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Transport Optimization Problems

Public transportation networks Road networks
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Transport Optimization Problems

Public transportation networks Road networks

Common characteristic: large/huge scale )
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0 Robust Line Planning

e Time-Dependent Route Planning

e Summary
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Public Transportation Planning

Demand Network Line T Rolling stoc
Estimation //Planning Planning Planning & Personnel
Scheduling

@ This talk: Railways

@ Line Planning

» Determine the set of train lines (routes) along with their frequencies
» Typically, a line pool is provided
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Line Planning Problem (I)

@ Railway Network Infrastructure
governed by a (NOP) & represented as a digraph
G=(V,L)
» V «— stations or junctions of rail tracks

» L «— direct connections or (track) links between nodes
Ylel,d ¢y > 0 [# trains per day]

> : set of (origin-destination paths) in G
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Line Planning Problem (I)

@ Railway Network Infrastructure
governed by a (NOP) & represented as a digraph
G=(V,L)
» V «— stations or junctions of rail tracks

» L «— direct connections or (track) links between nodes
Ylel,d ¢y > 0 [# trains per day]

> : set of (origin-destination paths) in G
@ Line Operators (LOPs) P

Request usage of lines, at varying , in order to serve
their customers

o Goal
Find a (feasible allocation of lines to LOPs along with
proper frequencies) so as to optimize a system-wise welfare function
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Line Planning Problem (II)

@ Cost-Oriented Approach: optimize the performance of NOP

» Minimize cost (minimize total / max train travel time)
» Maximize profit (maximize throughput)

> ee

Eg, [Claessens-van Dijk-Zwaneveld (1996); Goossens-Hoesel-Kroon (2004)]
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Line Planning Problem (II)

@ Cost-Oriented Approach: optimize the performance of NOP

» Minimize cost (minimize total / max train travel time)
» Maximize profit (maximize throughput)

> ee

Eg, [Claessens-van Dijk-Zwaneveld (1996); Goossens-Hoesel-Kroon (2004)]

@ Customer-Oriented Approach: maximize the clients’ aggregate level
of satisfaction
» Maximize travelers with direct connections
» Minimize their total / max number of changes
» Minimize the traveling time of customers
» Minimize aggregate payments

4 e

Eg, [Schébel-Scholl (2005); Bussieck (1998); Bussieck-Lindner-Liibbecke (2004)]
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Robust Line Planning (I)

@ Provide line concepts that are robust to fluctuations of the input
parameters
» Disruptions (e.g., delays) to daily operations
» Temporal unavailability of tracks due to delays/accidents
» Fluctuating customer demands

> ee
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Robust Line Planning (I)

@ Provide line concepts that are robust to fluctuations of the input
parameters

» Disruptions (e.g., delays) to daily operations
» Temporal unavailability of tracks due to delays/accidents
» Fluctuating customer demands

> ee

@ Optimization Approach to Robustness (typical representatives):

» Stochastic programming models: flexible but too large in size; requires
apriori knowledge of probability distributions

» (Classical) robust optimization models: may lead to very conservative
solutions

> [Bertsimas-Sim (2004)] : feasibility is guaranteed if # of affected constraints
is limited

> [Fischetti-Monaci (2009)] : light robustness

> [Liebchen-Lilbbecke-Méhring-Stiller (2009)] : recoverable robustness
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Robust Line Planning (II)
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Robust Line Planning (II)

@ Game-theoretic Approach to Robustness: participating entities react
selfishly to the fluctuations of the input parameters

> [Schébel-Schwarze (2006)] : use game dynamics of a non-atomic network
congestion game as a robust scheme to deal with delays

» [Aghassi-Bertsimas (2005)] : robust version (fluctuations in feasibility
constraints) of a strategic game is as difficult as the nominal game
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Robust Line Planning (llI)
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Robust Line Planning (llI)

@ Previous optimization & game-theoretic approaches

» Powerful set of methods to deal with predictable and/or statically
described level of uncertainty in constraints

» Centralized solution approaches
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Robust Line Planning (llI)

@ Previous optimization & game-theoretic approaches

» Powerful set of methods to deal with predictable and/or statically
described level of uncertainty in constraints

» Centralized solution approaches

What if uncertainty is neither predictable/quantifiable
nor statically describable ?
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Robust Line Planning — A Different Perspective

@ Motivation: regulations for competition — free railway market

10/70



Robust Line Planning — A Different Perspective

@ Motivation: regulations for competition — free railway market

@ LOP: commercial entity trying to ...

. make profit out of the usage of the infrastructure
. unwilling to reveal its true incentives to the other competitors, or to NOP

10/70



Robust Line Planning — A Different Perspective

@ Motivation: regulations for competition — free railway market

@ LOP: commercial entity trying to ...

. make profit out of the usage of the infrastructure
. unwilling to reveal its true incentives to the other competitors, or to NOP

@ NOP: governmental entity, aiming to ...

. maximize the unknown aggregate level of satisfaction for the LOPs
( solution)

. ensure fairness in cost sharing

10/70



Robust Line Planning — A Different Perspective

@ Motivation: regulations for competition — free railway market

@ LOP: commercial entity trying to ...

. make profit out of the usage of the infrastructure
. unwilling to reveal its true incentives to the other competitors, or to NOP

@ NOP: governmental entity, aiming to ...

. maximize the unknown aggregate level of satisfaction for the LOPs
( solution)

. ensure fairness in cost sharing

Our Notion of Robustness

Tolerance to LOPs’ unknown and/or dynamically changing incentives
causing elasticity of frequency requests
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Our Approach: A Railway Market (1)

@ EachLOPpeP ...
. has a private of its assigned frequency Uy : Ryo = Ry

. has a unique (or multiple) fixed line(s) that interest her (public
information)

. competes against the other LOPs for the total committed to
her along her line(s)
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Our Approach: A Railway Market (1)

@ EachLOPpeP ...
. has a private of its assigned frequency Uy : Ryo = Ry

. has a unique (or multiple) fixed line(s) that interest her (public
information)

.. competes against the other LOPs for the total committed to
her along her line(s)

@ NOP uses a

. afeasible frequency allocation rule
and
. an anonymous resource pricing scheme

aiming to maximize the aggregate level of satisfaction for the LOPs

ASSUMPTION 1 (economy of scale)
For every LOP p € P, U, is strictly increasing and strictly concave J
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Our Approach: A Railway Market (1)

Reality of an emerging (Pan-European) Railway Market:

@ Huge instances to be handled globally by a central authority (NOP)
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Our Approach: A Railway Market (1)

Reality of an emerging (Pan-European) Railway Market:
@ Huge instances to be handled globally by a central authority (NOP)

@ Real-time changes of

(i) The network infrastructure
(i) LOP preferences

@ Instead of using a (static, global) that aims to maximize
the aggregate level of satisfaction for the LOPs
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Our Approach: A Railway Market (1)

Reality of an emerging (Pan-European) Railway Market:
@ Huge instances to be handled globally by a central authority (NOP)

@ Real-time changes of

(i) The network infrastructure
(i) LOP preferences

@ Devise a dynamic, decentralized that

» assures global convergence to the (unknown, possibly changing over
time) social optimum

» is based (as much as possible) on local information
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CaseS StUd|ed [Bessas, Kontogiannis & Z (2009; 2011)]

Single Line Pool
> A unique line (path) per LOP
Multiple Line Pools

> A polynomial number of different line pools representing
non-overlapping usage of the infrastructure, due to ...

