
Μελέτη Περιπτώσεων

στη Λήψη Αποφάσεωνστη Λήψη Αποφάσεων

Σημείωμα Αδειοδότησης

• Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Creative Commons.

• Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου

τύπου άδειας χρήσης, η άδεια χρήσης αναφέρεται ρητώς.

2Τίτλος Ενότητας

Χρηματοδότηση
• Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στo πλαίσιo του

εκπαιδευτικού έργου του διδάσκοντα.

• Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Πανεπιστήμιο Πατρών»

έχει χρηματοδοτήσει μόνο την αναδιαμόρφωση του εκπαιδευτικού

υλικού.

• Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος

3Τίτλος Ενότητας

• Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος

«Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την

Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς

πόρους.

Algorithms for Transport Optimization
Theory and Practice

Christos Zaroliagis
zaro@ceid.upatras.gr

Dept. of Computer Engineering & Informatics
University of Patras, Greece

Computer Technology Institute & Press
“Diophantus”

1 / 70

Transport Optimization Problems

Public transportation networks Road networks

Common characteristic: large/huge scale

2 / 70

Transport Optimization Problems

Public transportation networks Road networks

Common characteristic: large/huge scale

2 / 70

Outline

1 Robust Line Planning

2 Time-Dependent Route Planning

3 Summary

3 / 70

Public Transportation Planning

This talk: Railways

Line Planning
I Determine the set of train lines (routes) along with their frequencies
I Typically, a line pool is provided

4 / 70

Public Transportation Planning

This talk: Railways

Line Planning
I Determine the set of train lines (routes) along with their frequencies
I Typically, a line pool is provided

4 / 70

Public Transportation Planning

This talk: Railways

Line Planning
I Determine the set of train lines (routes) along with their frequencies
I Typically, a line pool is provided

4 / 70

Line Planning Problem (I)

Railway Network Infrastructure
governed by a network operator (NOP) & represented as a digraph
G = (V , L)

I V ←→ stations or junctions of rail tracks

I L ←→ direct connections or (track) links between nodes
∀` ∈ L , ∃ capacity c` > 0 [# trains per day]

I Line pool: set of lines (origin-destination paths) in G

Line Operators (LOPs) P
Request usage of lines, at varying frequencies, in order to serve
their customers

Goal
Find a line concept (feasible allocation of lines to LOPs along with
proper frequencies) so as to optimize a system-wise welfare function

5 / 70

Line Planning Problem (I)

Railway Network Infrastructure
governed by a network operator (NOP) & represented as a digraph
G = (V , L)

I V ←→ stations or junctions of rail tracks

I L ←→ direct connections or (track) links between nodes
∀` ∈ L , ∃ capacity c` > 0 [# trains per day]

I Line pool: set of lines (origin-destination paths) in G

Line Operators (LOPs) P
Request usage of lines, at varying frequencies, in order to serve
their customers

Goal
Find a line concept (feasible allocation of lines to LOPs along with
proper frequencies) so as to optimize a system-wise welfare function

5 / 70

Line Planning Problem (I)

Railway Network Infrastructure
governed by a network operator (NOP) & represented as a digraph
G = (V , L)

I V ←→ stations or junctions of rail tracks

I L ←→ direct connections or (track) links between nodes
∀` ∈ L , ∃ capacity c` > 0 [# trains per day]

I Line pool: set of lines (origin-destination paths) in G

Line Operators (LOPs) P
Request usage of lines, at varying frequencies, in order to serve
their customers

Goal
Find a line concept (feasible allocation of lines to LOPs along with
proper frequencies) so as to optimize a system-wise welfare function

5 / 70

Line Planning Problem (II)

Cost-Oriented Approach: optimize the performance of NOP
I Minimize cost (minimize total / max train travel time)
I Maximize profit (maximize throughput)
I ...

Eg, [Claessens-van Dijk-Zwaneveld (1996); Goossens-Hoesel-Kroon (2004)]

Customer-Oriented Approach: maximize the clients’ aggregate level
of satisfaction

I Maximize travelers with direct connections
I Minimize their total / max number of changes
I Minimize the traveling time of customers
I Minimize aggregate payments
I ...

Eg, [Schöbel-Scholl (2005); Bussieck (1998); Bussieck-Lindner-Lübbecke (2004)]

6 / 70

Line Planning Problem (II)

Cost-Oriented Approach: optimize the performance of NOP
I Minimize cost (minimize total / max train travel time)
I Maximize profit (maximize throughput)
I ...

Eg, [Claessens-van Dijk-Zwaneveld (1996); Goossens-Hoesel-Kroon (2004)]

Customer-Oriented Approach: maximize the clients’ aggregate level
of satisfaction

I Maximize travelers with direct connections
I Minimize their total / max number of changes
I Minimize the traveling time of customers
I Minimize aggregate payments
I ...

Eg, [Schöbel-Scholl (2005); Bussieck (1998); Bussieck-Lindner-Lübbecke (2004)]

6 / 70

Robust Line Planning (I)

Provide line concepts that are robust to fluctuations of the input
parameters

I Disruptions (e.g., delays) to daily operations
I Temporal unavailability of tracks due to delays/accidents
I Fluctuating customer demands
I ...

Optimization Approach to Robustness (typical representatives):

I Stochastic programming models: flexible but too large in size; requires
apriori knowledge of probability distributions

I (Classical) robust optimization models: may lead to very conservative
solutions

I [Bertsimas-Sim (2004)] : feasibility is guaranteed if # of affected constraints
is limited

I [Fischetti-Monaci (2009)] : light robustness
I [Liebchen-Lübbecke-Möhring-Stiller (2009)] : recoverable robustness

7 / 70

Robust Line Planning (I)

Provide line concepts that are robust to fluctuations of the input
parameters

I Disruptions (e.g., delays) to daily operations
I Temporal unavailability of tracks due to delays/accidents
I Fluctuating customer demands
I ...

Optimization Approach to Robustness (typical representatives):

I Stochastic programming models: flexible but too large in size; requires
apriori knowledge of probability distributions

I (Classical) robust optimization models: may lead to very conservative
solutions

I [Bertsimas-Sim (2004)] : feasibility is guaranteed if # of affected constraints
is limited

I [Fischetti-Monaci (2009)] : light robustness
I [Liebchen-Lübbecke-Möhring-Stiller (2009)] : recoverable robustness

7 / 70

Robust Line Planning (I)

Provide line concepts that are robust to fluctuations of the input
parameters

I Disruptions (e.g., delays) to daily operations
I Temporal unavailability of tracks due to delays/accidents
I Fluctuating customer demands
I ...

Optimization Approach to Robustness (typical representatives):
I Stochastic programming models: flexible but too large in size; requires

apriori knowledge of probability distributions
I (Classical) robust optimization models: may lead to very conservative

solutions

I [Bertsimas-Sim (2004)] : feasibility is guaranteed if # of affected constraints
is limited

I [Fischetti-Monaci (2009)] : light robustness
I [Liebchen-Lübbecke-Möhring-Stiller (2009)] : recoverable robustness

7 / 70

Robust Line Planning (I)

Provide line concepts that are robust to fluctuations of the input
parameters

I Disruptions (e.g., delays) to daily operations
I Temporal unavailability of tracks due to delays/accidents
I Fluctuating customer demands
I ...

Optimization Approach to Robustness (typical representatives):
I Stochastic programming models: flexible but too large in size; requires

apriori knowledge of probability distributions
I (Classical) robust optimization models: may lead to very conservative

solutions
I [Bertsimas-Sim (2004)] : feasibility is guaranteed if # of affected constraints

is limited

I [Fischetti-Monaci (2009)] : light robustness
I [Liebchen-Lübbecke-Möhring-Stiller (2009)] : recoverable robustness

7 / 70

Robust Line Planning (I)

Provide line concepts that are robust to fluctuations of the input
parameters

I Disruptions (e.g., delays) to daily operations
I Temporal unavailability of tracks due to delays/accidents
I Fluctuating customer demands
I ...

Optimization Approach to Robustness (typical representatives):
I Stochastic programming models: flexible but too large in size; requires

apriori knowledge of probability distributions
I (Classical) robust optimization models: may lead to very conservative

solutions
I [Bertsimas-Sim (2004)] : feasibility is guaranteed if # of affected constraints

is limited
I [Fischetti-Monaci (2009)] : light robustness

I [Liebchen-Lübbecke-Möhring-Stiller (2009)] : recoverable robustness

7 / 70

Robust Line Planning (I)

Provide line concepts that are robust to fluctuations of the input
parameters

I Disruptions (e.g., delays) to daily operations
I Temporal unavailability of tracks due to delays/accidents
I Fluctuating customer demands
I ...

Optimization Approach to Robustness (typical representatives):
I Stochastic programming models: flexible but too large in size; requires

apriori knowledge of probability distributions
I (Classical) robust optimization models: may lead to very conservative

solutions
I [Bertsimas-Sim (2004)] : feasibility is guaranteed if # of affected constraints

is limited
I [Fischetti-Monaci (2009)] : light robustness
I [Liebchen-Lübbecke-Möhring-Stiller (2009)] : recoverable robustness

7 / 70

Robust Line Planning (II)

Game-theoretic Approach to Robustness: participating entities react
selfishly to the fluctuations of the input parameters

I [Schöbel-Schwarze (2006)] : use game dynamics of a non-atomic network
congestion game as a robust scheme to deal with delays

I [Aghassi-Bertsimas (2005)] : robust version (fluctuations in feasibility
constraints) of a strategic game is as difficult as the nominal game

8 / 70

Robust Line Planning (II)

Game-theoretic Approach to Robustness: participating entities react
selfishly to the fluctuations of the input parameters

I [Schöbel-Schwarze (2006)] : use game dynamics of a non-atomic network
congestion game as a robust scheme to deal with delays

I [Aghassi-Bertsimas (2005)] : robust version (fluctuations in feasibility
constraints) of a strategic game is as difficult as the nominal game

8 / 70

Robust Line Planning (III)

Previous optimization & game-theoretic approaches
I Powerful set of methods to deal with predictable and/or statically

described level of uncertainty in constraints

I Centralized solution approaches

What if uncertainty is neither predictable/quantifiable
nor statically describable ?

9 / 70

Robust Line Planning (III)

Previous optimization & game-theoretic approaches
I Powerful set of methods to deal with predictable and/or statically

described level of uncertainty in constraints

I Centralized solution approaches

What if uncertainty is neither predictable/quantifiable
nor statically describable ?

9 / 70

Robust Line Planning (III)

Previous optimization & game-theoretic approaches
I Powerful set of methods to deal with predictable and/or statically

described level of uncertainty in constraints

I Centralized solution approaches

What if uncertainty is neither predictable/quantifiable
nor statically describable ?

9 / 70

Robust Line Planning – A Different Perspective

Motivation: regulations for competition – free railway market

LOP: commercial entity trying to ...

... make profit out of the usage of the infrastructure

... unwilling to reveal its true incentives to the other competitors, or to NOP

NOP: governmental entity, aiming to ...

... maximize the unknown aggregate level of satisfaction for the LOPs
(socially optimal solution)

... ensure fairness in cost sharing

Our Notion of Robustness
Tolerance to LOPs’ unknown and/or dynamically changing incentives
causing elasticity of frequency requests

10 / 70

Robust Line Planning – A Different Perspective

Motivation: regulations for competition – free railway market

LOP: commercial entity trying to ...

... make profit out of the usage of the infrastructure

... unwilling to reveal its true incentives to the other competitors, or to NOP

NOP: governmental entity, aiming to ...

... maximize the unknown aggregate level of satisfaction for the LOPs
(socially optimal solution)

... ensure fairness in cost sharing

Our Notion of Robustness
Tolerance to LOPs’ unknown and/or dynamically changing incentives
causing elasticity of frequency requests

10 / 70

Robust Line Planning – A Different Perspective

Motivation: regulations for competition – free railway market

LOP: commercial entity trying to ...

... make profit out of the usage of the infrastructure

... unwilling to reveal its true incentives to the other competitors, or to NOP

NOP: governmental entity, aiming to ...

... maximize the unknown aggregate level of satisfaction for the LOPs
(socially optimal solution)

... ensure fairness in cost sharing

Our Notion of Robustness
Tolerance to LOPs’ unknown and/or dynamically changing incentives
causing elasticity of frequency requests

10 / 70

Robust Line Planning – A Different Perspective

Motivation: regulations for competition – free railway market

LOP: commercial entity trying to ...

... make profit out of the usage of the infrastructure

... unwilling to reveal its true incentives to the other competitors, or to NOP

NOP: governmental entity, aiming to ...

... maximize the unknown aggregate level of satisfaction for the LOPs
(socially optimal solution)

... ensure fairness in cost sharing

Our Notion of Robustness
Tolerance to LOPs’ unknown and/or dynamically changing incentives
causing elasticity of frequency requests

10 / 70

Our Approach: A Railway Market (I)

Each LOP p ∈ P ...

... has a private utility function of its assigned frequency Up : R≥0 7→ R≥0

... has a unique (or multiple) fixed line(s) that interest her (public
information)

... competes against the other LOPs for the total frequency committed to
her along her line(s)

NOP uses a mechanism ...
... a feasible frequency allocation rule

and
... an anonymous resource pricing scheme

aiming to maximize the aggregate level of satisfaction for the LOPs

ASSUMPTION 1 (economy of scale)
For every LOP p ∈ P, Up is strictly increasing and strictly concave

11 / 70

Our Approach: A Railway Market (I)

Each LOP p ∈ P ...

... has a private utility function of its assigned frequency Up : R≥0 7→ R≥0

... has a unique (or multiple) fixed line(s) that interest her (public
information)

... competes against the other LOPs for the total frequency committed to
her along her line(s)

NOP uses a mechanism ...
... a feasible frequency allocation rule

and
... an anonymous resource pricing scheme

aiming to maximize the aggregate level of satisfaction for the LOPs

ASSUMPTION 1 (economy of scale)
For every LOP p ∈ P, Up is strictly increasing and strictly concave

11 / 70

Our Approach: A Railway Market (I)

Each LOP p ∈ P ...

