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0.1 Preface

(note to readers of this preliminary version: You are free to down-
load the book but not to distribute it without the authors permission.
What I ask in return is that you take note of mistakes etc. and notify
me of such by email (see my website at http://webpages.acs.ttu.edu/jlee
for the email address).

Classical differential geometry is the approach to geometry that takes full
advantage of the introduction of numerical coordinates into a geometric space.
This use of coordinates in geometry was the essential insight of Rene Descartes
that allowed the invention of analytic geometry and paved the way for modern
differential geometry. A basic object in differential geometry (and differential
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topology) is the smooth manifold. This is a topological space on which is defined
a sufficiently nice family of coordinate systems or “charts”. The charts consist
of locally defined n-tuples of functions which are sufficiently independent of
each other so as to allow each point in a neighborhood to be specified by the
values of these functions in the same way that the polar coordinate functions
uniquely specify points in the plane (sans a ray from origin). One may start
with a topological space and add charts which are compatible with the topology
or the charts themselves can generate the topology. The charts must also be
compatible with each other so that changes of coordinates are always smooth
maps. Depending on what type of geometry is to be studied, extra structure is
assumed which may take the form of a distinguished group of symmetries, or
the presence of a distinguished “tensor” such as a metric tensor or symplectic
form.

Despite the presence of coordinates, modern differential geometers have
learned to present much of the subject without direct reference to a coordi-
nate system. This is called the “invariant” or “coordinate free” approach to
differential geometry. The only way to really see exactly what this all means is
by diving in and learning the subject.

The relationship between geometry and the physical world is fundamental
on many levels. Geometry (especially differential geometry) clarifies, codifies
and then generalizes ideas arising from our intuitions about certain aspects of
our world. Some of these aspects are those that we think of as forming the
spatiotemporal background of our activities while other aspects derive from
our experience with objects that have “smooth” surfaces. The earth is both a
surface and a “lived in space” and so the prefix “geo” in the word geometry is
doubly appropriate. Differential geometry is also an appropriate mathematical
setting for the study of what we classically conceive of as continuous physical
phenomenon such as fluids and electromagnetic fields.

Manifolds have dimension. The surface of the earth is two dimensional, while
the configuration space of a mechanical system is a manifold which may easily
have a very high dimension (dimension=degrees of freedom). Stretching the
imagination further we can conceive of each possible field configuration for some
classical field as being an abstract point in an infinite dimensional manifold.

The physicist is interested in geometry because s/he wants to understand the
way the physical world is in “actuality”. But there is also a discovered “logical
world” of pure geometry that is in some sense a part of reality too. This is the
reality which Roger Penrose calls the Platonic world!. Thus the mathematician
is interested in the way worlds could be in principal- they are interested in what
might be called “possible geometric worlds”. Since the inspiration for what we
find interesting has its roots in our experience, even the abstract geometries
that we study retain a certain vague physicality. From this point of view, the
intuition that guides the pure geometer is fruitfully enhanced by an explicit
familiarity with the way geometry plays a role in physical theory.

1Penrose seems to take this Platonic world rather literally giving it a great deal of onto-
logical weight as it were.
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Knowledge of differential geometry is common among physicists thanks to
the success of Einstein’s highly geometric theory of gravitation and also because
of the discovery of the differential geometric underpinnings of modern gauge
theory? and string theory. It is interesting to note that the gauge field concept
was introduced into physics within just a few years of the time that the notion
of a connection on a fiber bundle (of which a gauge field is a special case)
was making its appearance in mathematics. Perhaps the most exciting, as well
as challenging, piece of mathematical physics to come along in a while is the
“string theory” mentioned above. String theory is, at least in part, a highly
differential geometric theory. It is too early to tell if string theory will turn
out to provide an accurate model of the physical world but the mathematics
involved is intrinsically exciting.

The usefulness of differential geometric ideas for physics is also apparent in
the conceptual payoff enjoyed when classical mechanics is reformulated in the
language of differential geometry. Mathematically, we are led to the subjects of
symplectic geometry and Poisson geometry.

The applicability of differential geometry is not limited to pure physics.
Differential geometry is also of use in engineering. For example there is the
increasingly popular differential geometric approach to control theory.

To be clear, this book is not a physics or engineering book but is a mathe-
matics book which takes inspiration from, and uses examples from physics and
engineering. Although there is a great deal of physics that might be included in
a book of this sort, the usual constraints of time and space make it possible to
include only a small part. A similar statement holds concerning the differential
geometry covered in the text. Differential geometry is a huge field and even
if we had restricted our attention to just Riemannian geometry, only a small
fragment of what could be addressed at this level could possibly be included.

In choosing what to include in this book, I was guided by personal interest
and, more importantly, by the limitations of my own understanding. There will
most likely be mistakes in the text, some serious. For this I apologize.

2The notion of a connection on a fiber bundle and the notion of a gauge field are essentially
identical concepts discovered independently by mathematicians and physicists.
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Chapter 1

Differentiable Manifolds

An undefined problem has an infinite number of solutions.
-Robert A. Humphrey

(note to readers of this preliminary version: You are free to down-
load the book but not to distribute it without the authors permission.
What I ask in return is that you take note of mistakes etc. and notify
me of such by email (see my website at http://webpages.acs.ttu.edu/jlee
for the email address).

For understanding the material to follow it is necessary that the reader have
a good background in the following:

1) Linear algebra. In particular, the reader should be familiar with the idea
of the dual space to a vector space and also with the notion of a quotient vector
space. A bit of the theory of modules is also needed and this is outlined in
Appendix D.

2) Multivariable calculus. In particular, the reader should be familiar with
the idea that the derivative at a point p of a map between open sets of (normed)
vector spaces is a linear transformation between the vector spaces. Usually the
normed spaces are assumed to be the Euclidean coordinate spaces such as R™
with the norm ||z|| = v/ - z. A reader who felt the need for a review could do
no better than to study roughly the first half of the classic book “Calculus on
Manifolds” by Michael Spivak. The reader is also asked to look over Appendix
C which gives a treatment of differential calculus on Banach spaces.

3) The basics of point set topology- including familiarity with the notions
of subspace topologies, compactness and connectedness. The reader should also
know the definitions of Hausdorff topological spaces, regular spaces and normal
spaces. The reader should also have been exposed to quotient topologies and
the way topological spaces may be “glued together” to form new topological
spaces. Appendix A reviews some of the basic ideas and definitions.

4) Finally, the reader will need a familiarity with the basics of undergraduate
level abstract algebra at least to the level of the basic isomorphism theorems
for groups and rings.



4 CHAPTER 1. DIFFERENTIABLE MANIFOLDS

Einstein Summation Convention
Summations such as that which occurs in the equation

n
B=3 riad
J
j=1

occur often in differential geometry. It is convenient to employ a convention
whereby summation over repeated indices is implied even without the > symbol.
This convention is attributed to Einstein and is called the Einstein summation
convention. Using this convention the above equation would be written

W= riod
The range of the indices is either determined by context or must be explicitly
mentioned. Later we shall see expressions such as

n
E TZl.IIZle,,,jS eil ®"'®€i,,®5]1 ®--~®Ejs
i1.ip=1
J1.--Js=1
which is extremely cumbersome. The summation convention alleviates the sit-
uation a bit since the above becomes

T G €i ® - ®e, BT R R

Normally, the repeated indices that are summed over are repeated once as a
subscript and once as a superscript. For example, T}koﬂ v, is shorthand for

n

n
g E T;koﬂvk

k=1 j=1

Of course it is possible that the range of summation may be different for different
indices and if this range is not clear from context it must be made explicit. For
example, if A = (a’) is an n x m matrix and B = (b%) and m x k matrix, where
in this case we use upper indices to indicate row and lower for column, then
C' = AB corresponds to

m

c; = Z afbé
1=1

which is reduced by the summation convention to c§- = afbé-. The order of matrix
multiplication is correctly reflected in this expression if one arranges that the
repeated indices occur down and then up as one reads through the expression
from left to right. Thus both afbé» and béaf indicate the same sum but only the
first correctly reflects the order of matrix multiplication.

Remark 1.1 From this point onward we will employ the Einstein sum-
mation convention freely but we will not adhere to it slavishly. Indeed,
there will be times when including the summation symbol > makes
things clearer.
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1.1 Topological Manifolds

We recall a few concepts from point set topology. A cover of a topological space
X is a family of sets {Ug}gep such that X = UgUg. If all the sets Ug are open
we call it an open cover. A refinement of a cover {Us}gep of a topological
space X is another cover {V;};cs such that every set from the second cover is
contained in at least one set from the original cover. This means that means
that if {Ug}gep is the given cover of X, then a refinement may be described as a
cover {V;}ier together with a set map i — [(4) of the indexing sets I — B such
that V; C Ug; for all i. Two covers {Uy}aca and {Us}sep have a common
refinement. Indeed, we simply let I = A x B and then let U; = U, N Ug if
i = (a, 8). This common refinement will obviously be open if the two original
covers were open. We say that a cover {V;};cr of X (by not necessarily open
sets) is a locally finite cover if every point of X has a neighborhood that
intersects only a finite number of sets from the cover. A topological space X
is called paracompact if every open cover of X has a refinement which is a
locally finite open cover. Sometimes the notion of paracompactness is defined
to include the requirement that the space is Hausdorff. This is not much of an
issue for us since we generally deal only with Hausdorff spaces anyway.

A base (or basis) for the topology of a topological space X is a collection
B of open sets such that all open sets from the topology ¥ are unions of open
sets from the family B. A topological space is called second countable if its
topology has a countable base. The space R™ with the usual topology derived
from the Euclidean distance function is second countable since we have a base
for the topology consisting of open balls with rational radii centered at points
with rational coordinates.

Definition 1.1 An n dimensional topological manifold is a paracompact
Hausdorff topological space, say M, such that every point p € M is contained
in some open set U, that is the domain of a homeomorphism ¢, onto an open
subset of the Fuclidean space R™. Thus we say that a topological manifold M is
“locally Euclidean”. The integer n is referred to as the dimension of M.

Example 1.1 R” is trivially a topological manifold of dimension n.

Example 1.2 The unit circle S' .= {¢% € C} = {(z,y) : 2> +y?> = 1} is a
1 dimensional topological manifold. Indeed, the map R — S' given by t s e
has restrictions to small open sets which are homeomorphisms. The boundary
of a square in the plane is a topological manifold homeomorphic to the circle
and so we say that it is a topological circle. More generally, the n-sphere S™ :=

{(zt,...,2") e R S (292 = 1} ids a topological manifold.

Example 1.3 If My and M, are topological manifolds of dimensions ny and ns
respectively, then My x My, with the product topology is a topological manifold of
dimension ni + na. Such a manifold is called a product manifold. The required
homeomorphisms are constructed in the obvious way from those defined on M;
and My: If ¢, : U, C M; — Ve C R™ and v, : Uy, C My — Vi) C R"2
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are homeomorphisms then we have a homeomorphism ¢, X ¥, : U, x Uy —
Vo) X Vipgy € R™ x R"™ where (p,q) € My x My and (¢ X 1) (z,y) =
(¢ (2) g (y))-

The product manifold construction of the last example can obviously be
extended to products of several spaces at a time.

Example 1.4 The n-torus
T :=8' x S' x - S' (n factors)
18 a topological manifold of dimension n.

We shall not give many examples of topological manifolds at this time be-
cause our main concern is with smooth manifolds defined below. We give plenty
examples of smooth manifolds and every smooth manifold is also a topological
manifold.

Manifolds are often defined with the requirement of second countability' but
one of the main reasons that manifolds are traditionally defined to be second
countable (and Hausdorfl) is that second countability implies paracompactness.
Paracompactness is important in connection with the notion of a “partition of
unity” discussed later in this book. It is known that for a locally Euclidean Haus-
dorff space, paracompactness is equivalent to the property that each connected
component is second countable and so if there is at most a countable number
of components, paracompactness would imply second countability. Now there
is at least one theorem that does not work as usually stated if the manifold
has an uncountable number of components and that is Sard’s theorem 3.1. Our
approach will be to add in the requirement of second countability when needed.
In such cases we would just be excluding the possibility that the manifold had
an uncountably infinite number of connected components.

In defining a topological manifold some authors allow the dimension n of
the Euclidean space to depend on the homeomorphism ¢ and so on the point
p € M. However, it is a consequence of a result of Brouwer called “invariance
of domain” that the n would have to be a well defined locally constant function
and therefore constant on connected components of M. This result is rather
easy to prove if the manifold has a differentiable structure (defined below) but
is more difficult in general. We shall simply record Brouwer’s theorem:

Theorem 1.1 (Invariance of Domain) The image of an open set U C R™
by a 1-1 continuous map f : U — R™ is open. It follows that if U C R™ is
homeomorphic to V.C R™ then m = n.