. varying customer traffic (rush-hour morning pool, late morning pool,
rush-hour afternoon pool, night pool, etc)

. maintenance

. dependencies between types of lines (a high-speed line affects the
choice of lines for other trains)

Multiple line Pools — Single Utility:
One utility function per LOP, for the aggregate frequency over all pools

Multiple line Pools — Multiple Utilities:
Different utility functions per pool for each LOP
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New Contributions [Bessas, Kontogiannis & Z (2009; 2011)]
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NeW Contributions [Bessas, Kontogiannis & Z (2009; 2011)]

@ Globally convergent (continuous) decentralized mechanism (dynamic
resource pricing and LOP bidding scheme) for
> [SP] — adaptation of the scheme [Kelly (1997)]
> [MPSU] and [MPMU]

[SP]: Single line Pool [MPSU]: Multiple line Pools — Single Utility [MPMU]: Multiple line Pools — Multiple Utilities
1
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NeW Contributions [Bessas, Kontogiannis & Z (2009; 2011)]

@ Globally convergent (continuous) decentralized mechanism (dynamic
resource pricing and LOP bidding scheme) for

> [SP] — adaptation of the scheme [Kelly (1997)]
» [MPSU] and [MPMU]

@ Experimental study on discrete variants of the globally convergent
mechanisms for [SP] and [MPMU] on synthetic and real-world data

» 1st Experiment: global convergence to social optimum, starting from
an arbitrary initial state
Experiments indicated independence from number of pools, but
sensitivity to the shape of the utility functions

> 2nd Experiment: convergence to optimality, recovering from small
disruptions to a previous social optimum
Experiments indicated very fast (re-)convergence to optimum

[SP]: Single line Pool [MPSU]: Multiple line Pools — Single Utility [MPMU]: Multiple line Pools — Multiple Utilities
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NeW Contributions [Bessas, Kontogiannis & Z (2009; 2011)] — In th|S Talk

@ Globally convergent (continuous) decentralized mechanism (dynamic
resource pricing and LOP bidding scheme) for

> [SP] — adaptation of the scheme [Kelly (1997)]
- [MPMU]

@ Experimental study on discrete variants of the globally convergent
mechanisms for [MPMU] on synthetic and real-world data

» 1st Experiment: global convergence to social optimum, starting from
an arbitrary initial state
Experiments indicated independence from number of pools, but
sensitivity to the shape of the utility functions

> 2nd Experiment: convergence to optimality, recovering from small
disruptions to a previous social optimum
Experiments indicated very fast (re-)convergence to optimum

[SP]: Single line Pool [MPSU]: Multiple line Pools — Single Utility [MPMU]: Multiple line Pools — Multiple Utilities
1
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The Optimization Problem

@ Line Pool: routing matrix R € {0, 1}t*PI (one line per LOP)
» Column < LOPp e P
» Row « specific resource (edge) ¢ € L
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The Optimization Problem

@ Line Pool: R € {0, 1}:XIPI (one line per LOP)
» Column < LOPp e P
» Row « specific resource (edge) ¢ € L

° ¢ € (Rxo)'t!: frequency upper bounds of edges
@ Xx,: path frequency granted to LOP p along her line

@ Goal: find the (unique) optimal solution of the convex program

max {Z Up(xp) : Rx<¢; x> 0}

peP

16/70



The Optimization Problem

@ Line Pool: routing matrix R € {0, 1}t*PI (one line per LOP)
» Column < LOPp e P
» Row « specific resource (edge) ¢ € L

@ Capacity vector ¢ € (Rxo)!!!: frequency upper bounds of edges
@ Xx,: path frequency granted to LOP p along her line

@ Goal: find the (unique) optimal solution of the convex program

max {Z Up(xp) : Rx<¢; x> 0}

peP

Where is the problem?
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Difficulties in Solving |[SOCIAL

max{z Up(xp) : RXx<c; x>0

peP
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Difficulties in Solving |[SOCIAL

peP

max{z Up(xp) : RXx<c; x>0

= Reluctance of LOPs to reveal their private utilities to either NOP
or their competitors

= Ignorance of the exact shape of the objective function
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Difficulties in Solving |[SOCIAL

max{z Up(xp) : RXx<c; x>0

peP

Reluctance of LOPs to reveal their private utilities to either NOP

or their competitors
= Ignorance of the exact shape of the objective function

Huge scale makes centralized computations inefficient
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An Alternative Description of | SOCIAL

max{z Up(xp) : Rx<c; x>0

peP

@ X € OPT(SOCIAL) = 3 vector of Lagrange Multipliers A = (A¢)er,
satisfying the Karush-Kuhn-Tucker conditions:
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An Alternative Description of | SOCIAL

max{

Zup(xp):Rxsc; x>0
peP

@ X € OPT(SOCIAL) = 3 vector of Lagrange Multipliers A = (A¢)er,
satisfying the Karush-Kuhn-Tucker conditions:

KKT-SOCIAL |

Al

\%

A Rsp, Vp € P,
0, Vlel,

ce, YleL,

0
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Economic Interpretation of Lagrange Multipliers

Assuming knowledge of the optimal vector of Lagrange multipliers 1
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Economic Interpretation of Lagrange Multipliers
Assuming knowledge of the optimal vector of Lagrange multipliers 1

@ NOP announces pricing scheme:

Each resource ¢ € L charges a per-unit-of-frequency price equal to A, J

@ Each LOP p € P, granted line frequency x, > 0, pays

Co(Xp) = f1p - Xp

where fip = ¥ 1., —1 A = AT R p is the total per-unit price of p
along her line R, p.
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Exploiting the Selfishness of LOPs

Each selfish LOP is interested in solving:

max {Up(Xp) = fpXp : Xp = 0

20/70



Exploiting the Selfishness of LOPs

Each selfish LOP is interested in solving:
USER-T|  max {Up(Xp) = fipXp : Xp = 0

ASSUMPTION 2

LOPs control negligible fractions of frequency and are
(accept announced prices as constant)

20/70



Exploiting the Selfishness of LOPs

Each selfish LOP is interested in solving:
USER-T|  max {Up(Xp) = fipXp : Xp = 0
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Exploiting the Selfishness of LOPs

Each selfish LOP is interested in solving:
USER-T|  max {Up(Xp) = fipXp : Xp = 0

ASSUMPTION 2

LOPs control negligible fractions of frequency and are
(accept announced prices as constant)

U The selfish solution X, > 0 of | USER-I | satisfies
Uilv(’?p) =flp = ar. Rs.p

= the vector of selfish frequencies X satisfies the first (hard) set of

equalities of | KKT-SOCIAL

2. The optimal vector 1 of Lagrange multipliers is also not known
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Dynamic Pricing Scheme

lteratively:
@ Each LOP p € P (rather than requesting a frequency x,) announces a
wp > 0 for buying frequency
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per-unit-prices of the resources
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Dynamic Pricing Scheme

lteratively:

@ Each LOP p € P (rather than requesting a frequency x,) announces a
wp > 0 for buying frequency

© NOP considers the following program, with strictly concave
pseudo-utilities

Wp-log(xp)
—

max4 >’ :Rx<c; x>0

peP

whose optimal Lagrange Multipliers vector 1 determines the
per-unit-prices of the resources

@ Allocation of frequencies to LOPs: Vp € P, %, = 7

fip = Yrer:r,,—1 A = A7 - Ry is the total price of p committing a unit
of traffic along her line R,
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An Alternative Description of NETWORK |

peP

NETWORK | max {Z wp - log(xp) : Rx<c¢; x>0

KKT-NETWORK |
‘:_(V—g = A" -Ryp, VpEP,
Ap (C[ = Rg,* )_() = 0, Vte L,
Rex X < ¢ VleL,
X >0
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What remains?

