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A Motivating Example (I)

s t
17 
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20 
minutes
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?? 
minutes

DAY 1 DAY 2 DAY 3

Every day you need to choose one of N possible routes to get to work.

The cost/delay you suffer depends on current traffic conditions.

You make a decision which may only be based on history (not clear a

priori which route is the best).

You become informed of your own actual cost (how long your route took)

only when you get to your office, possibly along with the actual costs of

alternatives (how long some colleagues’ routes took).
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A Motivating Example (II)
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Q1 What can be learnt?
Is there an online algorithm which learns how to pick routes so that, in the

long run, whatever the sequence of traffic patterns occurred, you have

done not much worse than the best fixed choice, in retrospective?

Q2 What can be enforced?
Given a collection of routes that is good (above the minmax values) but

not necessarily the best for every individual day, is it possible for the system

to enforce it as a stable solution, in the long run, for everyone?

A YES and YES!!!
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Agent Against Nature: An Example

We may use different means to go to

our work every morning. The loss we

incur per day is dependent on weather
of that day:

Matrix of Losses (per weather type)

2

3

1

3 1

1

Best response to sunny weather = WALK

Best response to cloudy weather = MOTORBIKE

Best response to rainy weather = BUS

GOAL: The agent has to...

I use an online algorithm (OLA) that decides each day what to do, based

only on history of previous losses due to past decisions.

I suffer irrevocable losses, after having made his/her decisions.
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Agent Against Nature: Definition

[N] = {1, 2, . . . ,N}: The action space for a single agent against Nature.

The game is repeated forever, in discrete rounds.

In each round t ≥ 1:

I Agent OLA makes a (probabilistic) choice of an action, according to a

strategy pt ∈ ∆N := {p ∈ [0, 1]N : 1′p = 1}.
I Nature makes its own move, and reveals a vector (`t)t∈[N] ∈ [0, 1]N of

losses, for all the actions.

I OLA incurs irrevocably the loss for the chosen action i t ∈ [N], only after

having made its choice.

I OLA keeps either (`t)t∈[N] (full-info model), or `t

i t
(partial-info model) in

history.

GOAL: OLA should adapt to history so as to perform as good as possible the

extra loss per round, in the long run, when compared to simple
alternatives (e.g., always pick a given action).
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Modification Rules

Consider the particular instance of 9 days:

Matrix of Losses (per day and choice)

2

3 1 33

3 3 3

2 221 11

3 1 1

1

Modification Rule: A specific way to differentiate the behavior of OLA. Ie, any

family of functions f t : [N]t 7→ [N] mapping the history of OLA’s moves so

far to an alternative move f t({i1, i2, . . . , i t}) ∈ [N] for each round t .

if OLA is a probabilistic online algorithm

then the history contains probability distributions rather than actions, and

the alternative move proposed by the modification rule is another

probability distribution f t(p1, p2, . . . , pt) ∈ ∆N .

Remark: The optimal adaptive modification rule for this instance is:
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Aggregate Losses

For deterministic agents and first T rounds:

I Losses of OLA: LT
OLA =

∑T

t=1
`t

i t
where i t ∈ [N] is OLA’s action for round t .

I Losses of a family F of modification rules: LT
OLA,F =

∑T

t=1
`t

f t where

f t = f t(i1, . . . , i t) ∈ [N] is F ’s action for round t .

For probabilistic agents and first T rounds:

I Losses of OLA: LT
OLA =

∑T

t=1

∑N

i=1
`t

i · pt
i where pt

i ∈ [0, 1] is OLA’s

probability mass for action i in round t .

I Losses of a family F of modification rules: LT
OLA,F =

∑T

t=1

∑N

i=1
`t

i · f t
i where

f t
i ∈ [0, 1] is F ’s probability mass for action i in round t .

Remark: At time t , usually the modification rule f t shifts the probability mass

that OLA assign to j ∈ [N] to action f t
j .
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The Notion of Regret (I)

A measure of embarrassment, in hindsight, for our choice of online

algorithm. Ie, the worst possible diversion of OLA’s total loss from the total

loss of an allowable modification rule.

DEFINITION: Regret

For any online algorithm OLA, set F of allowable amodification rules, and any

number of time steps T , the regret of OLA against F is:

ROLA,F (T) = max
`,f∈F

{
L

T
OLA(`)− L

T
OLA,f (`)

}
where:

` = (`t)t∈[T ] is the vector of losses for all actions, per round t ∈ [T ].

f = (f t)t∈[T ] is an allowable modification rule, from F .

LT
OLA(`), LT

OLA,f (`) are the total (possibly expected) losses of OLA and f for

the first T time steps, respectively.
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No-Regret Algorithms

DEFINITION: No-Regret Algorithms

An online algorithm OLA is no-regret wrt a given family F of modification rules, if

the average (per round) loss of OLA is asymptotically equal to the average loss

of the best possible modification rule in F . This implies that the (absolute) regret

is o(T), for sufficiently large number T of rounds.