... has a private utility function of its assigned frequency Up : R≥0 7→ R≥0

... has a unique (or multiple) fixed line(s) that interest her (public
information)

... competes against the other LOPs for the total frequency committed to
her along her line(s)

NOP uses a mechanism ...
... a feasible frequency allocation rule

and
... an anonymous resource pricing scheme

aiming to maximize the aggregate level of satisfaction for the LOPs

ASSUMPTION 1 (economy of scale)
For every LOP p ∈ P, Up is strictly increasing and strictly concave

11 / 70

Our Approach: A Railway Market (II)

Reality of an emerging (Pan-European) Railway Market:

Huge instances to be handled globally by a central authority (NOP)

Real-time changes of

(i) The network infrastructure
(ii) LOP preferences

Instead of using a (static, global) mechanism that aims to maximize
the aggregate level of satisfaction for the LOPs
Instead of using a (static, centralized) mechanism that aims to
maximize the aggregate level of satisfaction for the LOPs

Devise a dynamic, decentralized mechanism that

I assures global convergence to the (unknown, possibly changing over
time) social optimum

I is based (as much as possible) on local information

12 / 70

Our Approach: A Railway Market (II)

Reality of an emerging (Pan-European) Railway Market:

Huge instances to be handled globally by a central authority (NOP)

Real-time changes of

(i) The network infrastructure
(ii) LOP preferences

Instead of using a (static, global) mechanism that aims to maximize
the aggregate level of satisfaction for the LOPs
Instead of using a (static, centralized) mechanism that aims to
maximize the aggregate level of satisfaction for the LOPs

Devise a dynamic, decentralized mechanism that

I assures global convergence to the (unknown, possibly changing over
time) social optimum

I is based (as much as possible) on local information

12 / 70

Our Approach: A Railway Market (II)

Reality of an emerging (Pan-European) Railway Market:

Huge instances to be handled globally by a central authority (NOP)

Real-time changes of

(i) The network infrastructure
(ii) LOP preferences

Instead of using a (static, global) mechanism that aims to maximize
the aggregate level of satisfaction for the LOPs

Instead of using a (static, centralized) mechanism that aims to
maximize the aggregate level of satisfaction for the LOPs

Devise a dynamic, decentralized mechanism that

I assures global convergence to the (unknown, possibly changing over
time) social optimum

I is based (as much as possible) on local information

12 / 70

Our Approach: A Railway Market (II)

Reality of an emerging (Pan-European) Railway Market:

Huge instances to be handled globally by a central authority (NOP)

Real-time changes of

(i) The network infrastructure
(ii) LOP preferences

Instead of using a (static, global) mechanism that aims to maximize
the aggregate level of satisfaction for the LOPs

Instead of using a (static, centralized) mechanism that aims to
maximize the aggregate level of satisfaction for the LOPs

Devise a dynamic, decentralized mechanism that

I assures global convergence to the (unknown, possibly changing over
time) social optimum

I is based (as much as possible) on local information

12 / 70

Cases Studied [Bessas, Kontogiannis & Z (2009; 2011)]

[SP] Single Line Pool
I A unique line (path) per LOP

[MP] Multiple Line Pools
I A polynomial number of different line pools representing

non-overlapping usage of the infrastructure, due to ...

... varying customer traffic (rush-hour morning pool, late morning pool,
rush-hour afternoon pool, night pool, etc)

... maintenance

... dependencies between types of lines (a high-speed line affects the
choice of lines for other trains)

[MPSU] Multiple line Pools – Single Utility:
One utility function per LOP, for the aggregate frequency over all pools

[MPMU] Multiple line Pools – Multiple Utilities:
Different utility functions per pool for each LOP

13 / 70

New Contributions [Bessas, Kontogiannis & Z (2009; 2011)]

Globally convergent (continuous) decentralized mechanism (dynamic
resource pricing and LOP bidding scheme) for

I [SP] – adaptation of the proportionally fair pricing scheme [Kelly (1997)]

I [MPSU] and [MPMU]

Experimental study on discrete variants of the globally convergent
mechanisms for [SP] and [MPMU] on synthetic and real-world data

I 1st Experiment: global convergence to social optimum, starting from
an arbitrary initial state
Experiments indicated independence from number of pools, but
sensitivity to the shape of the utility functions

I 2nd Experiment: convergence to optimality, recovering from small
disruptions to a previous social optimum
Experiments indicated very fast (re-)convergence to optimum

[SP]: Single line Pool [MPSU]: Multiple line Pools – Single Utility [MPMU]: Multiple line Pools – Multiple Utilities

14 / 70

New Contributions [Bessas, Kontogiannis & Z (2009; 2011)]

Globally convergent (continuous) decentralized mechanism (dynamic
resource pricing and LOP bidding scheme) for

I [SP] – adaptation of the proportionally fair pricing scheme [Kelly (1997)]

I [MPSU] and [MPMU]

Experimental study on discrete variants of the globally convergent
mechanisms for [SP] and [MPMU] on synthetic and real-world data

I 1st Experiment: global convergence to social optimum, starting from
an arbitrary initial state
Experiments indicated independence from number of pools, but
sensitivity to the shape of the utility functions

I 2nd Experiment: convergence to optimality, recovering from small
disruptions to a previous social optimum
Experiments indicated very fast (re-)convergence to optimum

[SP]: Single line Pool [MPSU]: Multiple line Pools – Single Utility [MPMU]: Multiple line Pools – Multiple Utilities
14 / 70

New Contributions [Bessas, Kontogiannis & Z (2009; 2011)]

Globally convergent (continuous) decentralized mechanism (dynamic
resource pricing and LOP bidding scheme) for

I [SP] – adaptation of the proportionally fair pricing scheme [Kelly (1997)]

I [MPSU] and [MPMU]

Experimental study on discrete variants of the globally convergent
mechanisms for [SP] and [MPMU] on synthetic and real-world data

I 1st Experiment: global convergence to social optimum, starting from
an arbitrary initial state
Experiments indicated independence from number of pools, but
sensitivity to the shape of the utility functions

I 2nd Experiment: convergence to optimality, recovering from small
disruptions to a previous social optimum
Experiments indicated very fast (re-)convergence to optimum

[SP]: Single line Pool [MPSU]: Multiple line Pools – Single Utility [MPMU]: Multiple line Pools – Multiple Utilities
14 / 70

New Contributions [Bessas, Kontogiannis & Z (2009; 2011)] – In this Talk

Globally convergent (continuous) decentralized mechanism (dynamic
resource pricing and LOP bidding scheme) for

I [SP] – adaptation of the proportionally fair pricing scheme [Kelly (1997)]

I [MPSU] and [MPMU]

Experimental study on discrete variants of the globally convergent
mechanisms for [SP] and [MPMU] on synthetic and real-world data

I 1st Experiment: global convergence to social optimum, starting from
an arbitrary initial state
Experiments indicated independence from number of pools, but
sensitivity to the shape of the utility functions

I 2nd Experiment: convergence to optimality, recovering from small
disruptions to a previous social optimum
Experiments indicated very fast (re-)convergence to optimum

[SP]: Single line Pool [MPSU]: Multiple line Pools – Single Utility [MPMU]: Multiple line Pools – Multiple Utilities
15 / 70

The Optimization Problem
Line Pool: routing matrix R ∈ {0, 1}|L |×|P | (one line per LOP)

I Column↔ LOP p ∈ P
I Row↔ specific resource (edge) ` ∈ L

1

1 1

0su

ut

0 0

0 1

vs

tv

s

v

u

t

Capacity vector c ∈ (R≥0)|L |: frequency upper bounds of edges

xp : path frequency granted to LOP p along her line

Goal: find the (unique) optimal solution of the convex program

SOCIAL max

∑p∈P Up(xp) : Rx ≤ c; x ≥ 0

Where is the problem?

16 / 70

The Optimization Problem
Line Pool: routing matrix R ∈ {0, 1}|L |×|P | (one line per LOP)

I Column↔ LOP p ∈ P
I Row↔ specific resource (edge) ` ∈ L

1

1 1

0su

ut

0 0

0 1

vs

tv

s

v

u

t

Capacity vector c ∈ (R≥0)|L |: frequency upper bounds of edges

xp : path frequency granted to LOP p along her line

Goal: find the (unique) optimal solution of the convex program

SOCIAL max

∑p∈P Up(xp) : Rx ≤ c; x ≥ 0

Where is the problem?

16 / 70

The Optimization Problem
Line Pool: routing matrix R ∈ {0, 1}|L |×|P | (one line per LOP)

I Column↔ LOP p ∈ P
I Row↔ specific resource (edge) ` ∈ L

1

1 1

0su

ut

0 0

0 1

vs

tv

s

v

u

t

Capacity vector c ∈ (R≥0)|L |: frequency upper bounds of edges

xp : path frequency granted to LOP p along her line

Goal: find the (unique) optimal solution of the convex program

SOCIAL max

∑p∈P Up(xp) : Rx ≤ c; x ≥ 0

Where is the problem?

16 / 70

The Optimization Problem
Line Pool: routing matrix R ∈ {0, 1}|L |×|P | (one line per LOP)

I Column↔ LOP p ∈ P
I Row↔ specific resource (edge) ` ∈ L

1

1 1

0su

ut

0 0

0 1

vs

tv

s

v

u

t

Capacity vector c ∈ (R≥0)|L |: frequency upper bounds of edges

xp : path frequency granted to LOP p along her line

Goal: find the (unique) optimal solution of the convex program

SOCIAL max

∑p∈P Up(xp) : Rx ≤ c; x ≥ 0

Where is the problem?

16 / 70

The Optimization Problem
Line Pool: routing matrix R ∈ {0, 1}|L |×|P | (one line per LOP)

I Column↔ LOP p ∈ P
I Row↔ specific resource (edge) ` ∈ L

1

1 1

0su

ut

0 0

0 1

vs

tv

s

v

u

t

Capacity vector c ∈ (R≥0)|L |: frequency upper bounds of edges

xp : path frequency granted to LOP p along her line

Goal: find the (unique) optimal solution of the convex program

SOCIAL max

∑p∈P Up(xp) : Rx ≤ c; x ≥ 0

Where is the problem? 16 / 70

Difficulties in Solving SOCIAL

SOCIAL max

∑p∈P Up(xp) : Rx ≤ c; x ≥ 0

Reluctance of LOPs to reveal their private utilities to either NOP or
their competitors

⇒ Ignorance of the exact shape of the objective function

Huge scale makes centralized computations inefficient

17 / 70

Difficulties in Solving SOCIAL

SOCIAL max

∑p∈P Up(xp) : Rx ≤ c; x ≥ 0

Reluctance of LOPs to reveal their private utilities to either NOP

or their competitors

⇒ Ignorance of the exact shape of the objective function

Huge scale makes centralized computations inefficient

17 / 70

Difficulties in Solving SOCIAL

SOCIAL max

∑p∈P Up(xp) : Rx ≤ c; x ≥ 0

Reluctance of LOPs to reveal their private utilities to either NOP

or their competitors

⇒ Ignorance of the exact shape of the objective function

Huge scale makes centralized computations inefficient

17 / 70

An Alternative Description of SOCIAL

SOCIAL max

∑p∈P Up(xp) : Rx ≤ c; x ≥ 0

x̂ ∈ OPT(SOCIAL)⇒ ∃ vector of Lagrange Multipliers λ̂ = (λ̂`)`∈L ,
satisfying the Karush-Kuhn-Tucker conditions:

KKT-SOCIAL

U′p(x̂p) = λ̂T · R?,p , ∀p ∈ P,

λ̂` (c` − R`,? · x̂) = 0, ∀` ∈ L ,

R`,? · x̂ ≤ c`, ∀` ∈ L ,

λ̂, x̂ ≥ 0

18 / 70

An Alternative Description of SOCIAL

SOCIAL max

∑p∈P Up(xp) : Rx ≤ c; x ≥ 0

x̂ ∈ OPT(SOCIAL)⇒ ∃ vector of Lagrange Multipliers λ̂ = (λ̂`)`∈L ,
satisfying the Karush-Kuhn-Tucker conditions:

KKT-SOCIAL

U′p(x̂p) = λ̂T · R?,p , ∀p ∈ P,

λ̂` (c` − R`,? · x̂) = 0, ∀` ∈ L ,

R`,? · x̂ ≤ c`, ∀` ∈ L ,

λ̂, x̂ ≥ 0

18 / 70

Economic Interpretation of Lagrange Multipliers

Assuming knowledge of the optimal vector of Lagrange multipliers λ̂

NOP announces pricing scheme:

Each resource ` ∈ L charges a per-unit-of-frequency price equal to λ̂`

Each LOP p ∈ P, granted line frequency xp ≥ 0, pays usage cost:

Cp(xp) = µ̂p · xp

where µ̂p ≡
∑
`∈L :R`,p=1 λ̂` = λ̂T R?,p is the total per-unit price of p

along her line R?,p .

19 / 70

Economic Interpretation of Lagrange Multipliers

Assuming knowledge of the optimal vector of Lagrange multipliers λ̂

NOP announces pricing scheme:

Each resource ` ∈ L charges a per-unit-of-frequency price equal to λ̂`

Each LOP p ∈ P, granted line frequency xp ≥ 0, pays usage cost:

Cp(xp) = µ̂p · xp

where µ̂p ≡
∑
`∈L :R`,p=1 λ̂` = λ̂T R?,p is the total per-unit price of p

along her line R?,p .

19 / 70

Economic Interpretation of Lagrange Multipliers

Assuming knowledge of the optimal vector of Lagrange multipliers λ̂

NOP announces pricing scheme:

Each resource ` ∈ L charges a per-unit-of-frequency price equal to λ̂`

Each LOP p ∈ P, granted line frequency xp ≥ 0, pays usage cost:

Cp(xp) = µ̂p · xp

where µ̂p ≡
∑
`∈L :R`,p=1 λ̂` = λ̂T R?,p is the total per-unit price of p

along her line R?,p .

19 / 70

Exploiting the Selfishness of LOPs

Each selfish LOP is interested in solving:

USER-I max
{
Up(xp) − µ̂pxp : xp ≥ 0

}

ASSUMPTION 2
LOPs control negligible fractions of frequency and are price takers
(accept announced prices as constant)

The selfish solution x̃p ≥ 0 of USER-I satisfies

U′p(x̃p) = µ̂p = λ̂T · R?,p

⇒ the vector of selfish frequencies x̃ satisfies the first (hard) set of
equalities of KKT-SOCIAL

The optimal vector λ̂ of Lagrange multipliers is also not known

20 / 70

Exploiting the Selfishness of LOPs

Each selfish LOP is interested in solving:

USER-I max
{
Up(xp) − µ̂pxp : xp ≥ 0

}
ASSUMPTION 2
LOPs control negligible fractions of frequency and are price takers
(accept announced prices as constant)

The selfish solution x̃p ≥ 0 of USER-I satisfies

U′p(x̃p) = µ̂p = λ̂T · R?,p

⇒ the vector of selfish frequencies x̃ satisfies the first (hard) set of
equalities of KKT-SOCIAL

The optimal vector λ̂ of Lagrange multipliers is also not known

20 / 70

Exploiting the Selfishness of LOPs

Each selfish LOP is interested in solving:

USER-I max
{
Up(xp) − µ̂pxp : xp ≥ 0

}
ASSUMPTION 2
LOPs control negligible fractions of frequency and are price takers
(accept announced prices as constant)

The selfish solution x̃p ≥ 0 of USER-I satisfies

U′p(x̃p) = µ̂p = λ̂T · R?,p

⇒ the vector of selfish frequencies x̃ satisfies the first (hard) set of
equalities of KKT-SOCIAL

The optimal vector λ̂ of Lagrange multipliers is also not known

20 / 70

Exploiting the Selfishness of LOPs

Each selfish LOP is interested in solving:

USER-I max
{
Up(xp) − µ̂pxp : xp ≥ 0

}
ASSUMPTION 2
LOPs control negligible fractions of frequency and are price takers
(accept announced prices as constant)

The selfish solution x̃p ≥ 0 of USER-I satisfies

U′p(x̃p) = µ̂p = λ̂T · R?,p

⇒ the vector of selfish frequencies x̃ satisfies the first (hard) set of
equalities of KKT-SOCIAL

