ D 0/ D lim
t!1P0.t/ D 
0 D 1 � �

�
:

7.3 M=M=m Queueing System

The arrival process (Poisson process at rate �) and the service time distribution
(exponential with parameter �) are the same as before, but there are m servers in
the service unit of this queueing system. While there is at least one idle server, an
arriving customer is assigned to one of the idle servers upon arrival, and service
of this customer starts immediately. If all the servers are busy at an arrival, then
the arriving customer waits in the buffer. When i (1 � i � m) servers are busy,
the i service processes go on in parallel. Due to the memoryless property of the
service time distribution, the remaining service times are also independent exponen-
tially distributed random variables. The minimum of i independent exponentially
distributed random variables with parameter � is exponentially distributed with
parameter i�. Another intuitive interpretation of the service process is through the
service rate. A single server serves a customer at rate �, i.e., the probability that an
ongoing service will be completed in the next interval of length ı is �� C o.�/.
If i servers are working in parallel, then they serve customers at a rate i�, i.e., the
probability that one of the i ongoing service will be completed in the next � long
interval is i�� C �.�/. The transitions of the birth-death process describing the
number of customers in the system are as follows:

pi;iC1.�/ D ��C o .�/ ; .i D 0; 1; : : :/;
pi;i�1.�/ D i��C o .�/ ; .0 < i � m/;
pii .�/ D 1 � .�C i�/�C o .�/ ; .0 � i � m/;
pi;i .�/ D 1 � .�Cm�/�C o .�/ ; .i 	 m/:

The Markov chain is stable if 0 < � < m� < 1. In this case the stationary
equations are

pk�1�C pkC1.k C 1/� D pk.�C k�/; 0 < k < m;
pk�1�C pkC1m� D pk.�Cm�/; k 	 m;

p1� D p0� :
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The solution of this set of equations is

pk D �

k�
pk�1 D



�

�

�k
1

kŠ
p0 if k D 1; 2; � � � ; m; (7.25)

pk D �

m�
pk�1; if k D mC 1;mC 2; � � � ; (7.26)

whence

pmCi D


�

m�

�i
pm; i 	 1: (7.27)

Combining the two cases we have

pj D

8
ˆ̂
<

ˆ̂:



�

�

�j
1

j Š
p0; j D 1; 2; � � � ; m;



�

�

�j
1

mŠ

1

mj�m p0; j > m;

(7.28)

from which the normalized solution of p0 is

p0 D 1

1C
mX

jD1



�

�

�j
1

j Š
C

1X

jDmC1



�

�

�j
1

mŠ

1

mj�m

: (7.29)

The second term of the denominator can be rewritten as

mm

mŠ

1X

jDm



�

m�

�j
D



�

m�

�m



1 � �

m�

�
mm

mŠ
: (7.30)

The mean system time can be computed as

NT D Nx C NW D 1

�
C

1X

kDm
E .W j k/ p.a/k ; (7.31)

where p.a/k denotes the queue length distribution at arrival instants. In the case of an

M=M=m queue, p.a/k D pk . The mean system time can be expressed as

E .T / D 1

�
C

1X

kDm

k �mC 1
m�

pk; (7.32)
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whence

NT D 1

�
C

1X

kDm

k �mC 1
m�

pm



�

m�

�k�m
D 1

�
C pm

m�

1X

kDm
.k�mC1/



�

m�

�k�m
:

(7.33)
Using that the arrival process is a Poisson process we further have

NT D 1

�
C pm

m�

1X

iD1
i



�

m�

�i�1
D 1

�
C m�pm

.m� � �/2 : (7.34)

With the help of Little’s law we can also compute the mean number of customers in
the system:

E .X/ D � NT D �

�
C m��pm

.m� � �/2 : (7.35)

The probability that all servers will be busy and an arriving customer will have
to wait is

P .waiting/ D
1X

kDm
pk D

1X

kDm
p0



�

�

�k
1

mŠ

mm

mk
D mm

mŠ
p0

1X

kDm



�

m�

�k

D p0
mm

mŠ



�

m�

�m

1 � �

m�

D p0 1
mŠ



�

�

�m
1

1 � �

D
1

mŠ



�

�

�m
1

1 � �
m�1X

kD0



�

�

�k
1

kŠ
C 1

mŠ



�

�

�m
1

1 � �

;

where � D �

m�
.

This expression is known as the C (or waiting probability) formula of Erlang
[55]. The parameters of this formula are m the number of servers and the �=�
ratio, which is also referred to as traffic. The shorthand notation of the C formula is
C.m; �=�/.

Example 7.4. There are four leased telephone lines between two sites of a company.
Phone call requests arrive according to a Poisson process at a rate 1=2 (calls/min).
The lengths of the calls are exponentially distributed. The mean call holding time
is 4 (min). If all lines are busy when a call arrives, then the caller waits until a
telephone line becomes available. What is the probability that a caller will have to
wait?



7.3 M=M=m Queueing System 217

We have

� D 1=2; 1=� D 4; a D �=� D 2; � D a=m D 2=4 D 0:5;

from which

p0 D 1

1C 2C 22=2C 23=6C 16=24.1=.1� 0:5/ D 3=23

and

C.4; 2/ D 24=4Š

1 � 0:5
3

23
D 4=23 D 0:17:

Example 7.5. Compare the performance of the M=M=1 and the M=M=2 queueing
systems if � D 1=2 in both systems and the service rates of the M=M=1 and the
M=M=2 systems are �1 D 1 and �2 D 1=2, respectively.

The parameters of the M=M=1 queueing system are

� D �

�1
D 1=2

1
D 0:5;

E .W / D �=�

1 � � D 1 s;

E .T / D 1=�

1 � � D 2 s:

The parameters of the M=M=2 queueing system are

a D �

�2
D 1=2

1=2
D 1; � D a=m D 1=2 D 0:5;

p0 D 1

1C 2C a2=2

1�0:5
D 1=3;

from which

C.2; 1/ D a2=2

1 � 0:5p0 D 1=3;

E
�
W 0� D 1=�2

1 � �C.2; 1/ D 2=3;

E .T / D 2=3C 1=�2 D 8=3 s:

Consequently, the system time of theM=M=1 system is lower, though its waiting
time is higher.
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7.4 M=M=1 Queueing System

AnM=M=1 queueing system is obtained as the number of servers in theM=M=m
queueing system tends to infinity. Obviously, no waiting is possible at the limiting
case because there is always an idle server in the system. The M=M=1 queue
does not occur in practice, but this model can be used efficiently to approximate the
behavior of high-capacity service units.

The analysis of anM=M=1 queueing system can be carried out in an analogous
way to the analysis of the M=M=1 system. In an M=M=1 system, the number of
customers, L.t/, is also a birth-death process with the following parameters:

p0 D 1; ak D �; k 	 0; bk D k�; k 	 1;

˛k D �C k�; pk D �

�C k�; qk D
k�

�C k�; k 	 1:

In the case of an M=M=1 system,

Pk.t/ D exp

�
� �
�
.1 � e��t /

�
1

kŠ



�

�
.1 � e��t /

�k
; k 	 0;

and according to Theorem 3.68,


k D 1

kŠ



�

�

�k
e��=�; k 	 0:

The condition of stability is 0 < �;� < 1. The infinitesimal generator of
the Markov chain describing the number of customers in the system contains the
following nonzero elements:

qij D
8
<

:

�i D � if i 	 0; j D i C 1;
�i D i� if i 	 1; j D i � 1;
��i � �i D �� � i� if i 	 0; j D i;

whence

pk D p0


�

�

�k
1

kŠ
; k 	 1; (7.36)

and if the Markov chain is stable, then the normalized solution of p0 is

p0 D 1

1C
1X

kD1



�

�

�k
1

kŠ

D 1
1X

kD0



�

�

�k
1

kŠ

D e��=�;
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and the other state probabilities are

pk D .�=�/k

kŠ
e��=�; k 	 0 : (7.37)

This means that the number of customers in the stationary M=M=1 queue is
Poisson distributed with parameter �=� and

E .X/ D N� NT D � 1
�
D �

�
: (7.38)

7.5 M=M=m=m Queueing System

An M=M=m=m queueing system contains m servers but does not contain a buffer
for waiting customers. Thus customers that arrive while the servers are busy are
lost. It can be interpreted as a finite-state variant of the M=M=m queueing system
because the number of customers in the system cannot exceed m. The infinitesimal
generator of the Markov chain describing the number of customers in the system
contains the following nonzero elements:

qij D

8
ˆ̂
<

ˆ̂:

�i D � if 0 � i < m; j D i C 1;
�i D i� if 1 � i � m; j D i � 1;
��i � �i D �� � i� if 0 � i < m; j D i;
��m D �m� if i D m; j D i:

The stationary distribution is

pk D p0


�

�

�k
1

kŠ
; k D 1; 2; � � � ; m ; (7.39)

where

p0 D 1
mX

kD0



�

�

�k
1

kŠ

: (7.40)

An M=M=m=m system is stable (pk > 0 8k) if 0 < �;� <1. The mean service
time, the mean customer arrival intensity, and the mean number of customers are

Nx D 1

�
; N� D

m�1X

kD0
�kpk D �.1 � pm/; and E .X/ D �

�
.1 � pm/: (7.41)
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which fulfills Little’s law. M=M=m=m queueing systems are referred to as loss
systems in telecommunications. The probability that an arriving customer will be
lost is

P .loss/ D p.a/m D pm D



�

�

�m
1

mŠ
mX

kD0



�

�

�k
1

kŠ

D B.m; �=�/; (7.42)

which is known as the B (loss) formula of Erlang [55]. The dimensioning of
switched telephone networks was based on this formula for several decades in the
twentieth century.

Example 7.6. Consider the same system as in Example 7.4 and assume that the
calls that arrive when all lines are busy are lost. Compute the parameters of this loss
system, and compare them with those of the waiting system from Example 7.4:

ploss D B.4; 2/ D 16=24

1C 2C 22=2C 23=6C 16=24 D
2=3

5C 4=3C 2=3
D 2=21 D 0:095

where B.4; 2/ D 0:095 < C.4; 2/0:17. This relation can be explained by the load
of the two systems. In the case of a waiting system, all arriving customers must be
served, while in the case of loss systems, the load of the servers is reduced by the
lost customers.

7.6 M=M=1==N Queueing System

All previous queueing systems have infinite populations and a state-independent
Poisson customer arrival process. In an M=M=1==N queueing system, the popula-
tion is finite and the customer arrival intensity depends on the state of the system
because the customers in the system do not contribute to new arrivals. For example,
if all customers of the population are in the system, then the new customer arrival
intensity reduces to 0. The infinitesimal generator of a Markov chain describing the
possible changes in the system contains:

qij D
8
<

:

�i D .N � i/� if 0 � i < N; j D i C 1;
�i D i� if 1 � i � N; j D i � 1;
��i � �i D �.N � i/� � � if 0 � i � N; j D i:

The Markov chain is stable if 0 < �;� < 1. In this case the stationary
distribution is
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pk D p0


�

�

�k
ŒN.N � 1/ � � � .N � k C 1/� D p0



�

�

�k
N Š

.N � k/Š
k D 1; 2; � � � ; N; (7.43)

where

p0 D 1

1C
NX

jD1



�

�

�j
N Š

.N � j /Š

(7.44)

and the utilization is � D 1 � p0. The mean arrival intensity of this system is

N� D
NX

iD0
�ipi D

N�1X

iD0
.N � i/ � pi : (7.45)

According to Little’s law,
� D N�E .x/ D N�=�;

from which we obtain an expression for the mean arrival intensity:

N� D �

E .x/
D �� D �.1 � p0/: (7.46)

There is another way to express the mean arrival intensity. We can interpret the
life cycle of a customer such that it stays outside the system for an exponentially
distributed amount of time with parameter � and after that it enters the system and
spends a system time (waiting time + service time) there. Thus, the cycle time of
a customer is 1=� C E .T /, and a customer generates a new arrival at the system
once every cycle. Consequently, a customer generates arrivals at an average rate of
.1=�C E .T //�1, and the N members of the population generate arrivals at a rate
of

N� D N

1=�C E .T /
:

From this expression we have

E .T / D N

N� �
1

�
; (7.47)

and using Little’s law again we have

E .X/ D N�E .T / D N �
N�
�

(7.48)
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and E .W / D E .T / � 1

�
. The probability that a member of the population will be

in the system is

P .in system/ D E .T /
1=�C E .T /

:

Example 7.7. There areN terminals in a computer system. Each terminal infinitely
repeats the following steps:

• Generates a task in an exponentially distributed amount of time with parameter
�.

• Submits the task to the central processing unit.
• Waits for the answer.

The central processing unit processes a task in an exponentially distributed amount
of time with parameter�. Approximate the task completion rate and the system time
of this system assuming the two extreme cases where the system is heavily loaded
(N , �=� are small) and when the system load is light (N , �=� are large).

• In the case of a light load:

E .T / � 1

�
;

N� D K

1=�C E .T /
� K

1=�C 1=�:

• In the case of a heavy load:
N� � �;

E .T / � K

�
� 1
˛
:

7.7 Exercises

Exercise 7.1. Compute the mean and variance of the waiting time in an M=M=1
queue based on Wald’s identity.

Exercise 7.2. Two kinds of customers arrive at a queueing system with three
servers. Type 1 customers arrive according to a Poisson process at a rate �1. A type 1
customer occupies one server for an exponentially distributed amount of time with
the parameter �1. Type 2 customers arrive according to a Poisson process at a rate
�2. A type 2 customer occupies two servers for an exponentially distributed amount
of time with the parameter �2. Compute the loss probability of type 2 customers if
there is no buffer in the system.

Exercise 7.3. One shop assistant serves customers in a shop with an exponentially
distributed service time with the parameter �. The shop assistant wants to smoke
after an exponentially distributed time with the parameter ˛. If the shop is idle, he
leaves to smoke immediately. If he is busy when he wants to smoke, then he serves
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the customers while the shop is not idle and then leaves to smoke. The length of the
smoking break is exponentially distributed with the parameter ˇ. Customers arrive
according to a Poisson process at a rate �. Compute the mean shopping time of
customers if at most three customers can enter the shop (compute the same measure
if infinitely many customers can enter the shop.).

Exercise 7.4. A queueing system has two servers and two types of customers.
Type i customers arrive according to a Poisson process at a rate �i , and their
service time is exponentially distributed with the parameter �i , i D 1; 2. Server i
is typically assigned to type i customers. If there is a type i customer in the system
when server i is idle, then it serves a type i customer. If there is no type i customer
in the system when server i is idle, then it can serve a customer of the other type.
The arrival of a new customer does not interrupt the ongoing service. Compute the
loss probability of type i customers if the buffer size is 3.

Exercise 7.5. Two kinds of customers arrive at a discrete-time queueing system.
In every time slot a type i customer arrives with probability pi , i D 1; 2, and no
customer arrives with probability 1�p1�p2. There is one server. The service time
of a type 1 customer is geometrically distributed with the parameter q1. The service
time of a type 2 customer is time slot k, and the buffer size is b. Compute the mean
system time of type i customers for i D 1; 2 if k D 1; 2 and b D 0; 3;1.

Exercise 7.6. To improve the energy efficiency of a discrete-time queueing system,
the server is switched off (goes on vacation) for a geometrically distributed amount
of time with the parameter r if the system is idle at the end of a time slot. At the
end of the vacation period the server starts serving customers (if any) or goes for
another vacation (if none). In every time slot one customer arrives with probability
p and no customer arrives with probability 1�p. The service time is geometrically
distributed with the parameter q, and the buffer size is b. Compute the mean service
time, the mean vacation time, and the mean idle time of the server for b D 3;1.

Exercise 7.7. Compute the stationary number of customers in an M=M=2=3=4
queue if � D 1 and � D 2.

Exercise 7.8. Compute the loss probability of an M=M=m=m=K system for
K > m.

Exercise 7.9. Compare the probability of waiting in anM=M=m queue with a loss
probability in an M=M=m=m queue for m D 1; 2; 3, where the arrival and service
intensities are identical. Interpret the relation of the results.

Exercise 7.10. A complex system is composed of two main units. The failure
and the repair time of unit i , i D 1; 2, are exponentially distributed with the
parameters �i and �i , respectively. The units are maintained by a single repairman.
Define the Markov chain of the system behavior if the service discipline of the
repairman is FIFO, preemptive LIFO, or processor sharing if the repair of unit 1
has a preemptive priority over that of unit 2 and if the repair of unit 1 has a
nonpreemptive priority over that of unit 2.
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Exercise 7.11. Customers of a discrete-time queueing system (being served and
waiting) can be lost. Each customer is lost with probability r in each time slot.
One customer arrives with probability p (and with probability 1 � p no customer
arrives) in each time slot, and the service time is geometrically distributed with the
parameter q. Compute the probability of successful service completion if the buffer
size is 3.



Chapter 8
Non-Markovian Queueing Systems

8.1 M=G=1 Queueing System

The M=G=1 queueing system (Fig. 8.1) is similar to the M=M=1 queueing system
and the only difference is that the service time distribution is no exponential. First
we mention some idea, most of which were described in the previous chapter in
connection with an M=M=1 system.

8.1.1 Description of M=G=1 System

Conditions of functioning:

1. At the starting moment �0 the system is empty. For the sake of simplicity we
generally assume �0 D 0 (Fig. 8.2).

2. fN.t/; t 	 �0g describes the number of entering customers; this is a Poisson
process with intensity � > 0.

3. There is one server functioning without breakdowns; after having served a
customer it immediately starts serving the next one. If a customer enters the
system and the server is busy, the customer joins the waiting queue. There is
no limitation on the queue’s size.

4. The service discipline is FCFS (FIFO).
5. The service times are independent identically distributed (i.i.d.) random variables

with distribution function P .Y < x/ D B.x/ and mean E .Y / D �B <1, and
they do not depend on the arrival process.

The main characteristic of the system is the queue length fL.t/; t 	 0g, i.e.,
how many customers are in the system at moment t . Let L.t/ be continuous from
the right, i.e., L.t/ D L.t C 0/; t 	 0.

In the case of queueing systems, the basic issues concern the distribution of
queue length, whether there exists a limit distribution and how it can be found, the

L. Lakatos et al., Introduction to Queueing Systems with Telecommunication Applications,
DOI 10.1007/978-1-4614-5317-8 8, © Springer Science+Business Media, LLC 2013
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Service time distribution:
B(x)

Customer arrivals:

Poisson

with rate

process

λ

Fig. 8.1 M=G=1 system
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L(t)Fig. 8.2 Number of
customers inM=G=1 system

average number of customers in the system, etc. In this chapter we will deal with
the asymptotic behavior of queue length L.t/ as t !1.
We introduce the following notations:

• �0CX1: moment of entry of first customer;Xn: interarrival time between .n�1/st
and nth customers;

• �n D �0 CX1 C : : :CXn .n 	 1/: moment of entry of nth customer;
• Yn: service time of nth customer;
• sn; n 	 1: starting moment of service of nth customer;
• tn; n 	 1: moment when nth customer leaves system (service in system is

completed at this moment).

According to these assumptions, f.Xn; Yn/; n 	 1g is a sequence of i.i.d. random
variables, where the components of vectors are independent, too. Furthermore, the
intervals between consecutive arrivals Xn; n 	 1, have exponential distribution
with parameter �, the service times Yn; n 	 1, have distribution function B.x/. It
is also clear that f�n; n 	 1g, are moments of jumps of the Poisson process N.t/
(Fig. 8.2).

8.1.2 Main Differences Between M=M=1 and M=G=1 Systems

For the M=M=1 system both the interarrival and service times are independent ex-
ponentially distributed random variables. These distributions have the memoryless
property, so one can derive that fL.t/; t 	 0g is a Markov (birth-death) process.
This fact simplifies the investigation of the system.

In the M=G=1 queueing system the examined processes (queue length, waiting
time, etc.) are not necessarily of the Markov type since the service time distribution
may not have the memoryless property, so their investigation requires different
methods.

The foregoing conditions do not guarantee that L.t/ is a Markov process, but by
means of an auxiliary variable one can make it a Markov process with an extended
state vector.
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If U.t/ denotes the service time passed till t [U.t/ is right continuous], then the
vector process f.L.t/; U.t//; t 	 0g is already Markov and can be considered as
the state of the queueing system.

Generally, the vector W.t/ D fL.t/; U.t/g .t 	 �0/ describing (from a certain
viewpoint) the functioning of a system is called the state vector of the system if at
arbitrary t1 > t one can determine the vector W.t1/ in a stochastic sense based on
the value ofW.t/ and the arrivals for .t; t1�.

Compared with the M=M=1 system the difference is not only that the system
state is characterized by a vector process, but – and this is an important feature – the
state space will not be discrete since the possible values of U.t/ are not discrete and
take on values from the set RC D Œ0;1/ (or its subset).

8.1.3 Main Methods for Investigating M=G=1 System

1. Method of embedded Markov chains, also called Kendall’s method because its
wide use is connected with Kendall [52]. This method appeared in the 1950s, but
the possibility of such an approach was noted by Khinchin [53] (see also Palm
[75]). We will consider this method in detail.

2. Lindley’s integral equation [64]: can be derived for the more general G=G=1
systems and, hence, is applicable in our case, too. This approach leads to a special
Wiener–Hopf type of integral equation for the limit distribution of customer
waiting time.

3. Method of auxiliary variables [24, 52]: based on the fact that the system may
be investigated via the state vector fL.t/; U.t/; t 	 0g with the help of an
auxiliary variable U.t/ (Fig. 8.3). Instead of the time interval from the beginning
of service, one can use the time interval till the end of service (Henderson [42]).

4. Method of random walk and combinatorial approach [90].
5. Method of recurrent processes [14, 15].

In the following sections we will investigate the M=G=1 queue using these
approaches.

8.2 Embedded Markov Chains

This method includes the following steps:

(A) Choose random .�0 D 0 </ t1 < t2 < : : :moments when the process describing
the evolution of system is of a Markov type.

(B) Prove the ergodicity of the Markov chain Ln D L.tn/; n 	 1.
(C) Determine the ergodic distribution
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Fig. 8.3 L.t/ and U.t/ process of M=G=1 queue


k D lim
n!1 P .Ln D k/ ; k 	 0;

of the Markov chain.
(D) Prove the coincidence of limiting values lim

t!1 P .L.t/ D k/ D 
k; k 	 0.

8.2.1 Step (A): Determining Queue Length

As earlier, tn .n D 1; 2; : : :/ denotes the moment when the service of the nth
customer is completed. Let Ln D L.tn/, n 	 1 .L0 D 0/. Since Ytn D 0,
n 	 0, at moments tn, the behavior of the state-vector process fL.t/; Yt /; t 	 0g is
described by the sequence fLn; n 	 1g. In our case the main idea of application of
embedded Markov chains is to consider the process f.L.t/; Yt /; t 	 0g at moments
tn, n D 1; 2; : : :. Using this method we come to a Markov chain fLn; n 	 1g with
countable state space X D f0; 1; 2; : : :g, and so we obtain the final result [see (D)
for the method]. In practice this means that the states of the system (the number
of customers in the system) are considered at moments just after having served
a customer. In this restricted view of the process, every state transition between
consecutive service completion moments (e.g., customer arrival) is considered at
the service completion moments.

The process L.t/ is Markov regenerative; this fact will be used at the proof of
step (D).

We prove the following theorem, fulfilling the tasks formulated in steps (A)
and (B).
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Theorem 8.1. The stochastic process fLn; n 	 1g is a homogeneous, irreducible,
aperiodic Markov chain with state space X D f0; 1; 2; : : :g. If the condition � D
��B < 1 is fulfilled, then the Markov chain fLn; n 	 1g is ergodic.

Proof. First we prove that the stochastic process fLn; n 	 1g is a Markov chain.
Let �n, n D 1; 2; : : :, denote the number of customers entering the system for the
service time Yn of the nth customer, i.e.,

�n D N.tn/�N.tn � Yn/ D N.sn C Yn/ �N.sn/; n 	 1:

Service to the nth customer may start at sn D tn�Yn > tn�1 if the system is empty at
tn�1, i.e., Ln�1 D 0. In this case, sn D �n, and consequently�n D N.tn/�N.tn�1/.
Then

Ln D
�
Ln�1 � 1C�n; if Ln�1 > 0;
�n; if Ln�1 D 0;

or

Ln D IfLn�1>0g.Ln�1 � 1/C�n D .Ln�1 � 1/C C�n: (8.1)

Since the arrival process fN.t/; t 	 0g is Poisson, independent of service times
fYn; n 	 1g, the number of customers�n entering at service time Yn is independent
of L1; : : : ; Ln�1, and consequently the sequence Ln constitutes a Markov chain.

Now we determine the distribution and mean value of the random variable
�n .n 	 1/.

Using the fact that the behavior of N.t/ is independent of past events, the
distribution of �n can be written by the total mean value formula

ak D P .�n D k/ D
1Z

0

P .�1 D kjY1 D x/ dB.x/ D
1Z

0

.�x/k

kŠ
e��xdB.x/; k 	 0:

Excluding the degenerate case P .Y D 0/ D 1, the inequality ak > 0, k 	 0, is
always valid.

For the mean value of�n we obtain

E .�n/ D
1X

kD1
kak D

1X

kD1

1Z

0

.�x/k

.k � 1/Še
��xdB.x/

D
1Z

0

�x

1X

kD0

.�x/k

kŠ
e��xdB.x/ D �

1Z

0

xdB.x/ D ��B D �: (8.2)

Since ��B < 1, by Eq. (8.1), the Foster criterion is fulfilled (Theorem 3.42). ut
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The possibility of changing the order of summation and integration in the
previous formula follows from the Fubini theorem but can also be proved in an
elementary way. Since for the function

Q.A; n/ D
AZ

0

nX

kD1

.�x/k

.k � 1/Še
��xdB.x/; A 2 RC; n 2 N;

there exists a limit as A!1 and n!1, and moreover�B D
R1
0
xdB.x/ <1,

then as A!1 uniformly in n

jQ.1; n/�Q.A; n/j D
1Z

A

nX

kD1

.�x/k

.k � 1/Še
��xdB.x/

�
1Z

A

�x

1X

kD0

.�x/k

kŠ
e��xdB.x/ D

1Z

A

�xdB.x/! 0;

from which the interchangeability follows.

Proof of Homogeneity Let

pij .n/ D P .LnC1 D j jLn D i/ ; i; j 	 0; n 	 0;

be one-step transition probabilities. Then, using Eq. (8.1),

pij D P
�
Ifi>0g.i � 1/C�nC1 D j

�
;

so

pij .n/ D pij D
8
<

:

aj if i D 0; 1; j D 0; 1; 2; : : : ;
0 if i 	 2; j � i � 2;
ajC1�i if i 	 2; j 	 i � 1;

i.e., the sequence fLn; n 	 0g is a homogeneous Markov chain. This behavior is
depicted in Fig. 8.4, and the associated matrix of one-step transition probabilities
may be written in the form

P D .pij /1i;jD1 D

0

B
B
BB
B
@

a0 a1 a2 a3 : : :

a0 a1 a2 a3 : : :

0 a0 a1 a2 : : :

0 0 a0 a1 : : :
:::
:::
:::
:::
: : :

1

C
C
CC
C
A
: (8.3)
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a0

a 0 a0 a0 a 0

a1

a1 a1 a1 a1
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Fig. 8.4 Embedded Markov chain of M=G=1 queue

In this matrix, ai gives the probability that i customers arrive at the system while
a customer is being served. Fixing the initial state, adding the arriving customers,
and subtracting the customer being served, we get the next state. We can descend
one level if no new customers appear, remain at the same level if one new customer
arrives, and go up if at least two new customers arrive. This explains the structure
of the matrix. In this matrix the first two rows coincide. In the case of one already
present customer, the foregoing reasoning is valid, but the zero state is a special
situation. We arrive at the zero state when the last customer in a busy period is
served. After a free period the first customer of the next busy period arrives, and
we will consider the system state after this customer has been served. This new state
will be determined by the number of customers arriving while this customer is being
served. The coincidence of two rows is explained by the fact that in both cases we
must consider the number of new customers arriving for the service of one customer.
In the first case it is within a busy period, while in another case it is at the beginning
of a busy period.

8.2.2 Proof of Irreducibility and Aperiodicity

Both properties may be derived from the matrix of one-step transition probabilities,
but they may also be obtained from the following considerations.

Since the interarrival times have an exponential distribution with the parameter
�, it is clear that

• From arbitrary state i 2 X for i services (steps) with positive probability we
arrive at the state 0; this is enough so that no new customers enter.

• From state 0 with positive probability we can get to any state j 2 X in one step.

The i and one-step transition probabilities (in the case of arbitrary i; j 2 X ) are
p
.i/
i0 > 0, p.1/0j > 0, and consequently p.iC1/ij > 0, from which it follows that the

Markov chain fLn; n 	 0g is irreducible [for all i; j 2 X there exists such n that
p
.n/
ij > 0].
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Obviously, for arbitrary i 2 X p
.1/
i i > 0 (since for all i 	 1 for the service of

a customer with positive probability a new customer enters and there is no entry at
i D 0). So the Markov chain fLn; n 	 0g is aperiodic [if d.i/ is the period of state
i , i.e., d.i/ D fgreatest common divisor (g.c.d.) of n for which p.n/i i > 0g, in our
case d.i/ D 1].

8.2.3 Step (B): Proof of Ergodicity

One way to prove ergodicity is to show that all states of the Markov chain are
recurrent nonzero ones (with probability 1 it returns to all states and the mean value
of the return time is finite, i.e.,

Fii D
1X

nD1
fi i .n/ D 1; mi D

1X

nD0
nfii .n/ <1;

where fij .n/ is the probability that the Markov chain which starts from state i
goes to state j for the first time in the nth step. This approach requires a lot of
computation, so we use the sufficient condition for the ergodicity of Markov chains
obtained by Klimov (Theorem 3.41).

We check the conditions of Theorem 3.41 in the case � < 1. It is enough to find
a function g.i/; i 2 X , for which its conditions are fulfilled.

Let " D 1 � � .> 0/ and g.i/ D i; i 	 0 (this case is known in the literature as
Foster’s criterion). From Eq. (8.1) it follows that

E .g.LnC1/jLn D i/ D E .i � 1C�nC1/ D i � 1C ��B D i � "; i 	 1;

and
E .g.LnC1/jLn D 0/ D E .�nC1/ D ��B D 1 � "; i D 0;

i.e., the conditions of Klimov’s theorem are fulfilled, and we have proved the
ergodicity of the Markov chain fLn; n 	 0g.

8.2.4 Pollaczek–Khinchin Mean Value Formula

Equation (8.1) makes it possible to find the moments of ergodic distribution. We
present it for the case of mean value; the computations are similar for other
moments. The derivation requires less computation than the later Pollaczek–
Khinchin transform equation, but in that case we automatically obtain the necessary
conditions (� < 1 and the service time has finite second moment).

Assume that the following finite limits exist:

lim
n!1 E .Ln/ D m1 and lim

n!1 E
�
L2n
� D m2 (8.4)
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(we do not deal with the conditions of existence).
Equation (8.4) follows from (8.1) if E

�
�2
n

�
< 1, and the service time also has

finite second moment. Taking on both sides of Eq. (8.1) limit as n!1

m1 D lim
n!1 E .Ln/ D lim

n!1ŒE
�
IfLn�1>0g.Ln�1 � 1/

�C E .�n/�

D lim
n!1ŒE .Ln�1/� E

�
IfLn�1>0g

�C �� D m1 � lim
n!1 E

�
IfLn�1>0g

�C �;

whence
lim
n!1 P .Ln > 0/ D lim

n!1 E
�
IfLn�1>0g

� D �
and


0 D lim
n!1 P .Ln D 0/ D 1 � lim

n!1 E
�
IfLn�1>0g

� D 1 � �:
Though this procedure leads to important results, it does not produce the desired

mean value. Repeating it for the second moments we meet our objective. Using the
independence of Ln�1 and �n, we obtain

m2 D lim
n!1 E

�
L2n
�

D lim
n!1 E

�
.L2n�1 � 2Ln�1 C 1/IfLn�1>0g C 2.Ln�1 � 1/IfLn�1>0g�n C�2

n

�

D m2 � 2m1 C �C 2m1 � � 2�2 C E
�
�2
1

�
;

whence

m1 D � � 2�2 C E
�
�2
1

�

2.1� �/ D �C E
�
�2
1

� � �
2.1� �/ :

Later, by means of the generating function, we obtain the equality E
�
�2
1

� D
�2E

�
Y 21
�C �; using it from the last equation we come to the Pollaczek–Khinchin

mean value formula:

m1 D �C �2E
�
Y 21
�

2.1� �/ : (8.5)

8.2.5 Proof of Equality E
�
�2

1

� D �2E
�
Y 2

1

� C �

Let B�.s/ D R1
0

e�sxdB.x/; s 	 0, be the Laplace–Stieljes transform of the
distribution function B.x/. The generating function of entering customers for one
service will be

E
�
z�1
� D A.z/ D

1X

iD0
ai z

i D
1X

iD0

1Z

0

.�xz/i

i Š
e��xdB.x/ D B�.�.1 � z//: (8.6)



234 8 Non-Markovian Queueing Systems

Similarly to the derivation of mean value E .�1/ we get

A0.1/ D E .�1/ D
1X

kD1
kak D

1X

kD1
k

1Z

0

.�x/k

kŠ
e��xdB.x/

D
1Z

0

�x

1X

kD0

.�x/k

kŠ
e��xdB.x/ D �

1Z

0

xdB.x/ D �: (8.7)

There exists a second moment of service time, so the Laplace–Stieltjes transform
is twice continuously differentiable from the right, and for the right derivatives

B�0.0/ D �
1Z

0

xdB.x/ D �E .Y1/ D ��B;

B�00.0/ D
1Z

0

x2dB.x/ D E
�
Y 21
�
:

From here (and taking the left-side derivatives at point 1)

E .�1/ D A0.1/ D ��B�0.0/ D ��B D �;
E
�
�2
1

� D .zA0.z//0zD1 D ��B�0.0/C �2B�00.0/ D ��B C �2E
�
Y 21
�

D �C �2E �Y 21
�
:

8.2.6 Step (C): Ergodic Distribution of Queue Length

From the ergodicity of the Markov chain fLn; n 	 0g follows the existence of the
ergodic distribution


k D lim
n!1 P .Ln D k/ ; k D 0; 1; 2; : : : ;

which can be obtained as the solution of the system of equations


k D
1X

jD0

j pjk; k D 0; 1; 2; : : : ;

1X

kD0

k D 1:
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The matrix P has a special structure [see Eq. (8.3)], and the stationary equations
take the form


k D 
0ak C 
1ak C 
2ak�1 C : : :C 
kC1a0

D
kX

iD0

k�iC1ai C 
0ak; k D 0; 1; 2; : : : : (8.8)

We solve this system of equations by the method of generating functions. Let us
introduce the notation


.z/ D
1X

kD0

k zk; A.z/ D

1X

kD0
ak zk; jzj � 1:

First, 
.1/ D A.1/ D 1, and, according to our previous computations, A0.1/ D
limz!1�0 A0.z/ DP1

kD1 kak .D E .�1// D �. Multiplying both sides of Eq. (8.8)
by zk and summing up by k for k 	 0, we obtain


.z/ D
1X

kD0
zk

kX

mD0
am
k�mC1 C 
0A.z/

D
1X

mD0
am zm

1X

kDm
zk�m
k�mC1 C 
0A.z/

D A.z/

.z/ � 
0

z
C 
0A.z/;

whence


 .z/Œ1 �A.z/=z� D �
0A.z/.1=z� 1/;
and so


.z/ D 
0 .1 � z/A.z/

A.z/ � z
; jzj < 1: (8.9)

This includes the unknown probability 
0, which will be found from the condition

.1/ D P1

kD0 
k D 1. In the derivation of the Pollaczek–Khinchin mean value
formula under special conditions we already found the value of 
0, and here it will
come from Eq. (8.9) when

R1
0
x2dB.x/ <1.


