ПАNЕПIГTНMIO ПATPRN

ANOIKTA Aradinnixid

М $\varepsilon \lambda \varepsilon ́ \tau \eta ~ П \varepsilon р ı \pi \tau \omega ́ \sigma \varepsilon \omega v ~$

- To $\pi \alpha \rho o ́ v ~ \varepsilon к \pi \alpha ı \delta \varepsilon u t ı \kappa o ́ ~ \cup \lambda ı к o ́ ~ \cup \pi o ́ к \varepsilon ı \tau \alpha ı ~ \sigma \varepsilon ~ \alpha ́ \delta \varepsilon เ \varepsilon \varsigma ~ \chi \rho \eta ́ \sigma \eta \varsigma ~$ Creative Commons.

Хрпиатобо́тпоп

 u入ıкои́.

 по́pous.

Algorithms for Transport Optimization Theory and Practice

Christos Zaroliagis

zaro@ceid.upatras.gr

Dept. of Computer Engineering \& Informatics
University of Patras, Greece

Computer Technology Institute \& Press
"Diophantus"

Transport Optimization Problems

Public transportation networks

Road networks

Transport Optimization Problems

Public transportation networks

Road networks

Common characteristic: large/huge scale

Outline

(1) Robust Line Planning

(2) Time-Dependent Route Planning

(3) Summary

Public Transportation Planning

Public Transportation Planning

- This talk: Railways

Public Transportation Planning

- This talk: Railways
- Line Planning
- Determine the set of train lines (routes) along with their frequencies
- Typically, a line pool is provided

Line Planning Problem (I)

- Railway Network Infrastructure governed by a network operator (NOP) \& represented as a digraph $G=(V, L)$
- $V \longleftrightarrow$ stations or junctions of rail tracks
- $L \longleftrightarrow$ direct connections or (track) links between nodes $\forall \ell \in L, \exists$ capacity $c_{\ell}>0$ [\# trains per day]
- Line pool: set of lines (origin-destination paths) in G

Line Planning Problem (I)

- Railway Network Infrastructure governed by a network operator (NOP) \& represented as a digraph $G=(V, L)$
- $V \longleftrightarrow$ stations or junctions of rail tracks
- $L \longleftrightarrow$ direct connections or (track) links between nodes $\forall \ell \in L, \exists$ capacity $c_{\ell}>0$ [\# trains per day]
- Line pool: set of lines (origin-destination paths) in G
- Line Operators (LOPs) P

Request usage of lines, at varying frequencies, in order to serve their customers

Line Planning Problem (I)

- Railway Network Infrastructure governed by a network operator (NOP) \& represented as a digraph $G=(V, L)$
- $V \longleftrightarrow$ stations or junctions of rail tracks
- $L \longleftrightarrow$ direct connections or (track) links between nodes $\forall \ell \in L, \exists$ capacity $c_{\ell}>0$ [\# trains per day]
- Line pool: set of lines (origin-destination paths) in G
- Line Operators (LOPs) P

Request usage of lines, at varying frequencies, in order to serve their customers

- Goal

Find a line concept (feasible allocation of lines to LOPs along with proper frequencies) so as to optimize a system-wise welfare function

Line Planning Problem (II)

- Cost-Oriented Approach: optimize the performance of NOP
- Minimize cost (minimize total / max train travel time)
- Maximize profit (maximize throughput)

Eg, [Claessens-van Dijk-Zwaneveld (1996); Goossens-Hoesel-Kroon (2004)]

Line Planning Problem (II)

- Cost-Oriented Approach: optimize the performance of NOP
- Minimize cost (minimize total / max train travel time)
- Maximize profit (maximize throughput)

Eg, [Claessens-van Dijk-Zwaneveld (1996); Goossens-Hoesel-Kroon (2004)]

- Customer-Oriented Approach: maximize the clients' aggregate level of satisfaction
- Maximize travelers with direct connections
- Minimize their total / max number of changes
- Minimize the traveling time of customers
- Minimize aggregate payments

Eg, [Schöbel-Scholl (2005); Bussieck (1998); Bussieck-Lindner-Lübbecke (2004)]

Robust Line Planning (I)

Robust Line Planning (I)

- Provide line concepts that are robust to fluctuations of the input parameters
- Disruptions (e.g., delays) to daily operations
- Temporal unavailability of tracks due to delays/accidents
- Fluctuating customer demands
- ...

Robust Line Planning (I)

- Provide line concepts that are robust to fluctuations of the input parameters
- Disruptions (e.g., delays) to daily operations
- Temporal unavailability of tracks due to delays/accidents
- Fluctuating customer demands
- Optimization Approach to Robustness (typical representatives):
- Stochastic programming models: flexible but too large in size; requires apriori knowledge of probability distributions
- (Classical) robust optimization models: may lead to very conservative solutions

Robust Line Planning (I)

- Provide line concepts that are robust to fluctuations of the input parameters
- Disruptions (e.g., delays) to daily operations
- Temporal unavailability of tracks due to delays/accidents
- Fluctuating customer demands
- Optimization Approach to Robustness (typical representatives):
- Stochastic programming models: flexible but too large in size; requires apriori knowledge of probability distributions
- (Classical) robust optimization models: may lead to very conservative solutions
- [Bertsimas-Sim (2004)] : feasibility is guaranteed if \# of affected constraints is limited

Robust Line Planning (I)

- Provide line concepts that are robust to fluctuations of the input parameters
- Disruptions (e.g., delays) to daily operations
- Temporal unavailability of tracks due to delays/accidents
- Fluctuating customer demands
- Optimization Approach to Robustness (typical representatives):
- Stochastic programming models: flexible but too large in size; requires apriori knowledge of probability distributions
- (Classical) robust optimization models: may lead to very conservative solutions
- [Bertsimas-Sim (2004)] : feasibility is guaranteed if \# of affected constraints is limited
- [Fischetti-Monaci (2009)] : light robustness

Robust Line Planning (I)

- Provide line concepts that are robust to fluctuations of the input parameters
- Disruptions (e.g., delays) to daily operations
- Temporal unavailability of tracks due to delays/accidents
- Fluctuating customer demands
- Optimization Approach to Robustness (typical representatives):
- Stochastic programming models: flexible but too large in size; requires apriori knowledge of probability distributions
- (Classical) robust optimization models: may lead to very conservative solutions
- [Bertsimas-Sim (2004)] : feasibility is guaranteed if \# of affected constraints is limited
- [Fischetti-Monaci (2009)] : light robustness
- [Liebchen-Lübbecke-Möhring-Stiller (2009)] : recoverable robustness

Robust Line Planning (II)

Robust Line Planning (II)

- Game-theoretic Approach to Robustness: participating entities react selfishly to the fluctuations of the input parameters
- [Schöbel-Schwarze (2006)] : use game dynamics of a non-atomic network congestion game as a robust scheme to deal with delays
- [Aghassi-Bertsimas (2005)] : robust version (fluctuations in feasibility constraints) of a strategic game is as difficult as the nominal game

Robust Line Planning (III)

Robust Line Planning (III)

- Previous optimization \& game-theoretic approaches
- Powerful set of methods to deal with predictable and/or statically described level of uncertainty in constraints
- Centralized solution approaches

Robust Line Planning (III)

- Previous optimization \& game-theoretic approaches
- Powerful set of methods to deal with predictable and/or statically described level of uncertainty in constraints
- Centralized solution approaches

What if uncertainty is neither predictable/quantifiable nor statically describable?

Robust Line Planning - A Different Perspective

- Motivation: regulations for competition - free railway market

Robust Line Planning - A Different Perspective

- Motivation: regulations for competition - free railway market
- LOP: commercial entity trying to ...
... make profit out of the usage of the infrastructure
... unwilling to reveal its true incentives to the other competitors, or to NOP

Robust Line Planning - A Different Perspective

- Motivation: regulations for competition - free railway market
- LOP: commercial entity trying to ...
... make profit out of the usage of the infrastructure
... unwilling to reveal its true incentives to the other competitors, or to NOP
- NOP: governmental entity, aiming to ...
... maximize the unknown aggregate level of satisfaction for the LOPs (socially optimal solution)
... ensure fairness in cost sharing

Robust Line Planning - A Different Perspective

- Motivation: regulations for competition - free railway market
- LOP: commercial entity trying to ...
... make profit out of the usage of the infrastructure
... unwilling to reveal its true incentives to the other competitors, or to NOP
- NOP: governmental entity, aiming to ...
... maximize the unknown aggregate level of satisfaction for the LOPs (socially optimal solution)
... ensure fairness in cost sharing

Our Notion of Robustness

Tolerance to LOPs' unknown and/or dynamically changing incentives
causing elasticity of frequency requests

Our Approach: A Railway Market (I)

- Each LOP $p \in P$...
... has a private utility function of its assigned frequency $U_{p}: \mathbb{R}_{\geq 0} \mapsto \mathbb{R}_{\geq 0}$
... has a unique (or multiple) fixed line(s) that interest her (public information)
... competes against the other LOPs for the total frequency committed to her along her line(s)

Our Approach: A Railway Market (I)

- Each LOP $p \in P$...
... has a private utility function of its assigned frequency $U_{p}: \mathbb{R}_{\geq 0} \mapsto \mathbb{R}_{\geq 0}$
... has a unique (or multiple) fixed line(s) that interest her (public information)
... competes against the other LOPs for the total frequency committed to her along her line(s)
- NOP uses a mechanism ...
... a feasible frequency allocation rule and
... an anonymous resource pricing scheme
aiming to maximize the aggregate level of satisfaction for the LOPs

Our Approach: A Railway Market (I)

- Each LOP $p \in P$...
... has a private utility function of its assigned frequency $U_{p}: \mathbb{R}_{\geq 0} \mapsto \mathbb{R}_{\geq 0}$
... has a unique (or multiple) fixed line(s) that interest her (public information)
... competes against the other LOPs for the total frequency committed to her along her line(s)
- NOP uses a mechanism ...
... a feasible frequency allocation rule and
... an anonymous resource pricing scheme
aiming to maximize the aggregate level of satisfaction for the LOPs

ASSUMPTION 1 (economy of scale)
 For every LOP $p \in P, U_{p}$ is strictly increasing and strictly concave

Our Approach: A Railway Market (II)

Reality of an emerging (Pan-European) Railway Market:

- Huge instances to be handled globally by a central authority (NOP)

Our Approach: A Railway Market (II)

Reality of an emerging (Pan-European) Railway Market:

- Huge instances to be handled globally by a central authority (NOP)
- Real-time changes of
(i) The network infrastructure
(ii) LOP preferences

Our Approach: A Railway Market (II)

Reality of an emerging (Pan-European) Railway Market:

- Huge instances to be handled globally by a central authority (NOP)
- Real-time changes of
(i) The network infrastructure
(ii) LOP preferences
- Instead of using a (static, global) mechanism that aims to maximize the aggregate level of satisfaction for the LOPs

Our Approach: A Railway Market (II)

Reality of an emerging (Pan-European) Railway Market:

- Huge instances to be handled globally by a central authority (NOP)
- Real-time changes of
(i) The network infrastructure
(ii) LOP preferences

Instead of using a (static, centralized) mechanism that aims to maximize the aggregate level of satisfaction for the LOPs

- Devise a dynamic, decentralized mechanism that
- assures global convergence to the (unknown, possibly changing over time) social optimum
- is based (as much as possible) on local information

Cases Studied [Bessas, Kontogiannis \& Z (2009; 2011)]

[SP] Single Line Pool

- A unique line (path) per LOP

[MP] Multiple Line Pools

- A polynomial number of different line pools representing non-overlapping usage of the infrastructure, due to ...
... varying customer traffic (rush-hour morning pool, late morning pool, rush-hour afternoon pool, night pool, etc)
... maintenance
... dependencies between types of lines (a high-speed line affects the choice of lines for other trains)
[MPSU] Multiple line Pools - Single Utility:
One utility function per LOP, for the aggregate frequency over all pools
[MPMU] Multiple line Pools - Multiple Utilities:
Different utility functions per pool for each LOP

New Contributions [Bessas, Kontogiannis \& Z (2009; 2011)]

New Contributions [Bessas, Kontogiannis \& Z (2009; 2011)]

- Globally convergent (continuous) decentralized mechanism (dynamic resource pricing and LOP bidding scheme) for
- [SP] - adaptation of the proportionally fair pricing scheme [Kelly (1997)]
- [MPSU] and [MPMU]

New Contributions [Bessas, Kontogiannis \& Z (2009; 2011)]

- Globally convergent (continuous) decentralized mechanism (dynamic resource pricing and LOP bidding scheme) for
- [SP] - adaptation of the proportionally fair pricing scheme [Kelly (1997)]
- [MPSU] and [MPMU]
- Experimental study on discrete variants of the globally convergent mechanisms for [SP] and [MPMU] on synthetic and real-world data
- 1st Experiment: global convergence to social optimum, starting from an arbitrary initial state Experiments indicated independence from number of pools, but sensitivity to the shape of the utility functions
- 2nd Experiment: convergence to optimality, recovering from small disruptions to a previous social optimum Experiments indicated very fast (re-)convergence to optimum

