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A Motivating Example (1)

o you need to choose one of N possible routes to get to work.
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A Motivating Example (1)

DAY 1 DAY 2
o you need to choose one of N possible routes to get to work.
@ The cost/delay you suffer depends on traffic conditions.
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A Motivating Example (1)

o you need to choose one of N possible routes to get to work.

@ The cost/delay you suffer depends on traffic conditions.

@ You make a decision which may only be based on (not clear a
priori which route is the best).
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A Motivating Example (1)

o you heed to one of N possible routes to get to work.
@ The you suffer depends on traffic conditions.
@ You make a which may only be based on (not clear a

priori which route is the best).
@ You become of (how long your route took)
only when you get to your office, possibly along with the

(how long some colleagues’ routes took).

S. Kontogiannis (University of loannina) Learning, Enforcement & Equilibria June 22, 2015 2/62



A Motivating Example (lI)

DAY 1 DAY 2
What can be learnt?
Is there an which learns how to pick routes so that, in the
long run, whatever the sequence of traffic patterns occurred, you have
done not much worse than the , in refrospective?
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A Motivating Example (lI)

DAY 1

What can be learnt?
Is there an which learns how to pick routes so that, in the
long run, whatever the sequence of traffic patterns occurred, you have
done not much worse than the , in refrospective?

What can be enforced?
Given a collection of routes that is good (above the ) but
for every individual day, is it possible
to enforce it as a stable solution, in the long run, for everyone?
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A Motivating Example (lI)

DAY 1

What can be learnt?
Is there an which learns how to pick routes so that, in the
long run, whatever the sequence of traffic patterns occurred, you have
done not much worse than the , in refrospective?

What can be enforced?
Given a collection of routes that is good (above the ) but
for every individual day, is it possible
to enforce it as a stable solution, in the long run, for everyone?

VES and YES!
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Skeleton

e What Can Be Learnt?
@ Notions of Regret
@ Agent against Nature

@ Game Theoretic Notation
@ Learning vs. Game Theory

@ The Mutual Advantage Case
@ The No--Mutual Advantage Case
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Agent Against Nature: An Example

SO
We may use to go to — 2
our work every morning. The loss we o) 1
incur per day is Q 3 1
of that day: @ 31

Matrix of Losses (per weather type)
@ Best response to sunny weather = WALK
@ Best response to cloudy weather = MOTORBIKE

@ Best response to rainy weather = BUS
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Agent Against Nature: An Example

SO
We may use to go to — 2
our work every morning. The loss we o) 1
incur per day is Q 3 1
of that day: @ 31

Matrix of Losses (per weather type)
@ Best response to sunny weather = WALK
@ Best response to cloudy weather = MOTORBIKE
@ Best response to rainy weather = BUS

GOAL: The agent has to...

» use an online algorithm (OLA) that what to do, based
only on history of previous losses due to past decisions.

> suffer , after having made his/her decisions.
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Agent Against Nature: Definition

e [N] ={1,2,...,N}: The action space for a single agent against Nature.
@ The game is repeated forever, in discrete rounds.
@ Ineachround t > 1:
» Agent OLA makes a (probabilistic) choice of an action, according to a
strategy p' € Ay :={p € [0,1]V: Vp=1}.

» Nature makes its own move, and revedls a vector (£);c(y; € [0, 1]V of
losses, for all the actions.

» OLA incurs irrevocably the i" € [N]. only after
having made its choice.

> OLA keeps either (¢")c[n) (full-info model), or £, (partiak-info model) in
history.
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Agent Against Nature: Definition

e [N] ={1,2,...,N}: The action space for a single agent against Nature.
@ The game is repeated forever, in discrete rounds.

@ Ineachround t > 1:

» Agent OLA makes a (probabilistic) choice of an action, according to a
strategy p' € Ay :={p € [0,1]V: Vp=1}.

» Nature makes its own move, and revedls a vector (£);c(y; € [0, 1]V of
losses, for all the actions.

» OLA incurs irrevocably the i" € [N]. only after
having made its choice.

> OLA keeps either (¢")c[n) (full-info model), or £, (partiak-info model) in
history.

GOAL: OLA should so as to perform as good as possible the
per round, in the long run, when compared to
(e.g.. always pick a given action).
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Modification Rules

Consider the particular instance of 9 days:
L e
@bl 112 |1 2 2|1
| 3 3|1 1 3
“SHE 13133
M

atrix of Losses (per day and choice)
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Modification Rules

Consider the particular instance of 9 days:

L S T e
2

1121 212 |1

&

| 3 3|1 1 3
“SHE 13133
M

atrix of Losses (per day and choice)

Modification Rule: A specific way to differentiate the behavior of OLA. le, any
" - [N]" — [N] mapping the history of OLA’s moves so
far to an f({i",,...,i"}) € [N] for each round t.
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Modification Rules

Consider the particular instance of 9 days:

L e
@bl 112 |1 2 221
| 3 3|1 1 3
“SHE 13133
M

atrix of Losses (per day and choice)

Modification Rule: A specific way to differentiate the behavior of OLA. le, any
" - [N]" — [N] mapping the history of OLA’s moves so

far to an f({i",,...,i"}) € [N] for each round t.
if OLAis a online algorithm
then the history contains rather than actions, and

the alternative move proposed by the modification rule is another
f'(p', P, ...,p") € An.
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Modification Rules

Consider the particular instance of 9 days:
S e

: 1121 2 2121

3 3 (1 1 3

&
=]
“SHE 13133
M

atrix of Losses (per day and choice)

Modification Rule: A specific way to differentiate the behavior of OLA. le, any
" - [N]" — [N] mapping the history of OLA’s moves so

far to an f({i",,...,i"}) € [N] for each round t.
if OLAis a online algorithm
then the history contains rather than actions, and

the alternative move proposed by the modification rule is another
f'(p', P, ...,p") € An.
Remark: The optimal adaptive modification rule for is:
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Aggregate Losses

@ For and first T rounds:

> Losses of OLA: | L, = S_1_, £ |where i € [N] is OLA’s action for round .

» Losses of a family F of modification rules:

T _ T t
LOLA,F = Zf:] fo

f=f(i",...,i") € [N] is F's action for round .
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Aggregate Losses

@ For

> Losses of OLA:

=i,

@ For

> Losses of OLA:

and first T rounds:

L= S1_, £ |where i € [N] is OLA’s action for round .

» Losses of a family F of modification rules: L(T)LA,F = Z,T:] 21, |where
i") € [N] is F’s action for round t.
and first T rounds:
La=S0 2N 01 pf [where p] € [0,1]is OLA’s

probability mass for action i in round T.

» Losses of a family F of modification rules:

LOLAF*Zr 12: 1 £ - ff | where

' € [0,1] is F’s probability mass for action i in round f.
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Aggregate Losses

@ For

> Losses of OLA:

and first T rounds:

L= S1_, £ |where i € [N] is OLA’s action for round .