Remark

Fix a given family of modification rules F and any online algorithm A.

if for any modification rule f ∈ F and any sequence of normalized

loss vectors `, ie, all losses in [0, 1], it holds that:

LT
A(`) ≤ α · LT

OLA,f (`) + β

then α ∈ 1 + o(1) ∧ β ∈ o(T) implies that A is no-regret algorithm

against F .
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Bad News for Adaptive Modification Rules

THEOREM 4.1 (AGT-book): No Hope to Learn Against Adaptive Rules

If we allow the set Fall of all possible modification rules, then for any online

algorithm OLA there is a vector of losses ` (for T rounds of play) such that the

regret of OLA against functions mapping time steps to actions, is at least

T(1− 1/N).

WHY?

∀t ∈ [T ] :

{
`t

x t = 0; x t ∈ arg mini∈[N]{pt
i }

`t
i = 1, ∀i 6= x t

LT
OLA ≥ T · (1− 1/N).

LT
OLA,Fall

= 0.
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How About Oblivious Rules?

We wish to compare ourselves against realistic scenarios (eg, assuming the

same knowledge pattern with OLA, but no access to OLA).

We restrict attention to simple oblivious modification rules:

External-Regret Rules: The family of rules fi that always chooses for all rounds the

same action i ∈ [N] (independently OLA).

ROLA,Fext
(T) = maxi∈[N]

{
LT

OLA − LT
OLA,fi

}
/∗ N cases to check ∗/

Internal-Regret Rules: The family of rules fi,j that mimics OLA, but for a single

action i which is always substituted by some action j.

ROLA,Fint
(T) = max(i,j)

{
LT

OLA − LT
OLA,fi,j

}
= max(i,j)

∑T

t=1
pt

i · (`t
i − `t

j )

/∗ N(N − 1) cases to check ∗/

Swap-Regret Rules: The family of rules that determine arbitrary maps of the

choices of OLA to possible actions.

ROLA,Fsw
(T) = maxfsw

{
LT

OLA − LT
OLA,fsw

}
=
∑N

i=1
maxj

∑T

t=1
pt

i · (`t
i − `t

j )

/∗ N
N

cases to check ∗/
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Internal-Regret Rules: The family of rules fi,j that mimics OLA, but for a single

action i which is always substituted by some action j.

ROLA,Fint
(T) = max(i,j)

{
LT

OLA − LT
OLA,fi,j

}
= max(i,j)

∑T

t=1
pt

i · (`t
i − `t

j )

/∗ N(N − 1) cases to check ∗/

Swap-Regret Rules: The family of rules that determine arbitrary maps of the

choices of OLA to possible actions.

ROLA,Fsw
(T) = maxfsw

{
LT

OLA − LT
OLA,fsw

}
=
∑N

i=1
maxj

∑T

t=1
pt

i · (`t
i − `t

j )

/∗ N
N

cases to check ∗/
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Agent Against Nature: An Example (contd.)

Consider the online algorithm:

OLA = ‘‘Make the best choice, given the weather of the previous day’’.

and suppose that the possible losses are:

Matrix of Losses (per weather type)

2

3

1

3 1

1

Consider the following instance of 9 days:

Matrix of Losses (per day and choice)

2

3 1 33

3 3 3

2 221 11

3 1 1

1

Total Loss and Regrets of OLA

2

3 1 33

3 3 3

2 221 11

3 1 1

1

OLA

EXT

INT

SWP

16

16-11

16-13 : b   m

16-8 : b   m, w   b, m   b
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Greediness vs. External Regret (I)

GREEDY (G): Choose as current action the cheapest action so far (for all

rounds). Break ties in favor of smallest action index.

1 x1 = 1

2 ∀t ≥ 2:

St−1 arg mini∈[N]

{∑
τ≤t−1

`τi

}
/∗ best responses according to history ∗/

∀i ∈ [N], x t = min{i : i ∈ St−1} /∗ choose smallest-ID best response ∗/

RANDOMIZED GREEDY (RG): Uniformly at random choose as current action any

of the cheapest actions so far (for all rounds).

1 x1 = 1

2 ∀t ≥ 2:

St−1 arg mini∈[N]

{∑
τ≤t−1

`τi

}
/∗ best responses according to history ∗/

∀i ∈ [N], pt
i =

I[i∈St−1 ]

|St−1|
Select x t according to distribution p(t). /∗ uniform choice of a best response ∗/

S. Kontogiannis (University of Ioannina) Learning, Enforcement & Equilibria June 22, 2015 14 / 62



Greediness vs. External Regret (I)

GREEDY (G): Choose as current action the cheapest action so far (for all

rounds). Break ties in favor of smallest action index.