New Contributions [Bessa, Kontogianis \& Z (2009; 2011)] — In this Talk

- Globally convergent (continuous) decentralized mechanism (dynamic resource pricing and LOP bidding scheme) for
- [SP] - adaptation of the proportionally fair pricing scheme [Kelly (1997)]
- [MPSU] and [MPMU]
- Experimental study on discrete variants of the globally convergent mechanisms for [SP] and [MPMU] on synthetic and real-world data
- 1st Experiment: global convergence to social optimum, starting from an arbitrary initial state Experiments indicated independence from number of pools, but sensitivity to the shape of the utility functions
- 2nd Experiment: convergence to optimality, recovering from small disruptions to a previous social optimum Experiments indicated very fast (re-)convergence to optimum

The Optimization Problem

- Line Pool: routing matrix $R \in\{0,1\}^{|L| x|P|}$ (one line per LOP)
- Column \leftrightarrow LOP $p \in P$
- Row \leftrightarrow specific resource (edge) $\ell \in L$

The Optimization Problem

- Line Pool: routing matrix $R \in\{0,1\}^{|L| x|P|}$ (one line per LOP)
- Column \leftrightarrow LOP $p \in P$
- Row \leftrightarrow specific resource (edge) $\ell \in L$

- Capacity vector $\mathbf{c} \in\left(\mathbb{R}_{\geq 0}\right)^{|L|}$: frequency upper bounds of edges

The Optimization Problem

- Line Pool: routing matrix $R \in\{0,1\}^{|L| x|P|}$ (one line per LOP)
- Column \leftrightarrow LOP $p \in P$
- Row \leftrightarrow specific resource (edge) $\ell \in L$

- Capacity vector $\mathbf{c} \in\left(\mathbb{R}_{\geq 0}\right)^{|L|}$: frequency upper bounds of edges
- x_{p} : path frequency granted to LOP p along her line

The Optimization Problem

- Line Pool: routing matrix $R \in\{0,1\}^{|L| x|P|}$ (one line per LOP)
- Column \leftrightarrow LOP $p \in P$
- Row \leftrightarrow specific resource (edge) $\ell \in L$

- Capacity vector $\mathbf{c} \in\left(\mathbb{R}_{\geq 0}\right)^{|L|}$: frequency upper bounds of edges
- x_{p} : path frequency granted to LOP p along her line
- Goal: find the (unique) optimal solution of the convex program

$$
\text { SOCIAL } \max \left\{\sum_{p \in P} U_{p}\left(x_{p}\right): R \mathbf{x} \leq \mathbf{c} ; \mathbf{x} \geq \mathbf{0}\right\}
$$

The Optimization Problem

- Line Pool: routing matrix $R \in\{0,1\}^{|L| x|P|}$ (one line per LOP)
- Column \leftrightarrow LOP $p \in P$
- Row \leftrightarrow specific resource (edge) $\ell \in L$

- Capacity vector $\mathbf{c} \in\left(\mathbb{R}_{\geq 0}\right)^{|L|}$: frequency upper bounds of edges
- x_{p} : path frequency granted to LOP p along her line
- Goal: find the (unique) optimal solution of the convex program

$$
\text { SOCIAL } \max \left\{\sum_{p \in P} U_{p}\left(x_{p}\right): R \mathbf{x} \leq \mathbf{c} ; \mathbf{x} \geq \mathbf{0}\right\}
$$

Where is the problem?

Difficulties in Solving SOCIAL

$$
\text { SOCIAL } \max \left\{\sum_{p \in P} U_{p}\left(x_{p}\right): R \mathbf{x} \leq \mathbf{c} ; \mathbf{x} \geq \mathbf{0}\right\}
$$

Difficulties in Solving SOCIAL

$$
\text { SOCIAL } \max \left\{\sum_{p \in P} U_{p}\left(x_{p}\right): R \mathbf{x} \leq \mathbf{c} ; \mathbf{x} \geq \mathbf{0}\right\}
$$

Reluctance of LOPs to reveal their private utilities to either NOP or their competitors
\Rightarrow Ignorance of the exact shape of the objective function

Difficulties in Solving SOCIAL

$$
\text { SOCIAL } \max \left\{\sum_{p \in P} U_{p}\left(x_{p}\right): R \mathbf{x} \leq \mathbf{c} ; \mathbf{x} \geq \mathbf{0}\right\}
$$

Reluctance of LOPs to reveal their private utilities to either NOP or their competitors
\Rightarrow Ignorance of the exact shape of the objective function
Huge scale makes centralized computations inefficient

An Alternative Description of SOCIAL

$$
\text { SOCIAL } \max \left\{\sum_{p \in P} U_{p}\left(x_{p}\right): R \mathbf{x} \leq \mathbf{c} ; \mathbf{x} \geq \mathbf{0}\right\}
$$

- $\hat{\mathbf{x}} \in O P T(S O C I A L) \Rightarrow \exists$ vector of Lagrange Multipliers $\hat{\lambda}=\left(\hat{\lambda}_{\ell}\right)_{\ell \in L}$, satisfying the Karush-Kuhn-Tucker conditions:

An Alternative Description of SOCIAL

$$
\text { SOCIAL } \max \left\{\sum_{p \in P} U_{p}\left(x_{p}\right): R \mathbf{x} \leq \mathbf{c} ; \mathbf{x} \geq \mathbf{0}\right\}
$$

- $\hat{\mathbf{x}} \in O P T(S O C I A L) \Rightarrow \exists$ vector of Lagrange Multipliers $\hat{\lambda}=\left(\hat{\lambda}_{\ell}\right)_{\ell \in L}$, satisfying the Karush-Kuhn-Tucker conditions:

KKT-SOCIAL

$$
\begin{aligned}
U_{p}^{\prime}\left(\hat{x}_{p}\right) & =\hat{\lambda}^{T} \cdot R_{\star, p}, \quad \forall p \in P \\
\hat{\lambda}_{\ell}\left(c_{\ell}-R_{\ell, \star} \cdot \hat{\mathbf{x}}\right) & =0, \quad \forall \ell \in L \\
R_{\ell, \star} \cdot \hat{\mathbf{x}} & \leq c_{\ell}, \quad \forall \ell \in L \\
\hat{\lambda}, \hat{\mathbf{x}} & \geq \mathbf{0}
\end{aligned}
$$

Economic Interpretation of Lagrange Multipliers

Assuming knowledge of the optimal vector of Lagrange multipliers $\hat{\lambda}$

Economic Interpretation of Lagrange Multipliers

Assuming knowledge of the optimal vector of Lagrange multipliers $\hat{\lambda}$

- NOP announces pricing scheme:

Each resource $\ell \in L$ charges a per-unit-of-frequency price equal to $\hat{\lambda}_{\ell}$

Economic Interpretation of Lagrange Multipliers

Assuming knowledge of the optimal vector of Lagrange multipliers $\hat{\lambda}$

- NOP announces pricing scheme:

Each resource $\ell \in L$ charges a per-unit-of-frequency price equal to $\hat{\lambda}_{\ell}$

- Each LOP $p \in P$, granted line frequency $x_{p} \geq 0$, pays usage cost:

$$
C_{p}\left(x_{p}\right)=\hat{\mu}_{p} \cdot x_{p}
$$

where $\hat{\mu}_{p} \equiv \sum_{\ell \in L: R_{\ell, p}=1} \hat{\lambda}_{\ell}=\hat{\lambda}^{\top} R_{\star, p}$ is the total per-unit price of p along her line $R_{\star, p}$.

Exploiting the Selfishness of LOPs

Each selfish LOP is interested in solving:

$$
\text { USER-I } \max \left\{U_{p}\left(x_{p}\right)-\hat{\mu}_{p} x_{p}: x_{p} \geq 0\right\}
$$

Exploiting the Selfishness of LOPs

Each selfish LOP is interested in solving:

$$
\text { USER-I } \max \left\{U_{p}\left(x_{p}\right)-\hat{\mu}_{p} x_{p}: x_{p} \geq 0\right\}
$$

ASSUMPTION 2

LOPs control negligible fractions of frequency and are price takers (accept announced prices as constant)

Exploiting the Selfishness of LOPs

Each selfish LOP is interested in solving:

$$
\text { USER-I } \max \left\{U_{p}\left(x_{p}\right)-\hat{\mu}_{p} x_{p}: x_{p} \geq 0\right\}
$$

ASSUMPTION 2

LOPs control negligible fractions of frequency and are price takers (accept announced prices as constant)

The selfish solution $\tilde{x}_{p} \geq 0$ of USER-I satisfies

$$
U_{p}^{\prime}\left(\tilde{x}_{p}\right)=\hat{\mu}_{p}=\hat{\lambda}^{T} \cdot R_{\star, p}
$$

\Rightarrow the vector of selfish frequencies $\tilde{\mathbf{x}}$ satisfies the first (hard) set of equalities of KKT-SOCIAL

Exploiting the Selfishness of LOPs

Each selfish LOP is interested in solving:

$$
\text { USER-I } \max \left\{U_{p}\left(x_{p}\right)-\hat{\mu}_{p} x_{p}: x_{p} \geq 0\right\}
$$

ASSUMPTION 2

LOPs control negligible fractions of frequency and are price takers (accept announced prices as constant)
$\because \quad$ The selfish solution $\tilde{x}_{p} \geq 0$ of USER-I satisfies

$$
U_{p}^{\prime}\left(\tilde{x}_{p}\right)=\hat{\mu}_{p}=\hat{\lambda}^{T} \cdot R_{\star, p}
$$

\Rightarrow the vector of selfish frequencies $\tilde{\mathbf{x}}$ satisfies the first (hard) set of equalities of KKT-SOCIAL

The optimal vector $\hat{\lambda}$ of Lagrange multipliers is also not known

Dynamic Pricing Scheme

Iteratively:
(1) Each LOP $p \in P$ (rather than requesting a frequency x_{p}) announces a bid $w_{p} \geq 0$ for buying frequency

Dynamic Pricing Scheme

Iteratively:
(1) Each LOP $p \in P$ (rather than requesting a frequency x_{p}) announces a bid $w_{p} \geq 0$ for buying frequency
(2) NOP considers the following program, with strictly concave pseudo-utilities

$$
\text { NETWORK } \max \{\sum_{p \in P} \overbrace{U_{p}\left(x_{p}\right)}^{w_{p} \cdot \log \left(x_{p}\right)}: R \mathbf{x} \leq \mathbf{c} ; \mathbf{x} \geq \mathbf{0}\}
$$

whose optimal Lagrange Multipliers vector $\bar{\lambda}$ determines the per-unit-prices of the resources

Dynamic Pricing Scheme

Iteratively:
(1) Each LOP $p \in P$ (rather than requesting a frequency x_{p}) announces a bid $w_{p} \geq 0$ for buying frequency
(2) NOP considers the following program, with strictly concave pseudo-utilities

$$
\text { NETWORK } \quad \max \{\sum_{p \in P} \overbrace{U_{p}\left(x_{p}\right)}^{w_{p} \cdot \log \left(x_{p}\right)}: R \mathbf{x} \leq \mathbf{c} ; \mathbf{x} \geq \mathbf{0}\}
$$

whose optimal Lagrange Multipliers vector $\bar{\lambda}$ determines the per-unit-prices of the resources
(3) Allocation of frequencies to LOPs: $\forall p \in P, \bar{x}_{p}=\frac{w_{p}}{\bar{\mu}_{p}}$
$\bar{\mu}_{p} \equiv \sum_{\ell \in L: R_{\ell, p}=1} \bar{\lambda}_{\ell}=\bar{\lambda}^{T} \cdot R_{\star, p}$ is the total price of p committing a unit of traffic along her line $R_{\star, p}$

An Alternative Description of NETWORK

$$
\text { NETWORK } \max \left\{\sum_{p \in P} w_{p} \cdot \log \left(x_{p}\right): R \mathbf{x} \leq \mathbf{c} ; \mathbf{x} \geq \mathbf{0}\right\}
$$

KKT-NETWORK

$$
\begin{aligned}
\frac{w_{p}}{\bar{x}_{p}} & =\bar{\lambda}^{T} \cdot R_{\star, p}, \quad \forall p \in P, \\
\bar{\lambda}_{\ell}\left(c_{\ell}-R_{\ell, \star} \cdot \overline{\mathbf{x}}\right) & =0, \quad \forall \ell \in L \\
R_{\ell, \star} \cdot \overline{\mathbf{x}} & \leq c_{\ell}, \quad \forall \ell \in L \\
\bar{\lambda}, \overline{\mathbf{x}} & \geq \mathbf{0}
\end{aligned}
$$

What remains?