Let us define n dimensional Euclidean half-space to be H" := R, <0 =
{(z!,...,2") € R" : 2! < 0}. The boundary of H" is OH" = R} =: {(z%,...,2") :
! = 0}. The interior of H" is int(H") = H"\OH". The space H" is not a

LA toplogical space is said to be second countable if it has a countable base for its topology.
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manifold because points on the boundary do not have neighborhoods homeo-
morphic to an open set in a Euclidean space. However, H™ will be our model for
a somewhat different kind of space. There are other half spaces homeomorphic
to H" = R}, ., . For instance we could have used the “positive” half space
R;’1>O as our model. However, the special choice we have made does have a
rationale that only becomes apparent later?.

A topological manifold with boundary (of dimension n) is a paracom-
pact Hausdorff topological space M such that each point p € M is contained in
some open set U, that is the domain of a homeomorphism ¢ : U, — V() where
the range V(,) is an open subset in a fixed Euclidean half space H" = R, _.
The reader should recall carefully the meaning of an open set in H"; these cer-
tainly need not be open in the containing R™. A point p € M that is mapped to
OH"™ under some homeomorphism ¢ : U, — Vi, as above is called a boundary
point and the set of all boundary point of M is denoted M. The manifold’s in-
terior consists of those points of M that are mapped to points of int(H™). It is a
corollary to Brouwer’s theorem that these concepts are well defined independent
of the homeomorphism used.

Exercise 1.1 Show that int(H"™) N OM = 0.

Exercise 1.2 The boundary OM of an n dimensional topological manifold with
boundary is an n — 1 dimensional topological manifold (without boundary).

Example 1.5 Let [a,b] C R be a closed interval. If N is a topological manifold
of dimension n—1 then N X [a,b] is an n dimensional topological manifold with
boundary.

Example 1.6 If N is a topological manifold with boundary ON then N x R is
a topological manifold with boundary and O (N x R) = ON x R.

Example 1.7 The closed cube C" = {(z1,...,2,) € R" : maxizlﬁ,,’n{’xi‘} <
1} with its subspace topology inherited from R™ is a topological manifold with
boundary. The boundary is (homeomorphic to) an n — 1 dimensional sphere.

We shall eventually also define smooth manifolds with boundary. These will
all automatically be topological manifolds with boundary and so we shall see
more examples later.

Topological manifolds, both with or without boundary, as we have defined
them, are paracompact and Hausdorff and hence also normal. This means that
given any pair of disjoint closed sets Fy, F5 C M there are open sets Uy and U,
containing F; and F5 respectively such that U; and Us are also disjoint. For
more on manifold topology consult [Matsu].

2This choice is convenient when we define the notion of the induced orientation on the
boundary of an oriented smooth manifold with boundary.
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1.2 Charts, Atlases and Smooth Structures

The definitions which follow are motivated by the desire to have a well defined
notion of what it means for a function on a manifold to be differentiable.

Definition 1.2 Let M be a set. A chart on M is a bijection of a subset U C M
onto an open subset some Fuclidean space R™. We say that the chart takes values
in R™ or say simply that the chart is R™-valued. A chartx :U — x(U) C R™ is
traditionally indicated by the pair (U, x) and the pair itself is also called a chart.

Definition 1.3 Ifp € M and (U,x) is a chart with p € U then if x(p) =0 €
R™we say that the chart is centered at p.

Recall that if U is an open subset of R™ then a map h : U — R" is said to
be of class C" if it is continuous and all partial derivatives of order less than or
equal to r exist and are continuous. Also, h is said to be C" at p if its restriction
to some open neighborhood of p is of class C". Amap h: U — V C R" is a
diffeomorphism of class C" if h is bijective and has a C" inverse.

Definition 1.4 Let A = {(Uy,%a)}aca be a collection of R™-valued charts on a
set M. We call A an R™-valued atlas of class C" (1 < r < o0) if the following
conditions are satisfied:

Z) UaGAUa =M

it) the sets of the form xo(Us NUg) for o, B € A are all open in R™,
iti) Whenever U, NUg is not empty then the overlap map

xgox," i %o (Us NUg) — x5 (Uy NUB)
is a C" diffeomorphism.

1

Remark 1.2 Some folks might say that xg o x, " is really shorthand for

(Xﬁ‘UamUﬁ) © (Xa|xa (U(,OUB))

but this is far too pedantic and cluttered for most people’s tastes.

The maps xg o x; ' in the definitions are called variously overlaps map,
change of coordinate maps or transition functions. It is exactly the way
we have required the overlap maps to be diffeomorphisms that will allow for us
to have a well defined and useful notion of what it means for a function on M
to be differentiable of class C”. An atlas of class C" is also called a C" atlas.

Definition 1.5 Two C"—atlases A1 and Az on M are equivalent if A1 U A,
s also a C"-atlas. A C" differentiable structure on M is an equivalence
class of C"—atlases.
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A C* differentiable structure will also be called a smooth structure. The
union of all the C" atlases in an equivalence class is the unique maximal C”
atlas in the class. The set of equivalence classes of C" atlases (differentiable
structures) is in 1-1 correspondence with the set of maximal C" atlases. Thus
an alternative way to define a C” differentiable structure is as a maximal C"
atlas. We shall use this alternative quite often without comment. Every atlas
is contained in a unique maximal atlas and so as soon as we have a C"-atlas
then we have a determined C" differentiable structure. We say a chart (U, x)
on M is compatible with a C" atlas A if AU {(U,x)} is also an atlas. This
just means that if A = {(Uy,%a)}aca then all the sets of the form x,(U NU,)
and x(U NU,) are open and all the maps of the form

xq0x 'and xox,*

for the various « are C" diffeomorphisms. The maximal C" atlas determined
by A is easily seen to be exactly composed of all charts compatible with A.

The space R™ itself has an atlas consisting of the single chart (id, R™) where
id : R™ — R™ is just the identity map id(p) = p. This atlas consisting of a single
global chart determines a maximal atlas. Polar coordinates are defined on the
set U = R™\{0} and provide another chart contained in the maximal atlas.

Lemma 1.1 Let M is a set with a C" structure given by an atlas A = {(Uq, Xa) }aca-
If (U,x) and (V,y) are charts compatible with A such that U NV #, then the
charts (UNV, y|yny) and (UNV, x|yqy) are also compatible with A and hence

are in the mazximal atlas generated by A. Thus the intersections of compatible
chart domains are either empty or are also compatible chart domains. Further-
more, if O is an open subset of x (U) for some compatible chart (U,x) then
taking V = x~1 (O)we have that (V, x| V) is also a compatible chart.

Proof. This assertions of the lemma are almost obvious: If xox 1, x,0x 71,
yox;!, x, 0y ! are all C" diffeomorphisms then certainly the restrictions
Xy © X2ty Xa © %Ay, Ylpay © x5t and x, o y|gh, are also. One might
just check that the natural domains of these maps are indeed open in R™. For
example the domain of x|, 0x5 ! is Xo (Ua NUNV) = x4 (Ua NU)Nxa (UaNV)
and both x,(U, NU) and x,(Uy, NV) are open as part of what it means that
(U, %) is compatible with the atlas A. The last assertion of the lemma is equally
easy to prove. m

It is now an easy exercise in point set topology to prove that the family of
sets which are the domains of charts compatible with a given atlas provide a
base for a topology on M which we call the topology induced by the C”"
structure on M. Thus the open sets are exactly the empty set plus arbitrary
unions of chart domains from the maximal atlas. We will also call this the
topology induced by the charts or by the atlas.

Notice that if an atlas is contained in another atlas then they both give rise
to the same maximal atlas (same C"—structure) and so both induce the same
topology.
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Exercise 1.3 Show that if Ay is a subatlas of As then they both induce the
same topology.

The proof of the following lemma is trivial but it is used often-sometimes
without mention.

Lemma 1.2 Let M be a set with a C" structure given by an atlas A. If for
every two distinct points p,q € M, we have that either p and q are respectively in
disjoint chart domains U, and Ug from the atlas, or they are both in a common
chart domain, then the induced topology is Hausdorff.

Lemma 1.3 Let A be a C" atlas for M. If A is countable or has a countable
subatlas then the induced topology is second countable.

Proof. Suppose that the family of chart domains {U,} is countable. For
every «, the set x,(U,) is an open set in R™. Since R™ is second countable we
see that for every a, there is a collection {V,;} such that every open subset of
%o(Uy) is a union of sets from this family. It follows that every open subset
of U, is a union of sets from the countable collection {U, ;};e;r where U, ; :=
x5 (Va.i). However, the doubly indexed family {U, ;}ics is also countable. If
U C M is any open set then we must show that U is a countable union of open
sets from the collection {Uy,itaca,icr. But U = Uy (U, NU) is a countable
union and each U, NU is a countable union of sets from {U, ; };c; which means
that U is a countable union of sets from the collection {Uq i }aca,icr- B

We would like to know what condition (or conditions) on an atlas guarantees
that the induced topology is paracompact. We recall that paracompactness is
equivalent to the condition that each connected component is second countable.

Lemma 1.4 Let A be a C" atlas for M. If the collection of chart domains
{Ua}aca from the atlas A is such that for every fixed ag € A the set {a € A :
Ua NU,, # 0} is at most countable, then the induced topology is paracompact.
Thus, if this conditions holds and M if is connected then the topology is second
countable.

Proof. Give M the induced topology. If we focus on a connected component
then we reduce the problem to showing that M has a countable base. From
lemma 1.3 it suffices to show that A has a countable subatlas. Let U,, be
a particular chart domain from the atlas. We proceed inductively to define a
sequence of sets starting with with X; = U,,. Now given X,,_; let X,, be the
union of those chart domains U, which intersect X,,_;. If follows (inductively)
that each X,, is a countable union of chart domains and hence the same is true
of the union X = U,X,,. By construction, if some chart domain U, meets X
then it is actually contained in X since to meet X,,_; is to be contained in X,,.
All that is left is to show that M = X. We have reduced to the case that M is
connected and since X is open, it will suffice to show that M\X is also open.
Now if p € M\X then it is in some U, and as we said, U, cannot meet X
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without being contained in X. Thus it must be the case that U, N X = () and
thus U, C M. We see that M\X open asis X so M =X. =
This leads us to a principal definition:

Definition 1.6 An dimensional differentiable manifold of class C" is a
set M together with a specified C" structure on M such that the topology induced
by the C" structure is Hausdorff and paracompact. If the charts are R™—wvalued
then we say the manifold has dimension n.

In other words, we may say that a differentiable manifold of class C" is a pair
(M, A) where A is a maximal (R"-valued) C" atlas and such that the topology
induced by the atlas makes M a topological manifold. A differentiable manifold
of class C" is also referred to as a C" manifold. A differentiable manifold of class
C® is also called a smooth manifold (a terminology used often in the sequel).
Notice that if 0 < r; < rg, then any C" atlas is also a C"* atlas and so any
C" manifold is also a C"™ manifold (0 < ry; < r3). For every integer n > 0,the
Euclidean space R™ is a smooth manifold where, as noted above, there is an
atlas whose only member is the (R™,id) and this atlas determines a maximal
atlas providing the usual smooth structure for R”.

It is important to notice that if » > 0 then a C" manifold is much more
than merely a topological manifold. Note also that we have defined manifolds
in such a way that they are necessarily paracompact and Hausdorff. This is,
in part, a matter of convenience since for some purposes neither assumption
is necessary. We could have just defined a C" manifold to be a set with a
C" structure and the induced topology. Lemmas 1.2 and 1.4 tell us how to
determine, from knowledge about a given atlas, whether the induced topology is
indeed Hausdorff and/or paracompact. In problem 2 we ask the reader to check
that these topological conditions hold for the examples of smooth manifolds that
we give in this chapter.

Notation 1.1 As defined, a C" manifold is a pair (M, A). However, we follow
the tradition of using the single symbol M itself to denote the differentiable
manifold.

Now we come to an important point. Suppose that M already has some
natural or previously given topology. For example, perhaps it is already known
that M is a topological manifold. If M is given a C” structure then it is
important to know whether this topology is the same as the topology induced by
the C" structure (i.e. the topology induced by the charts). For this consideration
we have the following

Lemma 1.5 If M is a topological space with topology T which also has a C"
atlas, then if each chart is a homeomorphism with respect to this topology then
T will be the same as the topology induced by the C” structure.

A good portion of the examples of C" manifolds that we provide will be of
the type described by this previous lemma. In fact, one often finds the following
given as the definitions of atlas and C" manifold:
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Definition 1.7 (Alternative traditional) An R™-valued chart on a topolog-
ical space is a homeomorphism from an open subset of M to an open subset of
R™. Let A= {(Uq,%a)}aca be a collection of R"™-valued charts on a topological
manifold M. We call A an R"™-valued atlas of class C" (1 < r < o) if the
following conditions are satisfied:

Z) UacaUoq =M

it) Whenever U, N Ug is not empty then the map

xgox,t 1 X0 (Us NU) — x5 (Uy NUB)

is a C" diffeomorphism.

A mazimal atlas is called a C™ differentiable structure on M (here mazimal is
defined as before).

Ann dimensional differentiable manifold of class C" is an n dimensional
topological manifold M together with a C" differentiable structure specified on
M.