1 x1 = 1

2 ∀t ≥ 2:

St−1 arg mini∈[N]

{∑
τ≤t−1

`τi

}
/∗ best responses according to history ∗/

∀i ∈ [N], x t = min{i : i ∈ St−1} /∗ choose smallest-ID best response ∗/

RANDOMIZED GREEDY (RG): Uniformly at random choose as current action any

of the cheapest actions so far (for all rounds).

1 x1 = 1

2 ∀t ≥ 2:

St−1 arg mini∈[N]

{∑
τ≤t−1

`τi

}
/∗ best responses according to history ∗/

∀i ∈ [N], pt
i =

I[i∈St−1 ]

|St−1|
Select x t according to distribution p(t). /∗ uniform choice of a best response ∗/

S. Kontogiannis (University of Ioannina) Learning, Enforcement & Equilibria June 22, 2015 14 / 62



Greediness vs. External Regret (II)

Denote by LT
min = mini∈[N]

{∑
T

t=1
`t

i

}
the minimum total loss that any action

may achieve for the first T steps of a sequence of loss vectors (`t)t∈[T ].

THEOREMS 4.2-3 (AGT-book): Greediness is not enough for EXT-REG

Wrt the External-Regret family of modification rules, the following hold:

1 For any sequence of T loss vectors, GREEDY’s loss is upper bounded by:

LT
G ≤ N · LT

min + (N − 1)

2 For any sequence of T loss vectors, RG’s loss is upper bounded by:

LT
RG ≤ (1 + ln(N)) · LT

min + ln(N)

Remark: These are NOT no-external-regret algorithms!
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Greediness vs. External Regret (III)

WHY?
1 Analysis for G: For each round t at which `t

x t − `t
x∗ = 1:

I L
t−1

x t ≤ L
t−1

x∗

I Lt

x t = 1 + L
t−1

x t > L
t−1

x∗ = Lt
x∗

∴ |St | ≤ |St−1| − 1

∴ At most N losses of G between two consecutive losses of LT
min.

2 Analysis for RG: Let tj = min{t : LT
min ≥ j}.

I ∀t ∈ (tj , tj+1], if |St | = |St−1| − k then Lt
RG − L

t−1

RG ≤ k

|St−1|

I Ltj+1 − Ltj ≤ 1

N
+ 1

N−1
+ · · ·+ 1

2
+ 1 ≤ 1 + ln(N).
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Determinism vs. External Regret (I)

THEOREM 4.4 (AGT-book): Determinism is not enough for EXT-REG

Wrt the External-Regret family of modification rules, the following hold:

3 For any deterministic online algorithm D, there is a sequence of T loss

vectors, such that LT
D ≥ T and LT

min ≤
⌊

T

N

⌋
.

WHY?

x t = the choice of D in round t .

Loss sequence: ∀t ∈ [T ], `t

x t = 1 and `t
i = 0, ∀i 6= x t .

LT
D = T .

Pigeonhole Principle: At least one action x∗ is chosen by D at most
T

N

times.

∴ LT
min ≤

⌊
T

N

⌋
.
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Determinism or Randomness?

Determinism is hopeless.

Randomness helps: RG improved over G.

RG is still not no-external-regret algorithm.

What did really help? Can it be further exploited?
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No-External-Regret Algorithms (I)

RANDOMIZED WEIGHTED MAJORITY (RWM): Smoothly decrease probability

masses of actions as they become worse. For some small η ∈ (0, 1):

1 ∀i ∈ [N], wi(1) = 1; pi(1) = 1/N;
2 ∀t ≥ 2:

∀i ∈ [N], wi(t) = wi(t − 1) · (1− η)`i (t−1);

W(t) =
∑

i∈[N] wi(t); ∀i ∈ [N], pi(t) = wi (t)
W(t)

Select x(t) according to distribution p(t).

POLYNOMIAL WEIGHTS (PW): Substitute exponentially sensitive or RWM to

polynomially sensitive weight updates. For some small η ∈ (0, 1):

1 ∀i ∈ [N], wi(1) = 1; pi(1) = 1/N;
2 ∀t ≥ 2:

∀i ∈ [N], wi(t) = wi(t − 1) · (1− η · `i(t − 1));

W(t) =
∑

i∈[N] wi(t); ∀i ∈ [N], pi(t) = wi (t)
W(t)

Select x(t) according to distribution p(t).
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No-External-Regret Algorithms (II)

THEOREMS 4.5-6 (AGT-book): RWM & PW Learn against EXT-REG

1 For any η ∈ (0, 1/2] and any sequence of binary losses, RWM has

LT
RWM ≤ LT

min + 2
√

T · ln(N)

2 For η ∈ (0, 1/2] and any sequence of normalized losses, PW has

LT
PW ≤ LT

min + 2
√

T · ln(N)
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No-External-Regret Algorithms (III)

WHY? (for RWG only, similar analysis for PW)

Z t =
∑

i:`T
i
=1

w t
i

W t . /∗ expected loss of RWM at round t ∗/

W t+1 = W t · (1− ηZ t) ≥ maxi{w t+1
i = (1− η)Lt

min

W 1 = N.