The only difference between KKT-NETWORK and KKT-SOCIAL is the first condition:

$$
\begin{aligned}
\text { KKT-NETWORK } & \begin{aligned}
\frac{w_{p}}{\bar{x}_{p}} & = \\
\text { vs. } & \bar{\lambda}^{T} \cdot R_{\star, p}, \quad \forall p \in P \\
\text { KKT-SOCIAL } & U_{p}^{\prime}\left(\hat{x}_{p}\right)
\end{aligned}=\quad \hat{\lambda}^{T} \cdot R_{\star, p}, \quad \forall p \in P
\end{aligned}
$$

What remains?

The only difference between KKT-NETWORK and KKT-SOCIAL is the first condition:

$$
\text { KKT-NETWORK } \quad \frac{w_{p}}{\bar{x}_{p}}=\bar{\lambda}^{T} \cdot R_{\star, p}, \quad \forall p \in P
$$

vs.

$$
\text { KKT-SOCIAL } U_{p}^{\prime}\left(\hat{x}_{p}\right)=\hat{\lambda}^{T} \cdot R_{\star, p}, \quad \forall p \in P
$$

Prove that the optimal solution $(\overline{\mathbf{x}}, \bar{\lambda})$ of KKT-NETWORK satisfies

$$
\forall p \in P, \quad U_{p}^{\prime}\left(\bar{x}_{p}\right)=\frac{w_{p}}{\bar{x}_{p}}
$$

Exploiting (again) the Selfishness of LOPs

At each time $t \geq 0$, LOP $p \in P$ is interested in solving:
USER-II $\max \{U_{p}(\underbrace{w_{p} / \mu_{p}(t)}_{=x_{p}(t)})-w_{p}: w_{p} \geq 0\}$

Exploiting (again) the Selfishness of LOPs

At each time $t \geq 0$, LOP $p \in P$ is interested in solving:

$$
\text { USER-II } \max \{U_{p}(\underbrace{w_{p} / \mu_{p}(t)}_{=x_{p}(t)})-w_{p}: w_{p} \geq 0\}
$$

- Given the price taking property, the selfish solution $\tilde{w}_{p}(t)$ satisfies:

$$
(*) \forall p \in P, \frac{1}{\mu_{p}(t)} \cdot U_{p}^{\prime}\left(\frac{\tilde{w}_{p}(t)}{\mu_{p}(t)}\right)=1 \Leftrightarrow U_{p}^{\prime}\left(\tilde{x}_{p}(t)\right)=\frac{\tilde{w}_{p}(t)}{\tilde{x}_{p}(t)}
$$

Exploiting (again) the Selfishness of LOPs

At each time $t \geq 0$, LOP $p \in P$ is interested in solving:

$$
\text { USER-II } \max \{U_{p}(\underbrace{w_{p} / \mu_{p}(t)}_{=x_{p}(t)})-w_{p}: w_{p} \geq 0\}
$$

- Given the price taking property, the selfish solution $\tilde{w}_{p}(t)$ satisfies:

$$
(*) \forall p \in P, \frac{1}{\mu_{p}(t)} \cdot U_{p}^{\prime}\left(\frac{\tilde{w}_{p}(t)}{\mu_{p}(t)}\right)=1 \Leftrightarrow U_{p}^{\prime}\left(\tilde{x}_{p}(t)\right)=\frac{\tilde{w}_{p}(t)}{\tilde{x}_{p}(t)}
$$

At equilibrium we have: KKT-NETWORK KKT-SOCIAL !!!

Single line Pool - Recap

- At equilibrium KKT-NETWORK $=$ KKT-SOCIAL
- Crucial point: set the "right" resource prices and the "right" bids will follow

Single line Pool - Recap

- At equilibrium KKT-NETWORK $=$ KKT-SOCIAL
- Crucial point: set the "right" resource prices and the "right" bids will follow
- Avoid solving globally NETWORK (although, in principle we could)

How to Distributively Solve NETWORK

Kelly's Proportionally Fair Pricing

At every time step $t \geq 0$:
(1) Every resource $\ell \in L$ updates its per-unit-of-frequency (anonymous) price according to

$$
\dot{\lambda}_{\ell}(t)= \begin{cases}\max \left\{y_{\ell}(t)-c_{\ell}, 0\right\}, & \text { if } \lambda_{\ell}(t)=0, \\ \left(y_{\ell}(t)-c_{\ell}\right), & \text { if } \lambda_{\ell}(t)>0 .\end{cases}
$$

where $y_{\ell}(t) \equiv \sum_{p \in R: R_{\ell, p}=1} x_{p}(t)=R_{\ell, \star} \cdot \mathbf{x}(\mathbf{t})$ is the cumulative frequency committed at edge $\ell \in L$ at time t

How to Distributively Solve NETWORK

Kelly's Proportionally Fair Pricing

At every time step $t \geq 0$:
(1) Every resource $\ell \in L$ updates its per-unit-of-frequency (anonymous) price according to

$$
\dot{\lambda}_{\ell}(t)= \begin{cases}\max \left\{y_{\ell}(t)-c_{\ell}, 0\right\}, & \text { if } \lambda_{\ell}(t)=0, \\ \left(y_{\ell}(t)-c_{\ell}\right), & \text { if } \lambda_{\ell}(t)>0 .\end{cases}
$$

where $y_{\ell}(t) \equiv \sum_{p \in R: R_{\ell, p}=1} x_{p}(t)=R_{\ell, \star} \cdot \mathbf{x}(\mathbf{t})$ is the cumulative frequency committed at edge $\ell \in L$ at time t
(2) Each LOP announces her current bid $w_{p}(t)$ for buying frequency over her own line, as a solution to USER-II

How to Distributively Solve NETWORK

Kelly's Proportionally Fair Pricing

At every time step $t \geq 0$:
(1) Every resource $\ell \in L$ updates its per-unit-of-frequency (anonymous) price according to

$$
\dot{\lambda}_{\ell}(t)= \begin{cases}\max \left\{y_{\ell}(t)-c_{\ell}, 0\right\}, & \text { if } \lambda_{\ell}(t)=0, \\ \left(y_{\ell}(t)-c_{\ell}\right), & \text { if } \lambda_{\ell}(t)>0 .\end{cases}
$$

where $y_{\ell}(t) \equiv \sum_{p \in R: R_{\ell, p}=1} x_{p}(t)=R_{\ell, \star} \cdot \mathbf{x}(\mathbf{t})$ is the cumulative frequency committed at edge $\ell \in L$ at time t
(2) Each LOP announces her current bid $w_{p}(t)$ for buying frequency over her own line, as a solution to USER-II
(3) Each LOP $p \in P$ receives a per-unit-of-frequency price $\mu_{p}(t) \equiv \sum_{\ell \in L: R_{\ell, p}=1} \lambda_{\ell}(t)=\lambda(\mathbf{t})^{T} \cdot R_{\star, p}$
and thus a frequency $x_{p}(t)=\frac{w_{p}(t)}{\mu_{p}(t)}$, at time t

How to Prove Convergence?

Via a Lyapunov Function argument (plus full rank of R) we can prove convergence to the optimal solution $(\overline{\mathbf{x}}, \bar{\lambda})=(\hat{\mathbf{x}}, \hat{\lambda})$ of both NETWORK and SOCIAL

Multiple Line Pools

- The NOP can ...
- periodically exploit a set K of line pools
- determine how to divide the usage of the network among the different pools
- Each line pool operates in disjoint time intervals (time division multiplexing)
- Every LOP p ...
- can claim different lines from different line pools
- has a different utility function $U_{p, k}$ per line pool k

Multiple Line Pools (set K)

- Pool $k \in K$: routing matrix $R(k) \in\{0,1\}^{|L| x|P|}$ (one line per LOP per pool)

Multiple Line Pools (set K)

- Pool $k \in K$: routing matrix $R(k) \in\{0,1\}^{|L| x|P|}$ (one line per LOP per pool)
- Capacity vector $\mathbf{c} \in\left(\mathbb{R}_{\geq 0}\right)^{|L|}$: max frequency over whole time period

Multiple Line Pools (set K)

- Pool $k \in K$: routing matrix $R(k) \in\{0,1\}^{|L| x|P|}$ (one line per LOP per pool)
- Capacity vector $\mathbf{c} \in\left(\mathbb{R}_{\geq 0}\right)^{|L|}$: max frequency over whole time period
- $x_{p, k}$: frequency granted to LOP p along her line within pool k

Multiple Line Pools (set K)

- Pool $k \in K$: routing matrix $R(k) \in\{0,1\}^{|L| x|P|}$ (one line per LOP per pool)
- Capacity vector $\mathbf{c} \in\left(\mathbb{R}_{\geq 0}\right)^{|L|}$: max frequency over whole time period
- $x_{p, k}$: frequency granted to LOP p along her line within pool k
- $f_{k}, k \in K$: proportion consumed (from the capacity of each edge) by pool k over the whole time period (determined by NOP)

Multiple Line Pools (set K)

- Pool $k \in K$: routing matrix $R(k) \in\{0,1\}^{|L| x|P|}$ (one line per LOP per pool)
- Capacity vector $\mathbf{c} \in\left(\mathbb{R}_{\geq 0}\right)^{|L|}$: max frequency over whole time period
- $x_{p, k}$: frequency granted to LOP p along her line within pool k
- $f_{k}, k \in K$: proportion consumed (from the capacity of each edge) by pool k over the whole time period (determined by NOP)
- Find the (unique) optimal solution of the convex program:

MULTI-SOCIAL-2 (MSC2)

$$
\begin{aligned}
\max & \sum_{p \in P} U_{p}\left(\mathbf{x}_{p}\right)=\sum_{p \in P} \sum_{k \in K} U_{p, k}\left(x_{p, k}\right) \\
\text { s.t. } \forall(\ell, k) \in L \times K, & \sum_{p \in P} R_{\ell, p}(k) \cdot x_{p, k} \leq c_{\ell, k} \cdot f_{k} \\
& \sum_{k \in K} f_{k} \leq 1 ; \mathbf{x}, \mathbf{f} \geq \mathbf{0}
\end{aligned}
$$

An Alternative Description of MSC2

- $(\hat{\mathbf{x}}, \hat{\mathbf{f}}) \in O P T(M S C 2) \Rightarrow \exists$ vector of Lagrange Multipliers $\left(\hat{\Lambda}=\left(\hat{\Lambda}_{\ell, k}\right)_{\ell \in L, k \in K}, \hat{\zeta}\right)$, satisfying the Karush-Kuhn-Tucker conditions:

An Alternative Description of MSC2

- $(\hat{\mathbf{x}}, \hat{\mathbf{f}}) \in O P T(M S C 2) \Rightarrow \exists$ vector of Lagrange Multipliers $\left(\hat{\Lambda}=\left(\hat{\Lambda}_{\ell, k}\right)_{\ell \in L, k \in K}, \hat{\zeta}\right)$, satisfying the Karush-Kuhn-Tucker conditions:

KKT-MSC2

$\Lambda_{\ell, k}:$ per-unit-of-frequency price

$$
\begin{aligned}
U_{p, k}^{\prime}\left(\hat{x}_{p, k}\right)=\sum_{\ell \in L} \hat{\Lambda}_{\ell, k} \cdot R_{\ell, p}(k) & \equiv \mu_{p, k}(\hat{\Lambda}),(p, k) \in P \times K \\
\sum_{\ell \in L} \hat{\Lambda}_{\ell, k} \cdot c_{\ell} & =\hat{\zeta}, k \in K \\
\hat{\Lambda}_{\ell, k}\left[\sum_{p \in P} R_{\ell, p}(k) \cdot \hat{x}_{p, k}-c_{\ell} \hat{f}_{k}\right] & =0,(\ell, k) \in L \times K \\
\hat{\zeta} \cdot\left(\sum_{k \in K} \hat{f}_{k}-1\right) & =0 \\
\sum_{p \in P} R(k)_{\ell, p} \cdot \hat{x}_{p, k} & \leq c_{\ell} \cdot \hat{f}_{k},(\ell, k) \in L \times K \\
\sum_{k \in K} \hat{f}_{k} & \leq 1 \\
\hat{\mathbf{x}}, \hat{\mathbf{f}}, \hat{\Lambda}, \hat{\zeta} & \geq \mathbf{0}
\end{aligned}
$$

An Alternative Description of MSC2

- $(\hat{\mathbf{x}}, \hat{\mathbf{f}}) \in O P T(M S C 2) \Rightarrow \exists$ vector of Lagrange Multipliers $\left(\hat{\Lambda}=\left(\hat{\Lambda}_{\ell, k}\right)_{\ell \in L, k \in K}, \hat{\zeta}\right)$, satisfying the Karush-Kuhn-Tucker conditions:

KKT-MSC2

$\Lambda_{\ell, k}$: per-unit-of-frequency price Per-unit cost of LOP p in pool k

$$
\begin{aligned}
U_{p, k}^{\prime}\left(\hat{x}_{p, k}\right)=\sum_{\ell \in L} \hat{\Lambda}_{\ell, k} \cdot R_{\ell, p}(k) & \equiv \mu_{p, k}(\hat{\Lambda}),(p, k) \in P \times K \\
\sum_{\ell \in L} \hat{\Lambda}_{\ell, k} \cdot c_{\ell} & =\hat{\zeta}, k \in K \\
\hat{\Lambda}_{\ell, k}\left[\sum_{p \in P} R_{\ell, p}(k) \cdot \hat{x}_{p, k}-c_{\ell} \hat{f}_{k}\right] & =0,(\ell, k) \in L \times K \\
\hat{\zeta} \cdot\left(\sum_{k \in K} \hat{f}_{k}-1\right) & =0 \\
\sum_{p \in P} R(k)_{\ell, p} \cdot \hat{x}_{p, k} & \leq c_{\ell} \cdot \hat{f}_{k},(\ell, k) \in L \times K \\
\sum_{k \in K} \hat{f}_{k} & \leq 1 \\
\hat{\mathbf{x}}, \hat{\mathbf{f}}, \hat{\Lambda}, \hat{\zeta} & \geq \mathbf{0}
\end{aligned}
$$

An Alternative Description of MSC2

- $(\hat{\mathbf{x}}, \hat{\mathbf{f}}) \in O P T(M S C 2) \Rightarrow \exists$ vector of Lagrange Multipliers $\left(\hat{\Lambda}=\left(\hat{\Lambda}_{\ell, k}\right)_{\ell \in L, k \in K}, \hat{\zeta}\right)$, satisfying the Karush-Kuhn-Tucker conditions:

KKT-MSC2

$\Lambda_{\ell, k}:$ per-unit-of-frequency price All pools have same aggregate cost

$$
\begin{aligned}
U_{p, k}^{\prime}\left(\hat{x}_{p, k}\right)=\sum_{\ell \in L} \hat{\Lambda}_{\ell, k} \cdot R_{\ell, p}(k) & \equiv \mu_{p, k}(\hat{\Lambda}),(p, k) \in P \times K \\
\sum_{\ell \in L} \hat{\Lambda}_{\ell, k} \cdot c_{\ell} & =\hat{\zeta}, k \in K \\
\hat{\Lambda}_{\ell, k}\left[\sum_{p \in P} R_{\ell, p}(k) \cdot \hat{x}_{p, k}-c_{\ell} \hat{f}_{k}\right] & =0,(\ell, k) \in L \times K \\
\hat{\zeta} \cdot\left(\sum_{k \in K} \hat{f}_{k}-1\right) & =0 \\
\sum_{p \in P} R(k)_{\ell, p} \cdot \hat{x}_{p, k} & \leq c_{\ell} \cdot \hat{f}_{k},(\ell, k) \in L \times K \\
\sum_{k \in K} \hat{f}_{k} & \leq 1 \\
\hat{\mathbf{x}}, \hat{\mathbf{f}}, \hat{\boldsymbol{\Lambda}}, \hat{\zeta} & \geq \mathbf{0}
\end{aligned}
$$

An Alternative Description of MSC2

- $(\hat{\mathbf{x}}, \hat{\mathbf{f}}) \in O P T(M S C 2) \Rightarrow \exists$ vector of Lagrange Multipliers $\left(\hat{\Lambda}=\left(\hat{\Lambda}_{\ell, k}\right)_{\ell \in L, k \in K}, \hat{\zeta}\right)$, satisfying the Karush-Kuhn-Tucker conditions:

KKT-MSC2

$\Lambda_{\ell, k}:$ per-unit-of-frequency price Network is totally distributed among pools

$$
\begin{aligned}
U_{p, k}^{\prime}\left(\hat{x}_{p, k}\right)=\sum_{\ell \in L} \hat{\Lambda}_{\ell, k} \cdot R_{\ell, p}(k) & \equiv \mu_{p, k}(\hat{\Lambda}),(p, k) \in P \times K \\
\sum_{\ell \in L} \hat{\Lambda}_{\ell, k} \cdot c_{\ell} & =\hat{\zeta}, k \in K \\
\hat{\Lambda}_{\ell, k}\left[\sum_{p \in P} R_{\ell, p}(k) \cdot \hat{x}_{p, k}-c_{\ell} \hat{f}_{k}\right] & =0,(\ell, k) \in L \times K \\
\hat{\zeta} \cdot\left(\sum_{k \in K} \hat{f}_{k}-1\right) & =0 \\
\sum_{p \in P} R(k)_{\ell, p} \cdot \hat{x}_{p, k} & \leq c_{\ell} \cdot \hat{f}_{k},(\ell, k) \in L \times K \\
\sum_{k \in K} \hat{f}_{k} & \leq 1 \\
\hat{\mathbf{x}}, \hat{\mathbf{f}}, \hat{\Lambda}, \hat{\zeta} & \geq \mathbf{0}
\end{aligned}
$$

Pricing Scheme

(1) Each LOP $p \in P$ announces a bid $w_{p, k} \geq 0$ for buying frequency in pool $k \in K$

Pricing Scheme

(1) Each LOP $p \in P$ announces a bid $w_{p, k} \geq 0$ for buying frequency in pool $k \in K$
(2) NOP considers the following program, with strictly concave pseudo-utilities, whose optimal Lagrange Multipliers vector $\bar{\Lambda}$ determines the per-unit-prices of the resources in the pools

MNET2

$\max . \quad \sum_{p \in P} \sum_{k \in K} \overbrace{U_{p, k}\left(x_{p, k}\right)}^{w_{p, k} \cdot \log \left(x_{p, k}\right)}$
s.t. $\forall(\ell, k) \in L \times K, \quad \sum_{p \in P} R(k)_{\ell, p} \cdot x_{p, k} \leq c_{\ell, k} \cdot f_{k} ; \sum_{k \in K} f_{k} \leq 1 ; \mathbf{f}, \mathbf{x} \geq \mathbf{0}$

Pricing Scheme

(1) Each LOP $p \in P$ announces a bid $w_{p, k} \geq 0$ for buying frequency in pool $k \in K$
(2) NOP considers the following program, with strictly concave pseudo-utilities, whose optimal Lagrange Multipliers vector $\bar{\Lambda}$ determines the per-unit-prices of the resources in the pools

MNET2

$\max . \quad \sum_{p \in P} \sum_{k \in K} \overbrace{U_{p, k}\left(x_{p, k}\right)}^{w_{p, k} \cdot \log \left(x_{p, k}\right)}$
s.t. $\forall(\ell, k) \in L \times K, \quad \sum_{p \in P} R(k)_{\ell, p} \cdot x_{p, k} \leq c_{\ell, k} \cdot f_{k} ; \sum_{k \in K} f_{k} \leq 1 ; \mathbf{f}, \mathbf{x} \geq \mathbf{0}$
(8) Allocation of frequencies to LOPs: $\forall p \in P, \forall k \in K, \bar{x}_{p, k}=\frac{w_{p, k}}{\bar{\mu}_{p, k}}$
$\bar{\mu}_{p, k} \equiv \sum_{\ell \in L} \bar{\Lambda}_{\ell, k} \cdot R_{\ell, p}(k)$ is the total price of p for committing a unit of traffic along her line in pool $k \in K$

An Alternative Description of MNET2

- $(\overline{\mathbf{x}}, \overline{\mathbf{f}}) \in O P T($ MNET2 $) \Rightarrow \exists$ vector of Lagrange Multipliers $\left(\bar{\Lambda}=\left(\bar{\Lambda}_{\ell, k}\right)_{\ell \in L, k \in K}, \bar{\zeta}\right)$, satisfying the Karush-Kuhn-Tucker conditions:

An Alternative Description of MNET2

- $(\overline{\mathbf{x}}, \overline{\mathbf{f}}) \in O P T($ NET $) \Rightarrow \exists$ vector of Lagrange Multipliers $\left(\bar{\Lambda}=\left(\bar{\Lambda}_{\ell, k}\right)_{\ell \in L, k \in K}, \bar{\zeta}\right)$, satisfying the Karush-Kuhn-Tucker conditions:

KKT-MNET2

$$
\begin{aligned}
\overbrace{U_{p, k}\left(\bar{x}_{p, k}\right)}^{\frac{w_{p, k}}{\bar{x}_{p, k}}}=\sum_{\ell \in L} \bar{\Lambda}_{\ell, k} \cdot R_{\ell, p}(k) & \equiv \bar{\mu}_{p, k},(p, k) \in P \times K \\
\sum_{\ell \in L} \bar{\Lambda}_{\ell, k} \cdot c_{\ell} & =\bar{\zeta}, k \in K \\
\bar{\Lambda}_{\ell, k}\left[\sum_{p \in P} R_{\ell, p}(k) \cdot \bar{x}_{p, k}-c_{\ell} \bar{f}_{k}\right] & =0,(\ell, k) \in L \times K \\
\bar{\zeta} \cdot\left(\sum_{k \in K} \bar{f}_{k}-1\right) & =0 \\
\sum_{p \in P} R(k)_{\ell, p} \cdot \bar{x}_{p, k} & \leq c_{\ell} \cdot \bar{f}_{k},(\ell, k) \in L \times K \\
\sum_{k \in K} \bar{f}_{k} & \leq 1 \\
\overline{\mathbf{x}}, \overline{\mathbf{f}}, \bar{\Lambda}, \bar{\zeta} & \geq \mathbf{0}
\end{aligned}
$$

An Alternative Description of MNET2

- $(\bar{x}, \overline{\mathbf{f}}) \in O P T(M N E T 2) \Rightarrow \exists$ vector of Lagrange Multipliers $\left(\bar{\Lambda}=\left(\bar{\Lambda}_{\ell, k}\right)_{\ell \in L, k \in K}, \bar{\zeta}\right)$, satisfying the Karush-Kuhn-Tucker conditions:

KKT-MNET2

The only difference with KKT-MSC2

$$
\begin{aligned}
\overbrace{U_{p, k}\left(\bar{x}_{p, k}\right)}^{\frac{x_{p}, k}{x_{p, k}}}=\sum_{\ell \in L} \bar{\Lambda}_{\ell, k} \cdot R_{\ell, p}(k) & \equiv \bar{\mu}_{p, k},(p, k) \in P \times K \\
\sum_{\ell \in L} \bar{\Lambda}_{\ell, k} \cdot c_{\ell} & =\bar{\zeta}, k \in K \\
\bar{\Lambda}_{\ell, k}\left[\sum_{p \in P} R_{\ell, p}(k) \cdot \bar{x}_{\rho, k}-c_{\ell} \bar{f}_{k}\right] & =0,(\ell, k) \in L \times K \\
\bar{\zeta} \cdot\left(\sum_{k \in K} \bar{f}_{k}-1\right) & =0 \\
\sum_{p \in P} R(k)_{\ell, p} \cdot \bar{x}_{\rho, k} & \leq c_{\ell} \cdot \bar{f}_{k},(\ell, k) \in L \times K \\
\sum_{k \in K} \bar{f}_{k} & \leq 1 \\
\overline{\mathbf{x}}, \overline{\mathbf{f}}, \bar{\Lambda}, \bar{\zeta}, \bar{\zeta} & \geq \mathbf{0}
\end{aligned}
$$

Multiple Line Pools

- Selfishness of LOPs \Rightarrow at equilibrium KKT-MS2 $=$ KKT-MNET2

Multiple Line Pools

- Selfishness of LOPs \Rightarrow at equilibrium KKT-MS2 $=$ KKT-MNET2

KEY PROPERTIES

(1) The NOP completely divides the infrastructure among the pools
(2) For any fixed f (that completely divides the infrastructure among the pools) the optimal value of KKT-MSC2 depends exclusively on the optimal $\bar{\Lambda}$

Multiple Line Pools

- Selfishness of LOPs \Rightarrow at equilibrium KKT-MS2 $=$ KKT-MNET2

KEY PROPERTIES

(1) The NOP completely divides the infrastructure among the pools
(2) For any fixed f (that completely divides the infrastructure among the pools) the optimal value of KKT-MSC2 depends exclusively on the optimal $\bar{\Lambda}$

- KEY PROPERTIES \Rightarrow dynamic (decentralized) scheme for solving KKT-MNET2

Dynamic Scheme for solving MNET2

At every time step $t \geq 0$:
(1) Resource price updates (by the resources, per pool, continuously):

$$
\forall(\ell, k) \in L \times K, \dot{\Lambda}_{\ell, k}(t)= \begin{cases}\max \left\{y_{\ell, k}(t)-c_{\ell} f_{k}, 0\right\}, & \text { if } \Lambda_{\ell, k}(t)=0 \\ {\left[y_{\ell, k}(t)-c_{\ell} f_{k}\right],} & \text { if } \Lambda_{\ell, k}(t)>0\end{cases}
$$