» Losses of a family F of modification rules: L(T)LA,F = Z,T:] 0!, | where

=i,

@ For

> Losses of OLA:

i") € [N] is F’s action for round t.

and first T rounds:

La=S0 2N 01 pf [where p] € [0,1]is OLA’s

probability mass for action i in round T.

> Losses of a family F of modification rules: | L{y = =S N e

I

f' € [0, 1] is F's probability mass for action i in round t.

where

Remark: At time t, usually the modification rule f! shifts the probability mass
that OLA assign to j € [N] to action .
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The Notion of Regret (1)

oA , in hindsight, for our choice of online
algorithm. le, the of OLA’s total loss from the total
loss of an allowable modification rule.
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The Notion of Regret (1)

oA , in hindsight, for our choice of online
algorithm. le, the of OLA’s total loss from the total
loss of an allowable modification rule.

DEFINITION: Regret
For any online algorithm OLA, set F of allowable amodification rules, and any
number of time steps T, the regret of OLA against F is:

Rowar(T) = max {L60a(8) — Loia ()}

where:
o (= (") is the vector of losses for all actions, per round t € [T].

o f = (f")ic[r) Is an allowable modification rule, from F.

o L5 .(0), LI)LAJ(E) are the total (possibly expected) losses of OLA and f for
the first T time steps, respectively.
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No-Regret Algorithms

DEFINITION: No-Regret Algorithms
An online algorithm OLA is no-regret wrt a given family F of modification rules, if
the average (per round) loss of OLA is to the average loss

of the best possible modification rule in F. This implies that the (absolute) regret
is o(T), for sufficiently large number T of rounds.

S. Kontogiannis (University of loannina) Learning, Enforcement & Equilibria June 22, 2015 10/ 62



No-Regret Algorithms

DEFINITION: No-Regret Algorithms

An online algorithm OLA is no-regret wrt a given family F of modification rules, if
the average (per round) loss of OLA is to the average loss
of the best possible modification rule in F. This implies that the (absolute) regret
is o(T), for sufficiently large number T of rounds.

Remark
Fix a given family of modification rules F and any online algorithm A.
if for any modification rule f € F and any sequence of
loss vectors /, ie, all losses in [0, 1], it holds that:

La(6) < o+ Lopas(€) + B

then a €14 0(1) A B € o(T) implies that A is no-regret algorithm
against F.
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Bad News for Adaptive Modification Rules

THEOREM 4.1 (AGT-book): No Hope to Learn Against Adaptive Rules

If we allow the set Fy; of all possible modification rules, then for any online
algorithm OLA there is a vector of losses £ (for T rounds of play) such that the
regret of OLA against functions mapping time steps to actions, is at least

T(1 — 1/N).
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Bad News for Adaptive Modification Rules

THEOREM 4.1 (AGT-book): No Hope to Learn Against Adaptive Rules

If we allow the set Fy; of all possible modification rules, then for any online
algorithm OLA there is a vector of losses £ (for T rounds of play) such that the
regret of OLA against functions mapping time steps to actions, is at least

T(1 — 1/N).

WHY?

/1, =0; x' € argmin; fel
one[T]:{g;:] Vi X emipi}
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Bad News for Adaptive Modification Rules

THEOREM 4.1 (AGT-book): No Hope to Learn Against Adaptive Rules

If we allow the set Fy; of all possible modification rules, then for any online
algorithm OLA there is a vector of losses £ (for T rounds of play) such that the
regret of OLA against functions mapping time steps to actions, is at least

T(1 — 1/N).

WHY?
7, =0; x' € argmin, of
(] VT S [T] { gff: 'I Vi # Xf IG[N]{ ’}
i 9
@ Lhs>T-(1—1/N).
o LTOLA,FO,, =0.
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How About Oblivious Rules?

@ We wish to compare ourselves against (eg. assuming the
same knowledge pattern with OLA, but no access to OLA).
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How About Oblivious Rules?

@ We wish to compare ourselves against (eg. assuming the
same knowledge pattern with OLA, but no access to OLA).

@ We restrict attention to oblivious modification rules:

External-Regret Rules: The family of rules f; that always chooses for all rounds the
same action i € [N] (independently OLA).

— T T
ROLA,Fexr(T) - moxiG[N] {LOLA - LOLA,f,} /* N cases to check * /
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How About Oblivious Rules?

@ We wish to compare ourselves against (eg. assuming the
same knowledge pattern with OLA, but no access to OLA).

@ We restrict attention to oblivious modification rules:

External-Regret Rules: The family of rules f; that always chooses for all rounds the
same action i € [N] (independently OLA).

— T T
ROLA,Fexr(T) - moxiG[N] {LOLA - LOLA,f,} /* N cases to check * /

Internal-Regret Rules: The family of rules f; ; that mimics OLA, but for a single
action i which is always substituted by some action j.

-
Rova,r, (T) = max(;,) {L(T)LA - LTOLA,f,-_J} = max(,) >y P - (6 — £))

/* N(N — 1) cases to check * /
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How About Oblivious Rules?

@ We wish to compare ourselves against (eg. assuming the
same knowledge pattern with OLA, but no access to OLA).

@ We restrict attention to oblivious modification rules:

External-Regret Rules: The family of rules f; that always chooses for all rounds the
same action i € [N] (independently OLA).

— T T
ROLA,Fexr(T) - moxiG[N] {LOLA - LOLA,f,} /* N cases to check * /

Internal-Regret Rules: The family of rules f; ; that mimics OLA, but for a single
action i which is always substituted by some action j.

-
Rova,r, (T) = max(;,) {L(T)LA - LTOLA,f,-_J} = max(,) >y P - (6 — £))

/* N(N — 1) cases to check * /

Swap-Regret Rules: The family of rules that determine arbitrary maps of the
choices of OLA to possible actions.

N T
Rota,r,, (T) = maxy, {L(TDLA - LTOLA,fSW} =D mox >, - (6 — K,’)

/* NN cases to check /
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Agent Against Nature: An Example (contd.)

Consider the online algorithm:

OLA = "‘Make the best choice, given the weather of the previous day’’. J

and suppose that the possible losses are:

Ce el
| 1] 2
| 3 1
3|1

Matrix of Losses (per weather type)

Consider the following instance of 9 days:

S S i ML e [CIE R F) )
Bt 1|2 |1 2 2121 EXTldbldmldblamidtlanldtlat
= 3 3|1 1 3| | nigd e Dleblstls
D |3 1]3]1]3]s MEIEEEEEEE

Matrix of Losses (per day and choice)

S. Kontogiannis (University of loannina)

Total Loss and Regrets of OLA

Learning, Enforcement & Equilibria
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16-11
16-13:b>m

16-8:b>m,w>b,m>b
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Greediness vs. External Regret (1)

GREEDY (G): Choose as current action the cheapest action so far (for all
rounds). Break ties in favor of smallest action index.