The optimal vector λ̂ of Lagrange multipliers is also not known

20 / 70

Dynamic Pricing Scheme

Iteratively:
1 Each LOP p ∈ P (rather than requesting a frequency xp) announces a

bid wp ≥ 0 for buying frequency

2 NOP considers the following program, with strictly concave
pseudo–utilities

NETWORK max

∑
p∈P

wp ·log(xp)︷ ︸︸ ︷
Up(xp) : Rx ≤ c; x ≥ 0

whose optimal Lagrange Multipliers vector λ̄ determines the
per-unit-prices of the resources

3 Allocation of frequencies to LOPs: ∀p ∈ P, x̄p =
wp
µ̄p

µ̄p ≡
∑
`∈L :R`,p=1 λ̄` = λ̄T · R?,p is the total price of p committing a unit

of traffic along her line R?,p

21 / 70

Dynamic Pricing Scheme

Iteratively:
1 Each LOP p ∈ P (rather than requesting a frequency xp) announces a

bid wp ≥ 0 for buying frequency

2 NOP considers the following program, with strictly concave
pseudo–utilities

NETWORK max

∑
p∈P

wp ·log(xp)︷ ︸︸ ︷
Up(xp) : Rx ≤ c; x ≥ 0

whose optimal Lagrange Multipliers vector λ̄ determines the
per-unit-prices of the resources

3 Allocation of frequencies to LOPs: ∀p ∈ P, x̄p =
wp
µ̄p

µ̄p ≡
∑
`∈L :R`,p=1 λ̄` = λ̄T · R?,p is the total price of p committing a unit

of traffic along her line R?,p

21 / 70

Dynamic Pricing Scheme

Iteratively:
1 Each LOP p ∈ P (rather than requesting a frequency xp) announces a

bid wp ≥ 0 for buying frequency

2 NOP considers the following program, with strictly concave
pseudo–utilities

NETWORK max

∑
p∈P

wp ·log(xp)︷ ︸︸ ︷
Up(xp) : Rx ≤ c; x ≥ 0

whose optimal Lagrange Multipliers vector λ̄ determines the
per-unit-prices of the resources

3 Allocation of frequencies to LOPs: ∀p ∈ P, x̄p =
wp
µ̄p

µ̄p ≡
∑
`∈L :R`,p=1 λ̄` = λ̄T · R?,p is the total price of p committing a unit

of traffic along her line R?,p

21 / 70

An Alternative Description of NETWORK

NETWORK max

∑p∈P wp · log(xp) : Rx ≤ c; x ≥ 0

KKT-NETWORK

wp

x̄p
= λ̄T · R?,p , ∀p ∈ P,

λ̄` (c` − R`,? · x̄) = 0, ∀` ∈ L ,

R`,? · x̄ ≤ c`, ∀` ∈ L ,

λ̄, x̄ ≥ 0

22 / 70

What remains?

The only difference between KKT-NETWORK and KKT-SOCIAL is the
first condition:

KKT-NETWORK wp
x̄p

= λ̄T · R?,p , ∀p ∈ P
vs.

KKT-SOCIAL U′p (x̂p) = λ̂T · R?,p , ∀p ∈ P

Prove that the optimal solution (x̄, λ̄) of KKT-NETWORK satisfies

∀p ∈ P, U′p(x̄p) =
wp

x̄p

23 / 70

What remains?

The only difference between KKT-NETWORK and KKT-SOCIAL is the
first condition:

KKT-NETWORK wp
x̄p

= λ̄T · R?,p , ∀p ∈ P
vs.

KKT-SOCIAL U′p (x̂p) = λ̂T · R?,p , ∀p ∈ P

Prove that the optimal solution (x̄, λ̄) of KKT-NETWORK satisfies

∀p ∈ P, U′p(x̄p) =
wp

x̄p

23 / 70

Exploiting (again) the Selfishness of LOPs

At each time t ≥ 0, LOP p ∈ P is interested in solving:

USER-II max

Up(wp/µp(t)︸ ︷︷ ︸
=xp(t)

) − wp : wp ≥ 0

Given the price taking property, the selfish solution w̃p(t) satisfies:

(∗) ∀p ∈ P,
1

µp(t)
· U′p

(
w̃p(t)
µp(t)

)
= 1 ⇔ U′p (x̃p(t)) =

w̃p(t)
x̃p(t)

At equilibrium we have: KKT-NETWORK = KKT-SOCIAL !!!

24 / 70

Exploiting (again) the Selfishness of LOPs

At each time t ≥ 0, LOP p ∈ P is interested in solving:

USER-II max

Up(wp/µp(t)︸ ︷︷ ︸
=xp(t)

) − wp : wp ≥ 0

Given the price taking property, the selfish solution w̃p(t) satisfies:

(∗) ∀p ∈ P,
1

µp(t)
· U′p

(
w̃p(t)
µp(t)

)
= 1 ⇔ U′p (x̃p(t)) =

w̃p(t)
x̃p(t)

At equilibrium we have: KKT-NETWORK = KKT-SOCIAL !!!

24 / 70

Exploiting (again) the Selfishness of LOPs

At each time t ≥ 0, LOP p ∈ P is interested in solving:

USER-II max

Up(wp/µp(t)︸ ︷︷ ︸
=xp(t)

) − wp : wp ≥ 0

Given the price taking property, the selfish solution w̃p(t) satisfies:

(∗) ∀p ∈ P,
1

µp(t)
· U′p

(
w̃p(t)
µp(t)

)
= 1 ⇔ U′p (x̃p(t)) =

w̃p(t)
x̃p(t)

At equilibrium we have: KKT-NETWORK = KKT-SOCIAL !!!

24 / 70

Single line Pool – Recap

At equilibrium KKT-NETWORK = KKT-SOCIAL

Crucial point: set the “right” resource prices and the “right” bids will
follow

Avoid solving globally NETWORK (although, in principle we could)

25 / 70

Single line Pool – Recap

At equilibrium KKT-NETWORK = KKT-SOCIAL

Crucial point: set the “right” resource prices and the “right” bids will
follow

Avoid solving globally NETWORK (although, in principle we could)

25 / 70

How to Distributively Solve NETWORK
Kelly’s Proportionally Fair Pricing

At every time step t ≥ 0:
1 Every resource ` ∈ L updates its per-unit-of-frequency (anonymous)

price according to

λ̇`(t) =

max{y`(t) − c`, 0}, if λ`(t) = 0 ,

(y`(t) − c`), if λ`(t) > 0 .

where y`(t) ≡
∑

p∈R:R`,p=1 xp(t) = R`,? · x(t) is the cumulative
frequency committed at edge ` ∈ L at time t

2 Each LOP announces her current bid wp(t) for buying frequency over
her own line, as a solution to USER-II

3 Each LOP p ∈ P receives a per-unit-of-frequency price
µp(t) ≡

∑
`∈L :R`,p=1 λ`(t) = λ(t)T

· R?,p

and thus a frequency xp(t) =
wp(t)
µp(t) , at time t

26 / 70

How to Distributively Solve NETWORK
Kelly’s Proportionally Fair Pricing

At every time step t ≥ 0:
1 Every resource ` ∈ L updates its per-unit-of-frequency (anonymous)

price according to

λ̇`(t) =

max{y`(t) − c`, 0}, if λ`(t) = 0 ,

(y`(t) − c`), if λ`(t) > 0 .

where y`(t) ≡
∑

p∈R:R`,p=1 xp(t) = R`,? · x(t) is the cumulative
frequency committed at edge ` ∈ L at time t

2 Each LOP announces her current bid wp(t) for buying frequency over
her own line, as a solution to USER-II

3 Each LOP p ∈ P receives a per-unit-of-frequency price
µp(t) ≡

∑
`∈L :R`,p=1 λ`(t) = λ(t)T

· R?,p

and thus a frequency xp(t) =
wp(t)
µp(t) , at time t

26 / 70

How to Distributively Solve NETWORK
Kelly’s Proportionally Fair Pricing

At every time step t ≥ 0:
1 Every resource ` ∈ L updates its per-unit-of-frequency (anonymous)

price according to

λ̇`(t) =

max{y`(t) − c`, 0}, if λ`(t) = 0 ,

(y`(t) − c`), if λ`(t) > 0 .

where y`(t) ≡
∑

p∈R:R`,p=1 xp(t) = R`,? · x(t) is the cumulative
frequency committed at edge ` ∈ L at time t

2 Each LOP announces her current bid wp(t) for buying frequency over
her own line, as a solution to USER-II

3 Each LOP p ∈ P receives a per-unit-of-frequency price
µp(t) ≡

∑
`∈L :R`,p=1 λ`(t) = λ(t)T

· R?,p

and thus a frequency xp(t) =
wp(t)
µp(t) , at time t

26 / 70

How to Prove Convergence?

Via a Lyapunov Function argument (plus full rank of R) we can prove
convergence to the optimal solution (x̄, λ̄) = (x̂, λ̂) of both NETWORK
and SOCIAL

27 / 70

Multiple Line Pools

The NOP can ...
I periodically exploit a set K of line pools
I determine how to divide the usage of the network among the different

pools

Each line pool operates in disjoint time intervals (time division
multiplexing)

Every LOP p ...
I can claim different lines from different line pools
I has a different utility function Up,k per line pool k

28 / 70

Multiple Line Pools (set K)

Pool k ∈ K : routing matrix R(k) ∈ {0, 1}|L |×|P | (one line per LOP per
pool)

Capacity vector c ∈ (R≥0)|L |: max frequency over whole time period

xp,k : frequency granted to LOP p along her line within pool k

fk , k ∈ K : proportion consumed (from the capacity of each edge) by
pool k over the whole time period (determined by NOP)

Find the (unique) optimal solution of the convex program:

MULTI-SOCIAL-2 (MSC2)

max
∑
p∈P

Up(xp) =
∑
p∈P

∑
k∈K

Up,k (xp,k)

s.t. ∀(`, k) ∈ L × K ,
∑
p∈P

R`,p(k) · xp,k ≤ c`,k · fk∑
k∈K

fk ≤ 1; x, f ≥ 0

29 / 70

Multiple Line Pools (set K)

Pool k ∈ K : routing matrix R(k) ∈ {0, 1}|L |×|P | (one line per LOP per
pool)

Capacity vector c ∈ (R≥0)|L |: max frequency over whole time period

xp,k : frequency granted to LOP p along her line within pool k

fk , k ∈ K : proportion consumed (from the capacity of each edge) by
pool k over the whole time period (determined by NOP)

Find the (unique) optimal solution of the convex program:

MULTI-SOCIAL-2 (MSC2)

max
∑
p∈P

Up(xp) =
∑
p∈P

∑
k∈K

Up,k (xp,k)

s.t. ∀(`, k) ∈ L × K ,
∑
p∈P

R`,p(k) · xp,k ≤ c`,k · fk∑
k∈K

fk ≤ 1; x, f ≥ 0

29 / 70

Multiple Line Pools (set K)

Pool k ∈ K : routing matrix R(k) ∈ {0, 1}|L |×|P | (one line per LOP per
pool)

Capacity vector c ∈ (R≥0)|L |: max frequency over whole time period

xp,k : frequency granted to LOP p along her line within pool k

fk , k ∈ K : proportion consumed (from the capacity of each edge) by
pool k over the whole time period (determined by NOP)

Find the (unique) optimal solution of the convex program:

MULTI-SOCIAL-2 (MSC2)

max
∑
p∈P

Up(xp) =
∑
p∈P

∑
k∈K

Up,k (xp,k)

s.t. ∀(`, k) ∈ L × K ,
∑
p∈P

R`,p(k) · xp,k ≤ c`,k · fk∑
k∈K

fk ≤ 1; x, f ≥ 0

29 / 70

Multiple Line Pools (set K)

Pool k ∈ K : routing matrix R(k) ∈ {0, 1}|L |×|P | (one line per LOP per
pool)

Capacity vector c ∈ (R≥0)|L |: max frequency over whole time period

xp,k : frequency granted to LOP p along her line within pool k

fk , k ∈ K : proportion consumed (from the capacity of each edge) by
pool k over the whole time period (determined by NOP)

Find the (unique) optimal solution of the convex program:

MULTI-SOCIAL-2 (MSC2)

max
∑
p∈P

Up(xp) =
∑
p∈P

∑
k∈K

Up,k (xp,k)

s.t. ∀(`, k) ∈ L × K ,
∑
p∈P

R`,p(k) · xp,k ≤ c`,k · fk∑
k∈K

fk ≤ 1; x, f ≥ 0

29 / 70

Multiple Line Pools (set K)

Pool k ∈ K : routing matrix R(k) ∈ {0, 1}|L |×|P | (one line per LOP per
pool)

Capacity vector c ∈ (R≥0)|L |: max frequency over whole time period

xp,k : frequency granted to LOP p along her line within pool k

fk , k ∈ K : proportion consumed (from the capacity of each edge) by
pool k over the whole time period (determined by NOP)

Find the (unique) optimal solution of the convex program:

MULTI-SOCIAL-2 (MSC2)

max
∑
p∈P

Up(xp) =
∑
p∈P

∑
k∈K

Up,k (xp,k)

s.t. ∀(`, k) ∈ L × K ,
∑
p∈P

R`,p(k) · xp,k ≤ c`,k · fk∑
k∈K

fk ≤ 1; x, f ≥ 0

29 / 70

An Alternative Description of MSC2

(x̂, f̂) ∈ OPT(MSC2)⇒ ∃ vector of Lagrange Multipliers(
Λ̂ = (Λ̂`,k)`∈L ,k∈K , ζ̂

)
, satisfying the Karush-Kuhn-Tucker conditions:

KKT-MSC2 Λ`,k : per-unit-of-frequency price

Per-unit cost of LOP p in pool kAll pools have same aggregate costNetwork is totally distributed among pools

U′p,k (x̂p,k) =
∑
`∈L Λ̂`,k · R`,p(k) ≡ µp,k (Λ̂), (p, k) ∈ P × K∑

`∈L Λ̂`,k · c` = ζ̂, k ∈ K

Λ̂`,k
[∑

p∈P R`,p(k) · x̂p,k − c` f̂k
]

= 0, (`, k) ∈ L × K

ζ̂ ·
(∑

k∈K f̂k − 1
)

= 0∑
p∈P R(k)`,p · x̂p,k ≤ c` · f̂k , (`, k) ∈ L × K∑

k∈K f̂k ≤ 1

x̂, f̂, Λ̂, ζ̂ ≥ 0

30 / 70

An Alternative Description of MSC2

(x̂, f̂) ∈ OPT(MSC2)⇒ ∃ vector of Lagrange Multipliers(
Λ̂ = (Λ̂`,k)`∈L ,k∈K , ζ̂

)
, satisfying the Karush-Kuhn-Tucker conditions:

KKT-MSC2 Λ`,k : per-unit-of-frequency price

Per-unit cost of LOP p in pool kAll pools have same aggregate costNetwork is totally distributed among pools

U′p,k (x̂p,k) =
∑
`∈L Λ̂`,k · R`,p(k) ≡ µp,k (Λ̂), (p, k) ∈ P × K∑

`∈L Λ̂`,k · c` = ζ̂, k ∈ K

Λ̂`,k
[∑

p∈P R`,p(k) · x̂p,k − c` f̂k
]

= 0, (`, k) ∈ L × K

ζ̂ ·
(∑

k∈K f̂k − 1
)