In expositions that use the above definitions, the fact that one can start out
with a set, provide charts, and then end up with an appropriate topology is
presented as a separate lemma (see for example [Lee, John] or [O’Neill]).

Exercise 1.4 Let M be a smooth manifold of dimension n. Let p € M. Show
that for any r > 0 there is a chart (U,x) with p € U and such that x(U) =
B(0,r) :={x € R" : |z| < r}. Show that for any p € U we may further arrange
that x(p) = 0. Such a chart is both centered and spherical.

Remark 1.3 From now on all manifolds in this book will be assumed to be C'*°
manifolds (smooth manifolds) unless otherwise indicated. Also, let us refer to an
n—dimensional smooth manifold as an “‘n—manifold”. Note that some authors
reserve the term ‘“n-manifold” for connected smooth manifolds.

As mentioned above, it is certainly possible for there to be two different
differentiable structures on the same topological manifold. For example, the
chart on R! given by the cubing function x — 23 is not compatible with the
identity chart (id, R') but since the cubing function also has domain all of R, it
too provides an atlas. But then this atlas cannot be compatible with the atlas
{(id,R")} and so they determine different maximal atlases. The problem is
that the inverse of z + 23 is not differentiable (in the usual sense) at the origin.
Now we have two differentiable structures on the line R!. Actually, although
the two atlases do give distinct differentiable structures, they are equivalent in
another sense that we mentioned above and that we make precise below (they are
diffeomorphic; definition 1.12). On the other hand, it is a deep result that there
exist infinitely many truly different (non-diffeomorphic) differentiable structures
on R*. The existence of exotic differentiable structures on R* follows from the
deep results of [Donaldson] and [Freedman]. For n # 4 all smooth structures
on R" are diffeomorphic. The reader ought to be wondering what is so special
about dimension four.
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We have seen that all the Euclidean spaces R™ are smooth manifolds but so is
any open subset of a Euclidean space R™. If U C R" is such an open set then an
atlas on U is obtained from the standard atlas on R™ by a process of restriction.
These open subsets of Euclidean space might seem to be very uninteresting
manifolds but in fact they can be quite interesting and complex. For example,
much can be learned about a knot K C R? by studying its complement R*\ K
and the latter is an open subset of R3. More generally, if U is some open subset
of a smooth manifold M with atlas Ay, then U is itself a differentiable manifold
with an atlas of charts being given by all the restrictions (%a |y s Ua NU )
where (U, %o) € Apr. We shall refer to such an open subset U C M with this
differentiable structure as an open submanifold of M.

Here are several more interesting examples of smooth manifolds.

Example 1.8 The 2-sphere S? C R3. Choose a pair of antipodal points such
as north and south poles where z =1 and —1 respectively. Then off of these two
pole points and off of a single half great circle connecting the poles we have the
usual spherical coordinates. We actually have many such systems of spherical
coordinates since we can re-choose the poles in many different ways. We can
also use projection onto the coordinate planes as charts. For instance let U}
be all (v,y,z) € S% such that z > 0. Then (x,y,2) — (z,y) provides a chart
US — R2. The various overlap maps can be computed explicitly and are clearly
smooth.

Example 1.9 (Stereographic projection) We can also use stereographic
projection to give charts on S%. More generally, we can provide the n—sphere
S™ C R with a smooth structure using two charts (Us,vs) and (Un,¥n).
Here,

Us={x= (1, .., Tpny1) € S" : pp1 # 1}
Uy = {Jj = (331, ....,l‘n+1) e s": Tpn41 7é —1}

and ¥g : Us — R™ (resp. Y : Un — R™) is stereographic projection from the
north pole py = (0,0....0,1) (resp. south pole ps = (0,0,...,0,—1)). Not that
s maps from the southern open set containing ps. Explicitly we have

1 n
/IZJS(I) = (1_xn+1)(l’1’....,1;n) ER

1 n
wN(x) = (1+xn+1)(l‘1,....,xn) ER

Ezxercise: Show that s(Uy NUg) = vn(Uxy NUs) = R™\0 and that g o
Uy (W) = y/ Iyl = dn 0 w5 (y) for ally € R\0.

Thus we have an an atlas {(Us,¥s), (Un,¥n)}. We leave it to the reader to
verify that the induced topology is the same as the usual topology on S™ (say as
a subspace of R" 1) and that all the maps involved are appropriately smooth.



14 CHAPTER 1. DIFFERENTIABLE MANIFOLDS

S

Let us make an observation that will come in handy later. If we identify R?
with C, then the overlap maps for charts on S? from the last example become

psopy'(z) =271 = ¢y 095! (2)
for all z € C\{0}

Example 1.10 (Projective spaces) The set of all lines through the origin in
R3 is denoted RP? and is called the real projective plane . Let U, be the set
of all lines £ € RP? not contained in the z,y plane. Every line £ € U, intersects
the plane z = 1 at exactly one point of the form (z(€),y(£),1). We can define
a bijection p, : U, — R? by letting £ — (x(£),y(¢)). This is a chart for RP?
and there are obviously two other analogous charts (U, @) and (Uy, ¢,). These
charts cover RP? and have smooth overlap maps. Thus we have an atlas for
RP2.

More generally, the set of all lines through the origin in R™ 1 is called real
projective n—space denoted RP™. We have the surjective map 7 : R"*1\{0} —
RP™ given by letting p(x) be the line through x and the origin and we can give
RP™ the quotient topology where U C P,(R) is open if and only if 7= (U) is
open. RP™ can be given an atlas consisting of charts of the form (U;, ¢;) where

U; = {£ € RP™ : { is not contained in the hyperplane = = 0}
©;i(0) = the unique coordinates (u',...,u™) such that (u',...,1,...,u") is
on the line £.

Once again it can be chacked that the overlap maps are smooth so that we have
an atlas. The topology induced by the atlas itself, as described previously, is
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exactly the quotient topology and we leave it as an exercise to show that it s
both paracompact and Hausdorff.

It is often useful to view RP™ as a quotient of the sphere S™. Consider the
map S™ — RP™ given by x — {, where £, is the unique line through the origin
in R™1 which contains x. Notice that £, = {_, for all x € S™ and if {, = 4y
for x,y € S™ then x = +y. It is not hard to show that this map is open and
hence a quotient map. Thus we may equally consider RP™ to be S™/ ~ where
x ~ y if and only if x = ty or, in other words, if and only if x = ya for some
element of the group Zo = {1,—1}.

Example 1.11 In this example we consider a more general way of getting
charts for the projective space RP™. Let a : R" — R™! be an affine map
whose image does not contain the origin. Thus « has the form a(x) = Lx + b
where L : R™ — R" "1 s linear and b € R™! is nonzero. The composition 7o«
can be easily shown to be a homeomorphism onto its image and we call this type
of map an affine parameterization. The inverses of these maps form charts for
an atlas. The charts described in the last example are essentially special cases
of these charts and give the same smooth structure.

Example 1.12 By analogy with the real case we can construct complex projec-
tive n—space CP™. As a set CP" is the family of all 1—dimensional complex
subspaces of C"*1 (each of these has real dimension 2). In tight analogy with
the real case CP™ can be given an atlas consisting of charts of the form (U;, ;)
where

U; = {¢ € CP" : { is not contained in the complex hyperplane z* = 0
©i(0) = the unique coordinates (2, ..., 2") such that (z*,....1,...,2") is

on the line £.
Here @; : U; — C" 2 R*™ and so CP™ is a manifold of (real) dimension 2n.
Exercise 1.5 Show that the overlap maps for RP™ and CP"™ are indeed smooth.

Notation 1.2 (Homogeneous coordinates) For (z1,...,2p,11) € C" et [21, ..., 2y41]
denote the unique | € CP"™ such that the complex line | contains the point

(21, ey Znt1). The numbers (z1, ..., 2n41) are said to provide homogeneous co-
ordinates for l. Similarly for (x1,...,p41) € R™ and [z1, ..., 2,11] € RP™.

In terms of homogeneous coordinates, the chart map ¢; : U; — C" is given by
i([21, s 2na1]) = (212774, 1, ey Znt17; 1) where the caret symbol * means we
have deleted the 1 in the i-th slot to get an element of C™. A similar statement
is true for the real case.

Exercise 1.6 In reference to the last example, compute the overlap maps p; o
<pj_1 :U;NU; — C™. For CP' show that U NUs = C\O and that a0 7 (2) =
27t = @1 095 (2) for z € C\0O. Show also that if we define @1 : Uy — C by
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?1(0) = p1(€) then {(Ur,¢1) , (Ua, p2) } is also an atlas for CP* giving the same
smooth structure as before. Show that

P20 (2) =2 " =109y (2) for z € C\0
Notice that with the atlas {(Uy, 1), (Uz, p2) } for CP! from the last ex-
ample, we have the same overlap maps we saw for S? (see equation ??). This

suggests that CP! is diffeomorphic to S$2. Let us construct a diffeomorphism

CP' — S For each x = (21,22, 73) € S? with a3 # 1 let 2(v) := {4~ + {21

and for each © = (21,29, 23) € S? with 23 # —1 let w(x) := (1253 - 12?]031').
Now define f by

_ [2(z),1] if 3 # 1
fla) = { 1, w(z)] if z3 # —1
Using the fact that 1 — 23 = 2% + 22 one finds that for x = (z1,22,73) € S?

with —1 < z3 < 1 we have w(z) = z(z)~!. If follows that for such z we have
[2(x),1] = [1,w(z)]. This means that f is well defined.

Exercise 1.7 Show that the map f : CP' — S? defined above is a diffeomor-
phism.

Exercise 1.8 Show that RP! is diffeomorphic to S*.

Example 1.13 The graph of a smooth function f : R™ — R is the subset of the
Cartesian product R™ x R given by I'y = {(z, f(z)) : « € R"}. The projection
map I'y — R™ is a homeomorphism and provides a global chart on I'y making
it a smooth manifold.

Example 1.14 Let us generalize the last example. Suppose we have a map
f:0 CR® — R"* where O is open. Let S = f~1(qo) for some qo € f(O).

Suppose further that the Jacobian matriz {%} has rank n — k everywhere on

a neighborhood of S. For every p € S there is an open neighborhood U C O
containing p such that on that neighborhood we have

A(fL, ..., fF)

a(l.il? ceey xin—k)

£0

on U for some choice of coordinate functions x;,,...,x;, _,. Thus by the im-
plicit function theorem we deduce that for each p € S there is at least one such
set of coordinates (a:il,...,xin_k) from among the x* with complementary coor-
dinates (zj,,...,x;,) such that the projection R™ — R¥ given by (x!,...,2") —
(T, ..e, Tj, ) TESETICES tO @ homeomorphism on some (relatively) open subset UNS
of S with image being an open set in R*. It is not hard to see that the inverses
of these homeomorphisms are smooth as maps into R™ since up to a permuta-
tion of coordinates they have the form of “graph maps”: x — (x,g(z)) as in
the conclusion of the implicit function theorem (see Appendiz C). The set of all
such homeomorphisms provide a cover of S by charts. The overlap maps are
certainly smooth, being compositions of such graph maps with projections and
permutations of coordinates.
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Example 1.15 Let g be a positive integer. Define f(x) := x(x — 1)%(z —
2)2---(z— (g —1)*(x — g). For sufficiently smal-l v > 0 the set {(z,y,2) :
(y? + f(2))? + 22 = r?} is a compact surface of genus g. This is an example of
subset of R® which can be given charts of the form described in the last example.
Topologically, a surface of genus g is a sphere with g handles added on or also
a g—holed torus.

Example 1.16 The set of all mxn real matrices My, xn(R) is an mn—manifold
modeled on R™™. We only need one chart again since it is clear that M, x,(R) is

in natural one to one correspondence with R™™ by the map [a;;] — (@11, a12, ..., Gmn)-
Also, the set of all non-singular matrices Gl(n,R) is an open submanifold of
My xn & R,

If we have two manifolds M; and M of dimensions n, and ng respectively,
we can form the topological Cartesian product My x My. We may give M7 x M,
a differentiable structure in the following way: Let Ay, and Apg, be atlases for
My and Ms.Take as charts on M; x My the maps of the form

Ko X ¥y : Uq x Vy, = R™ x R™2

where (Ua,x%q) is a chart from Ay, and (y,,V,) a chart from Apg,. This
gives My x M5 an atlas called the product atlas which induces a maximal atlas
and hence a differentiable structure. With this product differentiable structure,
My x My is called a product manifold. The product of several manifolds
is also possible by an obvious iteration. The induced topology is the product
topology and so the underlying topological manifold is the product topological
manifold discussed earlier.

Example 1.17 The circle S' is clearly a smooth 1-manifold and hence so is
the product T? = S' x S' which is a torus. The set of all configurations of a
double pendulum constrained to a plane and where the arms are free to swing
past each other can be taken to be modeled by T? = S' x S1.

Example 1.18 For any manifold M we can construct the “cylinder” M x I
where I = (a,b) is some open interval in R.