The only difference between ] KKT-NETWORK \ and ] KKT-SOCIAL | is the
first condition:

Wp

| KKT-NETWORK | % = AT-Rup VpeP

KKT-SOCIAL| U, (%) = A"-R.p, VpeP
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What remains?

The only difference between ] KKT-NETWORK \ and ] KKT-SOCIAL | is the

first condition:

Wp

| KKT-NETWORK | % = AT-Rup VpeP

KKT-SOCIAL| U, (%) = A"-R.p, VpeP

Prove that the optimal solution (%, 1) of | KKT-NETWORK | satisfies

_ w,
Vpe P, Uy(Xp) = )_(—p
fo)
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Exploiting (again) the Selfishness of LOPs

At each time t > 0, LOP p € P is interested in solving:

—————

=Xp(1)
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Exploiting (again) the Selfishness of LOPs

At each time t > 0, LOP p € P is interested in solving:

USER-II|  max{ Up(Wp/pp(t)) = wp : wp >0
————

=Xp(1)

@ Given the price taking property, the selfish solution W, (t) satisfies:

()
n(t)

Wp(1)
/Jp(t)

'OEI

1 4 _ (T _
(x) Yp e P, /’lp(t).Up( )1 e U, (%(t) =

e
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Exploiting (again) the Selfishness of LOPs

At each time t > 0, LOP p € P is interested in solving:

USER-II|  max{ Up(Wp/pp(t)) = wp : wp >0
————

=Xp(1)

@ Given the price taking property, the selfish solution W, (t) satisfies:

()
n(t)

Wp(1)
Mp(t)

'OEI

1 4 _ (T _
() Ype P s Uy (2] =1 o U (500 -

e

25 At equilibrium we have: [KKT-NETWORK | = [KKT-SOCIAL | 1!
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Single line Pool — Recap

o At equilibrium | KK-NETWORK | = | KKT-SOCIAL

@ Crucial point: set the “right” resource prices and the “right” bids will
follow =&
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Single line Pool — Recap

o At equilibrium | KK-NETWORK | = | KKT-SOCIAL

@ Crucial point: set the “right” resource prices and the “right” bids will
follow =&

@ Avoid solving globally | NETWORK | (although, in principle we could)
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How to Distributively Solve [ NETWORK ]

At every time step t > 0:

@ Every resource ¢ € L updates its per-unit-of-frequency (anonymous)
price according to

{ max{y.(t) — c,,0}, if 4,(t) =0,
) =

(ye(t) = cr), if 2,(t) > 0.

A(t

where y,(t) = Y per:r,,—1 Xp(t) = Rex - X(1) is the cumulative
frequency committed at edge ¢ € L attime t
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How to Distributively Solve [ NETWORK ]

At every time step t > 0:

@ Every resource ¢ € L updates its per-unit-of-frequency (anonymous)
price according to

_ max{y¢(t) — c¢, 0}, if 4,(t) =0,
A(t) =

(ye(t) = cr), if 2,(t) > 0.

where y,(t) = Y per:r,,—1 Xp(t) = Rex - X(1) is the cumulative
frequency committed at edge ¢ € L attime t

@ Each LOP announces her current bid w;(t) for buying frequency over

her own line, as a solution to | USER-II

@ Each LOP p € P receives a per-unit-of-frequency price
T
llp(t) = Z[eL:R,,p:1 /lf(t) = /l(t) : R*,p
and thus a frequency x,(t) = /Vl";’—((f)) at time t
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How to Prove Convergence?

Via a Lyapunov Function argument (plus full rank of R) we can prove
convergence to the optimal solution (X, 1) = (X, 1) of both [ NETWORK

and | SOCIAL
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Multiple Line Pools

@ The NOP can ...

» periodically exploit a set K of line pools
» determine how to divide the usage of the network among the different
pools

@ Each line pool operates in disjoint time intervals (time division
multiplexing)

@ Every LOPp ...

» can claim different lines from different line pools
> has a different utility function U, x per line pool k
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Multiple Line Pools (set K)

@ Pool k € K: routing matrix R(k) € {0, 1}/:™IFI (one line per LOP per
pool)
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Multiple Line Pools (set K)
@ Pool k € K: routing matrix R(k) € {0, 1}/:™IFI (one line per LOP per
pool)
@ Capacity vector ¢ € (Rs)'": max frequency over whole time period
@ Xp«: frequency granted to LOP p along her line within pool k

@ fy,k € K: proportion consumed (from the capacity of each edge) by
pool k over the whole time period (determined by NOP)
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Multiple Line Pools (set K)
@ Pool k € K: routing matrix R(k) € {0, 1}/:™IFI (one line per LOP per
pool)
@ Capacity vector ¢ € (Rs)'": max frequency over whole time period
@ Xp«: frequency granted to LOP p along her line within pool k

@ fy,k € K: proportion consumed (from the capacity of each edge) by
pool k over the whole time period (determined by NOP)

@ Find the (unique) optimal solution of the convex program:
MULTI-SOCIAL-2 (MSC2)

max Z Up(Xp) = Z Z Up i (Xp.k)

peP peP keK
SLY(GK) eLxK, > Rup(k) Xpk < Crk - fi
peP

kast x,f>0

keK
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An Alternative Description of MSC2

X, f) € OPT(MSC2) = 3 vector of Lagrange Multipliers
= (Ack)eeL. keK,() satisfying the Karush-Kuhn-Tucker conditions:
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An Alternative Description of MSC2

X, f) € OPT(MSC2) = 3 vector of Lagrange Multipliers
(/\[k)[el_ keK,g) satisfying the Karush-Kuhn-Tucker conditions:

Up ik (Rok) = Zeer Ak - Bep(k)
Yeer Mex - e

Ak |Zpep Rep(k) - Rox = coli]
Z- (ZkeK?k = 1)

Ypep R(K)ep - Xpk

Lk T

A A

A ¢

IA

IA

\%

Ak per-unit-of-frequency price

up,k(f\), (p.k) € Px K
g, k
0, (k) eLxK

0

-t (6k) e LxK
1

0
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An Alternative Description of MSC2