Dynamic Scheme for solving MNET2

At every time step $t \geq 0$:
(1) Resource price updates (by the resources, per pool, continuously):

$$
\forall(\ell, k) \in L \times K, \dot{\Lambda}_{\ell, k}(t)= \begin{cases}\max \left\{y_{\ell, k}(t)-c_{\ell} f_{k}, 0\right\}, & \text { if } \Lambda_{\ell, k}(t)=0 \\ {\left[y_{\ell, k}(t)-c_{\ell} f_{k}\right],} & \text { if } \Lambda_{\ell, k}(t)>0\end{cases}
$$

(2) LOP bid updates (only when resource prices have stabilized):

$$
\forall p \in P, w_{p}(t) \in \arg \max _{\mathbf{w}_{p} \geq 0}\left\{\sum_{k \in K}\left(U_{p, k}\left(\frac{w_{p, k}}{\bar{\mu}_{p, k}}\right)-w_{p, k}\right)\right\}
$$

Dynamic Scheme for solving MNET2

At every time step $t \geq 0$:
(1) Resource price updates (by the resources, per pool, continuously):

$$
\forall(\ell, k) \in L \times K, \dot{\Lambda}_{\ell, k}(t)= \begin{cases}\max \left\{y_{\ell, k}(t)-c_{\ell} f_{k}, 0\right\}, & \text { if } \Lambda_{\ell, k}(t)=0 \\ {\left[y_{\ell, k}(t)-c_{\ell} f_{k}\right],} & \text { if } \Lambda_{\ell, k}(t)>0\end{cases}
$$

(2) LOP bid updates (only when resource prices have stabilized):

$$
\forall p \in P, w_{p}(t) \in \arg \max _{\mathbf{w}_{p} \geq 0}\left\{\sum_{k \in K}\left(U_{p, k}\left(\frac{w_{p, k}}{\bar{\mu}_{p, k}}\right)-w_{p, k}\right)\right\}
$$

(3) Allocation of path frequencies: $\forall p \in P, \mathbf{x}_{p}(t)=\left(\frac{\bar{w}_{p, k}(t)}{\bar{\mu}_{p, k}(t)}\right)_{k \in K}$

Dynamic Scheme for solving MNET2

At every time step $t \geq 0$:
(1) Resource price updates (by the resources, per pool, continuously):

$$
\forall(\ell, k) \in L \times K, \dot{\Lambda}_{\ell, k}(t)= \begin{cases}\max \left\{y_{\ell, k}(t)-c_{\ell} f_{k}, 0\right\}, & \text { if } \Lambda_{\ell, k}(t)=0 \\ {\left[y_{\ell, k}(t)-c_{\ell} f_{k}\right],} & \text { if } \Lambda_{\ell, k}(t)>0\end{cases}
$$

(2) LOP bid updates (only when resource prices have stabilized):

$$
\forall p \in P, w_{p}(t) \in \arg \max _{\mathbf{w}_{p} \geq 0}\left\{\sum_{k \in K}\left(U_{p, k}\left(\frac{w_{p, k}}{\bar{\mu}_{p, k}}\right)-w_{p, k}\right)\right\}
$$

(3) Allocation of path frequencies: $\forall p \in P, \mathbf{x}_{p}(t)=\left(\frac{\bar{w}_{p, k}(t)}{\bar{\mu}_{p, k}(t)}\right)_{k \in K}$
(4) Capacity Proportion updates (by the NOP, only when resource prices and LOP bids have stabilized):

$$
\begin{aligned}
& \zeta(t)=\frac{1}{|K|} \sum_{k \in K} \mathbf{c}^{T} \cdot \Lambda_{\star, k}(t) \\
& \forall k \in K, \dot{f}_{k}(t)=\phi(t) \cdot \max \left\{0, \mathbf{c}^{T} \cdot \Lambda_{\star, k}(t)-\zeta(t)\right\}
\end{aligned}
$$

Experimental Study - Synthetic Data

- grid graphs $n \times p, n \in\{3,7\}, p \in[120,3600]$

Experimental Study - Synthetic Data

- grid graphs $n \times p, n \in\{3,7\}, p \in[120,3600]$
- $c_{\ell} \in[10,110)$ randomly chosen

Experimental Study - Synthetic Data

- grid graphs $n \times p, n \in\{3,7\}, p \in[120,3600]$
- $c_{\ell} \in[10,110)$ randomly chosen
- $|K| \in[2,4] ; 3$ types of LOPs

Experimental Study - Real Data

- Two parts of the German railway network; $c_{\ell} \in[8,16]$
- R1: 280 nodes, 354 edges, |total lines| $\in[100,400]$
- R2: 296 nodes, 393 edges, \mid total lines $\mid \in[100,1000]$

Experimental Study - Real Data

- Two parts of the German railway network; $c_{\ell} \in[8,16]$
- R1: 280 nodes, 354 edges, |total lines $\mid \in[100,400]$
- R2: 296 nodes, 393 edges, |total lines $\mid \in[100,1000]$
- Per instance
- $|K|=2$
- about 10\% difference in lines between the pools

1st Experiment: Convergence to OPT for [MPMU]

- Scenarios considered
- S1: $U_{p, 1}\left(x_{p, 1}\right)=10^{4} \sqrt{x_{p, 1}}$ and $U_{p, 2}\left(x_{p, 2}\right)=10^{4} \sqrt{x_{p, 2}}, \forall p \in P$.
- S2: $U_{p, 1}\left(x_{p, 1}\right)=\frac{3}{4} \cdot 10^{4} \cdot \sqrt{x_{p, 1}}$ and $U_{p, 2}\left(x_{p, 2}\right)=\frac{4}{5} \cdot 10^{4} \cdot \sqrt{x_{p, 2}}, \forall p \in P$.
- S3: $U_{p, 1}\left(x_{p, 1}\right)=10^{4} \cdot \sqrt{x_{p, 1}}$ and $U_{p, 2}\left(x_{p, 2}\right)=\frac{1}{2} \cdot 10^{4} \cdot \sqrt{x_{p, 2}}, \forall p \in P$.
- S4: $U_{p, 1}\left(x_{p, 1}\right)=10^{4} \cdot \sqrt{x_{p, 1}}$ and $U_{p, 2}\left(x_{p, 2}\right)=\frac{1}{4} \cdot 10^{4} \cdot \sqrt{x_{p, 2}}, \forall p \in P$.
- Measured quantity: number of updates in the vector f of capacity proportions (= \# [SP] instances need to be solved)

Results on [MPMU] Convergence

\# updates of f in R1 with two	\#Lines	S1	S2	S3	S4
line pools, for all four scenar-	100	9	33	127	178
ios	200	12	33	127	178
	300	19	29	128	178

Similar results for R2

Results on [MPMU] Convergence

\# updates of f in $R 1$ with two	\#Lines	S1	S2	S3	S4
line pools, for all four scenar-	100	9	33	127	178
ios	200	12	33	127	178
	300	19	29	128	178

Similar results for R2

Bottom Line for [MPMU] Convergence \# updates for convergence to OPT largely depends on the exact parameters of the utility functions, and not really on the number of pools

2nd Experiment: Disruptions in [MPMU]

- The system is currently at optimality
- How fast can it re-converge to optimality after a disruption?

2nd Experiment: Disruptions in [MPMU]

- The system is currently at optimality
- How fast can it re-converge to optimality after a disruption ?
- Disruption: Change (track breakdown, or improvement) in the capacities of some edges
- Disruption Scenarios:
- D1: Reducing the capacity of a certain number of edges (chosen among the congested ones)
- D2: Increasing the capacity of a certain number of edges (chosen among the congested ones)
- D3: Reducing the capacity of a certain number of edges, while increasing the capacity of an equal number of a different set of edges (chosen among the congested ones)
- Change in capacity of a disrupted edge: $\pm 10 \%$ or $\pm 50 \%$

Disruptions in the [MPMU] Case (I)

- Two pools considered (random for grid-networks, with 10\% difference from each other in R1)
- Measured quantity: number of updates in the LOPs' bid vectors
- Starting from previous OPT, no update in vector f of capacity proportions occurred

Disruptions in the [MPMU] Case (II)

\# updates of w to recover optimality in $7 \times p$ grid-networks, starting from a previous optimal state

Disruptions	p	D1	D2	D3
	120	0	0	0
	180	0	0	0
10%	240	0	0	0
	300	0	0	0
	360	0	0	0
	120	0	2	1
	180	0	2	0
50%	240	0	0	0
	300	0	1	2
	360	0	2	2

\# updates of w to recover optimality in R1, starting from a previous optimal state

Disruption	\#Lines	D1	D2	D3
	100	0	0	0
10%	200	0	0	0
	300	0	0	0
	100	0	0	0
50%	200	0	0	0
	300	0	0	0
	100	0	3	0
90%	200	0	2	2
	300	0	0	0

Disruptions in the [MPMU] Case (II)

\# updates of w to recover optimality in $7 \times p$ grid-networks, starting from a previous optimal state

Disruptions	p	D1	D2	D3
	120	0	0	0
	180	0	0	0
10%	240	0	0	0
	300	0	0	0
	360	0	0	0
	120	0	2	1
	180	0	2	0
50%	240	0	0	0
	300	0	1	2
	360	0	2	2

\# updates of w to recover optimality in R1, starting from a previous optimal state

Disruption	\#Lines	D1	D2	D3
	100	0	0	0
10%	200	0	0	0
	300	0	0	0
	100	0	0	0
50%	200	0	0	0
	300	0	0	0
	100	0	3	0
90%	200	0	2	2
	300	0	0	0

Bottom Line for disruptions in [MPMU]

Very rarely there is a need (for only a few) bid updates, after disruptions

Conclusion

- Incentive-compatible robust solutions for line planning ([SP],[MPMU])
- Robustness against unknown incentives
- Recoverability to (unknown) social optimum via dynamic, decentralized mechanism
- Experiments indicated
- Convergence (starting from arbitrary initial state): independent of \# pools, but sensitive to utility functions
- Very fast re-convergence to optimum in case of disruptions (starting from an optimal state)

Outline

(1) Robust Line Planning

(2) Time-Dependent Route Planning
(3) Summary

Raw traffic (speed probe) data

TOMTOM 世

Raw traffic (speed probe) data

TOMTOM 世

- 70 Million contributing users

Raw traffic (speed probe) data

TOMTOM 世

- 70 Million contributing users
- 4 Billion measurements per day

Raw traffic (speed probe) data

TOMTOM 世

- 70 Million contributing users
- 4 Billion measurements per day
- 5 Trillion measurements over 140 Billion Km

Raw traffic (speed probe) data

TOMTOM 世

- 70 Million contributing users
- 4 Billion measurements per day
- 5 Trillion measurements over 140 Billion Km
- every road segment measured 2000 times on average

Raw traffic (speed probe) data

TOMTOM 世

- 70 Million contributing users
- 4 Billion measurements per day
- 5 Trillion measurements over 140 Billion Km
- every road segment measured 2000 times on average
- measured speeds in 5-min intervals

Raw traffic (speed probe) data

TOMTOM 世

- 70 Million contributing users
- 4 Billion measurements per day
- 5 Trillion measurements over 140 Billion Km
- every road segment measured 2000 times on average
- measured speeds in 5-min intervals

Raw traffic (speed probe) data

тоmтOm 归

- 70 Million contributing users
- 4 Billion measurements per day
- 5 Trillion measurements over 140 Billion Km
- every road segment measured 2000 times on average
- measured speeds in 5-min intervals

Raw traffic (speed probe) data

томтоm ※゙゙

- 70 Million contributing users
- 4 Billion measurements per day
- 5 Trillion measurements over 140 Billion Km
- every road segment measured 2000 times on average
- measured speeds in 5 -min intervals

Main Issue: time-dependence

Time-Dependent Shortest Paths

Q1 How would you commute as fast as possible from o to d, for a given departure time (from o)?

Time-Dependent Shortest Paths

Q1 How would you commute as fast as possible from o to d, for a given departure time (from o)? Eg: $t_{o}=0$

Time-Dependent Shortest Paths

Q1 How would you commute as fast as possible from o to d, for a given departure time (from o)? Eg: $\quad t_{0}=1$

Time-Dependent Shortest Paths

Q1 How would you commute as fast as possible from o to d, for a given departure time (from o)?
Q2 What if you are not sure about the departure time?

Time-Dependent Shortest Paths

Q1 How would you commute as fast as possible from o to d, for a given departure time (from o)?
Q2 What if you are not sure about the departure time?

Time-Dependent Shortest Paths

Q1 How would you commute as fast as possible from o to d, for a given departure time (from o)?
Q2 What if you are not sure about the departure time?

Time-Dependent Shortest Paths

Q1 How would you commute as fast as possible from o to d, for a given departure time (from o)?