Convention: From now on in this book all topological spaces will be as-
sumed to be Hausdorff unless otherwise stated.
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1.3 Smooth Maps and Diffeomorphisms

Definition 1.8 Let M and N be smooth manifolds with corresponding mazimal
atlases Apr and An. We say that a map f: M — N is of class C" (or r—times
continuously differentiable) at p € M if for every chart (V,y) from Ay with
f(p) € V, there exists a chart (U,x) from Ay with p € U such that f (U) CV
and such that yo fox~! is of class C". If f is of class C" at every point p € M
then we say that f is of class C".

Even though we have restricted our attention to smooth manifolds, that is
manifolds with C°° structure, we may still be interested in maps which are
only of class C” for some r < oo. This is especially so when one wants to do
analysis on smooth manifolds. In fact one could define what it means for a
map to be Lebesgue measurable in a similar way. It is obvious from the way we
have formulated the definition that the property of being of class C” is a local
property. Also, the above definition does not start out with the assumption that
f is continuous but is constructed carefully so as to imply that a function which
is of class C" (at a point) according to the definition is automatically continuous
(at the point). In fact, since the topologies are induced by the charts we see that
in the case r = 0 the definition is just a statement of the definition of continuity.
However, we might know in advance that f : M — N is continuous. In this case
the condition that f be C" at p € M for r > 0 can be seen to be equivalent to
the condition that for some (and hence every) choice of charts (U, x) from Ay,
and (V,y) from Ay such that p € U and f(p) € V, the composite map

yofox ' :x(U)—y(V)

is C". Note carefully, the use of the phrase “and hence every” above. The point
is that that if we choose another pair of charts (x',U’) and (y',V’) with p € U’
and f(p) € V’ then y’ o f o x’~! must be C” on some neighborhood of x'(p) if
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and only if yo fox~! is C" on some neighborhood of x(p). This is true because
the overlap maps x’ o x~! and y’ o y~! are diffeomorphisms (The chain rule is
at work here of course). Without worrying about domains, the point is that

yIOfOX/_l
:y’o(yfloy)ofo(Xflox)oxlf
=(yoy )o(yofoxt)o (x’oxfl)_l.

Now the reader should be able to see quite clearly why we required overlap
maps to be diffeomorphisms. The functions of the form y o f o x~! are called
representative functions. Thus once we know that a map f is continuous at p
then f is of class C" at p exactly if some representative function whose domain
contains p is of class C". Also, to know that f is (globally) of class C" on M,
it is enough to know that for some, not necessarily maximal, atlases for M and
N, all of the representative functions corresponding to charts from these atlases
are C" whenever the have nonempty domains. The set of all C" maps M — N
is denoted C" (M, N).

As a special case, we note that a function f: M — R (resp.C) is C" differ-
entiable at p € M if and only if it is continuous and

fox t:x(U) =R (resp. C)

1

is C"-differentiable for some admissible chart (U, x) with p € U and f is of class
C™ if it is of class C" at every p. The set of all C" functions defined on all of M
is denoted C"(M). A map f which is defined only on some proper open subset
of a manifold is defined to be C” if it is smooth as a map of the corresponding
open submanifold but this is again just to say that it is C" at each point in
the open set. We shall often need to consider maps that are defined on subsets
S C M that are not necessarily open.

Definition 1.9 Let S be an arbitrary subset of a smooth manifold M. Let
f:8 — N be a continuous map where N is a smooth manifold. The map [ is
said to be smooth (resp. C") if for every s € S there is an open set O containing

s and map f that is smooth (resp. C") on O and such that ﬂs 0= f.
n

It is easy to show that if S has compact closure then a function f with
domain S is smooth if and only if it has a smooth extension to some open set
containing all of S. In particular a curve defined on a closed interval [a,b] is
smooth if it has a smooth extension to an open interval containing [a,b]. We
will occasionally need the following simple concept:

Definition 1.10 A continuous curve ¢ : [a,b] — M into a smooth manifold is
called piecewise smooth if there exists a partition a =tg <t; < --- <tp =0b
such that c restricted to [t;,t;+1] is smooth for 0 < i<k — 1.

We already have the notion of a diffeomorphism between open sets of some
Euclidean space R™. We are now in a position to extend this notion to the realm
of smooth manifolds.
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Definition 1.11 Let M and N be smooth (or C") manifolds. A homeomor-
phism f : M — N such that f and f~' are C" differentiable with r > 1 is called
a C"-diffeomorphism. In case r = co we shorten C'°°-diffeomorphism to just
diffeomorphism. With composition of maps, the set of all C” diffeomorphisms
of a manifold M onto itself is a group denoted Diff"(M). In case r = oo we
simply write Diff (M).

We will use the convention that Diff’(M) denotes the group of homeomor-
phisms of M onto itself. Also, it should be pointed out that if we refer to a
map between open subsets of manifolds as being a diffeomorphism, we mean
that the map is a C" —diffeomorphism of the corresponding open submanifolds.
This just means that the map on the open sets is a homeomorphism which is
appropriately differentiable (C") and whose inverse is also differentiable.

Example 1.19 The map ry : S — S? given by ro(z,y,2) = (x cos §—ysin 0, z sin 6+
ycost, z) for % +y? + 22 =1 is a diffeomorphism (and also an isometry!).

Example 1.20 Let 0 < 0 < 27 The map f : S? — S? given by fo(x,y,2) =
(xcos((1 — 22)0) — ysin((1 — 22)0), zsin((1 — 22)0) + ycos((1 — 22)0), 2) is also
a diffeomorphism (but not an isometry). Try to picture this map.

Definition 1.12 C" manifolds M and N will be called (C") diffeomorphic and
then said to be in the same diffeomorphism class if and only if there is a C”
diffeomorphism f : M — N.

We will be almost exclusively concerned with the smooth (C*°) case. In the
definition of diffeomorphism we have suppressed explicit reference to the maxi-
mal atlases but note that whether or not a map is differentiable (C” or smooth)
essentially involves the choice of differentiable structures on the manifolds. Re-
call that we have pointed out that we can put more than one differentiable
structure on R by using the function z'/3 as a chart. This generalizes in the
obvious way: The map ¢ : (z!,22,...,2") — ((z})'/3,22,...,2") is a chart for
R™ but not compatible with the standard (identity) chart. It induces the usual
topology again but the resulting maximal atlas is different! Thus we seem to
have two smooth manifolds (R”,.4;) and (R™, A2). This is true. Technically,
they are different. But they are equivalent and therefore the same in another
sense. Namely, they are diffeomorphic via the map €. So it may be that the
same underlying topological space M carries two different differentiable struc-
tures and so we really have two differentiable manifolds with the same underlying
set. It remains to ask whether they are nevertheless diffeomorphic. It is an in-
teresting question whether a given topological manifold can carry differentiable
structures that are not diffeomorphic. We have mentioned that R* carries non-
diffeomorphic structures. In fact, it turns out that R* carries infinitely many
pairwise non-diffeomorphic structures all having the same underlying topology.
Each R* for k # 4 has only one diffeomorphism class compatible with the usual
topology on R¥ .
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Definition 1.13 Let N and M be smooth manifolds of the same dimension.
A map f: M — N is called a local diffeomorphism if and only if every point
p € M is contained in an open subset Uy, C M such that f|; : Uy — f(U)
is a diffeomorphism onto an open subset of N. For C" manifolds, a C" local
diffeomorphism is defined similarly.

Example 1.21 The map 7 : S? — P(R?) given by taking the point (z,y, z) to
the line through this point and the origin is a local diffeomorphism but is not a
diffeomorphism since it is 2-1 rather than 1-1.

Example 1.22 The map (z,y) — (lizéz’y)x, 17th)y) where z(x,y) = /1 — 22 — y?
is a diffeomorphism from the open disk B(0,1) = {(z,y) : 2% +y? < 1} onto the

whole plane. Thus B(0,1) and R? are diffeomorphic and in this sense are the
“same” differentiable manifold.

The following terminology will be used often in the sequel.

Definition 1.14 If 7 : M — N is a smooth surjection then a smooth section
of w is a smooth map o : N — M such that wo o = id. If o is defined only on
an open subset U and wo o = idy then we call o a local section.

Sometimes it is only important how maps behave near a certain point. Let
M and N be smooth manifolds and consider the set S(p, M, N) of all smooth
maps which are defined on some open neighborhood of a fixed point p € M. In
other words,
S(p,M,N):= [ J C>(U,N)
UeN,

where N, denotes the set of all open neighborhoods of p € M. On this set we
define the equivalence relation where f and g are equivalent at p if and only if
there is an open set U containing p and with U contained in the domains of f
and g, such that

flo = aly
In other word, f and g are equivalent in this sense if they agree on a neighbor-
hood of p. The equivalence class of f is denoted [f] or by [f], if the point in

question needs to be made clear. The set of equivalence classes S(p, M, N)/ ~
is denoted Cp°(M, N).

Definition 1.15 Elements of C°(M, N) are called germs and if f and g are
in the same equivalence class we write f ~ g and we say that f and g have the
P

same germ at p.

The value of a germ at p is well defined [f](p) = f(p). The evaluation map
evy, is defined by

evy : [f] — f(p)
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Taking N = R (resp. C) we see that Cy°(M,R) (resp. Cp°(M,C)) is a
real (resp. complex) commutative algebra (and hence a ring) if we make the
definitions

alf] + blg] := [af + bg] for a,b € R( resp. C)
[f1lg] == /4]

1.4 Cut-off functions and partitions of unity

There is a special and extremely useful kind of function called a bump function
or cut-off function which we now take the opportunity to introduce. Recall that
given a topological space X, the support, supp(f), of a function f: X — R is
the closure of the subset on which it takes nonzero values. The same definition
applies for vector space valued functions f: X — V.

Lemma 1.6 (Existence of cut-off functions) Let M be a smooth manifold.
Let K be a compact subset of M and O an open set containing K. There exists
a smooth function B on M that is identically equal to 1 on K, has compact
support in O and 0 < 3 < 1.

Proof. Special case 1: Assume that O = B(0,R) and K = B(0,r) for
0 < r < R. In this case we may take

where

) = e~t=n TR e ot < R
g 0 otherwise.

It is an exercise in calculus to show that g is a smooth function and thus that
¢ is smooth.

Special case 2: Assume that M = R™. Let K C O be as in the hypotheses.
Let K; C U; be concentric balls as in the special case above but now with various
choices of radii and such that K C UK;. The U; are chosen small enough that
U; C O. Let ¢; be the corresponding functions provided in the proof of the
special case 1. By compactness there are only a finite number of pairs K; C U;
needed so we may assume that a reduction to a finite cover has been made.
Examination of the following function will convince the reader that it is well
defined and provides the needed cut-off function;

Bla) =1 -] - ¢i(a)).

K2

General case: It is clear that if K is contained in the domain U of a chart
(U, x) then by composing with x and extending to zero outside of U we obtain
the result from the case M = R™ proved above. If K is not contained in such



1.4. CUT-OFF FUNCTIONS AND PARTITIONS OF UNITY 23

a chart then we may take a finite number of charts (x1,U1), ..., (xx, Ux) and
compact sets K1, ..., K with

K c Ul K;
K, CcU;
ul; Cc O

(we need the normality of M here). Now let ¢; be identically 1 on C; and
identically 0 on U = M\U;. Then the function 5 we are looking for is given by

k

p=1-T[0a-¢).

=1

]

Let [f] € Cp;°(M,R) (or € Cp°(M,C)) and let f be a representative of the
equivalence class [f]. We can find an open set U such that U contains p and is
contained in the domain of f. Now if § is a cut-off function that is identically
equal to 1 on U and has support inside the domain of f then 3f is smooth and
it can be extended to a globally defined smooth function which is zero outside of
the domain of f. Denote this extended function by (8f),,,; Then (8f),,. € [f]
(usually, the extended function is just written as Bf). Thus every element of
Cp°(M,R) has a representative in C°°(M,R). In short, each germ has a global
representative.

A partition of unity is a technical tool that can help one piece together lo-
cally defined smooth objects with some desirable properties to obtain a globally
defined object that also has the desired properties. For example, we will use
this tool to show that on any (paracompact) smooth manifold there exists a
Riemannian metric tensor. As we shall see, the metric tensor is the basic object
whose existence allows the introduction of metric notions such as length and
volume.

Definition 1.16 A partition of unity on a smooth manifold M is a collec-
tion {pa}taca of nonnegative smooth functions on M such that

(i) The collection of supports {supp(pa)}taca is locally finite, that is each point
p of M has a neighborhood W,, such that W,Nsupp(pa) = 0 for all but a finite
number of a € A.