= 0∑
p∈P R(k)`,p · x̂p,k ≤ c` · f̂k , (`, k) ∈ L × K∑

k∈K f̂k ≤ 1

x̂, f̂, Λ̂, ζ̂ ≥ 0
30 / 70

An Alternative Description of MSC2

(x̂, f̂) ∈ OPT(MSC2)⇒ ∃ vector of Lagrange Multipliers(
Λ̂ = (Λ̂`,k)`∈L ,k∈K , ζ̂

)
, satisfying the Karush-Kuhn-Tucker conditions:

KKT-MSC2 Λ`,k : per-unit-of-frequency price
Per-unit cost of LOP p in pool k

All pools have same aggregate costNetwork is totally distributed among pools

U′p,k (x̂p,k) =
∑
`∈L Λ̂`,k · R`,p(k) ≡ µp,k (Λ̂), (p, k) ∈ P × K∑

`∈L Λ̂`,k · c` = ζ̂, k ∈ K

Λ̂`,k
[∑

p∈P R`,p(k) · x̂p,k − c` f̂k
]

= 0, (`, k) ∈ L × K

ζ̂ ·
(∑

k∈K f̂k − 1
)

= 0∑
p∈P R(k)`,p · x̂p,k ≤ c` · f̂k , (`, k) ∈ L × K∑

k∈K f̂k ≤ 1

x̂, f̂, Λ̂, ζ̂ ≥ 0
30 / 70

An Alternative Description of MSC2

(x̂, f̂) ∈ OPT(MSC2)⇒ ∃ vector of Lagrange Multipliers(
Λ̂ = (Λ̂`,k)`∈L ,k∈K , ζ̂

)
, satisfying the Karush-Kuhn-Tucker conditions:

KKT-MSC2 Λ`,k : per-unit-of-frequency price

Per-unit cost of LOP p in pool k

All pools have same aggregate cost

Network is totally distributed among pools

U′p,k (x̂p,k) =
∑
`∈L Λ̂`,k · R`,p(k) ≡ µp,k (Λ̂), (p, k) ∈ P × K∑

`∈L Λ̂`,k · c` = ζ̂, k ∈ K

Λ̂`,k
[∑

p∈P R`,p(k) · x̂p,k − c` f̂k
]

= 0, (`, k) ∈ L × K

ζ̂ ·
(∑

k∈K f̂k − 1
)

= 0∑
p∈P R(k)`,p · x̂p,k ≤ c` · f̂k , (`, k) ∈ L × K∑

k∈K f̂k ≤ 1

x̂, f̂, Λ̂, ζ̂ ≥ 0
30 / 70

An Alternative Description of MSC2

(x̂, f̂) ∈ OPT(MSC2)⇒ ∃ vector of Lagrange Multipliers(
Λ̂ = (Λ̂`,k)`∈L ,k∈K , ζ̂

)
, satisfying the Karush-Kuhn-Tucker conditions:

KKT-MSC2 Λ`,k : per-unit-of-frequency price

Per-unit cost of LOP p in pool kAll pools have same aggregate cost

Network is totally distributed among pools

U′p,k (x̂p,k) =
∑
`∈L Λ̂`,k · R`,p(k) ≡ µp,k (Λ̂), (p, k) ∈ P × K∑

`∈L Λ̂`,k · c` = ζ̂, k ∈ K

Λ̂`,k
[∑

p∈P R`,p(k) · x̂p,k − c` f̂k
]

= 0, (`, k) ∈ L × K

ζ̂ ·
(∑

k∈K f̂k − 1
)

= 0∑
p∈P R(k)`,p · x̂p,k ≤ c` · f̂k , (`, k) ∈ L × K∑

k∈K f̂k ≤ 1

x̂, f̂, Λ̂, ζ̂ ≥ 0
30 / 70

Pricing Scheme

1 Each LOP p ∈ P announces a bid wp,k ≥ 0 for buying frequency in
pool k ∈ K

2 NOP considers the following program, with strictly concave
pseudo–utilities, whose optimal Lagrange Multipliers vector Λ̄
determines the per-unit-prices of the resources in the pools

MNET2

max .
∑

p∈P
∑

k∈K

wp,k ·log(xp,k)︷ ︸︸ ︷
Up,k (xp,k)

s.t. ∀(`, k) ∈ L × K ,
∑

p∈P R(k)`,p · xp,k ≤ c`,k · fk ;
∑

k∈K fk ≤ 1; f, x ≥ 0

3 Allocation of frequencies to LOPs: ∀p ∈ P,∀k ∈ K , x̄p,k =
wp,k
µ̄p,k

µ̄p,k ≡
∑
`∈L Λ̄`,k · R`,p(k) is the total price of p for committing a unit of

traffic along her line in pool k ∈ K

31 / 70

Pricing Scheme

1 Each LOP p ∈ P announces a bid wp,k ≥ 0 for buying frequency in
pool k ∈ K

2 NOP considers the following program, with strictly concave
pseudo–utilities, whose optimal Lagrange Multipliers vector Λ̄
determines the per-unit-prices of the resources in the pools

MNET2

max .
∑

p∈P
∑

k∈K

wp,k ·log(xp,k)︷ ︸︸ ︷
Up,k (xp,k)

s.t. ∀(`, k) ∈ L × K ,
∑

p∈P R(k)`,p · xp,k ≤ c`,k · fk ;
∑

k∈K fk ≤ 1; f, x ≥ 0

3 Allocation of frequencies to LOPs: ∀p ∈ P,∀k ∈ K , x̄p,k =
wp,k
µ̄p,k

µ̄p,k ≡
∑
`∈L Λ̄`,k · R`,p(k) is the total price of p for committing a unit of

traffic along her line in pool k ∈ K

31 / 70

Pricing Scheme

1 Each LOP p ∈ P announces a bid wp,k ≥ 0 for buying frequency in
pool k ∈ K

2 NOP considers the following program, with strictly concave
pseudo–utilities, whose optimal Lagrange Multipliers vector Λ̄
determines the per-unit-prices of the resources in the pools

MNET2

max .
∑

p∈P
∑

k∈K

wp,k ·log(xp,k)︷ ︸︸ ︷
Up,k (xp,k)

s.t. ∀(`, k) ∈ L × K ,
∑

p∈P R(k)`,p · xp,k ≤ c`,k · fk ;
∑

k∈K fk ≤ 1; f, x ≥ 0

3 Allocation of frequencies to LOPs: ∀p ∈ P,∀k ∈ K , x̄p,k =
wp,k
µ̄p,k

µ̄p,k ≡
∑
`∈L Λ̄`,k · R`,p(k) is the total price of p for committing a unit of

traffic along her line in pool k ∈ K
31 / 70

An Alternative Description of MNET2

(x̄, f̄) ∈ OPT(MNET2)⇒ ∃ vector of Lagrange Multipliers(
Λ̄ = (Λ̄`,k)`∈L ,k∈K , ζ̄

)
, satisfying the Karush-Kuhn-Tucker conditions:

KKT-MNET2

The only difference with KKT-MSC2

wp ,k
x̄p,k︷ ︸︸ ︷

U′p,k (x̄p,k) =
∑
`∈L Λ̄`,k · R`,p(k) ≡ µ̄p,k , (p, k) ∈ P × K∑

`∈L Λ̄`,k · c` = ζ̄, k ∈ K

Λ̄`,k
[∑

p∈P R`,p(k) · x̄p,k − c` f̄k
]

= 0, (`, k) ∈ L × K

ζ̄ ·
(∑

k∈K f̄k − 1
)

= 0∑
p∈P R(k)`,p · x̄p,k ≤ c` · f̄k , (`, k) ∈ L × K∑

k∈K f̄k ≤ 1

x̄, f̄, Λ̄, ζ̄ ≥ 0

32 / 70

An Alternative Description of MNET2

(x̄, f̄) ∈ OPT(MNET2)⇒ ∃ vector of Lagrange Multipliers(
Λ̄ = (Λ̄`,k)`∈L ,k∈K , ζ̄

)
, satisfying the Karush-Kuhn-Tucker conditions:

KKT-MNET2

The only difference with KKT-MSC2

wp ,k
x̄p,k︷ ︸︸ ︷

U′p,k (x̄p,k) =
∑
`∈L Λ̄`,k · R`,p(k) ≡ µ̄p,k , (p, k) ∈ P × K∑

`∈L Λ̄`,k · c` = ζ̄, k ∈ K

Λ̄`,k
[∑

p∈P R`,p(k) · x̄p,k − c` f̄k
]

= 0, (`, k) ∈ L × K

ζ̄ ·
(∑

k∈K f̄k − 1
)

= 0∑
p∈P R(k)`,p · x̄p,k ≤ c` · f̄k , (`, k) ∈ L × K∑

k∈K f̄k ≤ 1

x̄, f̄, Λ̄, ζ̄ ≥ 0
32 / 70

An Alternative Description of MNET2

(x̄, f̄) ∈ OPT(MNET2)⇒ ∃ vector of Lagrange Multipliers(
Λ̄ = (Λ̄`,k)`∈L ,k∈K , ζ̄

)
, satisfying the Karush-Kuhn-Tucker conditions:

KKT-MNET2 The only difference with KKT-MSC2
wp ,k
x̄p,k︷ ︸︸ ︷

U′p,k (x̄p,k) =
∑
`∈L Λ̄`,k · R`,p(k) ≡ µ̄p,k , (p, k) ∈ P × K∑

`∈L Λ̄`,k · c` = ζ̄, k ∈ K

Λ̄`,k
[∑

p∈P R`,p(k) · x̄p,k − c` f̄k
]

= 0, (`, k) ∈ L × K

ζ̄ ·
(∑

k∈K f̄k − 1
)

= 0∑
p∈P R(k)`,p · x̄p,k ≤ c` · f̄k , (`, k) ∈ L × K∑

k∈K f̄k ≤ 1

x̄, f̄, Λ̄, ζ̄ ≥ 0
32 / 70

Multiple Line Pools

Selfishness of LOPs⇒ at equilibrium KKT-MS2 = KKT-MNET2

KEY PROPERTIES
1 The NOP completely divides the infrastructure among the pools

2 For any fixed f (that completely divides the infrastructure among the
pools) the optimal value of KKT-MSC2 depends exclusively on the
optimal Λ̄

KEY PROPERTIES⇒ dynamic (decentralized) scheme for solving
KKT-MNET2

33 / 70

Multiple Line Pools

Selfishness of LOPs⇒ at equilibrium KKT-MS2 = KKT-MNET2

KEY PROPERTIES
1 The NOP completely divides the infrastructure among the pools

2 For any fixed f (that completely divides the infrastructure among the
pools) the optimal value of KKT-MSC2 depends exclusively on the
optimal Λ̄

KEY PROPERTIES⇒ dynamic (decentralized) scheme for solving
KKT-MNET2

33 / 70

Multiple Line Pools

Selfishness of LOPs⇒ at equilibrium KKT-MS2 = KKT-MNET2

KEY PROPERTIES
1 The NOP completely divides the infrastructure among the pools

2 For any fixed f (that completely divides the infrastructure among the
pools) the optimal value of KKT-MSC2 depends exclusively on the
optimal Λ̄

KEY PROPERTIES⇒ dynamic (decentralized) scheme for solving
KKT-MNET2

33 / 70

Dynamic Scheme for solving MNET2
At every time step t ≥ 0:

1 Resource price updates (by the resources, per pool, continuously):

∀(`, k) ∈ L × K , Λ̇`,k (t) =

max

{
y`,k (t) − c`fk , 0

}
, if Λ`,k (t) = 0

[y`,k (t) − c`fk], if Λ`,k (t) > 0

2 LOP bid updates (only when resource prices have stabilized):

∀p ∈ P, wp(t) ∈ arg maxwp≥0

{∑
k∈K

(
Up,k

(
wp,k
µ̄p,k

)
− wp,k

)}
3 Allocation of path frequencies: ∀p ∈ P, xp(t) =

(
w̄p,k (t)
µ̄p,k (t)

)
k∈K

4 Capacity Proportion updates (by the NOP, only when resource prices
and LOP bids have stabilized):

ζ(t) = 1
|K |

∑
k∈K cT · Λ?,k (t)

∀k ∈ K , ḟk (t) = φ(t) ·max
{
0, cT · Λ?,k (t) − ζ(t)

}

34 / 70

Dynamic Scheme for solving MNET2
At every time step t ≥ 0:

1 Resource price updates (by the resources, per pool, continuously):

∀(`, k) ∈ L × K , Λ̇`,k (t) =

max

{
y`,k (t) − c`fk , 0

}
, if Λ`,k (t) = 0

[y`,k (t) − c`fk], if Λ`,k (t) > 0

2 LOP bid updates (only when resource prices have stabilized):

∀p ∈ P, wp(t) ∈ arg maxwp≥0

{∑
k∈K

(
Up,k

(
wp,k
µ̄p,k

)
− wp,k

)}

3 Allocation of path frequencies: ∀p ∈ P, xp(t) =
(

w̄p,k (t)
µ̄p,k (t)

)
k∈K

4 Capacity Proportion updates (by the NOP, only when resource prices
and LOP bids have stabilized):

ζ(t) = 1
|K |

∑
k∈K cT · Λ?,k (t)

∀k ∈ K , ḟk (t) = φ(t) ·max
{
0, cT · Λ?,k (t) − ζ(t)

}

34 / 70

Dynamic Scheme for solving MNET2
At every time step t ≥ 0:

1 Resource price updates (by the resources, per pool, continuously):

∀(`, k) ∈ L × K , Λ̇`,k (t) =

max

{
y`,k (t) − c`fk , 0

}
, if Λ`,k (t) = 0

[y`,k (t) − c`fk], if Λ`,k (t) > 0

2 LOP bid updates (only when resource prices have stabilized):

∀p ∈ P, wp(t) ∈ arg maxwp≥0

{∑
k∈K

(
Up,k

(
wp,k
µ̄p,k

)
− wp,k

)}
3 Allocation of path frequencies: ∀p ∈ P, xp(t) =

(
w̄p,k (t)
µ̄p,k (t)

)
k∈K

4 Capacity Proportion updates (by the NOP, only when resource prices
and LOP bids have stabilized):

ζ(t) = 1
|K |

∑
k∈K cT · Λ?,k (t)

∀k ∈ K , ḟk (t) = φ(t) ·max
{
0, cT · Λ?,k (t) − ζ(t)

}

34 / 70

Dynamic Scheme for solving MNET2
At every time step t ≥ 0:

1 Resource price updates (by the resources, per pool, continuously):

∀(`, k) ∈ L × K , Λ̇`,k (t) =

max

{
y`,k (t) − c`fk , 0

}
, if Λ`,k (t) = 0

[y`,k (t) − c`fk], if Λ`,k (t) > 0

2 LOP bid updates (only when resource prices have stabilized):

∀p ∈ P, wp(t) ∈ arg maxwp≥0

{∑
k∈K

(
Up,k

(
wp,k
µ̄p,k

)
− wp,k

)}
3 Allocation of path frequencies: ∀p ∈ P, xp(t) =

(
w̄p,k (t)
µ̄p,k (t)

)
k∈K

4 Capacity Proportion updates (by the NOP, only when resource prices
and LOP bids have stabilized):

ζ(t) = 1
|K |

∑
k∈K cT · Λ?,k (t)

∀k ∈ K , ḟk (t) = φ(t) ·max
{
0, cT · Λ?,k (t) − ζ(t)