(1− η)LT
min ≤ W t+1 = W t(1− ηZ t) = · · · = N

∏
t

r=1
(1− ηZ r)

⇒ LT
min ln(1− η) ≤ ln(N) +

∑
t

r=1
ln(1− ηZ r) ≤ ln(N)−

t∑
r=1

Z
r

︸ ︷︷ ︸
=Lt

RWM

⇒ LT
RWM ≤

ln(N)
η −

ln(1−η)
η LT

min ≤
ln(N)
η + (1 + η)LT

min

⇒ LT
RWM ≤ LT

min + 2
√

T ln(N) /∗ set η = min{
√

ln(N)/T, 1/2} ∗/
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Lower Bounds Against External Regret (I)

THEOREMS 4.7-8 (AGT-book): Not Much More Can Be Done

1 For any T ≤ log2(N), there is a stochastic generation of a loss sequence,

s.t. any online algorithm R has E
[
LT

R

]
= T

2
and yet, LT

min = 0.

2 For N = 2 possible actions, there exists a stochastic generation of a loss

sequence, s.t. any online algorithm R has E
[
LT

R − LT
min

]
= Ω

(√
T
)
.
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Lower Bounds Against External Regret (I)

WHY? (only of first bound, similar analysis for second)

Proposed sequence of losses:

t=1: S1 ∈uar [N] : |S1| = N/2.

t=2: S2 ∈uar S1 : |S2| = N/4.

...

t=k: Sk ∈uar Sk−1 : |Sk | = N/2k .

∀t ≥ 1, ∀i ∈ St , `t
i = 0 ∧ ∀i /∈ St , `t

i = 1.

T < log2(N)⇒ ST ≥ 1⇒ LT
min = 0.

LT
R ≥ T

2
.
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From External-Regret to Swap-Regret Algorithms (I)

THEOREMS 4.15 (AGT-book): No-Swap-Regret Algorithms

Given an algorithm A that has external-regret R:

LT
A ≤ LT

min + R

it is possible to create, via a polynomial reduction using N copies of A, some

(master) online algorithm H with swap-regret NR:

LT
H ≤ LT

H,Fsw
+ NR

COROLLARY 4.16 (AGT-book): No-Swap-Regret Algorithms

There is an online algorithm H such that, for any (swap) function f : [N] 7→ [N] it

guarantees that:

LT
H ≤ LT

H,F + O
(

N
√

T ln(N)
)
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From External-Regret to Swap-Regret Algorithms (II)

Explanation of Reduction

Each copy acts as an indepednent
expert.

The master algorithm H creates a new

distribution p(t) as the outcome of the

experts’ opinions.

I p(t)′ = p(t)′Q(t) is the stationary

distribution of the Markov process with

transition matrix

Q(t) = [q1(t)′; q2(t)′; · · · ; qN(t)′].

H splits the actual loss vector `(t) among

the experts, to allow them to learn.

A1

A2

AN

ooo

q1(t)

q2(t)

qN(t)

p1(t) * l(t)

p2(t) * l(t)

pN(t) * l(t)

p(t)

l(t)
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How About Multi-agent Environments?

Rather than having an ‘‘agent vs. Nature’’ scenario, what if two (or more)

agents are self-interested, ie, each of them has its own preferential order to the

states of the whole system, and acts in an attempt to bring about the most

preferable states for it?
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Game Theoretic Notation: Strategic Games (I)

Strategic Game or Stage Game: G = 〈P, (Sp)p∈P , (cp)p∈P〉.
P is the set of (self--interested) agents (aka players).

∀p ∈ P, Sp is the set of actions for agent p. S = ×p∈PSp is the system’s

state space.

∀p ∈ P, cp : S 7→ [0, 1] is the (normalized) cost function for agent p,

depending on the system state determined by the actions of all agents.

Strategy xp ∈ ∆(Sp) = {z ∈ [0, 1]|Sp| :
∑

sp∈Sp
z(sp) = 1} is a probability

distribution used by agent p to determine its action, independently of the

other agents’ choices.