Q2 What if you are not sure about the departure time?

$$
\text { shortest od-path }= \begin{cases}\text { orange path, if } & t_{0} \in[0,0.03] \\ \text { yellow path, if } & t_{0} \in[0.03,2.9] \\ \text { purple path, if } & t_{0} \in[2.9,+\infty)\end{cases}
$$

Time-Dependent Shortest Paths

- Directed graph $G=(V, A), n=|V|$
- Arc travel-time (arc-delay) function $D[u v](t)$
- Arc arrival function $\operatorname{Arr}[u v](t)$

Time-Dependent Shortest Paths

- Directed graph $G=(V, A), n=|V|$
- Arc travel-time (arc-delay) function $D[u v](t)$
- Arc arrival function $\operatorname{Arr}[u v](t)$
- $P_{o, d}:$ od-paths; $p=\left(a_{1}, \ldots, a_{k}\right) \in P_{o, d}$
- Path arrival / travel-time functions

$$
\begin{aligned}
& \operatorname{Arr}[p]\left(t_{0}\right)=\operatorname{Arr}\left[a_{k}\right] \circ \cdots \circ \operatorname{Arr}\left[a_{1}\right]\left(t_{0}\right) \text { (composition) } \\
& D[p]\left(t_{0}\right)=\operatorname{Arr}[p]\left(t_{0}\right)-t_{0}
\end{aligned}
$$

Time-Dependent Shortest Paths

- Directed graph $G=(V, A), n=|V|$
- Arc travel-time (arc-delay) function $D[u v](t)$
- Arc arrival function $\operatorname{Arr}[u v](t)$
- $P_{o, d}$: od-paths; $p=\left(a_{1}, \ldots, a_{k}\right) \in P_{o, d}$
- Path arrival / travel-time functions
$\operatorname{Arr}[p]\left(t_{0}\right)=\operatorname{Arr}\left[a_{k}\right] \circ \cdots \circ \operatorname{Arr}\left[a_{1}\right]\left(t_{0}\right)$ (composition)
$D[p]\left(t_{0}\right)=\operatorname{Arr}[p]\left(t_{0}\right)-t_{0}$
- Earliest-arrival / Shortest-travel-time functions
$\operatorname{Arr}[o, d]\left(t_{0}\right)=\min _{p \in P_{o, d}}\left\{\operatorname{Arr}[p]\left(t_{0}\right)\right\}$
$D[o, d]\left(t_{0}\right)=\operatorname{Arr}[o, d]\left(t_{0}\right)-t_{0}$

Time-Dependent Shortest Paths

- Directed graph $G=(V, A), n=|V|$
- Arc travel-time (arc-delay) function $D[u v](t)$
- Arc arrival function $\operatorname{Arr}[u v](t)$
- $P_{o, d}:$ od-paths; $p=\left(a_{1}, \ldots, a_{k}\right) \in P_{o, d}$
- Path arrival / travel-time functions

$$
\begin{aligned}
& \operatorname{Arr}[p]\left(t_{0}\right)=\operatorname{Arr}\left[a_{k}\right] \circ \cdots \circ \operatorname{Arr}\left[a_{1}\right]\left(t_{0}\right) \text { (composition) } \\
& D[p]\left(t_{0}\right)=\operatorname{Arr}[p]\left(t_{0}\right)-t_{0}
\end{aligned}
$$

- Earliest-arrival / Shortest-travel-time functions

$$
\begin{aligned}
& \operatorname{Arr}[o, d]\left(t_{0}\right)=\min _{p \in P_{o, d}}\left\{\operatorname{Arr}[p]\left(t_{0}\right)\right\} \\
& D[o, d]\left(t_{0}\right)=\operatorname{Arr}[o, d]\left(t_{0}\right)-t_{0}
\end{aligned}
$$

Goals

(1) For departure-time t_{0} from o, determine $t_{d}=\operatorname{Arr}[0, d]\left(t_{0}\right)$
(2) Provide a succinct representation of $\operatorname{Arr}[0, d]$ (or $D[o, d]$)

FIFO vs non-FIFO Arc Delays

- FIFO Arc-Delays: slopes of arc-delay functions ≥-1 \equiv non-decreasing arc-arrival functions

FIFO vs non-FIFO Arc Delays

- FIFO Arc-Delays: slopes of arc-delay functions ≥-1
\equiv non-decreasing arc-arrival functions
- Non-FIFO Arc-Delays
- Forbidden waiting: \nexists subpath optimality; NP-hard [Orda-Rom (1990)]
- Unrestricted waiting: = FIFO (arbitrary waiting) [Dreyfus (1969)]

Complexity of Time-Dependent Shortest Path
 FIFO, piecewise-linear arc-delay functions; K: total \# number of breakpoints

- Given od-pair and departure time t_{o} from o: time-dependent Dijkstra [Dreyfus (1969), Orda-Rom (1990)]

Complexity of Time-Dependent Shortest Path
 FIFO, piecewise-linear arc-delay functions; K: total \# number of breakpoints

- Given od-pair and departure time t_{o} from o: time-dependent Dijkstra [Dreyfus (1969), Orda-Rom (1990)]
- Time-dependent shortest path heuristics: only empirical evidence [e.g., Delling \& Wagner 2009; Batz etal, 2009]

Complexity of Time-Dependent Shortest Path
 FIFO, piecewise-linear arc-delay functions; K: total \# number of breakpoints

- Given od-pair and departure time t_{o} from o: time-dependent Dijkstra [Dreyfus (1969), Orda-Rom (1990)]
- Time-dependent shortest path heuristics: only empirical evidence [e.g., Delling \& Wagner 2009; Batz etal, 2009]
- Complexity of computing succinct representations??

Complexity of Time-Dependent Shortest Path
 FIFO, piecewise-linear arc-delay functions; K: total \# number of breakpoints

- Given od-pair and departure time t_{o} from o: time-dependent Dijkstra [Dreyfus (1969), Orda-Rom (1990)]
- Time-dependent shortest path heuristics: only empirical evidence [e.g., Delling \& Wagner 2009; Batz etal, 2009]
- Complexity of computing succinct representations ??
- Open till recently ...

Complexity of Time-Dependent Shortest Path

FIFO, piecewise-linear arc-delay functions; K: total \# number of breakpoints

- Given od-pair and departure time t_{0} from o : time-dependent Dijkstra [Dreyfus (1969), Orda-Rom (1990)]
- Time-dependent shortest path heuristics: only empirical evidence [e.g., Delling \& Wagner 2009; Batz etal, 2009]
- Complexity of computing succinct representations ??
- Open till recently ...
- $\operatorname{Arr}[0, d]: O\left((K+1) \cdot n^{\Theta(\log (n))}\right)$ space [Foschini-Hershberger-Suri (2011)]

Complexity of Time-Dependent Shortest Path

FIFO, piecewise-linear arc-delay functions; K: total \# number of breakpoints

- Given od-pair and departure time t_{0} from o : time-dependent Dijkstra [Dreyfus (1969), Orda-Rom (1990)]
- Time-dependent shortest path heuristics: only empirical evidence [e.g., Delling \& Wagner 2009; Batz etal, 2009]
- Complexity of computing succinct representations ??
- Open till recently ...
- $\operatorname{Arr}[0, d]: O\left((K+1) \cdot n^{\Theta(\log (n))}\right)$ space [Foschini-Hershberger-Suri (2011)]

Exact Succinct Representation

Why so high complexity ?

- Primitive Breakpoint (PB): Departure-time $b_{x y}$ from x at which Arr[xy] changes slope

Exact Succinct Representation

Why so high complexity ?

- Primitive Breakpoint (PB): Departure-time $b_{x y}$ from x at which Arr[xy] changes slope
- Minimization Breakpoint (MB): Departure-time b_{x} from origin o such that $\operatorname{Arr}[0, x]$ changes slope due to min operator at x

Complexity of Time-Dependent Shortest Path

FIFO, piecewise-linear arc-delay functions; K: total \# number of breakpoints

- Given od-pair and departure time t_{0} from o : time-dependent Dijkstra [Dreyfus (1969), Orda-Rom (1990)]
- Time-dependent shortest path heuristics: only empirical evidence [e.g., Delling \& Wagner 2009; Batz etal, 2009]
- Complexity of computing succinct representations ??
- Open till recently ...
- $\operatorname{Arr}[0, d]: O\left((K+1) \cdot n^{\Theta(\log (n))}\right)$ space [Foschini-Hershberger-Suri (2011)]
- $D[o, d]: O(K+1)$ space for point-to-point $(1+\varepsilon)$-approximation [Dehne-Omran-Sack (2010), Foschini-Hershberger-Suri (2011)]

Complexity of Time-Dependent Shortest Path

FIFO, piecewise-linear arc-delay functions; K: total \# number of breakpoints

- Question 1: \exists data structure (distance oracle) that
- requires reasonable space ?
- allows answering distance queries efficiently ?

Complexity of Time-Dependent Shortest Path

FIFO, piecewise-linear arc-delay functions; K: total \# number of breakpoints

- Question 1: \exists data structure (distance oracle) that
- requires reasonable space ?
- allows answering distance queries efficiently ?
- Trivial solution I: Precompute all $(1+\varepsilon)$-approximate distance summaries for every od-pair
$\ddot{O} \mathrm{O}\left(n^{2}(K+1)\right)$ space
$\cdots \mathrm{O}(\log \log (K))$ query time
. $(1+\varepsilon)$-stretch

Complexity of Time-Dependent Shortest Path

FIFO, piecewise-linear arc-delay functions; K: total \# number of breakpoints

- Question 1: \exists data structure (distance oracle) that
- requires reasonable space ?
- allows answering distance queries efficiently ?
- Trivial solution I: Precompute all $(1+\varepsilon)$-approximate distance summaries for every od-pair
$\ddot{O} \mathrm{O}\left(n^{2}(K+1)\right)$ space
- $\mathrm{O}(\log \log (K))$ query time
: $(1+\varepsilon)$-stretch
- Trivial solution II: No preprocessing, respond to queries with TD-Dijkstra
© $\mathrm{O}(n+m+K)$ space
: $\mathrm{O}([m+n \log (n)] \times \log \log (K))$ query time
- 1-stretch

Complexity of Time-Dependent Shortest Path

FIFO, piecewise-linear arc-delay functions; K: total \# number of breakpoints

- Question 1: \exists data structure (distance oracle) that
- requires reasonable space ?
- allows answering distance queries efficiently ?
- Trivial solution I: Precompute all $(1+\varepsilon)$-approximate distance summaries for every od-pair
. $\mathrm{O}\left(n^{2}(K+1)\right)$ space
- $\mathrm{O}(\log \log (K))$ query time
: $(1+\varepsilon)$-stretch
- Trivial solution II: No preprocessing, respond to queries with TD-Dijkstra
- $\mathrm{O}(n+m+K)$ space
: $\mathrm{O}([m+n \log (n)] \times \log \log (K))$ query time
- 1-stretch
- Question 2: can we do better?
- subquadratic space \& sublinear query time
- \exists smooth tradeoff among space / query time / stretch ?

Our Contribution [Konlogiannis \&z, 2014]

(1) Efficient time-dependent distance oracle:
subquadratic space and time preprocessing, sublinear query time

Our Contribution [Kontogiannis \&z, 2014]

(1) Efficient time-dependent distance oracle:
subquadratic space and time preprocessing, sublinear query time
(2) $(1+\varepsilon)$-approximate algorithm for computing one-to-all distances in $O(K+1)$ space (same complexity with P2P approximation algorithm by [Foschini-Hershberger-Suri (2011)])

- Bisection-based approach
- Closed form for max absolute error

Our Contribution [Konlogiannis \&z, 2014]

(1) Efficient time-dependent distance oracle: subquadratic space and time preprocessing, sublinear query time
(2) $(1+\varepsilon)$-approximate algorithm for computing one-to-all distances in $O(K+1)$ space (same complexity with P2P approximation algorithm by [Foschini-Hershberger-Suri (2011)])

- Bisection-based approach
- Closed form for max absolute error
(3) Preprocessing: choose a set L of landmarks and $\forall(\ell, v) \in L \times V$, compute $(1+\varepsilon)$-approximate distance summaries $\Delta[\ell, v](t)$ $(D[\ell, v](t) \leq \Delta[\ell, v](t) \leq(1+\epsilon) \cdot D[\ell, v](t))$

Our Contribution [Konlogiannis \&z, 2014]

(1) Efficient time-dependent distance oracle: subquadratic space and time preprocessing, sublinear query time
(2) $(1+\varepsilon)$-approximate algorithm for computing one-to-all distances in $O(K+1)$ space (same complexity with P2P approximation algorithm by [Foschini-Hershberger-Suri (2011)])

- Bisection-based approach
- Closed form for max absolute error
(3) Preprocessing: choose a set L of landmarks and $\forall(\ell, v) \in L \times V$, compute $(1+\varepsilon)$-approximate distance summaries $\Delta[\ell, v](t)$ $(D[\ell, v](t) \leq \Delta[\ell, v](t) \leq(1+\epsilon) \cdot D[\ell, v](t))$
(4) Answer arbitrary queries $\left(0, d, t_{0}\right)$ using two query algorithms (FCA/RQA) that return $O(1) /(1+\sigma)$-approximate distance values

Assumptions

Q Static \& undirected world \longrightarrow time-dependent \& directed world?