}
34 / 70

Experimental Study – Synthetic Data

grid graphs n × p, n ∈ {3, 7}, p ∈ [120, 3600]

c` ∈ [10, 110) randomly chosen

|K | ∈ [2, 4]; 3 types of LOPs

0,2 1,2 2,2 3,2 4,2 5,2 6,2

0,0 1,0 2,0 3,0 4,0 5,0 6,0

0,1 1,1 2,1 3,1 4,1 5,1 6,1

Lines (paths): deterministic & random

35 / 70

Experimental Study – Synthetic Data

grid graphs n × p, n ∈ {3, 7}, p ∈ [120, 3600]

c` ∈ [10, 110) randomly chosen

|K | ∈ [2, 4]; 3 types of LOPs

0,2 1,2 2,2 3,2 4,2 5,2 6,2

0,0 1,0 2,0 3,0 4,0 5,0 6,0

0,1 1,1 2,1 3,1 4,1 5,1 6,1

Lines (paths): deterministic & random

35 / 70

Experimental Study – Synthetic Data

grid graphs n × p, n ∈ {3, 7}, p ∈ [120, 3600]

c` ∈ [10, 110) randomly chosen

|K | ∈ [2, 4]; 3 types of LOPs

0,2 1,2 2,2 3,2 4,2 5,2 6,2

0,0 1,0 2,0 3,0 4,0 5,0 6,0

0,1 1,1 2,1 3,1 4,1 5,1 6,1

Lines (paths): deterministic & random

35 / 70

Experimental Study – Real Data

Two parts of the German railway network; c` ∈ [8, 16]

I R1: 280 nodes, 354 edges, |total lines| ∈ [100, 400]
I R2: 296 nodes, 393 edges, |total lines| ∈ [100, 1000]

Per instance
I |K | = 2
I about 10% difference in lines between the pools

36 / 70

Experimental Study – Real Data

Two parts of the German railway network; c` ∈ [8, 16]

I R1: 280 nodes, 354 edges, |total lines| ∈ [100, 400]
I R2: 296 nodes, 393 edges, |total lines| ∈ [100, 1000]

Per instance
I |K | = 2
I about 10% difference in lines between the pools

36 / 70

1st Experiment: Convergence to OPT for [MPMU]

Scenarios considered
I S1: Up,1(xp,1) = 104 √xp,1 and Up,2(xp,2) = 104 √xp,2, ∀p ∈ P.

I S2: Up,1(xp,1) = 3
4 · 104 ·

√
xp,1 and Up,2(xp,2) = 4

5 · 104 ·
√

xp,2, ∀p ∈ P.

I S3: Up,1(xp,1) = 104 ·
√

xp,1 and Up,2(xp,2) = 1
2 · 104 ·

√
xp,2, ∀p ∈ P.

I S4: Up,1(xp,1) = 104 ·
√

xp,1 and Up,2(xp,2) = 1
4 · 104 ·

√
xp,2, ∀p ∈ P.

Measured quantity: number of updates in the vector f of capacity
proportions (= # [SP] instances need to be solved)

37 / 70

Results on [MPMU] Convergence

updates of f in R1 with two
line pools, for all four scenar-
ios

#Lines S1 S2 S3 S4

100 9 33 127 178
200 12 33 127 178
300 19 29 128 178

Similar results for R2

Bottom Line for [MPMU] Convergence
updates for convergence to OPT largely depends on the exact
parameters of the utility functions, and not really on the number of pools

38 / 70

Results on [MPMU] Convergence

updates of f in R1 with two
line pools, for all four scenar-
ios

#Lines S1 S2 S3 S4

100 9 33 127 178
200 12 33 127 178
300 19 29 128 178

Similar results for R2

Bottom Line for [MPMU] Convergence
updates for convergence to OPT largely depends on the exact
parameters of the utility functions, and not really on the number of pools

38 / 70

2nd Experiment: Disruptions in [MPMU]

The system is currently at optimality

How fast can it re-converge to optimality after a disruption ?

Disruption: Change (track breakdown, or improvement) in the
capacities of some edges

Disruption Scenarios:
I D1: Reducing the capacity of a certain number of edges (chosen

among the congested ones)

I D2: Increasing the capacity of a certain number of edges (chosen
among the congested ones)

I D3: Reducing the capacity of a certain number of edges, while
increasing the capacity of an equal number of a different set of edges
(chosen among the congested ones)

Change in capacity of a disrupted edge: ±10% or ±50%

39 / 70

2nd Experiment: Disruptions in [MPMU]

The system is currently at optimality

How fast can it re-converge to optimality after a disruption ?

Disruption: Change (track breakdown, or improvement) in the
capacities of some edges

Disruption Scenarios:
I D1: Reducing the capacity of a certain number of edges (chosen

among the congested ones)

I D2: Increasing the capacity of a certain number of edges (chosen
among the congested ones)

I D3: Reducing the capacity of a certain number of edges, while
increasing the capacity of an equal number of a different set of edges
(chosen among the congested ones)

Change in capacity of a disrupted edge: ±10% or ±50%

39 / 70

Disruptions in the [MPMU] Case (I)

Two pools considered (random for grid-networks, with 10% difference
from each other in R1)

Measured quantity: number of updates in the LOPs’ bid vectors

Starting from previous OPT, no update in vector f of capacity
proportions occurred

40 / 70

Disruptions in the [MPMU] Case (II)
updates of w to recover optimality
in 7 × p grid-networks, starting from
a previous optimal state

Disruptions p D1 D2 D3

10%

120 0 0 0
180 0 0 0
240 0 0 0
300 0 0 0
360 0 0 0

50%

120 0 2 1
180 0 2 0
240 0 0 0
300 0 1 2
360 0 2 2

updates of w to recover optimality
in R1, starting from a previous opti-
mal state

Disruption #Lines D1 D2 D3

10%
100 0 0 0
200 0 0 0
300 0 0 0

50%
100 0 0 0
200 0 0 0
300 0 0 0

90%
100 0 3 0
200 0 2 2
300 0 0 0

Bottom Line for disruptions in [MPMU]
Very rarely there is a need (for only a few) bid updates, after disruptions

41 / 70

Disruptions in the [MPMU] Case (II)
updates of w to recover optimality
in 7 × p grid-networks, starting from
a previous optimal state

Disruptions p D1 D2 D3

10%

120 0 0 0
180 0 0 0
240 0 0 0
300 0 0 0
360 0 0 0

50%

120 0 2 1
180 0 2 0
240 0 0 0
300 0 1 2
360 0 2 2

updates of w to recover optimality
in R1, starting from a previous opti-
mal state

Disruption #Lines D1 D2 D3

10%
100 0 0 0
200 0 0 0
300 0 0 0

50%
100 0 0 0
200 0 0 0
300 0 0 0

90%
100 0 3 0
200 0 2 2
300 0 0 0

Bottom Line for disruptions in [MPMU]
Very rarely there is a need (for only a few) bid updates, after disruptions

41 / 70

Conclusion

Incentive-compatible robust solutions for line planning ([SP],[MPMU])
I Robustness against unknown incentives
I Recoverability to (unknown) social optimum via dynamic, decentralized

mechanism

Experiments indicated
I Convergence (starting from arbitrary initial state): independent of #

pools, but sensitive to utility functions
I Very fast re-convergence to optimum in case of disruptions (starting

from an optimal state)

42 / 70

Outline

1 Robust Line Planning

2 Time-Dependent Route Planning

3 Summary

43 / 70

Raw traffic (speed probe) data

70 Million contributing users

4 Billion measurements per day

5 Trillion measurements over 140 Billion Km

every road segment measured 2000 times on average

measured speeds in 5-min intervals

Main Issue: time-dependence

44 / 70

Raw traffic (speed probe) data

70 Million contributing users

4 Billion measurements per day

5 Trillion measurements over 140 Billion Km

every road segment measured 2000 times on average

measured speeds in 5-min intervals

Main Issue: time-dependence

44 / 70

Raw traffic (speed probe) data
70 Million contributing users

4 Billion measurements per day

5 Trillion measurements over 140 Billion Km

every road segment measured 2000 times on average

measured speeds in 5-min intervals

Main Issue: time-dependence

44 / 70

Raw traffic (speed probe) data
70 Million contributing users

4 Billion measurements per day

5 Trillion measurements over 140 Billion Km

every road segment measured 2000 times on average

measured speeds in 5-min intervals

Main Issue: time-dependence

44 / 70

Raw traffic (speed probe) data
70 Million contributing users

4 Billion measurements per day

5 Trillion measurements over 140 Billion Km

every road segment measured 2000 times on average

measured speeds in 5-min intervals

Main Issue: time-dependence

44 / 70

Raw traffic (speed probe) data
70 Million contributing users

4 Billion measurements per day

5 Trillion measurements over 140 Billion Km

every road segment measured 2000 times on average

measured speeds in 5-min intervals

Main Issue: time-dependence

44 / 70

Raw traffic (speed probe) data
70 Million contributing users

4 Billion measurements per day

5 Trillion measurements over 140 Billion Km

every road segment measured 2000 times on average

measured speeds in 5-min intervals

Main Issue: time-dependence

44 / 70

Raw traffic (speed probe) data
70 Million contributing users

4 Billion measurements per day

5 Trillion measurements over 140 Billion Km

every road segment measured 2000 times on average

measured speeds in 5-min intervals

Main Issue: time-dependence

44 / 70

Raw traffic (speed probe) data
70 Million contributing users

4 Billion measurements per day

5 Trillion measurements over 140 Billion Km

every road segment measured 2000 times on average

measured speeds in 5-min intervals

Main Issue: time-dependence

44 / 70

Raw traffic (speed probe) data
70 Million contributing users

4 Billion measurements per day

5 Trillion measurements over 140 Billion Km

every road segment measured 2000 times on average

measured speeds in 5-min intervals

Main Issue: time-dependence

44 / 70

Time-Dependent Shortest Paths

2x+0.1

2x+0.1

3x

x+2

x+2

1

u

v

o d

Instance with ARC DELAY functions

2x+0.1

2x+0.1

3x

x+2

x+2

1

u

v

o d

Q1 How would you commute as fast as possible from o to d, for a given
departure time (from o)?

Eg: to = 0Eg: to = 1

Q2 What if you are not sure about the departure time?

A shortest od−path =

orange path, if to ∈ [0, 0.03]
yellow path, if to ∈ [0.03, 2.9]
purple path, if to ∈ [2.9,+∞)

45 / 70

Time-Dependent Shortest Paths

0.9

0.1

0.3

2.1

2

1

0

0.1

0.4

1.3

u

v

o d

2x+0.1

2x+0.1

3x

x+2

x+2

1

u

v

o d

Q1 How would you commute as fast as possible from o to d, for a given
departure time (from o)? Eg: to = 0

Eg: to = 1

Q2 What if you are not sure about the departure time?

A shortest od−path =

orange path, if to ∈ [0, 0.03]
yellow path, if to ∈ [0.03, 2.9]
purple path, if to ∈ [2.9,+∞)

45 / 70

Time-Dependent Shortest Paths

8.1

2.1

9.3

5.1

3

1

1

3.1

4

8.2

u

v

o d

2x+0.1

2x+0.1

3x

x+2

x+2

1

u

v

o d

Q1 How would you commute as fast as possible from o to d, for a given
departure time (from o)?

Eg: to = 0

Eg: to = 1

Q2 What if you are not sure about the departure time?

A shortest od−path =

orange path, if to ∈ [0, 0.03]
yellow path, if to ∈ [0.03, 2.9]
purple path, if to ∈ [2.9,+∞)

45 / 70

Time-Dependent Shortest Paths

2x+0.1

2x+0.1

3x

x+2

x+2

1

u

v

o d

Instance with ARC DELAY functions

2x+0.1

2x+0.1

3x

x+2

x+2

1

u

v

o d

Q1 How would you commute as fast as possible from o to d, for a given
departure time (from o)?

Eg: to = 0Eg: to = 1

Q2 What if you are not sure about the departure time?

A shortest od−path =

orange path, if to ∈ [0, 0.03]
yellow path, if to ∈ [0.03, 2.9]
purple path, if to ∈ [2.9,+∞)

45 / 70

Time-Dependent Shortest Paths

3x+0.1

3x+0.1

4x

2x+2

2x+2

x+1

u

v

o d

Instance with ARC-ARRIVAL functions

2x+0.1

2x+0.1

3x

x+2

x+2

1

u

v

o d

Q1 How would you commute as fast as possible from o to d, for a given
departure time (from o)?

Eg: to = 0Eg: to = 1

Q2 What if you are not sure about the departure time?

A shortest od−path =

orange path, if to ∈ [0, 0.03]
yellow path, if to ∈ [0.03, 2.9]
purple path, if to ∈ [2.9,+∞)

45 / 70

Time-Dependent Shortest Paths

3x+0.1

3x+0.1

4x

2x+2

2x+2

x+1

u

v

o d

Instance with ARC-ARRIVAL functions

Arr[oud](to) = Arr[ud](Arr[ou](to)) = 6to + 2.2

Arr[ovd](to) = Arr[vd](Arr[ov](to)) = 6to + 6.1
Arr[ouvd](to) = Arr[vd](Arr[uv](Arr[ou](to))) = 36to+1.3

Arr[ovud](to) = Arr[ud](Arr[vu](Arr[ov](to))) = 4to+8

3x+0.1

3x+0.1

4x

2x+2

2x+2

x+1

u

v

o d

Q1 How would you commute as fast as possible from o to d, for a given
departure time (from o)?

Eg: to = 0Eg: to = 1

Q2 What if you are not sure about the departure time?

A shortest od−path =

orange path, if to ∈ [0, 0.03]
yellow path, if to ∈ [0.03, 2.9]
purple path, if to ∈ [2.9,+∞)

45 / 70

Time-Dependent Shortest Paths

3x+0.1

3x+0.1

4x

2x+2

2x+2

x+1

u

v

o d

Instance with ARC-ARRIVAL functions

Arr[oud](to) = Arr[ud](Arr[ou](to)) = 6to + 2.2

Arr[ovd](to) = Arr[vd](Arr[ov](to)) = 6to + 6.1
Arr[ouvd](to) = Arr[vd](Arr[uv](Arr[ou](to))) = 36to+1.3

Arr[ovud](to) = Arr[ud](Arr[vu](Arr[ov](to))) = 4to+8

3x+0.1

3x+0.1

4x

2x+2

2x+2

x+1

u

v

o d

Q1 How would you commute as fast as possible from o to d, for a given
departure time (from o)?

Eg: to = 0Eg: to = 1

Q2 What if you are not sure about the departure time?