Correlated Strategy σ ∈ ∆(S) = {z ∈ [0, 1]|S| :
∑

s∈S
z(s) = 1} is a

probability distribution for the system to determine its own (suggested)

state.
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Game Theoretic Notation: Strategic Games (II)

Loss of agent p ∈ P: The expected cost that p suffers for the actions profile

adopted by all the agents. Ie: ∀(xp)p∈P ∈ ×p∈P∆(Sp), ∀σ ∈ ∆(S),

`p(x1, . . . , x|P|) = E(sq∼xq)q∈P

[
cp(s1, . . . , s|P|)

]
and `p(σ) = Es∼σ [cp(s)]

∀xp, yp ∈ ∆(Sp),

xp is dominated by yp iff ∀z−p ∈ ×q 6=p∆(Sq), `p(xp, z−p) ≤ `p(yp, z−p).

Nash Equilibrium (NE): A (publicly known) profile of strategies (x̄1, . . . , x̄|P|)
for all the agents, such that no agent can reduce its own loss by unilaterally

deviating from its strategy, given the strategies of the other agents.

Correlated Equilibrium (CE): A (publicly known) correlated strategy

σ̄ ∈ ∆(S) such that if the system first chooses an action profile s ∼ σ̄ and

then suggests secretely action sp to each agent p ∈ P, then no agent can

reduce its own loss by deviating from sp, given that the other agents will

follow the system’s suggestion.
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Game Theoretic Notation: Strategic Games (III)

EXAMPLE: Prisoner’s Dilemma

Two individuals are caught for a delinquency (eg, causing a car accident)

deserving 1 year of imprisonment.

There are suspicions for having committed a felony (eg, bank robbery)

deserving 10 years of imprisonment. But there are no sufficient evidence.

Police tries to get their confessions by making the following agreement with

both of them, but not allowing them to communicate with each other:

‘‘Silent’’ is dominated by ‘‘Betray’’, for both players.

Unique NE and CE point: (Betray, Betray).
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Game Theoretic Notation: Repeated Games (I)

(Infinitely) Repeated Game G∞: The infinite realizations of independent

instances of the stage game G.

Each player p ∈ P must determine an algorithm Mp that takes as input the

history of the game for the first t − 1 rounds, and returns a strategy

xt
p ∈ ∆(Sp) for round t .

The loss `t
p(M1, . . . ,M|P|) of agent p at round t , is the expected cost it

suffers for the profile xt adopted at round t , according to algorithms

M1, . . . ,M|P|.

The cumulative loss LT
p(M1, . . . ,M|P|) of p ∈ P up to T ∈ N is the sum of

losses of p for the first T rounds.
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Game Theoretic Notation: Repeated Games (II)

Limit-Of-Means criterion: For any given profile of algorithms M−p for the

other agents, two different algorithms Mp,M
′
p for agent p are compared

according to the average loss they produce over T rounds, as T →∞.

A collection (Mp)p∈P of algorithms for the agents is Nash Equilibrium of

G∞ iff ∀p ∈ P no alternative algorithm M′p can assure smaller average

loss, given that the other agents keep their algorithms unchanged.
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Game Theoretic Notation: Repeated Games (III)

EXAMPLE: Repeated Prisoner’s Dilemma

5,5

10,0 1,1

0,10
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The algorithm

‘‘Always betray’’

adopted by both agents is a NE point of G∞, (considers a NE point of the

stage game in each round).

The algorithm

‘‘Remain silent until opponent betrays. Then always betray’’

adopted by both agents is a NE point of G∞, although it does NOT create

NE points in the rounds, in fear of future explosion in loss.

S. Kontogiannis (University of Ioannina) Learning, Enforcement & Equilibria June 22, 2015 33 / 62



Learning NE in Bimatrix Games (I)

A stage game G = 〈P, (Sp)p∈P , (cp)p∈P〉 is constant-sum, if there is a

constant γ ∈ R, such that ∀s ∈ S,
∑

p∈P
cp(s) = γ.

For each γ−sum bimatrix game, any NE point assures exactly the same

pair of losses, (v1, v2) ∈ [0, 1]2 for the two players (their minmax values).

EXAMPLE: Matching Pennies

1,0

0,1 1,0

0,1

Heads Tail
Player 2

Pl
ay

er
 1 H
ea

ds
Ta

il

Unique NE point: ((0.5, 0.5), (0.5, 0.5)).

Values: v1 = v2 = 0.5.
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Learning NE in Bimatrix Games (II)

THEOREM: External-Regret Works For γ−Sum Bimatrix Games

1 For any γ−sum bimatrix (stage) game G with values (v1, v2) ∈ [0, 1]2, if

one player p adopts some algorithm ON with external-regret R in the

infinite game G∞, then for any algorithm A adopted by the opponent, its

cumulative loss after T rounds will be: LT
p(ON,A) ≤ T · vp + R

2 If both players adopt no-external-regret algorithms (ON1,ON2) for G∞,

then the profile produced by the average strategy per player converges

to a NE point of the stage game G.

3 We can use the existence of no-external-regret algorithms to prove the

von Neumann’s minimax theorem for γ−sum bimatrix games.