X, f) € OPT(MSC2) = 3 vector of Lagrange Multipliers
(/\[k)[el_ keK,g) satisfying the Karush-Kuhn-Tucker conditions:

KKT-MSC2 Ak per-unit-of-frequency price

Per-unit cost of LOP p in pool k

U, (o) = Seet Ae - Rep(k) up,k(i\), (p.k)ePxK 4=

Seet Aek-ce = &k
Ack [Zpep Rep(k) - Xpk — Cé’?k] = 0,
2 (Skekf—1) = 0

Ypep R(K)ep - Kok -t (6k) e LxK

ZKEK fk

ﬁ’ f’ A’Z/

(6.k) e L x K

IA

1
0

IA
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An Alternative Description of MSC2

X, f) € OPT(MSC2) = 3 vector of Lagrange Multipliers
(/\[k)[.g[_ keK,g) satisfying the Karush-Kuhn-Tucker conditions:

Aek: per-unit-of-frequency price
All pools have same aggregate cost
Uy (Xpk) = el Ack - Rep(k)
St hek-cc = & keK -
Ack [Zpep Rep(k) - Xpk — Cé’?k] =0
2 (Skekf—1) = 0
Ypep R(K)ep - Kok -t (6k) e LxK

ZKEK fk

ﬁ’ f’ A’Z/
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An Alternative Description of MSC2

X, f) € OPT(MSC2) = 3 vector of Lagrange Multipliers
(/\[k)[.g[_ keK,g) satisfying the Karush-Kuhn-Tucker conditions:

KKT-MSC2 Ak per-unit-of-frequency price

Network is totally distributed among pools
U;),k(’?p,k) = Yer Mok - Rep(k)
Seet Nek-ce = 2, keK
Ac [Zpep Rep(k) - Xok — Cf?k] = 0, (t,k)eLxK
2'(ZkeK?k_1) =0 L
Ypep R(K)ep - Kok -t (6k) e LxK

ZKEK fk

ﬁ’ f’ A’Z/

tpx(N), (p,k) € Px K

IA

1
0

IA

\%

v
30770



Pricing Scheme

@ Each LOP p € P announces a wpk > 0 for buying frequency in
pool k € K
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Pricing Scheme

@ Each LOP p € P announces a wpk > 0 for buying frequency in
pool k € K

© NOP considers the following program, with strictly concave B
pseudo—utilities, whose optimal Lagrange Multipliers vector A
determines the per-unit-prices of the resources in the pools

Wy k-log(Xp.k)

max. > pep 2keK
s.t. V(f,k) el xK, ZpeP R(k)g,p *Xpk < Cek - fi; ke fk < 1; x>0
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Pricing Scheme

@ Each LOP p € P announces a wpk > 0 for buying frequency in
pool k € K

© NOP considers the following program, with strictly concave B
pseudo—utilities, whose optimal Lagrange Multipliers vector A
determines the per-unit-prices of the resources in the pools

Wy k-log(Xp.k)

max. > pep 2keK
st V(6K) € LXK, Spep R(K)p - Xok < Cok - fis Ser i < 15 £,X > 0

© Allocation of frequencies to LOPs: Vp € P,Vk € K, X, = %
Hpk = el Ak - Re p(k) is the total price of p for committing a unit of
traffic along her line in pool k € K
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An Alternative Description of MNET2

@ (x,f) € OPT(MNET2) = 1 vector of Lagrange Multipliers

A = (Ack)reLkek £). satisfying the Karush-Kuhn-Tucker conditions:
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An Alternative Description of MNET2

° ):(,f) € OPT(MNET2) = 3 vector of Lagrange Multipliers
A = (Ack)reLkek £). satisfying the Karush-Kuhn-Tucker conditions:

KKT-MNET2

wp,k
Xp.k
—_———

= YeL Mok - Rep(k)

Seer Nek - Ce

ek |Zpep Rep(K) - Xox - cofi]
7 (Zkek f = 1)

Ypep R(K)ep - Xpk

Skek Tk

XA

IA

\%

Hpk, (P, k) € PxK
., keK

0, ((,k) e LxK

0

co-fx, (6 k)eLxK
1

0

32/70



An Alternative Description of MNET2

e (X,f) € OPT(MNET2) = 3 vector of Lagrange Multipliers
A = (Ack)reLkek £). satisfying the Karush-Kuhn-Tucker conditions:

KKT-MNET2 The only difference with KKT-MSC2

wp,k
Xp.k
—_———

= Yet Nk - Rep(k) Hok, (Psk) € PXK -
Seet Nex-ce = L keK
Nk [ZpeP Rep(k) - Xpk — C[?k] = 0, (6,k)eLxK
7-(Skekf—=1) = 0
Ypep R(K)ep - Xok < Co-feo (6 k) €L xK
Skek Tk 1
& N W 0

IA

\%
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Multiple Line Pools

e Selfishness of LOPs = at equilibrium | KKT-MS2 | = | KKT-MNET2
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e Selfishness of LOPs = at equilibrium | KKT-MS2 | = | KKT-MNET2 |

KEY PROPERTIES
@ The NOP completely divides the infrastructure among the pools

© For any fixed f (that completely divides the infrastructure among the

pools) the optimal value of | KKT-MSC2 | depends exclusively on the

optimal A
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Multiple Line Pools

e Selfishness of LOPs = at equilibrium | KKT-MS2 | = | KKT-MNET2 |

KEY PROPERTIES
@ The NOP completely divides the infrastructure among the pools

© For any fixed f (that completely divides the infrastructure among the

pools) the optimal value of | KKT-MSC2 | depends exclusively on the

optimal A

@ KEY PROPERTIES = dynamic (decentralized) scheme for solving

KKT-MNET2
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Dynamic Scheme for solving MNET2

At every time step t > 0:
@ Resource price updates (by the resources, per pool, continuously):

max {yk(t) — ccfx, 0}, if Agk(t) =0

V(t,k) e Lx K, A(t) = {
[Yex(t) = cefi], if Apk(t) >0
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Dynamic Scheme for solving MNET2

At every time step t > 0:
@ Resource price updates (by the resources, per pool, continuously):
: max {ye (t) — cefc, 0}, if Ak(t) =0
V(f,k) el xK, /\g,k(t) =
[yex(t) — cefi], if Aex(t) >0

© LOP bid updates (only when resource prices have stabilized):

Vp € P, wp(t) € arg maxw,>o {ZkeK (Up,k (%) - Wp,k)}
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At every time step t > 0:
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. max {yek(t) - cefk, 0}, if Aek(t) =0
V(f,k) el xK, /\g,k(t) =
[Yex(t) = cefi], if Apk(t) >0

© LOP bid updates (only when resource prices have stabilized):

Vp € P, wp(t) € arg maxw,>o {ZkeK (Up,k (%) - Wp,k)}

© Allocation of path frequencies: Vp e P,xp(t) = (gs:((:)))
- keK
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Dynamic Scheme for solving MNET2

At every time step t > 0:
@ Resource price updates (by the resources, per pool, continuously):

max {yk(t) — ccfx, 0}, if Agk(t) =0

V(t,k) e Lx K, A(t) = {
[Yex(t) = cefi], if Apk(t) >0

© LOP bid updates (only when resource prices have stabilized):