A shortest od−path =

orange path, if to ∈ [0, 0.03]
yellow path, if to ∈ [0.03, 2.9]
purple path, if to ∈ [2.9,+∞)

45 / 70

Time-Dependent Shortest Paths

Directed graph G = (V ,A), n = |V |

Arc travel-time (arc-delay) function
D[uv](t)

Arc arrival function Arr[uv](t)

D[uv](tu)
v

= Arr[uv](tu)
= tu +

D[uv](tu)

u

Po,d : od-paths; p = (a1, . . . , ak) ∈ Po,d

Path arrival / travel-time functions
Arr[p](t0) = Arr[ak] ◦ · · · ◦ Arr[a1](t0) (composition)
D[p](t0) = Arr[p](t0) − t0

Earliest-arrival / Shortest-travel-time functions
Arr[o, d](t0) = minp∈Po,d

{
Arr[p](t0)

}
D[o, d](t0) = Arr[o, d](t0) − t0

Goals
1 For departure-time to from o, determine td = Arr[o, d](to)
2 Provide a succinct representation of Arr[o, d] (or D[o, d])

46 / 70

Time-Dependent Shortest Paths

Directed graph G = (V ,A), n = |V |

Arc travel-time (arc-delay) function
D[uv](t)

Arc arrival function Arr[uv](t)

D[uv](tu)
v

= Arr[uv](tu)
= tu +

D[uv](tu)

u

Po,d : od-paths; p = (a1, . . . , ak) ∈ Po,d

Path arrival / travel-time functions
Arr[p](t0) = Arr[ak] ◦ · · · ◦ Arr[a1](t0) (composition)
D[p](t0) = Arr[p](t0) − t0

Earliest-arrival / Shortest-travel-time functions
Arr[o, d](t0) = minp∈Po,d

{
Arr[p](t0)

}
D[o, d](t0) = Arr[o, d](t0) − t0

Goals
1 For departure-time to from o, determine td = Arr[o, d](to)
2 Provide a succinct representation of Arr[o, d] (or D[o, d])

46 / 70

Time-Dependent Shortest Paths

Directed graph G = (V ,A), n = |V |

Arc travel-time (arc-delay) function
D[uv](t)

Arc arrival function Arr[uv](t)

D[uv](tu)
v

= Arr[uv](tu)
= tu +

D[uv](tu)

u

Po,d : od-paths; p = (a1, . . . , ak) ∈ Po,d

Path arrival / travel-time functions
Arr[p](t0) = Arr[ak] ◦ · · · ◦ Arr[a1](t0) (composition)
D[p](t0) = Arr[p](t0) − t0

Earliest-arrival / Shortest-travel-time functions
Arr[o, d](t0) = minp∈Po,d

{
Arr[p](t0)

}
D[o, d](t0) = Arr[o, d](t0) − t0

Goals
1 For departure-time to from o, determine td = Arr[o, d](to)
2 Provide a succinct representation of Arr[o, d] (or D[o, d])

46 / 70

Time-Dependent Shortest Paths

Directed graph G = (V ,A), n = |V |

Arc travel-time (arc-delay) function
D[uv](t)

Arc arrival function Arr[uv](t)

D[uv](tu)
v

= Arr[uv](tu)
= tu +

D[uv](tu)

u

Po,d : od-paths; p = (a1, . . . , ak) ∈ Po,d

Path arrival / travel-time functions
Arr[p](t0) = Arr[ak] ◦ · · · ◦ Arr[a1](t0) (composition)
D[p](t0) = Arr[p](t0) − t0

Earliest-arrival / Shortest-travel-time functions
Arr[o, d](t0) = minp∈Po,d

{
Arr[p](t0)

}
D[o, d](t0) = Arr[o, d](t0) − t0

Goals
1 For departure-time to from o, determine td = Arr[o, d](to)
2 Provide a succinct representation of Arr[o, d] (or D[o, d])

46 / 70

FIFO vs non-FIFO Arc Delays

FIFO Arc-Delays: slopes of arc-delay functions ≥ −1
≡ non-decreasing arc-arrival functions

Non-FIFO Arc-Delays
I Forbidden waiting: @ subpath optimality; NP-hard [Orda-Rom (1990)]
I Unrestricted waiting: ≡ FIFO (arbitrary waiting) [Dreyfus (1969)]

47 / 70

FIFO vs non-FIFO Arc Delays

FIFO Arc-Delays: slopes of arc-delay functions ≥ −1
≡ non-decreasing arc-arrival functions

Non-FIFO Arc-Delays
I Forbidden waiting: @ subpath optimality; NP-hard [Orda-Rom (1990)]
I Unrestricted waiting: ≡ FIFO (arbitrary waiting) [Dreyfus (1969)]

47 / 70

Complexity of Time-Dependent Shortest Path
FIFO, piecewise-linear arc-delay functions; K : total # number of breakpoints

Given od−pair and departure time to from o: time-dependent
Dijkstra [Dreyfus (1969), Orda-Rom (1990)]

Time-dependent shortest path heuristics: only empirical evidence
[e.g., Delling & Wagner 2009; Batz etal, 2009]

Complexity of computing succinct representations ??

I Open till recently ...

I Arr[o, d]: O((K + 1) · nΘ(log(n))) space [Foschini-Hershberger-Suri (2011)]

48 / 70

Complexity of Time-Dependent Shortest Path
FIFO, piecewise-linear arc-delay functions; K : total # number of breakpoints

Given od−pair and departure time to from o: time-dependent
Dijkstra [Dreyfus (1969), Orda-Rom (1990)]

Time-dependent shortest path heuristics: only empirical evidence
[e.g., Delling & Wagner 2009; Batz etal, 2009]

Complexity of computing succinct representations ??

I Open till recently ...

I Arr[o, d]: O((K + 1) · nΘ(log(n))) space [Foschini-Hershberger-Suri (2011)]

48 / 70

Complexity of Time-Dependent Shortest Path
FIFO, piecewise-linear arc-delay functions; K : total # number of breakpoints

Given od−pair and departure time to from o: time-dependent
Dijkstra [Dreyfus (1969), Orda-Rom (1990)]

Time-dependent shortest path heuristics: only empirical evidence
[e.g., Delling & Wagner 2009; Batz etal, 2009]

Complexity of computing succinct representations ??

I Open till recently ...

I Arr[o, d]: O((K + 1) · nΘ(log(n))) space [Foschini-Hershberger-Suri (2011)]

48 / 70

Complexity of Time-Dependent Shortest Path
FIFO, piecewise-linear arc-delay functions; K : total # number of breakpoints

Given od−pair and departure time to from o: time-dependent
Dijkstra [Dreyfus (1969), Orda-Rom (1990)]

Time-dependent shortest path heuristics: only empirical evidence
[e.g., Delling & Wagner 2009; Batz etal, 2009]

Complexity of computing succinct representations ??
I Open till recently ...

I Arr[o, d]: O((K + 1) · nΘ(log(n))) space [Foschini-Hershberger-Suri (2011)]

48 / 70

Complexity of Time-Dependent Shortest Path
FIFO, piecewise-linear arc-delay functions; K : total # number of breakpoints

Given od−pair and departure time to from o: time-dependent
Dijkstra [Dreyfus (1969), Orda-Rom (1990)]

Time-dependent shortest path heuristics: only empirical evidence
[e.g., Delling & Wagner 2009; Batz etal, 2009]

Complexity of computing succinct representations ??
I Open till recently ...

I Arr[o, d]: O((K + 1) · nΘ(log(n))) space [Foschini-Hershberger-Suri (2011)]

48 / 70

Complexity of Time-Dependent Shortest Path
FIFO, piecewise-linear arc-delay functions; K : total # number of breakpoints

Given od−pair and departure time to from o: time-dependent
Dijkstra [Dreyfus (1969), Orda-Rom (1990)]

Time-dependent shortest path heuristics: only empirical evidence
[e.g., Delling & Wagner 2009; Batz etal, 2009]

Complexity of computing succinct representations ??
I Open till recently ...

I Arr[o, d]: O((K + 1) · nΘ(log(n))) space [Foschini-Hershberger-Suri (2011)]

48 / 70

Exact Succinct Representation
Why so high complexity ?

v

d

u

s
A[s-u]

t

t1

A[u-d]

t1

t2

A[v-d]
t′1

t′2

A[s-v]

t

t′1

A[s-u-d]

t

t2

A[s-v-d]

t

t′2

A[s, d]

t

t2

t′2

u v

o

d

Arr[o,d]Arr[o-u-d] Arr[o-v-d]

Arr[ov] Arr[vd]Arr[ou]Arr[ud]

Primitive Breakpoint (PB): Departure-time bxy from x at which
Arr[xy] changes slope

Minimization Breakpoint (MB): Departure-time bx from origin o
such that Arr[o, x] changes slope due to min operator at x

49 / 70

Exact Succinct Representation
Why so high complexity ?

v

d

u

s
A[s-u]

t

t1

A[u-d]

t1

t2

A[v-d]
t′1

t′2

A[s-v]

t

t′1

A[s-u-d]

t

t2

A[s-v-d]

t

t′2

A[s, d]

t

t2

t′2

u v

o

d

Arr[o,d]Arr[o-u-d] Arr[o-v-d]

Arr[ov] Arr[vd]Arr[ou]Arr[ud]

Primitive Breakpoint (PB): Departure-time bxy from x at which
Arr[xy] changes slope

Minimization Breakpoint (MB): Departure-time bx from origin o
such that Arr[o, x] changes slope due to min operator at x

49 / 70

Complexity of Time-Dependent Shortest Path
FIFO, piecewise-linear arc-delay functions; K : total # number of breakpoints

Given od−pair and departure time to from o: time-dependent
Dijkstra [Dreyfus (1969), Orda-Rom (1990)]

Time-dependent shortest path heuristics: only empirical evidence
[e.g., Delling & Wagner 2009; Batz etal, 2009]

Complexity of computing succinct representations ??
I Open till recently ...

I Arr[o, d]: O((K + 1) · nΘ(log(n))) space [Foschini-Hershberger-Suri (2011)]

I D[o, d]: O(K + 1) space for point-to-point (1 + ε)−approximation
[Dehne-Omran-Sack (2010), Foschini-Hershberger-Suri (2011)]

50 / 70

Complexity of Time-Dependent Shortest Path
FIFO, piecewise-linear arc-delay functions; K : total # number of breakpoints

Question 1: ∃ data structure (distance oracle) that
I requires reasonable space ?
I allows answering distance queries efficiently ?

Trivial solution I: Precompute all (1 + ε)−approximate distance
summaries for every od-pair

O
(
n2(K + 1)

)
space

O(log log(K)) query time
(1 + ε)−stretch

Trivial solution II: No preprocessing, respond to queries with
TD-Dijkstra

O(n + m + K) space
O([m + n log(n)] × log log(K)) query time
1−stretch

Question 2: can we do better ?
I subquadratic space & sublinear query time
I ∃ smooth tradeoff among space / query time / stretch ?

51 / 70

Complexity of Time-Dependent Shortest Path
FIFO, piecewise-linear arc-delay functions; K : total # number of breakpoints

Question 1: ∃ data structure (distance oracle) that
I requires reasonable space ?
I allows answering distance queries efficiently ?

Trivial solution I: Precompute all (1 + ε)−approximate distance
summaries for every od-pair

O
(
n2(K + 1)

)
space

O(log log(K)) query time
(1 + ε)−stretch

Trivial solution II: No preprocessing, respond to queries with
TD-Dijkstra

O(n + m + K) space
O([m + n log(n)] × log log(K)) query time
1−stretch

Question 2: can we do better ?
I subquadratic space & sublinear query time
I ∃ smooth tradeoff among space / query time / stretch ?

51 / 70

Complexity of Time-Dependent Shortest Path
FIFO, piecewise-linear arc-delay functions; K : total # number of breakpoints

Question 1: ∃ data structure (distance oracle) that
I requires reasonable space ?
I allows answering distance queries efficiently ?

Trivial solution I: Precompute all (1 + ε)−approximate distance
summaries for every od-pair

O
(
n2(K + 1)

)
space

O(log log(K)) query time
(1 + ε)−stretch

Trivial solution II: No preprocessing, respond to queries with
TD-Dijkstra

O(n + m + K) space
O([m + n log(n)] × log log(K)) query time
1−stretch

Question 2: can we do better ?
I subquadratic space & sublinear query time
I ∃ smooth tradeoff among space / query time / stretch ?

51 / 70

Complexity of Time-Dependent Shortest Path
FIFO, piecewise-linear arc-delay functions; K : total # number of breakpoints

Question 1: ∃ data structure (distance oracle) that
I requires reasonable space ?
I allows answering distance queries efficiently ?

Trivial solution I: Precompute all (1 + ε)−approximate distance
summaries for every od-pair

O
(
n2(K + 1)

)
space

O(log log(K)) query time
(1 + ε)−stretch

Trivial solution II: No preprocessing, respond to queries with
TD-Dijkstra

O(n + m + K) space
O([m + n log(n)] × log log(K)) query time
1−stretch

Question 2: can we do better ?
I subquadratic space & sublinear query time
I ∃ smooth tradeoff among space / query time / stretch ?

51 / 70

Our Contribution [Kontogiannis & Z, 2014]

1 Efficient time-dependent distance oracle:
subquadratic space and time preprocessing, sublinear query time

2 (1 + ε)−approximate algorithm for computing one-to-all distances in
O(K + 1) space (same complexity with P2P approximation algorithm by
[Foschini-Hershberger-Suri (2011)])

I Bisection-based approach
I Closed form for max absolute error

3 Preprocessing: choose a set L of landmarks and ∀(`, v) ∈ L × V ,
compute (1 + ε)−approximate distance summaries ∆[`, v](t)
(D[`, v](t) ≤ ∆[`, v](t) ≤ (1 + ε) · D[`, v](t))

4 Answer arbitrary queries (o, d, to) using two query algorithms
(FCA/RQA) that return O(1) / (1 + σ)-approximate distance values

52 / 70

Our Contribution [Kontogiannis & Z, 2014]

1 Efficient time-dependent distance oracle:
subquadratic space and time preprocessing, sublinear query time

2 (1 + ε)−approximate algorithm for computing one-to-all distances in
O(K + 1) space (same complexity with P2P approximation algorithm by
[Foschini-Hershberger-Suri (2011)])

I Bisection-based approach
I Closed form for max absolute error

3 Preprocessing: choose a set L of landmarks and ∀(`, v) ∈ L × V ,
compute (1 + ε)−approximate distance summaries ∆[`, v](t)
(D[`, v](t) ≤ ∆[`, v](t) ≤ (1 + ε) · D[`, v](t))

4 Answer arbitrary queries (o, d, to) using two query algorithms
(FCA/RQA) that return O(1) / (1 + σ)-approximate distance values

52 / 70

Our Contribution [Kontogiannis & Z, 2014]

1 Efficient time-dependent distance oracle:
subquadratic space and time preprocessing, sublinear query time

2 (1 + ε)−approximate algorithm for computing one-to-all distances in
O(K + 1) space (same complexity with P2P approximation algorithm by
[Foschini-Hershberger-Suri (2011)])

I Bisection-based approach
I Closed form for max absolute error

3 Preprocessing: choose a set L of landmarks and ∀(`, v) ∈ L × V ,
compute (1 + ε)−approximate distance summaries ∆[`, v](t)
(D[`, v](t) ≤ ∆[`, v](t) ≤ (1 + ε) · D[`, v](t))

4 Answer arbitrary queries (o, d, to) using two query algorithms
(FCA/RQA) that return O(1) / (1 + σ)-approximate distance values

52 / 70

Our Contribution [Kontogiannis & Z, 2014]

1 Efficient time-dependent distance oracle:
subquadratic space and time preprocessing, sublinear query time

2 (1 + ε)−approximate algorithm for computing one-to-all distances in
O(K + 1) space (same complexity with P2P approximation algorithm by
[Foschini-Hershberger-Suri (2011)])

I Bisection-based approach
I Closed form for max absolute error

3 Preprocessing: choose a set L of landmarks and ∀(`, v) ∈ L × V ,
compute (1 + ε)−approximate distance summaries ∆[`, v](t)
(D[`, v](t) ≤ ∆[`, v](t) ≤ (1 + ε) · D[`, v](t))

4 Answer arbitrary queries (o, d, to) using two query algorithms
(FCA/RQA) that return O(1) / (1 + σ)-approximate distance values

52 / 70

Assumptions

Q Static & undirected world −→ time-dependent & directed world ?