Q@ X' =1
Q VvVt>2:
ST*] arg min,'e [N {Zr<f—1 g;’- } / * best responses according to history * /
p t N f—1
Vi e [N],X = mln{l ie S } / * choose smallest-ID best response * /
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Greediness vs. External Regret (1)

GREEDY (G): Choose as current action the cheapest action so far (for all
rounds). Break ties in favor of smallest action index.

Q@ X' =1
Q VvVt>2:
Sf*] arg min,'e [N {Zr<f—] gl‘r } / * best responses according to history * /
p t N f—1
Vi e [N],X = mln{l ie S } / * choose smallest-ID best response * /

RANDOMIZED GREEDY (RG): Uniformly at random choose as current action any
of the cheapest actions so far (for all rounds).

Q@ X' =1
Q Vt>2:
ST—1 arg min,e [N {ZTSf*] éIT } / * best responses according to history s /
I ot—
, t __ liest—1]
Vi€ [N]vpj - |§r71|
Select X’l occording to distribution p(f) /* uniform choice of a best response * /
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Greediness vs. External Regret (lI)

Denote by Lmln = min;c(] {ZL] élf} the that any action

may achieve for the first T steps of a sequence of loss vectors (ff)re[r]-

THEOREMS 4.2-3 (AGT-book): Greediness is not enough for EXT-REG
Wrt the External-Regret family of modification rules, the following hold:
@ For any sequence of T loss vectors, GREEDYs loss is upper bounded by:

<N b+ (N=1)]

%

@ For any sequence of T loss vectors, RG’s loss is upper bounded by:
LIT?G S (] + ln(N)) mln + ln( )
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Greediness vs. External Regret (lI)

Denote by Lmln = min;c(] {ZL] élf} the that any action

may achieve for the first T steps of a sequence of loss vectors (ff)re[r]-

THEOREMS 4.2-3 (AGT-book): Greediness is not enough for EXT-REG
Wrt the External-Regret family of modification rules, the following hold:
@ For any sequence of T loss vectors, GREEDYs loss is upper bounded by:
(L <N-Lh, +(N=1)]

@ For any sequence of T loss vectors, RG’s loss is upper bounded by:
LIT?G S (] + ln(N)) mln + ln( )

Remark: These are NOT no-external-regret algorithms!
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Greediness vs. External Regret (lIl)

WHY?

@ Analysis for G: For each round t at which K;, — E;* =1
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Greediness vs. External Regret (lIl)

WHY?
@ Analysis for G: For each round t at which K;, — E;* =1
» U<

U =140 > U =1
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Greediness vs. External Regret (lIl)

WHY?
@ Analysis for G: For each round t at which K;, — E;* =1
» U<
U =140 > U =1
|Sf| S |Sf71‘ -1
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Greediness vs. External Regret (lIl)

WHY?
@ Analysis for G: For each round t at which K;, — E;* =1

» U<
U =140 > U =1
|Sf| S |Sf71‘ -1
.

'min*

.. At most N losses of G between two consecutive losses of L
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Greediness vs. External Regret (lIl)

WHY?

@ Analysis for G: For each round t at which K;, — E;* =1

» U<
U =140 > U =1
|Sf| S |Sf71‘ -1
.

'min*

.. At most N losses of G between two consecutive losses of L
@ Analysis for RG: Let t; = min{t : LT > j}.
> V1€ (B, ] it [S'] = [S"77| — kthen Lis — Lig' < 5

> <L+ 24T <1+ In(N).
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Determinism vs. External Regret (I)

THEOREM 4.4 (AGT-book): Determinism is not enough for EXT-REG
Wrt the External-Regret family of modification rules, the following hold:
@ For any deterministic online algorithm D, there is a sequence of T loss
vectors, such that L, > Tand LT, < | %]

e 'min N
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Determinism vs. External Regret (I)

THEOREM 4.4 (AGT-book): Determinism is not enough for EXT-REG
Wrt the External-Regret family of modification rules, the following hold:
@ For any deterministic online algorithm D, there is a sequence of T loss
vectors, such that L, > Tand L], < | % |

et min = [ N]*

WHY?
@ x' = the choice of D in round t.

e Loss sequence: YVt € [T]. £}, = 1and (] = 0, Vi # x'.
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Determinism vs. External Regret (I)

THEOREM 4.4 (AGT-book): Determinism is not enough for EXT-REG
Wrt the External-Regret family of modification rules, the following hold:
@ For any deterministic online algorithm D, there is a sequence of T loss
vectors, such that L, > Tand L], < | % |

et min = [ N]*

WHY?
@ x' = the choice of D in round t.

e Loss sequence: YVt € [T]. £}, = 1and (] = 0, Vi # x'.

o LL=T.
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Determinism vs. External Regret (I)

THEOREM 4.4 (AGT-book): Determinism is not enough for EXT-REG
Wrt the External-Regret family of modification rules, the following hold:
@ For any deterministic online algori’rhm D, there is a sequence of T loss
vectors, such that L, > T and L], L TJ

mln— N

WHY?
@ x" = the choice of D in round f.
e Loss sequence: YVt € [T]. £}, = 1and (] = 0, Vi # x'.
o LL=T.

o At least one action x* is chosen by D at most

T
N
times.

Lo < [ 5]
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Determinism or Randomness?

= Determinism is
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Determinism or Randomness?

= Determinism is

% Randomness helps: RG improved over G.

2 RG is still not no-external-regret algorithm.
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Determinism or Randomness?

= Determinism is

% Randomness helps: RG improved over G.

* RG is still not no-external-regret algorithm.

¥ What did really help? Can it be further exploited?
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No-External-Regret Algorithms (1)

RANDOMIZED WEIGHTED MAJORITY (RWM): Smoothly decrease probability
masses of actions as they become worse. For some small 77 € (0, 1):
@ Vie[N], wi(1)=1; p(1) =1/N;
Q Vt>2:
vie [N, wi(t) = wi(t—1)- (1= )"
W) = S wilt); Vi € [N, pi(t) = 33
Select x(t) according to distribution p(t).