(1) D aeca Palp) =1 for all p € M (this sum is always finite by (i)).
If O = {On}aca is an open cover of M and supp(pq) C O for each a € A
the we say that {Ya}aca is a partition of unity subordinate to O = {Oy}aca.-

Notice that every partition of unity is subordinate to some cover since we
may take O, = {¢, > 0}. That {O,} is a cover follows from (ii). (By definition
Yo > 0 for all a).
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Remark 1.4 Let U = {Uy}tacabe a cover of M. Suppose that W = {W3}gen
is a cover which is a refinement of U. Let {Yg}gep is a partition of unity
subordinate to a cover W. We may obtain a partition of unity subordinate to
U = {Us}taca. Indeed, let f: B — A be such that for W C Uy for every

B € B. Then we let o 1= ¢ p-1(0) V8-

Our definition of smooth manifold M includes the requirement that M be
paracompact (and Hausdorff). Paracompact Hausdorff spaces are normal spaces
but the following theorem would be true for a normal locally Euclidean space
with smooth structure even without the assumption of paracompactness. The
reason is that we explicitly assume the local finiteness of the cover. For this
reason we put the word “normal” in parentheses as a pedagogical device.

Theorem 1.2 Let M be a (normal) smooth manifold and {Uy}aca be a locally
finite cover of M. If each U, has compact closure then there is a partition of
unity {pa taca subordinate to {Uy}aca-

Proof. We shall use a well known result about normal spaces. Namely, if
{Uqa}aca is a locally finite cover of a normal space M then there exists another
cover {Vy} aea of M such that V,, C U,.

We do this to our cover and then notice that since each U, has compact
closure, each V,, is compact. We apply lemma 1.6 to obtain nonnegative smooth
functions 1, such that suppy, C U, and wa\ﬁ =1. Let ¢ := ZaeA 1o and
notice that for each p € M the sum ) . 4 ¥a(p) is finite and +(p) > 0. Now
let wq := 1o /%. Tt is now easy to check that {p,}aca is the desired partition
of unity. m

If we use the paracompactness assumption then we can show that a partition
of unity exists which is subordinate to any given cover.

Theorem 1.3 Let M be a (paracompact) smooth manifold and {Us}aca be a
cover of M. Then there is a partition of unity {¢@a }aca subordinate to {Uy}oca.

Proof. By remark 1.4 and the fact that M is locally compact we may
assume without loss of generality that each U, has compact closure. Then since
M is paracompact we may find a locally finite refinement of {U, } e which we
denote by {V;}icr. Now use the previous theorem to get a partition of unity
subordinate to {V;};cr. Finally use remark 1.4 one more time to get a partition
of unity subordinate to {Uy}aca. ®

1.5 Coverings and Discrete groups

1.5.1 Covering spaces and the fundamental group

In this section and later when we study fiber bundles many of the results are
interesting and true in either the purely topological category or in the smooth
category. In order not to have to do things twice let us agree that a C°—manifold
is simply a topological manifold or more generally any paracompact Hausdorff
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topological space that satisfies the technical condition of being “semi-locally
simply connected” (SLSC) All manifolds are SLSC.. Thus all relevant maps
in this section are to be C" where if r = 0 we just mean continuous and then
only require that the spaces be sufficiently nice topological spaces. Also, “C°
diffeomorphism” just means homeomorphism.

“CO_diffeomorphism” = C®—isomorphism = homeomorphism
“C%—manifold” = topological space
CP-group = topological group

We may define a simple equivalence relation on a topological space M by
declaring

p ~ q < there is a continuous curve connecting p to q.

The equivalence classes are called path components and if there is only one
path component then we say that M is path connected. The following exercise
will be used whenever needed without explicit mention:

Exercise 1.9 The path components of a manifold M are exactly the connected
components of M. Thus, a manifold is connected if and only if it is path con-
nected.

In the definition of path component given above we used continuous paths
but it is not hard to show that if two points on a smooth manifold can be
connected by a continuous path then they can be connected by smooth path
and so the notion of path component remains unchanged by the use of smooth
paths.

Definition 1.17 Two C" maps on C" manifolds, say fo : X — Y and f; :
X — Y are said to be C™ homotopic if there exists a C" map H : X x[0,1] = Y
such that H(x,0) = fo(x) and H(x,1) = fi(x) for all xz. We then say that fo
is C" homotopic to f1 and write fy < fi- If A C X is a closed subset and if
H(a,s) = fo(a) = fi(a) for alla € A and all s € [0,1], then we say that H is a

C’V'
homotopy relative to A and we write fo ~ f1 (rel A).

At first it may seem that there might be a big difference between C>° and C°
homotopy but if all the spaces involved are smooth manifolds then the difference
is not big at all. In fact, we have the following theorems which we merely state
but proofs may be found in [Lee, John)].

Theorem 1.4 If f: M — N is a continuous map on smooth manifolds then f

is homotopic to a smooth map fo: M — N. If the continuous map f: M — N
COO

is smooth on a closed subset A then it can be arranged that f ~ fo (rel A).

Theorem 1.5 If fo : M — N and f; : M — N are smooth maps which are

homotopic then they are smoothly homotopic. If fo is homotopic to f1 relative
to a closed subset A then fqy is smoothly homotopic to fi relative to A.
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Because of these last two theorems we will usually simply write f ~ f

C’V‘
instead of f =~ fy the value of or r being of little significance in this setting.

Definition 1.18 Let M and M be C"—spaces. A surjective C" map p : M —
M is called a C" covering map if every point p € M_has an open connected
neighborhood U such that each connected component U; of o~ (U) is C" dif-

feomorphic to U wvia the restrictions p|[7i :U; — U. In this case we say that

U is evenly covered by o (or by the sets U;). The triple (1\7, 0, M) is called

a covering space. We also refer to the space M (somewhat informally) as a
covering space for M.

Example 1.23 The map R — S* given by t + € is a covering. The set of
points {e' : 0 — 7 <t < O+ m} is an open set evenly covered by the intervals I,
in the real line given by I, := (0 — ™ + n2m, 0 + 7 + n2mw).

Exercise 1.10 Explain why the map (—2m,27) — S given by t +— €™ is not a
COvETing map.

Definition 1.19 A continuous map f is said to be proper if f~1(K) is compact
whenever K is compact.

Exercise 1.11 Show that a C" proper map between connected smooth manifolds
18 a smooth covering map if and only if it is a local C" diffeomorphism.

The set of all C" covering spaces are the objects of a category. A morphism
between C"—covering spaces, say (M, p1, M1) and (Ma, o2, Ms) is a pair of
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(C™) maps (f, f) that give a commutative diagram

My Lo
L
M Ly

which means that fogp; = pao f Similarly the set of coverings of a fixed space
M are the objects of a category where the morphisms are maps ® : M; — M
required to make the following diagram commute:

—~ P —~

Ml\ /M2

M

so that @1 = g2 0 ®. Now let (]T/[/7 p, M) be a C" covering space. The set of all
C" —diffeomorphisms ® that are automorphisms in the above category, that is,
diffeomorphisms for which p; = g9 o @, are called deck transformations or
covering transformations. This set of deck transformations is a group of C"
diffeomorphisms of M called the deck transformation group which we denote
by Deck(p) or sometimes by Deck(M). A deck transformation permutes the
elements of each fiber p~1(p). In fact, it is not to hard to see that if U C M is
evenly covered then ® permutes the connected components of p~1(U).

Proposition 1.1 If p: M — M isaCT covering map with M being connected
then the cardinality of o~ 1(p) is either infinite or is independent of p. In the
latter case the cardinality of o~ '(p) is called the multiplicity of the covering.

Proof. Fix k < co. Let U, be the set of all points such that p~!(p) has
cardinality k. It is easy to show that Uy is both open and closed and so, since
M is connected, Uy, is either empty or all of M. m

Since we are mainly interested in the smooth case the following theorem is
quite useful:

Theorem 1.6 Let M be a C" manifold with r > 0 and suppose that pNJT/f — M
is a CY covering map. Then there exists a (unique) C" structure on M making
o a C" covering map.

Proof. Choose an atlas {(U,, xa) taca such that each domain U, is small
enough to be evenly covered by . Thus we have that p~'(U,) is a disjoint
union of open set U}, with each restriction p|,; a homeomorphism. We now

v defined on the sets U, (which

construct charts on M using the maps x4 0 @
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cover M ). The overlap maps are smooth since for example

—1
(xa o pUZL) o (XBO p\Ug)
B -1
:XaopUéo(mUé) °Xg
= xaox,g1

We leave it to the reader to show, or trust that M must be paracompact and
Hausdorff if M is. m
The following is a special case of definition 1.17.

Definition 1.20 Let «: [0,1] = M and 5 :[0,1] — M be two C" maps (paths)
both starting at p € M and both ending at q. A C" fixzed end point homotopy
from a to B is a family of C™ maps Hs : [0,1] — M parameterized by s € [0, 1]
such that

1) H:[0,1] x [0,1] — M defined by H(t,s) := Hy(t) is C" ,

2) Hy =« and Hy = 3,

3) Hs(0) = p and Hs(1) = q for all s € [0,1].

Definition 1.21 If there is a C™ homotopy from « to B then we say that « is
C" homotopic to § and write a« ~ 3 (C"). If r = 0 we speak of paths being
continuously homotopic.

Remark 1.5 By Theorems 1.5 and 1.4 above we know that in the case of smooth
manifolds we have that o ~ 3 (C°) if and only if « ~ 3 (C") for r > 0. Thus
we can just say that o is homotopic to B and write o >~ 3.

It is easily checked that homotopy is an equivalence relation. Let P(p,q)
denote the set of all continuous (or smooth) paths from p to g defined on [0, 1].
Every a € P(p,q) has a unique inverse (or reverse) path o~ defined by

a”(t) == a(l—1).

If p1,p2 and ps are three points in M then for a € P(p1,p2) and 3 € P(p2,p3)
we can “multiply” the paths to get a path a * 3 € P(p1,ps) defined by

al2t)  for0<t<1/2
axB(t) =
B2t —1) for1/2<t<1

An important observation is that if a; >~ ay and 31 ~ (G5 then
aq * 01 =~ ag * O where the homotopy between «ay * 81 and as * (B is given
in terms of the homotopies H, : a1 >~ o and Hg : 81 > (B2 by

H,(2t,s) for0<t<1/2
H(t,s):= and 0 <s<1
Hp(2t—1,s) forl1/2<t<1
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Similarly, if oy >~ ap then a]” >~ a5 . Using this information we can define a
group structure on the set of homotopy equivalence classes of loops, that is, of
paths in P(p, p) for some fixed p € M. First of all, we can always form « * ( for
any «, 3 € P(p,p) since we are always starting and stopping at the same point
p. Secondly we have the following

Proposition 1.2 Let (M, p) denote the set of fixed end point homotopy classes
of paths from P(p,p). For [a],[8] € m1(M,p) define [a] - [B] := [a* B]. This
is a well defined multiplication and with this multiplication 71 (M, p) is a group.
The identity element of the group is the homotopy class 1 of the constant map
1, : t — p, the inverse of a class [a] is [a].

Proof. We have already shown that [a] - [3] := [a * (] is well defined. One
must also show that

1) For any «, the paths a o &~ and o~ o « are both homotopic to the
constant map 1.

2) For any a € P(p,p) we have 1, xa ~ o and a* 1, ~ a.

3) For any a, 3,7 € P(p,p) we have (a* 3) x v~ a* (8 *7).

Proof of (1): 1, is homotopic to a o o~ via

a(2t) for 0 <2t <s
H(s,t) = a(s) fors<2t<2-—3s
a=(2t—1) for2—s<2t<2

where 0 < s < 1. Interchanging the roles of o and o™ we also get that 1, is
homotopic to a™ o a.
Proof of (2): Use the homotopy

a(s5t) for 0<t<1/2+5/2
H(s,t) =
P for 1/2+s/2<t<1

Proof of (3): Use the homotopy

a(list) for0<t< 11'3
H(s,t) = B4(t — 1%;)) s <p < 248
V(g (t— 252)) for 285 <t <1

]

The group 71 (M, p) is called the fundamental group of M at p. If desired
one can take the equivalence classes in m1 (M, p) to be represented by smooth
maps. If v:[0,1] — M is a path from p to g then we have a group isomorphism
771<M> Q) — m1(M, p) given by

[a] = [y xaxyT].

Exercise 1.12 Show that the previous prescription is well defined and that the
map s really a group isomorphism.
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As a result we have

Proposition 1.3 For any two points p,q in the same path component of M,
the groups m1 (M, p) and w1 (M, q) are isomorphic (by the map described above).

Corollary 1.1 If M is connected then the fundamental groups based at different
points are all isomorphic.

Because of this last proposition, if M is connected we may simply refer to
the fundamental group of M which we write as 71 (M).

Definition 1.22 A path connected topological space is called simply connected

if m(M) = {1}.

The fundamental group is actually the result of applying a functor (see
Appendix B). Consider the category whose objects are pairs (M, p) where M is
a C" manifolds and p a distinguished point (base point) and whose morphisms
f:(M,p) — (N,q) are C" maps f : M — N such that f(p) = ¢q. The pairs
are called pointed C" spaces and the morphisms are called pointed C" maps
(or base point preserving maps). To every pointed space (M, p) we assign the
fundamental group m (M, p) and to every pointed map f : (M,p) — (N, f(p))
we may assign a group homomorphism w1 (f) : m (M, p) — w1 (N, f(p)) by

m(f)([a]) = [f ool

It is easy to check that this is a covariant functor and so for pointed maps f and g
that can be composed (M, x) EN (N,y) 2 (P, z) we have 71 (go f) = m1(g)m1 (f).