Vp € P, wp(t) € arg maxw,>o {ZkeK (Up,k (%) - Wp,k)}

© Allocation of path frequencies: Vp e P,xp(t) = (gs:((:)))
- keK

© Capacity Proportion updates (by the NOP, only when resource prices
and LOP bids have stabilized):

4(t) = fq Zkek € - Awk(t)
Vk € K, fi(t) = ¢(t) - max {07 - Ak (t) - £(1)]
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Experimental Study — Synthetic Data

@ grid graphs nx p, n € {3,7}, p € [120,3600]
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Experimental Study — Synthetic Data

@ grid graphs nx p, n € {3,7}, p € [120,3600]
@ ¢, € [10,110) randomly chosen
@ |K| € [2,4]; 3 types of LOPs

Lines (paths): deterministic & random
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Experimental Study — Real Data

@ Two parts of the German railway network; c; € [8, 16]

» R1: 280 nodes, 354 edges, [total lines| € [100, 400]
» R2: 296 nodes, 393 edges, |total lines| € [100, 1000]
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Experimental Study — Real Data

@ Two parts of the German railway network; c; € [8, 16]

» R1: 280 nodes, 354 edges, [total lines| € [100, 400]
» R2: 296 nodes, 393 edges, |total lines| € [100, 1000]

@ Per instance
> IKI=2
» about 10% difference in lines between the pools
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1st Experiment: Convergence to OPT for [MPMU]

@ Scenarios considered
» S1: Up,1 (Xp;]) = 104 \/Xp;] and Upyg(Xpyg) = 104 \/Xp’ s Vp e P.

» S2: Up1(Xp1) = 2-10% - X1 and Upa(Xp2) = 2 - 10% - /Xp2, Yp € P.
> S3: Up1(Xp1) = 10* - X1 and Upa(Xp2) = 3 - 10* - X5z, Vp € P.
> S4: Up1(Xp1) = 10* - X1 and Upa(Xp2) = 1 - 10* - X5z, Vp € P.

@ Measured quantity: number of updates in the vector f of capacity
proportions ( = # [SP] instances need to be solved)
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Results on [MPMU] Convergence

#lLines St S2 S3 &4

# updates of f in R1 with two
line pools, for all four scenar- 100 9 33 127 178
i0s 200 12 33 127 178
300 19 29 128 178

Similar results for R2
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Results on [MPMU] Convergence

#lines St S2 S3 &4
# updates of f in R1 with two

line pools, for all four scenar- 100 9 33 127 178
ios 200 12 33 127 178

300 19 29 128 178

Similar results for R2

Bottom Line for [MPMU] Convergence

# updates for convergence to OPT largely depends on the exact
parameters of the utility functions, and not really on the number of pools
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2nd Experiment: Disruptions in [MPMU]

@ The system is currently at optimality

@ How fast can it re-converge to optimality after a disruption ?
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2nd Experiment: Disruptions in [MPMU]

@ The system is currently at optimality
@ How fast can it re-converge to optimality after a disruption ?

° Change (track breakdown, or improvement) in the
capacities of some edges

» D1: Reducing the capacity of a certain number of edges (chosen
among the congested ones)

» D2: Increasing the capacity of a certain number of edges (chosen
among the congested ones)

» D3: Reducing the capacity of a certain number of edges, while
increasing the capacity of an equal number of a different set of edges
(chosen among the congested ones)

@ Change in capacity of a disrupted edge: +10% or +50%
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Disruptions in the [MPMU] Case (l)

@ Two pools considered (random for grid-networks, with 10% difference
from each other in R1)

@ Measured quantity: number of updates in the LOPSs’ bid vectors

@ Starting from previous OPT, no update in vector f of capacity
proportions occurred
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Disruptions in the [MPMU] Case (lI)

# updates of w to recover optimality # updates of w to recover optimality
in 7 x p grid-networks, starting from in R1, starting from a previous opti-
a previous optimal state mal state
Disruptions p D1 D2 D3 Disruption #Lines D1 D2 D3
120 0 0 0 100 0 0 0
180 0 0 O 10% 200 0o 0 ©
10% 240 0 0 0 300 0 0 0
300 0 0 0
360 0 0 0 100 0 0 0
50% 200 0 0 0
120 0 2 1 300 0 0 0
180 0 2 0
50% 240 0 0 0 1000 3 0
300 0 1 2 90% 200 0 2 2
360 0 2 > 300 0 0 0
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Disruptions in the [MPMU] Case (lI)

# updates of w to recover optimality # updates of w to recover optimality
in 7 x p grid-networks, starting from in R1, starting from a previous opti-
a previous optimal state mal state
Disruptions p D1 D2 D3 Disruption #Lines D1 D2 D3
120 0 0 0 100 0 0 0
180 0 0 O 10% 200 0o 0 ©
10% 240 0 0 0 300 0 0 0
300 0 0 0
360 0 0 0 100 0 0 0
50% 200 0 0 0
120 0 2 1 300 0 0 0
180 0 2 0
50% 240 0 0 0 1000 3 0
300 0 1 2 90% 200 0 2 2
360 0 2 > 300 0 0 0

Bottom Line for disruptions in [MPMU]
Very rarely there is a need (for only a few) bid updates, after disruptions
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Conclusion

@ Incentive-compatible robust solutions for line planning ([SP],[MPMU])

» Robustness against unknown incentives
» Recoverability to (unknown) social optimum via dynamic, decentralized
mechanism

@ Experiments indicated

» Convergence (starting from arbitrary initial state): independent of #
pools, but sensitive to utility functions
» Very fast re-convergence to optimum in case of disruptions (starting

from an optimal state)
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Outline

e Time-Dependent Route Planning
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Raw traffic (speed probe) data TomTOomM >
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Raw traffic (speed probe) data
70 Million contributing users

4 Billion measurements per day

TomTOom >

5 Trillion measurements over 140 Billion Km

o
o
@ every road segment measured 2000 times on average
°

tiow speed

n to

Speed relatios

measured speeds in 5-min intervals

0.8

0.6

P
10

15
Local time [hours]

P

s

15
Local time [hours]
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Raw traffic (speed probe) data TOoMToM 3
@ 70 Million contributing users

@ 4 Billion measurements per day

@ 5 Trillion measurements over 140 Billion Km

@ every road segment measured 2000 times on average

@ measured speeds in 5-min intervals

i - - Time-Dependent Setup

@ et Route Corridor derived from -
g Profile Queries

3 e
c } = calculate the set of

£ wl fastest routes over time
o /
£l
'_
E s

>

Ol
= Monday Tuesday ‘ednesda Thursday Friday Saturday Sunday

Main Issue: time-dependence




Time-Dependent Shortest Paths

Instance with ARC DELAY functions

X¥2

2x+071

How would you commute as fast as possible from o to d, for a given
departure time (from 0)?