=

POLYNOMIAL WEIGHTS (PW): Substitute exponentially sensitive or RWM to
polynomially sensitive weight updates. For some small 1) € (0, 1):

Q@ Vie N, w(1) =1, p(1) =1/N;

Q vVt>2:
Vie [N, wi(t) =wi(t—=1)-(1—n-4(t—1));
W(H) = X ey wil1): Vi € [N], pi(1) = 38
Select x(t) according to distribution p(t).
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No-External-Regret Algorithms (1)

THEOREMS 4.5-6 (AGT-book): RWM & PW Learn against EXT-REG

@ Forany 1 € (0,1/2] and any sequence of . RWM has
Lo < Lhin +24/T - In(N)
@ For 7 € (0,1/2] and any sequence of . PW has

Ly < L1 +24/T - In(N)
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No-External-Regret Algorithms (1)

WHY? (for RWG only, similar analysis for PW)
o Z’L — ZIZZ,T:] % / * expected loss of RWM at round f * /

o W =w'. (1—72") > max{w/ ™ = (1 —n)km

o W' =N.
o (1—n)mn < W' =W'(1—nz")=--.=NJ['_,(1 — nZ')
t
= Lnin(1=71) <In(N) + 37 In(1 = 52) <In(N) =Y 2"
r=1
:L;?WM
In(N 1 In(N
= LIE’WM S ¥_ (nn)Lan — n(q7) +(1 +77) 'min
= LI?WM < LrTnln -+ 2\/ T|n(N) /*setn = min{~/In(N)/T,1/2} %/

v
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Lower Bounds Against External Regret (1)

THEOREMS 4.7-8 (AGT-book): Not Much More Can Be Done
@ Forany T < log,(N), there is a stochastic generation of a loss sequence,

s.t. any online algorithm R has [E [LE,] = % andyet, L, = 0.

@ For N = 2 possible actions, there exists a stochastic generation of a loss
sequence, s.t. any online algorithm R has IE [Lf, — LT | = Q(V/T).
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Lower Bounds Against External Regret (1)

WHY? (only of first bound, similar analysis for second)
@ Proposed sequence of losses:
t=1: S' Eyar [N]: [S'| = N/2.
t=2: 8% Eyar S' 1 |S?| = N/4.

t=ki S¥ Eyar S |SK| = N/2.
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Lower Bounds Against External Regret (1)

WHY? (only of first bound, similar analysis for second)
@ Proposed sequence of losses:
t=1: S' Eyar [N]: [S'| = N/2.
t=2: 8% Eyar S' 1 |S?| = N/4.

t=ki S¥ Eyar S |SK| = N/2.

e Vt>1,VieS f/=0AVi¢s (=1

o T<logy(N)=S">1=1], =o0.

'min
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Lower Bounds Against External Regret (1)

WHY? (only of first bound, similar analysis for second)
@ Proposed sequence of losses:

t=1: S' Eyar [N]: [S'| = N/2.

t=2: 8% Eyar S' 1 |S?| = N/4.

t=ki S¥ Eyar S |SK| = N/2.
e Vt>1,VieS f/=0AVi¢s (=1
@ T<logy(N) =S >1=1( =0

o L >

NI—

S. Kontogiannis (University of loannina) Learning, Enforcement & Equilibria June 22, 2015

23 /62



Lower Bounds Against External Regret (1)

WHY? (only of first bound, similar analysis for second)
@ Proposed sequence of losses:

t=1: S' Eyar [N]: [S'| = N/2.

t=2: 8% Eyar S' 1 |S?| = N/4.

t=k: S¥ Eyar ST :|S¥| = N/2.
e Vt>1,VieS f/=0AVi¢s (=1
@ T<logy(N) =S >1=1( =0

o L >

NI—
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From External-Regret to Swap-Regret Algorithms (1)

THEOREMS 4.15 (AGT-book): No-Swap-Regret Algorithms
Given an algorithm A that has R:

<t +R

it is possible to create, via a polynomial reduction using N copies of A, some

(master) online algorithm H with NR:

Ly < Lp, +NR
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From External-Regret to Swap-Regret Algorithms (1)

THEOREMS 4.15 (AGT-book): No-Swap-Regret Algorithms
Given an algorithm A that has R:

Lp < Ly + R
it is possible to create, via a polynomial reduction using N copies of A, some
(master) online algorithm H with NR:
Ly < Lp, +NR

COROLLARY 4.16 (AGT-book): No-Swap-Regret Algorithms

There is an online algorithm H such that, for any (swap) function f : [N] — [N] it
guarantees that:

LLgL;p+O<N HMND
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From External-Regret to Swap-Regret Algorithms (II)

Explanation of Reduction

@ Each copy acts as an

@ The master algorithm H creates a new
distribution p(#) as the outcome of the
experts’ opinions.

» p(t) = p(t)' Q(t) is the stationary
distribution of the Markov process with
transition martrix

Q(t) = [ai(®);a(t); -+ ;an(t)].

@ H splits the actual loss vector /(1) among
the experts, to allow them to

Ay

a(t;
1() * It

Az

()
po(t) * 1)

000

An

p(t) >

1G]

n(E
pn(® * 10
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Skeleton

e Multi-agent Environments
@ Game Theoretic Notation
@ Learning vs. Game Theory

@ The Mutual Advantage Case
@ The No--Mutual Advantage Case
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How About Multi-agent Environments?

Rather than having an “‘agent vs. Nature’” scenario, what if two (or more)
agents are ,ie, each of them has its own to the
states of the whole system, and acts in an attempt to bring about the most
preferable states for it?
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Game Theoretic Notation: Strategic Games (1)

Strategic Game or Stage Game: G = (P, (S;)pep, (Cp)pep)-

@ Pis the set of (self--interested) agents (aka players).
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@ Pis the set of (self--interested) agents (aka players).

@ Vp € P, S, is the set of actions for agent p. S = X ,cpS, is the system’s
state space.

@ Vp € P,cp : S [0, 1] is the (normalized) cost function for agent p,
depending on the system state determined by the actions of all agents.
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Game Theoretic Notation: Strategic Games (1)

Strategic Game or Stage Game: G = (P, (S;)pep, (Cp)pep)-

@ Pis the set of (self--interested) agents (aka players).

@ Vp € P, S, is the set of actions for agent p. S = X ,cpS, is the system’s
state space.

e VpeP, Co:SH [O, 1] is the (normalized) cost function for agent p,
depending on the system state determined by the actions of all agents.

o Strategy x, € A(S,) = {2 € [0,1]1%]: 30 ¢ 7(s,) = 1} is a probability

distribution used by agent p to determine its action, of the
other agents’ choices.
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Game Theoretic Notation: Strategic Games (1)

Strategic Game or Stage Game: G = (P, (S;)pep, (Cp)pep)-

@ Pis the set of (self--interested) agents (aka players).

@ Vp € P, S, is the set of actions for agent p. S = X ,cpS, is the system’s
state space.

e VpeP, Co:SH [O, 1] is the (normalized) cost function for agent p,
depending on the system state determined by the actions of all agents.

o Strategy x, € A(S,) = {2 € [0,1]1%]: 30 ¢ 7(s,) = 1} is a probability
distribution used by agent p to determine its action, of the
other agents’ choices.

o Correlated Strategy o € A(S) = {z € [0,1]1% : 3, 2z(s) = 1} isa
probability distribution for to determine its own (suggested)
state.
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Game Theoretic Notation: Strategic Games (Il)
@ Loss of agent p € P: The that p suffers for the actions profile

adopted by all the agents. le: V(Xp)pep € XpepA(Sy), Vo € A(S).
Co(X1, - Xip) = Espoxg)ace [Co(515- - -5 51p)] and £p(0) = Egs [co(s)]
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Co(X1, - Xip) = Espoxg)ace [Co(515- - -5 51p)] and £p(0) = Egs [co(s)]

° VX5, ¥p € A(Sy).
Xp is dominated by y,, iff Vz_, € X q20A(Sg), Lo(Xp,2—p) < Lp(Yp:2—p)
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@ Loss of agent p € P: The that p suffers for the actions profile
adopted by all the agents. le: V(Xp)pep € XpepA(Sy), Vo € A(S).