Notation 1.3 To avoid notational clutter we will often denote w1 (f) by fsu.
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Start lift here

Definition 1.23 Let p : M — M beaCT covering and let f : P — M be a C"
map. A map f: P — M is said to be a lift of the map f if po f = f.

Theorem 1.7 Let ¢ : M — M be a C" covering, let ~ : [a,b] = M a C" curve
and pick a pointy in p~'(v(a)). Then there exists a unique C" lift5 : [a,b] — M
of v such that ¥(a) = y. Thus the following diagram commutes.

M

7

[a7b]L>M

If two paths o and [ with a(a) = B(a) are fized end point homotopic via an
homotopy h, then for a given point y in o~ (y(a)), we have the corresponding
lifts o andNB starting at y. In this case the homotopy h lifts to a fized endpoint
homotopy h between & and (3. In short, homotopic paths lift to homotopic paths.
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Proof. We just give the basic idea and refer the reader to the extensive
literature for details (see [?, ?]). Figure 1.5.1 shows the way. Decompose the
curve vy into segments that lie in evenly covered open sets. Lift inductively
starting by using the inverse of p in the first evenly covered open set. It is clear
that in order to connect up continuously, each step is forced and so the lifted
curve is unique. The proof of the second half is just slightly more complicated
but the idea is the same and the proof is left to the curious reader. A tiny
technicality in either case is the fact that for » > 0 a C"—map on a closed set
is defined to mean that there is a C"—map on a slightly larger open set. For
instance, for the curve v we must lift an extension e, : (a —e,b+¢) — M but
considering how the proof went we see that the procedure is basically the same
and gives a C"— extension ., of the lift 7.

A similar argument shows how to lift the homotopy h. m

There are several important corollaries to this result. One is simply that if
a : [0,1] — M is a path starting at a base point p € M, then since there is
one and only one lift & starting at a given p’ in the fiber p~!(p), the endpoint
a(1) is completely determined by the path « and by the point p’ from which
we want the lifted path to start. In fact, the endpoint only depends on the
homotopy class of « (and the choice of starting point p’). To see this note that
if a,0:1]0,1] — M are fixed end point homotopic paths in M beginning at p
and if @ and 3 are the corresponding lifts with a(0) = 5(0) = p’ then by the
second part of the theorem, any homotopy h; : a ~ 3 lifts to a unique fixed
endpoint homotopy h; : @ ~ . This then implies that @(1) = 5(1). Applying
these ideas to loops based at p € M we will next see that the fundamental group
71(M,p) acts on the fiber = !(p) as a group of permutations. (This is a “right
action” as we will see). In case the covering space M is simply connected we will
also obtain an isomorphism of the group 1 (M, p) with the deck transformation
group (which acts from the left on M ). Before we delve into these matters, we
state, without proof, two more more standard results (see [Gr-Harp]):

Theorem 1.8 Let p : M — M be aCT covering. Fix a point ¢ € Q and
apomtpeM Let ¢ : Q—>MbeaC”mapwzth¢)()—p(]3) If Q is
connected then there is at most one lift gb Q — M of ¢ such that gzﬁ( ) =p.

If ¢4 (m1(Q,q)) C pu(m (M ,f))) then ¢ has such a lift. In particular, if Q is
simply connected then the lift exists.

Theorem 1.9 Every connected topological manifold M has a C° simply con-
nected covering space which is unique up to isomorphism of coverings. This is
called the universal cover. Furthermore, if H is any subgroup of m1(M,p),

then there is a connected covering ¢ : M — M and a point p € M such that

o4 (m (M, D)) =

If follows from this and Theorem 1.6 that if M is a C” manifold then there
is a unique C" structure on the universal covering space M so that p: M — M
is a C" covering.

Since a deck transformation is a lift we have the following
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Corollary 1.2 If gJNM — M is a C" covering map and we choose a base
point p € M then if M is connected there is at most one deck transformation ¢
that maps a given p1 € p~1(p) to a given ps € 1 (p). If M is simply connected
then such a deck transformation exists and is unique.

Theorem 1.10 If M s the universal cover of M and ¢ : M — M the corre-
sponding universal covering map then for any base point py € M, there is an
isomorphism of w1 (M, po) with the deck transformation group Deck(p).

Proof. Fix a point p € p~1(po). Let a € m(M,py) and let a be a loop
representing a. Lift to a path a starting at p. As we have seen the point
a(1) depends only on the choice of p and a = [a]. Let ¢, be the unique deck
transformation such that ¢,(p) = @(1). The assignment a — ¢, gives a map
m1(M,po) — Deck(p). Now for a = [a] and b = [] chosen from 71 (M, py),

we have the lifts @ and 8 and we see that ¢, o § is a path from ¢,(p) to

6a(B(1)) = da(dp (). Thus the path 7 := & (qsa o 5) is defined. Now

poF =poax(daoB)]
= (pod)«(po (da07))
= (po@) s ((popa)of)
:(poa)*(poﬁ) =axp

Since a * (3 represents the element ab € w1 (M,po) we have ¢q(p) = F(1) =
oa(dp (D). Now since M is connected this forces bab = @Pq © ¢p. Thus the map
is a group homomorphism

Next we show that the map a — ¢, is onto. Given ¢ € Deck(p) we simply
take a curve ¥ from p to f(p) and then f = ¢, where g = [p o] € m (M, po).

Finally, if ¢, = id then we conclude that any loop a € [a] = a lifts to a loop
a based at p. But M is simply connected and so & is homotopic to a constant
map to p and its projection « is therefore homotopic to a constant map to p.
Thus a = [@] = 0 and so the homomorphism is 1-1. =

1.5.2 Discrete Group Actions

Definition 1.24 Let G be a group and M a set. A left group action is a
map | : G x M — M such that for every g € G the partial map l4(.) = I(g,.)
satisfies:

1) U(g2, (g1, 7)) = l(g291, %) for all g1,92 € G and allz € M.

2)l(e,x) =x for allz € M.

We often write ¢g - or just gz in place of the more pedantic notation I(g, x).
Using this notation we have g2(g12) = (g291)x and ex = x. Similarly, we have



34 CHAPTER 1. DIFFERENTIABLE MANIFOLDS

Definition 1.25 Let G be a group and M a set. A right group action is a
map r: M x G — M such that for every g € G the partial map r4(.) :==r(.,g)
satisfies:

1) r(r(z,91),92) = r(z,9192) for all g1,92 € G and all x € M.

2) r(xz,e) =x for allx € M.

In the case of right actions we write r(x, g) as x-g or xg. For every result for
left actions there is an analogous result for right actions. However, mathematical
conventions are such that while g — [; is a group homomorphism, the map
g — 14 is a a group anti-homomorphism which means that rg, o7y, = rg,q, for
all g1, g2 € G (notice the order reversal).

Given a left action, the sets of the form Gz = {gz : g € G} are called orbits
or cosets. In particular Gz is called the orbit of . Two points = and y are
in the same orbit if there is a group element g such that gxr = y. The orbits
are equivalence classes and so they partition M. Let G\M be the set of orbits
(cosets) and let p : M — G\M be the projection taking each z to Gzx.

Definition 1.26 Suppose the G acts on a set M byl : G x M — M. We say
that G acts transitively if for any x,y € M there is a g such that l4(z) = y.
Equivalently, the action is transitive if the action has only one orbit. If I =
idyr implies that g = e we say that the action is an effective action and if
ly(x) = x for some x € M implies that g = e the we say that G acts freely (or
that the action is free).

Similar statements and definitions apply for right actions except that now
the orbits have the form zG and the quotient space (space of orbits) will then
be denoted by M/G.

Warning: The notational distinction between G\M and M/G is not uni-
versal and often M/G is used to denote G\M. In situations where left-right
distinctions are not relevant we find that the forward slash “/” is often used to
denote quotients of either kind.

Example 1.24 Let p : M — M be a covering map. Fiz a base point pg € M
and a base point po € 9~ (po). If a € w1 (M, po) then for each x € = (po) we
define rq(x) := xa := a(1) where & is the lift of any loop « representing a. The
reader may check that ro is a right action on the set p~1(po).

Example 1.25 Recall that if o : M — M is a universal C" covering map (so
that M is simply connected) we have an isomorphism m (M,po) — Deck(p)
which we denoted by a — ¢o. This means that l(a,x) = ¢a(x) defines a left
action of m1 (M, pg) on M.

Let G be a group and endow G with the discrete topology so that, in par-
ticular, every point is an open set. In this case we call G a discrete group. If
M is a topological space then so is G x M with the product topology. What
does it mean for a map o : G x M — M to be continuous? The topology of
G x M is clearly generated by sets of the form S x U where S is an arbitrary
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subset of G and U is open in M. The map « : G x M — M will be continuous
if for any point (go, o) € G X M and any open set U C M containing «(go, o)
we can find an open set S x V containing (go,xo) such that (S x V) C U.
Since the topology of G is discrete, it is necessary and sufficient that there is
an open V such that a(gy x V) C U. It is easy to see that a necessary and
sufficient condition for a0 to be continuous on all of G x M is that the partial
maps a,4(.) := a(g,.) are continuous for every g € G.

Definition 1.27 Let G be a discrete group and M a manifold. A left discrete
group action is a group action l : G X M — M such that for every g € G the
partial map l,(.) .= U(g,.) is continuous. A right discrete group action is defined
stmilarly.

It follows that if [ : G x M — M is a discrete action then each partial map
ly(.) is a homeomorphism with I 7'(.) = l,-1(.).

Definition 1.28 A discrete group action is C" if M is a C" manifold and each
lg(.) (orrg4(.) for a right actions) is a C" map.

Example 1.26 Let ¢ : M — M be a diffeomorphism and let Z act on M by
n-x:= ¢"(x) where

¢° = idy,
Q" :=¢o---0¢ formn>0
¢ = (¢ H™ forn > 0.

This gives a discrete action of Z on M.

Definition 1.29 A discrete group action o : G x M — M s said to act prop-
erly if every two points x,y € M have open neighborhoods U, and U, respec-
tively such that the set {g € G : gU, N U, # 0} is finite.

There is a more general notion of proper action which we shall meet later. For
free and proper discrete actions we have the following useful characterization.

Proposition 1.4 A discrete group action o : G x M — M acts properly and
freely if and only if the following two conditions hold:

i) Each x € M has a neighborhood U such that gU NU = @ for all g except
the identity e. We shall call such open sets self avoiding.

it) If x,y € M are not in the same orbit then they have self avoiding neigh-
borhoods U, and Uy such that gU, NU, =0 for all g € G.

Proof. Suppose that the action « is proper and free. Let x be given. We
then know that there is an open V containing x such that gV NV = ) except
for a finite number of g, say, g1, ...., gr which are distinct. One of these, say
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g1, must be e. Since the action is free we know that for each fixed i > 1 we
have g;z € M\{z}. By choosing V smaller if necessary we can use continuity
to obtain that ¢;V C M\{z} for all i = 2,...,k or, in other words, that x ¢
gV U---UgV. Let U =V\(g2VU---UgrV). Notice that U is open and we
have arranged that U is also nonempty. We show that U N gU is empty unless
g =e. So suppose g # e. Now UNgU C VNgV so we know that this is empty
for sure in all cases except maybe where g = g; for i =2, ... k. If x € UN g;U
then z € U and so = ¢ ¢;V by the definition of U. But we must also have
x € ¢;U C ¢g;V— a contradiction. We conclude that (i) holds. Now suppose that
x,y € M are not in the same orbit. Again we know that there exist U, and U,
open with gU, NU, empty except possibly for some finite set of g which we
again denote by g1, ...., gr. Since the action is free g1z, ...., grx are distinct. We
also know that y is not equal to any of gjx, ...., grx and so since M is a normal
space there exists disjoint open sets Oy, ...,O, O, with g;x € O; and y € O,.
By continuity, we may shrink U, so that g;U, C O; for all i =1, ..., k and then
we also replace U, with O, NU, (renaming this U, again). As a result we now
see that gU, N U, = 0 for g = g1, ...., gr and hence for all g. By shrinking the
sets U, and U, further we may make them self avoiding.

Now we suppose that (i) and (ii) always hold for some discrete action .
First we show that « is free. Suppose that y = gz. Then for every neighborhood
U of x the set gU NU is empty which by (i) means that g = e. Thus the action
is free.

Pick ,y € M. If 2,y are not in the same orbit then by (ii) we may pick U,
and U, so that {g € G : gU, NU, # 0} is empty and so certainly a finite set.
If z,y are in the same orbit then y = gox for a unique gy since we now know
the action is free. Choose a neighborhood U of x so that gU NU = () for g # e.
Let U, = U and U, = goU then gU, NU, = gU N goU. If gU N goU # 0 then
gglgU NU # () and so galg = e and g = go. Thus the only way that gU, N U,
is nonempty is if g = go and so the set {g € G : gU, N U, # 0} has cardinality
one. In either case we may choose U, and U, so that the set is finite which is
what we wanted to show. m

It is easy to see that if U C M is self avoiding then any open subset V' C U
is also self avoiding. Thus every point x € M has a self avoiding neighborhood
that is a connected chart domain.