.z/ is continuous from left at point 1, so at z D 1 the numerator and denominator
of Eq. (8.9) disappear. By l’Hospital’s rule


.1/ D lim
z!1�0 
.z/ D lim

z!1�0 
0
�A.z/C A.z/.1 � z/

A.z/� 1 D �
0
A0.1/� 1 D


0

1 � � D 1;
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and we obtain 
0 D 1� �.
Earlier we proved (8.6), i.e.,

A.z/ D B�.�.1 � z//; jzj � 1:

From it and Eq. (8.9) we get the Pollaczek–Khinchin transform equation (or, more
precisely, one of its forms):


.z/ D .1 � � /.1 � z/B�.� .1� z//

B�.� .1 � z// � z
: (8.10)

Recall that this gives the generating function of ergodic distribution for the
embedded Markov chain fLn; n 	 0g.
Corollary 8.2. The inversion of the Pollaczek–Khinchin transform equation gener-
ally is not simple, but the moments may be obtained from it without inversion.

Taking into account B�0.0/ D �E .Y / D ��B , B�”.0/ D E
�
Y 2
� DR1

0
x2dB.x/, and using l’Hospital’s rule twice we obtain the mean value of the

number of customers in the system (Pollaczek–Khinchin mean value formula):

1X

kD0

k
k D 
 0 .1/ D lim
z!1�


 .z/

D lim
z!1�

.1� �/
�B�2.�.1� z//C �zB�0.�.1� z//� �z2B�0.�.1� z//CB�.�.1� z//

ŒB�.�.1� z//� z�2

D lim
z!1�

.1� �/
�2B�00.�.1� z//� 2�B�0.�.1� z//� 2�2ŒB�0.�.1� z//�2

2�2ŒB�0.�.1� z//�2 C 4�B�0.�.1� z//C 2

D .1� �/
�2B�00.0/C 2� � 2�2

2.1� �/2

D �C � 2E
�
Y 2
�

2.1� � /
:

The variance of stationary queue length can be computed in a similar way:

�2 D �3E
�
Y 3
�

3.1� �/ C
�4E

�
Y 2
�

4.1 � �/2 C
�2E

�
Y 2
�
.3 � 2�/

2.1� �/ C �.1 � �/;

where E
�
Y i
�
; i D 2; 3; denotes the i th moment of service time [19].

Example 8.3 (Inversion in the case ofM=M=1 system). In this case the intensity of
arrivals is � > 0, the intensity of service � > 0 (the interarrival and service times
are independent exponentially distributed random variables with parameters � and
�, respectively). Then
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Fig. 8.5 Busy periods

B�.s/ D �

s C �; Re s > ��;


.z/ D �

� � � zC � �
.1 � �/.1� z/

Œ� =.� � � zC �/� � z
:

Since � D �� D �=�,


.z/ D 1 � �
1 � �z

;

and for the stationary distribution we obtain


k D .1 � �/�k; k 	 0:

8.2.7 Investigation on Busy/Free Intervals in M/G/1 Queueing
System

Observing a queueing system we see that there are periods during which it is empty
or occupied. The time interval when the server is occupied is called the busy period.
It begins with the arrival of a customer at the empty system and is finished when the
last customer leaves the system (Fig. 8.5).

If .�i ; �i /; i D 1; 2; : : : , denote consecutive free and busy periods, then .�i ; �i /
is a sequence of i.i.d. random variables, where the components �i and �i are also
independent of each other. The sequence .�i C �i /; i D 1; 2; : : : , is a renewal
process, �i has an exponential distribution with the parameter �. Finding the
distribution of busy periods �i is more complicated and will be considered later.

Let ‰.x/ D P .�i � x/. Assume that at moment t D 0 a customer enters the
system and a busy period begins. The customer’s service time is Y D y. There are
two cases:

1. During service no new customer enters the system and the busy period ends,
i.e., its duration is Y D y.

2. For y, n 	 1, customers enter the system and the busy period continues
(Fig. 8.6).
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Fig. 8.6 Length of busy period

In the last case n successive service times are denoted by Y1; Y2; : : : ; Yn. Assume
that the service is realized in inverse order, i.e., according to the LCFS discipline
[88], then according to our assumptions the interarrival and service times are
independent. Their distributions are exponential with parameter � and B.x/, and
the distribution of busy periods remains the same .‰/. The whole busy period �
can be divided into intervals Y; n; n�1; : : : ; 1 (if n D 0, then � D Y ), where
n; n�1; : : : ; 1 mean busy periods generated by the different customers, they are

1. Independent,
2. Identically distributed, and
3. Their distribution coincides with that of �.

By the formula of total probability (n C � � � C 1 D 0 if n D 0),

‰.x/ D P .� � x/
D P .Y C n C � � � C 1 � x/

D
1X

jD0
P .Y C n C � � � C 1 � x; n D j /

D
1Z

0

1X

jD0
P
�
Y C j C � � � C 1 � x; n D j j Y D y

�
dB.y/

D
1Z

0

1X

jD0
P
�
y C j C � � � C 1 � x

� .�y/j

j Š
e��y dB.y/

D
1Z

0

1X

jD0
‰j .x � y/.�y/

j

j Š
e��y dB.y/

(the order of summation and integration may be changed), where

‰j .x/ D P
�
1 C � � � C j � x

�
:

This functional equation will be simpler if we use the Laplace–Stieltjes transforms.
Let
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B�.s/ D
1Z

0

e�sx dB.x/; ‰�.s/ D
1Z

0

e�sx d‰.x/:

The j are independent and have the same distribution ‰, so

‰�.s/ D
1Z

0

8
<

:

1X

jD0

.�y/j

j Š

1Z

0

e�sx dx‰j .x � y/
9
=

;
e��y dB.y/

D
1Z

0

8
<

:

1X

jD0

.�y/j

j Š

�
e�sy.‰�.s//j

	
e��y

9
=

;
dB.y/

D
1X

jD0

.�‰�.s//j

j Š

1Z

0

yj e�.�Cs/y dB.y/

D
1X

jD0
.�1/j .�‰

�.s//j

j Š

dj

dsj
.B�.�C s//;

which corresponds to the Taylor expansion of the function B�.�C s � �‰�.s// in
the neighborhood of �‰�.s/; consequently,

‰�.s/ D B�.�C s � �‰�.s//: (8.11)

The next theorem deals with the solution of the functional Eq. (8.11).

Theorem 8.4. Equation (8.11) has a unique solution at Re s > 0, j‰�.s/j � 1,
and ‰�.s/ is real for all s > 0. Let p� .0 � p� � 1/ denote the least positive
number for which B�.�.1 � p�// D p�. Then

‰.1/ D p�:

If � D �� � 1, then p� D 1, and ‰.x/ is a (nondegenerate) distribution function;
if � > 1, then p� < 1, and the busy period may be infinite with probability 1 � p�.

Comment 8.5. Since B�.�.1 � p//; 0 � p � 1, is a continuous and strictly
monotonically function of p, and if p D 1, then B�.�.1 � p�// D p�, and p�
is well defined.

Proof. First we show that Eq. (8.11) has a unique solution ‰�.s/ for which, at
arbitrary s > 0, j‰�.s/j � 1. The proof uses the Rouché’s theorem. ut
Theorem 8.6 (Rouché). Let G.z/ and g.z/ be regular functions on the domain D
and continuous on its closure. If on the boundary ofD jg.z/j < jG.z/j, then G.z/C
g.z/ and G.z/ have the same number of roots in D (with multiplicities).
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Fig. 8.7 Solution of Eq. 8.12

Let s be an arbitrary complex number, Re s > 0, and consider the equation
z D B�.s C � � �z/. The right and left sides are analytical functions of z on a
domain that contains the unit circle jzj � 1. If jzj D 1, then, because of Re s > 0

Re.s C � � �z/ > 0,

jB�.s C � � �z/j �
1Z

0

je�.sC���z/xj dB.x/

D B�.Re.s C � � �z//

< 1 D jzj:

By Rouché’s theorem, z and .z � B�.s C � � �z// have the same number of roots
on the domain jzj < 1, i.e., one.

Now let us examine Eq. (8.11) on the positive real half-line. Let sC���‰�.s/ D
x and consider the solution of the equation

.s C � � x/=� D B�.x/ (8.12)

at s > 0. We will see that in this case there exists a unique solution x0 for which
s < x0 < s C �. Figure 8.7 helps to understand the problem.
B�.x/ is convex from below and continuous; consequently the root of Eq. (8.12)

– and so‰�.s/ also – for all s > 0 is uniquely determined on the whole .0;1/ half-
line.

We remark that B� is a regular function, as is ‰� [for all points .0;1/ there
exists a neighborhood with radius r > 0, where it can be expanded]; consequently,
it can be analytically continued for the right half-plane. (This means that Eq. (8.12)
has an analytical inverse for x.)

If s ! 0, then Bs ! C , while the tangent of BsAs remains � 1
�

. At the same
time

B�0.0/ D ��B D �
1Z

0

x dB.x/;

so, by using the fact B�.x/ is convex from below:
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1. If � > 1 (1=�B < �), then BsAs (in the case s ! 0C) for a certain x� > 0

intersects B�.x/. Then lims!0 x0.s/ D x�, p� D ‰�.0/ D ��x�

�
< 1 (in this

case the busy period can be infinite with positive probability).
2. If � � 1 (1=�B 	 �), then the limit of BsAs intersects B�.x/ at the only point
x0 D 0 when p� D 1. Consequently,‰.1/ D ‰�.0/ D 1.

Corollary 8.7. Assume that � < 1. Differentiating Eq. (8.11) at s D 0 we obtain a
linear equation for the mean value E� D �‰�.0/:

‰�0.0/ D B�0.0/.1� �‰�0.0//:

From this we obtain the mean value of the busy period

E .�/ D �‰�0.0/ D �B

1 � � :

The other moments can be computed in a similar way, e.g.,

E
�
�2
� D E

�
Y 2
�

.1 � �/3 :

Results concerning the distribution function of a busy period’s length may be
derived from other considerations. With one customer have been served, n ones
remain in the system; let Hn denote the time period till the moment when there will
be n� 1 customers. Furthermore, letQn denote the number of served customers for
this period. The structure of this period (while we descend one level) coincides with
the structure of the busy period and is independent of n.

Let the service time of a customer be Y D y; then (since we have a Poisson
process with the parameter �) the length of the busy period is

f�jY D yg D

8
ˆ̂̂
<

ˆ̂
:̂

y with probability e��y;
y CH1 with probability �ye��y;
y CH1 CH2 with probability .�y/2

2Š
e��y;

: : :

We have ‰�.s/ D E .e�s�/ D ‰�
1 .s/ D ‰�

2 .s/ D : : :, so

E .e�s�jY D y/ D
1X

iD0

.�y/i

i Š
e��ye�sy .‰�.s//i

D e��ye�sye�y‰
�.s/ D e�y.sC���‰�.s//

and
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‰�.s/ D
1Z

0

E .e�s�jy/ dB.y/ D
1Z

0

e�y.sC���‰�.s//dB.y/

D B�.s C � � �‰�.s//:

The number of customers served for a busy period is

fQjY D yg D

8
ˆ̂
<̂

ˆ̂
:̂

1 with probability e��y;
1CQ1 with probability �ye��y;
1CQ1 CQ2 with probability .�y/2

2Š
e��y;

: : :

Let Q.z/ D E
�
zQ
� D Q1.z/ D Q2.z/ D : : :,

E
�
zQjy� D z

1X

iD0

.�y/i

i Š
e��yQi.z/

D ze��ye�yQ.z/ D ze�y.���Q.z//;

and using this result we obtain

Q.z/ D
1Z

0

E
�
zQjy� dB.y/ D

1Z

0

ze�y.���Q.z//dB.y/

D zB�.�.1 �Q.z///:

We have already computed the moments for the length of the busy period; the mean
value of customers served for the busy period is

E .Q/ D 1

1 � � :

8.2.8 Investigation on the Basis of the Regenerative Process

The functioning of an M=G=1 system may be considered a regenerative process.
Our aim now is to derive the Pollaczek–Khinchin transform equation on its basis.

We introduce the following notations:

E .�/ D �B

1 � � : mean value of busy period;

!i : mean value of time spent above i th level during a busy period;
�i : mean value of time spent on i th level during a busy period.
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Theorem 8.8. Let us consider an M/G/1 queueing system with arrival rate � and
service time distribution B.x/. If the service time of a customer has a finite mean
�B , ��B < 1, then there exists an equilibrium distribution in the system. These
probabilities are determined by the fractions pi D �i=E .�/ .i D 0; 1; : : :/, where
E .�/ is the mean value of the busy period and �i is the mean value of time spent on
the i th level during a busy period.

Proof. The proof of the theorem is a direct consequence of Theorem 4.40 (see also
[94, Theorems 1.3.2 and 1.3.3]). The mean values appearing in the theorem are
given by the following lemma. ut
Lemma 8.9. In the M/G/1 system

�0 D �B; �1 D 1 � a0
a0

�0; �2 D 1 � a0 � a1
a0

.�0 C �1/;

and �k .k 	 3/ satisfy the recurrence relation

�k D
k�2X

iD1

1 � a0 � a1 � : : : � ai
a0

�k�i C 1 � a0 � a1 � : : : � ak�1
a0

.�0 C �1/:

Proof. Let j customers be present in the system, with one of them being served.
An actual customer having been served, the number of present customers does
not change with probability a1. The number of present customers changes with
probability 1 � a1, we come to another level, with probability a0

1�a1 to j � 1, and

with probability 1�a0�a1
1�a1 to a level above j .

Let us consider a busy period and intervals in it where one or more customers stay
in the system. When we used the embedded Markov chain technique the states of the
system were identified by the number of customers remaining in the system after a
customer had been served. Now it will be better to regard the number of customers at
the beginning of service. The difference will be clear from the following reasoning.
If one considers service periods of customers when at the starting moment there
are no other customers, then each of the periods corresponds to state 1, excluding
two cases. The first case is when we jump to a level above the first one, then the
service of the last customer from the viewpoint of states corresponds to the new
level (from the viewpoint of the number of present customers to the first level).
But the whole duration does not change because coming from the second level to
the first the inverse situation takes place. The situation will be similar for all levels
above the first. The second case is the service of the last customer in the busy period;
it corresponds to a zero state (after this customer is served there will be no customers
in the system), so it must be excluded from the number of customers served on the
first level.

We determine the mean value of a period during which there is only one customer
in the system. For the service of a customer a new one enters with probability a1,
so this state is continued with probability a1 and terminated with probability 1 �
a1 (there is no entry or more than one customer appears). For such a period with
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probabilities 1 � a1 is served one, a1.1 � a1/ are served two,. . . , with probability
ak�1
1 .1�a1/ are served k customers. The mean value of the number of customers

served is 1X

kD1
kak�1

1 .1 � a1/ D 1

1 � a1 :

Now let us determine the mean value of a period above the first level (in this case
we will have the aforementioned deviation concerning the states and number of
customers, but finally we obtain the correct value). Assume that at the beginning of
this period there are k customers in the system [while the last customer on the first
level is being served with probability 1 � a0 � a1, at least two customers arrived,
with probabilities ak

1�a0�a1 .k D 2; 3; : : :/ we will have k ones]. To return to the first
level, we have to complete k � 1 present and all further customers entered for their
services. (The structure of a period during which one customer is served with the
generated ones coincides with that of the busy period.) The mean value of a busy
period is �B

1�� ; consequently, the length of such an interval is

1X

kD2

ak

1 � a0 � a1 .k � 1/
�B

1 � � D
�B

.1 � �/.1 � a0 � a1/


� � a1 � .1 � a0 � a1/

�

D � � 1C a0
.1 � �/.1 � a0 � a1/�B;

where we used the equalities

� D
1X

kD1
kak Kes

1X

kD0
ak D 1:

For the busy period we have a certain number of intervals with one present
customer; such an interval is finished either without entry (meaning the end of the
busy period) or with the entry of more than one customer. With probabilities

a0

1 � a1 ;
1 � a0 � a1
1 � a1

a0

1 � a1 ; : : : ;
.1� a0 � a1/k
.1 � a1/k

a0

1 � a1 ; : : :

we will have 0,1,. . . ,k,. . . intervals with the presence of more than one customer.
Thus the mean values of intervals of two types are

1X

kD1
k
.1 � a0 � a1/k�1

.1 � a1/k�1
a0

1 � a1
�B

1 � a1 D
�B

a0
;

1X

kD1
k
.1 � a0 � a1/k
.1 � a1/k

a0

1 � a1
� � 1C a0

.1 � �/.1 � a0 � a1/�B D
� � 1C a0
a0.1 � �/ �B:
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The sum of these two values obviously gives the busy period’s mean value:

�B

a0
C � � 1C a0

a0.1 � �/ �B D
�B

1 � � :

We derive the mean value of time spent above the kth level for a busy period.
First let us consider the case of the second level. We have two possibilities:

1. From the first level we arrive at the second one.
2. From the first level we arrive at least at the third one.

If the period under consideration begins at the second level, then we are in
the same situation as in the case of the first level. We serve a certain number of
customers on the second level, then we go either to the first level or above the
second one. In the first case, intervals on and above the second level will change, and
spending on average!1 time above it we come to the first one. In the second case the
period above the second level begins with a jump from the first level immediately
to a level above the second, and the mean value of time to return to the second one
is equal to

1X

kD3

ak

1 � a0 � a1 � a2 .k � 2/
�B

1 � � D
� � 2C 2a0 C a1

.1 � �/.1 � a0 � a1 � a2/�B D "2:

Now we are in the same situation as in the previous case, i.e., we spend above the
second level !1 time. The probabilities of the two cases are

a2

1 � a0 � a1 and
1 � a0 � a1 � a2
1 � a0 � a1 ;

so for a period beginning and ending on the first level we spend above the second
level on average

a2

1� a0 � a1 !1 C
1 � a0 � a1 � a2
1 � a0 � a1 .!1 C "2/ D !1 C "0

2;

where

"0
2 D

� � 2C 2a0 C a1
.1 � �/.1 � a0 � a1/�B:

For a busy period we have i such intervals with probability .1�a0�a1/i
.1�a1/i

a0
1�a1 ;

consequently,

!2 D
1X

iD1
i
.1 � a0 � a1/i
.1 � a1/i

a0

1 � a1 .!1C"
0
2/ D

1 � a0 � a1
a0

!1C1 � a0 � a1 � a2
a0

"2:
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Let us assume that our formula is valid for the k � 1st level and compute !k . We
consider again an interval starting and ending on the first level. !k may be written
in the form

!k W !k�1
!k�2 C !k�1
: : : : : : : : : : : : : : : : : : :

!k�i C !k�iC1 C : : :C !k�2 C !k�1
: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

!1 C !2 C : : :C !k�2 C !k�1 C "k
From the first level we can come to the second, third, . . . , k� 1st, kth, or one above
the kth level. The first possibility is the second level. We are in the same situation as
in the case with the time spent above the k�1st level from the viewpoint of the first
one; the mean value is !k�1. In the case of the third level, first we have an interval
starting with three and ending with two customers. This corresponds to the situation
where one considers the time above the k� 2nd level from the viewpoint of the first
one; the mean value is !k�2. Now we are in the previous situation (two customers),
and the mean value of the remaining part is !k�1. So under the condition that from
the first level we come at once to the third level, the desired mean value is equal to
!k�2 C !k�1.

Let us consider the last case, which takes place when from the first level we jump
to a level above k. The mean value of time to reach the kth level is

1X

iDkC1

ai

1 � a0 � a1 � : : : � ak .i � k/
�B

1 � �

D � � k C ka0 C .k � 1/a1 C : : :C 2ak�2 C ak�1
.1 � �/.1 � a0 � a1 � : : : � ak/ �B D "k:

After this period we will be at the kth level, and according to our previous reasoning,
spending on average !1 time above the kth level we come to the k � 1st level,
spending !2 above the kth level we come to the k � 2nd, . . . , and finally starting
from the second level and spending !k�1 above the kth one we reach the first level.
So, in the last case, the desired mean value is !1 C !2 C : : : C !k�1 C "k . The
probability of the first case is a2

1�a0�a1 , the probability of the second one is a3
1�a0�a1 ,

. . . , and the probability of the last case is 1�a0�a1�:::�ak
1�a0�a1 . Multiplying the conditional

mean values by the corresponding probabilities we obtain

!k�1 C 1 � a0 � a1 � a2
1 � a0 � a1 !k�2 C : : :C
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C 1 � a0 � a1 � : : : � ak�1
1 � a0 � a1 !1 C 1 � a0 � a1 � : : : � ak

1 � a0 � a1 "k:

For the busy period we will stay above the first level i times with probability
.1�a0�a1/i
.1�a1/i

a0
1�a1 , so the mean value of time spent above the kth level for a busy period

equals

!k D
1X

iD1
i
.1 � a0 � a1/i
.1 � a1/i

a0

1 � a1


!k�1 C 1 � a0 � a1 � a2

1� a0 � a1 !k�2C

C : : :C 1 � a0 � a1 � : : : � ak�1
1 � a0 � a1 !1 C 1 � a0 � a1 � : : : � ak

1 � a0 � a1 "k

�

D
k�1X

iD1

1 � a0 � a1 � : : : � ai
a0

!k�i C 1 � a0 � a1 � : : : � ak
a0

"k:

In a similar way

!k�1 D
k�2X

iD1

1 � a0 � a1 � : : : � ai
a0

!k�i�1 C 1� a0 � a1 � : : : � ak�1
a0

"k�1:

The mean value of time spent on the kth level for the busy period is

�k D !k�1 � !k D 1 � a0 � a1
a0

.!k�2 � !k�1/C 1 � a0 � a1 � a2
a0

.!k�3 � !k�2/

C : : :C 1 � a0 � : : : � ak�2
a0

.!1 � !2/ � 1 � a0 � : : : � ak�1
a0

!1

C� � .k � 1/C .k � 1/a0 C .k � 2/a1 C : : :C 2ak�3 C ak�2
a0.1 � �/ �B

�� � k C ka0 C .k � 1/a1 C .k � 2/a2 C : : :C 2ak�2 C ak�1
a0.1 � �/ �B

D 1 � a0 � a1
a0

�k�1 C 1 � a0 � a1 � a2
a0

�k�2 C : : :C 1 � a0 � : : : � ak�2
a0

�2

�1 � a0 � a1 � : : : � ak�1
a0

!1 C 1 � a0 � a1 � : : : � ak�1
a0

�B

1 � �

D
k�2X

iD1

1 � a0 � : : : � ai
a0

�k�i C 1 � a0 � : : : � ak�1
a0

.�0 C �1/:

The lemma is proved. ut
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We show that from these mean values one can derive the Pollaczek–Khintchine
transform equation. Let us multiply the expression for �i in the lemma by zi and
sum them up from the row �2, excluding the last term (containing �0). Then

1 � a0 � a1
a0

z.�1zC �2z2 C : : :/C 1 � a0 � a1 � a2
a0

z2.�1zC �2z2 C : : :/

C1 � a0 � a1 � a2 � a3
a0

z3.�1zC �2z2 C : : :/C : : :

D
 1X

iD1
�i z

i

!

1 � a0 � a1

a0
zC 1 � a0 � a1 � a2

a0
z2

C1 � a0 � a1 � a2 � a3
a0

z3 C : : :
�

D
 1X

iD1
�i z

i

!
1

a0



z

1 � z
� a0z

1 � z
� a1z

1 � z
� a2z2

1 � z
� a3z3

1 � z
� : : :

�

D
 1X

iD1
�i z

i

!
1

a0.1 � z/



z.1 � a0/� .A.z/ � a0/

�

D .P .z/ � �0/ 1

a0.1 � z/



z.1 � a0/� .A.z/� a0/

�
; (8.13)

where P .z/ D
1P
iD0

�i zi . For the terms containing �0

�0z
1X

iD1

1 � a0 � : : : � ai
a0

zi D �0z 1

a0.1 � z/



z.1 � a0/� .A.z/� a0/

�
: (8.14)

Summing up Eqs. (8.13) and (8.14), the formula for �0 and �1 multiplied by z,
we obtain

P .z/ D .P .z/ � �0/ 1

a0.1 � z/



z.1 � a0/ � .A.z/ � a0/

�

C�0z 1

a0.1 � z/



z.1 � a0/ � .A.z/ � a0/

�
C �0 C 1 � a0

a0
�0z;

whence

P .z/ D .1 � z/A.z/

A.z/ � z
�0:

Dividing this by the mean value of the busy period �B
1�� and taking into account

�0 D �B , we finally get the well-known formula
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P.z/ D .1 � �/.1 � z/A.z/

A.z/� z
:

For details see [60].

8.2.9 Proof of Relation (D) (Khinchin (1932))

Using the embedded Markov chain technique we found the ergodic distribution of
the number of customers at moments just after having served individual customers.
Actually, our objective is to show that this stationary distribution holds not only for
the service completion moments but also for the continuous-time L.t/ process. We
prove the equality

lim
t!1 P .L.t/ D k/ D 
k; k 	 0;

i.e., the same formula (8.10) is valid for the generating function of the limiting
distribution of L.t/.

Let �i ; �i ; i D 1; 2; : : :, denote the successive empty/busy periods, which are
independent and separately identically distributed. The empty periods have an
exponential distribution with the parameter �, and the corresponding mean value
is E .�i / D 1=�.

The sequence .�i C �i /; i D 1; 2; : : :, is a renewal process; at the same time
.�i C �/ are the regenerative cycles of process L.t/.

Earlier we derived a functional equation for the Laplace–Stieltjes transform of
a busy period’s distribution function; from this for the mean value we obtained
E .�i / D �B

1�� , so the mean value of a regenerative cycle is

� D E .�1 C �1/ D 1

�
C �B

�.1 � �/ D
1

�.1 � �/ :

L.t/ is a regenerative process, and from the limit theorem for the regenerative
processes

lim
t!1 P .L.t/ > 0/ D ��1E

0

@
T1Z

0

IfL.t/>0gdt

1

A D ��1E .�1/

D �B

1 � ��.1� �/ D �;

so, using the earlier proved relation 
0 D 1 � �, we get

p0 D lim
t!1 P .L.t/ D 0/ D 1 � � D 
0:
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By the repeated use of the theorem for regenerative processes one can show the
existence of the limits

pn D lim
t!1 P .L.t/ D n/ ; n 	 1;

but finding them in explicit appears to be a difficult problem.
First we find the limit distributions of backward and forward service times, ıt

and �t , of a customer being served at moment t as t !1

F.y/ D lim
t!1 P .ıt < y/ ; ill: G.y/ D lim

t!1 P .�t < y/ :

Let y > 0. Using the aforementioned theorem for regenerative processes

F.y/ D �.1 � �/E
0

@
T1Z

0

If0�ıs<ygds

1

A

D �.1 � �/E

0

B
@�1 C

�1C�1Z

�1

If0<ıs<ygds

1

C
A

D 1 � �C �.1 � �/E

0

B
@

KX

jD1

�1CY1C:::CYjZ

�1CY1C:::CYj�1

If0<ıs<ygds

1

C
A

D 1 � �C �.1 � �/E
0

@
KX

jD1
min.y; Yj /

1

A ;

where K is a random variable, the number of customers served in the first
regenerative cycle T1, and it coincides with the number of customers served in the
first busy period of the system. Integrating by parts, we get

E
�
min.y; Yj /

� D
1Z

0

min.y; x/dB.x/

D
yZ

0

xdB.x/C
1Z

y

ydB.x/

D �
yZ

0

xd.1 � B.x//C y.1 � B.y//
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D �y.1 � B.y//C
yZ

0

.1 � B.x//dx C y.1 � B.y//

D
yZ

0

.1 � B.x//dx:

On the other hand, since K is a Markov moment for the sequence Yj ; j D 1; 2; : : :,
using the Wald identity we obtain

E

0

@
KX

jD1
min.y; Yj /

1

A D E .K/ � E �min.y; Yj
� D E .K/

yZ

0

.1 � B.x//dx:

Similarly,

E .�1/ D E

0

@
KX

jD1
Yj

1

A D E .K/ � E �Yj
� D E .K/ � �B D �B

1 � � ;

whence E .K/ D 1
1�� , and on the basis of these expressions we get the limiting

distribution of ıt :

F.y/ D 1 � �C �
yZ

0

.1 � B.x//dx:

We mention that F.0C/ D 1 � �, F.C1/ D 1 � �C ��B D 1.
The limiting distribution of �t may be obtained in a similar way.

1 �G.y/ D ��1E

0

@
T1Z

0

Ify<�sgds

1

A

D �.1 � �/E

0

B
@

�1C�1Z

�1

Ify<�sgds

1

C
A

D �.1 � �/E

0

B
@

KX

jD1

�1CY1C:::CYjZ

�1CY1C:::CYj�1

Ify<�sgds

1

C
A

D �.1 � �/E
0

@
KX

jD1
.Yj � y/C

1

A
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D �.1 � �/E .K/ � E �.Yj � y/C
�

D �
1Z

y

.x � y/dB.x/

D �
1Z

y

.1 � B.x//dx;

and so

G.y/ D 1 � �
1Z

y

.1 � B.x//dx:

From this it follows that G.0C/ D 1 � ��B D 1 � � D 
0 and G.C1/ D 1.
Now, let us prove that for the stationary distribution pn D lim

t!1 P .L.t/ D n/
holds pn D 
n; n 	 1 (for the case n D 0 we have proved the equality). We will
follow the reasoning by Khinchin [53].

In the stationary case the event that at the completion of a service n customers
remain in the system has probability 
n, at an arbitrary moment pn, and the
remaining part of the service has distribution G.x/. For a small service time ıt
j customers enter the system with probability

aj D �

1Z

0

.� x/j

j Š
e��x.1 � B.x//dx; j 	 0:

If the number of customers in the system at moment t is L.t/ D n > 0, then
L.t � ıt / gives the possible number of customers there at the previous departure
moment (k D 1; : : : ; n), or a new customer entered the empty system at t � ıt .
Using the formula of total probability in the case n > 0 we obtain

pn D P .L.t/ D n/ D
nX

kD0
P .L.t/ D n j L.t � ıt / D k/P .L.t � ıt / D k/

D 
na0 C 
n�1a1 C : : :C 
1an�1 C 
0an�1; n > 0:

Let

hk.x/ D .�x/k

kŠ
e��x; k 	 0;

and in the case k 	 1,

gk�1.x/ D 
kh0.x/C 
k�1h1.x/C : : :C 
1hk�1.x/C 
0hk�1.x/: (8.15)
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Then

pn D �
1Z

0

.1� B.x//gn�1.x/dx: (8.16)

One can directly check that the functions hk.x/ satisfy the difference-differential
equation

h0
k.x/ D �Œhk�1.x/ � hk.x/�;

so for the functions g.x/ we have

g0
k.x/ D �Œgk�1.x/ � gk.x/�; k 	 1:

Since h0.0/ D 1 and hk.0/ D 0 if k 	 1, then gn.0/ D 
nC1. On the other hand,
the recurrence relation (8.8) is valid for 
k , and taking into account Eqs. (8.15) and
(8.16) for k 	 0 we have


k D
1Z

0

hk.x/dB.x/ D hk.0/C
1Z

0

h0
k.x/.1 � B.x//dx

D 
kC1 C �
1Z

0

Œhk�1.x/ � hk.x/�.1 � B.x//dx D 
kC1 C pk � pkC1:

Using this result and the equality proved earlier, p0 D 
0, we obtain


k � pk D 
kC1 � pkC1 D const;

i.e.,


k D pk; k 	 0:

8.3 Limit Distribution of Virtual Waiting Time

Let �.t/; t 	 0, be the virtual (or possible) waiting time at moment t (customers
that entered up to moment t leave the system up to t C �.t/). If the system is empty
at moment t , then �.t/ D 0. The notion of virtual waiting time was introduced and
investigated by Takács [89].

Assume that �.0/ D x0. Our aim is to determine the distribution function of
�.t/. Let t1; t2; : : : .t0 D 0/ denote the arrival process. According to our previous
assumptions tj � tj�1; j 	 1, are independent exponentially distributed random
variables with parameter �. In this case if tn < t < tnC1, then
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Fig. 8.8 Evolution of
remaining service time

�.t/ D
�
0 if �.tn/ < t � tn;
�.tn/� .t � tn/ if �.tn/ 	 t � tn:

If t D tn, then �.tnC0/ D �.tn�0/CYn, where Yn is the service time of a customer
entering at moment tn (Fig. 8.8).

Theorem 8.10. �.t/; t 	 0, is a Markov process.

Proof. The arrival process N.t/ has independent increments (it is a Poisson
process), so the number of customers and the associated service times of customers
appearing by Œt; t C s/ are independent of the number and service times of those
appearing before t . �.t C s/ is determined by the value of �.t/ and the customers
entering after t ; they do not depend on those entering before t (the service times are
independent of one another and the arrival process), so our statement is valid. ut
Example 8.11. At moments t1; t2; : : : random amounts of water Y1; Y2; : : : flow to a
reservoir. The outflow is uniform. In this case �.t/ gives the actual amount of water
in the reservoir.