Co(X1, - Xip) = Espoxg)ace [Co(515- - -5 51p)] and £p(0) = Egs [co(s)]

° VX5, ¥p € A(Sy).
Xp is dominated by y,, iff Vz_, € X q20A(Sg), Lo(Xp,2—p) < Lp(Yp:2—p)

@ Nash Equilibrium (NE): A (publicly known) profile of strategies (X;, . . . ,)_(‘P‘)

for all the agents, such that no agent can reduce its own loss by
from its strategy, given the strategies of the other agents.
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Game Theoretic Notation: Strategic Games (Il)

@ Loss of agent p € P: The that p suffers for the actions profile
adopted by all the agents. le: V(Xp)pep € XpepA(Sy), Vo € A(S).

Co(X1, - Xip) = Espoxg)ace [Co(515- - -5 51p)] and £p(0) = Egs [co(s)]

° VX5, ¥p € A(Sy).
Xp is dominated by y,, iff Vz_, € X q20A(Sg), Lo(Xp,2—p) < Lp(Yp:2—p)

@ Nash Equilibrium (NE): A (publicly known) profile of strategies (X;, . . . ,)_(‘P‘)
for all the agents, such that no agent can reduce its own loss by
from its strategy, given the strategies of the other agents.

@ Correlated Equilibrium (CE): A (publicly known) correlated strategy
& € A(S) such that if the system first chooses an action profile s ~ & and
then action s, to each agent p € P, then no agent can
reduce its own loss by deviating from s, given that the other agents will
follow the system’s suggestion.
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Game Theoretic Notation: Strategic Games (lll)

EXAMPLE: Prisoner’s Dilemnma

@ Two individuals are caught for a delinquency (eg, causing a car accident)

deserving 1 year of imprisonment.

@ There are suspicions for having committed a felony (eg, bank robbery)

deserving 10 years of imprisonment. But there are no sufficient evidence.

@ Police tries to get their confessions by making the following agreement with

both of them, but not allowing them to communicate with each other:

Prisoner 2
Betray | Silent
g
<l5| 55 | 0,10
o0
c
o
D\ =
|
21100 | 11
n
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Game Theoretic Notation: Strategic Games (lll)

EXAMPLE: Prisoner’s Dilemma
@ Two individuals are caught for a delinquency (eg, causing a car accident)
deserving 1 year of imprisonment.

@ There are suspicions for having committed a felony (eg, bank robbery)
deserving 10 years of imprisonment. But there are no sufficient evidence.

@ Police tries to get their confessions by making the following agreement with
both of them, but not allowing them to communicate with each other:

Prisoner 2
Betray ‘ Silent

2
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“*Silent”” is by “‘Betray’’, for both players.

Betray
e

Prisoner 1

Silent

Unique NE and CE point: (Betray, Betray).




Game Theoretic Notation: Repeated Games ()

(Infinitely) Repeated Game G°°: The infinite realizations of
of the stage game G.

@ Each player p € P must determine an algorithm M, that takes as input the
for the first + — 1 rounds, and returns a strategy
x;, € A(S,) for round t.

@ The loss E;(MU ..+, Mjp|) of agent p at round t, is the expected cost it
suffers for the profile x' adopted at round t, according to algorithms
My, ..., Mp.

@ The cumuldative loss L;(I\/h, e I\/I|P|) of p € PuptoT € Nis the sum of
losses of p for the first T rounds.
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Game Theoretic Notation: Repeated Games (lI)

@ Limit-Of-Means criterion: For any given profile of algorithms M_,, for the
other agents, two different algorithms M, M;) for agent p are compared
according to the they produce over T rounds, as T — o0.

@ A collection (Mp)pcp of algorithms for the agents is Nash Equilibrium of
G iff Vp € P no alternative algorithm M;J can assure
, given that the other agents keep their algorithms unchanged.
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Game Theoretic Notation: Repeated Games (lIl)

EXAMPLE: Repeated Prisoner’s Dilemnma

Prisoner 2
Betray | Silent
g
< £| 55 0,10
o|m
c
(=)
D
= | c
‘L% 10,0 | 1,1

@ The algorithm

“Always betray’”

is a NE point of G*°, (considers a NE point of the

stage game in each round).

@ The algorithm

“*Remain silent until opponent betrays. Then always betray’”

is a NE point of G°°, although it does NOT create

NE points in the rounds, in fear of
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Learning NE in Bimatrix Games ()

e Astage game G = (P, (Sp)pep, (Cp)pep) is constant-sum, if there is a
constant v € R, such that Vs € 8, > 5 cp(s) = 7.

@ For each v—sum bimatrix game, any NE point assures
. (v1, v2) € [0, 1]? for the two players (their minmax values).
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Learning NE in Bimatrix Games ()

e Astage game G = (P, (Sp)pep, (Cp)pep) is constant-sum, if there is a
constant v € R, such that Vs € 8, > 5 cp(s) = 7.

@ For each v—sum bimatrix game, any NE point assures

. (v1, v2) € [0, 1]? for the two players (their minmax values).

EXAMPLE: Matching Pennies

Player 2
Heads Tall
8
g/ 1,0 | 0,2
kS
(]
k)
o=
Bl 01 | 1,0

@ Unique NE point: ((0.5,0.5), (0.5,0.5)).

@ Values: vi = v, = 0.5.
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Learning NE in Bimatrix Games (lI)

THEOREM: External-Regret Works For v—Sum Bimatrix Games

@ For any y—sum bimatrix (stage) game G with values (vi, v») € [0, 1]2, if
p adopts some algorithm ON with external-regret R in the
infinite game G°, then for any algorithm A adopted by the opponent, its

after T rounds will be: LT (ON, A) < T- v, + R

v
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Learning NE in Bimatrix Games (lI)

THEOREM: External-Regret Works For v—Sum Bimatrix Games

@ For any y—sum bimatrix (stage) game G with values (vi, v») € [0, 1]2, if
p adopts some algorithm ON with external-regret R in the
infinite game G°, then for any algorithm A adopted by the opponent, its
after T rounds will be: LT (ON, A) < T- v, + R

QI adopt no-external-regret algorithms (ON1, ONQ) for G°°,
then the profile produced by the per player converges
to a NE point of the stage game G.

v
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Learning NE in Bimatrix Games (lI)

THEOREM: External-Regret Works For v—Sum Bimatrix Games

@ For any y—sum bimatrix (stage) game G with values (vi, v») € [0, 1]2, if
p adopts some algorithm ON with external-regret R in the
infinite game G°, then for any algorithm A adopted by the opponent, its
after T rounds will be: LT (ON, A) < T- v, + R

QI adopt no-external-regret algorithms (ON1, ONQ) for G°°,
then the profile produced by the per player converges
to a NE point of the stage game G.