4 For a non-constant-sum bimatrix game G, we cannot guarantee

convergence of any no-external-regret algorithms to NE point of G.
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Convergence to CE points of N−person Games

THEOREM: Swap-Regret Works With N−Person Games

Let G = 〈P, (Sp)p∈P , (cp)p∈P〉 be an N−person stage game.

1 If each player p ∈ P adopts an algorithm ONp with swap-regret R for the

first T time steps of G∞, then the empirical distribution of the joint actions

played is an (R/T)−correlated equilibrium of the game.

2 For any player p ∈ P that uses an algorithm ONp with swap-regret R for T

time steps, the average probability mass that p puts on the set of

ε−dominated actions is at most
R

εT
.

RECAP: Given any algorithm with external-regret R that chooses among N

possible states, there is a generic algorithm H for player p ∈ P with

swap-regret at most N · R. This implies then that for any swap-regret

modification rule f : [N] 7→ [N], p can assure:

LT
H ≤ LH,f + O

(
N
√

T · log(N)
)
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How About Special Cases Of Games?

A strategic game is sociall concave iff it has:

Closed convex strategy sets.

A (weighted) social welfare function that is concave.

Convex utility functions of each player, in the vector of the other players’

actions.

Examples of socially concave games:

Zero-sum games.

Resource allocation games.

Selfish routing games.

Cournot oligopoly.

TCP congestion control.

THEOREM: External Regret Works with Socially Concave Games

If each player uses a no-regret procedure in an infinite game G∞ whose stage

game belongs to some class of interesting games, then their joint play

converges to Nash equilibrium.
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Beyond Learning?

Learning can help us discover NE points in constant-sum bimatrix stage

games.

How about non-constant-sum games? How about more than 2 players?

Can we compute NE points for general stage games?

[Chen-Deng (2006), Daskalakis-Goldberg-Papadimitriou (2006)] : Computing NE points is

PPAD−hard for stage games, even for two players.

How about infinitely repeated games?
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The Traditional Notion of Threat

DEFINITION: Threat Point

G = 〈P, (Sp)p∈P , (Up : ×q∈PSq 7→ Q)p∈P〉: An arbitrary stage game, with

rational payoff functions (to be maximized).

G∞: The infinitely repeated game using the stage game G in each round.

Threat Point: The vector of minimum payoffs that each player would

accept in a realization of G, against a profile of uncoordinated strategies
for the opponents. Ie:

∀p ∈ P, θp(G) ≡ minx−p∈×q 6=p∆(Sq) maxxp∈∆(Sp) Up(x−p, xp)
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The Folk Theorem and its Consequences

Folk Theorem

‘‘Any vector of payoffs in a one-shot game G which is component-wise larger

than the threat point of G, can be enforced as a NE point of the corresponding

infinitely repeated game G∞’’.

Computation of Equilibrium Points in repeated games should be (?) easier.

[Littman-Stone (2003)] Polynomial--time construction of a succinctly representable

profile of algorithms for G∞, that induces an arbitrary rational payoffs
point that is above the threat point, as a NE of G∞, for the case of two

players.

[Borgs et al. (2008)] Computing Nash equilibria for infinitely repeated games with

at least three players, is PPAD−hard.
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The Threat Point (II)

Remark

Two parameters of intractability in [Borgs et al. (2008)] :

1 Computing (even approximately) the threat point of a one-shot game G

among k ≥ 3 players, is NP−hard.

Crucial knowledge for the approach of [Littman-Stone (2003)] to solve the

2−players case.

2 Computing an approximate NE point of a (k + 1)-player, infinitely

repeated game is as hard as computing an (approximate) NE point in a

k−player, one-shot game, for any k ≥ 2.

How much credible can a threat be, when it is not
efficiently computable by any of the players?
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A Way Out

Our main objectives are to:

1 Find a way to tackle the intractability of the threat point.

2 Find a way to implement the Folk Theorem, ie, induce some / any
(rational) payoff point above the (new) threat point as a succinctly
representable equilibrium of the infinitely repeated game.
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A New Notion of Threat

DEFINITION: Correlated Threat Point

The correlated threat point of a stage game G = 〈P, (Sp)p∈P , (Up)p∈P〉 is a

vector of minimum payoffs that each of the players would be willing to accept,

against any profile of coordinated strategies of the opponents against her. Ie:

∀p ∈ [k], ϕp(G) ≡ minσ−p∈∆(×q 6=pSq) maxxp∈∆(Sp) Up(σ−p, xp)
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Some Observations on the Correlated Threat Point

1 It constitutes a credible threat for any constant number of players.

2 It is more severe than the traditional notion of threat point, but not
overwhelming for each player (it is closer to the notion of worst case

scenario, that is widely used in TCS).

3 It implies, not Nash equilibria, but almost Nash equilibria:
Correlation is only required for the punishments. During normal play the

agents act independently (but in time--synchrony).