8.3.1 Takács’ Integrodifferential Equation

In previous sections we considered the number of customers in an M=G=1 system
at special points. Here we intend to give a full description of its behavior.
For the sake of simplicity let us denote the distribution function F.t; xI x0/ D
P .�.t/ � x j �.0/ D x0/ by F.t; x/; assume that there exist the continuous partial
derivatives by t and x on the set t > 0; x 	 0, and

lim
t!0CF.t; x/ D F.0; x/ D I.x 	 x0/:

Theorem 8.12 (Takács [90]). Under these conditions the distribution function
F.t; x/ satisfies the integrodifferential equation

@F.t; x/

@ t
D @F.t; x/

@ x
� �F.t; x/C �

xZ

0

B.x � y/ dyF.t; y/: (8.17)
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Proof. f�.t C �/ < xg is the union of three disjoint events (we take into account
that the arrival process is Poisson and independent of service times):

• �.t C�/ < x and for .t; t C�/ no customer enters the system. The probability
of this event is .1 � ��/F.t; x C�/C o .�/.

• At moment t , 0 � �.t/ < x, and for .t; t C �/ one new customer enters [the
corresponding probability is �� independently of �.t/ and the service time],
and the customer’s service time is Y < x � �.t/. The probability of this
event [Y and �.t/ are independent, and the distribution of Y C �.t/ is B  F :
��P .Y C �.t/ < x/C o .�/] is

��

xZ

0

B.x � y/ dyF.t; y/C o .�/ :

• 0 � �.t/ < x, and for .t; t C�/ more than one customer enters the system, and
its probability is o .�/.

Then

F.t C�; x/ D .1 � ��/F.t; x C�/C ��
xZ

0

B.x � y/ dyF.t; y/C o .�/ ;

which can be rewritten as

1

�



F.t C�; x/ � F.t; x/

�

D 1

�



F.t; x C�/�F.t; x/

�
��F.t; xC�/C�

xZ

0

B.x � y/ dyF.t; y/C o .1/ :

If �! 0, then we obtain Eq. (8.17). ut
Takács derived this theorem in the case of an inhomogeneous Poisson arrival

process with intensity �.t/. He proved that this integrodifferential equation holds
for all t; x 	 0 for which @

@ x
F.t; x/ exists.

With the help of the previous theorem we prove the following one giving an
integrodifferential equation for the stationary distribution.

Theorem 8.13. If �B D
R1
0
x dB.x/ <1; � D �� < 1, then there exists

lim
t!1F.t; x/ D F.x/;

and it is independent of the initial distribution F.0; x/. It satisfies the equation
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F 0.x/ D �F.x/ � �
xZ

0

B.x � y/ dF.y/; x > 0; (8.18)

and F.0C/ D 1 � �.

Proof. The proof is based on results for regenerative processes. We can use the
fact that the distribution of cycles from a given index is absolute continuous, or
the process �.t/; t 	 0, is right continuous and has a limit from left. From both
conditions it follows that the process has a limit distribution and can be written in
the form given previously in Theorem 8.12.

Let 0 < �1 < �2 < � � � be successive moments when free periods begin. Then
f�.t/; t 	 0g is a regenerative process with regeneration points �k; k D 1; 2; : : : ;
the intervals Zk D �k � �k�1; k D 1; 2; : : : .�0 D 0/, whose lengths are the sums
of free and busy periods (perhaps excludingZ1), are a (delayed) renewal process.

Let
G1.x/ D P .Z1 � x/ ; G.x/ D P .Zk � x/ ; k 	 2;

and

G.nC1/.x/ D P .�k � x/ D
xZ

0

G.n/.x � y/ dG.x/; n 	 1:

Since the free and busy periods are i.i.d. random variables (the free periods have
an exponential distribution with parameter �), the distribution function G, and thus
G.n/; n 	 2, is absolutely continuous (this is a sufficient condition for the existence
of a limit distribution).

The mean value of a regenerative cycle is

1Z

0

x dG.x/ D 1

�
C �B

1 � � <1;

and for arbitrary x there exists the limit distribution

F.x/ D lim
t!1F.t; x/

D lim
t!1 E

�
If�.t/�xg

�

D 1

�
E

0

@
TZ

0

If�.s/�xg ds

1

A :

If in Eq. (8.17) t !1, then we obtain Eq. (8.18). ut
If we take the initial distribution F.0; x/ D F.x/, then the distribution function

F.t; x/ D F.x/ satisfies Eq. (8.17). It is clear that
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F.0C/ D lim
t!1F.t; 0C/

D lim
t!1 P .�.t/ D 0/

D lim
t!1 P .L.t/ D 0/

D 1 � �:

One can see that [39], if � 	 1, then

lim
t!1F.t; x/ D 0; x 2 R:

Equation (8.18) may be solved by means of the Laplace–Stieltjes transforms. Let

F�.s/ D
1Z

0

e�sx dF.x/

D 1� �C
1Z

0

e�sxF 0.x/ dx;

where substituting F 0 from Eq. (8.18) yields

F�.s/ D 1 � �C �

s
F�.s/� �

s
F�.s/B�.s/

D 1 � �C �

s
F�.s/.1 � B�.s//;

whence

F�.s/ D 1 � �
1 � �

s
.1� B�.s//

: (8.19)

This expression is called the Pollaczek–Khinchin formula for the waiting time. The
inversion of the Laplace–Stieltjes transform gives the probability of an event in a
stationary regime; the waiting time is less than x (see, e.g., [70]).

Example 8.14. Let us consider the case where the distribution function B.x/ is
exponential with parameter �, i.e.,

B.x/ D 1 � e��x; x 	 0:

Then B�.s/ D �

sC� , according to the Pollaczek–Khinchin formula (8.19), for
the Laplace–Stieltjes transform F� of the distribution function F we obtain

F�.s/ D 1 � �C � � � �
s C � � �:
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The inversion of the Laplace–Stieltjes transform gives

F.x/ D 1 � �C �.1 � e�.���/x/;

when
F.0C/ D lim

x!0CF.x/ D 1 � �:

8.4 G/M/1 Queue

In the case of aG=M=1 queue, customers arrive according to a renewal process. The
service times are independent exponentially distributed with parameter �. There is
one server, and the waiting room is infinite. The analysis methods available for a
G=M=1 queue are very similar to those available for the M=G=1 queue. In this
section we analyze the G=M=1 queue with the method of embedded Markov chain.
The application of other analysis methods for theG=M=1 queue are left as exercises.

Let Tn be the time between the .n � 1/st and nth arrivals (in the case of the
M=G=1 queue it had another meaning). The arrivals constitute a renewal process,
so fTng is a sequence of i.i.d. random variables, and let T have the same distribution.
For the sake of simplicity we assume that T is continuous with density function a.x/
and has a finite mean. Let � D 1=T , i.e.,

P .T � x/ D
Z x

0

a.u/ du .x 	 0/

and
1

�
D
Z 1

0

x a.x/ dx:

L.t/ denotes the number of customers in the system at moment t . Similarly to
the M=G=1 queue, the process fL.t/ W t 	 0g generally is not a Markov chain, and
the future behavior at t depends not only on L.t/ but also on time elapsed from the
moment of the last arrival. We will use the embedded Markov chain technique, and
the embedded points will be the moments just before the arrivals.

8.4.1 Embedded Markov Chain

Let Xn be the number of customers in a G=M=1 system at the moment just before
the entry of the nth one, formally

Xn D lim
�!0C N.

Pn
iD1 Ti ��/:
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We show that fXng is a homogeneous Markov chain. Let V 0
n denote the number of

customers served between the arrivals of the .n � 1/st and nth customers (i.e., for
Tn). fXng satisfies the equation

XnC1 D Xn C 1 � V 0
nC1: (8.20)

It is not simple to work with the recursion Eq. (8.20) since V 0
n depends on Xn�1,

so fV 0
ng is not an identically distributed sequence (e.g., V 0

1 � 0). Let Vn be the
number of customers that the system would have served had it not become empty.
fVng are i.i.d., which is a consequence of the fact that fTng and the service times are
independent. Equation (8.20) can be written in the form

XnC1 D .Xn C 1 � VnC1/C; (8.21)

from which it follows that fXng is a homogeneous Markov chain.
We compute the transition probabilities of this chain:

pij D P .XnC1 D j jXn D i/
D P

�
.Xn C 1 � VnC1/C D j jXn D i

�

D P
�
.i C 1� VnC1/C D j jXn D i

�

D P
�
.i C 1� VnC1/C D j

�
(8.22)

because of the independence ofXn and VnC1. Obviously, if j > iC1, then pij D 0.
Let 0 < j � i C 1, then in Eq. (8.22) we can cancel the sign of the positive part and

pij D P .VnC1 D i � j C 1/

D
Z 1

0

P .VnC1 D i � j C 1jTnC1 D x/ a.x/ dx (8.23)

D
Z 1

0

.�x/i�jC1

.i � j C 1/Še
��xa.x/ dx .0 < j � i C 1/ (8.24)

because, given that we always have customers, the moments of completion are a
Poisson process with intensity �, and its increment for x appears in Eq. (8.23). In
this case, from Eq. (8.24) it follows that pij depends only on the differences in
indices, i.e.,

pij D P .VnC1 D i � j C 1/ D ˇi�jC1 .0 < j � i C 1/:

The sum of elements in the rows of matrix … is equal to 1; consequently,

pi0 D 1 �
1X

jD1
pij D 1 �

iC1X

jD1
ˇi�jC1 D 1 �

iX

kD0
ˇk:
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Fig. 8.9 Embedded CTMC of G=M=1 queue

The system behavior before customers arrive is depicted in Fig. 8.9, and the one-step
state-transition probability matrix is

… D

0

B
B
B
@

1 � ˇ0 ˇ0 0 0 : : :

1 � ˇ0 � ˇ1 ˇ1 ˇ0 0 : : :

1 � ˇ0 � ˇ1 � ˇ2 ˇ2 ˇ1 ˇ0 : : :
:::

:::
:::
:::
: : :

1

C
C
C
A
;

where

ˇk D
Z 1

0

.�x/k

kŠ
e��xa.x/ dx: (8.25)

Consider the Markov chain defined by the preceding matrix. Let Pk`.n/ be the
probability of the event that the system for n steps from state k arrives at state `,
and let us introduce the following notations:

Ǒ
k D 1 �

kX

iD0
ˇi D

1X

iDkC1
ˇi ; Q.z/ D

1X

iD0
ˇi z

i ; C.z/ D Q.z/

z
;

P`.n; z/ D
1X

kD0
Pk`.n/z

k; P`.t; z/ D
1X

nD0
P`.n; z/t

n; P0`.t/ D P0`.n/tn:

Let us fix the final state ` and write the inverse Kolmogorov equations for transition
probabilities for nC 1 steps:

Pk`.nC 1/ D
kX

iD0
ˇiPkC1�i;`.n/C ǑkP0`.n/; k D 0; 1; 2; : : : :
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Let us multiply these equations by zk and sum up by k:

1X

kD0
Pk`.nC 1/zk D

1X

kD0

kX

iD0
ˇiPkC1�i;`.n/zk C

1X

kD0
Ǒ
kP0`.n/z

k

D 1

z
Q.z/ŒP`.n; z/ � P0`.n/�C P0`.n/

1X

kD0
Ǒ
kzk: (8.26)

Since
1X

kD0
Ǒ
kzk D

1X

kD0
.1� ˇ0 � : : : � ˇk/zk

D .1 � ˇ0/C .1 � ˇ0 � ˇ1/zC .1 � ˇ0 � ˇ1 � ˇ2/z2 C : : :
D .1 � ˇ0/.1C zC z2 C : : :/ � ˇ1.zC z2 C : : :/ � ˇ2.z2 C z3 C : : :/ � : : :

D .1 � ˇ0/ 1

1 � z
� ˇ1 z

1 � z
� ˇ2 z2

1 � z
� : : : D 1 �Q.z/

1 � z
;

from Eq. (8.26)

P`.nC 1; z/ D 1

z
Q.z/



P`.n; z/ � P0`.n/

�
C P0`.n/1 �Q.z/

1 � z
:

Multiplying this equation by tn and summing up by n

1X

nD0
P`.nC 1/tn D 1

z
Q.z/

1X

nD0



P`.n; t/t

n �P0`.n/tn
�
C 1 �Q.z/

1 � z

1X

nD0
P0`.n/t

n;

i.e.,
1

t
ŒP`.t; z/� P`.0; z/ D 1

z
Q.z/P`.t; z/C P0`.t/ z �Q.z/

z.1 � z/
;

or (using the initial value)

P`.t; z/ D


1 � t Q.z/

z

��1 

z` C P0`.t/t z �Q.z/

z.1 � z/

�
: (8.27)

This expression contains the unknown generating function P0`.t/, which will
be determined [since P`.t; z/ is analytical function] by means of the roots of the
equation

1 � t Q.z/
z
D 0

in .0; 1/. We will need the following results.
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1

1

C(z)

z

C’(1)<0
Fig. 8.10 The case where
C 0.1/ < 0

1

z* 1θ z

C(z)
C’(1)>0

Fig. 8.11 The case where
C 0.1/ > 0

Lemma 8.15. If C 0.1/ � 0, then C.z/ is a continuous function on (0,1], and it is
decreasing from C1 to 1.

Proof. See Fig. 8.10.

C 0.z/ D
1X

iD0
.i � 1/ˇi zi�1; C 00.z/ D

1X

iD0
.i � 1/.i � 2/ˇizi�3:

C 00.z/ > 0 on the interval .0; 1�, so C 0.z/ is monotonically increasing on .0; 1� and
on the open interval C 0.z/ < C 0.1/ � 0. Since C.z/ is continuous on .0; 1�, it
decreases fromC1 to C.1/ D 1. ut
Lemma 8.16. If 0 < C 0.1/ < C1, then there exists � 2 .0; 1/ such that C.z/
monotonically decreases on .0; �� fromC1 to C.�/ < 1 and on Œ�; 1� is continuous
and monotonically increases from C.�/ to C.1/ D 1.

Proof. See Fig. 8.11. C 00.z/ > 0 on .0; 1/, so C 0.z/ monotonically increases from
�1 to C 0.1/ > 0. Consequently, there is one and only one value � 2 .0; 1/ for
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which C 0.�/ D 0. On .0; �/, C 0.z/ < 0 and C.z/ is monotonically decreasing; on
.�; 1/, C 0.z/ > 0 and C.z/ is monotonically increasing, C.�/ < C.1/ D 1. ut
Corollary 8.17. Under the conditions of the lemma there exists one and only one
z� 2 .0; �/ such that on .0; z�/, C.z/ monotonically decreases from C1 to 1, on
Œz�; �� it monotonically decreases from 1 to C.�/, and on .�; 1/ it monotonically
increases from C.�/ to 1.

Proof. The existence and uniqueness of z� follows from the fact that C.z/ is a
monotonically decreasing function on .0; z��, and C.0C/ D C1 and C.�/ < 1.

Let z.t/ be the root of the equation

1

t
D C.z.t//

on the interval .0; 1/. Substituting it into the numerator of the right-hand side of
Eq. (8.27),

z`.t/C P0`.t/t 1 � C.z.t//
1 � z.t/

D z`.t/C P0`.t/t
1 � 1

t

1 � z.t/

D z`.t/C P0`.t/ t � 1
1 � z.t/

D 0;

whence

P0`.t/ D z`.t/
1 � z.t/

1� t :

The chain is irreducible and aperiodic, so the equilibrium distribution does not
depend on the initial state. By the Tauberian theorem [90]

P` D lim
t!1

.1 � t/P0`.t/ D z�`.1 � z�/;

where z� is the root of the equation C.z/ D 1 on the interval .0; 1/. If C 0.1/ > 0,
then z� lies between 0 and 1, so we get a nondegenerate distribution. In the case
C 0.1/ � 0, we have z� D 1, and the distribution is degenerate. ut
Comment 8.18. IfA.x/ denotes the distribution function of interarrival times, then
the generating function of the number of customers served is Q.z/ D A�.� � �z/,
and from C.z�/ D 1 it follows that z� is the only root of

z� D A�.� � �z�/

in the interval 0 < z� < 1 (see Kleinrock [55]).

Comment 8.19. The condition C 0.1/ > 0 can easily be expressed with the help of
the generating functionQ.z/ since
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Q0.z/z �Q.z/
z2

ˇ
ˇ
ˇ̌
ˇ
zD1
D Q0.1/� 1 > 0;

from which the stability condition isQ0.1/ > 1. It has a simple meaning, namely, the
mean value of the number of customers served between the entries of two successive
customers must be more than one. This condition is equivalent to the inequality
�=� > 1.

Comment 8.20. We have examined the G=M=1 system at moments just before
the arrivals and found the stability condition for these points. We mention that in
contrast to the M=G=1 system, this distribution does not hold for the inner points.

8.5 Exercises

Exercise 8.1. There is an M=G=1 queue. The arrival intensity is �, and the service
time is exponentially distributed with the parameter �2 with probability 1 � p and
is the sum of two independent exponentially distributed random variables with the
parameters �1 and �2 with probability p.

• Compute server utilization.
• Compute the coefficient of variation of the service time.
• Compute the mean system time of customers.
• Compute the mean number of customers in the buffer.

Exercise 8.2. Patients arrive at a dentist’s office according to a Poisson process
with intensity �. Arriving patients enter the dentist’s operatory if no one is there;
otherwise, they wait in the waiting room. In the dentist’s operatory there is a
registration of time D (deterministic). With probability p a patient is directed to
the dentist for treatment, which takes an exponentially distributed time with the
parameter �; with probability 1 � p the patient is rejected.

• Compute patients’ mean time in the waiting room.
• Compute the probability that an arriving patient must wait.
• Compute the mean waiting time.

Exercise 8.3. FA.t/ is the interarrival distribution in an G=M=1 queue whose
service rate is �. N.t/ is the number of customers in the system at time t , and
T1; T2; : : : denote the arrival instances of the first, second, etc. customers. The mean
of the stationary number of customers is NN D limt!1E.N.t//, and the mean of
the stationary number of customers at arrival instants is LN D limn!1E.N.Tn�//.
Compute the relation of NN and LN if

• The interarrival distribution is hyperexponential [FA.t/ D 1�pe�1t�.1�p/e�2t ],
• The interarrival distribution is deterministic,
• The interarrival distribution is exponential.
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Exercise 8.4. Find the mean value of the number of customers in anM=G=1 system
and in the waiting queue. Let us consider the cases ofM=M=1 andM=D=1 systems.

Exercise 8.5. Using the Pollaczek–Khinchin transform equation show that in an
M=M=1 system the equilibrium distribution is geometrical.

Exercise 8.6. Let us consider an M=G=1 system with bulk arrivals. An arriving
group with probability gi consists of i customers. Show that the generating function
of the number of customers entering during time t is e��t.1�G.z//, where � is the
intensity of arrivals and G.z/ DP1

iD1 gi zi .

Exercise 8.7. Show that in an M=G=1 system with bulk arrivals the generating
function of the number of customers arriving for the service time of a customer is
b�.�.1 �G.z//, where b�.s/ is the Laplace–Stieltjes transform of the distribution
function of this service time.



Chapter 9
Queueing Systems with Structured
Markov Chains

In the previous chapters we studied queueing systems with different interarrival
and service time distributions. Chapter 7 is devoted to the analysis of queueing
systems with exponential interarrival and service time distributions. The number of
customers in these queueing systems is characterized by CTMCs with a generally
nonhomogeneous birth-and-death structure. In contrast, Chap. 8 is devoted to the
analysis of queueing systems with nonexponential interarrival and service time dis-
tributions. It turns out that far more complex analysis approaches are required for the
analysis of queues with nonexponential interarrival and service time distributions.
In this chapter we introduce queueing systems whose interarrival and service time
distributions are nonexponential, but they can be analyzed with CTMCs. Indeed in
this chapter we demonstrate the use of the results of Chap. 5 for the analysis of
queueing systems with phase-type (PH) distributed interarrival and service times
or with arrival and service processes that are MAPs. The main message of this
chapter is that in queueing models the presence of PH or MAP processes instead
of exponential distributions results in a generalization of the underlying CTMCs
from birth-and-death processes to quasi-birth-and-death (QBDs) processes.

9.1 PH=M=1 Queue

One of the simplest queueing systems with nonexponentially distributed interarrival
time distribution is the PH=M=1 queue. We study this queue in detail in order to
demonstrate the elementary steps needed to construct the matrix block structure of
a CTMC describing the behavior of the queue.

We consider a queueing system whose arrival process is composed by inde-
pendent and identically PH distributed interarrival periods characterized by initial
probability vector � and transient generator matrix T . Consequently, the arrival
process is a PH renewal process with representation .�;T /. The service time
is exponentially distributed with parameter �. The queue has one server and an
unlimited buffer. The service discipline is FIFO.

L. Lakatos et al., Introduction to Queueing Systems with Telecommunication Applications,
DOI 10.1007/978-1-4614-5317-8 9, © Springer Science+Business Media, LLC 2013
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9.1.1 QBD Process of PH/M/1 Queue

This queueing system can be analyzed as a G=M=1 queue using the results of
the previous chapter because the PH distributed interarrival time is a special case
of general, nonexponential interarrival time distributions. But using the fact that
the PH distribution is characterized by a background Markov chain we can also
analyze the PH=M=1 queue as a compound CTMC fN.t/; J.t/g, whereN.t/ is the
number of customers in the queue and J.t/ is the state (phase) of the Markov chain
characterizing the PH distributed arrivals at time t .

If at time t the state of a compound CTMC is .N.t/; J.t// D .n; j /, then the
following state transitions are possible.

• There might be a phase transition from phase j to k (k ¤ j ) in a background
Markov chain of the PH distribution without an arrival. The rate of this transition
from .n; j / to .n; k/ is Tjk .

• The Markov chain of the PH distribution might move to the absorbing state
and generate an arrival. In this case the number of customers in the system
increases by one and a new PH distributed interval starts according to the initial
phase distribution �. Let t be a column vector containing transition rates to the
absorbing state, t D �T 1. The transition rate from .n; j / to .n C 1; k/ due to
these steps is tj�k .

• If n > 0, then there is a customer in the server that which is served with
an exponentially distributed service time with parameter �. When the service
completes, the number of customers in the system decreases by one and, due to
the independence of the arrival and the service processes, the service completion
does not affect the phase arrival process. Thus the transition rate from .n; j / to
.n � 1; j / is � and from .n; j / to .n � 1; k/ (k ¤ j ) it is 0.

These possible transitions define all nondiagonal elements of the generator matrix
of the CTMC. In the case of a PH arrival process with two phases, the generator
matrix has the form

Q D

� T 12 t1�1 t1�2 0 0 0 0

T 21 � t2�1 t2�2 0 0 0 0

� 0 � T 12 t1�1 t1�2 0 0

0 � T 21 � t2�1 t2�2 0 0

0 0 � 0 � T 12 t1�1 t1�2

0 0 0 � T 21 � t2�1 t2�2
: : :

: : :
: : :

: : :

: : :
: : :

: : :
: : :

:

The diagonal elements are determined by the nondiagonal elements due to the fact
that the row sum of the generator matrix is zero. This matrix already indicates that
the generator matrix has a regular structure on the matrix block level, highlighted by
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the horizontal and vertical lines. The matrix blocks are closely related to the vectors
and the matrix characterizing the PH arrival process:

Q D

T t�

�I T��I t�

�I T��I t�

�I T��I t�

: : :
: : :

:

The nondiagonal elements of this generator matrix defined by matrix blocks are
readily identified with those of a detailed generator matrix. For the validity of the
diagonal element we evaluate the row sum of the elements in a row of matrix blocks.
If n D 0, the row sum is T 1C t�1 D T 1C t D 0 because �1 D 1 and t D �T 1.
If n > 0, the row sum is �I1C .T � �I/1C t�1 D T 1C t D 0.

The block level structure of the generator matrix shows that fN.t/; J.t/g is a
QBD process with regular level 0. The forward, local, backward, and level 0 local
matrices of this QBD process are F D t�, L D T � �I , B D �I , and L0 D T .

9.1.2 Condition of Stability

From the G=M=1 interpretation of the PH=M=1 queue we already know that the
queue is stable as long as the mean interarrival time is greater than the mean service
time, that is, �.�T /�11 > 1=�. Now we analyze the relation of this condition to
the stability condition of the QBD process. The phase process of the regular levels is
a CTMC with generator BCLCF D T C t�. Let ˛ be the stationary distribution
of the phase process (i.e., the solution of ˛.F CLCB/ D 0;˛1 D 1).

Theorem 9.1.

˛ D �.�T /�1

�.�T /�11
:

Proof. The normalizing condition obviously holds:

�.�T /�1

�.�T /�11
1 D 1:
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For the product of the stationary solution vector and the generator of the phase
process we have

�.�T /�1.B CLC F / D �.�T /�1.T � T 1�/ D �� C � D 0;

where we neglect the normalizing constant 1=�.�T /�11. ut
Based on the stationary distribution of the phase process, the condition of stability
of the QBD process is ˛B1 > ˛F1 where ˛B1 D ˛�I1 D � and

˛F1 D �.�T /�1

�.�T /�11
.�T 1�/1 D 1

�.�T /�11
:

9.1.3 Performance Measures

The main performance measures of PH=M=1 queues are based on the stationary
distribution of the fN.t/; J.t/g QBD process. According to Theorem 5.9, the row
vector of the stationary probabilities with n customers can be computed as �n D
�0R

n, where matrix R is the solution (the only one whose eigenvalues are inside
the unit disk) of

F CRLCR2B D 0

and vector 
0 is the solution of the linear system

�0.L
0 CRB/ D 0; �0.I �R/�11 D 1:

Below we compute the main performance measures assuming that the matrix-
geometric stationary distribution is known.

Utilization

The only server of a queueing system is busy when the number of customers in the
system is at least 1. Consequently, the utilization is

� D lim
t!1 P .N.t/ 	 1/ D

1X

nD1
�n1 D 1 � �01:

Number of Customers

The distribution of the stationary number of customers in the queue is

pn D lim
t!1 P .N.t/ D n/ D �n1 D �0R

n1:
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The mean number of customers can be computed as

E .N / D lim
t!1 E .N.t// D

1X

nD0
npn D

1X

nD0
n�0R

n1

D
1X

nD0

nX

kD0
�0R

n1 D �0

1X

kD0

1X

nDk
Rn1

D �0

1X

kD0
Rk.I �R/�11 D �0.I �R/�21:

The distribution of the stationary number of customers right before a customer
arrival is defined as qn D limk!1 P .N.Tk�/ D n/, where Tk denotes the arrival
instant of the kth customer. We have

qn D stationary arrival rate from level n

stationary customer arrival rate
D �ntP1

iD0 � i t
D �0R

nt

�0.I �R/�1t
;

and similarly

E .NA/ D lim
k!1 E .N.Tk�// D

1X

nD0
nqn D �0.I �R/�2t

�0.I �R/�1t
:

It is worth mentioning that the arrival process is not a Poisson process (in general)
and the distribution of the stationary number of customers and that of the stationary
number of customers at arrivals differ.

System Time

If a customer arrives at the queue when there are n customers in front of it, then its
waiting time is the sum of the remaining service time of the customer in the server,
if any (which is exponentially distributed with parameter �), and the total service
time of the customers waiting in front of the newly arrived one, if any (which is
also exponentially distributed with parameter �). The system time (T ) is the sum
of the waiting time (W ) and the service time (S ). All together, if a customer arrives
when there are n other customers in the queue, then its system time is the sum
of n independent exponentially distributed random variables with parameter �. We
describe the Laplace transform of the system time because the sum of independent
random variables has a simple form in the Laplace domain. The Laplace transform
of the exponentially distributed service time with parameter � is E

�
esS
� D �

�Cs .

f �
T .s/ D E

�
esT
� D

1X

nD0
qn



�

�C s
�n
D

1X

nD0

�0R
nt

�0.I �R/�1t



�

�C s
�n

D �0

1

�0.I �R/�1t



I � �

�C sR

��1
t
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Using the relation of the Laplace transform and the moments, the mean system time
can be computed as

E .T / D � d
ds
f �
T .s/jsD0 D ��0

1

�0.I �R/�1t
d

ds



I � �

�C sR

��1ˇˇ
ˇ̌
ˇ
sD0

t

D �0

1

�0.I �R/�1t



I � �

�C sR

��2
�

.�C s/2R

ˇ
ˇ
ˇ̌
ˇ
sD0

t

D �0 .I �R/�2 R t

� �0.I �R/�1t
;

where we utilized that .I �R/ and R commute. Further performance measures,
like waiting time, can be computed in a similar manner.

9.2 M=PH=1 Queue

In this section we analyze the other simple queueing system with an underlying
QBD process. This is the M=PH=1 queue, where the arrival process is a Poisson
process at a rate �, the service time is PH distributed with representation �;T of
size J , and there is a single server and an infinite buffer. Similarly, column vector t

contains the transition rates to the absorbing state (t D �T 1). The most important
difference between the PH=M=1 queue and the M=PH=1 queue is the structure of
the underlying QBD process. This was a QBD process with regular level zero in
the previous section, and it will be a QBD with irregular level zero in this section.
Another useful feature of theM=PH=1 queue, which is unique among the queueing
systems with an underlying QBD process, is that matrix R can be expressed in
closed form.

9.2.1 QBD of M/PH/1 Queue

As with the PH=M=1 queue, the behavior of the M=PH=1 queue is characterized
by a compound CTMC fN.t/; J.t/g, where N.t/ is the number of customers in
the queue and J.t/ is the state (phase) of the Markov chain characterizing the PH
distributed service time at t . One of the main differences between the PH=M=1
and the M=PH=1 queues comes from the fact that the service process is inactive
(does not exist) when there is no customer in the queue. Consequently, level 0 of the
underlying QBD process has a different structure than the higher levels. The QBD
process has a single phase at level zero and J phases at higher levels. Accordingly,
the structure of the transitions from and to level 0 is different from the regular ones.
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If at time t the state of the QBD process is .N.t/; J.t// D .n; j /, then the following
state transitions are possible.

• If n 	 1, then there might be a phase transition from .n; j / to .n; k/ (k ¤ j ) in
the background Markov chain of the PH distribution without a departure at a rate
Tjk .

• If n 	 2, then the Markov chain of the PH distribution might move to the
absorbing state at a rate tj , which represents the service completion of the
customer in the server and the departure of this customer. In this case, the number
of customers in the system decreases by one and a new PH distributed service
time starts according to the initial phase distribution �. The transition rate from
.n; j / to .n� 1; k/ is tj�k .

• If n D 1 and the PH distribution moves to the absorbing state at a rate tj , then
the only customer leaves the queue. In this case, the queue becomes idle and the
service process becomes inactive. As a result, there might be a transition from
.1; j / to .0; 1/ at a rate tj .

• If n 	 1, then there is one customer in the server and the service process is
active. In this case an arrival at a rate � increases the number of customers in
the queue and maintains the phase of the service process. Thus the transition rate
from .n; j / to .nC 1; j / is �, and from .n; j / to .nC 1; k/ (k ¤ j ) it is 0.

• If n D 0, then the arrival of a new customer at a rate � initiates the service of the
newly arrived customer according to the initial phase distribution �. In this case
the transition rate from .0; 1/ to .1; k/ is ��k .

These transitions define all nondiagonal elements of a generator matrix. If J D 2,
then we have

Q D

� ��1 ��2 0 0 0 0 0 0

t1 � T 12 � 0 0 0 0 0

t2 T 21 � 0 � 0 0 0 0

0 t1�1 t1�2 � T 12 � 0 0 0

0 t2�1 t2�2 T 21 � 0 � 0 0

0 0 0 t1�1 t1�2 � T 12 � 0

0 0 0 t2�1 t2�2 T 21 � 0 �

: : :
: : :

: : :
: : :

: : :
: : :

: : :
: : :

;

and on the level of matrix blocks the generator matrix of the QBD process is
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Q D

�� ��

t T��I �I

t� T��I �I

t� T��I �I

: : :
: : :

:

That is, F D �I , L D T � �I , B D t�, and the special matrix blocks at the zero
level are F 0 D ��, L0 D ��, B 0 D t . Using t D �T 1 it is easy to check that the
row sum of each row is zero.

The condition of the stability of this QBD process can be computed in a very
similar way as in the case of PH/M/1 queue. The QBD is stable if � < 1

�.�T /�11
.

9.2.2 Closed-Form Solution of Stationary Distribution

Let � D f
0;�1;�2; : : :g be the partitioned stationary probability vector of the
QBD process. The partitioned form of the set of stationary equations �Q D 0 is

� 
0�C �1t D 0; (9.1)


0�� C �1.T��I/C �2t� D 0; (9.2)

�n�1�I C �n.T��I/C �nC1t� D 0 8n 	 2: (9.3)

The solution of this set of equations can be expressed in a closed matrix-geometric
form.

Theorem 9.2. For n 	 1
�n D 
0�Rn;

where 
0 D 1 � ��.�T /�11 and R D �.�I � T � �1�/�1.

Proof. Substituting Eq. (9.1) into Eq. (9.2) gives

�1.t� C T � �I/C �2t� D 0 :

Multiplying this expression by 1 from the right we obtain �1�1 D �2t. Now
we take Eq. (9.3) with n D 2, multiply it by 1 from the right, and substitute
�1�1 D �2t. This results in �2�1 D �3t. Recursively multiplying Eq. (9.3) by 1
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and substituting the previous result we obtain

��n1 D �nC1t 8n 	 1:
Substituting this expression into the third term of Eq. (9.3) gives

��n�1 C �n.T��I/C ��n1� D 0 8n 	 2;

whence
�n D �n�1 �.�I � T � �1�/�1

„ ƒ‚ …
R

8n 	 2:

Additionally, from Eq. (9.2) we have �1 D 
0�R. 
0, the probability that the server
is idle, can be obtained from Little’s law when it is applied to the server itself. It
says that E .NS/ D �E .S/ (the mean number of customers in the server equals
the arrival rate times the mean service time). In our case E .S/ D �.�T /�11. In a
single-server queue E .NS/ is the probability that the server is busy, i.e., E .NS/ D
1 � 
0, indeed, it is the utilization in this case. ut

9.2.3 Performance Measures

The computation of the main performance measures follows the same pattern as
those of the PH=M=1 queue, but in the case ofM=PH=1 queues we can utilize the
closed form of the stationary distribution.