© We can use the existence of no-external-regret algorithms to prove the
for y—sum bimatrix games.

v
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Learning NE in Bimatrix Games (lI)

THEOREM: External-Regret Works For v—Sum Bimatrix Games

@ For any y—sum bimatrix (stage) game G with values (vi, v») € [0, 1]2, if
p adopts some algorithm ON with external-regret R in the
infinite game G°, then for any algorithm A adopted by the opponent, its
after T rounds will be: LT (ON, A) < T- v, + R

QI adopt no-external-regret algorithms (ON1, ONQ) for G°°,
then the profile produced by the per player converges
to a NE point of the stage game G.

© We can use the existence of no-external-regret algorithms to prove the
for y—sum bimatrix games.

@ Fora bimatrix game G, we cannot guarantee
convergence of any no-external-regret algorithms to NE point of G.
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Convergence to CE points of N—person Games

THEOREM: Swap-Regret Works With N—Person Games
Let G = (P, (Sp)pep, (Cp)pep) be an N—person stage game.

@ If each player p € P adopts an algorithm ON,, with swap-regret R for the
first T fime steps of G°°, then the of the joint actions
played is an (R/T)—correlated equilibrium of the game.
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THEOREM: Swap-Regret Works With N—Person Games
Let G = (P, (Sp)pep, (Cp)pep) be an N—person stage game.
@ If each player p € P adopts an algorithm ON,, with swap-regret R for the

first T fime steps of G°°, then the of the joint actions
played is an (R/T)—correlated equilibrium of the game.

@ For any player p € P that uses an algorithm ON,, with swap-regret R for T
time steps, the that p puts on the set of
e—dominated actions is at most ?Rr
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Convergence to CE points of N—person Games

THEOREM: Swap-Regret Works With N—Person Games
Let G = (P, (Sp)pep, (Cp)pep) be an N—person stage game.
@ If each player p € P adopts an algorithm ON,, with swap-regret R for the

first T fime steps of G°°, then the of the joint actions
played is an (R/T)—correlated equilibrium of the game.

@ For any player p € P that uses an algorithm ON,, with swap-regret R for T
time steps, the that p puts on the set of
e—dominated actions is at most ?Rr

RECAP: Given any algorithm with external-regret R that chooses among N
possible states, there is a generic algorithm H for player p € P with
swap-regret at most N - R. This implies then that for any

f: [N] — [N]. p can assure:

1L < Lug + O(N T Iog(N))
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How About Special Cases Of Games?

A strategic game is sociall concave iff it has:
@ Closed convex strategy sefs.
@ A (weighted) social welfare function that is concave.
@ Convex utfility functions of each player, in the vector of the

Examples of socially concave games:
@ Zero-sum games.

Resource allocation games.

Selfish routing games.

Cournot oligopoly.

TCP congestion control.
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How About Special Cases Of Games?

A strategic game is sociall concave iff it has:
@ Closed convex strategy sefs.
@ A (weighted) social welfare function that is concave.
@ Convex utfility functions of each player, in the vector of the

Examples of socially concave games:
@ Zero-sum games.

Resource allocation games.

Selfish routing games.

Cournot oligopoly.

TCP congestion control.

THEOREM: External Regret Works with Socially Concave Games

If each player uses a no-regret procedure in an infinite game G°° whose stage
game belongs to some class of interesting games, then their joint play
to Nash equilibrium.
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Skeleton

@ Game Theoretic Notation
@ Learning vs. Game Theory

© What Can Be Enforced?
@ The Correlated Threat Point

@ Inducing Payoff Points from the Individually Rational Region
@ The Mutual Advantage Case
@ The No--Mutual Advantage Case
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Beyond Learning?

@ Learning can help us discover NE points in stage
games.
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@ Learning can help us discover NE points in stage
games.
@ How about games? How about 2 ?
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Beyond Learning?

@ Learning can help us discover NE points in constant-sum bimatrix stage
games.

@ How about non-constant-sum games? How about more than 2 players?

Can we compute NE points for general stage games? |
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Beyond Learning?

@ Learning can help us discover NE points in stage
games.
@ How about games? How about 2 ?

Can we compute NE points for general stage games? J

2] (Chen-Deng (2006), Daskalakis-Goldberg-Papadimitriou (2006)) : Computing NE points is
PPAD—hard for stage games, even for two players.
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Beyond Learning?

@ Learning can help us discover NE points in constant-sum bimatrix stage
games.

@ How about non-constant-sum games? How about more than 2 players?

Can we compute NE points for general stage games? |

2] (Chen-Deng (2006), Daskalakis-Goldberg-Papadimitriou (2006)) : Computing NE points is
PP AD—hard for stage games, even for two players.

How about infinitely repeated games? J
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The Traditional Notion of Threat

DEFINITION: Threat Point
@ G = (P,(S5)pep; (Up : XgepSq + Q)pep): An arbitrary stage game, with

rational payoff functions (fo be ).
o G>*:The using the stage game G in each round.
@ Threat Point: The vector of that each player would

accept in a realization of G, against a profile of
for the opponents. le:

Vp € P,0p(G) = ming__ex, ,A(s) MBXne(sy) Un(X—ps Xp)
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The Folk Theorem and its Consequences

Folk Theorem

**Any vector of payoffs in a game G which is component-wise larger
than the threat point of G, can be enforced as a NE point of the corresponding
game G,

@ Computation of Equilibrium Points in repeated games
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**Any vector of payoffs in a game G which is component-wise larger
than the threat point of G, can be enforced as a NE point of the corresponding
game G,

@ Computation of Equilibrium Points in repeated games

W (Littman-Stone (2003)) construction of a
profile of algorithms for G, that induces an
that is above the threat point, as a NE of G°°, for the
case of fwo players.
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The Folk Theorem and its Consequences

Folk Theorem

**Any vector of payoffs in a game G which is component-wise larger
than the threat point of G, can be enforced as a NE point of the corresponding
game G,

@ Computation of Equilibrium Points in repeated games

& (Littman-Stone (2003)) construction of a
profile of algorithms for G, that induces an

that is above the threat point, as a NE of G°°, for the
case of fwo players.

=1 Borgs et al. 2008)) Computing Nash equilibria for infinitely repeated games
with at least three players, is PP AD—hard.
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The Threat Point (ll)

Remark
Two parameters of intractability in Borgs et al. 2008)) :
@ Computing (even approximately) the of a G
among k > 3 players, is NP —hard.
W
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The Threat Point (ll)

Remark
Two parameters of intractability in Borgs et al. 2008)) :

@ Computing (even approximately) the of a G
among k > 3 players, is NP —hard.