45/70



Time-Dependent Shortest Paths
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How would you commute as fast as possible from o to d, for a given

departure time (from 0)? Eg:
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Time-Dependent Shortest Paths

il >
o 1

/ o]

8:1

How would you commute as fast as possible from o to d, for a given
departure time (from 0)? Eg: |{, =1
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Time-Dependent Shortest Paths

Instance with ARC DELAY functions

X¥2

2x+071

How would you commute as fast as possible from o to d, for a given
departure time (from 0)?

What if you are not sure about the departure time?
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Time-Dependent Shortest Paths

Instance with ARC-ARRIVAL functions

How would you commute as fast as possible from o to d, for a given
departure time (from 0)?

What if you are not sure about the departure time?
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Time-Dependent Shortest Paths

Instance with ARC-ARRIVAL functions

Arr[oud](t;) = Arr[ud](Arr[ou](t)) = 6t, + 2.2

Arr[ovd](to) = Arr[vd](Arr[ov](t,)) = 6t, + 6.1
Arr[ouvd](to) = Arr[vd](Arr[uv](Arr[ou](to))) = 36t,+1.3

How would you commute as fast as possible from o to d, for a given
departure time (from 0)?

What if you are not sure about the departure time?
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Time-Dependent Shortest Paths

Instance with ARC-ARRIVAL functions

Arr[oud](t;) = Arr[ud](Arr[ou](t)) = 6t, + 2.2

Arr[ovd](to) = Arr[vd](Arr[ov](t,)) = 6t, + 6.1
Arr[ouvd](to) = Arr[vd](Arr[uv](Arr[ou](to))) = 36t,+1.3

How would you commute as fast as possible from o to d, for a given
departure time (from 0)?

What if you are not sure about the departure time?

orange path, if t, € [0,0.03]
shortest od—path = { yellow path, if t, € [0.03,2.9]
purple path, if t, € [2.9, +)
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Time-Dependent Shortest Paths

@ Directed graph G = (V,A),n=1V|

° function D[uv](ty)
D[uv](t)
° function Arr[uv](t)

ty

= Arrfuv](t,)
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Time-Dependent Shortest Paths

@ Directed graph G = (V,A),n=1V|

° function
Dluv](t)

° function Arr[uv](t)

ty

D[UV] (tu) = Arrfuv](ty)

@ P,q: od-paths; p = (a1,...,ak) € Pog

° functions
Arr[p](to) = Arrlak] o - -- o Arr[a;](tp) (composition)
Dlpl(to) = Arr[p](to) — to
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Time-Dependent Shortest Paths

@ Directed graph G = (V,A),n=1V|

° function D[uv](ty)
D[uv(t)

° function Arr[uv](t)

ty

= Arrfuv](t,)

@ P,q: od-paths; p = (a1,...,ak) € Pog

° functions
Arr[p](to) = Arrlak] o - - - o Arr[a](ty) (composition)
Dlp](to) = Arr[p](to) — to

° functions
Arrlo, d](to) = minpep, , { Arr[p](to) }
Do, d|(to) = Arr[o,d](to) — to
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Time-Dependent Shortest Paths

@ Directed graph G = (V,A),n=1V|

° function D[uv](ty)
D[uv(t)

° function Arr[uv](t)

ty

= Arrfuv](t,)

@ P,q: od-paths; p = (a1,...,ak) € Pog

° functions
Arr[p](to) = Arrlak] o - - - o Arr[a](ty) (composition)
Dlp](to) = Arr[p](to) — to

° functions
Arr{o. d](to) = minger, , { Arrlp](to) |
Do, d|(to) = Arr[o,d](to) — to
Goals
@ For departure-time t, from o, determine t; = Arr|o, d|(t,)
@ Provide a succinct representation of Arr|o, d] (or D[o, d])
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FIFO vs non-FIFO Arc Delays

° slopes of arc-delay functions > —1
= non-decreasing arc-arrival functions
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FIFO vs non-FIFO Arc Delays

@ FIFO Arc-Delays: slopes of arc-delay functions > —1
= non-decreasing arc-arrival functions

@ Non-FIFO Arc-Delays

» Forbidden waiting: 7 subpath optimality; NP-hard [Orda-Rom (1990)]
» Unrestricted waiting: = FIFO (arbitrary waiting) [Dreyfus (1969)]

47170



Complexity of Time-Dependent Shortest Path

FIFO, piecewise-linear arc-delay functions; K: total # number of breakpoints

@ Given od—pair and departure time {, from o: time-dependent
Dijkstra [Dreyfus (1969), Orda-Rom (1990)]
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FIFO, piecewise-linear arc-delay functions; K: total # number of breakpoints

@ Given od—pair and departure time {, from o: time-dependent
Dijkstra [Dreyfus (1969), Orda-Rom (1990)]

@ Time-dependent shortest path heuristics: only empirical evidence
[e.g., Delling & Wagner 2009; Batz etal, 2009]
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@ Primitive Breakpoint (PB): Departure-time by, from x at which
Arr[xy] changes slope
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Exact Succinct Representation
Why so high complexity ?

@ Primitive Breakpoint (PB): Departure-time by, from x at which
Arr[xy] changes slope

@ Minimization Breakpoint (MB): Departure-time by from origin o
such that Arr|o, x] changes slope due to min operator at x
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Complexity of Time-Dependent Shortest Path

FIFO, piecewise-linear arc-delay functions; K: total # number of breakpoints

@ Given od—pair and departure time f, from o: time-dependent
Dijkstra [Dreyfus (1969), Orda-Rom (1990)]

@ Time-dependent shortest path heuristics: only empirical evidence
[e.g., Delling & Wagner 2009; Batz etal, 2009]

@ Complexity of computing ??
» Open till recently ...
» Arrfo,d]: O((K 4 1) - n®°9(")) space [Foschini-Hershberger-Suri (2011)]

» Do, d]: O(K + 1) space for point-to-point (1 4 &)—approximation
[Dehne-Omran-Sack (2010), Foschini-Hershberger-Suri (2011)]
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Complexity of Time-Dependent Shortest Path

FIFO, piecewise-linear arc-delay functions; K: total # number of breakpoints

@ Question 1: J data structure ( ) that
> requires ?
> allows answering efficiently ?
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Complexity of Time-Dependent Shortest Path

FIFO, piecewise-linear arc-delay functions; K: total # number of breakpoints

@ Question 1: J data structure ( ) that
> requires ?
> allows answering efficiently ?

@ Trivial solution I: Precompute all (1 + ¢)—approximate distance
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Complexity of Time-Dependent Shortest Path

FIFO, piecewise-linear arc-delay functions; K: total # number of breakpoints

@ Question 1: J data structure ( ) that
> requires ?
> allows answering efficiently ?

@ Trivial solution I: Precompute all (1 + ¢)—approximate distance
summaries for every od-pair
O(n2(K + 1)) space
= O(loglog(K)) query time
@i (14 g)—stretch

@ Trivial solution Il: No preprocessing, respond to queries with
TD-Dijkstra
= O(n+ m+ K) space
= O([m + nlog(n)] x loglog(K)) query time
«% 1-—stretch

@ Question 2: can we do better ?