Example 1.27 Fiz a basis (f1,f2) of R%. Let Z* act on R? by (m,n) - (z,y) :=
(z,y) + mfy + nfa. This action is easily seen to be properly discontinuous.

Proposition 1.5 Letl: G x M — M be a smooth action which is proper and
free (M is an n dimensional smooth manifold). Then the quotient space G\M
has a natural smooth structure such that the quotient map is a smooth covering
map.

Proof. Giving G\M the quotient topology makes p : M — G\M both an
open map and continuous. Using (ii) of proposition 1.4 it is easy to show that
the quotient topology on G\M is Hausdorff.
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By proposition 1.4 we may cover M by charts whose domains are self avoiding
and connected. Let (U, x) be one such chart and consider the restriction p|U.
If 2,y € U and p(x) = p(y) then x and y are in the same orbit and so y = gx
for some g. Therefore y € gU N U which means that gU N U is not empty and
so g = e since U is self avoiding. Thus z = y and we conclude that p|U is
injective. Since it is also surjective we see that it is a bijection. Since p|U is
also open it has a continuous inverse and so it is a homeomorphism. Since U
is connected, p(U) is evenly covered by p and now we see that p is a covering
map. For every such chart (U, x) we have a map

xo (p|U)™": p(U) — x(U)

which is a chart on G\M. Given any other map constructed in this way, say
yo (9| V)™", the domains p(U) and (V) only meet if there is a g € G such
that gU meets V and a4, maps an open subset of U diffeomorphically onto a
subset of V. In fact, by exercise 1.13 below (| V) ' o p|U is a restriction of
0. Thus for the overlap map we have

yo(pl V)™ o (xo (plU)™)
=yo(plV) oplUox™
=yoaq ox !

which is smooth. =

Exercise 1.13 In the context of the proof above, show that |, o (p|U)_1 is
defined on an open set O = (p|U)_1 (e(V)Np(V)) and coincides with a restric-
tion of the map = — gx for some fixed g and so is a C” map. Hint: For x € O
we must have |, o (p|U)_1 () = gx for some g. But what of other points
x’ also in O? If pl|, o (p|U)_1 (2') = g'a’ then is it true that g = ¢'? Think
about the unique path lifting property and the fate of the path t — gv(t) where
~ connects x and x’.

Example 1.28 We have seen the torus previously presented as T? = S* x S*.
Another presentation that uses group action is given as follows: Let the group
Zx7 =172 act on R? by

(m,n) X (x,y) — (x +m,y +n).

It is easy to check that proposition 1.5 applies to give a manifold R?/Z?. This is
actually the torus in another guise and we have the diffeomorphism ¢ : R?2/72 —
St x S =172 given by [(z,y)] — (e'*,e¥). The following diagram commutes:

R? — S x St

7

R2 /72
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Exercise 1.14 Show that if p : M — G\M is the covering arising from a free
and proper discrete action of G on M then G is exactly the deck transformations
Deck(p).

Covering spaces p : M — M that arise from a proper and free discrete
group action are special in that if M is connected then the covering is a normal
covering which means that the group Deck (p) acts transitively on each fiber

o ()

Example 1.29 Recall the abelian group Zo of two elements has both a mul-
tiplicative presentation and an additive presentation. In this example we take
the multiplicative version. Let Zy := {1,—1} act on the sphere S™ C R"™1 by
(£1) - @ := £x. Thus the action is generated by letting —1 send a point on the
sphere to its antipode. This action is also easily seen to be free and proper.
The quotient space is the real projective space RP™. (See Example 1.10)

RP" = S"/Z,

1.6 Grassmann Manifolds

Grassmann manifolds generalize the projective spaces. Let G, denote the
set of k-dimensional subspaces of R™. We will exhibit a natural differentiable
structure on this set. The idea is the following: An alternative way of defining
the points of projective space is as equivalence classes of n—tuples (v!,...,o") €
R"—{0} where (v!,...,0™) ~ (A, ..., \o™) for any nonzero A. This is clearly just
a way of specifying a line through the origin. Generalizing, we shall represent a
k—plane as an n X k matrix whose column vectors span the k— plane. Thus we
are putting an equivalence relation on the set of n x k matrices where A ~ Ag
for any nonsingular k£ x k matrix g. Let M, «x be the set of n x k matrices with
rank k < n (maximal rank). Two matrices from M« are equivalent exactly
if their columns span the same k-dimensional subspace. Thus the set G(k,n)
of equivalence classes is in one to one correspondence with the set of real k
dimensional subspaces of R™.

Now let U be the set of all [A] € G(k,n) such that A has its first k& rows
linearly independent. This property is independent of the representative A
of the equivalence class [A] and so U is a well defined set. This last fact is
easily proven by a Gaussian column reduction argument. Now every element
[A] € U C G(k,n) is an equivalence class that has a unique member Ag of the

form
Tiesce
pa .
Thus we have a map on U defined by ¥ : [A] — Z € M(,_g)xp = RF(=F)  We
wish to cover G(k,n) with sets U, similar to U and define similar maps. Let

04, ...i, be the shuffle permutation that puts the k columns indexed by i1, ...,
into the positions 1, ...,k without changing the relative order of the remaining
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columns. Now consider the set U, . ;. of all [A] € G(k,n) such that any
representative A has the property that the k rows indexed by i1, ..., i) are linearly
independent. This characterization of [A] is independent of the representative A.
The the permutation induces an obvious 1-1 onto map ‘7/11\7;9 from Uj, .. 4, onto
U = Uy...,. Wenow have maps ¥;, . i, : Uiy i, — Mp_pyxr = R*("=F) given by
composition ¥;,  ;, = \I/Om. These maps form an atlas {¥;, ;,,Ui,. ;. } for
G(k,n) and gives it the structure of a smooth manifold called the Grassmann
manifold of real k-planes in R™. The topology induced by the charts is the
same as the quotient topology and one can check that this topology is Hausdorff
and paracompact.

1.7 Regular Submanifolds

A subset S of a smooth manifold M of dimension n = [ + k is called a regular
submanifold of dimension [ if every point p € S is in the domain of a chart
(U, x) that has the following submanifold property:

x(UNS)=xU)N (R x {0})

We will refer to such charts as regular submanifold charts and as being
adapted (to S). The restrictions x| ¢ of regular submanifold charts provide
an atlas for S (called an induced submanifold atlas ) making it a smooth man-
ifold in its own right. Indeed, one checks that the overlap maps for adapted
charts are smooth.

Exercise 1.15 Prove this last statement.

We will see more general types of submanifolds in the sequel. An important
aspect of regular submanifolds is that the induced topology is the same as the
relative topology. The integer k is called the codimension of S (in M) and we
say that S is a regular submanifold of codimension k.

Exercise 1.16 Show that S is a smooth manifold and that a continuous mayp f :
N — M that has its image contained in a regular submanifold S is differentiable
with respect to the submanifold atlas, if and only if it is differentiable as a map
wnto M.

When S is a regular submanifold of M then the tangent space T,,S at p €
S C M is intuitively a subspace of T,M. In fact, this is true as long as one
is not bent on distinguishing a curve in S through p from the “same” curve
thought of as a map into M. If one wants to be pedantic then we have the
inclusion map ¢ : S <— M and if ¢c: I — S is a curve into S then toc: I — M
is a map into M as such. At the tangent level this means that ¢/(0) € 7,5
while (10¢)’(0) € T, M. Thus from this more pedantic point of view we have to
explicitly declare Tp,e : T,S — T,u(T,S) C T, M to be an identifying map. We
will avoid the use of inclusion maps when possible and simply write 7,S C T, M
and trust the intuitive notion that 7,5 is indeed a subspace of T}, M.
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Exercise 1.17 Convince yourself that Symyx»(R) is a reqular submanifold of
M« (R). Under the canonical identification of TsM,, xn (R) with My, (R) the
tangent space of Symy,xn(R) at the symmetric matriz S becomes what subspace
of M, 5, (R) ?

In example 1.14 we saw how certain subsets of R™ can be given a smooth
structure where the charts are restrictions of projections onto coordinate planes.
One can show that such subsets of R™ which are locally graphs over coordinate
planes are regular submanifolds in accordance with definition given above. In
the following exercise we ask the reader to show the converse.

Exercise 1.18 Show that if M is an l-dimensional reqular submanifold of R™
then for every p € M there exists at least one l-dimensional coordinate plane P
such that linear projection R™ — P = R! restricts to a coordinate system for M
defined on some neighborhood of p.

1.8 Manifolds with boundary.

For the general Stokes theorem where the notion of flux has its natural setting
we will need to have the concept of a smooth manifold with boundary . We
have already introduced the notion of a topological manifold with boundary
but now we want to see how to handle the issue of the smooth structures. A
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basic example to keep in mind is the closed hemisphere Si which is the set
of all (x,y,2) € S? with z > 0. Recall that we defined the n dimensional
(left) Euclidean half-space to be H" := R”, _ := {(z',...,2™) € R" : 2! < 0},
n-dimensional differentiable manifolds are modeled on H".

Remark 1.6 We have chosen the space RY, _, rather than R7, ., on purpose.

% is outward pointing for Ry but not for R . . This turns out to be
convenient with regard to defining the induced orientation on the boundary of a

manifold with boundary. (%, e &%) will be positively oriented on 0 x R*~1
whenever (%, %, e 82") is positively oriented on R”™.

Give H" the relative topology as a subset of R™. Since H" C R" we already
have a notion of differentiability on open subsets of H" via definition 1.3. For
convenience let us introduce for an open set U C H™ (always relatively open)
the following notations: Let OU denote OH™ N U and int(U) denote U \ OU.

We have the following three facts:

1. First, it is an easy exercise to show that if f : U ¢ R* — RF is C"
differentiable (with » > 1) and ¢ is another such map with the same
domain, then if f = g on H* NU then Df(xz) = Dg(z) for all z e H* N U.

2. If f: U CR" — H" is C" differentiable (with » > 1) and f(z) € OH" for
all z € U then Df (z) : R™ — R™ must have its image in OH".

3. Let f: Uy C H® — Uy C H" be a diffeomorphism (in our new extended
sense). Assume that H" NU; and H” NUs are not empty. Then f induces
diffeomorphisms OU; — 9Us and int(Uy) — int(Us).

These three claims are not exactly obvious but there are very intuitive. On
the other hand, none of them are difficult to prove and we will leave these as
problems.

We can now form a definition of smooth manifold with boundary in a fashion
completely analogous to the definition of a smooth manifold without boundary.
A half space chart x, for a set M is a bijection of some subset U, of M
onto an open subset of H". A C" half space atlas is a collection (Uy,x4)
of such half space charts such that for any two, say (Ua,xq) and (Ug,xg), the
map Xq O xgl is a C" diffeomorphism on its natural domain (if non-empty).
Note: “Diffeomorphism” means diffeomorphism in the extended sense of being
a homeomorphism and such that both x, o xgl and its inverse are C" in the
sense of Definition 1.3.

Definition 1.30 A C"-manifold with boundary (M, A) is a pair consisting
of a set M together with a maximal atlas of half space charts A. The manifold
topology is that generated by the domains of all such charts. The boundary of M
is denoted by OM and is the set of points that have their image in the boundary
OH"™ of H" under some and hence every chart.
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x1 <0
M Xa L ™
—al

x1 <0

The three facts listed above show that the notion of a boundary is well
defined concept and is a natural notion in the context of smooth manifolds; it
is a “differentiable invariant”.

Colloquially, one usually just refers to M as a manifold with boundary and
forgoes the explicit reference to the atlas. The interior of a manifold with

boundary is M\OM. It is a manifold without boundary and is denoted M.

Exercise 1.19 Show that M UOM is closed and that M = M\OM s open.

In the present context, a manifold without boundary that is compact (and
hence closed in the usual topological sense if M is Hausdorfl) is often referred
to as a closed manifold. If no component of a manifold without boundary

is compact, it is called an open manifold. For example, the “interior” M
of a connected manifold M with nonempty boundary is never compact and is
[e]

an open manifold in the above sense. So M will be an open manifold if every
component of M contains part of the boundary.

Remark 1.7 The phrase “closed manifold” is a bit problematic since the word
closed is acting as an adjective and so conflicts with the notion of closed in the
ordinary topological sense. For this reason we will try to avoid this terminology
and use instead the phrase “compact manifold without boundary”.

Remark 1.8 (Warning) Some authors let M denote the interior, so that MU
OM is the closure and is the smooth manifold with boundary in our sense.