@ Computing an of a (k + 1)-player, infinitely
repeated game is as hard as computing an (approximate) NE point in a
k—player, one-shot game, for any k > 2.
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The Threat Point (ll)

Remark
Two parameters of intractability in Borgs et al. 2008)) :

@ Computing (even approximately) the of a G
among k > 3 players, is NP —hard.

»_ Crucial knowledge for the approach of (Littman-Stone (2003)) to solve the
2—players case.

@ Computing an of a (k + 1)-player, infinitely
repeated game is as hard as computing an (approximate) NE point in a
k—player, one-shot game, for any k > 2.
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The Threat Point (ll)

Remark
Two parameters of intractability in Borgs et al. 2008)) :

@ Computing (even approximately) the of a G
among k > 3 players, is NP —hard.

»_ Crucial knowledge for the approach of (Littman-Stone (2003)) to solve the
2—players case.

@ Computing an of a (k + 1)-player, infinitely
repeated game is as hard as computing an (approximate) NE point in a
k—player, one-shot game, for any k > 2.
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A Way Out

Our main objectives are to:

@ Find away fo of the threat point.

@ Find a way to ,le, induce
(rational) payoff point above the (new) threat point as a
equilibrium of the infinitely repeated game.
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A New Notion of Threat

DEFINITION: Correlated Threat Point

The correlated threat point of a stage game G = (P, (Sp)per, (Up)pep) is @
vector of minimum payoffs that each of the players would be
against any profile of of the opponents against her. le:

Vp € [k]a SOP(G) = ming,peA(Xq#psq) MAXyx,eA(S,) UP(U—DvxD)
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Some Observations on the Correlated Threat Point

@ It constitutes a for any of players.
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Some Observations on the Correlated Threat Point

@ It constitutes a for any of players.

Q Itis than the traditional notion of threat point, but
for each player (it is closer to the notion of
scenario, that is widely used in TCS).
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Some Observations on the Correlated Threat Point

@ It constitutes a for any of players.

Q Itis than the traditional notion of threat point, but
for each player (it is closer to the notion of
scenario, that is widely used in TCS).

© It implies, not Nash equilibria, but equilibria:
Correlation is only required for the punishments. During normal play the
agents act (but in time--synchrony).
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Some Observations on the Correlated Threat Point

@ It constitutes a for any of players.

Q Itis than the traditional notion of threat point, but
for each player (it is closer to the notion of
scenario, that is widely used in TCS).

© It implies, not Nash equilibria, but equilibria:
Correlation is only required for the punishments. During normal play the
agents act (but in time--synchrony).

Q It implements the main idea of the Folk Theorem:

Any payoff point above it can be induced by the system as
equilibrium of the infinite game, by providing
strategies for the players.

S. Kontogiannis (University of loannina) Learning, Enforcement & Equilibria June 22, 2015 45 / 62



Tractability of Correlated Threat Point (I)

@ Player p’s defensive strategy:

d, € argmax, ca(s,) {mina,peA(xq#s{,) Up(a,p,xp)}

@ Aggaressive (correlated) strategy of the other players against player p:

Ap € AGMIN, (. 5,) {maxe cn(s,) Un(0—p:Xp) }
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Tractability of Correlated Threat Point (I)

@ Player p’s defensive strategy:

d, € argmax, ca(s,) {mina,peA(x#psq) Up(a,p,xp)}

@ Aggaressive (correlated) strategy of the other players against player p:

Ap € AGMING (x5, {max ca(s,) Us(0—p %p) }

THEOREM: Computability of defensive & aggressive strategies
(Kontogiannis-Spirakis (2008))
For any natural number k > 2, any finite k—person stage game
G = (P, (Sp)pep, (Up)pep) with . and any player p € P, the
correlated threat value gop(G), the defensive strategy d,, and the aggressive
strategy a,, of the other players against p, are and

. wrt size(G).

v
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Tractability of Correlated Threat Point (lI)

WHY?
For each player p € P:

@ Consider the following |Sp| X | X g5 Sq| Payoff matrix Pp:
V(0,8-p) € Sp X S—p, Polsp; $—p] = Up(sp,5-p)

@ Any Nash equilibrium of the (Pp, —Pp) determines
player p’s threat value, her defensive strategy, and the aggressive strategy
against her:

(Vp,dp) € argmax {V, : Vs_p, € S_p,dp - Pol*,8_p] > Vpid, € A(Sy)}
(Vp,ap) € argmin {V,, : Vs, € Sp, Pp[sp, %] - @ < Vp;8, € A(S_p)}
©p(G) = Vo

@ Given the rationality of the payoff functions, V,,, a,, dy, are rational vectors
and numbsers, of size polynomial in size(G). -
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The Strictly Individually Rational Region (1)

o G = ([K], (So)pe> (Up)pe): A k—person stage game, with
payoff functions Uy, : S — Q.

0 Z={z€Q":3s € Sst.Vp € [K], Us(s) = z[p]} is the set of all the
rational vectors that are payoff points of actions profile s € S of G.

o conv(Z) = {5 s U(s) ER¥: D s As=1; Vs € S, )\ >0}

DEFINITION: Strictly Individual Rational Region

The strictly individual rational region of G is the set of all payoff points that are
than the correlated threat point of G:

sir(G) = conv(Z) N{ze R¥: 2> p(G)}
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The Strictly Individually Rational Region (II)

Following the terminology of (Littman-Stone (2003)) :

@ Mutual Advantage Case: sirr(G) # (.

@ No Mutual Advantage Case: sirr(G) = ().

We shall handle these two cases separately.
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The Strictly Individually Rational Region (lll)

LEMMA 1: Checking emptiness of sirr(G)

For any integer k > 2 and one-shot game & = ([k], (Sp)pei]> (Up)pe[x) -
we can determine in time poly(size(G)) whether sirr(G) # ).
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The Strictly Individually Rational Region (lll)

LEMMA 1: Checking emptiness of sirr(G)

For any integer k > 2 and one-shot game & = ([k], (Sp)pei]> (Up)pe[x) -
we can determine in time poly (size( G)) whether sirr(G) # ()

WHY?

o For any correlated strategy 0 € A(X ,c[Sp). the payoff point U(o)
belongs to conv(Z), and vice versa.
@ Look for a point in the boundary of conv(Z):
For each of the ('i‘) k—subsets of vertices V{z1, 25, ...,2} C Z,
maximize (
1. Yzl N >¢  Veeld
Zf:] A =1

Vi€ [k],\ >0; (>0

’MAC(z1,22,...,zk)‘
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Enforcing a Payoff for the Mutual Advantage Case (1)

THEOREM: Existence & Construction of NE point of G*°

For any constant k > 2, and one-shot game G = ([k], (S) pe[x]> (Up)peli])
such that sirr(&) # (), there is a profile of algorithms M = (M) ,c[q for the

players that is an equilibrium of G, whose description size is poly(size(G)).
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Enforcing a Payoff for the Mutual Advantage Case ()

WHY?