ASSUMPTION 1 (bounded travel time slopes)
Slopes of D[o, d] ∈ [−1,Λmax], for some constant Λmax > 0

ASSUMPTION 2 (bounded opposite trips)
∃ζ ≥ 1 : ∀(o, d) ∈ V × V , ∀t ∈ [0,T], D[o, d](t) ≤ ζ · D[d, o](to)

Experimental Analysis

Data Set Type (source) n m Λmax ζ

Berlin real-world (TomTom) 480 K 1135 K 0.185 1.54
W. Europe benchmark (PTV) 18010 K 42188 K 6.186 1.18

53 / 70

Assumptions

Q Static & undirected world −→ time-dependent & directed world ?

ASSUMPTION 1 (bounded travel time slopes)
Slopes of D[o, d] ∈ [−1,Λmax], for some constant Λmax > 0

ASSUMPTION 2 (bounded opposite trips)
∃ζ ≥ 1 : ∀(o, d) ∈ V × V , ∀t ∈ [0,T], D[o, d](t) ≤ ζ · D[d, o](to)

Experimental Analysis

Data Set Type (source) n m Λmax ζ

Berlin real-world (TomTom) 480 K 1135 K 0.185 1.54
W. Europe benchmark (PTV) 18010 K 42188 K 6.186 1.18

53 / 70

Assumptions

Q Static & undirected world −→ time-dependent & directed world ?

ASSUMPTION 1 (bounded travel time slopes)
Slopes of D[o, d] ∈ [−1,Λmax], for some constant Λmax > 0

ASSUMPTION 2 (bounded opposite trips)
∃ζ ≥ 1 : ∀(o, d) ∈ V × V , ∀t ∈ [0,T], D[o, d](t) ≤ ζ · D[d, o](to)

Experimental Analysis

Data Set Type (source) n m Λmax ζ

Berlin real-world (TomTom) 480 K 1135 K 0.185 1.54
W. Europe benchmark (PTV) 18010 K 42188 K 6.186 1.18

53 / 70

Assumptions

Q Static & undirected world −→ time-dependent & directed world ?

ASSUMPTION 1 (bounded travel time slopes)
Slopes of D[o, d] ∈ [−1,Λmax], for some constant Λmax > 0

ASSUMPTION 2 (bounded opposite trips)
∃ζ ≥ 1 : ∀(o, d) ∈ V × V , ∀t ∈ [0,T], D[o, d](t) ≤ ζ · D[d, o](to)

Experimental Analysis

Data Set Type (source) n m Λmax ζ

Berlin real-world (TomTom) 480 K 1135 K 0.185 1.54
W. Europe benchmark (PTV) 18010 K 42188 K 6.186 1.18

53 / 70

Assumptions

Q Static & undirected world −→ time-dependent & directed world ?

ASSUMPTION 1 (bounded travel time slopes)
Slopes of D[o, d] ∈ [−1,Λmax], for some constant Λmax > 0

ASSUMPTION 2 (bounded opposite trips)
∃ζ ≥ 1 : ∀(o, d) ∈ V × V , ∀t ∈ [0,T], D[o, d](t) ≤ ζ · D[d, o](to)

Experimental Analysis

Data Set Type (source) n m Λmax ζ

Berlin real-world (TomTom) 480 K 1135 K 0.185 1.54
W. Europe benchmark (PTV) 18010 K 42188 K 6.186 1.18

53 / 70

Approximating Distance Functions via Bisection

sample simultaneously all distance values from o, at mid-points of time
intervals, until required approximation guarantee is achieved ∀ destinations

Example of Bisection Execution : INPUT = UNKNOWN BLUE function

t1t0

D1

D0

54 / 70

Approximating Distance Functions via Bisection

sample simultaneously all distance values from o, at mid-points of time
intervals, until required approximation guarantee is achieved ∀ destinations

Example of Bisection Execution : ORANGE = Upper Bound, YELLOW = Lower Bound

t1t0

D1

D0

54 / 70

Approximating Distance Functions via Bisection

sample simultaneously all distance values from o, at mid-points of time
intervals, until required approximation guarantee is achieved ∀ destinations

Example of Bisection Execution : Level-1 Recursion

t1t0

D1

D0

t2

D2

54 / 70

Approximating Distance Functions via Bisection

sample simultaneously all distance values from o, at mid-points of time
intervals, until required approximation guarantee is achieved ∀ destinations

Example of Bisection Execution : Level-2 Recursion

t1t0

D1

D0

t2

D2

t3

D3

54 / 70

Approximating Distance Functions via Bisection

For continuous, pwl arc-delays

1 Run Reverse TD-Dijkstra to
project each
concavity-spoiling PB to a
primitive image (PI) of origin o

2 For each pair of consecutive
PIs at o, run Bisection for the
corresponding
departure-times interval departure time from u = tail[uv]

t1

ea
rl

ie
st

-a
rr

iv
al

 ti
m

es
 a

t v
 =

 h
ea

d[
uv

]

t2 t3 t4 t5 T0

3 Return the concatenation of approximate distance summaries

55 / 70

Landmark Selection and Preprocessing
K ∗: total # number of concavity-spoiling breakpoints; K ∗ < K

Landmark selection: ∀v ∈ V , Pr[v ∈ L] = ρ ∈ (0, 1)
[correctness is independent of the landmark selection]

Preprocessing: ∀` ∈ L , compute (1 + ε)−approximate distance functions
∆[`, v] to all v ∈ V

Preprocessing complexity

Space – asymptotically optimal

O
(
(K ∗ + 1) · |L | · n · 1

ε ·max(`,v)∈L×V

{
log

(
Dmax[`,v](0,T)
Dmin[`,v](0,T)

)})
Time (in number of TDSP-Probes)

O
(
(K ∗ + 1) · |L |·max(`,v)

{
log

(
T ·(Λmax+1)

εDmin[`,v](0,T)

)}
· 1
ε max(`,v)

{
log

(
Dmax[`,v](0,T)
Dmin[`,v](0,T)

)})

56 / 70

Landmark Selection and Preprocessing
K ∗: total # number of concavity-spoiling breakpoints; K ∗ < K

Landmark selection: ∀v ∈ V , Pr[v ∈ L] = ρ ∈ (0, 1)
[correctness is independent of the landmark selection]

Preprocessing: ∀` ∈ L , compute (1 + ε)−approximate distance functions
∆[`, v] to all v ∈ V

Preprocessing complexity

Space – asymptotically optimal

O
(
(K ∗ + 1) · |L | · n · 1

ε ·max(`,v)∈L×V

{
log

(
Dmax[`,v](0,T)
Dmin[`,v](0,T)

)})
Time (in number of TDSP-Probes)

O
(
(K ∗ + 1) · |L |·max(`,v)

{
log

(
T ·(Λmax+1)

εDmin[`,v](0,T)

)}
· 1
ε max(`,v)

{
log

(
Dmax[`,v](0,T)
Dmin[`,v](0,T)

)})

56 / 70

Landmark Selection and Preprocessing
K ∗: total # number of concavity-spoiling breakpoints; K ∗ < K

Landmark selection: ∀v ∈ V , Pr[v ∈ L] = ρ ∈ (0, 1)
[correctness is independent of the landmark selection]

Preprocessing: ∀` ∈ L , compute (1 + ε)−approximate distance functions
∆[`, v] to all v ∈ V

Preprocessing complexity
Space – asymptotically optimal

O
(
(K ∗ + 1) · |L | · n · 1

ε ·max(`,v)∈L×V

{
log

(
Dmax[`,v](0,T)
Dmin[`,v](0,T)

)})

Time (in number of TDSP-Probes)

O
(
(K ∗ + 1) · |L |·max(`,v)

{
log

(
T ·(Λmax+1)

εDmin[`,v](0,T)

)}
· 1
ε max(`,v)

{
log

(
Dmax[`,v](0,T)
Dmin[`,v](0,T)

)})

56 / 70

Landmark Selection and Preprocessing
K ∗: total # number of concavity-spoiling breakpoints; K ∗ < K

Landmark selection: ∀v ∈ V , Pr[v ∈ L] = ρ ∈ (0, 1)
[correctness is independent of the landmark selection]

Preprocessing: ∀` ∈ L , compute (1 + ε)−approximate distance functions
∆[`, v] to all v ∈ V

Preprocessing complexity
Space – asymptotically optimal

O
(
(K ∗ + 1) · |L | · n · 1

ε ·max(`,v)∈L×V

{
log

(
Dmax[`,v](0,T)
Dmin[`,v](0,T)

)})
Time (in number of TDSP-Probes)

O
(
(K ∗ + 1) · |L |·max(`,v)

{
log

(
T ·(Λmax+1)

εDmin[`,v](0,T)

)}
· 1
ε max(`,v)

{
log

(
Dmax[`,v](0,T)
Dmin[`,v](0,T)

)})
56 / 70

FCA: A constant-approximation query algorithm

td = to + D[o,d](to)

Ro

x

lo

w od
P SP[o,d](to)

to

Q SP[o,lo](to)

Π ASP[lo,d](to+Ro)

Forward Constant Approximation

1. Grow TD-Dijkstra ball B(o, to) until closest landmark `o or d is
settled

2. return solo = D[o, `o](to) + ∆[`o , d](to + D[o, `o](to))

FCA complexity

Approximation guarantee: ≤ (1 + ε + ψ) · D[o, d](to)
ψ = 1 + Λmax(1 + ε)(1 + 2ζ + Λmaxζ) + (1 + ε)ζ

Query-time: O
(

1
ρ · ln

(
1
ρ

)
log log(Kmax)

)

57 / 70

FCA: A constant-approximation query algorithm

td = to + D[o,d](to)

Ro

x

lo

w od
P SP[o,d](to)

to

Q SP[o,lo](to)

Π ASP[lo,d](to+Ro)

Forward Constant Approximation

1. Grow TD-Dijkstra ball B(o, to) until closest landmark `o or d is
settled

2. return solo = D[o, `o](to) + ∆[`o , d](to + D[o, `o](to))

FCA complexity

Approximation guarantee: ≤ (1 + ε + ψ) · D[o, d](to)
ψ = 1 + Λmax(1 + ε)(1 + 2ζ + Λmaxζ) + (1 + ε)ζ

Query-time: O
(

1
ρ · ln

(
1
ρ

)
log log(Kmax)

)

57 / 70

FCA: A constant-approximation query algorithm

td = to + D[o,d](to)

Ro

x

lo

w od
P SP[o,d](to)

to

Q SP[o,lo](to)

Π ASP[lo,d](to+Ro)

Forward Constant Approximation

1. Grow TD-Dijkstra ball B(o, to) until closest landmark `o or d is
settled

2. return solo = D[o, `o](to) + ∆[`o , d](to + D[o, `o](to))

FCA complexity
Approximation guarantee: ≤ (1 + ε + ψ) · D[o, d](to)
ψ = 1 + Λmax(1 + ε)(1 + 2ζ + Λmaxζ) + (1 + ε)ζ

Query-time: O
(

1
ρ · ln

(
1
ρ

)
log log(Kmax)

)

57 / 70

FCA: A constant-approximation query algorithm

td = to + D[o,d](to)

Ro

x

lo

w od
P SP[o,d](to)

to

Q SP[o,lo](to)

Π ASP[lo,d](to+Ro)

Forward Constant Approximation

1. Grow TD-Dijkstra ball B(o, to) until closest landmark `o or d is
settled

2. return solo = D[o, `o](to) + ∆[`o , d](to + D[o, `o](to))

FCA complexity
Approximation guarantee: ≤ (1 + ε + ψ) · D[o, d](to)
ψ = 1 + Λmax(1 + ε)(1 + 2ζ + Λmaxζ) + (1 + ε)ζ

Query-time: O
(

1
ρ · ln

(
1
ρ

)
log log(Kmax)

)
57 / 70

RQA: Boosting the Approximation Guarantee

Recursive Query Approximation

1. while recursion budget R not exhausted do
2. Grow TD-Dijkstra ball B(wi , ti) until closest landmark `i is settled
3. soli = D[o,wi](to) + D[wi , `i](ti) + ∆[`i , d](ti + D[wi , `i](ti))

4. Run RQA at each boundary node of B(wi , ti) with budget R − 1
5. endwhile
6. return best solution found

Growing level-0 ball...

Growing level-1 balls...

Growing level-2 balls...

...

58 / 70

RQA: Boosting the Approximation Guarantee

Recursive Query Approximation

1. while recursion budget R not exhausted do
2. Grow TD-Dijkstra ball B(wi , ti) until closest landmark `i is settled
3. soli = D[o,wi](to) + D[wi , `i](ti) + ∆[`i , d](ti + D[wi , `i](ti))

4. Run RQA at each boundary node of B(wi , ti) with budget R − 1
5. endwhile
6. return best solution found

do
to

Growing level-0 ball...

Growing level-1 balls...

Growing level-2 balls...

...

58 / 70

RQA: Boosting the Approximation Guarantee

Recursive Query Approximation

1. while recursion budget R not exhausted do
2. Grow TD-Dijkstra ball B(wi , ti) until closest landmark `i is settled
3. soli = D[o,wi](to) + D[wi , `i](ti) + ∆[`i , d](ti + D[wi , `i](ti))

4. Run RQA at each boundary node of B(wi , ti) with budget R − 1
5. endwhile
6. return best solution found

t1

t2

t3lo

d

w3

w1o
to

w2
Growing level-0 ball...

Growing level-1 balls...

Growing level-2 balls...

...

58 / 70

RQA: Boosting the Approximation Guarantee

Recursive Query Approximation

1. while recursion budget R not exhausted do
2. Grow TD-Dijkstra ball B(wi , ti) until closest landmark `i is settled
3. soli = D[o,wi](to) + D[wi , `i](ti) + ∆[`i , d](ti + D[wi , `i](ti))

4. Run RQA at each boundary node of B(wi , ti) with budget R − 1
5. endwhile
6. return best solution found

t1

t2

t3lo

l1

d

w3

w1

t4

o

w4

to

w2
Growing level-0 ball...

Growing level-1 balls...

Growing level-2 balls...

...

58 / 70

RQA: Boosting the Approximation Guarantee

Recursive Query Approximation

1. while recursion budget R not exhausted do
2. Grow TD-Dijkstra ball B(wi , ti) until closest landmark `i is settled
3. soli = D[o,wi](to) + D[wi , `i](ti) + ∆[`i , d](ti + D[wi , `i](ti))

4. Run RQA at each boundary node of B(wi , ti) with budget R − 1
5. endwhile
6. return best solution found

t1

t2

t3lo

l1

d

w3

l2

w1

t4

o

w4

to

w2
Growing level-0 ball...

Growing level-1 balls...

Growing level-2 balls...

...