4 It implements the main idea of the Folk Theorem:
Any rational payoff point above it can be induced by the system as

equilibrium of the infinite game, by providing succinctly representable

strategies for the players.
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Tractability of Correlated Threat Point (I)

Player p’s defensive strategy:

dp ∈ arg maxxp∈∆(Sp)

{
minσ−p∈∆(×q 6=pSq) Up(σ−p, xp)

}
Aggressive (correlated) strategy of the other players against player p:

ap ∈ arg minσ−p∈∆(×q 6=pSq)
{

maxxp∈∆(Sp) Up(σ−p, xp)
}

THEOREM: Computability of defensive & aggressive strategies

[Kontogiannis-Spirakis (2008)]

For any fixed constant natural number k ≥ 2, any finite k−person stage game

G = 〈P, (Sp)p∈P , (Up)p∈P〉 with rational payoffs, and any player p ∈ P, the

correlated threat value ϕp(G), the defensive strategy dp and the aggressive

strategy ap of the other players against p, are succinctly representable and

polynomial time computable, wrt size(G).
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Tractability of Correlated Threat Point (II)

WHY?
For each player p ∈ P:

Consider the following |Sp| × | ×q 6=p Sq| payoff matrix Pp:

∀(sp, s−p) ∈ Sp × S−p, Pp[sp, s−p] = Up(sp, s−p)

Any Nash equilibrium of the zero sum bimatrix game 〈Pp,−Pp〉 determines

player p’s threat value, her defensive strategy, and the aggressive strategy

against her:

(Vp, dp) ∈ arg max {V̄p : ∀s−p ∈ S−p, d̄p · Pp[?, s−p] ≥ V̄p; d̄p ∈ ∆(Sp)}
(Vp, ap) ∈ arg min {V̄p : ∀sp ∈ Sp, Pp[sp, ?] · ā ≤ V̄p; āp ∈ ∆(S−p)}
ϕp(G) = Vp

Given the rationality of the payoff functions, Vp, ap, dp are rational vectors

and numbers, of size polynomial in size(G).
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The Strictly Individually Rational Region (I)

G = 〈[k], (Sp)p∈[k], (Up)p∈[k]〉: A k−person stage game, with rational

payoff functions Up : S 7→ Q.

Z = {z ∈ Qk : ∃s ∈ S s.t. ∀p ∈ [k], Up(s) = z[p]} is the set of all the

rational vectors that are payoff points of some actions profile s ∈ S of G.

conv(Z) =
{∑

s∈S
λs · U(s) ∈ Rk :

∑
s∈S

λs = 1; ∀s ∈ S, λs ≥ 0
}

DEFINITION: Strictly Individual Rational Region

The strictly individual rational region of G is the set of all payoff points that are

point-wise greater than the correlated threat point of G:

sirr(G) = conv(Z) ∩ {z ∈ Rk : z > ϕ(G)}
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The Strictly Individually Rational Region (II)

Following the terminology of [Littman--Stone (2003)] :

Mutual Advantage Case: sirr(G) 6= ∅.

No Mutual Advantage Case: sirr(G) = ∅.

We shall handle these two cases separately.
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The Strictly Individually Rational Region (III)

LEMMA 1: Checking emptiness of sirr(G)

For any fixed integer k ≥ 2 and one-shot game G = 〈[k], (Sp)p∈[k], (Up)p∈[k]〉,
we can determine in time poly(size(G)) whether sirr(G) 6= ∅.

WHY?

For any correlated strategy σ ∈ ∆(×p∈[k]Sp), the payoff point U(σ)
belongs to conv(Z), and vice versa.

Look for a minimum-payoff maximizing point in the boundary of conv(Z):

For each of the
(|S|

k

)
k−subsets of vertices ∀{z1, z2, . . . , zk} ⊆ Z ,

MAC(z1, z2, . . . , zk)

maximize ζ

s.t.
∑

k

i=1
zi [p] · λi ≥ ζ, ∀p ∈ [k]∑

k

i=1
λi = 1

∀i ∈ [k], λi ≥ 0; ζ ≥ 0
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Enforcing a Payoff for the Mutual Advantage Case (I)

THEOREM: Existence & Construction of NE point of G∞

For any constant k ≥ 2, and one-shot game G = 〈[k], (Sp)p∈[k], (Up)p∈[k]〉
such that sirr(G) 6= ∅, there is a profile of algorithms M = (Mp)p∈[k] for the

players that is an equilibrium of G∞, whose description size is poly(size(G)).
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Enforcing a Payoff for the Mutual Advantage Case (II)

WHY?

z∗ =
∑

k

i=1
λ̂i ẑi : The payoff point of sirr(G), chosen in LEMMA 1.