» subquadratic space & sublinear query time

» 1 smooth tradeoff among space / query time / stretch ? 51 /70
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@ Efficient time-dependent distance oracle:
subquadratic space and time preprocessing, sublinear query time

@ (1 + &)—approximate algorithm for computing one-to-all distances in
O(K + 1) space (same complexity with P2P approximation algorithm by
[Foschini-Hershberger-Suri (2011)] )

» Bisection-based approach
» Closed form for max absolute error

© Preprocessing: choose a set L of landmarks and Y(¢,v) e L x V,
compute (1 + &)—approximate distance summaries A[¢, v](t)
(D¢, v](t) < AL, v](t) < (1 +€) - D[¢, v](t))

@ Answer arbitrary queries (0, d, t,) using two query algorithms
(FCA/RQA) that return O(1) / (1 + o)-approximate distance values
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Assumptions

@ Static & undirected world —

ASSUMPTION 1 (bounded travel time slopes)
Slopes of D[o, d] € [-1, Amax], for some constant Amax > 0

world ?

ASSUMPTION 2 (bounded opposite trips)
A >1:V(o,d) e Vx V, Vtel0,T], Dlo,d]|(t) < - D[d,0](t)

Experimental Analysis

| Data Set | Type (source)

[ 0 [ [Aew [ ]
Berlin real-world (TomTom) 480K | 1135K | 0.185 | 1.54
W. Europe | benchmark (PTV) 18010 K | 42188 K | 6.186 | 1.18
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Approximating Distance Functions via Bisection

sample simultaneously all distance values from o, at mid-points of time
intervals, until required approximation guarantee is achieved ¥ destinations

Dof--

Dy

v

Example of Bisection Execution : INPUT = UNKNOWN BLUE function

54/70



Approximating Distance Functions via Bisection

sample simultaneously all distance values from o, at mid-points of time
intervals, until required approximation guarantee is achieved ¥ destinations

Do}

Dy

>
»

fo t

Example of Bisection Execution : = Upper Bound, = Lower Bound
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Approximating Distance Functions via Bisection

sample simultaneously all distance values from o, at mid-points of time
intervals, until required approximation guarantee is achieved ¥ destinations

Do

Dy

v

to ta t

Example of Bisection Execution : Level-1 Recursion
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Approximating Distance Functions via Bisection

sample simultaneously all distance values from o, at mid-points of time
intervals, until required approximation guarantee is achieved ¥ destinations

Ds

Dy

v

to t 3 ty

Example of Bisection Execution : Level-2 Recursion
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Approximating Distance Functions via Bisection

For continuous, pwl arc-delays

© Run Reverse TD-Dijkstra to
project each
concavity-spoiling PB to a
primitive image (PI) of origin o

@ For each pair of consecutive
Pls at o, run Bisection for the
corresponding
departure-times interval

head[uv]

earliest-arrival times at v

>
>

\4

L G T
departure time from u = tail[uv]

© Return the concatenation of approximate distance summaries
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Landmark Selection and Preprocessing

K*: total # number of concavity-spoiling breakpoints; K* < K

@ Landmark selection: Yv e V, Prlve L] =p € (0,1)
[correctness is independent of the landmark selection]

@ Preprocessing: V¢ € L, compute (1 + &)—approximate distance functions
Alt,vitoallveV
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Landmark Selection and Preprocessing

K*: total # number of concavity-spoiling breakpoints; K* < K

@ Landmark selection: Yv e V, Prlve L] =p € (0,1)
[correctness is independent of the landmark selection]

@ Preprocessing: V¢ € L, compute (1 + &)—approximate distance functions
Alt,vitoallveV

Preprocessing complexity
@ Space — asymptotically optimal

O((K* + 1) “IL-n- % - MaXe,vyeLxv {IOg (gr;T:[[éf:]]((g;)) )})

@ Time (in number of TDSP-Probes)

O{ (K + 1) 1L max ey {08 (Feids )} - maxie fion (Gefife) )

.
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FCA: A constant-approximation query algorithm

IT € ASP[lo,d](t;+Ro)
7 .K'Q € SP[0,lo](t)
P eSP[o,d](t,) ™

g

ta = t, + D[o,d](t)

| Forward Constant Approximation

|

1.

2.

Grow TD-Dijkstra ball B(o,t,) until closest landmark ¢, or d is

settled
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IT € ASP[lo,d](t;+Ro)
7 .K'Q € SP[0,lo](t)
P eSP[o,d](t,) ™

g

ta = t, + D[o,d](t)

| Forward Constant Approximation \

1. Grow TD-Dijkstra ball B(o,1,) until closest landmark ¢, or d is
settled

2. return sol, = D[o, {o](to) + A[to, d](to + D[o, £,](to))

FCA complexity
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FCA: A constant-approximation query algorithm

IT € ASP[lo,d](t;+Ro)
7 .K'Q € SP[0,lo](t)
P eSP[o,d](t,) ™

g

ta = t, + D[o,d](t)

| Forward Constant Approximation \

1. Grow TD-Dijkstra ball B(o,1,) until closest landmark ¢, or d is
settled

2. return sol, = D[o, {o](to) + A[to, d](to + D[o, £,](to))

FCA complexity

@ Approximation guarantee: < (1 + € + ) - D[o, d](t,)
=1+ /\max(‘I aF E)(1 + 27 + /\maxg) TF (1 aF E)(
@ Query-time: O(:—) “In (/1)) log 10g(Kmax))
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RQA: Boosting the Approximation Guarantee

Recursive Query Approximation

while recursion budget R not exhausted do
Grow TD-Dijkstra ball B(w;, t;) until closest landmark ¢; is settled
sol; = D[o, wi|(t,) + D[w;, ¢](t;) + A[¢, d](t + D[w;, €i](t))
Run RQA at each boundary node of B(w;, t;) with budget R — 1
endwhile
return best solution found

o ok wph
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@ Growing level-1 balls...
@ Growing level-2 balls...
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RQA: Boosting the Approximation Guarantee

Pos € SP[o, wi](%)

ty i k “-_‘QA € SPIwe, Ld(t)

~

i

Sy
ZRotRit ot Rey T2 RSP diecHRY

@ One of the discovered approximate od—paths has all its ball centers
at nodes of the (unknown) shortest od-path
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Pos € SP[o, wi](%)

Q@0 @

ty 1 i "-.‘Q/\ € SPIwe, Ld(t) P
. - .