Number of Customers

The distribution of the stationary number of customers in a queue is

pn D lim
t!1 P .N.t/ D n/ D �n1 D 
0�Rn1; n 	 1;

and p0 D 
0 D 1� ��.�T /�11. The mean number of customers can be computed
in a similar way as in case of the PH=M=1 queue:

E .N / D lim
t!1 E .N.t// D

1X

nD0
npn D

1X

nD1
n
0�Rn1 D 
0�.I �R/�21:

The distribution of the stationary number of customers right before a customer
arrival is

qn D stationary arrival rate from level n

stationary customer arrival rate
D �n1�P1

iD0 � i1�
D �n1 D pn:
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The Poisson arrival process ensures that the distribution of the stationary number of
customers and that of the stationary number of customers at arrivals are identical.

System Time

The Laplace transform of the PH distributed service time is E
�
esS
� D �.sI �

T /�1t. Using this we get that the Laplace transform of the system time is

f �
T .s/ D E

�
esT
� D

1X

nD0
qn
�
�.sI � T /�1t

�n D
1X

nD0

0�Rn1

�
�.sI � T /�1t

�n

D 
0�
�
I � �.sI � T /�1tR

��1
1:

The mean system time can be computed from the Laplace transform as

E .T / D � d

ds
f �
T .s/jsD0 D 
0�

d

ds

�
I � �.sI � T /�1tR

��1 ˇ̌
ˇ
sD0 1

D 
0�
�
I � �.sI � T /�1tR

��2
�.sI � T /�2tR1

D 
0� .I �R/�2 �.�T /�1R1;

where we utilized t D �T 1 in the last step.

9.3 Other Queues with Underlying QBD

9.3.1 MAP/M/1 Queue

The difference between the PH=M=1 queue and the MAP=M=1 queue is mi-
nor. We focus our attention mainly on the extension from PH=M=1 queues
to MAP=M=1 queues. Let the arrival process be a MAP with representation
D0;D1, and let the service time be exponentially distributed with parameter �.
The MAP=M=1 queue has a single server and an infinite buffer. These possible
transitions of the .N.t/; J.t/// CTMC in the case of a MAP arrival process with
two phases are as follows:

Q D

� D012 D111 D112 0 0 0 0

D021 � D121 D122 0 0 0 0

� 0 � D012 D111 D112 0 0

0 � D021 � D121 D122 0 0

0 0 � 0 � D012 D111 D112

0 0 0 � D021 � D121 D122

: : :
: : :

: : :
: : :

: : :
: : :

: : :
: : :

;
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from which the block level structure is

Q D

D0 D1

�I D0��I D1

�I D0��I D1

�I D0��I D1

: : :
: : :

;

where the row sum is zero due to .D0 CD1/1 D 0. Comparing the QBD process
of the PH=M=1 queue and theMAP=M=1 queues we have that a PH=M=1 queue
is a special MAP=M=1 queue with D0 D T and D1 D t�.

9.3.2 M/MAP/1 Queue

The consecutive interevent times of a MAP are correlated (in general). That is, the
consecutive service times of an M=MAP=1 queue are correlated (in general), and
it is independent of whether or not the queue is idle after a departure of a customer.
Due to this property, the phase of the service process is carried on also when the
queue is idle. Consequently, the zero level of the QBD contains the same number of
phases as the higher level. This feature of an M=MAP=1 queue is similar to that of
a MAP=M=1 queue but differs significantly from that of an M=PH=1 queue.

If the arrival process is a Poisson process at a rate � and the service process is
MAP with representation S0;S1, then the block level structure of the QBD process is

Q D

��I �I

S1 S0��I �I

S1 S0��I �I

S1 S0��I �I

: : :
: : :

:
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The zero level of this matrix indicates that the service process is “switched off”
at the zero level, but the phase of the service MAP is maintained while the queue
is idle, and the service MAP resumes its evolution from the same phase when a
customer arrives at the system.

In the case of a PH=M=1 queue with .�;T / and aMAP=M=1 queue with D0 D
T and D1 D t�, the QBD process of the PH=M=1 and MAP=M=1 queues are
identical because both of them contain J phases at the zero level. The sizes of the
zero levels ofM=PH=1 and M=MAP=1 queues differ.

Fortunately, the representation of an M=PH=1 queue with .�;T / (zero level
with one phase) as a specialM=PH=1 queue with S0 D T and S1 D t� (zero level
with J phases) remains valid with respect to all queue-related parameters computed
from the two different QBD processes. The behavior of an M=PH=1 queue with
S0 D T and S1 D t� (zero level with J phases) can be interpreted as that of a
customer that leaves the system idle and decides the initial phase of the next service
time (independently of the fact that the queue becomes idle); this phase is preserved
by the QBD process during the idle time of the queue. In summary, we emphasize
that PH arrival and service processes can always be represented as special MAPs.

9.3.3 MAP/PH/1 Queue

If both the arrival and service processes are characterized by a background Markov
chain, then the .N.t/; J.t// QBD process can still be used for the analysis of the
queueing system, but the phase process J.t/ must represent the phase of both
background Markov chains. That is, the phase process of the QBD process is
the Cartesian product of the phase processes of the arrival and service processes.
The Markov chain describing the independent evolution of the arrival and service
processes can be expressed by Kronecker operators. If the arrival process is a
MAP with representation D0;D1, and the service time is PH distributed with
representation �;T (t D �T 1), then the structure of the generator matrix is

Q D

D0 D1 ˝ �

I ˝ t D0 ˚ T D1 ˝ I

I ˝ t� D0 ˚ T D1 ˝ I

I ˝ t� D0 ˚ T D1 ˝ I

: : :
: : :

:
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That is, F D D1 ˝ I , L D D0 ˝ I C I ˝ T D D0 ˚ T , B D I ˝ t� and
F 0 D D1 ˝ � , L0 D D0, and B 0 D I ˝ t .

9.3.4 MAP/MAP/1 Queue

Similarly, if the arrival process is a MAP with representation D0;D1, and the service
process is a MAP with representation S0;S1 then the structure of the generator
matrix is

Q D

D0 ˚ I D1 ˝ I

I ˝ S1 D0 ˚ S0 D1 ˝ I

I ˝ S1 D0 ˚ S0 D1 ˝ I

: : :
: : :

:

That is, F D D1 ˝ I , L D D0 ˝ I C I ˝ S0 D D0 ˚ S0, B D I ˝ S1, and
L0 D D0 ˚ I .

9.3.5 MAP/PH/1/K Queue

Finally, we demonstrate that the analysis of finite QBD processes can be used for
the analysis of finite buffer queues. For example, if the arrival process is a MAP
with representation D0;D1, the service time is PH distributed with representation
�;T , and at most K customers can be present in the queue, then the structure of the
QBD process describing the queue behavior is

Q D

L0 F 0

B 0 L
: : :

B
: : : F

: : : L F

B L”

;
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where F D D1

N
I , L D D0

L
T , B D I

N
t�, F 0 D D1

N
�, L0 D D0,

B 0 D I
N

T and L” D .D0 CD1/
L

T .

9.4 Exercises

Exercise 9.1. Define a MAP representation of the departure process of an
M=M=1=2 queue with an arrival rate � and service rate �.

Exercise 9.2. Define a MAP representation of the departure process of a
MAP=M=1=1 queue with arrival MAP . OD0; OD1/ and service rate �.

Exercise 9.3. Define a MAP representation of the customer loss process of a
MAP=M=1=1 queue with arrival MAP . OD0; OD1/ and service rate �.

Exercise 9.4. Compute the generator of a CTMC that describes the number of
customers and the phase of the arrival PH distribution in a PH=M=1 queue if the
representation of the PH distributed interarrival time is .˛; A/, with ˛ D .1; 0/ and

A D

�˛ ˛=2
0 ��

�
, and the service rate is �.

Exercise 9.5. Compute the generator of a CTMC that describes the number of
customers and the phase of the service PH distribution in an M=PH=1 queue if the
arrival rate is � and the representation of the PH distributed service time is .ˇ;B/,

with ˇ D .1=3; 2=3/ and B D

�� �

0 ��
�

.

Exercise 9.6. A packet transmission is performed in two phases in a slotted time
communication protocol. The first phase is the resource allocation and the second is
the data transmission. The times of both phases are geometrically distributed with
the parameters q1 and q2. In every time slot one packet arrives with probability p
(and no packet arrives with probability 1 � p). Compute the probability of packet
loss if at most two packets can be in the system.

Exercise 9.7. Requests arrive at a computer according to a Poisson process at a
rate �. The service of these requests requires, first, a processor operation for an
exponentially distributed amount of time with the parameter �1. Following this
processor operation the request leaves the system with probability p or requires
a consecutive disk operation with probability 1 � p. The time of the disk operation
is exponentially distributed with the parameter �2. Following the disk operation the
request requires a processor operation because it is a new one. There can be several
loops of processor and disk operations. The processor is blocked during the disk
operation, and one request is handled at a time.

Compute the efficient utilization of the processor, and compute the request loss
probability if there is no buffer in the system.

Compute the efficient utilization of the processor, and compute the system time
of the requests if there is an infinite buffer in the system.



Chapter 10
Queueing Networks

10.1 Introduction of Queueing Networks

Up to now, we have overviewed the main methods for the analysis of individual
queueing systems. But the analysis of large telecommunication systems or computer
systems executing complex interrelated tasks (e.g., transaction processing systems,
Web server farms) requires the application of systems models that contain several
servers (potentially of different kinds) where customers are traveling among these
servers for consecutive services.

Queueing network models are commonly used for the analysis of these kinds of
systems. A queueing network is a graph with directed arcs whose nodes represent
the kinds of queueing systems that we have studied till now. The arcs of the graph
describe the potential transitions of customers among these queueing systems.

It is a commonly applied modeling assumption in queueing networks that the
transition of a customer from one node to the next is memoryless and independent
of the network state, i.e., it is independent of the past history of the network, the
current number of customers at the network nodes, and the status of the servers.
After being served at a network node a customer chooses the next node according
to the weight (probability) associated with the outgoing arcs of the given node.

There are two main classes of queueing networks: open and closed queueing
networks. In closed queueing networks, a fixed number of customers circulate in the
network, and there is no arrival/departure from/to the environment. In open queueing
networks customers arrive from the environment, obtain a finite number of services
at the network nodes (nodes are potentially visited more than once), and leave the
network eventually.

Queueing networks are classified also based on the structure of the directed
arcs. Queueing networks without a loop (series of directed arcs forming a loop)
are referred to as acyclic or feedforward queueing networks, and those with a
loop are referred to as cyclic or feedback queueing networks. Acyclic networks
are meaningful only in the case of open queueing networks. The nodes of acyclic

L. Lakatos et al., Introduction to Queueing Systems with Telecommunication Applications,
DOI 10.1007/978-1-4614-5317-8 10, © Springer Science+Business Media, LLC 2013
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networks can be numbered such that arcs are always directed from a node with a
lower index to a node with a higher index or to the environment. Henceforth we
assume that the nodes of acyclic networks are numbered in this way.

10.2 Burke’s Theorem

It is possible to analyze a class of open acyclic queueing networks based on the
following theorem.

Theorem 10.1 ([17]). The customer departure process of a stable M=M=m queue
is a Poisson process with the same rate as the arrival process of the queue.

Proof. The number of customers in anM=M=m queue is a reversible Markov chain
(Sect. 3.3.6). The time reverse of the process is stochastically identical (according
to all finite-dimensional joint probabilities) with the original process. In this way
the departure instances of the original process (which are the arrival instants of the
reverse process) are stochastically identical with the arrival instants of the original
process (which are the departure instants of the reverse process) which is a Poisson
process. ut

An important consequence of the theorem is that in equilibrium the time till the
next departure is exponentially distributed, i.e., memoryless.

Let D�.s/ be the Laplace transform of the time till the next departure, A�.s/ the
Laplace transform of the interarrival time distribution, B�.s/ the Laplace transform
of the service time distribution, and p the probability that in equilibrium the queue
will be idle; then

D�.s/ D p B�.s/C .1 � p/ A�.s/ B�.s/:

Using that B�.s/ D �

sC� , A�.s/ D �
sC� , p D �

�
, we have

D�.s/ D �

�

�

s C � C
�� �
�

�

s C �
�

s C �;

and after some algebra

D�.s/ D �

s C �
s�C �2 C �� � �2

�.s C �/ D �

s C �:

This expression indicates that we often have exponentially distributed interar-
rival, interdeparture times in Markovian queueing networks.
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10.3 Tandem Network of Two Queues

The simplest queueing network is the open tandem network (Fig. 10.1) composed
of two M=M=1 queues in which customers arriving from the environment get in
queue 1 and after being served in queue 1 get in queue 2, from where, after being
served, they depart to the environment. Let the arrival rate from the environment to
queue 1 be � and the service rate at queue 1 and 2 be �1 and �2, respectively.

From Burke’s theorem we have that the arrival intensity to both queues is �, and
in this way the condition of stability is

�

�1
< 1

�

�2
< 1

that is
� < min.�1; �2/:

Let us consider a Markov chain describing the number of customers in both
queues. We identify the states of this Markov chain by a vector of the number of
customers in the first queue and the second queue. That is, state fi; j g refers to the
state where there are i customers in the first and j customers in the second queue.
The transition rates of this Markov chain are as follows:

fi; j g ! fi C 1; j g W �;
fi; j g ! fi � 1; j C 1g W �1 when i 	 1;
fi; j g ! fi; j � 1g W �2 when j 	 1:

We denote the stationary probability of state fi; j g by pi;j . The balance equations
of the Markov chains are

8
ˆ̂<

ˆ̂
:

�p0;0 D �2p0;1;

.�C �2/p0;j D �1p1;j�1 C �2p0;jC1 when j 	 1;

.�C �1/pi;0 D �pi�1;0 C �2pi;1 when i 	 1;

.�C �1 C �2/pi;j D �pi�1;j C �1piC1;j�1 C �2pi;jC1 when i; j 	 1:

According to Burke’s theorem, in equilibrium the arrival process of queue 2 is a
Poisson process with rate �. Using this fact the stationary state probabilities are

pi;j D p.1/i p.2/j D


1 � �

�1

�

�

�1

�i 

1 � �

�2

�

�

�2

�j
;

μ
2μ

1

λ

Fig. 10.1 Tandem network
of two nodes
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Fig. 10.2 Acyclic queueing network

where p.1/i and p.2/j are the stationary distributions of the corresponding M=M=1
queues.

Stationary solutions of this kind are referred to as product-form solution because
the joint distribution is the product of two marginal distributions. It is important to
note that despite the product-form stationary distribution the number of customers
in the two queues is not independent. There is a very strong correlation between
those processes, namely, a departure from the first queue results in an arrival at the
second queue.

Based on the stationary distribution we can easily determine the important
performance indices. For example, the mean number of customers in the system, the
mean time spent in the network, and the mean waiting time spent in the network are

E .N / D
X

i

X

j

.i C j /pi;j D
X

i

ip
.1/
i C

X

j

jp
.2/
j D

�
�1

1 � �
�1

C
�
�2

1 � �
�2

;

E .T / D E .N /
�
D

1
�1

1 � �
�1

C
1
�2

1 � �
�2

D 1

�1 � � C
1

�2 � �;

E .W / D E .T / � 1

�1
� 1

�2
;

where we used Little’s law to obtain the last two quantities.

10.4 Acyclic Queueing Networks

Acyclic queueing networks (Fig. 10.2) are queueing networks in which the outgoing
arcs of the nodes are directed toward nodes with a higher index or to the
environment. Consequently, in such queueing networks a customer visits each node
at most once.

Based on Burke’s theorem and the results on the superposition and filtering of
independent Poisson processes [Property (h) of Poisson processes in Sect. 2.7.3],
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we can apply the same approach as the one applied for the analysis of the tandem
queueing network. That is, we can (explicitly) compute the arrival rate to each node
of the network, and we can assume that the arrival process at the given node is a
Poisson process with that arrival rate. Based on this assumption, the product-form
solution remains valid, that is,

pk1;k2;			 ;kN D
NY

iD1
p
.i/

ki
;

where p.i/ki is the stationary probability of the ki state of an M/M/1 queue with a
Poisson arrival process with the parameter �i and exponentially distributed service
time with the parameter �i , which is

p
.i/

ki
D


1 � �i

�i

�

�i

�i

�ki
:

10.5 Open, Jackson-Type Queueing Networks

In the previous subsections we discussed acyclic queueing networks and, based
on Burke’s theorem, we assumed that the arrival processes of the queues were
independent Poisson processes. Based on this assumption we obtained product-form
solutions. From now on we consider cyclic queueing networks and consequently
we can no longer apply Burke’s theorem due to the dependencies on the arrival
processes of customers at a queue.

The main results of this kind of queueing networks were published by Jackson
[44] in 1963. Since then, these kinds of networks have often been referred to
as Jackson-type networks (Fig. 10.3). Jackson considered the following queueing
network model:

• The network is composed of N nodes.
• There are mi servers at node i.

2

3

41 r
12

13
r

30
r

34
r

24
r

40
r

43
r

Fig. 10.3 Jackson-type queueing network
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• The service time distribution at node i is exponentially distributed with the
parameter �i .

• From the environment customers arrive at node i according to a Poisson process
at rate �i .

• A customer getting served at node i goes to node j with probability ri;j (i; j D
1; 2; � � � ; N ), and the probability that the customer departs from the network is

ri;0 D 1 �
NX

kD1
ri;k i; j D 1; 2; � � � ; N:

Stability Condition of Jackson-Type Queueing Networks

The following traffic equations define the traffic rate at the nodes of the network:

�i D �i C
NX

jD1
�j rj;i i D 1; 2; � � � ; N: (10.1)

The left-hand side of the equation represents the aggregate traffic intensity arriving
at node i . Due to the stability of the network nodes, the arriving traffic intensity is
identical with the departing traffic intensity from node i . The right-hand side of the
equation gives the traffic components arriving at node i . �i is the traffic component
arriving from the environment, and �j rj;i is the traffic component that departs from
node j and goes to node i .

Introducing the row vector � D f�ig and � D f�ig and matrix R D frij g the
traffic equation can be written in the following vector form:

� D � C �R;

whence
� D �.I �R/�1

if .I �R/ is nonsingular.
The elements of the matrix .I�R/�1 have a well-defined physical interpretation

according to the following theorem. Let Lij denote the number of visits to node j
(before departing to the environment) by a customer arriving at node i :

Theorem 10.2. �
.I �R/�1

	
i;j
D E

�
Li;j

�
;

where the left-hand side denotes the i; j element of the matrix .I �R/�1.

Proof. The number of visits to node j satisfies the following equation:

E
�
Li;j

� D ıi;j C
NX

kD1
ri;kE

�
Lk;j

�
;
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where ıi;j is the Kronecker delta, that is, ıi;j D 1 if i D j , 0 otherwise. Introducing
matrix L whose i; j element is E

�
Li;j

�
we can rewrite the preceding equation in

matrix form:

L D I CRL;

from which the theorem comes. ut
The theorem gives a condition for the nonsingularity of the matrix .I � R/.

.I � R/ is nonsingular if all customers leave the queueing network after a finite
number of visits to the nodes of the network.

A queueing network is said to be stable if all queues are stable, which holds when

�i < mi�i ; i D 1; 2; � � � ; N:

Stationary Distribution of Jackson-Type Queueing Networks

According to the properties of Jackson-type queueing networks, the number of
customers at the nodes of the network is a continuous-time Markov chain. Let
ki denote the number of customers at node i , and let us introduce the following
notations:

N D .k1; � � � ; ki ; � � � ; kj ; � � � ; kN /;
Ni;0 D .k1; � � � ; ki C 1; � � � ; kj ; � � � ; kN /;
N0;j D .k1; � � � ; ki ; � � � ; kj � 1; � � � ; kN /;
Ni;j D .k1; � � � ; ki C 1; � � � ; kj � 1; � � � ; kN /;

where in the last two cases kj 	 1. Using these notations we can describe the
possible transitions of Markov chains representing the number of customers at the
network nodes.

• N0;j ! N: a new customer arrives at node j from the environment, increasing
the number of customers at node j from kj � 1 to kj . This happens at rate �j .

• Ni;0 ! N: a customer departs to the environment from node j , decreasing the
number of customers at node j from kjC1 to kj . This happens at rate ri;0˛i .kiC
1/�i .

• Ni;j ! N: a customer gets served at node i and goes to node j . This transition
decreases the number of customers at node i from ki C 1 to ij and increases
the number of customers at node j from kj � 1 to kj . This happens at rate
ri;j ˛i .ki C 1/�i .

In the preceding expressions ˛i .ki / D minfki ;mig defines the coefficient of the
service rate of node i when there are ki customers at the node. When there are more
customers at the node than servers, then all servers are working and the service rate
ismi�i ; when there are fewer customers than servers, then there are idle servers and
the service rate is ki�i .
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Theorem 10.3. A Markov chain characterized by the previously defined state
transitions has a product-form stationary distribution, that is,

pN D pk1;			 ;kN D p.1/k1 p
.2/

k2
� � �p.N/kN

; (10.2)

where p.i/ki is the stationary distribution of an M/M/mi queue with a Poisson arrival
process at rate �i and exponentially distributed service time with the parameter �i .
The stationary probabilities of such queues are given as a function of p.i/0 :

p
.i/

ki
D

8
ˆ̂̂
ˆ̂
<

ˆ̂̂
ˆ̂
:

p
.i/
0



�i

�i

�ki 1
ki Š

0 � ki � mi ;

p
.i/
0



�i

�i

�ki 1

mi Š
m
mi�ki
i ; ki 	 mi

(10.3)

and p.i/0 can be obtained from the normalizing equation
P1

kiD0 p
.i/

ki
D 1.

Proof. Based on the possible state transitions of a Markov chain, the balance
equation of state N is as follows:

pN

 
NX

iD1
�i C

NX

iD1
˛i .ki / �i

!

D
NX

iD1
pNi;0˛i .ki C 1/ �i ri;0

C
NX

jD1
pN0;j �j Ifkj>0g C

NX

iD1

NX

jD1
pNi;j ˛i .ki C 1/ �i ri;j ; (10.4)

where Ifkj>0g is the indicator of kj > 0, i.e., Ifkj>0g D 1 if kj > 0 and
Ifkj>0g D 0 otherwise.

The left-hand side of the equation is the rate at which the process departs from
state N in equilibrium. It contains the state transitions due to a new customer arrival
from the environment and due to a service completion. The right-hand side of the
equation is the rate at which the process moves to state N in equilibrium. This can
happen due to a service of a queue from which the customer leaves the network, due
to the arrival of a new customer from the environment, or due to a service completion
at node i from where the customer moves to node j .

If �i > 0 and �i > 0, then the Markov chain is irreducible, the solution of
the stationary equation is unique, and it is enough to show that the product-form
solution (10.2) satisfies the balance Eq. (10.4). First we substitute the product-form
solution into the right-hand side of the balance equation and use the fact that from
Eq. (10.3) we have p.i/kiC1 D p

.i/

ki

�i
�i˛i .kiC1/ and p.i/ki�1 D p

.i/

ki

�i ˛i .ki /

�i
. We obtain that
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NX

iD1
p
.1/

k1
� � �p.i/kiC1 � � �p

.N/

kN
˛i .ki C 1/ �i ri;0

C
NX

jD1
p
.1/

k1
� � �p.j /kj�1 � � �p.N/kN

�j Ikj>0

C
NX

iD1

NX

jD1
p
.1/

k1
� � �p.i/kiC1 � � �p

.j /

kj�1 � � �p.N/kN
˛i .ki C 1/ �i ri;j

D p.1/k1 � � �p
.N/

kN

0

@
NX

iD1
�i ri;0C

NX

jD1

�j˛j .kj /

�j
�jC

NX

iD1

NX

jD1

�j ˛j .kj /

�j
�i ri;j

1

A

D p.1/k1 � � �p
.N/

kN

0

B
B
BB
B
@

NX

iD1
�i ri;0C

NX

jD1

�j˛j .kj /

�j
�jC

NX

jD1

�j ˛j .kj /

�j

NX

iD1
�i ri;j

„ ƒ‚ …
�j��j

1

C
C
CC
C
A

D p.1/k1 � � �p
.N/

kN

0

@
NX

iD1
�i ri;0 C

NX

jD1
�j ˛j .kj /

1

A

D p.1/k1 � � �p
.N/

kN

0

@
NX

iD1
�i C

NX

jD1
�j ˛j .kj /

1

A : (10.5)

In the third step of the derivation we used the traffic equation of queue j ,
Eq. (10.1), and in the fourth step we utilized that the intensity of customer arrivals
from the environment

PN
iD1 �i is identical to the intensity of customer departures

to the environment,
PN

iD1 �i ri;0, in equilibrium.
The obtained expression is the left-hand side of the balance equation assuming a

product-form solution of the stationary distribution. ut
There might be loops in a Jackson-type queueing network of which the arrival

processes of the nodes are not independent Poisson processes and to which Burke’s
theorem is not applicable. Consequently, in this case we obtain a product-form so-
lution despite the queues’ dependent input processes. The reverse reasoning cannot
be applied. The product-form solution has no implications for the dependencies of
the arrival processes of the queues.

Traffic Theorem for Open Queueing Networks

Jackson-type queueing networks possess a traffic property similar to the PASTA
(Poisson arrival sees time average) property of queueing systems with a Poisson
arrival process.
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Theorem 10.4. The distribution of the number of customers in the queues at the
arrival instants of node j is identical to the stationary distribution of the number of
customers in the queues.

Proof. We define an extended queueing network that contains one additional single-
server node, node 0, with respect to the original queueing network. The traffic matrix
is also similar to the original one. It is modified only such that customers going to
node j are driven to node 0 and from node 0 to node j . The rest of the traffic
matrix is unchanged. The extended queueing network is also of a Jackson type, and
consequently its stationary distribution is product form: pN0 D p.0/k0 p

.1/

k1
p
.2/

k2
� � �p.N/kN

.
The service rate of node 0 is �0. As �0 ! 1, the behavior of the extended

queueing network becomes identical to that of the original and the arrival instants
of node j are the instants when there is one customer in node 0. In this way the
distribution of the customers at an arrival instants of node j is

P .K1 D k1; � � � ; KN D kN jK0 D 1/ D P .K0 D 1;K1 D k1; � � � ; KN D kN /
P .K0 D 1/

D pN:

ut
This theorem is important for computing the delays in a queueing system.

10.6 Closed, Gordon–Newell-Type Queueing Networks

The analysis of the closed queueing network counterpart of Jackson-type queueing
networks was first published by Gordon and Newell in 1967 [40]. Since that time,
this kind of queueing network has often carried their name. The node behavior
of Gordon–Newell-type queueing networks is identical to that of Jackson-type
networks. At node i there aremi servers with exponentially distributed service time
with parameters �i and an infinite buffer.

In contrast to the Jackson-type networks, there is no arrival from or departure to
the environment in closed queueing networks. Thus, the number of customers in the
network is constant, denoted by K . If ki denotes the number of customers at node
i , then in each state of the network we have

NX

iD1
ki D K:

As with the Jackson-type network, the number of customers at the nodes of the
network form a Markov chain. In a closed queueing network the only possible state
transition in this Markov chain is the Ni;j ! N transition, that is, a customer gets
served at node i and moves to node j ; the transition rate of this state transition is
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˛i .ki C 1/�i ri;j . This state transition decreases the number of customers at node
i from ki C 1 to ki and increases the number of customers at node j from kj � 1
to kj .

The aggregate arrival rate of the nodes are characterized by the traffic equation

�i D
NX

jD1
�j rj;i i D 1; 2; � � � ; N: (10.6)

Equation (10.6) indicates that customers arriving at node i are those customers that
departed from node j and were directed to node i with probability rij . In a closed
queueing network,

PN
jD1 rij D 1 since there is no departure to the environment.

The solution of the traffic equation of closed queueing networks is not unique.
Multiplying an arbitrary solution by a constant gives another solution of the traffic
equation.

Theorem 10.5. The stationary distribution of the number of customers in a
Gordon–Newell-type queueing network has product form. That is,

pN D pk1;			 ;kN D
1

G

NY

iD1
h
.i/

ki
; (10.7)

where �i is an arbitrary nonzero solution of the traffic equation,

h
.i/

ki
D

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂



�i

�i

�ki 1
ki Š

0 � ki � mi ;



�i

�i

�ki 1

mi Š
m
mi�ki
i ki 	 mi;

(10.8)

and G DPN

QN
iD1 h

.i/

ki
.

Proof. The proof follows the same pattern as that for the Jackson-type network. The
balance equation for N is

pN

 
NX

iD1
˛i .ki / �i

!

D
NX

iD1

NX

jD1
pNi;j ˛i .ki C 1/ �i ri;j ; (10.9)

where the left-hand side of the equation is the rate at which state N is left and
the right-hand side is the rate at which state N is entered in equilibrium. Due to
the irreducibility of a Markov chain, we assume a unique solution of the balance
equations (together with the normalizing equation,

P
N2S pN D 1), and we only

show that the product form satisfies the balance equation.
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Substituting the product form into the right-hand side of the balance equation
gives

NX

iD1

NX

jD1
p
.1/

k1
� � �p.i/kiC1 � � �p

.j /

kj�1 � � �p.N/kN
˛i .ki C 1/ �i ri;j

D p.1/k1 � � �p
.N/

kN

0

@
NX

iD1

NX

jD1

�j ˛j .kj /

�j
�i ri;j

1

A

D p.1/k1 � � �p
.N/

kN

0

B
BB
B
B
@

NX

jD1

�j ˛j .kj /

�j

NX

iD1
�i ri;j

„ ƒ‚ …
�j

1

C
CC
C
C
A

D p.1/k1 � � �p
.N/

kN

0

@
NX

jD1
�j ˛j .kj /

1

A ; (10.10)

which is identical to the left-hand side of the balance equation when the product-
form solution is assumed. The normalizing constant,G, ensures that the normalizing
equation is satisfied. ut

The main difficulties of the analysis of closed queueing networks are that the
solution of the traffic equation is not unique and that the normalizing constant cannot
be computed in a node-based manner only for the whole network. The computation
of G requires the evaluation of all system states, which gets very high even for
reasonably small networks. When there areN nodes andK customers in a network,
the number of system states is

�
NCK�1

K

�
(e.g., for N D 10;K D 25 there are

52;451;256 states).
The commonly applied solution of the first problem is to add an additional

equation to the set of traffic equations, �1 D 1, which makes its solution unique.
The second problem, the computation of the normalizing constant, G, is a real

research challenge. Many proposals exist for computing the normalizing constant
efficiently. Here we summarize the convolution algorithm [18] and the mean value
analysis (MVA) algorithm [79].

Convolution Algorithm

The convolution algorithm was first published by Buzen [18]. In the original paper
the nodes have a single server, but it is easy to extend the algorithm to Gordon–
Newell-type queueing networks where the node i has mi (mi 	 1) servers and an
infinite buffer. We present the more general version of the algorithm.
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Assuming that there are n nodes and k customers in the network, let the assumed
normalizing constant be

g.k; n/ D
X

.k1;:::;kn/;
P
j kjDk

nY

iD1
h
.i/

ki
;

and g.0; n/ D 1. When g.k; n/ is known, we obtain the normalizing constant of the
network with N nodes and K customers as G DPN

QN
iD1 h

.i/

ki
D g.K;N /.

The following formula allows one to determine g.k; n/ in a recursive manner:

g.k; n/ D
(
h
.1/

k ha n D 1;
Pk

jD0 h
.n/
j g.k � j; n � 1/ ha n > 1:

(10.11)

In the case of one node (n D 1) and k 	 1 customers, the recursive formula
gives h.1/k , and in the case of more than one nodes we have

g.k; n/ D
X

.k1;:::;kn/;
P
j kjDk

nY

iD1
h
.i/

ki

D
X

.k1;:::;kn/;
P
j kjDk;knD0

h
.n/
0

n�1Y

iD1
h
.i/

ki
C : : :

C
X

.k1;:::;kn/;
P
j kjDk;knDk

h
.n/

k

n�1Y

iD1
h
.i/

ki

D h.n/0 g.k; n � 1/C : : :C h.n/k g.0; n � 1/:

This expression relates the normalizing constant of a network with n nodes to the
normalizing constant of a network with n � 1 nodes.

The convolution algorithm starts from n D 1, k D 1; : : : ; K , and increases
n to N step by step according to Eq. (10.11). The computational complexity of
this algorithm is proportional to N and K2 [denoted by O.NK2/], and its memory
complexity is proportional to K [denoted by O.K/].

Another benefit of the convolution algorithm is that some interesting perfor-
mance parameters are closely related to the g.k; n/ parameters. For example, the
probability that there are ` customers in queue k is

P .k` D k/ D
X

.k1;:::;kn/;
P
j kjDK;k`Dk

1

G

nY

iD1
h
.i/

ki
D h.`/k

g.K�k;N�1/
g.K;N /

;
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and from this the utilization of node ` is

U` D 1 � P .k` D 0/ D 1 � h.`/0
g.K;N�1/
g.K;N /

:

Traffic Theorem for Closed Queueing Networks

The MVA algorithm is based on the traffic theorem for closed queueing networks,
so we present the theorem first.

Theorem 10.6. In a closed Gordon–Newell-type queueing network containing K
customers, the distribution of the number of customers upon a customer’s arrival at
node j is identical to the stationary distribution of the same network with K � 1
customers.

Proof. The proof is practically identical to that provided for open queueing net-
works. We extend the network with a single-server node 0 and redirect all customers
going to node j to node 0 and from node 0 all customers go to node j . The rest of
the network is left unchanged. The extended network is of a Gordon–Newell type
as well; thus it has a product-form stationary distribution, p

k0;k1;:::;kN ;
PN
iD0 kiDK D

1
G0

QN
iD0 h

.i/

ki
.

The service rate of node 0 is �0. As �0 ! 1, the behavior of the extended
network and that of the original networks are identical, and the arrival instances of
node j are the instances when the number of customers in node 0 is 1. Thus,

P

 

K1 D k1; � � � ; KN D kN ;
NX

iD0
ki D KjK0 D 1

!

D
P
�
K0 D 1;K1 D k1; � � � ; KN D kN ;PN

iD0 ki D K
�

P .K0 D 1/

D P


K1 D k1; � � � ; KN D kN ;

XN

iD1 ki D K � 1
�
:

ut

MVA Algorithm

In the convolution algorithm, the number of nodes increases in an iteration of the
algorithm. The MVA algorithm is a kind of counterpart of the convolution algorithm
in the sense that the MVA algorithm is also an iterative algorithm, but in this case
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the number of customers increases in an iteration step. According to this approach,
we analyze the involved quantities as a function of the number of customers in the
network.