∀i ∈ [k], λ̂i = γi

Γi
=

γi

∏
j 6=i

Γj∏
j∈[k] Γj

= ξi

Ξ ;
∑

k

i=1
λ̂i = 1⇔

∑
k

i=1
ξi = Ξ.

Protocol Abiding Phase: p ∈ [k] behaves as described by a finite state

automaton Mp determined by a cycle of actions, of length Ξ. The

expected payoff of p during the whole cycle is z∗[p] > ϕp(G).

Punishment Phase: Upon discovery of a defection from the protocol

abiding behavior, each agent p 6= q gives up control, for Λq consecutive

rounds, to a punishment correlation device that implements the aggressive

strategy aq against the defector q of minimum ID.
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Enforcing a Payoff for the Mutual Advantage Case (III)

Suppose that we have 3 players, and z∗ = λ̂1U(x1) + λ̂2U(x2) + λ̂3U(x3).

The profile that induces z∗ as the equilibrium of G∞ is:
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x1 x2

xk

Smaller defector = 1

x1 x2

x3

Smaller defector = 1

Smaller defector = 1
Smaller defector = 1

Smaller defector = 1

Smaller defector = 1

*

*

x1 x2

Smaller defector = 2

Smaller defector = 2

Smaller defector = 2

Smaller defector = 2
Smaller defector = 2 Smaller defector = 2

Smaller defector = 3

Smaller defector = 3

Smaller defector = 3

Smaller defector = 3 Smaller defector = 3 Smaller defector = 3

*

*

*

*
x1[2] x2[2] x3[2]

x1[3] x2[3] x3[3]

x1[1] x2[1] x3[1]

ξ1 times ξ2 times ξ3 times

ξ1 times ξ2 times ξ3 times

ξ1 times ξ2 times ξ3 times

xk

s-1~a1

Λ1 times

s-3~a3

Λ3 times

s-2~a2

Λ2 times
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Enforcing a Payoff for the Mutual Advantage Case (IV)

Remark

Any rational payoff point that is an element of sirr(G) can be induced as an

equilibrium of G∞, by a similar construction. The profile will have polynomial

description in the size of representation of this payoff point, but not necessarily in

size(G).
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How About The No--Mutual Advantage Case?

(WLOG) Assume that ϕ(G) = 0.

µ(G): The maximum number of players having concurrently positive

payoffs.

LEMMA 2: Max #Players with Concurrently Positive Payoffs

For any constant k ≥ 2 and any game G = 〈[k], (Sp)p∈[k], (Up)p∈[k]〉 with

rational payoffs, µ(G) is computable in time poly(size(G)).

WHY?
Exploit the constant number of players.

Starting from k−subsets, down to 1−subsets of points from Z , keep solving

LPs similar to the MAC LP of the Mutual-Advantage case, until the first

solvable instance with positive value.
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Partial Answer for No--Mutual Advantage Case (I)

THEOREM: Construction of NE for G∞ when µ(G) ≤ 2

For any constant k ≥ 2 and one-shot game G = 〈[k], (Sp)p∈[k], (Up)p∈[k]〉 with

sirr(G) = ∅, there is an efficiently computable equilibrium point for G∞, when

at most two players may have concurrently positive payoffs, ie, µ(G) ≤ 2.

WHY?

if µ(G) = 0

then the profile (dp)p∈[k] of defensive strategies is NE point of G.

else if µ(G) = 1

then any pure best response defection from the defensive profile

leads to a NE of G:
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Partial Answer for No--Mutual Advantage Case (II)

WHY? (contd.)

The case 2 = µ(G) < k.
Locate a payoff point in conv(Z) such that exactly two players (eg,

players 1, 2) deviate from their defensive strategies (to pure strategies) and

get positive payoffs.

The defensive strategies profile d−1,2 for the other k − 2 players is weakly
dominant:

Lock the k − 2 players’ strategies to the weakly dominant profile d−1,2 and

inductively solve (using correlated threats) the infinitely repeated subgame

between players 1 and 2.
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Recap

Learning is helpful for stage games. In particular, for:

I Computing NE points in special classes of stage games (eg, socially

concave games, constant-sum bimatrix games).

I Computing CE points of arbitrary stage games.

I Eliminating dominated strategies in arbitrary stage games.

Enforcement is helpful for repeated games. In particular, we proposed a

new, credible, notion of Correlated Threat Point, that is capable of

implementing the essence of the Folk Theorem, for the case of more than

2 players.
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Open Issues

What else can be learnt for stage games?

How can we exploit learning in repeated games (eg, computing more

efficient NE points than the ones of the stage game)?

How should we deal with the general No-Mutual-Advantage case?

How can we handle non-constant number of players?

How can we implement the correlation devices in a decentralized way

(eg, as in [Barany (1992)] )?

What can be done for asynchronous plays of agents?
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Thank you
for your attention!
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