2Ryt R+ . Ry ‘ CT0= RSPl dI(tRe)

@ One of the discovered approximate od—paths has all its ball centers
at nodes of the (unknown) shortest od-path

@ Optimal prefix subpaths improve approximation guarantee:
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RQA: Boosting the Approximation Guarantee
=R

Pos € SP[o, wi](%)

t ) tc Qi e SPw . li(d) _

./A
0

2Ryt Ri+ ...+ Ryt ‘ CT0= RSPl dI(tRe)

@ One of the discovered approximate od—paths has all its ball centers
at nodes of the (unknown) shortest od-path

@ Optimal prefix subpaths improve approximation guarantee:

[VB>1, V1€ (0,1), 1-OPT+(1-1)-B- OPT < - OPT

© Approximation guarantee for suffix subpath to destination depends
on last ball radius

© R = O(1) suffices to ensure guarantee closeto 1 + &
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RQA: Boosting the Approximation Guarantee

RQA Complexity

(1+e/y)RH!
(I Fefw) -1

@ Query-time: O((%)R+1 +In(1)log |09(Kmax))

@ Approximation guarantee: 1 +o0=1+¢-
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Summary of Complexity Bounds

| Preprocessed || Preproc. Space |  Preproc. Time | Query Time
n?log(n)
All-To-All O((K*+1)n?) | O| -loglog(Kmax) O(loglog(K*))
(K*+1)
. nlog(n)-
Nothing Oo(n+ m+K) o(1) O( log 10g(Kanse)
= pn?log(n) {\R+H |
L-?rr:.dmarki To-Al O(pn?(K* + 1)) | O| -loglog(Kmax) O( (/3) ~|og(;) ]
[This work] (K* +1) -log log(Kmax)
@ m = O(n); Kmax: max number of breakpoints in an arc-delay function

@ K*: total # number of concavity-spoiling breakpoints
@ K* < K (total # number of breakpoints)

6
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Summary of Complexity Bounds

| Preprocessed || Preproc. Space [ Preproc. Time | Query Time \
n?log(n)
All-To-All O((K*+1)n?) | O] -loglog(Kmax) O(loglog(K*))
(K*+1)
. nlog(n)-
Nothing Oo(n+ m+K) o(1) O( 10109 Knax) )
. pn?log(n) {\R+H1 |
"?:.dmarki ToA - oom2(k* + 1)) | 0] -loglog(Knax) o( (£) -tog(f) ]
[This work] (K +1) -log log(Kmax)

@ m = O(n); Knax: max number of breakpoints in an arc-delay function (Kax € O(1))
@ K*: total # number of concavity-spoiling breakpoints

@ K* < K (total # number of breakpoints); K* € O(polylog(n))
1

— —
@ p=n ,0<a/<H+1
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Summary of Complexity Bounds

| Preprocessed || Preproc. Space [ Preproc. Time [ Query Time |
All-To-All o(n?) O(n?log(n)) | O(logloglog(n))
Nothing O(n+ m+ K) 0o(1) O(nlog(n))
Landmarks-To-All R0 o 2 o 3( (R+1)a
[This work] Q) o) O(n(1)

@ m = O(n); Knax: max number of breakpoints in an arc-delay function (Kyax € O(1))

@ K*: total # number of concavity-spoiling breakpoints

@ K* < K (total # number of breakpoints); K* € O(polylog(n))

— na 1
@ p=n"0<a<gz
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Distance Oracle: Practical Issues

@ Berlin data set: n = 480000, m = 1135000
@ Time resolution: 10.3 msec

Landmarks FCA RQA
Method | Number | ms | o (%) | ms | o (%) | TD-Dijkstra (ms)
METIS 1061 0.381 | 2.201 | 2.349 | 0.483 77.424
METIS 2063 0.152 | 1.115 | 0.700 | 0.314 77.424
Random 1000 0.195 | 1.634 | 1.692 | 0.575 77.424
Random 2000 0.107 | 1.065 | 0.771 | 0.445 77.424
KAHIP 1053 0.362 | 2.165 | 2.015 | 0.382 77.424
KAHIP 2015 0.148 | 1.405 | 0.655 | 0.298 77.424

@ Speedup (over TDD) > 723
@ Query time of previous time-dependent heuristics € [1,1.5] ms
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Conclusions & Open Issues

@ First efficient time-dependent distance oracle
@ Approach sensitive to network’s

> degree of asymmetry (¢)
> rate of (shortest-)travel-time evolution (Amax)

@ Builds upon new approximate algorithm for computing one-to-all
time-dependent distance summaries

@ Quite efficient in practice

@ Open: can we avoid dependence on K* ?
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0 Robust Line Planning

e Time-Dependent Route Planning

© summary
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Summary

@ Transportation networks give rise to large-scale optimization
problems

@ Novel algorithms can have a great impact in their efficient and
effective solution
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Thank you for your attention

-
Questions
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2nueilwpa lotopkov Ekdoocewv Epyou

To mapov €pyo amnotelei T €kdoon 1.0.



>nUelwpa Avadopadc

Copyright NavemotAuto Motpwyv, XpRotog ZapoAldykng « MeAEtn
Mepumtwoewv otn AfPn Anodpacewv: Algorithms for Transport Optimisation:
Theory and Practice». Ekdoon: 1.0. Natpa 2015. AtaBéotpo amo t Siktuakn
SievBuvon:

https://eclass.upatras.gr/courses/MATH959/



2nuelwpa Adelodotnonc

To mapdv LALKO SlatiBetal pe Toug 0poug TnG adelag xpriong Creative Commons
Avadopd, Mn Epmoptkr) Xprion, Oxt Mopdywya Epya 4.0 [1] A petayevéotepn,
Alebvng Ekdoan. E€atpolvtal Ta autoteAn €pya Tpitwy m.X. dwtoypadieg,
Slaypapparta K.AT., TA Onolo EUMEPLEXOVTAL O€ QUTO Kat Ta omoia avadépovral
padi pe Toug OPOUC XPrioNG TOUC 0TOo «Inueiwua Xpriong Epywv Tpltwv».

ooce

[1] http://creativecommons.org/licenses/by-nc-nd/4.0/

Q¢ Mn Epmoptkn opiletal n xprion:

¢ 1ou Sev mepAaUPBAVEL AUECO 1 EUUECO OLKOVOULKO OPENOG QIO TNV XPrion ToU €pyou, yla
10 SLavopéa Tou €pyou Kat adelodoxo

¢ mou Sev meplhapPavel olkovouLkr cuvaAlayr wg mpolnobeon yla tn xperion fi pooBaon
oTo £pyo

* mou ev pooTopilel 0To SLavopéa Tou £pyou Kot aSeL08OX0 ELLUETO OLKOVOLLKO OdENOG
(r.x. Sradnuioetg) arnd tnv mpoPfolr tou €pyou oe SLOSIKTUOKO TOTIO

0 SwaoUxog urnopet va mapéxel otov adelodoyo EexwpLotr Adela va XpnOLULOTOLEL TO £pYO YL
EUTOPLKI XPrion, edooov autd Tou InTnOel.



2nuelwpa Xpnong Epywv Tpitwv

To Epyo auTto KAveL Xprion Twv akOAouBwv Epywv:

Awaddvela 5, 6, 114-121:

http://www.finanzen.net/nachricht/TomTom-Users-Capture-the-Road-Network-3-000-Times-
1485950



Alatpnon ZNUELWUATWY

Onoladnmnote avamoapaywyn f SLackeun Tou VALKOU Ba Tipémel
va cupmnepthappavet:

= 10 Inueiwypa Avadopdg
= 10 Inueiwpa Adeloddtnong
= N 6nAwon AlaTpnong ZNUELWHATWY

= 10 Inueiwua Xpriong Epywv Tpitwv (epdoov umdpxel)
padl e Toug oUVOSEUOUEVOUG UTIEPOUVOETHOUC.
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