In contrast with the convolution algorithm, the applicability of the MVA algo-
rithm is limited to the case of single servers at the network nodes, i.e., mi D 1; i D
1; : : : ; N , and the algorithm yields mean performance measures, hence its name.

The mean time a customer spends at node i during a visit to node i is

E .Ti .K// D .1C E
�
N �
i .K/

�
/
1

�i
;

where E
�
N �
i .K/

�
denotes the mean number of customers present at node i upon

the arrival of an observed customer. According to the traffic theorem, E
�
N �
i .K/

�

is identical to the stationary number of customers at node i when the number of
customers in the network is K � 1, i.e., E .Ni .K � 1//, whence

E .Ti .K// D .1C E .Ni.K � 1/// 1
�i
:

On the other hand, the mean number of customers at node i in equilibrium is

E .Ni.K// D K �iE .Ti .K//
PN

jD1 �jE
�
Tj .K/

�

because the arrival rate at node i is proportional to an arbitrary nonzero solution of
the traffic equation O�i D �ic, according to Little’s law E .Ni.K// D O�iE .Ti .K//
and

K
�iE .Ti .K//

PN
jD1 �jE

�
Tj .K/

� D K
O�iE .Ti .K//

PN
jD1 O�jE

�
Tj .K/

� D K E .Ni.K//
PN

jD1 E
�
Nj .K/

�

D K
E .Ni.K//

K
D E .Ni.K// :

Applying Little’s law to another time we obtain

O�i D E .Ni.K//
E .Ti .K//

D K �i
PN

jD1 �jE
�
Tj .K/

� :

With these expressions we have all the ingredients of the iterative algorithm:
Initial value:

E .Ni.0// D 0I
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Iteration step:

E .Ti .K// D .1C E .Ni.K � 1/// 1
�i
;

E .Ni .K// D K �iE .Ti .K//
PN

jD1 �jE
�
Tj .K/

� I

Closing step:

O�i D E .Ni .K//
E .Ti .K//

:

The computational complexity and memory complexity of the algorithm are
O.KN2/ and O.N/. Compared to the convolution algorithm the MVA is more
efficient whenK is larger than N .

10.7 BCMP Networks: Multiple Customer and Service Types

The Jackson-type and Gordon–Newell-type queueing networks have a product-
form stationary distribution. Thus, efficient computational methods are applicable
for the analysis of systems modeled by this kind of network. For a long time,
the performance analysis and the development of efficient computer systems were
based on these kinds of simple and computable models. The analysis of increasingly
complex system behavior required the introduction of more complex queueing
behavior and the analysis of the obtained queueing network models. This resulted
in fertile research in an effort to find the most general set of queueing networks with
a product-form stationary distribution. The results of this effort are summarized in
[9], and the set of most general queueing networks with a product-form solution
is commonly referred to as BCMP networks, whose abbreviation comes from the
initials of the coauthors: Baskett, Chandy, Muntz, and Palacios [9].

The set of BCMP networks generalizes the previous queueing networks in two
main directions. In the previously discussed queueing networks, customers are
indistinguishable and the service discipline is first come, first served (FCFS). In
BCMP networks, customers belong to customer classes that are distinguished by the
system because customers of different classes might arrive from the environment at
the nodes at different rates, might obtain different services (service time distribution
and service discipline) at the nodes, and might follow a different traffic routing
probability upon completion of a service. Still, customers of the same class are
indistinguishable.
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The arrival of class r customers at node i occurs at rate �ir . When a class r
customer is rendered a service at node i , the customer gets in the queue at node j as
a class s customer with probability Pir;js , i.e., customers might change their class
right after the completion of a service. Let the number of customer classes be C .
Then

NX

jD0

CX

sD1
Pir;js D 1; 8i D 1; : : : ; N; r D 1; : : : ; C;

Pir;0s denotes the probability of departure to the environment.
A wide range of traffic models can be defined with an appropriate setting of the

arrival rate �ir and traffic routing probabilityPir;js. Some examples are listed below.

• Customer classes are independent, and some classes behave as in open queueing
networks and others as in closed queueing networks: Pir;js D 0 if r ¤ s, i.e.,
there is no class change. �ir D 0 if r � Cz, and for all r > Cz there exists
i such that �ir > 0, i.e., the first Cz classes of customers behave as in closed
queueing networks and the rest as in open ones. The probability of departure to
the environment is as follows, Pir;0s D 0 for r � Cz, and for all r > Cz there
exists i such that Pir;0s > 0.

• Background traffic at a subset of the network: Let �ir D 0 if i > Nz, r � Cz, and
Pir;js D 0 if i � Nz, j > Nz, r; s � Cz. In this case the class r � Cz customers
load only node i � Nz and form a kind of background traffic for customers of
class r > Cz in that part of the network.

• Multiple service at a node: Customer classes can be used to obtain a fixed number
of services, u, at node i during a single visit to node i by customers of class v.
For example, if for r D v; : : : ; vC u � 2 we let Pir;js D 1 if s D r C 1, j D i ,
and Pir;js D 0 otherwise, and for r D v C u � 1 we let Pir;js 	 0 if s D r ,
j ¤ i , and Pir;js D 0 otherwise, then we have the following behavior. A class v
customer arrives at node i and gets served sooner as a class v customer than as
a class vC 1 customer and so on, while it departs as a class vC u � 1 customer
from node i and goes to node j as a class v customer.

The service disciplines at a node of a BCMP network can be one of the following
disciplines:

1. FCFS (first come, first served): Customers arrive at the server in the same order
in which they arrived at the node. With this service discipline the service time
of all customers is exponentially distributed with the same parameter, which
is common to all customer classes. The service intensity might depend on the
number of all customers at the node.

2. Processor sharing (PS): In this case, the service capacity of the server is divided
into as many equal parts as there are customers at the node, and each part of the
server capacity is assigned to a customer. That is, when there are n customers
at the node, all of them are served by a 1=n portion of the full service capacity.
In this case (if there are n customers at the node during the complete service
of a customer), the service time of the customer is n times longer than it would
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have been had the full service capacity been assigned to this customer. With this
service discipline the service time distribution of different customer classes might
be different and can be more general than exponentially distributed. Service time
distributions with rational Laplace transforms (matrix exponential distributions)
are allowed in this case.

3. LCFS–PR (last come first served–preemptive resume): The server serves one
customer at a time, but in such a way that the last arrived customer interrupts the
service of the customer currently being served (if any) and starts being served. If
during this customer’s service time a new customer arrives, the first customer is
interrupted and waits while all of the customers arriving later get served. At this
point, the first cusomter goes to the server again and resumes the service process
starting at the point at which it was interrupted.

Similar to the PS case, with this service discipline the service time distribution
of different customer classes might be different and can be more general than
exponentially distributed. Service time distributions with rational Laplace trans-
forms (matrix exponential distributions) are allowed with this service discipline.

4. Infinite server (IS): There are infinitely many servers in this service discipline,
and thus all arriving customers go to an idle server upon arrival. Similar
to the PS and LCFS–PR cases, with this service discipline the service time
distributions of different customer classes might be different and can be more
general than exponentially distributed. Service time distributions with rational
Laplace transforms (matrix exponential distributions) are allowed with this
service discipline.

With the introduction of customer classes, the traffic equation only slightly
modifies,

�ir D �ir C
NX

jD1

CX

sD1
�js Pjs;ir ; (10.12)

but to describe the product-form solution of BCMP networks, we need to introduce
further cumbersome notations. To avoid this, we restrict our attention to exponen-
tially distributed service times instead of matrix exponentially distributed ones, but
we allow all other generalizations of BCMP service disciplines.

Let Nir denote the number of class r customers at node i and define the vectors
Ni D fNi1; : : : ; NiC g and N D fN1; : : :NNg. Thus, vector N defines the distribution
of the different classes of customers at the network nodes. With this notation the
stationary distribution has the form

pN D 1

G

NY

iD1
h
.i/
Ni
; (10.13)
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where

h
.i/
Ni
D

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂̂
ˆ̂
ˆ̂
:

NiŠ

�
Ni
i

CY

rD1

1

Nir Š
�
Nir
ir if node i is FCFS type;

Ni Š

CY

rD1

1

Nir Š



�ir

�ir

�Nir
if node i is PS or IS type;

CY

rD1

1

Nir Š



�ir

�ir

�Nir
if node i is LCFS-PR type;

and Ni DPC
rD1 Nir . �ir denotes the service rate of a class r customer at node i .

10.8 Non-Product-Form Queueing Networks

Despite the fact that BCMP networks allow for a wide range of node behaviors,
there are practical examples whose stationary solutions do not exhibit product-form
solutions. The most common reasons for non-product-form solutions are

• Non-Poisson customer arrival process,
• Different exponentially distributed service time at FCFS-type node for different

customer classes,
• Nonexponentially distributed service time at FCFS-type node,
• Nonmatrix exponentially distributed service time,
• Queueing nodes with finite buffer.

In general queueing networks, the stochastic behavior of the number of (different
classes of) customers at the nodes is not a Markov chain (e.g., in the case of general
interarrival or service time distributions). There are also cases where the number of
(different classes of) customers at the nodes is a Markov chain but the stationary
solution of this Markov chain does not possess product form (e.g., in the case of
a Poisson arrival process and exponentially distributed service time distributions
and finite-capacity FCFS-type nodes). In these cases no exact analysis methods are
available, and we must resort to approximate analysis methods.

The majority of the approximate analysis methods are somewhat based on a
product-form solution. They analyze a system as if its solution were of product form
and adjust the result obtained from the product-form assumptions to better satisfy
system equations.

From the set of approximate analysis methods of queueing networks we summa-
rize traffic-based decomposition.
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10.9 Traffic-Based Decomposition

One way to interpret the product-form solution is that the network nodes are
independently analyzed based on the traffic load given by the solution of the traffic
equation and the known service process (discipline and service time) of the node.

Traffic-based decomposition is an iterative procedure that analyzes the nodes
of a network independently, and the traffic load of the node under evaluation
is determined based on the departure processes of the network nodes previously
analyzed.

The advantages of the procedure are its flexibility and low computational cost,
while its disadvantages are the potential inaccuracy of the results and the lack of
evidence about the convergence of the procedure. Despite its disadvantages, this is a
very often applied approximate analysis method in practice because in the majority
of cases it converges and gives reasonable agreement with simulation results.

The traffic-based decomposition procedure iteratively goes through all nodes of
the network and performs the following steps for all nodes:

• Traffic aggregation: aggregates the traffic coming from the environment and from
the departure processes of the other nodes (based on the preceding iterations).

• Node analysis and departure process computation: a single queueing system
analysis step in which the parameters of the departure process are also computed.

• Departure process filtering: computation of traffic components going to other
network nodes.

The complexity of an iteration step and the accuracy of the results depend on the
applied traffic descriptors. The flexibility of the procedure is due to the wide range of
potentially applicable traffic descriptors. The most commonly used traffic descriptor
is the average intensity of the traffic such that a Poisson arrival process is assumed
with a given intensity. Using this traffic model with more than one traffic class
results in a nontrivial analysis problem itself. If a more sophisticated traffic model
is applied to, e.g., higher moments or correlation parameters of the interarrival time
distribution are considered, then the complexity of the analysis steps increases and
the overall accuracy improves.

10.10 Exercises

Exercise 10.1. In the depicted queueing network the requests of input A are
forwarded to output B according to the following traffic routing probabilities:
p D 0:3; q1 D 0:2; q2 D 0:5; q3 D 0:3.

Requests from input A arrive according to a Poisson process at a rate � D 50.
The service times are exponentially distributed in nodes R1, R2, and R3 with the
parameters �1 D 90, �2 D 35, and �3 D 100, respectively. The service time in
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R1 R2

R4R3

q
1

q
3

q
2

p

1−p

A

B

λ

R4 is composed of two phases. The first phase is exponentially distributed with the
parameter �4 D 400, and the second phase is deterministic with D D 0:01.

• Compute the traffic load of the nodes.
• Compute the mean and the coefficient of variation of the service time at node R4.
• Compute the system time at each node.
• Compute �max at which the system is at the limit of stability.

Exercise 10.2. In the depicted queueing network the requests of input A are
forwarded to output B according to the following traffic routing probabilities:
p12 D 0:3; p13 D 0:7.

A B

1 4

2

3

The requests from input A arrive according to a Poisson process at a rate � D 50.
In nodes 1, 2, and 3 there are single servers and infinite buffers, and the service
times are exponentially distributed with the parameters �1 D 80, �2 D 45, and
�3 D 50, respectively. There are two servers and two additional buffers at node R4.
Both servers can serve requests with exponentially distributed service time with the
parameter �4 D 40.

• Characterize the nodes using Kendall’s notation.
• Compute the traffic load of the nodes.
• Compute the system time at each node.
• Compute the server utilization at node 4.
• Compute the packet loss probability.
• Compute the mean time of a request from A to B.
• Which node is the bottleneck of the system? Which node saturates first when �

increases?



Chapter 11
Applied Queueing Systems

11.1 Bandwidth Sharing of Finite-Capacity Links with
Different Traffic Classes

Traditional telephone networks were designed to implement a single type of com-
munication service, i.e., the telephone service. Today’s telecommunication networks
implement a wide range of communication services. In this section we introduce
Markov models of communication services that compete for the bandwidth of a
finite-capacity communication link.

11.1.1 Traffic Classes

There are several important features of traffic sources of communication services
that allow for their classification. Here assume that the traffic sources require
the setting up of a connection for a finite period of time during which data
communication is carried out between the parties of the communication service.
We classify the traffic sources based on the bandwidth of the data transmission
during a connection. The simplest case is where data are transmitted with a fixed
bandwidth during a connection. This case is commonly referred to as constant
bit rate (CBR). A more general traffic behavior is obtained when the bandwidth
of data transmission varies during a connection. This case is commonly referred
to as variable bit rate (VBR). The most common form of bandwidth variation
is when the bandwidth alternates between 0 and a fixed bandwidth. These VBR
sources are referred to as ON-OFF sources, and we restrict our attention to the
ON-OFF case. The most complex traffic sources adjust their bandwidth according
to the available capacities of the network resources. There are two classes of this
kind of source. Adaptive traffic sources set up a connection for a given period
of time and transmit data according to the available bandwidth in the network. If
the network resources are occupied during the connection of an adaptive traffic

L. Lakatos et al., Introduction to Queueing Systems with Telecommunication Applications,
DOI 10.1007/978-1-4614-5317-8 11, © Springer Science+Business Media, LLC 2013

303



304 11 Applied Queueing Systems

source, then the source transmits data with a low bandwidth, and the overall amount
of transmitted data during a connection is low. Elastic traffic sources set up a
connection for transmitting a given amount of data. The bandwidth of the data
transmission depends on the available bandwidth in the network. If the network
resources are occupied during the connection of an elastic connection, then the
period of the connection is extended in such a way that the source transmits the
required amount of data.

In this section we assume that the traffic sources demonstrate a memoryless
time-homogeneous stochastic behavior and, consequently, the arrival processes are
Poisson processes and the connection times are exponentially distributed, except for
the elastic class, where the amount of data to transmit is exponentially distributed.
Additionally, the traffic sources are characterized by their bandwidth parameters.
In the case of CBR and ON-OFF VBR sources, the bandwidth parameter is the
bandwidth of the active period. In the case of adaptive and elastic sources, the
bandwidth parameters are the minimal and maximal bandwidth at which the source
can transmit data.

Consequently, in the case of the different kinds of traffic sources, a class k traffic
source is characterized by the following parameters:

• CBR connection: connection arrival intensity �k , bandwidth requirement ck ,
parameter of exponentially distributed connection holding time �k ;

• VBR connection: connection arrival intensity �k , bandwidth requirement in ON
state ck , parameters of exponentially distributed connection holding time, ON
time, and OFF time �k , ˛k , and ˇk , respectively.

• Adaptive connection: connection arrival intensity �k , minimal bandwidth c.k/min,

maximal bandwidth c
.k/
max, parameter of exponentially distributed connection

holding time �k ;
• Elastic connection: connection arrival intensity �k , minimal bandwidth c.k/min,

maximal bandwidth c
.k/
max, parameter of exponentially distributed amount of

transmitted data ık.

These parameters define the arrival process and the bandwidth needs of the traffic
sources but they do not define completely the service procedure as the common
resource (the finite capacity link) is shared among the traffic types and classes. In
the case of traditional telephone services, the procedure for a new telephone call is
obvious: accept as many calls as possible with the given finite-capacity link. In the
case of different traffic classes, more complex procedures are required to properly
utilize the resources and to provide the desired service features to each traffic class.
The set of rules concerning the acceptance or rejection of a new connection is
referred to as call admission control (CAC). CAC defines the acceptance or rejection
of a new connection of all types under all possible traffic conditions. We will see
some typical CACs and their properties.

The most common performance parameters of interest in these kinds of traffic
models are



11.1 Bandwidth Sharing of Finite-Capacity Links with Different Traffic Classes 305

• Per-class connection-dropping probability (at arrival connection arrival),
• VBR connection-dropping probabilities (during ongoing connection at an OFF

to ON transition),
• Per-class mean bandwidth of adaptive and elastic connections,
• Sojourn time of elastic connections.

Different dimensioning methods apply for different traffic classes. In the follow-
ing sections we investigate the simple Markov models of these traffic classes, which
form the bases of the complex dimensioning methods used in practice.

11.1.2 Bandwidth Sharing by CBR Traffic Classes

One of the first generalizations of traditional telecommunication models is due to
the coexistence of communication services with different bandwidth requirements.
When a link is utilized by different kinds of CBR connections with the previously
detailed Markovian properties, then the overall system behavior can be described
by a CTMC. The main problem of analyzing the performance parameters through
this CTMC is the potentially very high number of states. If a finite-capacity link of
bandwidth C is utilized by I different kinds of CBR connections, then a state of the
CTMC should represent the number of ongoing connections of each class, and the
number of states is proportional to the product

QI
iD1.

C
ci
C 1/.

To overcome this practical problem, an efficient numerical procedure was
proposed by two researchers independently [50, 80]; the procedure is often referred
to as the Kaufman–Roberts method. It is based on the fact that a large CTMC,
which represents the number of ongoing connections of each class, satisfies the
local balance equations

�i p.n1; : : : ; ni � 1; : : : ; nI / D ni�i p.n1; : : : ; ni ; : : : ; nI /;

where p.n1; : : : ; ni ; : : : ; nI / denotes the stationary probability of the state where
the number of class i connections is ni for i D 1; : : : ; I . The local balance
equation represents that the stationary state-transition rate due to an arriving class i
connection is in balance with the stationary state-transition rate due to a departing
class i connection. The main idea of the Kaufman–Roberts method is to unify those
states of a large Markov chain that represent the same bandwidth utilization of a link.
In the state .n1; n2; : : : ; nI /, the bandwidth utilization is c DPI

iD1 ni ci . Summing
up the local balance equations for the states where the bandwidth utilization on the
right-hand side is c we have
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IX

iD1
�i P.c � ci / Ifci�cg D

IX

iD1
ni�i P.c/

IX

iD1

�i ci

�i
P.c � ci / Ifci�cg D

IX

iD1
ni ci

„ ƒ‚ …
c

P.c/

IX

iD1

�i ci

�i c
P.c � ci / Ifci�cg D P.c/;

where P.c/ denotes the sum of the stationary probabilities of the states where the
bandwidth utilization is c, that is,P.c/ DP

.n1;n2;:::;nI /WPI
iD1 ni ciDc p.n1; n2; : : : ; nI /.

The last equation is the core of the Kaufman–Roberts method, which computes the
relative (nonnormalized) probabilities of the link utilization levels first and then
normalizes probabilities as follows.

1. Let QP .0/ D 1, and for c D 1; 2; : : : ; C compute

QP .c/ D
X

i

�i ci

�i c
QP.c � ci / Ifci�cg:

2. Compute QP DPC
cD0 QP.c/.

3. Normalize the probabilities by P.c/ D QP .c/= QP .

There is an implicit technical assumption that is necessary for the application of
the Kaufman–Roberts method. There must be a bandwidth unit such that each ci is
an integer multiple of this bandwidth unit. (The method remains applicable if C is
not an integer multiple of the bandwidth unit.) Fortunately, in important applications
such a bandwidth unit exists.

Having the stationary probabilities of the utilization levels we can compute the
loss probabilities. If the CAC allows all connections entering the link as long as the
available bandwidth is not less than the bandwidth of the entering connection, then
the loss probability of class i connections is

bi D
X

c>C�ci
P.c/:

It is a straightforward consequence of the CAC that connections with higher
bandwidth requirements have a higher loss probability. If a kind of fairness is
required among the different classes such that each class experiences the same
loss probability, then the CAC needs to be modified. Let us assume that the traffic
class with the highest bandwidth is class I . If the CAC is modified such that each
incoming connection is rejected when the available bandwidth is less than cI , then
the distribution of the link utilization changes, but each class is accepted and rejected
at the same time at the different link utilization levels, and consequently they have
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the same loss probability. If the CAC depends only on the link utilization level
(as in the case of a modified CAC with identical dropping probabilities), then the
Kaufman–Roberts method remains applicable. In this case the main iteration step of
the procedure changes to

QP.c/ D
X

i

�ici

�i c
QP .c � ci / CAC.i; c � ci /;

where CAC.i; c/ is one if a class i connection is accepted at link utilization c, and
zero otherwise. The link utilization-level-dependent CAC can also be generalized
to probabilistic CACs. In this case the main iteration step of the procedure remains
the same as for the deterministic one, and CAC.i; c/ indicates the probability that a
class i connection is accepted at link utilization c.

11.1.3 Bandwidth Sharing with VBR Traffic Classes

When a link is utilized by different kinds of VBR connections and each of them is
characterized by the previously described Markovian properties, the overall system
behavior can be described by a CTMC. The states of this CTMC represent the
number of ongoing VBR connections of each class and the number of connections
in the ON phase, .n1;m1; n2;m2; : : : ; nI ;mI /. Note that ni 	 mi , i D 1; : : : ; I ,
and

PI
iD1 mici � C , where the second inequality means that the utilized bandwidth

should not exceed the link capacity. The state space of this CTMC is even larger than
that for CBR connections, which represents only the number of ongoing connections
of each class, but unfortunately there is no more efficient computation method
available for this model than to solve the CTMC. This is due to the fact that this
CTMC does not satisfy the local balance equations. At any rate, the numerical
solution of this CTMC is still possible for a limited number of VBR classes and
connections.

Generally, the CAC for VBR connections is more complex than that for CBR
connections. A conservative CAC does not allow more VBR connections than the
link can serve, assuming that all VBR connections are in the ON state. That is,PI

iD1 ni ci � C holds for each state. Unfortunately, a conservative CAC results
in a very low resource utilization, especially when the length of the ON period
is short with respect to the length of the OFF period. In these cases, it is worth
allowing more VBR connections than a conservative CAC in order to increase the
link utilization. The drawback of nonconservative CACs is that accepted ongoing
VBRs can be dropped due to insufficient capacity with positive probability at an
OFF to ON phase transmission. In practice, it is usually required that the dropping
probability of ongoing VBR connections be much lower than that of newly arriving
ones.

The possible state transitions of Markov chains are
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(a) .n1;m1; : : : ; ni ; mi ; : : : ; nI ;mI / ! .n1;m1; : : : ; ni C 1;mi C 1; : : : ; nI ;mI /

at rate �i if CAC.i; fn1;m1; : : : ; ni ; mi ; : : : ; nI ;mI g/ D 1;
(b) .n1;m1; : : : ; ni ; mi ; : : : ; nI ;mI /! .n1;m1; : : : ; ni �1;mi �1; : : : ; nI ;mI / at

rate mi�i ;
(c) .n1;m1; : : : ; ni ; mi ; : : : ; nI ;mI /! .n1;m1; : : : ; ni�1;mi; : : : ; nI ;mI / at rate

.ni �mi/�i ;
(d) .n1;m1; : : : ; ni ; mi ; : : : ; nI ;mI /! .n1;m1; : : : ; ni ; mi�1; : : : ; nI ;mI / at rate

mi˛i ;
(e) .n1;m1; : : : ; ni ; mi ; : : : ; nI ;mI / ! .n1;m1; : : : ; ni ; mi C 1; : : : ; nI ;mI / at

rate .ni �mi/ˇi if
IX

jD1
mj cj C ci � C ;

(f) .n1;m1; : : : ; ni ; mi ; : : : ; nI ;mI /! .n1;m1; : : : ; ni�1;mi; : : : ; nI ;mI / at rate

.ni �mi/ˇi if
IX

jD1
mj cj C ci > C ,

where CAC.i; fn1;m1; : : : ; nI ;mI g/ denotes the CAC decision in state .n1;m1; : : : ;

nI ;mI / for an incoming class i connection, and state transitions with a zero rate are
impossible. According to the bandwidth limit of a link,

CAC.i; fn1;m1; : : : ; nI ;mI g/ D 0 if
IX

jD1
mj cj C ci > C:

The transitions represent the following events:

(a) New class i connection arrival.
(b) Departure of a class i connection that is in the ON phase.
(c) Departure of a class i connection which is in the OFF phase.
(d) A class i connection switches from ON to OFF phase.
(e) A class i connection switches from OFF to ON phase.
(f) A class i connection is lost due to insufficient bandwidth for OFF to ON phase

transition.

With the stationary probabilities of this CTMC, denoted by p.n1;m1; : : : ;

nI ;mI /, the dropping probability of class i incoming and ongoing connections can
be computed as follows:

bnew
i D number of class i incoming connections dropped upon arrival

number of class i incoming connections

D
X

n1;m1;:::;nI ;mI

p.n1;m1; : : : ; nI ;mI /.1 � CAC.i; fn1;m1; : : : ; nI ;mI g//;
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b
ongoing
i D number of class i dropped ongoing connections

number of class i incoming connections

D
X

Si

.ni �mi/ˇi

�i
p.n1;m1; : : : ; nI ;mI /;

where Si denotes the set of states for which
IX

jD1
mj cj C ci > C . The link

utilization is

� D
X

n1;m1;:::;nI ;mI

p.n1;m1; : : : ; nI ;mI /

IX

jD1
mj cj :

If the state space of the CMTC is such that a stationary analysis is feasible, then
the computation of the performance parameters is straightforward, but the inverse
problem, the design of a CAC that satisfies blocking probability constraints and
maximizes link utilization, is still an interesting research problem.

11.1.4 Bandwidth Sharing with Adaptive Traffic Classes

In the case of adaptive traffic classes, connections can adapt their bandwidth to the
available bandwidth of the link between the class-specific bandwidth limits c.i/min

and c.i/max. If the link is not completely utilized, then each connection receives its
maximal bandwidth. If the sum of the maximal bandwidth needs is larger than the
link capacity, then the link is completely utilized and a bandwidth reduction affects
the bandwidth of all classes according to the following rule. If the actual bandwidth
of a class i connection is c and c is less than c.i/max, then for any other class j the
bandwidth is c if c � c

.j /
max or c.j /max if c > c

.j /
max. This means that the bandwidth of

each class is reduced to the same level c if the class-specific maximal bandwidth
c
.j /
max is not less than c. Consequently, the main features of bandwidth sharing with

adaptive traffic classes are as follows:

• The departure rate of connections is proportional to the number of active connec-
tions and is independent of the instantaneous bandwidth of the connections.

• The bandwidth of the connections varies according to the link capacity and the
number of active connections.

• An arriving class i connection is rejected when the minimal required bandwidth
c
.i/

min cannot be granted.
• The transmitted data of a connection depends on the instantaneous bandwidth

during the connection.
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Example 11.1. We demonstrate the behavior of adaptive connections on a finite-
capacity link in the case of a single adaptive class with link bandwidthC D 3Mbps,
bandwidth limits cmin D 1Mbps, cmax D 2Mbps, and connection arrival and
departure rates � Œ1=s� and �Œ1=s�, respectively. Due to the memoryless arrival and
departure processes, the number of active connections X.t/ is a Markov chain and
it is depicted in Fig. 11.1. The figure also indicates the bandwidth of the ongoing
connections. If there are three ongoing connections, then the arriving connections
are rejected because in the case of four connections the common bandwidth
c D 3=4Mbps would be smaller than the minimal bandwidth requirement cmin D
1Mbps.

The main performance measures of this system are the mean bandwidth of
connections

Nc D
3X

iD0
ic.i/pi D 2p1 C 2 � 1:5p2 C 3 � 1p3;

the link utilization

� D
3X

iD0
�ipi D 2=3p1 C 1p2 C 1p3;

and the blocking probability
b D p3;

where pi , �i , and c.i/ denote the stationary probability, the utilization, and the
bandwidth of a connection in state i , respectively.

Example 11.2. The approach applied to the single class model can be used for the
analysis of models with multiple adaptive classes. In the case of two adaptive classes
with link bandwidth C D 5, bandwidth limits c.1/min D 1:5, c.1/max D 3, c.2/min D 1,

c
.2/
max D 2, connection arrival and departure rates �1, �2 and�1,�2, the Markov chain

describing the number of active connections of class 1 and 2 is depicted in Fig. 11.2.
The figure indicates the bandwidth of the ongoing connections by bold characters.
Arriving connections of both classes are rejected in states .0; 5/, .1; 2/, .2; 1/, .3; 0/,
and additionally arriving connections of class 1 are rejected in states .0; 3/, .0; 4/.
Considering only the minimal bandwidth constraints and the link bandwidth, the
state .1; 3/ would be feasible (1:5C 3 � 1 < 5), but the identical bandwidth sharing
of the classes makes this state infeasible because it violates the minimal bandwidth
requirement of class 1 (5=4 < c

.1/
min). In contrast, in the state .1; 1/ the bandwidth is
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Fig. 11.2 Markov chain of the number of adaptive connections with two adaptive classes

unevenly divided. This is possible because a class 2 connection obtains its maximal
bandwidth and the remaining bandwidth is utilized by the class 2 connection. The
performance measures can be computed in a similar way as in the case of a single
adaptive class.

11.1.5 Bandwidth Sharing with Elastic Traffic Classes

In the case of elastic traffic classes, the connections can adapt their bandwidth to the
available bandwidth similar to the adaptive class, but the amount of data transmitted
through a connection is fixed. Thus, during a period when the bandwidth is low,
the sojourn time of the elastic connections is longer. The bandwidth of elastic
connections is also bounded by class-specific bandwidth limits c.i/min and c.i/max, and
the bandwidth sharing between traffic classes follows the same role as in the case
of adaptive connections. The main features of bandwidth sharing with elastic traffic
classes are as follows:

• The departure rate of a connection of class i depend on the instantaneous
bandwidth of the class i connections. Thus, the length of the connections varies
according to the link capacity and the number of active connections.

• An arriving class i connection is rejected when the minimal required bandwidth
c
.i/
min cannot be granted.

• The amount of transmitted data of a connection is a class-specific random vari-
able that does not depend on the instantaneous bandwidth during the connection.
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Example 11.3. We demonstrate the behavior of elastic connections with the same
model as in Example 11.2 but assuming that the connections are elastic. That is,
the link bandwidth is C D 3Mbps, the bandwidth limits are cmin D 1 [Mb/s]
and cmax D 2 [Mb/s], the connection arrival rate is �Œ1=s�, and the amount of
transmitted data of an elastic connection is exponentially distributed with the
parameter �Œ1=Mb�. Due to the memoryless arrival process and the exponential
distribution of the amount of transmitted data of the elastic connections, the number
of active connections X.t/ is a Markov chain (Fig. 11.3). The figure indicates the
bandwidth of the ongoing connections (parameter c) and the computation of the
departure rate of connections in brackets. For example, in state 2 there are two
ongoing connections with bandwidth 1:5 [Mb/s]. The rate at which one of them
completes the data transmission is 1:5ŒMb=s� � �Œ1=Mb� D 1:5�Œ1=s� and the
sum of the two identical departure rates is 2 � 1:5Œ1=s� D 3Œ1=s�. Apart from these
differences, the bandwidth sharing, the link utilization, and the rejection of arriving
connections are the same as in the case of adaptive connections.

11.1.6 Bandwidth Sharing with Different Traffic Classes

In the previous sections we discussed the bandwidth sharing of a finite-capacity
link by traffic classes of the same type. All of the discussed traffic classes have a
memoryless stochastic behavior, and thus the performance of the models can be
analyzed by CTMCs. Unfortunately, practical limitations arise when the size of the
state space gets large, which is often the case in practically interesting situations.
The case where only CBR-type connections are present at a link allows for the
efficient analysis method referred to as the Kaufman–Roberts method. If any other
types of connections appear, then this method will no longer be applicable. The
Markov-chain-based framework of the previous sections is also applicable to the
analysis of bandwidth sharing by traffic classes of different types. Interested readers
may find further details in [68, 77, 78, 81].

11.2 Packet Transmission Through Slotted Time Channel

In this section we focus on a peculiar detail of modeling slotted time systems with
discrete-time Markov chains (DTMCs) – the definition of time slots, more precisely,
the positioning of the beginning of a time slot on continuous-time axes. The modeler
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has some freedom in this respect, and consequently different DTMC models can be
obtained for describing the same system behavior. It turns out that these different
models result in the same performance parameters if the performance parameters
are independent of the slot definition, which is the case with the majority of the
practically important queueing parameters. Below we evaluate two models of a
simple packet transmitter, which can be seen as discrete-time counterparts of an
M/M/1 queue.

Consider a packet transmitter with the following properties:

• Packet arrival process: in each time slot, 1 packet arrives with probability p and
0 packets arrive with probability 1 � p independently of past history.

• Service (packet transmission) process: if there is at least one packet to transmit,
then 1 packet is transmitted with probability q and 0 packets are transmitted with
probability 1�q independently of past history, which means that the service time
of a packet is geometrically distributed with parameter q [Pr service time D k D
.1 � q/qk�1].

• Service discipline: FIFO.
• Buffer size: infinite.

Let Xn denote the number of packets in a system at the beginning of the nth time
slot. Xn is a DTMC with a special birth-and-death structure and infinite state space.
Depending on the definition of the beginning of a time slot, the following two cases
arise.

• Case I.: A time slot starts with packet transmission (if any), and after that packet,
arrivals can happen.

• Case II.: A time slot starts with packet arrival (if any), and after that packet,
transmission can happen.

These two cases result in different Markov chains, as detailed below.