0z = Zle \i2;: The payoff point of sir(G), chosen in LEMMA 1.

. N Iy
OVIG[I{], )\,:%:Tﬁl—}

Ty

LN =1e YL =5

@ Protocol Abiding Phase: p € [k| behaves as described by a
M, determined by a cycle of actions, of length =. The
expected payoff of p during the whole cycle is z*[p] > ¢, (G).

@ Punishment Phase: Upon discovery of a defection from the protocol
abiding behavior, each agent p # g gives up control, for /\q consecutive
rounds, fo a that implements the aggressive
strategy a4 against the defector g of minimum ID. [ |
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Enforcing a Payoff for the Mutual Advantage Case (lll)

e Suppose that we have 3 players, and z* = A\ U(x;) 4+ AU(x2) + AsU(xs).
@ The profile that induces z* as the equilibrium of G is:
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Enforcing a Payoff for the Mutual Advantage Case (lll)

@ Suppose that we have 3 players, and z* = \; U(xy) + :\2U(xz) + 3\3U(x3).
@ The profile that induces z* as the equilibrium of G is:

s X3
‘/—/
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—

Smaller defector =2 Smaller defector =2
v
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Enforcing a Payoff for the Mutual Advantage Case (IV)

Remark

Any payoff point that is an element of sirr(G) can be induced as an
equilibrium of G°°, by a similar construction. The profile will have polynomial
description in the size of representation of this payoff point, but not necessarily in
size(G).
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How About The No--Mutual Advantage Case?

@ (WLOG) Assume that ¢(G) = 0.

@ /1(G): The maximum number of players having

S. Kontogiannis (University of loannina) Learning, Enforcement & Equilibria June 22, 2015 55 /62



How About The No--Mutual Advantage Case?

e (WLOG) Assume that ¢(G) = 0.
@ 1(G): The maximum number of players having

LEMMA 2: Max #Players with Concurrently Positive Payoffs

For any k > 2 and any game G = ([k], (Sp)pe[x]» (Un)pelx)) With
rational payoffs, /4(G) is computable in time poly(size(G)).
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How About The No--Mutual Advantage Case?

@ (WLOG) Assume that ¢(G) = 0.
@ /1(G): The maximum number of players having

LEMMA 2: Max #Players with Concurrently Positive Payoffs

For any k > 2 and any game G = ([k], (Sp)pe[x]» (Un)pelx)) With
rational payoffs, /4(G) is computable in time poly(size(G)).

WHY?
@ Exploit the number of players.

@ Starting from k—subsets, down to 1—subsets of points from Z, keep solving
LPs similar to the MAC LP of the Mutual-Advantage case, until the first
solvable instance with positive value.

v
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Partial Answer for No--Mutual Advantage Case (1)

THEOREM: Construction of NE for G when u(G) < 2

For any k > 2 and one-shot game G = ([k], (Sp)pek]> (Up)pef]) With
sirr(G) = (), there is an efficiently computable equilibrium point for G, when
at most two players may have concurrently positive payoffs, ie, 1(G) < 2.
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Partial Answer for No--Mutual Advantage Case (1)

THEOREM: Construction of NE for G when u(G) < 2

For any k > 2 and one-shot game G = ([k], (Sp)pek]> (Up)pef]) With
sirr(G) = (), there is an efficiently computable equilibrium point for G, when
at most two players may have concurrently positive payoffs, ie, 1(G) < 2.

WHY?
if u(G) =0

then the profile (d,,) <[4 of defensive strategies is NE point of G.

4
S. Kontogiannis (University of loannina) Learning, Enforcement & Equilibria June 22, 2015 56 / 62



Partial Answer for No--Mutual Advantage Case (1)

THEOREM: Construction of NE for G when u(G) < 2

For any k > 2 and one-shot game G = ([k], (Sp)pek]> (Up)pef]) With
sirr(G) = (), there is an efficiently computable equilibrium point for G, when
at most two players may have concurrently positive payoffs, ie, 1(G) < 2.

WHY?
if u(G) =0
then the profile (d,,) <[4 of defensive strategies is NE point of G.
elseif 1 (G) =1
then any

defection from the defensive profile
leads to a NE of G:
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Partial Answer for No--Mutual Advantage Case (1)

THEOREM: Construction of NE for G when u(G) < 2

For any k > 2 and one-shot game G = ([k], (Sp)pek]> (Up)pef]) With
sirr(G) = (), there is an efficiently computable equilibrium point for G, when
at most two players may have concurrently positive payoffs, ie, 1(G) < 2.

WHY?
if u(G) =0

then the profile (d,,) <[4 of defensive strategies is NE point of G.

elseif 1 (G) =1
then any
leads to a NE of G:

defection from the defensive profile
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Partial Answer for No--Mutual Advantage Case (Il)

WHY? (contd.)
The case 2 = u(G) < k.

@ Locate a payoff point in conv(Z ) such that exactly two players (eg.
players 1, 2) deviate from their defensive strategies (to pure strategies) and
get

~
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Partial Answer for No--Mutual Advantage Case (Il)

WHY? (contd.)
The case 2 = u(G) < k.

@ Locate a payoff point in conv(Z) such that exactly two players (eg.
players 1, 2) deviate from their defensive strategies (to pure strategies) and

get
o The d_; , for the other k — 2 players is
v
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Partial Answer for No--Mutual Advantage Case (Il)

WHY? (contd.)
The case 2 = u(G) < k.

@ Locate a payoff point in conv(Z) such that exactly two players (eg.
players 1, 2) deviate from their defensive strategies (to pure strategies) and
get

o The d_; , for the other k — 2 players is

T

@ Lock the k — 2 players’ strategies to the weakly dominant profile d_; » and
inductively solve (using correlated threats) the
between players 1 and 2.

o
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Skeleton

@ Game Theoretic Notation
@ Learning vs. Game Theory

@ The Mutual Advantage Case
@ The No--Mutual Advantage Case

e Conclusions
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Recap

@ Learning is helpful for stage games. In particular, for:

» Computing NE points in special classes of stage games (eg, socially
concave games, constant-sum bimatrix games).

» Computing CE points of arbitrary stage games.

» Eliminating dominated strategies in arbitrary stage games.

@ Enforcement is helpful for repeated games. In particular, we proposed a
new, credible, notion of Correlated Threat Point, that is capable of
implementing the essence of the Folk Theorem, for the case of more than
2 players.
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Open lIssues

@ What else can be learnt for stage games?

@ How can we exploit learning in repeated games (eg, computing more
efficient NE points than the ones of the stage game)?

@ How should we deal with the general No-Mutual-Advantage case?
@ How can we handle non-constant number of players?

@ How can we implement the correlation devices in a decentralized way
(eg. asin @arany (1992)) )?

@ What can be done for asynchronous plays of agents?
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Thank you
for your attention!
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