Assumptions

Q Static \& undirected world \longrightarrow time-dependent \& directed world ?
ASSUMPTION 1 (bounded travel time slopes)
Slopes of $D[o, d] \in\left[-1, \Lambda_{\max }\right]$, for some constant $\Lambda_{\max }>0$

Assumptions

Q Static \& undirected world \longrightarrow time-dependent \& directed world ?
ASSUMPTION 1 (bounded travel time slopes)
Slopes of $D[o, d] \in\left[-1, \Lambda_{\max }\right]$, for some constant $\Lambda_{\max }>0$

ASSUMPTION 2 (bounded opposite trips)
$\exists \zeta \geq 1: \forall(o, d) \in V \times V, \forall t \in[0, T], D[o, d](t) \leq \zeta \cdot D[d, o]\left(t_{0}\right)$

Assumptions

Q Static \& undirected world \longrightarrow time-dependent \& directed world ?
ASSUMPTION 1 (bounded travel time slopes)
Slopes of $D[o, d] \in\left[-1, \Lambda_{\max }\right]$, for some constant $\Lambda_{\max }>0$

ASSUMPTION 2 (bounded opposite trips)
$\exists \zeta \geq 1: \forall(o, d) \in V \times V, \forall t \in[0, T], D[o, d](t) \leq \zeta \cdot D[d, o]\left(t_{0}\right)$

Assumptions

Q Static \& undirected world \longrightarrow time-dependent \& directed world ?
ASSUMPTION 1 (bounded travel time slopes)
Slopes of $D[o, d] \in\left[-1, \Lambda_{\max }\right]$, for some constant $\Lambda_{\max }>0$
ASSUMPTION 2 (bounded opposite trips)
$\exists \zeta \geq 1: \forall(o, d) \in V \times V, \forall t \in[0, T], D[o, d](t) \leq \zeta \cdot D[d, o]\left(t_{0}\right)$

Experimental Analysis

Data Set	Type (source)	n	m	$\Lambda_{\max }$	ζ
Berlin	real-world (TomTom)	480 K	1135 K	0.185	1.54
W. Europe	benchmark (PTV)	18010 K	42188 K	6.186	1.18

Approximating Distance Functions via Bisection

sample simultaneously all distance values from o, at mid-points of time intervals, until required approximation guarantee is achieved \forall destinations

Approximating Distance Functions via Bisection

sample simultaneously all distance values from o, at mid-points of time intervals, until required approximation guarantee is achieved \forall destinations

Approximating Distance Functions via Bisection

sample simultaneously all distance values from o, at mid-points of time intervals, until required approximation guarantee is achieved \forall destinations

Approximating Distance Functions via Bisection

sample simultaneously all distance values from o, at mid-points of time intervals, until required approximation guarantee is achieved \forall destinations

Approximating Distance Functions via Bisection

For continuous, pwl arc-delays
(1) Run Reverse TD-Dijkstra to project each concavity-spoiling PB to a primitive image (PI) of origin o
(2) For each pair of consecutive Pls at o, run Bisection for the corresponding departure-times interval

(3) Return the concatenation of approximate distance summaries

Landmark Selection and Preprocessing

K^{*} : total \# number of concavity-spoiling breakpoints; $K^{*}<K$

- Landmark selection: $\forall v \in V, \operatorname{Pr}[v \in L]=\rho \in(0,1)$ [correctness is independent of the landmark selection]
- Preprocessing: $\forall \ell \in L$, compute $(1+\varepsilon)$-approximate distance functions $\Delta[\ell, v]$ to all $v \in V$

Landmark Selection and Preprocessing

K^{*} : total \# number of concavity-spoiling breakpoints; $K^{*}<K$

- Landmark selection: $\forall v \in V, \operatorname{Pr}[v \in L]=\rho \in(0,1)$ [correctness is independent of the landmark selection]
- Preprocessing: $\forall \ell \in L$, compute $(1+\varepsilon)$-approximate distance functions $\Delta[\ell, v]$ to all $v \in V$

Preprocessing complexity

Landmark Selection and Preprocessing

K^{*} : total \# number of concavity-spoiling breakpoints; $K^{*}<K$

- Landmark selection: $\forall v \in V, \operatorname{Pr}[v \in L]=\rho \in(0,1)$ [correctness is independent of the landmark selection]
- Preprocessing: $\forall \ell \in L$, compute $(1+\varepsilon)$-approximate distance functions $\Delta[\ell, v]$ to all $v \in V$

Preprocessing complexity

- Space - asymptotically optimal

$$
\mathrm{O}\left(\left(K^{*}+1\right) \cdot|L| \cdot n \cdot \frac{1}{\varepsilon} \cdot \max _{(\ell, v) \in L \times V}\left\{\log \left(\frac{D_{\max }[\ell, v](0, T)}{D_{\min }[\ell, v](0, T)}\right)\right\}\right)
$$

Landmark Selection and Preprocessing

K^{*} : total \# number of concavity-spoiling breakpoints; $K^{*}<K$

- Landmark selection: $\forall v \in V, \operatorname{Pr}[v \in L]=\rho \in(0,1)$ [correctness is independent of the landmark selection]
- Preprocessing: $\forall \ell \in L$, compute $(1+\varepsilon)$-approximate distance functions $\Delta[\ell, v]$ to all $v \in V$

Preprocessing complexity

- Space - asymptotically optimal

$$
\mathrm{O}\left(\left(K^{*}+1\right) \cdot|L| \cdot n \cdot \frac{1}{\varepsilon} \cdot \max _{(\ell, v) \in L \times V}\left\{\log \left(\frac{D_{\max }[\ell, v](0, T)}{\left.D_{\min } \ell, v\right](0, T)}\right)\right\}\right)
$$

- Time (in number of TDSP-Probes)

$$
\mathrm{O}\left(\left(K^{*}+1\right) \cdot|L| \cdot \max _{(\ell, v)}\left\{\log \left(\frac{T \cdot\left(\Lambda_{\max }+1\right)}{\varepsilon D_{\min }[\ell, v](0, T)}\right)\right\} \cdot \frac{1}{\varepsilon} \max _{(\ell, v)}\left\{\log \left(\frac{D_{\max }[\ell, v](0, T)}{D_{\min }[\ell, v](0, T)}\right)\right\}\right)
$$

FCA: A constant-approximation query algorithm

Forward Constant Approximation

1. Grow TD-Dijkstra ball $B\left(o, t_{0}\right)$ until closest landmark ℓ_{0} or d is settled
2. return $\mathrm{sol}_{0}=D\left[0, \ell_{0}\right]\left(t_{0}\right)+\Delta\left[\ell_{0}, d\right]\left(t_{0}+D\left[0, \ell_{0}\right]\left(t_{0}\right)\right)$

FCA: A constant-approximation query algorithm

Forward Constant Approximation

1. Grow TD-Dijkstra ball $B\left(o, t_{0}\right)$ until closest landmark ℓ_{0} or d is settled
2. return $\mathrm{sol}_{0}=D\left[0, \ell_{0}\right]\left(t_{0}\right)+\Delta\left[\ell_{0}, d\right]\left(t_{0}+D\left[0, \ell_{0}\right]\left(t_{0}\right)\right)$

FCA complexity

FCA: A constant-approximation query algorithm

Forward Constant Approximation

1. Grow TD-Dijkstra ball $B\left(o, t_{0}\right)$ until closest landmark ℓ_{0} or d is settled
2. return $\mathrm{sol}_{0}=D\left[0, \ell_{0}\right]\left(t_{0}\right)+\Delta\left[\ell_{0}, d\right]\left(t_{0}+D\left[0, \ell_{0}\right]\left(t_{0}\right)\right)$

FCA complexity

- Approximation guarantee: $\leq(1+\epsilon+\psi) \cdot D[o, d]\left(t_{0}\right)$
$\psi=1+\Lambda_{\max }(1+\epsilon)\left(1+2 \zeta+\Lambda_{\max } \zeta\right)+(1+\epsilon) \zeta$

FCA: A constant-approximation query algorithm

Forward Constant Approximation

1. Grow TD-Dijkstra ball $B\left(o, t_{0}\right)$ until closest landmark ℓ_{0} or d is settled
2. return $\mathrm{sol}_{0}=D\left[0, \ell_{0}\right]\left(t_{0}\right)+\Delta\left[\ell_{0}, d\right]\left(t_{0}+D\left[0, \ell_{0}\right]\left(t_{0}\right)\right)$

FCA complexity

- Approximation guarantee: $\leq(1+\epsilon+\psi) \cdot D[o, d]\left(t_{0}\right)$

$$
\psi=1+\Lambda_{\max }(1+\epsilon)\left(1+2 \zeta+\Lambda_{\max } \zeta\right)+(1+\epsilon) \zeta
$$

- Query-time: $\mathrm{O}\left(\frac{1}{\rho} \cdot \ln \left(\frac{1}{\rho}\right) \log \log \left(K_{\max }\right)\right)$

RQA: Boosting the Approximation Guarantee

Recursive Query Approximation

1. while recursion budget R not exhausted do
2. Grow TD-Dijkstra ball $B\left(w_{i}, t_{i}\right)$ until closest landmark ℓ_{i} is settled
3. $s o l_{i}=D\left[0, w_{i}\right]\left(t_{0}\right)+D\left[w_{i}, \ell_{i}\right]\left(t_{i}\right)+\Delta\left[\ell_{i}, d\right]\left(t_{i}+D\left[w_{i}, \ell_{i}\right]\left(t_{i}\right)\right)$
4. Run RQA at each boundary node of $B\left(w_{i}, t_{i}\right)$ with budget $R-1$
5. endwhile
6. return best solution found

RQA: Boosting the Approximation Guarantee

Recursive Query Approximation

1. while recursion budget R not exhausted do
2. Grow TD-Dijkstra ball $B\left(w_{i}, t_{i}\right)$ until closest landmark ℓ_{i} is settled
3. $s o l_{i}=D\left[0, w_{i}\right]\left(t_{0}\right)+D\left[w_{i}, \ell_{i}\right]\left(t_{i}\right)+\Delta\left[\ell_{i}, d\right]\left(t_{i}+D\left[w_{i}, \ell_{i}\right]\left(t_{i}\right)\right)$
4. Run RQA at each boundary node of $B\left(w_{i}, t_{i}\right)$ with budget $R-1$
5. endwhile
6. return best solution found

RQA: Boosting the Approximation Guarantee

Recursive Query Approximation

1. while recursion budget R not exhausted do
2. Grow TD-Dijkstra ball $B\left(w_{i}, t_{i}\right)$ until closest landmark ℓ_{i} is settled
3. $s o l_{i}=D\left[0, w_{i}\right]\left(t_{0}\right)+D\left[w_{i}, \ell_{i}\right]\left(t_{i}\right)+\Delta\left[\ell_{i}, d\right]\left(t_{i}+D\left[w_{i}, \ell_{i}\right]\left(t_{i}\right)\right)$
4. Run RQA at each boundary node of $B\left(w_{i}, t_{i}\right)$ with budget $R-1$
5. endwhile
6. return best solution found

- Growing level-0 ball...

RQA: Boosting the Approximation Guarantee

Recursive Query Approximation

1. while recursion budget R not exhausted do
2. Grow TD-Dijkstra ball $B\left(w_{i}, t_{i}\right)$ until closest landmark ℓ_{i} is settled
3. $s o l_{i}=D\left[0, w_{i}\right]\left(t_{0}\right)+D\left[w_{i}, \ell_{i}\right]\left(t_{i}\right)+\Delta\left[\ell_{i}, d\right]\left(t_{i}+D\left[w_{i}, \ell_{i}\right]\left(t_{i}\right)\right)$
4. Run RQA at each boundary node of $B\left(w_{i}, t_{i}\right)$ with budget $R-1$
5. endwhile
6. return best solution found

- Growing level-0 ball...
- Growing level- 1 balls...

RQA: Boosting the Approximation Guarantee

Recursive Query Approximation

1. while recursion budget R not exhausted do
2. Grow TD-Dijkstra ball $B\left(w_{i}, t_{i}\right)$ until closest landmark ℓ_{i} is settled
3. $s o l_{i}=D\left[0, w_{i}\right]\left(t_{0}\right)+D\left[w_{i}, \ell_{i}\right]\left(t_{i}\right)+\Delta\left[\ell_{i}, d\right]\left(t_{i}+D\left[w_{i}, \ell_{i}\right]\left(t_{i}\right)\right)$
4. Run RQA at each boundary node of $B\left(w_{i}, t_{i}\right)$ with budget $R-1$
5. endwhile
6. return best solution found

- Growing level-0 ball...
- Growing level- 1 balls...