Case I. In case I, the Xn Markov chain can be described by the following
evolution equation:

XnC1 D .Xn � VnC1/C C YnC1;

where the random variable YnC1 is the number of packet arrivals during time
slot n C 1 and the random variable VnC1 is the number of packets that can be
transmitted during time slot n C 1. Yn and Vn are Bernoulli distributed with
parameters p and q, respectively. The state-transition graph of this Markov
chain is

p(1-q)

q(1-p)

p(1-q)

q(1-p)

21

p

q(1-p)

0

p(1-q)

q(1-p)

i+1i

p(1-q)

q(1-p)

i-1
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The stationary distribution of this Markov chain is

p0 D q � p
q

; pi D


p.1 � q/
q.1 � p/

�i
q � p
.1 � q/q ; i 	 1:

The numerator of the stationary probabilities already indicates that the condition
of stability is p < q. This result can also be obtained from the evolution equation
E.V / > E.Y / ! p < q and from the Foster criterion (Theorem 3.42) q.1 �
p/ > p.1 � q/ ! p < q. The basic performance measures can be computed
from the stationary distribution. The utilization is

� D 1 � p0 D 1 �


1 � p

q

�
D p

q
;

the mean of the stationary number of packets in the queue is

E.X/ D
1X

iD1
ipi D p.1 � p/

q � p ;

and the mean of the stationary system time of a packet is

E.T / D 1

q
p0 C

1X

iD1
pi



i C 1
q
� 1

�
D 1 � p
q � p :

Case II. In this case the evolution equation has the form

XnC1 D .Xn � VnC1 C YnC1/C;

and the transition graph of the Markov chain is
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Due to the different transition probabilities around state 0, we have a different
stationary distribution

pi D


p.1 � q/
q.1 � p/

�i
q � p
.1 � p/q ; i 	 0:

The computation of some performance measures is identical in this case. for
example, the condition of stability is E.V / > E.Y / ! p < q based on the
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evolution equation and q.1 � p/ > p.1 � q/ ! p < q based on the Foster
criterion. The computation of some other performance measures is different in
case II. For example the utilization is computed as

� D 1 � p0.1 � p/ D 1 � .q � p/.1 � p/
.1 � p/q D p

q

because the server can be utilized by a packet that arrives with probability p
when it is idle at the beginning of a time slot. The mean of the stationary system
time can be computed as

E.T / D
1X

iD0
pi



i C 1
q
� 1

�
D 1 � q
q � p ;

and the results are identical with those in case I. In contrast, the mean of the
stationary number of packets in the queue is

E.X/ D
1X

iD1
ipi D p.1 � q/

q � p ;

which is different from the results of case I. It reflects the fact that a different
number of packets is in the system before and after an arrival.

The evaluated performance measures validate the intuitive expectations that there
are performance measures that are dependent on the definition of time slot and
others that are independent of that definition. A modeler can choose the time slot
freely if the required performance measures are time slot definition independent,
but the time slot definition should be related to the required performance measures
otherwise.

11.3 Analysis of an Asynchronous Transfer Mode Switch

11.3.1 Traffic Model of an Asynchronous Transfer Mode
Switch

In this section we consider the behavior of an asynchronous transfer mode (ATM)
[28] switch with N input and N output ports and set up a traffic model of this
behavior. An ATM switch transmits packets of fixed size (53 bytes), referred to as a
cell. The input and output ports work in a slotted synchronized manner. The length
of a time slot is the transmission time of a cell.

We assume that the arrival processes of cells to the input ports of the switch
are independent and memoryless. The processes of cell arrival at input ports are
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characterized by a vector q D fqi g, i D 1; : : : ; N , where qi is the probability that
1 cell arrives at input port i in a time slot. Consequently, the probability that 0 cells
arrive at input port i in a time slot is 1 � qi .

An incoming cell is directed to one of the N output ports. We assume that a cell
from input port i is directed to output port j with probability wij independent of
the past and the state of the system. The matrix composed by these probabilities
W D fwij g is referred to as a traffic matrix. The traffic is a stochastic matrix, that
is, wij 	 0 and

P
j wij D 1.

The bandwidth of the input and output ports are identical. If more than one cell
is directed to a given output port in a given time slot, then only one of them can
be transmitted and the others are buffered. As is quantified below, the location
of the buffers where the colliding cells are stored has a significant effect on the
performance of the switch. We consider two cases: buffering at the input ports and
buffering at the output ports. Figure 11.4 depicts the structure of these cases.

Real systems contain buffers both at the input and at the output ports. The
performance characteristics and the design of the switch determine the proper model
of the system. In the worst case, one cell arrives at each input port and each cell is
directed to the same output. If the switch is designed such that it can transfer all of
theN cells to the buffer of the given output port in a single time slot, then the output
buffer model describes the system properly. If the switch is designed such that it can
transfer only one of the conflicting cells to the output buffer and the remainingN �1
cells are left at the input buffers, then the input buffer model is the proper model of
the system.

Between the input and output buffer models the output buffer seems to provide
better performance because in the case of an input buffer model it can happen
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that a given input port is blocked due to the conflict of the first cell in the queue,
while other cells waiting in the buffer are directed to idle output ports (Fig. 11.5).
This phenomenon is often referred to as head-of-line blocking. This very intuitive
qualitative comparison of the two buffer models will be quantified below for some
special symmetric configurations.

11.3.2 Input Buffering

In this section we consider the simplest input buffering case, where N D 2. If two
cells at the heads of the two input ports are directed to the same output port, then
one of them is chosen with even probability (1=2) and the chosen one is transferred
to the output port and the other one is left in the buffer of the input port. With the
preceding modeling assumptions the number of cells in the two input buffers is a
DTMC. We assume that the time slots are such that if a cell arrives at an idle buffer
and does not collide with any other cell, then it leaves the input port in the same
time slot.

Due to the fact that the system state is described by two discrete variables (the
number of cells at the two input buffers) it is worth it to depict the state space as
a two-dimensional one (Fig. 11.6). The state space can be divided into four parts:
both queues are idle, queue 1 is idle and queue 2 is busy, queue 2 is idle and queue
1 is busy, both queues are busy. The state-transition probabilities follow the same
structure in these four parts.

Figure 11.7 shows the environment of (0, 0). It is the state where both buffers
are idle, and state transitions starting from this state are depicted. In this and the
following figures S denotes the probability of conflict. Conflict occurs when two
cells from the head of the two buffers are directed to the same output. Its probability
is S D w11w21Cw12w22, where the first term stands for the case where both cells go
to input 1 and the second term stands for the case where they go to input 2. Starting
from (0, 0), there are the following cases:

• The next state is (1, 0) if there is a conflict and the cell from input 2 is chosen for
transmission.

• The next state is (1, 0) if there is a conflict and the cell from input 1 is chosen for
transmission.
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• If there is no conflict (zero or one cell arrives or two cells arrive but the cells are
directed to a different output), then the next state is (0, 0).

Figure 11.8 shows the state transitions when buffer 2 is idle and there is at least
one cell in buffer 1. Denoting the starting state by .x; 0/, x 	 1, the following state
transitions can occur:

• .x; 0/! .x � 1; 0/ if

– No new cells arrive,
– A cell arrives at input 2.

• .x; 0/! .x; 0/ if

– A cell arrives at input 1 and no cell arrives at input 2;
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Fig. 11.8 Buffer 2 is idle

– A cell arrives at input 2 and no cell arrives at input 1, it is in conflict with the
one at the head of buffer 1, and the cell in buffer 2 is chosen for transmission;

– Cells arrive at both inputs and there is no conflict (the cells at the head of the
buffer are directed to different outputs).

• .x; 0/! .x C 1; 0/ if

– Cells arrive at both inputs, there is a conflict, and the cell in buffer 2 is chosen
for transmission.

• .x; 0/! .x � 1; 1/ if

– A cell arrives at input 2 and no cell arrives at input 1, there is a conflict, and
the cell in buffer 1 is chosen for transmission.

• .x; 0/! .x; 1/ if

– Cells arrive at both inputs, there is a conflict, and the cell in buffer 1 is chosen
for transmission.

States where buffer 1 is idle and buffer 2 is not idle is depicted in Fig. 11.9.
The state transitions of these cases follow a similar pattern as those in Fig. 11.8 by
replacing the role of the buffers.

Figure 11.10 presents a case where cells are waiting in both buffers. The figure
does not show transition .x; y/ ! .x; y/ whose probability is 1 minus the sum of
the depicted transition probabilities. The following state transitions are possible.

• .x; y/! .x � 1; y � 1/ if

– No new cells arrive and there is no conflict.

• .x; y/! .x; y � 1/ if

– A cell arrives at input 1, no cells arrive at input 2, and there is no conflict;
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– No new cells arrive, there is a conflict, and the cell in buffer 2 is chosen for
transmission.

• .x; y/! .x C 1; y � 1/ if

– A cell arrives at input 1, no cells arrive at input 2, there is a conflict, and the
cell in buffer 2 is chosen for transmission.

• .x; y/! .x � 1; y/ if

– A cell arrives at input 2, no cells arrive at input 1, and there is no conflict;
– No new cells arrive, there is a conflict, and the cell in buffer 1 is chosen for

transmission.

• .x; y/! .x; y/ if

– A cell arrives at input 1, no cells arrive at input 2, there is a conflict, and the
cell in buffer 1 is chosen for transmission (with probability q1.1 � q2/S=2);

– A cell arrives at input 2, no cell arrives at input 1, there is a conflict, and the
cell in buffer 2 is chosen for transmission (with probability q2.1 � q1/S=2);

– New cells arrive at both buffers, and there is no conflict [with probability
q1q2.1 � S/].

• .x; y/! .x C 1; y/ if
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– New cells arrive at both buffers, there is a conflict, and the cell in buffer 2 is
chosen for transmission.

• .x; y/! .x � 1; y C 1/ if

– A cell arrives at input 2, no cells arrive at input 1, there is a conflict, and the
cell in buffer 1 is chosen for transmission.

• .x; y/! .x; y C 1/ if

– New cells arrive at both buffers, there is a conflict, and the cell in buffer 1 is
chosen for transmission.

11.3.3 Output Buffering

The analytical description of the switch with output buffering is easier than that with
input buffering because in this case the number of cells in a buffer depends only on
the properties of the arriving cells and is independent of the number of cells in the
other buffer. Consequently, it is possible to analyze one output buffer in isolation.

Figure 11.11 presents the Markov chain of buffer 1 with output buffering. There
are two possible state transitions if the buffer is idle:

• 0! 1 if cells arrive at both inputs and both cells are directed to output 1.
• 0! 0 otherwise.
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Fig. 11.11 Markov chain of buffer 1 with output buffering

There are three possible state transitions if the buffer is not idle:

• x ! x � 1 if a cell arrives at output 1.
• x ! x if one cell arrives at output 1.
• x ! x C 1 if two cells arrive at output 1.

The probabilities of these state transitions are provided in Fig. 11.11.

11.3.4 Performance Parameters

In this section we compute some performance parameters in the case of input and
output buffering assuming that the buffers are finite.

Mean Number of Cells in Buffers

Let Pij , i; j 	 0, be the steady-state probability of state .i; j / of a Markov chain
describing a switch with input buffers. The mean number of cells in buffers 1 and 2
can be computed as

E1 D
X

i�0

X

j�0
iPij ;

E2 D
X

i�0

X

j�0
jPij :

Similarly, let P .1/
i and P .2/

i , i 	 1, be the steady-state probability of having i
cells in buffers 1 and 2, respectively, in Markov chains describing a switch with
output buffers. The mean number of cells in buffers 1 and 2 can be computed as

E1 D
X

i�1
iP

.1/
i ;
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Fig. 11.12 Average number of cells with input and output buffering

E2 D
X

i�1
iP

.2/
i :

Figure 11.12 plots the average buffer content as a function of the arrival
probability, q D q1 D q2, for the input and output buffer models, where the buffer
length is limited to 5 and w11 D w21 D 0:5.

Throughput

The throughput (ı) is the mean number of cells the switch transmits in a time slot.
In the case of input buffering, we can compute the throughput following the same
division of the states of the Markov chain. Denoting the stationary probability of the
four parts by P00; Px0; P0y; Pxy , the throughput is

ı D P00Œ1 � .q1.1 � q2/C q2.1 � q1/C q1q2S/C 2 � q1q2.1 � S/�
C
X

x�1
Px0Œ1 � ..1� q2/C q2S/C 2 � q2.1 � S/�

C
X

y�1
P0yŒ1 � ..1 � q1/C q1S/C 2 � q1.1� S/�

C
X

x�1;y�1
PxyŒ1 � S C 2 � .1 � S/�;

where we detail the cases with one-cell and with two-cell transmission.
In the case of output buffering, the throughput is
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ı D P .1/
0 .q1.1 � q2/w11 C q2.1 � q1/w21 C q1q2.1 � w12w22//C

X

x�1
P .1/
x
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0 .q1.1 � q2/w12 C q2.1� q1/w22 C q1q2.1 � w11w21//C

X

x�1
P .2/
x :

Figure 11.13 plots the throughput as a function of cell arrival probability, q D
q1 D q2, for input and output buffering when the buffer length is limited to 5 and
w11 D w21 D 0:5

In accordance with intuitive expectations, the throughput with input buffering
is less than that with output buffering. As the arrival probability tends to 1, the
throughput tends to 1.5 in the case of input buffering. A quick intuitive explanation
of this property is as follows. If packets arrive at each time slot, the buffers are
always busy,

P
x�1;y�1 Pxy tends to 1, and ı tends to 1 � S C 2 � .1 � S/ where

S D 1=2.

11.3.5 Output Buffering in N � N Switch

Let us consider a single output of anN�N switch with output buffering and assume
that cells arrive at the N input ports according to N independent identical Bernoulli
processes. The probability that a packet arrives at a time slot is p. The arriving cells
are directed to the output ports according to independent uniform distributions.

The number of cells directed to a tagged output port is binomially distributed:
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Fig. 11.14 Markov chain modeling a switch with output buffering

ai D P.i cells arrived in the time slot/ D


N

i

�
.p=N/i .1 � p=N/N�i :

Figure 11.14 shows the transition probability graph of a Markov chain describing
the number of cells in a tagged output port. This Markov chain can also be described
by an evolution equation of type II:

XnC1 D .Xn � 1C YnC1/C;

and its state transition probability matrix is

… D

2

6
6
6
66
4

a0 C a1 a2 a3 a4 � � � akC1 � � �
a0 a1 a2 a3 � � � ak � � �
0 a0 a1 a2 � � � ak�1 � � �
0 0 a0 a1 � � � ak�2 � � �
:::

:::
:::
:::
:::
:::

:::

3

7
7
7
77
5
: (11.1)

The stationary probabilities satisfy the following linear equations:

p0 D p0a0 C p0a1 C p1a0; (11.2)

pk D pka1 C pkC1a0 C
k�1X

iD0
piakC1�i D

kC1X

iD0
piakC1�i : (11.3)

Let us introduce the following z-transform functions

P.z/ D
1X

kD0
pkzk; A.z/ D

1X

kD0
akzk:
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From Eqs. (11.2) and (11.3) we have

P.z/ D p0a0 C p0a1 C p1a0 C
1X

kD1

kC1X

iD0
piakC1�i zk

D p0a0 C
1X

kD0

kC1X

iD0
piakC1�i zk

D p0a0 C
1X

kD0

kC1X

iD1
piakC1�i zk C

1X

kD0
p0akC1zk

D p0a0 C
1X

iD1
pi

1X

kDi�1
akC1�i zk C z�1

1X

kD0
p0akC1zkC1

D p0a0 C z�1
1X

iD1
pi z

i

1X

lD0
al z

l C z�1p0
1X

mD1
amzm

D p0a0 C z�1.P.z/ � p0/A.z/C p0z�1.A.z/ � a0/;
whence

P.z/ D .1 � z�1/p0a0
1 � z�1A.z/

D p0a0 .z� 1/
z � A.z/ :

Considering that limz!1 P.z/ D 1 and applying l’Hospital’s rule we have

1 D p0a0 1

1 � A0.z/
jzD1;

where A0.1/, the mean number of cells arriving at the tagged output in a time slot,
can be computed;

p0a0 D 1 � A0.z/ D 1 � p;
and using this

P.z/ D .1 � p/.z � 1/
z �A.z/ D .1 � p/.1 � z/

A.z/� z
:

To check the obtained results we set N D 2. In this case the probability that i
cells arrive at the tagged output post is

ai D


2

i

��p
2

�i �
1� p

2

�2�i
;

whence

A.z/ D
�
1 � p

2
C z

p

2

�2
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and

P.z/ D .1 � p/.1 � z/
�
1 � p

2
C zp

2

�2 � z
:

The probability that the buffer is idle, p0, is easily obtained from the transform
domain expression

p0 D P.z/ jzD0D 1 � p
�
1 � p

2

�2 :

This result can be checked easily by considering that for N D 2 the Markov chain
has a birth-death structure with forward probability a2 and backward probability a0.
From this Markov chain we have

p0 D 1

1C
1X

kD1



a2

a0

�k D
1 � p
�
1 � p

2

�2 :

11.3.6 Throughput of N � N Switch with Input Buffering

The end of Sect. 11.3.4 shows the throughput computation of a 2 � 2 switch with
input buffering. In this section we compute the throughput of larger switches, N >

2, with input buffering.
We assume that the cells are indistinguishable, the switch chooses one of the

cells in conflict with independent uniform distribution, and the cells are directed to
output ports in a uniformly distributed manner.

To obtain the maximal throughput of the system, we assume that cells are waiting
in each buffer of the switch, i.e., none of the input buffers is idle.

We use the following notations:

• Let Rim be the number of cells that are at the head of a buffer at time m, are
directed to output i , and are not forwarded due to collision.

• Let Aim be the number of cells that arrive at the head of a buffer at time m and
are directed to output i .

Rim is a DTMC. It can be described by the evolution equation

Rim D .0;Rim�1 C Aim � 1/C;

where the sum on the right-hand side is reduced by 1 due to the cell that is
transmitted to output i . Aim follows a binomial distribution

P
�
Aim D k

� D


Fm�1
k

�
.1=N /k.1 � 1=N/Fm�1�k; k D 0; 1; � � � ; Fm�1;

(11.4)
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Table 11.1 Per output port
throughput as a function of N

N Throughput

1 1.0000
2 0.7500
3 0.6825
4 0.6553
5 0.6399
6 0.6302
7 0.6234
8 0.6184
1 0.5858

where the number of new cells at the head of the buffer is

Fm�1 D N �
NX

iD1
Rim�1: (11.5)

Equation (11.5) is based on the assumption that none of the input buffers is
idle. Due to the same assumption the number of new cells arriving at the head of
the buffers is equal to the number of cells successfully transmitted in a time slot.
Consequently, the throughput output i is ıi D limm!1E.Aim/.

The parameters of the binomial distribution are Fm�1 and 1=N since there
are Fm�1 new cells at the heads of the buffers and they choose their destination
according to a uniform distribution.

With all elements of the evolution equation defined it is possible compute
the stationary distribution of the Markov chain numerically. From the stationary
distribution we also have

E.Ri/ D lim
m!1E.Rim/:

Taking the expectation of Ai based on Eq. (11.4) and both sides of Eq. (11.5)
we get

E.Ai / D E.F /=N and E.F / D N �
NX

iD1
E.Ri/ D E.F / D N �NE.R/;

where we utilized the symmetry of the uniform output selection in the last step.
Introducing ı D ıi E.A/ D E.Ai/ E.R/ D E.Ri / we get

ı D E.A/ D 1 � E.R/:
For any finite N the previously discussed numerical method results in the

throughput of one output port. Table 11.1 presents the throughput as a function ofN .
For N D 2 we already computed the result in Sect. 11.3.4, but there we computed
the throughput of the whole switch, not for one output port.
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When N ! 1, the same evolution equation holds, but Aim tends to be Poisson
distributed with the parameter ı. At the limit we obtain a Markov chain with the
same structure as that in Eq. (11.1). Following the same transform domain analysis
and using A.z/ D eı.z�1/ we obtain E.R/ and from ı D 1 � E.R/ the limiting
throughput of the switch.

11.4 Conflict Resolution Methods of Random Access
Protocols

One of the main functions of medium access control (MAC) is to share common
resources between randomly arriving customer requests. Different random access
protocols are developed for this purpose. In the case of random access protocols,
several users try to communicate through a common transmission channel. The
users do not know the activity of the others. In this kind of environment stable
communication requires the application of a protocol that under a system-dependent
load level ensures

• Stable communication (with finite mean delay),
• Transmission of all packets,
• Fairness (users obtain the same service).

These protocols work based on the information available about the state of the
users. The following procedures are different members of the set of random access
protocols, which differ (1) in the way users are informed about the status of the
common channel and, indirectly, the activity of the other users and (2) in the design
goals to adopt to the alternation of the traffic load.

11.4.1 ALOHA Protocol

The ALOHA protocol [2] is the simplest random access protocol. It was developed
for simple radio communication between radio terminals and a central station. It
uses two radio channels, one of which is used by the terminals for communication
to the central station and the other for communication from the central station to all
terminals (Fig. 11.15).

If more than one terminal sends a message to the central station, then the
signals interfere and the central station cannot receive any correct messages. This
case is referred to as a collision of messages. Collision can only happen in the
first radio channel since the second radio channel is used only by the central
station. Successfully received messages are acknowledged by the central station.
The terminals are informed about the success of their message transmission by these
acknowledgements. If no acknowledgement arrives within a given deadline, then the
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terminal assumes that the transmission failed. The ALOHA protocol is designed to
ensure communication in this system.

ALOHA functions as follows. As soon as a terminal has a new packet to transmit
it starts sending it away without any attention to the activity of the other terminals.
If no acknowledgement arrives within a given deadline, the terminal assumes that
the message collided and it switches to message retransmission mode. Terminals
in message retransmission mode are referred to as blocked terminals. In this mode
the terminal retransmits the message until it receives an acknowledgement about
successful transmission.

If after an unsuccessful transmission a terminal were to retransmit the message
immediately, then there would be multiple collisions among the same set of
terminals (Fig. 11.16).

To avoid these multiple collisions in the same set of terminals, the terminals wait
for a random amount of time before retransmitting messages (Fig. 11.17). The cited
figures distinguish between the period of collision (dark gray) and the additional
period that is wasted due to the collision (light gray).

The quantitative behavior of a system is straightforward. If the terminals choose
a large random delay, then the probability of consecutive collisions with the same
set of terminals is low, but the time to successful transmission is high due to the
long delay till retransmission. In the opposite case, if the delay is short, then the
probability of subsequent collisions is higher, and this could cause a longer time to
successful transmission due to the high number of repeated transmission attempts.
The optimal behavior of the system is somewhere between these extremes.
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The modeling and analysis of ALOHA systems has been a well-studied area
since 1970s. It is still an interesting research area because several random access
protocols that were subsequently introduced contain elements of the basic ALOHA
protocol (as is detailed in the following sections).

There exists a wide variety of performance studies. These studies differ in their
assumptions about the behavior of users and systems. It is practically impossible
to analyze the simplest ALOHA protocol in all its minute technical details. To
reduce the complexity of the models, several simplifying assumptions are used. The
obtained simplified models often closely approximate real system behavior.

In the following sections we introduce some of the simplest models of the basic
ALOHA system and their analysis.

Continuous Time ALOHA System

We adopt the following modeling assumptions:

• The aggregate arrival process of new and retransmitted messages is a Poisson
process with parameter �.

This model is not a correct model of the aggregate arrival process (in general)
but there are several cases (e.g., the number of blocked terminals is negligible
compared to the number of all terminals) when it properly approximates the
real system behavior. This kind of model, where the arrivals of the new and the
retransmitted messages are considered in an aggregate flow, is referred to as a
zero-order model.

• The length of the messages is fixed and the time of a message transmission is T .

With the zero-order model we evaluate which portion of the new and repeated
messages, which arrive according to a Poisson process with parameter �, is
transmitted successfully, and what is the related transmission delay and collision
probability.

As shown in Fig. 11.18 we divide the time axes according to the busy and idle
periods of the common channel.

The probability of a successful message transmission in a busy period equals the
probability that after the beginning of a busy period the next message arrives later
than T . Its probability is e��T .

In order to determine the long-term idle ratio, successful busy and unsuccessful
busy periods, we determine the average length of these periods. The interarrival time
in a Poisson process with parameter � is exponentially distributed with parameter
�. The length of an idle period is the remaining time of an exponentially distributed
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interarrival time, which is exponential again with the same parameter. Thus the mean
length of an idle period is 1=�.

The length of a successful busy period is T . The difficult question is the length
of the unsuccessful period. An unsuccessful busy period is composed of N � 1
(N 	 2) interarrival intervals shorter than T and a final interval of length T . The
case where N D 1 is the successful busy period. Due to the memoryless property
of Poisson processes we can compute the number of colliding messages during the
unsuccessful busy period independently of the length of the interarrival times,

P r.N D n/ D .1 � e��T /n�1e��T :

The CDF of the length of an interarrival interval shorter than T , denoted as U , is

FU .t/ D P r.U < t/ D P r.� < t j� < T / D
8
<

:

1 � e�t

1 � e�T
0 < t < T;

1 T < t;

whence E.U / D 1 � e��T � �T e��T

�.1 � e��T /
. Consequently, in a cycle composed of a

busy and an idle period

• The mean length of the idle period is E.I / D 1=�,
• The probability of a successful message transmission is E.S/ D e��T T , and
• The mean length of an unsuccessful busy period is

E.L/ D
1X

nD2
P r.N D n/



.n � 1/E.U /C T

�
D 1 � e��T � �T e��T

�e��T :

System utilization is characterized by the portion of time associated with successful
message transmission:

� D E.S/

E.I /C E.S/C E.L/ D �T e�2�T :

It can be seen that utilization depends only on the �T product. The maximum of
utilization is obtained through the derivative of � as a function of �T . The maximum
is found at �T D 0:5 and is � D 1=2e 
 0:18394. Figure 11.19 shows that
utilization decreases significantly as the load increases above 0:5; consequently
these systems should be operated with a load lower than 0:5.

The mean number of arriving messages in a � long interval is ��. In the
same interval the mean time of successful message transmission is ��. During this
interval the mean number of successfully transmitted messages is ��=T . The ratio
between the number of successfully transmitted messages and the number of all
message transmission attempts, which is the mean number of transmission attempts
per message, is E.R/ D �T=� D e2�T .
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Having the mean number of transmission attempts per message we can compute
the message transmission delay:

E.D/ D E

 1X

rD1
P r.R D r/

 

rT C
r�1X

iD1
dack CWi

!!

D E.R/T C .E.R/ � 1/.dack CE.W //;

where dack is the time a terminal waits for message acknowledgement and W is the
random delay spent before message retransmission.

Discrete-Time (Slotted) ALOHA System

The main disadvantage of continuous-time ALOHA systems is that the wasted
time when messages collide is large. This phenomenon can be seen in Figs. 11.16
and 11.18. The dark gray period denotes the overlapping intervals of colliding
messages, while light gray periods are additional wasted time intervals that cannot
be used for useful message transmission.

With a simple modification of the ALOHA system this additional wasted time
interval can be avoided. If all terminals work in a synchronized manner and initiate
message transmission only at the beginning of time slots, then the length of time
the colliding messages occupy the common channel reduces to T . Naturally in this
system the delay of a message retransmission should be an integer multiple of the
time slot, T . This system is commonly referred to as a slotted ALOHA system
(Fig. 11.20).

The zero-order model of a slotted ALOHA system assumes that the terminals
generate a Poisson distributed number of new and repeated messages in a time
slot, where the parameter of the Poisson distribution is �T . This model of message
arrivals is similar to the zero-order model of continuous-time ALOHA systems
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assuming that the messages are generated continuously according to a Poisson
process, but the messages generated during a time slot are delayed till the beginning
of the next time slot.

With these assumptions, utilization of the zero-order model of a slotted ALOHA
system can be computed based on the analysis of a single time slot. Let N be the
number of packets generated in a time slot. In this case,

� D P r.successful message transmission/ D P r.N D 1/ D �T e��T :

Maximum utilization is obtained at �T D 1, and it is � D 1=e 
 0:367879.
Compared to the continuous-time ALOHA system, the optimal throughput doubles
and the aggregated load (new and repeated messages) can be increased to the
capacity of the system (�T D 1), as is plotted in Fig. 11.21.

The mean number of retransmission attempts, R, can be computed as the ratio
between the successfully transmitted and all messages:

E.R/ D E.N/

E.successfully transmitted messages/
D �T

�T e��T D e�T :

Similar to the continuous-time case, the message transmission delay is

E.D/ D E

 1X

rD1
P r.R D r/

 

rT C
r�1X

iD1
dack CWi

!�

D E.R/T C .E.R/ � 1/.dack C E.W //:

The more complex models of the ALOHA system distinguish the states of the
terminals (message generation, new message transmission attempt, waiting random
delay, message retransmission attempt) and characterize the arrival of new and
repeated messages according to those states [27].

In contrast to the terminology of ALOHA systems, the general terminology of
random access protocols refers to stations instead of terminals and packets instead
of messages.
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11.4.2 CSMA and CSMA/CD Protocols

The more advanced random access protocols aim to enhance channel utilization
based on the information available for the stations by the given physical media.

In the introduction of the slotted ALOHA system we saw that the reduction
of the time period while a collision makes the channel unavailable enhances the
performance of the protocol. In the case of radio terminal systems where the
terminals can be outside of each other’s propagation range, it is hard to further
reduce the ineffective time of the channel. In the case of wired systems, the stations
can sense each other’s signals, but not immediately; there is a propagation delay
of the medium. This direct sensing of the stations can be used to enhance the
performance of the multiple access protocol in the following two ways.

• If one station senses that another station is sending a packet when it has a packet
to send, then the first station does not start sending the packet.

• If by accident the packets of two stations collide (because they are sent within
the propagation delay), then the stations can recognize that the packets collide
and finish the useless packet transmission immediately.

The first way is referred to as carrier sense multiple access (CSMA) and the second
as collision detection (CD).

Figures 11.22 and 11.23 demonstrate the behavior of the CSMA and the
CSMA/CD systems. In these systems the time is slotted and the time unit is the
maximal propagation delay between the most remote stations, � . Collision can
happen only among packets transmitted within the same slot because in the next
time slot all stations are aware of the busy state of the channel. A station can
initiate packet transmission only if the channel is idle. In the case of CSMA without
CD, colliding packets are transmitted completely. Thus a significant portion of the
channel capacity is lost (Fig. 11.22). In the case of CSMA with CD, the collision
is recognized within one time slot and packet transmission is finished immediately
(Fig. 11.23).



336 11 Applied Queueing Systems

0.2 0.4 0.6 0.8 1
arrival

0.4
0.5
0.6
0.7
0.8

utilizationFig. 11.24 Utilization of
slotted CSMA and
CSMA/CD systems

Performance of Slotted CSMA System

We analyze the zero-order model of a system by the analysis of the intervals
between consecutive packet transmission attempts. The beginning of these intervals
is indicated by the arrows below the time axes in Figs. 11.22 and 11.23. It can
also happen that, in contrast to the figures, there is no idle period between two
consecutive packet transmission attempts. According to the zero-order model of
a system, we assume that after an idle time slot or the last time slot of a
successful packet transmission there is a Poisson distributed number of (new and
repeated) packet transmissions initiated with parameter ��. That is, in contrast with
the previously discussed zero-order models, the state of the channel affects the
arrival process of the packets. Packets can arrive in the aforementioned time slots
and not otherwise. The success of the packet transmission depends on the number
of arriving packets, N :

P r.succesfull packet transmission/ D P r.N D 1jN 	 1/ D ��e���

1 � e��� :

After a successful or colliding packet transmission the channel remains idle until the
next packet arrives. Let I denote the number of idle time slots until the next packet
arrives. Due to the memoryless property of the arrival process, I is geometrically
distributed. P r.I D i/ D e���i .1 � e��� /. Consequently, in an interval between
consecutive packet transmission attempts

• The mean length of the idle period is E.I /� D � e���

1�e��� ,

• The mean length of successful packet transmission is E.S/ D T ��e���

1�e��� , and

• The mean length of unsuccessful packet transmission isE.L/ D T .1�.1C��/e��� /

1�e��� .

Finally, utilization is obtained as

� D E.S/

E.I /C E.S/C E.L/ D
T ��e���

T .1 � e��� /C �e��� :

Figure 11.24 plots utilization as a function of �� when �=T D 0:2 (dotted line)
and when �=T D 0:1 (short dashed line). It can be seen that the probability of
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collision is lower and utilization is higher in the case of shorter propagation time
(�=T D 0:1). In any case, utilization reaches an optimum and starts decreasing
when the load is increasing. The optimal load level depends on the �=T ratio.

Performance of Slotted CSMA/CD System

The zero-order model of the CSMA/CD system is very similar to that of the CSMA
system. It differs only in the time of unsuccessful packet transmission, which is

shorter due to collision detection:E.L/ D � .1�.1C��/e��� /

1�e��� . As a result, utilization is

� D E.S/

E.I /C E.S/C E.L/ D
T ��e���

T ��e��� C �.1 � ��e��� /
:

Figure 11.24 plots the utilization of a CSMA/CD system as a function of load,
�� , together with that of the CSMA system. The propagation delay is �=T D
0:2 (long dashed line) and �=T D 0:1 (solid line). Also, in these cases the
shorter propagation delay increases utilization. In contrast with the CSMA system,
utilization is continuously increasing with the load due to the efficient utilization of
the channel.

Slotted Persistent CSMA/CD System

Up to now we have not discussed the behavior of a station when it has a packet to
transmit but the channel is busy. Indeed we implicitly assumed that these stations
assumed that their packet collided and delayed the next packet retransmission
attempt accordingly. This behavior is referred to as nonpersistent station behavior.

The stations sense the channel and know the history of the channel state from
which they can compute when the packet under transmission finishes. Knowing this
information, a station with a packet to transmit can reduce the packet retransmission
time by attempting a packet transmission immediately when the channel becomes
idle next. This behavior is referred to as persistent station behavior.

In the zero-order model of persistent CSMA systems we assume that in each �
long time slot stations generate a Poisson distributed number of new and repeated
packets, and those stations that generate packets during a packet transmission
attempt to transmit packets when the channel becomes idle next.

The analysis of this system is based on the analysis of successful (S ), colliding
(L), and idle (I ) intervals because the system behavior is memoryless at the
beginning of these periods. The mean length of these intervals is as follows:
E.S/ D T , E.L/ D � , and E.I / D 1

1�e��� .
To compute the utilization we also need to know how often these intervals occur.