58 / 70

RQA: Boosting the Approximation Guarantee

Recursive Query Approximation

1. while recursion budget R not exhausted do
2. Grow TD-Dijkstra ball B(wi , ti) until closest landmark `i is settled
3. soli = D[o,wi](to) + D[wi , `i](ti) + ∆[`i , d](ti + D[wi , `i](ti))

4. Run RQA at each boundary node of B(wi , ti) with budget R − 1
5. endwhile
6. return best solution found

t1

t2

t3lo

l1

d

w3

l3

l2

w1

t4

o

w4

to

w2
Growing level-0 ball...

Growing level-1 balls...

Growing level-2 balls...

...

58 / 70

RQA: Boosting the Approximation Guarantee

Recursive Query Approximation

1. while recursion budget R not exhausted do
2. Grow TD-Dijkstra ball B(wi , ti) until closest landmark `i is settled
3. soli = D[o,wi](to) + D[wi , `i](ti) + ∆[`i , d](ti + D[wi , `i](ti))

4. Run RQA at each boundary node of B(wi , ti) with budget R − 1
5. endwhile
6. return best solution found

t1

t2

t3lo

l1

d

w3

l3

l2

l4

w1

t4

o

w4

to

w2
Growing level-0 ball...

Growing level-1 balls...

Growing level-2 balls...

...

58 / 70

RQA: Boosting the Approximation Guarantee

Recursive Query Approximation

1. while recursion budget R not exhausted do
2. Grow TD-Dijkstra ball B(wi , ti) until closest landmark `i is settled
3. soli = D[o,wi](to) + D[wi , `i](ti) + ∆[`i , d](ti + D[wi , `i](ti))

4. Run RQA at each boundary node of B(wi , ti) with budget R − 1
5. endwhile
6. return best solution found

t1

t2

t3lo

l1

d

w3

l3

l2

l4

w1

t4

o

w4

to

w2
Growing level-0 ball...

Growing level-1 balls...

Growing level-2 balls...

...

58 / 70

RQA: Boosting the Approximation Guarantee

to

lk

d

P0,k SP[o , wk](to)

≥ R0 + R1 + … + Rk-1

OOO

Qk SP[wk , lk](tk)

Πk ASP[lk , d](tk+Rk)

t1 tk

w1o wk

≥ Rk

wx

1 One of the discovered approximate od−paths has all its ball centers
at nodes of the (unknown) shortest od-path

2 Optimal prefix subpaths improve approximation guarantee:

∀β > 1, ∀λ ∈ (0, 1), λ · OPT + (1 − λ) · β · OPT < β · OPT

3 Approximation guarantee for suffix subpath to destination depends
on last ball radius

4 R = O(1) suffices to ensure guarantee close to 1 + ε

59 / 70

RQA: Boosting the Approximation Guarantee

to

lk

d

P0,k SP[o , wk](to)

≥ R0 + R1 + … + Rk-1

OOO

Qk SP[wk , lk](tk)

Πk ASP[lk , d](tk+Rk)

t1 tk

w1o wk

≥ Rk

wx

1 One of the discovered approximate od−paths has all its ball centers
at nodes of the (unknown) shortest od-path

2 Optimal prefix subpaths improve approximation guarantee:

∀β > 1, ∀λ ∈ (0, 1), λ · OPT + (1 − λ) · β · OPT < β · OPT

3 Approximation guarantee for suffix subpath to destination depends
on last ball radius

4 R = O(1) suffices to ensure guarantee close to 1 + ε

59 / 70

RQA: Boosting the Approximation Guarantee

to

lk

d

P0,k SP[o , wk](to)

≥ R0 + R1 + … + Rk-1

OOO

Qk SP[wk , lk](tk)

Πk ASP[lk , d](tk+Rk)

t1 tk

w1o wk

≥ Rk

wx

1 One of the discovered approximate od−paths has all its ball centers
at nodes of the (unknown) shortest od-path

2 Optimal prefix subpaths improve approximation guarantee:

∀β > 1, ∀λ ∈ (0, 1), λ · OPT + (1 − λ) · β · OPT < β · OPT

3 Approximation guarantee for suffix subpath to destination depends
on last ball radius

4 R = O(1) suffices to ensure guarantee close to 1 + ε

59 / 70

RQA: Boosting the Approximation Guarantee

to

lk

d

P0,k SP[o , wk](to)

≥ R0 + R1 + … + Rk-1

OOO

Qk SP[wk , lk](tk)

Πk ASP[lk , d](tk+Rk)

t1 tk

w1o wk

≥ Rk

wx

1 One of the discovered approximate od−paths has all its ball centers
at nodes of the (unknown) shortest od-path

2 Optimal prefix subpaths improve approximation guarantee:

∀β > 1, ∀λ ∈ (0, 1), λ · OPT + (1 − λ) · β · OPT < β · OPT

3 Approximation guarantee for suffix subpath to destination depends
on last ball radius

4 R = O(1) suffices to ensure guarantee close to 1 + ε

59 / 70

RQA: Boosting the Approximation Guarantee

to

lk

d

P0,k SP[o , wk](to)

≥ R0 + R1 + … + Rk-1

OOO

Qk SP[wk , lk](tk)

Πk ASP[lk , d](tk+Rk)

t1 tk

w1o wk

≥ Rk

wx

1 One of the discovered approximate od−paths has all its ball centers
at nodes of the (unknown) shortest od-path

2 Optimal prefix subpaths improve approximation guarantee:

∀β > 1, ∀λ ∈ (0, 1), λ · OPT + (1 − λ) · β · OPT < β · OPT

3 Approximation guarantee for suffix subpath to destination depends
on last ball radius

4 R = O(1) suffices to ensure guarantee close to 1 + ε

59 / 70

RQA: Boosting the Approximation Guarantee

RQA Complexity

Approximation guarantee: 1 + σ = 1 + ε ·
(1+ε/ψ)R+1

(1+ε/ψ)R+1−1

Query-time: O
((

1
ρ

)R+1
· ln

(
1
ρ

)
log log(Kmax)

)

60 / 70

RQA: Boosting the Approximation Guarantee

RQA Complexity

Approximation guarantee: 1 + σ = 1 + ε ·
(1+ε/ψ)R+1

(1+ε/ψ)R+1−1

Query-time: O
((

1
ρ

)R+1
· ln

(
1
ρ

)
log log(Kmax)

)

60 / 70

RQA: Boosting the Approximation Guarantee

RQA Complexity

Approximation guarantee: 1 + σ = 1 + ε ·
(1+ε/ψ)R+1

(1+ε/ψ)R+1−1

Query-time: O
((

1
ρ

)R+1
· ln

(
1
ρ

)
log log(Kmax)

)

60 / 70

Summary of Complexity Bounds

Preprocessed Preproc. Space Preproc. Time Query Time

All-To-All O((K ∗ + 1)n2) O

 n2 log(n)
· log log(Kmax)
·(K ∗ + 1)

 O(log log(K ∗))

Nothing O(n + m + K) O(1) O
(

n log(n)·
log log(Kmax)

)
Landmarks-To-All
[This work]

O(ρn2(K ∗ + 1)) O

 ρn2 log(n)
· log log(Kmax)
·(K ∗ + 1)

 O

 (
1
ρ

)R+1
· log

(
1
ρ

)
· log log(Kmax)

m = O(n); Kmax: max number of breakpoints in an arc-delay function

K ∗: total # number of concavity-spoiling breakpoints

K ∗ < K (total # number of breakpoints)

61 / 70

Summary of Complexity Bounds

Preprocessed Preproc. Space Preproc. Time Query Time

All-To-All O((K ∗ + 1)n2) O

 n2 log(n)
· log log(Kmax)
·(K ∗ + 1)

 O(log log(K ∗))

Nothing O(n + m + K) O(1) O
(

n log(n)·
log log(Kmax)

)
Landmarks-To-All
[This work]

O(ρn2(K ∗ + 1)) O

 ρn2 log(n)
· log log(Kmax)
·(K ∗ + 1)

 O

 (
1
ρ

)R+1
· log

(
1
ρ

)
· log log(Kmax)

m = O(n); Kmax: max number of breakpoints in an arc-delay function (Kmax ∈ O(1))

K ∗: total # number of concavity-spoiling breakpoints

K ∗ < K (total # number of breakpoints); K ∗ ∈ O(polylog(n))

ρ = n−α, 0 < α < 1
R+1

62 / 70

Summary of Complexity Bounds

Preprocessed Preproc. Space Preproc. Time Query Time

All-To-All Õ(n2) Õ(n2 log(n)) O(log log log(n))
Nothing O(n + m + K) O(1) O(n log(n))

Landmarks-To-All
[This work]

Õ(n2−α) Õ(n2−α) Õ
(
n(R+1)α

)

m = O(n); Kmax: max number of breakpoints in an arc-delay function (Kmax ∈ O(1))

K ∗: total # number of concavity-spoiling breakpoints

K ∗ < K (total # number of breakpoints); K ∗ ∈ O(polylog(n))

ρ = n−α, 0 < α < 1
R+1

63 / 70

Distance Oracle: Practical Issues

Berlin data set: n = 480000, m = 1135000

Time resolution: 10.3 msec

Landmarks FCA RQA
Method Number ms σ (%) ms σ (%) TD-Dijkstra (ms)

METIS 1061 0.381 2.201 2.349 0.483 77.424
METIS 2063 0.152 1.115 0.700 0.314 77.424

Random 1000 0.195 1.634 1.692 0.575 77.424
Random 2000 0.107 1.065 0.771 0.445 77.424
KAHIP 1053 0.362 2.165 2.015 0.382 77.424
KAHIP 2015 0.148 1.405 0.655 0.298 77.424

Speedup (over TDD) > 723

Query time of previous time-dependent heuristics ∈ [1, 1.5] ms

64 / 70

Distance Oracle: Practical Issues

65 / 70

Distance Oracle: Practical Issues
Google Maps, Tuesday 15:45

Google Maps Query
(T d 15 45)(Tuesday, 15:45)

05.12.2013 102nd eCOMPASS Review, Brussels, BE

66 / 70

Conclusions & Open Issues

First efficient time-dependent distance oracle

Approach sensitive to network’s
I degree of asymmetry (ζ)
I rate of (shortest-)travel-time evolution (Λmax)

Builds upon new approximate algorithm for computing one-to-all
time-dependent distance summaries

Quite efficient in practice

Open: can we avoid dependence on K ∗ ?

67 / 70

Conclusions & Open Issues

First efficient time-dependent distance oracle

Approach sensitive to network’s
I degree of asymmetry (ζ)
I rate of (shortest-)travel-time evolution (Λmax)

Builds upon new approximate algorithm for computing one-to-all
time-dependent distance summaries

Quite efficient in practice

Open: can we avoid dependence on K ∗ ?

67 / 70

Conclusions & Open Issues

First efficient time-dependent distance oracle

Approach sensitive to network’s
I degree of asymmetry (ζ)
I rate of (shortest-)travel-time evolution (Λmax)

Builds upon new approximate algorithm for computing one-to-all
time-dependent distance summaries

Quite efficient in practice

Open: can we avoid dependence on K ∗ ?

67 / 70

Conclusions & Open Issues

First efficient time-dependent distance oracle

Approach sensitive to network’s
I degree of asymmetry (ζ)
I rate of (shortest-)travel-time evolution (Λmax)

Builds upon new approximate algorithm for computing one-to-all
time-dependent distance summaries

Quite efficient in practice

Open: can we avoid dependence on K ∗ ?

67 / 70

Conclusions & Open Issues

First efficient time-dependent distance oracle

Approach sensitive to network’s
I degree of asymmetry (ζ)
I rate of (shortest-)travel-time evolution (Λmax)

Builds upon new approximate algorithm for computing one-to-all
time-dependent distance summaries

Quite efficient in practice

Open: can we avoid dependence on K ∗ ?

67 / 70

Outline

1 Robust Line Planning

2 Time-Dependent Route Planning

3 Summary

68 / 70

Summary

Transportation networks give rise to large-scale optimization
problems

Novel algorithms can have a great impact in their efficient and
effective solution

69 / 70

Thank you for your attention

Questions

70 / 70

Τέλος Ενότητας

Σημείωμα Ιστορικού Εκδόσεων Έργου

Το παρόν έργο αποτελεί την έκδοση 1.0.

2Τίτλος Ενότητας

Σημείωμα Αναφοράς

Copyright Πανεπιστήμιο Πατρών, Χρήστος Ζαρολιάγκης «Μελέτη

Περιπτώσεων στη Λήψη Αποφάσεων: Algorithms for Transport Optimisation:

Theory and Practice». Έκδοση: 1.0. Πάτρα 2015. Διαθέσιμο από τη δικτυακή

διεύθυνση:

https://eclass.upatras.gr/courses/MATH959/

3Τίτλος Ενότητας

Σημείωμα Αδειοδότησης
Το παρόν υλικό διατίθεται με τους όρους της άδειας χρήσης Creative Commons

Αναφορά, Μη Εμπορική Χρήση, Όχι Παράγωγα Έργα 4.0 [1] ή μεταγενέστερη,

Διεθνής Έκδοση. Εξαιρούνται τα αυτοτελή έργα τρίτων π.χ. φωτογραφίες,

διαγράμματα κ.λ.π., τα οποία εμπεριέχονται σε αυτό και τα οποία αναφέρονται

μαζί με τους όρους χρήσης τους στο «Σημείωμα Χρήσης Έργων Τρίτων».

[1] http://creativecommons.org/licenses/by-nc-nd/4.0/

4Τίτλος Ενότητας

Ως Μη Εμπορική ορίζεται η χρήση:

• που δεν περιλαμβάνει άμεσο ή έμμεσο οικονομικό όφελος από την χρήση του έργου, για

το διανομέα του έργου και αδειοδόχο

• που δεν περιλαμβάνει οικονομική συναλλαγή ως προϋπόθεση για τη χρήση ή πρόσβαση

στο έργο

• που δεν προσπορίζει στο διανομέα του έργου και αδειοδόχο έμμεσο οικονομικό όφελος

(π.χ. διαφημίσεις) από την προβολή του έργου σε διαδικτυακό τόπο

Ο δικαιούχος μπορεί να παρέχει στον αδειοδόχο ξεχωριστή άδεια να χρησιμοποιεί το έργο για

εμπορική χρήση, εφόσον αυτό του ζητηθεί.

Σημείωμα Χρήσης Έργων Τρίτων

Το Έργο αυτό κάνει χρήση των ακόλουθων έργων:

Διαφάνεια 5, 6, 114-121:

http://www.finanzen.net/nachricht/TomTom-Users-Capture-the-Road-Network-3-000-Times-

1485950

5Τίτλος Ενότητας

1485950

Διατήρηση Σημειωμάτων

Οποιαδήποτε αναπαραγωγή ή διασκευή του υλικού θα πρέπει

να συμπεριλαμβάνει:

� το Σημείωμα Αναφοράς

� το Σημείωμα Αδειοδότησης

6Τίτλος Ενότητας

� τη δήλωση Διατήρησης Σημειωμάτων

� το Σημείωμα Χρήσης Έργων Τρίτων (εφόσον υπάρχει)

μαζί με τους συνοδευόμενους υπερσυνδέσμους.

	Robust Line Planning
	Time-Dependent Route Planning
	Summary