RQA: Boosting the Approximation Guarantee

Recursive Query Approximation

1. while recursion budget R not exhausted do
2. Grow TD-Dijkstra ball $B\left(w_{i}, t_{i}\right)$ until closest landmark ℓ_{i} is settled
3. $s o l_{i}=D\left[0, w_{i}\right]\left(t_{0}\right)+D\left[w_{i}, \ell_{i}\right]\left(t_{i}\right)+\Delta\left[\ell_{i}, d\right]\left(t_{i}+D\left[w_{i}, \ell_{i}\right]\left(t_{i}\right)\right)$
4. Run RQA at each boundary node of $B\left(w_{i}, t_{i}\right)$ with budget $R-1$
5. endwhile
6. return best solution found

- Growing level-0 ball...
- Growing level- 1 balls...

RQA: Boosting the Approximation Guarantee

Recursive Query Approximation

1. while recursion budget R not exhausted do
2. Grow TD-Dijkstra ball $B\left(w_{i}, t_{i}\right)$ until closest landmark ℓ_{i} is settled
3. $s o l_{i}=D\left[0, w_{i}\right]\left(t_{0}\right)+D\left[w_{i}, \ell_{i}\right]\left(t_{i}\right)+\Delta\left[\ell_{i}, d\right]\left(t_{i}+D\left[w_{i}, \ell_{i}\right]\left(t_{i}\right)\right)$
4. Run RQA at each boundary node of $B\left(w_{i}, t_{i}\right)$ with budget $R-1$
5. endwhile
6. return best solution found

- Growing level-0 ball...
- Growing level- 1 balls...
- Growing level-2 balls...

RQA: Boosting the Approximation Guarantee

Recursive Query Approximation

1. while recursion budget R not exhausted do
2. Grow TD-Dijkstra ball $B\left(w_{i}, t_{i}\right)$ until closest landmark ℓ_{i} is settled
3. $s o l_{i}=D\left[0, w_{i}\right]\left(t_{0}\right)+D\left[w_{i}, \ell_{i}\right]\left(t_{i}\right)+\Delta\left[\ell_{i}, d\right]\left(t_{i}+D\left[w_{i}, \ell_{i}\right]\left(t_{i}\right)\right)$
4. Run RQA at each boundary node of $B\left(w_{i}, t_{i}\right)$ with budget $R-1$
5. endwhile
6. return best solution found

- Growing level-0 ball...
- Growing level- 1 balls...
- Growing level-2 balls...

RQA: Boosting the Approximation Guarantee

RQA: Boosting the Approximation Guarantee

(1) One of the discovered approximate od-paths has all its ball centers at nodes of the (unknown) shortest od-path

RQA: Boosting the Approximation Guarantee

(1) One of the discovered approximate od-paths has all its ball centers at nodes of the (unknown) shortest od-path
(2) Optimal prefix subpaths improve approximation guarantee:

$$
\forall \beta>1, \forall \lambda \in(0,1), \lambda \cdot O P T+(1-\lambda) \cdot \beta \cdot O P T<\beta \cdot O P T
$$

RQA: Boosting the Approximation Guarantee

(1) One of the discovered approximate od-paths has all its ball centers at nodes of the (unknown) shortest od-path
(2) Optimal prefix subpaths improve approximation guarantee:

$$
\forall \beta>1, \forall \lambda \in(0,1), \lambda \cdot O P T+(1-\lambda) \cdot \beta \cdot O P T<\beta \cdot O P T
$$

(3) Approximation guarantee for suffix subpath to destination depends on last ball radius

RQA: Boosting the Approximation Guarantee

(1) One of the discovered approximate od-paths has all its ball centers at nodes of the (unknown) shortest od-path
(2) Optimal prefix subpaths improve approximation guarantee:

$$
\forall \beta>1, \forall \lambda \in(0,1), \lambda \cdot O P T+(1-\lambda) \cdot \beta \cdot O P T<\beta \cdot O P T
$$

(3) Approximation guarantee for suffix subpath to destination depends on last ball radius
(4) $R=O(1)$ suffices to ensure guarantee close to $1+\varepsilon$

RQA: Boosting the Approximation Guarantee

RQA Complexity

RQA: Boosting the Approximation Guarantee

RQA Complexity

- Approximation guarantee: $1+\sigma=1+\varepsilon \cdot \frac{(1+\varepsilon / \psi)^{R+1}}{(1+\varepsilon / \psi)^{R+1}-1}$

RQA: Boosting the Approximation Guarantee

RQA Complexity

- Approximation guarantee: $1+\sigma=1+\varepsilon \cdot \frac{(1+\varepsilon / \psi)^{R+1}}{(1+\varepsilon / \psi)^{R+1}-1}$
- Query-time: $\mathrm{O}\left(\left(\frac{1}{\rho}\right)^{R+1} \cdot \ln \left(\frac{1}{\rho}\right) \log \log \left(K_{\max }\right)\right)$

Summary of Complexity Bounds

Preprocessed	Preproc. Space	Preproc. Time	Query Time
All-To-All	$\mathrm{O}\left(\left(K^{*}+1\right) n^{2}\right)$	$\mathrm{O}\left(\begin{array}{c}n^{2} \log (n) \\ \cdot \log \log \left(K_{\max }\right) \\ \cdot\left(K^{*}+1\right)\end{array}\right.$	$\mathrm{O}\left(\log \log \left(K^{*}\right)\right)$
Nothing	$\mathrm{O}(n+m+K)$	$\mathrm{O}(1)$	$\mathrm{O}\binom{n \log (n) \cdot}{\log \log \left(K_{\max }\right)}$
Landmarks-To-All [This work]	$\mathrm{O}\left(\rho n^{2}\left(K^{*}+1\right)\right)$	$\mathrm{O}\left(\begin{array}{l}\rho n^{2} \log (n) \\ \cdot \log \log \left(K_{\max }\right) \\ \cdot\left(K^{*}+1\right)\end{array}\right)$	$\mathrm{O}\binom{\left(\frac{1}{\rho}\right)^{R+1} \cdot \log \left(\frac{1}{\rho}\right)}{\cdot \log \log \left(K_{\max }\right)}$

- $m=O(n) ; K_{\max }$: max number of breakpoints in an arc-delay function
- K^{*} : total \# number of concavity-spoiling breakpoints
- $K^{*}<K$ (total \# number of breakpoints)

Summary of Complexity Bounds

Preprocessed	Preproc. Space	Preproc. Time	Query Time
All-To-All	$\mathrm{O}\left(\left(K^{*}+1\right) n^{2}\right)$	$\mathrm{O}\left(\begin{array}{c}n^{2} \log (n) \\ \cdot \log \log \left(K_{\max }\right) \\ \cdot\left(K^{*}+1\right)\end{array}\right)$	$\mathrm{O}\left(\log \log \left(K^{*}\right)\right)$
Nothing	$\mathrm{O}(n+m+K)$	$\mathrm{O}(1)$	$\mathrm{O}\binom{n \log (n) \cdot}{\log \log \left(K_{\max }\right)}$
Landmarks-To-All $[$ This work]	$\mathrm{O}\left(\rho n^{2}\left(K^{*}+1\right)\right)$	$\mathrm{O}\left(\begin{array}{l}\rho n^{2} \log (n) \\ \cdot \log \log \left(K_{\max }\right) \\ \cdot\left(K^{*}+1\right)\end{array}\right)$	$\mathrm{O}\binom{\left(\frac{1}{\rho}\right)^{R+1} \cdot \log \left(\frac{1}{\rho}\right)}{\cdot \log \log \left(K_{\max }\right)}$

- $m=O(n) ; K_{\text {max }}$: max number of breakpoints in an arc-delay function ($\left.K_{\max } \in \mathrm{O}(1)\right)$
- K^{*} : total \# number of concavity-spoiling breakpoints
- $K^{*}<K$ (total \# number of breakpoints); $K^{*} \in \mathrm{O}($ poly $\log (n))$
- $\rho=n^{-\alpha}, 0<\alpha<\frac{1}{R+1}$

Summary of Complexity Bounds

Preprocessed	Preproc. Space	Preproc. Time	Query Time
All-To-All	$\tilde{O}\left(n^{2}\right)$	$\tilde{O}\left(n^{2} \log (n)\right)$	$\mathrm{O}(\log \log \log (n))$
Nothing	$\mathrm{O}(n+m+K)$	$\mathrm{O}(1)$	$\mathrm{O}(n \log (n))$
Landmarks-To-All [This work]	$\tilde{O}\left(n^{2-\alpha}\right)$	$\tilde{O}\left(n^{2-\alpha}\right)$	$\tilde{O}\left(n^{(R+1) \alpha}\right)$

- $m=O(n)$; $K_{\max }$: max number of breakpoints in an arc-delay function ($K_{\max } \in \mathrm{O}(1)$)
- K^{*} : total \# number of concavity-spoiling breakpoints
- $K^{*}<K$ (total \# number of breakpoints); $K^{*} \in \mathrm{O}(\operatorname{polylog}(n))$
- $\rho=n^{-\alpha}, 0<\alpha<\frac{1}{R+1}$

Distance Oracle: Practical Issues

- Berlin data set: $n=480000, m=1135000$
- Time resolution: 10.3 msec

Landmarks		FCA		RQA		
Method	Number	ms	$\sigma(\%)$	ms	$\sigma(\%)$	
METIS	1061	0.381	2.201	2.349	0.483	77.424
METIS	2063	0.152	1.115	0.700	0.314	77.424
Random	1000	0.195	1.634	1.692	0.575	77.424
Random	2000	0.107	1.065	0.771	0.445	77.424
KAHIP	1053	0.362	2.165	2.015	0.382	77.424
KAHIP	2015	0.148	1.405	0.655	0.298	77.424

- Speedup (over TDD) > 723
- Query time of previous time-dependent heuristics $\in[1,1.5] \mathrm{ms}$

Distance Oracle: Practical Issues

Distance Oracle: Practical Issues

Google Maps, Tuesday 15:45

Conclusions \& Open Issues

- First efficient time-dependent distance oracle

Conclusions \& Open Issues

- First efficient time-dependent distance oracle
- Approach sensitive to network's
- degree of asymmetry (ζ)
- rate of (shortest-)travel-time evolution ($\Lambda_{\max }$)

Conclusions \& Open Issues

- First efficient time-dependent distance oracle
- Approach sensitive to network's
- degree of asymmetry (ζ)
- rate of (shortest-)travel-time evolution ($\Lambda_{\max }$)
- Builds upon new approximate algorithm for computing one-to-all time-dependent distance summaries

Conclusions \& Open Issues

- First efficient time-dependent distance oracle
- Approach sensitive to network's
- degree of asymmetry (ζ)
- rate of (shortest-)travel-time evolution ($\Lambda_{\max }$)
- Builds upon new approximate algorithm for computing one-to-all time-dependent distance summaries
- Quite efficient in practice

Conclusions \& Open Issues

- First efficient time-dependent distance oracle
- Approach sensitive to network's
- degree of asymmetry (ζ)
- rate of (shortest-)travel-time evolution ($\Lambda_{\max }$)
- Builds upon new approximate algorithm for computing one-to-all time-dependent distance summaries
- Quite efficient in practice
- Open: can we avoid dependence on K^{*} ?

Outline

(1) Robust Line Planning

(2) Time-Dependent Route Planning

(3) Summary

Summary

- Transportation networks give rise to large-scale optimization problems
- Novel algorithms can have a great impact in their efficient and effective solution

Thank you for your attention

Tと́入oc Evótఇtas

ミףиعíw μ Avoфора́я

 Theory and Practice». 'Екסобף: 1.0. Па́тра 2015. $\Delta ı \alpha \theta \varepsilon ́ \sigma \iota \mu о ~ \alpha \pi о ́ ~ т \eta ~ \delta ı к т и \alpha к и ̆ ~$ ठıદúӨuvon:
https://eclass.upatras.gr/courses/MATH959/

[1] http://creativecommons.org/licenses/by-nc-nd/4.0/

 ото ε ह́pүо

 $\varepsilon \mu \pi о \rho \iota к \grave{~ X \rho ウ ́ \sigma \eta, ~ \varepsilon ф o ́ \sigma o v ~ a u t o ́ ~ t o u ~} \zeta \eta \tau \eta \theta \varepsilon i ́$.

صıaфávعıа 5, 6, 114-121:
http://www.finanzen.net/nachricht/TomTom-Users-Capture-the-Road-Network-3-000-Times1485950

$\Delta ı \alpha \tau \eta ́ \rho \eta \sigma \eta ~ \Sigma \eta \mu \varepsilon ı \omega \mu \alpha ́ \tau \omega v$

 v α бטил $\varepsilon \rho ı \lambda \alpha \mu \beta \alpha ́ v \varepsilon ı: ~$

- то $\Sigma \eta \mu \varepsilon i \omega \mu \alpha$ Avaфора́я
- то $\sum \eta \mu \varepsilon i \omega \mu \alpha$ A $\delta \varepsilon ı o \delta o ́ t \eta \sigma \eta \varsigma ~$