The following transition probability matrix defines the probability of the occurrence
of various consecutive intervals:
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where P.a; i/ D e�aai=i Š and P.a;> i/ D P1
jDiC1 P.a; j /. This is a DTMC

whose stationary solution is obtained by the solution of the linear system of
equations 
… D 
 , 
S C 
L C 
I D 1, where 
 D 
S ; 
L; 
I /. Given the
stationary probabilities 
S , 
L, and 
I , the utilization is

� D 
SE.S/


SE.S/C 
LE.L/C 
IE.I /
D �� �T

1 � �T e��T C ��e��T


1 � �� C �T .1 � e�� /

�
C ��



e�� C �T � 1

� :

Figure 11.25 plots utilization as a function of load, �, with propagation delay
�=T D 0:1 (dotted line) and with �=T D 0:2 (solid line). As with the previous
cases, shorter propagation delays result in a lower probability of collision and
better utilization. Utilization decreases when the load is high. This is because the
probability of collision after a successful packet transmission becomes very high
due to persistent station behavior.

In summary, nonpersistent behavior is beneficial when the delay due to a collision
at the end of a successful packet transmission is less than the normal message
retransmission delay. At low load levels, persistent behavior decreases the delay
(because the probability of collision is low), while at high load levels nonpersistent
behavior performs better.

There is a continuous transition between persistent and nonpersistent behaviors.
It is obtained when a station follows persistent behavior with probability p and
nonpersistent behavior with probability 1 � p. This behavior is referred to as p-
persistent behavior. Obviously p D 1 results in persistent and p D 0 nonpersistent
behavior. For a given load level we can optimize the system utilization by setting p
to an optimal value.
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11.4.3 IEEE 802.11 Protocol

One of the most commonly used ways to wirelessly access computer networks
currently is the wireless fidelity (WF or wifi), which is defined in the IEEE 802.11
standard. The core of this rather complicated protocol is also an enhanced version
of the slotted ALOHA protocol. The IEEE 802.11 protocol [1] is designed to meet
the following requirements:

• The random delay for packet transmission is bounded.
• The protocol operates in a wide range of traffic load and adapts the actual level

of traffic load.
• If large packets are transmitted, priority is given to the completion of the already

started packets.

According to these requirements the ALOHA protocol is modified as follows:
[11, 32].

• At a collision a station draws a random number uniformly distributed between
1 and Mi and retransmits the collided packet after the expiration of that many
slots.

• The upper limit of the uniformly distributed delay depends on the number of
unsuccessful transmission trials. After the first collision this value isM1 D 8 and
it doubles after each consecutive collisionMi D 82i�1 until a predefined upper
limit, Mmax, is reached.

• Large packets are transmitted in several small segments. In the case of an
ALOHA system these segments are transmitted one by one and each of them
can collide with other segments and got delayed by the collision resolutoin
procedure. Thus the packet transmission delay, which is determined by the
largest delay of the segments, can be very high. IEEE 802.11 reduces the
packet transmission delay by giving priority to the consecutive segments of a
packet under transmission. Thus only the first segment of a packet participates
in the contention and other segments are transmitted with high priority. The
protocol implements this feature by the introduction of two different delays. The
stations in contention consider the medium available if it is idle for a distributed
interframe space (DIFS) period, while packet segments can be sent within a short
interframe space (SIFS) period, which is shorter than a DIFS period.

The IEEE 802.11 protocol is built on a so-called basic access method, which
is practically identical with the ALOHA protocol and combines with various
reservation methods. One of these reservation methods is the aforementioned
DIFS- and SIFS-based packet transmission. The mathematical description of these
complex reservation methods is rather complex. In this section we present an
analytical model of the basic access method, which is introduced in [11]. This
model is also based on a simplifying assumption. It assumes that there are so many
independently working stations in the system that a packet transmission trial will
be unsuccessful with probability p in each time slot independent of the past history
of the system. Furthermore, to compute the maximal throughput we assume that
stations always have packets to transmit.
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Fig. 11.26 Markov chain
describing basic access
method of IEEE 802.11
standard

With this assumption we can describe the behavior of a station with a DTMC.
The state of the Markov chain describes the phase of the actual packet transmission
attempt. Figure 11.26 shows the state-transition graph of this Markov chain. State 0
indicates that the station just finished transmitting a packet and is trying to transmit
the next one in the next time slot. If it is unsuccessful, which will happen with
probability p, then it draws a uniformly distributed random sample between 1 and
M1 D 8. Transitions to the right with probability 1 describe a situation where the
station waits until the given delay expires. When the chain arrives at the leftmost
state, it attempts to transmit the packet again and go back to state 0, or it moves to the
next row, etc. In this Markov chain the retransmission delay is limited toMmax D 64.
The time between two consecutive visits to state 0 represents the packet transmission
delay. The throughput of the station is p0 and the mean packet transmission delay is
1=p0 if p0 is the stationary probability of state 0 in this Markov chain.

11.5 Priority Service Systems

Priority systems appear in different fields [37,39,45,91]. Several aspects of telecom-
munications, data management, planning of computer networks, organization of
health services, and automatization of production processes could be mentioned. For
example, in mobile cellular networks the coverage area is partitioned into cells, and
each cell can serve at most c simultaneous communications and use some channels
from other cells. There are calls initiated by subscribers from the cell and handover
calls from others. Handover calls already use the network resources and should
be prioritized with respect to new calls. Different approaches are possible, e.g., a
special channel or a priority queue of handover calls.

The problem may be formulated as follows. Customers of different types enter
the service system, each of them belonging to a priority class, indexed by a subscript.
We assume that customers with a lower index have higher priority in service; this
way customers with a lower index can leave the queue earlier than customers with a
higher index which were already in the queue at the arrival of customers with a lower
index. There are two possible cases: either the entry of customers of higher priority
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does not interrupt the actual service with lower priority customers or immediately
starts its service (in the first case we speak of relative, in the second case of absolute
priority). In the second case we have again two choices, whether or not the work
up to this moment will be taken into account in the future. With respect to the
first possibility, one must complete the residual service, for the second one must
complete the residual service, for the second one must complete the whole service
later, when the higher proirity customers are served. Both of these possibilities occur
in computer systems. For example, the results of computations are either regularly
saved or not. In the first case results are not lost at a system error. Similar situations
appear in other fields. When a disaster occurs, one must first to divert the danger and
after that to deal with less urgent tasks. For example, a dentist must first see patients
who are in pain; other patients can wait.

We will consider service systems with two Poisson arrival processes where the
service time will have exponential and general distributions. In the exponential
case we will follow the usual method – find the system of differential equations
describing the functioning of system, solve it, and at t ! 1 determine the
equilibrium distribution. In the general case, we examine the virtual waiting time
by means of the Laplace–Stieltjes transform; the approach is mainly based on the
Pollaczek–Khinchin formula concerning waiting time (8.19) (e.g., [70]).

11.5.1 Priority System with Exponentially Distributed
Service Time

Let us consider the following problem. We have m homogeneous servers, and two
types of customers. Type i customers arrive to the system according to a Poisson
process with parameter �i .i D 1; 2/. If upon the entry of a type 1 customer all
servers are occupied, but some servers handle customers of the second type, then a
server will change its service and the type 2 customer will be lost. Thus, customers
of the second type may be lost not only if a type 2 customer arrives and all servers
are occupied, but if customers of the first type show up as well. First type customers
are refused only when there are customers of the same type.

The service times of type 1 and type 2 customers are exponentially distributed
with parameters �1 and �2, respectively.

It is quite clear that the service of type 1 customers is denied if all servers were
busy and there were no type 2 customers. Thus, the probability of loss of type 1
customers clearly equals

pv D
�m1
mŠ
mP

iD0
�i1
i Š

; �1 D �1

�1
:

Let pij .t/ be the probability of the event that at moment t there are i type 1 and
j type 2 customers being served .0 � i C j � m/. Furthermore, let
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pi:.t/ D
m�iX

jD0
pij .t/ and p:j .t/ D

m�jX

iD0
pij .t/:

The sum
P

iCjDm pij .t/ is the probability of loss of a type 2 customer at moment
t . The probability of loss of a type 2 customer during its service is

X

iCjDm
pij .t/ � pm0.t/:

11.5.2 Probabilities pij .t/

The differential equations determining pij .t/ are

p0
00.t/ D �.�1 C �2/p00.t/C �1p10.t/C �2p01.t/I (11.6)

if 1 � i < m, then

p0
i0.t/ D �.�1C�2 C i�1/pi0.t/C�1pi�1;0.t/C .i C 1/�1piC1;0.t/C �2pi1.t/;

(11.7)

p0
m0.t/ D �m�1pm0.t/C �1Œpm�1;0.t/C pm�1;1.t/�I (11.8)

in the case of 1 � j < m,

p0
0j .t/ D �.�1C�2Cj�2/p0j .t/C�2p0;j�1.t/C�1p1j .t/C.j C 1/�2p0;jC1.t/;

(11.9)

p0
0m.t/ D �.�1 Cm�2/p0m.t/C �2p0;m�1.t/I (11.10)

in the case of i 	 1, j 	 1, i C j < m,

p0
ij .t/ D �.�1 C �2 C i�1 C j�2/pij .t/C �1pi�1;j .t/

C�2pi;j�1.t/C .i C 1/�1piC1;j .t/C �2pi;jC1.t/I (11.11)

in the case of i > 0, j > 0, i C j D m, i ¤ m, j ¤ m,

p0
ij .t/ D �.�1 C i�1 C j�2/pij .t/C �1Œpi�1;j .t/C pi�1;jC1.t/�C �2pi�1;j .t/:

(11.12)
Summing up Eqs. (11.6), (11.9), and (11.12) by j from 0 to m we obtain

p0
0:.t/ D ��1p0:.t/C �1p1:.t/: (11.13)



11.5 Priority Service Systems 343

Summing up Eqs. (11.7), (11.11), and (11.12) by j from 0 tom, in the case 1�i<m,

p0
i:.t/ D �.�1 C i�1/pi:.t/C �1pi�1;:.t/C .i C 1/�1piC1;:.t/: (11.14)

Equation (11.8) may be rewritten in the form

p0
m:.t/ D �m�1pm:.t/C �1pm�1;:.t/: (11.15)

The summation of Eqs. (11.6)–(11.8) by i leads to

p0
:0.t/ D ��2Œp:0.t/ � pm0.t/�C �1pm�1;1.t/C �2p:1.t/:

Summing up Eqs. (11.9), (11.11), and (11.12) by i at 1 � j < m:

p0
:j .t/ D �.�2 C j�2/Œp:j .t/ � pm�j;j .t/�C �2Œp:;j�1.t/ � pm�jC1;j�1.t/�

C.j C 1/�2p:;jC1.t/ � j�2pm�j;j .t/ � �1pm�j;j .t/C �1pm�j�1;jC1.t/:

Equation (11.10) may be written in the form

p0
:m.t/ D �.�1 Cm�2/p:m.t/C �2Œp:m.t/ � p1;m�1.t/�:

From these equations one can see that for type 2 customers the situation is more
complicated; type 1 customers play an essential role in the service process.

Let us consider the case m D 1. Then Eqs. (11.6)–(11.12) lead to the equations

p0
00.t/ D �.�1 C �2/p00.t/C �1p10.t/C �2p01.t/;
p0
10.t/ D ��1p10.t/C �1Œp00.t/C p01.t/�;
p0
01.t/ D �.�1 C �2/p01.t/C �2p00.t/:

This system may be solved easily; the initial conditions are

p00.0/ D 1; p10.0/ D 0; p01.0/ D 0:

We have

p10.t/ D �1

�1 C �1
�
1 � e�.�1C�1/t � ;

p01.t/ D �2�1

.�1 C �1/.�1 C �2 C �2/ C
�1�2

.�1 C �1/.�2 C �2 � �1/e
�.�1C�2/t

�



�2�1

.�1 C �1/.�1 C �2 C �2/C
�1�2

.�1 C �1/.�2 C �2 � �1/
�

e�.�1C�2C�2/t ;
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p00.t/ D �1.�1 C �2/
.�1 C �1/.�1 C �2 C �2/ C

�1.�2 � �1/
.�1 C �1/.�2 C �2 � �1/e

�.�1C�1/t

C �2

�1 C �1



�1

�1 C �2 C �2 C
�1

�2 C �2 � �1
�

e�.�1C�2C�2/t :

Consequently,

p0:.t/ D p00.t/C p01.t/ D �1

�1 C �1 C
�1

�1 C �1 e�.�1C�1/t ;

p1:.t/ D p10.t/ D �1

�1 C �1
�
1 � e�.�1C�1/t� ;

p:0.t/ D �1.�1C�2C�2/C�1.�1 C �2/
.�1 C �1/.�1 C �2 C �2/ � �1�2

.�1C�1/.�2C�2 � �1/e�.�1C�1/t

C �2

�1 C �1



�1

�1 C �2 C �2 C
�1

�2 C �2 � �1
�

e�.�1C�2C�2/t ;

p:1.t/ D p01.t/ D �2�1

.�1 C �1/.�1 C �2 C �2/C
�1�2

.�1C�1/.�2C�2 � �1/e�.�1C�1/t

� �2

�1 C �1



�1

�1 C �2 C �2 C
�1

�2 C �2 � �1
�

e�.�1C�2C�2/t :

The stationary probabilities at t !1 are

p00 D �1.�1 C �2/= ..�1 C �1/.�1 C �2 C �2// ;
p01 D p:1 D �2�1= ..�1 C �1/.�1 C �2 C �2// ;
p10 D p1: D �1=.�1 C �1/;
p0: D �1=.�1 C �1/;

p:0 D �1.�1 C �2 C �2/C �1.�1 C �2/
.�1 C �1/.�1 C �2 C �2/ :

It is interesting to note the probability of the event that a service in process at a
given moment will not be interrupted. This happens if during the service no type 1
customers enter, namely,

1Z

0

e��1x�2e��2x dx D �2

�1 C �2 ;

then service will be interrupted with probability �1=.�1 C �2/.
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11.5.3 Priority System with General Service Time

Now we come to priority systems with generally distributed service time. We will
consider three cases:

1. If a type 1 customer enters, then the service of a type 2 customer is interrupted
and is continued after all type 1 customers have been served. The performed work
is taken into account, and the service time is decreased with the work done.

2. The service is realized as above, but when a type 2 customer is served, the
performed work will not be taken into account; the service decreases with time
spent.

3. When a type 1 customer enters, the actual service is interrupted, and the customer
is lost.

In all three cases we assume the entering customers constitute Poisson processes
with parameters �1 and �2, the service times are arbitrarily distributed random
variables with distribution functions B1.x/ and B2.x/, respectively. The Laplace–
Stieltjes transforms of the service time is

b�
i .s/ D

1Z

0

e�sx dBi.x/; i D 1; 2: (11.16)

Let us denote the mean values of service times by �1 and �2, let Vi.t/ be the waiting
time of a type i customer on the condition that it entered at moment t , and let OVi .t/
be the time till completion of service. Let

Fi .x/ D lim
t!1 P .Vi .t/ < x/ ; i D 1; 2; : : : ;

OFi .x/ D lim
t!1 P. OVi.t/ < x/; i D 1; 2; : : : ;

be the distribution of the waiting time and the time till service completion and let
their Laplace–Stieltjes transforms according to Eq. (11.16) be f �

i .s/ and Of �
i .s/.

Type 1 customers are served independently of type 2 customers, so by Eq. (8.19)
(if the condition �1�1 < 1 is fulfilled)

f �
1 .s/ D

1 � �1�1
1 � �1 1�b

�
1 .s/

s

:

The time interval till completion consists of two parts: the waiting time and the
service time. They are independent random variables, so for OV1.t/ we obtain

Of �
1 .s/ D

.1 � �1�1/b�
1 .s/

1 � �1
s
.1 � b�

1 .s//
:
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At the service of type 2 customers the service of type 1 customers may be
interpreted as the breakdown of a server. Let L be a random variable denoting the
time from the beginning of service of a type 2 customer till the beginning of service
of the next one and

b�
L .s/ D

1Z

0

e�sx dP.L < x/:

At a fixed moment we have two possibilities: a type 1 customer is absent in the
system with probability 1 � �1�1 and present with probability �1�1, and in its
presence according to the service discipline it is being served. If there are no type
1 customers, then by Eq. (8.19) the Laplace–Stieltjes transform of the remaining
service time is

1 � �2E.L/
1 � �2

s
.1 � b�

L .s//
:

In the presence of a type 1 customer, we must first finish the serving existing and
entering type 1 customers, then serve type 2 customers (taking into account type
1 customers that enter in the meantime). The Laplace–Stieltjes transform of the
service time for existing and entering type 1 customers is

1 � b�
0 .s/

s �1
1��1�1

;

where b�
0 .s/ is the solution of the functional equation

b�
0 .s/ D b�

1 .s C �1 � �1b�
0 .s//;

i.e., the Laplace–Stieltjes transform of a busy period for type 1 customers. After
having served the type 1 customers we come to the previous situation. Thus, the
Laplace–Stieltjes transform of the time period till the service of type 2 customers
entering at a given moment is

.1 � �1�1/ 1 � �2E.L/
1 � �2

s
.1 � b�

L .s//
C �1�1 1 � b

�
0 .s/

s �1
1��1�1

� 1 � �2E.L/
1 � �2

s
.1 � b�

L .s//

D .1� �1�1/.1 � �2E.L//Œs C �1.1 � b�
0 .s//�

s � �2.1 � b�
L .s//

D f �
2 .s/: (11.17)

In this expression b�
L .s/ is still unknown, but we will find it for our three models.

1. From the point of view of a type 2 customer we can interpret the system behavior
such that the entry of a type 1 customer is a failure and the end of the busy period
generated by this type 1 customer as maintenance. Based on this interpretation
our model can be considered a system with server breakdowns. Thus,

b�
L .s/ D b�

2 .s C �1 � �1b�
0 .s//:
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2. Let us consider the sequences of independent random variables fUng, fHng and
fAng, which have the following meaning:

Ui : service time of a type 2 customer [with Laplace–Stieltjes transform
b�
2 .s/];
Hi : length of busy period for type 1 customers [the corresponding Laplace–
Stieltjes transform is b�

0 .s/].
Ai : interarrival time for type 1 customers (exponentially distributed random
variable with parameter �1).

If U1 � A1, then L D U1 (during the service of type 2 customers no type 1
customers enter, so the type 2 customer leaves after U1 time from the beginning
of service).

If A1 < U1, U2 � A2, then L D H1CA1CU2 (during the service of a type 2
customer after A1 time a type 1 customer enters, and for its and the entering
customers’ service we try time H1, then the service of a type 2 customer is
realized for U2 without interruption). Similarly, if A1 < U1, A2 < U2; : : : ; An <
Un, UnC1 � AnC1, then L D A1 CH1 C A2 CH2 C : : :C An CHn C UnC1.

By the formula of total probability,

P.L < x/ D
1X

nD0
P.Ai < Ui ; 1 � i � nIUnC1

� AnC1IA1CH1CA2CH2C: : :CAnCHnCUnC1 < x/:

Since

1Z

0

e�sx dxP fAi < x; Ai < Ui g D �1

1Z

0

e�sx.1 � B2.x//e��1x dx

D �1

s C �1 Œ1 � b
�
2 .s C �1/�

and

1Z

0

e�sx dxP fUi < x; Ui � Ai g D
1Z

0

e�.sC�1/x dB2.x/

D b�
2 .s C �1/;

we obtain

b�
L .s/ D

1X

nD0

�
�1

s C �1 Œ1 � b
�
2 .s C �1/�b�

0 .s/

� n
b�
2 .s C �1/

D .s C �1/b�
2 .s C �1/

s C �1 � �1Œ1 � b�
2 .s C �1/�b�

0 .s/
:
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3. Using the random variables Ui;Hi ; Ai we have

L D
�
U1; ha U1 � A1;
A1 CH1; ha U1 > A1:

Consequently,

b�
L .s/ D b�

2 .s C �1/C
�1

s C �1 Œ1 � b
�
2 .s C �1/�b�

0 .s/:

Now let us find the functions Of �
2 .s/. In the first two cases the time from the

moment t till the end of service is U2.t/ C L. They are independent random
variables, so in both cases

Of �
2 .s/ D f �

2 .s/b
�
L .s/:

In the third case we can lose the type 2 customer; this happens if during the service
of a type 2 customer a type 1 customer appears, and the probability of loosing the
type 2 customer is

P .A1 < U1/ D 1 � b�
2 .�1/:

Obviously,
OU2.t/ D U2.t/Cmin.A2; U1/:

Since

1Z

xD0
e�sx dP .min.A1; U1/ D x/ D b�

2 .s C �1/C
�1

s C �1 Œ1 � b
�
2 .s C �1/�;

then

Of �
2 .s/ D f �

2 .s/

�
b�
2 .s C �1/C

�1

s C �1 Œ1 � b
�
2 .s C �1/�

�
:

These formulas are true if the process has an equilibrium distribution. On the basis
of Eq. (11.17), this means that the inequalities �1�1 < 1 and �2E.L/ < 1 hold.

• In the first model E.L/ D �2=.1��1�1/; from which the condition of equilibrium
is �2�2 < 1 � �1�1.

• In the second model E.L/ D Œ1� b�
2 .�1/�=�1.1� �1�1/b�

2 .�1/; from which the
condition of equilibrium is �2Œ1 � b�

2 .�1/� < �1.1 � �1�1/b�
2 .�1/.

• In the third model E.L/ D Œ1� b�
2 .�1/�=�1.1��1�1/; from which the condition

of equilibrium is �2Œ1 � b�
2 .�1/� < �1.1 � �1�1/.
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11.6 Systems with Several Servers and Queues

11.6.1 Multichannel Systems with Waiting and Refusals

Let .Xn; Yn/; n D 1; 2; : : : be a sequence of i.i.d. random vector variables, where
X1;X2; : : : are the interarrival periods of successive customers (the nth one enters
at the moment tn D X1C � � �CXn; n D 1; 2; : : : ), and Yn is the service time of nth
customer.

Let us consider a G=G=m system. We introduce the waiting time vector of the
nth customer:

Wn D .Wn;1; : : : ;Wn;m/; n D 1; 2; : : : ;
where Wn;i means the random time interval the nth customer (entering at tn) has to
wait till i servers become free from all earlier (with numbers 1; : : : ; n�1) customers.

If the initial random vector variableW0 (on the same probability space) is given,
then the sequence Wn; n 	 0, is uniquely determined and a recurrence relation
is valid for Wn, i.e., fWn; n 	 0g is a recurrent process. For the arbitrary
x D .x1; : : : ; xm/ 2 R

m let

xC D .xC
1 ; : : : ; x

C
m /; where sC D max.s; 0/; s 2 R;

R.x/ D .xi1 ; : : : ; xim /; xi1 � xi2 � � � � � xim;
i.e., the functionR.x/ arranges the components of vector x in increasing order. We
introduce the vectors

e D .
(1) (2) (m)

1; 0; : : : ; 0 /; i D .
(1) (m)

1; : : : ; 1 /:

Theorem 11.4. For the sequenceWn; n 	 0, the recurrence relation

WnC1 D R
�
Œ.Wn C Yne/ �Xni�C

�
; n 	 0: (11.18)

holds.

Proof. Using the definition of included quantities, this is trivial. ut
In the investigation of queueing systems the existence of a limit distribution for

the basic characteristics is an important question. Using results from the theory of
recurrence processes one can prove a theorem valid in the more general case where
instead of total independence we assume stationarity in a narrower sense and the
ergodicity of the process f.Xn; Yn/; n 	 1g (see [14]).
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Theorem 11.5. Let f.Xn; Yn/; n 	 1g be a sequence of i.i.d. random variables
and E .Y1 �mX1/ < 0; W0 D 0; then there exists a stationary, in a narrow sense,
process fW .n/; n 	 0g satisfying Eq. (11.19), and the distribution function of Wn

monotonically converges to the distribution function ofW .0/.

G=G=m=0 Systems with Refusals Since we are considering a system with re-
fusals, one can speak of waiting only in a virtual sense. Thus, the componentWn;i of
Wn means the possible waiting time of customers entering at moment tn till i servers
become free from all earlier (with numbers 1; : : : ; n � 1) customers (if Wn;1 > 0,
then the nth one will not be serviced). We can write the recurrence relation

WnC1 D R

h
.Wn C YneIfWn;1D0g/ �Xni

iC�
:

The sufficient condition similar to the previous theorem is

P .Y1 � mX1/ > 0; E .Y1/ <1:

If .Xn; Yn/; �1 < n <1 is not a sequence of independent random variables
with the same distribution but a stationary (stationary in a narrower sense), ergodic
sequence, even in this case we can give a sufficient condition for the existence of a
limit distribution, namely,

P.Y0�X0C: : :CXm�1; Y�1�X�1CX0C: : :CXm�2; : : : ; Y�mC1
� X�mC1CX�mC2C: : :CX0/ > 0;

E .Y1/ <1:
If we consider instead of the virtual waiting time the queue length Ln at the

arrival moment of the nth customer, then it also has a nondegenerate limiting
distribution.

G=G=1 system Now we have an infinite number of servers, so one cannot speak of
queueing or losses. In this case the basic characteristic is the queue length:Lk; k	1,
denotes the number of customers at the arrival moment of the kth customer [at
an arbitrary moment t the number of customers present L.t/ is left continuous].
Actually, it is the number of occupied servers. At the beginning the system is empty,
i.e., L1 D 0.

For the sake of simplicity let Xn; n 	 1, denote the interarrival time of the nth
and .nC 1/st customers, Yn; n 	 1, the service time of the nth customer. Then

LkC1 D IfYk>Xkg C IfYk�1>Xk�1CXkg C � � � C IfY1>X1C			CXkg; k 	 1:

Theorem 11.6. If f.Xn; Yn/; �1 < n < 1g is a sequence of i.i.d. random
variables and 0 < E .Y1/ <1 is fulfilled, then
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L D
X

k�1
IfY�k>X�kC			CX�1g

defines a finite random variable with probability 1, the random variables

L�n D
nX

kD1
IfY�k>X�kC			CX�1g; n D 1; 2; : : :

andLn have the same distribution, and this distribution monotonically converges to
the distribution of L.

Proof. For the proof it is enough to show that L is finite with probability 1. We need
the following lemma; from it with probability 1 follows the finiteness of L. ut
Lemma 11.7. Let U1; U2; : : : be a sequence of i.i.d. random variables for which
P .U1 	 0/ D 1 and h D E

�
e�U1� < 1, i.e., the distribution of Ui is not

concentrated at the point 0. Let V be an arbitrary random variable (not necessarily
independent of Ui ) for which E

�
V C� < 1. Furthermore, let � D 1

2
log 1

h
,

GV .x/ D 1 � P .V < x/ ; x 2 R. Then for arbitrary n;N 	 1

P .U1 C � � � C Un < V / < e�n� CGV .n�/; (11.19)

X

n�N
P .U1 C � � � C Un < V / < 1

1 � e�� e�N� C 1

�
E
�
V IfN��V g

�
(11.20)

is true.

Proof. For arbitrary x > 0

P .U1 C � � � C Un < V /
D P .U1 C � � � C Un < V; V � nx/C P .U1 C � � � C Un < V; nx < V /
� P .U1 C � � � C Un < nx/C P .nx � V / :

Using the Markov inequality we obtain

P .U1 C � � � C Un < nx/ � E .expfnx � .U1 C � � � C Un/g/

D enx
nY

iD1
E
�
e�Ui �

D en.xClogh/;

where at x D � Eq. (11.19) follows.
Proof of Eq. (11.20): From inequality (11.19)
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X

n�N
P .U1 C � � � C Un < V / �

X

n�N
fe�n� CGV .n�/g

D 1

1 � e�� e�N� C
1X

jD0
P ..N C j /� � V / :

Since

E
�
V IfN��V g

� 	
1X

jD0
.N C j /�P ..N C j /� � V < .N C j C 1/�/

D .N � 1/�
1X

jD0
P ..N C j /� � V < .N C j C 1/�/

C
1X

jD0
.j C 1/�P ..N C j /� � V < .N C j C 1/�/

D .N � 1/�P .N� � V /C �
1X

jD0
P ..N C j /� � V / ;

then

1X

jD0
P ..N C j /� � V / � 1

�
E
�
V IfN��V g

� � .N � 1/P .N� � V /

� 1

�
E
�
V IfN��V g

�
:

Using Eq. (11.19) we obtain Eq. (11.20). ut

11.6.2 Closed Queueing Network Model of Computers

The queueing network in Fig. 11.27 may be considered the simplest mathematical
model for computers.

In a system there are continuously n customers (tasks) and they can move along
the routes indicated in the figure. In front of each service unit there is a waiting
buffer of corresponding capacity (for at most n � 1 customers). On the units the
service is realized by the FCFS rule; the service times are independent and on the
i th unit have distribution function Fi .x/; 0 � i � M . After having completed a
service on the 0th unit, the customer moves to the i th unit with probability pi ; 0 �
i � M .pi 	 0; p0 C � � � C pM D 1/, which does not depend on the state of
the system or the service time. If the service of a customer is completed on the i th
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Fig. 11.27 Closed queueing network model

.1 � i �M/ unit, then the customer goes to a unit with index 0 with probability 1.
The unit 0 plays a special role in the network and is called a central unit.

It may seem too strict a restriction that the number of customers in a computer
is fixed, but this model gives accurate results for several important performance
parameters. For example, when we are interested in the maximum performance of
a computer, we can assume that the load of the computer is maximal, that is, after
completion of a task, a new one enters the system immediately.

If we consider the successive moments when all customers stay at the central
unit and the service of a customer has just started, these moments are regeneration
points for the network. If the service times have finite pth (p 	 1) order moments,
then one can show the pth moment of a regenerative cycle is also finite [86, 87]. It
follows that if the mean values of services are finite, then the different characteristics
for the system have limiting distributions.

11.7 Retrial Systems

11.7.1 Continuous-Time Retrial System

If in the case of a phone call the subscriber is occupied, one usually repeats
the attempt while the conversation is realized. So the system has two types of
requests: primary calls and calls generated by occupied lines. Models constructed
for systems with losses do not describe this situation, and they do not take into
account repetitions. These problems appeared in Erlang’s time, but due to a lack of
corresponding theoretical results, these repetitions were considered new arrivals.
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Retrial queues constitute a special field of queueing systems; their distinguishing
feature is that in the case of a busy server, entering customers leave the service area
(go to the orbit) and, after a certain (generally random) time, reinitiate their service.

Let us consider some examples of the retrial phenomenon. The first example is
connected with the functioning of call centers used by companies to communicate
with customers. When a call arrives, it is sent to a call distribution switch. If all
agents are busy, then the call center may announce an estimated waiting time.
Some customers might decide to wait for a free agent, while some will interrupt
the connection immediately or after some time. A portion of these customers will
return after some random time.

Random access protocols provide a motivation for the design of communication
protocols with retransmission control. If two or more stations transmit packets at the
same time, then a collision takes place. Then all packets are destroyed and should
be retransmitted. To avoid collisions in the next period, this transmission is realized
with a certain random delay for each station. This fact motivates the investigation of
the retrial feature of computer networks.

Two textbooks have been published in this field. The book by Falin and
Templeton [30] gives analytical solutions in terms of generating functions and
Laplace-Stieltjes transforms, and the one by Artalejo and Gómez-Corral [6] focuses
on the application of algorithmic methods studying the M/G/1 and M/M/c retrial
queues and using matrix-analytic techniques to solve some retrial queues with QBD,
GI/M/1, and M/G/1 structures.

We will consider a model connected with the landing process of airplanes in
the case of continuous time. The model was introduced in [59], and the results for
waiting time are contained in [61].

Let us consider the landing process of airplanes. An airplane appears at an airport
ideally positioned for landing. If it is not possible (due to insufficient distance or a
waiting queue), it starts circling. The next request for service is possible when it
returns to the starting geometrical point on the condition that there are no other
airplanes ahead of it.

Similar problems appear at the transmission of optical signals. Signals entering
the node must be sent in the order of arrival, but they cannot be stored. They go
to delay lines and upon their return can reinitiate their transmission. If all previous
signals have already been sent, then the signal is transmitted; in the opposite case
they pass through the delay queue again, and the process is repeated.

Let us formulate the queueing problem. We investigate a service system where
the service may start at the moment of arrival (if the system is available) or at
moments differing from it by multiples of a given cycle time T (in the case of
busy server or queue). Service of a customer can be started if all customers who
had entered the system earlier have already left (i.e., the FIFO rule works). In such
a system the service process is not continuous; during the “busy period” there are
idle intervals; these idle intervals are necessary to reach the starting point; for them
there is no real service.

Let the service of the nth customer begin at moment tn, and let us consider the
number of customers present at the moment just before service begins. Then the
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number of customers present is determined by the recursive formula

NnC1 D
�
�n; if Nn D 0;
Nn � 1C�n; if Nn > 0;

where �n is the number of customers appearing for Œtn; tnC1/. We show that these
values constitute a Markov chain.

Let us consider the time intervals during which we record the entering customers.
Let fZi g and fYig .i D 1; 2; : : :/ be two independent sequences of independent
random variables. Zi means the interarrival time between the i th and i C 1th
customers (it has an exponential distribution with the parameter �), Yi is the
service time of the i th customer (in our case it has an exponential distribution with
parameter �).

Let us assume that at the beginning of service there is one customer in the system.
IfZi 	 Yi , then the time till the beginning of service of the next customer is Zi (the
service of the existing customer will be completed, and the server arrives at a free
state and the next customer appears later). IfZi < Yi , then during the service of the
first customer a second one appears, and after this moment there will be intervals
with length T while we pass the moment of service of the first customer (from the
viewpoint of entering customers we are interested in the time from the entry of the
second customer till the beginning of its service). The length of this interval is the
function of random variablesZi and Yi , i.e., a certain f1.Zi ; Yi /.

If at the beginning of service of the first customer the second one is already
present, then the time till the starting moment of its service is determined in the
following way. Divide the service time of the first customer into intervals of length T
(the last period generally is not full). Since the starting moments for both customers
differ by multiples of T from the moments of arrivals, on each interval of length T
there is one point where the service of the second customer may start. In reality, this
happens at the first moment after the service of the first customer has completed, so
the required time period is determined by the service time of the first customer and
the interarrival time. Consequently, it will be a certain function of Yi and Zi , i.e.,
f2.Yi ; Zi /.

Thus, the time intervals for which we consider the number of entering customers
are only functions of random variables Yi and Zi , consequently they are indepen-
dent. Taking into account the fact that entering customers form a Poisson process,
the quantities�i of these customers are independent random variables, and Nn is a
Markov chain.

To describe the functioning of the system we use the embedded Markov chain
technique. Our result is formulated in the following theorem.

Theorem 11.8. Let us consider a service system in which the entering customers
form a Poisson process with parameter �, and the service time is exponentially
distributed with parameter �. The service of a customer may be started at the
moment of arrival (in the case of a free system) or at moments differing from it by
the multiples of a cycle time T (in the case of a busy server or queue); the service
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discipline is FIFO. Let us define a Markov chain whose states correspond to the
number of customers in the system at moments tk � 0 (tk is the starting moment of
service of the kth customer). The matrix of transition probabilities of this Markov
chain has the form

2

6
6
6
6
6
4

a0 a1 a2 a3 : : :

a0 a1 a2 a3 : : :

0 b0 b1 b2 : : :

0 0 b0 b1 : : :
:::
:::
:::
:::
: : :

3

7
7
7
7
7
5

(11.21)

and its elements are determined by the generating functions

A.z/ D
1X

iD0
ai z

i D �

�C � C
�

�C �z
.1 � e��T /e��.1�z/T

1 � e�Œ�.1�z/C��T ; (11.22)

B.z/ D
1X

iD0
bi z

i

D 1

.1 � e��T /.1� e�Œ�.1�z/C��T /

�


1

2 � z

�
1 � e��.2�z/T

� �
1 � e�Œ�.1�z/C��T �

� �

�.2 � z/C �
�
1 � e�Œ�.2�z/C��T � �1 � e��.1�z/T

�
�
: (11.23)

The generating function of the ergodic distribution of this chain is

P.z/ D p0B.z/.�zC �/ � zA.z/.�C �/
�ŒB.z/ � z�

; (11.24)

where

p0 D 1 � �

�C �
1 � e�.�C�/T

e��T .1 � e��T /
: (11.25)

The ergodicity condition is

�

�
<

e��T .1 � e��T /
1 � e��T : (11.26)
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the beginning of service

Proof. Our original system, where during the busy period there are possible idle
intervals, too, is replaced by another one. In it the service process is continuous,
and the service time of a customer consists of two parts: the first part is the real
service, the second part holds from the end of service till the second one gets to the
corresponding position.

For a description of the operation we use an embedded Markov chain; its states
are the number of customers in the system at moments tk � 0, i.e., we consider it at
moments just before starting service. Let us find the transition probabilities for this
chain. We have to distinguish two cases: at the starting moment of service the next
customer is present or not. First we will consider the second possibility (Fig. 11.28),
which happens for the states 0 and 1. Suppose that the service time of the first
customer is U , the second customer enters at V time after the beginning of service.
The probability of event fU � V < tg is

P.t/ D P .U � V < t/

D
tZ

0

UZ

0

�e��V �e��U dV dU C
1Z

t

UZ

U�t
�e��V �e��U dV dU

D �

�C �


1 � e��t

�
: (11.27)

The time from the entry of the second customer till the beginning of its service
equals

.I .U � V /C 1/ T;
where I.x/ denotes an integer part of number x=T . This expression is valid for all
points excluding multiples of T , but the probability of an event for this time to equal
a multiple of T is equal to zero. To determine the transition probabilities, we need
the number of customers entering during this period. According to Eq. (11.27) the
time from the entry till the beginning of service is equal to iT with probability

�

�C �
�
e��.i�1/T � e��iT � ;
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and the generating function of entering customers equals

�

�C �
1X

kD0

1X

iD1

�
e��.i�1/T � e��iT � .�iT z/k

kŠ
e��iT

D �

�C �
1X

iD1

�
e��.i�1/T � e��iT � e��iT .1�z/ D �

�C �
e��.1�z/T .1 � e��T /
1 � e�Œ�.1�z/C��T :

This formula is valid if for U at least one customer enters the system, so the desired
generating function is

A.z/ D �

�C � C
�

�C �z
.1 � e��T /e��T .1�z/

1 � e�Œ�.1�z/C��T ;

where �

�C� D
R1
0 e��x�e��xdx is the probability that for the service time no

customer appears.
Now we find the transition probabilities for all other states. In this case at the

beginning of service the next customer is already present (Fig. 11.29). Let R D
U � I.U /T and let S be the mod T interarrival time. One can easily see that S
has a truncated exponential distribution with distribution function 1�e��S

1�e��T . The time
between the starting moments of two successive customers is

I .U / T C S if R � S and .I .U /C 1/ T C S if R > S:

k customers enter in the two cases with probabilities

.� fI .U / T C Sg/k
k

Š exp .�� fI .U / T C Sg/ (11.28)
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and

.� fŒI .U /C 1� T C Sg/k
kŠ

exp .�� fŒI .U /C 1� T C Sg/ : (11.29)

Let us fix S and divide the service time of the customer into intervals of length T . S
divides each such interval into two parts (the first has length S , the second T � S ),
and the corresponding probability for the first part is Eq. (11.28), for the second
part Eq. (11.29). Let I.U / D i . The generating function of the number of entering
customers, denoted by N , assuming that the interarrival time mod T is equal to S is
as follows

E
�
zN jS� D

1X

kD0

1X

iD0

0

@
iTCSZ

iT

Œ�.iT C S/z�k
k

Še��.iTCS/�e��U dU

C
.iC1/TZ

iTCS

Œ� ..i C 1/T C S/ z�k

kŠ
e��..iC1/TCS/�e��U dU

1

A

D 1

1 � e�Œ�.1�z/C��T
�
e��.1�z/S � e�Œ�.1�z/C��S

Ce��.1�z/T e�Œ�.1�z/C��S � e��.1�z/Se�Œ�.1�z/C��T � ;

Multiplying this expression by �e��S

1�e��T and integrating by S from 0 to T we obtain
the generating function of transition probabilities

B.z/ D
1X

iD0
bi z

i

D 1

.1 � e��T /.1 � e�Œ�.1�z/C��T /

�


1

2 � z

�
1 � e��.2�z/T

� �
1 � e�Œ�.1�z/C��T �

� �

�.2 � z/C �
�
1 � e�Œ�.2�z/C��T � �1 � e��.1�z/T

��
:

Consider a Markov chain describing the functioning of the system; the matrix
of transition probabilities has the form Eq. (11.21). Let us denote the ergodic
distribution by pi .i D 0; 1; 2; : : :/ and introduce the generating function P.z/ D
1P
iD0

pi zi . Then
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pj D p0aj C p1aj C
jC1X

iD2
pibj�iC1;

whence

1X

jD0
pj zj D p0A.z/C p1A.z/C

1X

jD0

jC1X

iD2
pibj�iC1zj

D 1

z
P.z/B.z/ � 1

z
p0B.z/C p0A.z/C p1A.z/ � p1B.z/;

i.e.,

P.z/ D p0 ŒzA.z/ � B.z/�C p1z ŒA.z/ � B.z/�
z � B.z/ :

This expression contains two unknown probabilities – p0 and p1 – but

p0 D p0a0 C p1a0;

i.e.,

p1 D 1 � a0
a0

p0 D �

�
p0:

p0 can be found from the condition P.1/ D 1,

p0 D 1 � B 0.1/
1C A0.1/� B 0.1/C �

�
ŒA0 � B 0.1/�

:

The embedded chain is irreducible, so p0 > 0. Using

A0.1/ D �

�C �


1C �T

1 � e��T

�
;

B 0.1/ D 1 � �T e��T

1 � e��T C
�

�C ��T
1 � e�.�C�/T

.1 � e��T /.1 � e��T /
;

we obtain



1C �

�

�
A0.1/� �

�
B 0.1/ D �

�C ��T
1 � e�.�C�/T

.1 � e��T /.1 � e��T /
> 0;

so the condition 1 � B 0.1/ > 0 must be fulfilled. This leads to the inequality

�T e��T

1 � e��T �
�

�C ��T
1 � e�.�C�/T

.1 � e��T /.1 � e��T /
> 0;
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i.e.,

�

�C � <
e��T .1 � e��T /
1 � e�.�C�/T :

This is equivalent to Eq. (11.26). Substituting the corresponding values we obtain

p0 D 1 � �

�C �
1 � e�.�C�/T

e��T .1 � e��T /
:

The theorem is proved. ut
During the busy period there are idle intervals, which are necessary to get to

the starting position, and they alternate between 0 and T . It is clear that if T
decreases, then their influence will become increasingly attenuated. In the limit
case, the service process becomes continuous, and after having served a customer,
we immediately change to the next one.

Theorem 11.9. The limiting distribution for the system described above as T!0 is

P �.z/ D 1 � �
1 � �z



� D �

�

�
;

i.e., it is geometrical with parameter �.

Proof. We find p0, A.z/ and B.z/ as T ! 0, and the limiting values are denoted by
p�
0 , A�.z/, and B�.z/. On the basis of Eqs. (11.25), (11.22), and (11.23),

p�
0 D lim

T!0
p0 D lim

T!0



1 � �

�C �
1 � e�.�C�/T

e��T .1 � e��T /

�
D 1 � �

�
D 1 � �;

A�.z/ D lim
T!0

A.z/ D lim
T!0



�

�C � C
�z

�C �
e��.1�z/T .1 � e��T /
1 � e�Œ�.1�z/C��T

�

D �

�.1 � z/C �;

B�.z/ D lim
T!0

B.z/ D 1

.1 � e��T /Œ1 � e�Œ�.1�z/C��T �

�
�

1

2 � z

�
1 � e��.2�z/T

� �
1 � e�Œ�.1�z/C��T �

� �

�.2 � z/C �
�
1 � e�Œ�.2�z/C��T � �1 � e��.1�z/T

� �

D �

�.1 � z/C �:
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Using these values

P �.z/ D .1 � �/
.�zC �/ �

�.1�z/C� � z.�C �/ �

�.1�z/C�
�
�

�

�.1�z/C� � z
� D 1 � �

1 � �z
:

The preceding formula is the generating function for an M/M/1 system and
coincides with the previous results. ut

11.7.2 Waiting Time for Continuous Retrial System

Let us consider the previously described system. Using Koba’s results [57] we
determine the distribution of the waiting time. Let tn denote the moment of arrival
of the nth customer; then its service may be started at the moment tnCT �Xn, where
Xn is a nonnegative integer. LetZn D tnC1� tn, and let Yn be the service time of the
nth customer. If Xn D i , then between Xn andXnC1 the following relation holds. If

.k � 1/T < iT C Yn �Zn � kT .k 	 1/;

then XnC1 D k. In this case Xn is a homogeneous Markov chain with transition
probabilities pik, where

pik D P ..k � i � 1/T < Yn �Zn � .k � i/T /

if k 	 1, and

pi0 D P .Yn �Zn � �iT / :
Introduce the notations

fj D P ..j � 1/T < Yn �Zn � jT / ; (11.30)

pik D fk�i ha k 	 1; pi0 D
�iX

jD�1
fj D Ofi : (11.31)

The ergodic distribution of the Markov chain satisfies the system of equations

pj D
1X

iD0
pipij .j 	 0/;

1X

jD0
pj D 1:

Theorem 11.10. Let us consider the system described in Theorem 11.8. Define a
Markov chain whose states correspond to the waiting times of customers at moments
of arrivals. The matrix of transition probabilities has the form
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2

6
6
6
6
66
6
6
6
66
6
6
6
6
4

0P

jD�1
fj f1 f2 f3 f4 : : :

�1P
jD�1

fj f0 f1 f2 f3 : : :

�2P
jD�1

fj f�1 f0 f1 f2 : : :
�3P

jD�1
fj f�2 f�1 f0 f1 : : :

:::
:::

:::
:::
:::
: : :

3

7
7
7
7
77
7
7
7
77
7
7
7
7
5

(11.32)

and its elements are determined by formulas (11.30)–(11.31). Then the generating
function of the waiting time is

P.z/ D

1 � �

�

1 � e��T

e��T .1 � e��T /

�

�
�

�C � �
�.1 � e��T /
�C �

z

z � e��T

1 � �.1� e��T /
�C �

z

1 � ze��T �
�.1 � e��T /
�C �

z

z � e��T

; (11.33)

and the stability condition is

�

�
<

e��T .1 � e��T /
1 � e��T : (11.34)

Proof.
P .Z < x/ D 1 � e��x; P .Y < x/ D 1 � e��x:

The distribution function of Y �Z is

F.x/ D
(

�

�C�e�x if x � 0;
1 � �

�C�e��x if x > 0:

We find the transition probabilities. In the case j > 0,

fj D 1 � �

�C �e��.j�1/T � 1C �

�C �e��jT D �

�C �.1 � e��T /e��.j�1/T ;

for the negative values .j 	 0/

f�j D �

�C �e��jT � �

�C �e��.jC1/T D �

�C �.1 � e��T /e��jT ;
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pi0 D Ofi D
�iX

jD�1
fj D

1X

jDi

�

�C �.1 � e��T /e��jT D �

�C �e��iT :

Using the matrix of transition probabilities (11.32) we get the system of equations

p0 D p0 Of0 C p1 Of1 C p2 Of2 C p3 Of3 C : : :
p1 D p0f1 C p1f0 C p2f�1 C p3f�2 C : : :
p2 D p0f2 C p1f1 C p2f0 C p3f�1 C : : :

:::

Multiplying the j th equation by zj , summing up by j from 0 to infinity for the

generating function P.z/ D
1P
jD0

pj zj we obtain

P.z/ D P.z/FC.z/C
1X

jD1
pj zj

j�1X

iD0
f�i z�i C

1X

jD0
pj Ofj ;

where

FC.z/ D
1X

iD1
fi z

i D �z

�C �.1 � e��T /
1X

iD1
e��.i�1/T zi�1

D �.1 � e��T /
�C �

z

1 � ze��T ;

j�1X

iD0
f�i z�i D �.1 � e��T /

�C �
j�1X

iD0
e��iT z�i D �.1 � e��T /

�C �
1 �

�
e��T

z

�j

1 � e��T

z

;

1X

iD0
pi Ofi D

1X

iD0
pi

�

�C �e��iT D �

�C �P
�
e��T � :

Using the preceding equations

P.z/ D P.z/FC.z/C
1X

jD1
pj zj

�.1 � e��T /
�C �

1 �
�

e��T

z

�j

1 � e��T

z

C �

�C �P
�
e��T �

D P.z/FC.z/C �.1 � e��T /
�C �

z

z � e��T
�
P.z/ � P �e��T �	
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C �

�C �P
�
e��T �

or

P.z/


1 � FC.z/ � �.1� e��T /

�C �
z

z � e��T

�

D P �e��T �


�

�C � �
�.1 � e��T /
�C �

z

z � e��T

�
:

P.e��T / may be computed from the condition P.1/ D 1,

P
�
e��T � D 1 � �

�

1 � e��T

e��T .1 � e��T /
:

So for the generating function we get Eq. (11.33). From it we get the probability of
the event that the waiting time is equal to zero:

p0 D

1 � �

�

1 � e��T

e��T .1 � e��T /

�
�

�C �:

In order to have p0 > 0, the inequality

�

�

1 � e��T

e��T .1 � e��T /
< 1

must be fulfilled. It leads to condition (11.34) and coincides with the stability
condition for the number of customers. ut

11.8 Exercises

Exercise 11.1. A transmission link with capacity C D 5MB/s serves two kinds of
CBR connections. Type i connections arrive according to a Poisson process at a rate
�i and occupy ci bandwidth of the link for an exponentially distributed amount of
time with the parameter �i (i D 1; 2), where c1 D 1MB and c2 D 2MB.

1. Describe the system behavior with a CTMC and compute the loss probability of
type 1 customers if �2 D 0.

2. Describe the system behavior with a CTMC when both �1 and �2 are positive,
and compute the loss probability of types 1 and 2 connections and the overall
loss probability of connections.

3. Which loss probability is higher, that of type 1 or that of type 2 connections?
Why?
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4. Compute the link utilization factor when both arrival intensities are positive.
5. Compute the link utilization of type 1 and type 2 connections.

Exercise 11.2. There is a transmission link with a capacity of C D 13MB/s that
serves adaptive connections. The connections arrive according to a Poisson process
at a rate �, and their length is exponentially distributed with the parameter �. The
minimal and maximal bandwidths of the adaptive connections are cmin D 2MB/s
and cmax D 3MB/s, respectively. Compute the average bandwidth of an adaptive
connection in equilibrium.

Exercise 11.3. There is a transmission link with a capacity of C D 13MB/s that
serves elastic connections. The connections arrive according to a Poisson process
at a rate �, and during an elastic connection an exponentially distributed amount
of data is transmitted with the parameter � . The minimal and maximal bandwidths
of the elastic connections are cmin D 2MB/s and cmax D 3MB/s, respectively.
Compute the average bandwidth of an elastic connection in equilibrium. Compute
the average time of an elastic connection in equilibrium.

Exercise 11.4. A transmission link with a capacity of C D 3MB/s serves two
kinds of elastic connections. Type 1 connections arrive according to a Poisson
process at a rate �1 D 0:5 1/s and transmit an exponentially distributed amount
of data with the parameter �1 D 4 1/MB. The minimal and maximal bandwidths
of type 1 connections are Lc1 D 1MB/s and Oc1 D 1MB/s, respectively. Type 2
connections are characterized by �2 D 0:1 1/s, �1 D 2 1/MB, Lc2 D 1MB/s, and
Oc2 D 2MB/s.

(a) Describe the system behavior with a CTMC.
(b) Compute the mean number of type 1 and type 2 connections.
(c) Compute the mean channel utilization.
(d) Compute the loss probability of type 1 and type 2 connections.
(e) Compute the average bandwidth of type 2 connections.

Exercise 11.5. A transmission link with a capacity of C D 3MB/s serves
two kinds of connections, elastic and adaptive. Type 1 elastic connections arrive
according to a Poisson process at a rate �1 [1/s] and transmit an exponentially
distributed amount of data with parameter �1 [1/MB]. The minimal and maximal
bandwidths of type 1 connections are Lc1 D 0:75MB/s and Oc1 D 1:5MB/s,
respectively. Type 2 adaptive connections arrive according to a Poisson process at
a rate �2 [1/s] and stay in the system for an exponentially distributed amount of
time with the parameter �2 [1/s]. The minimal and maximal bandwidths of type 2
connections are Lc2 D 1MB/s and Oc2 D 2MB/s, respectively.

(a) Describe the system behavior with a CTMC.
(b) Compute the loss probability of type 1 and type 2 connections.
(c) Compute the average bandwidth of type 1 and type 2 connections.
(d) Compute the mean number of type 1 and type 2 connections on the link.
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Exercise 11.6. Compute the mean value of the waiting time in a cyclic waiting
system.

Exercise 11.7. Let us consider our cyclic waiting system in the case of discrete
time. Divide the cycle time T into n equal parts and suppose that for an interval
T=n a new customer enters with probability r (there is no entry with probability
1 � r), and the service in process for such an interval is continued with probability
q and completed with probability 1 � q (i.e., the service time has a geometrical
distribution). The service may be started at the moment of arrival or at moments
differing from it by multiples of T .

(a) Show that the number of customers in the system at moments tk � 0 constitute
a Markov chain, and find its transition probabilities.

(b) Find the generating function of the number of customers in a system in
equilibrium and the stability condition.



Appendix: Functions and Transforms

A.1 Nonlinear Transforms

Many theoretical and practical problems can be converted into easier forms if
instead of the discrete or continuous distributions their different transforms are ap-
plied, which can be solved more readily. In probability theory, numerous transforms
are applied. Denote by F the distribution function of a random variable X and by
f the density function if it exists. The general form of the most frequently used
transform depending on the real or complex parameter w is

E
�
wX
� D

Z 1

�1
wxdF.x/:

If the density function exists, then the last Riemann–Stieltjes integral can be
rewritten in the form of a Riemann integral as follows:

E
�
wX
� D

Z 1

�1
wxf .x/dx:

1. In the general case, setting w D ei t ; t 2 R, we have the characteristic function
(Fourier–Stieltjes tranform)

'.t/ D E
�
ei tX

� D
Z 1

�1
ei txdF.x/:

2. If the random variable X has a discrete distribution with values 0; 1; : : : and
probabilities p0; p1; : : : corresponding to them, then setting z D w; jzj < 1,
we get

G.z/ D E
�
zX
� D

Z 1

�1
zxdF.x/ D

1X

kD0
pkzk;

which is the generating function of X .

L. Lakatos et al., Introduction to Queueing Systems with Telecommunication Applications,
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3. The Laplace–Stieltjes transform plays a significant role when considering ran-
dom variables taking only nonnegative values (usually we consider this type of
random variable in queuing theory), which we obtain with w D e�s; s > 0:

F�.s/ D
Z 1

0

e�sxdF.x/:

For the case of continuous distributions it can be rewritten in the form

f �.s/ D
Z 1

0

e�sxf .x/dx D F�.s/;

where f � denotes the Laplace transform of the density function f .

The identical background of the transformations given above determine some
identical properties. When considering various problems, the use of separate
transforms may be advantageous. For example, in the general case the use of a
characteristic function, in the case of random variables taking nonnegative integer
numbers the generating function, and in the case of general nonnegative random
variables the Laplace–Stieltjes or Laplace transform is favorable to apply.

Note that we define the transforms given above for more general classes of
functions than the distribution functions.

A.2 z-Transform

Let f0; f1; : : : be a sequence of real numbers and define the power series

f .z/ D
1X

nD0
fnzn D f0 C f1zC f2z2 C : : :C fnzn C : : : : (A.1)

It is known from the theory of power series that if the series (A.1) is not everywhere
divergent except the point z D 0, then there exists a number A > 0 such that the
series (A.1) is absolute convergent (

PK
nD0 jfnznj <1) for all jzj < A and divergent

for all jzj > A. The series (A.1) may be convergent or divergent at the points z D
˙A depending on the values of the parameters fi ; i D 0; 1; : : :. The number A is
called the convergence radius of the power series (A.1). By the Cauchy–Hadamard
theorem, A can be given in the form

A D 1=a; where a D lim sup
n!1

.jfnj/1=n :

In the last formula we set A D C1 if a D 0 and A D 0 if a D C1. The first
relation A D C1 means that the power series (A.1) is convergent in all points of
the real line, and the second one means that Eq. (A.1) is convergent only at the point
z D 0.

A finite power series f .z/ D PK
nD0 fnzn (K-order polynomial, which corre-

sponds to the case fi D 0; i 	 K C 1) is convergent at all points of the real line.
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Definition A.1. Let f0; f1; : : : be a sequence of real numbers satisfying the
condition a D lim sup

n!1
.jfnj/1=n <1. Then the power series

f .z/ D
1X

nD0
fnzn; jzj < A D 1=a;

is called the z-transform of the sequence f0; f1; : : :

It is clear from this definition that if we use a discrete distribution
fn; k 	 0; P1

kD0 fk D 1, then the z-transform of the sequence f0; f1; : : : is
identical with the generating function G.z/, which was introduced earlier.

A.2.1 Main Properties of z-Transform

1. Derivatives. If the convergence radius A does not equal 0, then the power series
f .z/ is an anytime differentiable function for all points jzj < A and

dk

dzk
f .z/ D

1X

nDk
n.n � 1/ : : : .n � k C 1/fnzn�k; k 	 1:

2. Computing the coefficients of the z-transform. For all k D 0; 1; : : : the following
relation is true:

fk D 1

kŠ

dk

dzk
f .z/

ˇ̌
ˇ
ˇ
zD0

; k 	 0: (A.2)

It is clear from relation (A.1) that if the condition A > 0 holds, then the
function f .z/ defined by the power series (A.1) and the sequence f0; f1; : : :
uniquely determine each other, that is, the z-transform realizes a one-to-one
correspondence between the function f .z/ and the sequence f0; f1; : : : The
properties of a z-transform can be analyzed using results that are true for a power
series.

3. Convolutions. Let f .z/ D P1
nD0 fnzn and g.z/ D P1

nD0 gnzn be two z-
transforms determined by the sequences fn and gn, respectively. Define the
sequence hn as the convolution of fn and gn, that is,

hn D
nX

kD0
fkgn�k; n 	 0:

Then the z-transform h.z/ D P1
nD0 hnzn of the sequence h0; h1; : : : satisfies the

equation

h.z/ D f .z/ � g.z/:

Appendix: Functions and Transforms
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A.3 Laplace–Stieltjes and Laplace Transforms
in General Form

Let H.x/; 0 � x < 1 be a function of bounded variation. A function H is said
to be of bounded variation on the interval Œa; b� if its total variation VH.Œa; b�/ is
bounded (finite). The total variation is defined as

VH.Œa; b�/ D sup
P

KPX

kD1
jH.xP;k/�H.P;k�1/j;

where the supremum is taken over the set of all partitions

P D fxP;0 D a < xP;1 < : : : < xP;KP D bg

of the interval Œa; b�. The functionH is of bounded variation on the interval Œ0;1/
if VH.Œ0; b�/ is bounded by some number V for all b > 0.

The function

H�.s/ D
Z 1

0

e�sxdH.x/ (A.3)

is called the Laplace–Stieltjes transform of the functionH . If the functionH can
be given in the integral form

H.x/ D
Z x

0

h.u/du; x 	 0;

where h is an integrable function (this means that H is an absolute continuous
function with respect to the Lebesgue measure), then the Laplace transform of the
function h satisfies the equation

h�.s/ D
Z 1

0

e�sxh.x/dx D H�.s/:

Theorem A.2. If the integral (A.3) is convergent for s > 0, then H�.s/; s > 0 is
an analytic function, and for every positive integer k

dk

dsk
H�.s/ D

Z 1

0

e�sx.�x/kdH.x/:

The transformH� satisfies the following asymptotic relation [90]. If the integral
(A.3) is convergent for Res > 0 and there exist constants ˛ 	 0 and A such that

lim
x!1

H.x/

x˛
D A

	.˛ C 1/ ;
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then the convergence

lim
s!0Cs

˛H�.s/ D A (A.4)

holds.

Theorem A.3. Assume that there exists a function h.x/; x 	 0, and its Laplace
transform h�.s/; s > 0; moreover, the function h.x/ is convergent as x !1, i.e.,
lim
x!1h.x/ D h1: Then

lim
s!0Csh

�.s/ D h1:

Proof. Denote H.x/ D R x0 h.s/ds; x 	 0: Choosing ˛ D 1 we have

lim
x!1

H.x/

x
D lim

1

x

Z x

0

h.s/ds D h1 D h1
	.1C 1/ I

thus by relation (A.4) the assertion of the theorem immediately follows.

Theorem A.4. If there exists a Laplace transform f � of the nonnegative function
f .t/; t 	 0, and there exists the finite limit lim

x!0Cf .x/ D f0, then

lim
s!1sf

�.s/ D f0:

Proof. It is clear that

s

Z 1

0

e�sxdx D
Z 1

0

e�xdx D 1

and

s

Z 1

1=
p
s

e�sxdx D
Z 1

p
s

e�ydy D e�p
s D o.1/; s !1I

therefore,

sf �.s/� f0 D s
Z 1=

p
s

0

e�sxŒf .x/ � f0�dx C s
Z 1

1=
p
s

e�sxf .x/dx C f0o.1/:

Since there exists the finite limit lim
x!1f .x/ D f0, with the notation

ı.z/ D sup
0<x�z

jf .x/ � f0j ! 0; z! 0C;

we obtain

s

Z 1=
p
s

0

e�sx jf .x/ � f0j dx < ı.1=
p
s/

Z 1

0

se�sxdx D ı.1=ps/! 0; s !1:

Appendix: Functions and Transforms
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On the other hand, for all 0 < s � t the relation

f �.s/ D
Z 1

0

e�sxf .x/dx �
Z 1

0

e�txf .x/dx D f �.t/;

is true, then

s

Z 1

1=
p
s

e�sxf .x/dx � se�.1=2/ps

Z 1

1=
p
s

e�.s=2/xf .x/dx

� se�.1=2/ps

Z 1

0

e�.s=2/xf .x/dx D se�.1=2/psf �.s=2/

� se�.1=2/psf �.1/! 0;

as s ! 1 (s 	 2). Summing up the results obtained above, the assertion of the
theorem follows.

A.3.1 Examples of Laplace Transform of Some Distributions

(a) Deterministic distribution (a > 0, P .X D a/ D 1):

F�.s/ D
Z 1

0

e�sxdF.x/ D e�sa; E .X/ D a:

(b) B.n; p/ binomial distribution:

F�.s/ D
Z 1

0

e�sxdF.x/ D
nX

kD0

 
n

k

!

pk.1 � p/n�ke�sk

D
nX

kD0

 
n

k

!

.pe�s/k.1 � p/n�k D Œ1C p.e�s � 1/�n;

E .X/ D npe�s Œ1C p.e�s � 1/�n�1ˇˇ
sD0 D np:

(c) Poisson distribution with parameter �:

F�.s/ D
Z 1

0

e�sxdF.x/ D
1X

kD0
e�sk �k

kŠ
e��

D
1X

kD0

1

kŠ
.�e�s/ke�� D expf�.e�s � 1/g;

E .X/ D �e�s expf�.e�s � 1/gjsD0 D �:
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(d) Uniform distribution on the interval Œa; b�:

F�.s/ D
Z b

a

e�sx 1

b � adx D
(

1
s.b�a/ .e

�sa � e�sb/; s > 0;
1; s D 0:

and by the use of l’Hospital’s rule:

E .X/ D 1

b � a lim
s!0C �

1

s2

�
Œe�sa � e�sb ��Œsae�sa � sbe�sb�

�

D 1

b � a lim
s!0C

b2se�sb � a2e�sa

2s
D b2 � a2
2.b � a/ D

aC b
2

:

(e) Exponential distribution with parameter �:

F�.s/ D
Z 1

0

e�sx�e��xdx D �
Z 1

0

e�.sC�/xdx D �

s C �;

E .X/ D �

.s C �/2
ˇ
ˇ
ˇ
ˇ
sD0
D 1

�
:

A.3.2 Sum of a Random Number of Independent
Random Variables

Theorem A.5. Let K be a random variable with nonnegative integer values, and

consider the sum of K random variables Y D
KP

nD0
Xn, where

(1) The random variablesK and fXn; n 	 0g are independent.
(2) The distributions of the random variables Xn are identical with common

distribution function F.x/.

Denote by F�
X .s/ the Laplace–Stieltjes transform of Xn and by GK.z/ the

generating function of K . Then the Laplace–Stieltjes transform of random
variable Y has the form

E
�
e�sY � D GK.F�

X .s//:

Proof. Since

E

 

exp

(

�s
KX

nD0
Xn

) ˇ
ˇ
ˇ
ˇ K D k

!

D F�
X .s/

k;

Appendix: Functions and Transforms



376 Appendix: Functions and Transforms

then we obtain by the use of the formula of total expected value

E

 

exp

(

�s
KX

nD0
Xn

)!

D
1X

kD0

"

E

 

exp

(

�s
KX

nD0
Xn

) ˇ̌
ˇ
ˇK D k

!

P .K D k/
#

D
1X

kD0
F�
X .s/

k P .K D k/ D E
�
F�
X .s/

K
�
D GK.F�

X .s//:

A.4 Bessel and Modified Bessel Functions of the First Kind

Definition A.6. The nonzero solutions of Bessel’s differential equation

x2u00 C xu0 C .x2 � �2/u D 0 (A.5)

are called v-order Bessel functions, where v is a real number.

Definition A.7. The solutions of Bessel’s differential equation are called Bessel
functions of the first kind and denoted by Jv.x/, which are nonsingular at the
origin x D 0.

The v-order Bessel functions of the first kind J�.x/ (v 	 0) can be defined by
their Taylor series expansion around x D 0 as follows:

J�.x/ D
1X

kD0

.�1/k
	.k C � C 1/	.k C 1/

�x
2

�2kC�
; (A.6)

where 	.x/ D R1
0 e�t tx�1dt is the gamma function. This formula is valid,

providing v ¤ �1;�2; : : :. The Bessel function

J��.x/ D
1X

kD0

.�1/k
	.k C � C 1/	.k C 1/

�x
2

�2k��

is given by replacing v in Eq. (A.6) with a �v.
An important special case of a Bessel function of the first kind is that of a purely

imaginary argument.

Definition A.8. The function

I�.x/ D i�vJv.ix/ D
1X

kD0

1

	.k C � C 1/	.k C 1/
�x
2

�2kC�

is calleda modified v-order Bessel function of the first kind.
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Both the Bessel functions J�.x/ and I�.x/ can be expressed in terms of the
generalized hypergeometric function 0F1.vI x/ as follows [76]:

J�.x/ D 1

	.� C 1/
�x
2

��
0F1.� C 1I �x

2

4
/;

I�.x/ D 1

	.� C 1/
�x
2

��
0F1.� C 1I x

2

4
/;

where

0F1.�I x/ D
1X

kD0

	.�/

	.k C �/	.k C 1/x
k:

A.5 Notations

N
C Set of nonnegative integer numbers

R Set of real numbers (R D .�1;1/)
ıij Kronecker delta function, that is, ıij D 1; if i D j ; otherwise it equals 0
aC Positive part of a real number a, i.e., aC D max.a; 0/
A Complementary event of A
IfAg Indicator function of an event A, that is, it equals 1 if the event A occurs,

and otherwise it equals 0
P .A/ Probability of an event A
E .X/ Expected value of a random variable X
D .X/ Variation of a random variable X
S State space of a Markov chain
P (One-step) transition probability matrix of a discrete-time Markov chain
Q Rata matrix of a continuous-time Markov chain
I Unit matrix

Appendix: Functions and Transforms
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71. S. Meyn, R. Tweedie. Markov chains and stochastic stability. Springer, Berlin Heidelberg

New York, 1993.
72. NIST: National Institute of Standards and Technology. Digital library of mathematical

functions. http://dlmf.nist.gov. Nov. 13., 2012.
73. M. Neuts. Probability distributions of phase type. In Liber Amicorum Prof. Emeritus H. Florin,

pp. 173–206. University of Louvain, Louvain, Belgium, 1975.
74. M.F. Neuts. Matrix Geometric Solutions in Stochastic Models. Johns Hopkins University Press,

Baltimore, 1981.
75. C. Palm. Methods of judging the annoyance caused by congestion. Telegrafstyrelsen,

4:189–208, 1953.
76. A. P. Prudnikov, Y. A. Brychkov, O. I. Marichev. Integrals and series, vol. 2. Gordon and

Breach, New York, 1986. Special functions.
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probability generating function, 208
standard deviation, 23
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