Theorem 1.11 If M is a C" manifold with boundary then M is a C" manifold
(without boundary) with an atlas being given by all maps of the form x4|,Us N
OM. The manifold OM 1is called the boundary of M.
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Idea of Proof. The truth of this theorem becomes obvious once we recall
what it means for a chart overlap map yox~! : U — V to be a diffeomorphism in
a neighborhood a point € UNH". First of all there must be a set U’ containing
U that is open in R” and an extension of y o x~! to a differentiable map on U’.
But the same is true for (yox~!)™! = x o y~!. The extensions are inverses
of each other on U and V. But we must also have that the derivatives of the
chart overlap maps are isomorphisms at all points up to and including OU and
OV. But then the inverse function theorem says that there are neighborhoods
of points in U in R™ and 9V in R"™ such that these extensions are actually
diffeomorphisms and inverses of each other. Now it follows that the restrictions
yo X_lfaU : OU — 0V are diffeomorphisms. In fact, this is the main point of
the comment (3) above and we have now seen the idea of its proof also. m

Example 1.30 The closed ball B(p, R) in R™ is a smooth manifold with bound-
ary OB(p, R) = S"~ L.

Example 1.31 The hemisphere ST = {x € R : 2"t > 0} is a smooth
manifold with boundary.

Exercise 1.20 Is the Cartesian product of two smooth manifolds with boundary
necessarily a smooth manifold with boundary?

1.9 Local expressions

Many authors seem to be over zealous and overly pedantic when it comes to
the notation used for calculations in a coordinate chart. We will often make
some simplifying conventions that are exactly what every student at the level of
advanced calculus is already using anyway. Consider an arbitrary pair of charts
x and y and the overlap maps yox 1 : x(UNV) — y(UNV). We write

y(p) = yox 1 (x(p))

for p € UNV. For finite dimensional manifolds we see this written as

v'(p) = y'(«' (p), ... 2" (p)) (1.1)
which makes sense but in the literature we also see
Yl =vyi(xt, ..., 2"). (1.2)

In this last expression one might wonder if the z* are functions or numbers. But
this ambiguity is sort of purposeful for if 1.1 is true for all p € U NV then 1.2
is true for all (2%, ...,2") € x(UNV) and so we are unlikely to be led into error.

If f: M — N is a map of smooth manifolds then for every pair of charts
(U,x) € Ay and (V,y) € Ay such that f(U) NV # () we have a map f =
yo fox~! defined on an open subset of R” where n = dim(M). Now f is called
the local representative of with respect to the chosen charts. If dim(N) = k then
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f = (f' ..., f*) and each f? is a function of n variables. If we denote generic
points in R™ as (u!,....,u") and those in R* as (v!,...,v*) then we may write
vl = fi(ul,....,u") , 1 <i < k. However, in the spirit of the last paragraph, it is
also common and sometimes psychologically helpful to write 3* = fi(z',....,z™).
The bars over the f’s are also sometimes dropped. Another common way to
indicate yo fox~1! is with the notation fy iy which is very suggestive and tempting
but it has a slight logical defect since there may be many charts with domain U
and many charts with domain V. How would one deal with the situation where
U=V but x#y?

1.10 Applications

At this point in our explorations we haven’t covered enough ground to do justice
to any real applications so we just make a few general remarks. The notion
of differentiable manifold which we have introduced serves several purposes in
physics. The set of all configurations of a classical mechanical system or system
of particles is usually a manifold. For a single particle the manifold would
represent the set of all possible positions that the particle could take. A set of
constraints may fix the particle to a submanifold of Euclidean space for example.
If we include the set of all possible momenta then we have the phase space which
is most naturally taken to be an associated manifold called the cotangent bundle
T*M which we introduce in the next chapter along with the tangent bundle T'M.
Given initial conditions, the evolution of a particle or more general system will
be a smooth path in T* M. In relativity theory a manifold will represent the set
of all possible idealized events in spacetime.

Much more machinery must be developed in order to appreciate how physics
is done with manifolds. Later we will study fields and they will be special kinds
of maps between smooth manifolds. Such fields provide a mathematical descrip-
tion of physical concepts such as the (classical) electromagnetic fields, velocity
fields of fluid mechanics, first quantized matter fields and gauge fields from
modern particle physics and more. Engineering concepts are also sometimes
amplified and clarified by the use of the language of manifolds and smooth
maps. For example, there is much activity in what is called geometric control
theory wherein the tools of manifold theory are used with full force.

Symmetry is an important topic for physics and engineering. Many types of
problems cannot be solved in detail unless sufficient symmetry is present and
properly understood. The groups of matrices that describe many symmetries
are usually manifolds themselves.

It should also be mentioned that many of the basic laws of physics are
formulated as ordinary or partial differential equations. As more machinery is
introduced we will also see that highly geometric versions of these ODE’s and
PDE’s will appear naturally in the manifold setting. In fact, the vector fields
and flows that we study will correspond to the ODE’s while the heat, wave,
and Laplace type equations also have natural geometric generalizations. On the
other hand, the pure geometry itself gives rise to its own differential equations
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that describe integrability conditions for geometric fields and encode various
facts about curvature, parallel transport etc.

1.11 Problems

1. Prove Lemma 1.2.

2. Check that each of the manifolds given as examples are indeed paracom-
pact and Hausdorff.

3. Let M and N be smooth manifolds, and f: M — N a C° map. Suppose
that M is compact, N is connected. Suppose further that f is injective
and that T, f is an isomorphism for each x € M. Show that f is a
diffeomorphism.

4. Let My , M5 and M3 be smooth manifolds.

(a) Show that (M; xMs) x Mj is diffeomorphic to My x(My x M3) in a
natural way.

(b) Show that f: M — M; xMs is C* if and only if the composite maps
priof: M — M; and pryo f : M — My are both C*°.

5. Show that a C" a manifold M is connected as a topological space if and
only it is C"—path connected in the sense that for any two points p1,p2 €
M there is a C" map c: [0,1] — M such that ¢(0) = p; and ¢(1) = ps.

6. An affine map between two vector spaces is a map of the form z — Lx +b
for a fixed vector b. An affine space has the structure of a vector space
except that only the difference of vectors rather than the sum is defined.
For example,let L : R™ — R™ be a linear map and let A. = {z € R" :
Lz = ¢}. Now A. is not a vector subspace of R"; it is an affine space
with “difference space” ker L. This means that for any pi,ps € A, the
difference po — p; is an element of ker L. Furthermore, for any fixed py €
A, the map x — pg + « is a bijection ker L. = A.. Show that the set
of all such bijections forms an atlas for A, such that for any two charts
from this atlas the overlap map is an affine isomorphism from ker L to
itself. Develop a more abstract definition of topological affine space with
a Banach space as difference space. Show show that this affine structure
is enough to make sense out of the derivative via the difference quotient.

7. A k-frame in R is a linearly independent ordered set of vectors (v, ..., vg).
Show that the set of all k—frames in R™ can be given the structure of a
smooth manifold. This kind of manifold is called a Stiefel manifold.

8. Embed the Stiefel manifold of k-frames in R™ into a Euclidean space RV
for some large N.

9. Show in detail that the subsets of R3 described as compact surfaces of
genus ¢ in example 1.15 are indeed regular submanifolds of R3.
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10.

11.

12.

13.

14.

15.

16.

17.
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If M x N is a product manifold we have the two projection maps pri :
MxN — M and pry : MxN — N defined by (z,y) — z and (z,y) — y
respectively. Show that if we have smooth maps f; : P — M and fs :
P — N then the map (f,g) : P — M x N given by (f,9)(p) = (f(p). (p))
is the unique smooth map such that pri o (f,g) = f and proo (f,g) =g¢

Let M be a topological manifold. Give necessary conditions such that the
topology induced by an atlas is the same as the original topology.

Show that the atlas natural projection charts of a regular submanifold
induce the relative topology inherited from the ambient manifold.

The purpose of this problem is to make it clear that even though a set
may carry an atlas, it is not necessarily true that the induced topology as
described in problem ?? is Hausdorff. Let S be the subset of R? given by
the union (R x0)U{ (0,1)}. Let U be R x 0 and let V' be the set obtained
from U by replacing the point (0,0) by (0,1). Define a chart map x on U
by x(x,0) = « and a chart y on V by

rifzx#0
Y(x’o):{ .

Show that these two charts provide a C'* atlas on .S but that the induced
topology is not Hausdorff.

Because we have not required a manifold to be second countable but only
Hausdorff and paracompact, we have the possibility of having an uncount-
able number of connected components. Consider the set R? without its
usual topology. For each a € R define a bijection ¢, : R x {a} — R by
¢a(x,a) = x. Show that the family of sets of the form U x {a} for U open
in R and a € R provide a base for a paracompact topology on R2. Show
that the maps ¢, are charts and together provide an atlas for R? with
this unusual topology. Show that the resulting smooth manifold has an
uncountable number of connected components.

Show that every connected manifold has a countable atlas consisting of
charts whose domains have compact closure and are simply connected.
Hint: We are assuming that our manifolds are paracompact so each con-
nected component is second countable.

Show that each every second countable manifold has a countable funda-
mental group (see [Lee, ?] page 10 if you get stuck).

If C x C is identified with R* in the obvious way then S? is exactly the
subset of C x C given by {(z1,2) : |z1]° + |z2|> = 1}. Let p,q be coprime
integers and p > 0. Now let w be a primitive n—th root of unity so that
Zy = {l,w,...,wP1}. For (21,22) € S3 let w - (21,22) == (w21,w%22) and
extend this to an action of Z, on S® so that w" - (21, 20) = (WF2z1, W 2y).
Show that this action is free and proper. The quotient space Z,\S? is
called a lens space and is denoted by L(p;q).
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Let S! be realized as the set of complex numbers of modulus one. Define
amap 0 : S xSt — St xSt by 0(z,w) = (—z,w) and note that fof = id.
Let G be the group {id,#}. Show that M := (S* x S') /G is a smooth
2-manifold. Is M orientable?

Show that if S is a regular submanifold of M then we may cover S by
special adapted charts from the atlas of M which are of the form x: U —
Vi x Vo C R! x RF = R” with

X(UOS) = Vl X {0}
for some open sets Vi € RY, V, € R,

Prove the three properties about H™ and OH™ listed in the section on
manifolds with boundary.
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Chapter 2

The Tangent Structure

2.1 The Tangent Space

If ¢ : (—e,e) — RY is a smooth curve then it is common to visualize the
“velocity vector” ¢(0) as being based at the point p = ¢(0). It is often desirable
to explicitly form a separate N—dimensional vector space whose elements are
to be thought of as being based at a point p € RY. One way to do this is to
use {p} x RY so that a tangent vector based at p is taken to be a pair (p,v)
where v € RY. The set {p} x R" inherits a vector space structure from RY
in the obvious way and is one version of what is called the tangent space to
RN at p. In this context, we denote {p} x RN by T,RN. If we write c(t) =
(1 (t), ..., 2N (t)), then the velocity vector of a curve ¢ at t = 0 and based at

p = c(0) is (p, %(0), ..., %7 (0)). Ambiguously, both (p, Z-(0), ..., 2~ (0)) and

(%(0), e %(0)) are often denoted by ¢(0). A bit more generally, if V is a
finite dimensional vector space then V is a manifold and the tangent space at

p € V can be taken to be the set {p} x V.

Definition 2.1 If v, := (p,v) is a tangent vector at p then v is called the
principal part of v,.

The existence of the obvious and natural isomorphism between R and
TPRN = {p} x RY for any p is the reason that in the context of calculus on R
this explicit construction of vectors based at a point is often deemed unneces-
sary. All the tangent spaces T,R” are canonically isomorphic to RY and hence
to each other. However, from the point of view of manifold theory, the tangent
space at a point is a fundamental construction. We will define the notion of
a tangent space at a point of a differentiable manifold and it will be seen that
there is in general no way to canonically identify tangent spaces at different
points.

Actually, we shall give several (ultimately equivalent) definitions of tangent
space. Let us start with the special case of a submanifold of RY. A tangent
vector at p can be thought of as the velocity of a curve, as a direction for a

49
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directional derivative and also as geometric object which has components which
depend on what coordinates are being used. Let us explore these aspects in
the case of a submanifold. If M is an n-dimensional regular submanifold of
RY then a smooth curve ¢ : (—¢,€) — M is also a smooth curve into RY and
¢(0) is normally thought of as based at the point p = ¢(0) and is tangent to M
according to any reasonable definition of what it means to be tangent. The set
of all vectors obtained in this way from curves into M with ¢(0) = p is an n
dimensional subspace of the tangent space of RY at p (described above) and in
this special case this space could play the role of the tangent space of M at p. Let
us tentatively accept this definition of the tangent space at p and denote it by
T,M. Let v, := (p,v) € T,M. There are three things we should notice about v,,.
The first thing to notice is that there are many different curves ¢ : (—€,e) — M
with ¢(0) = p which all give the same tangent vector v, and there is an obvious
equivalence relation among these curves: two curves passing through p at time
t = 0 are equivalent if they have the same tangent vector. Already one can
see that perhaps this could be turned around so that we can think of a tangent
vector as equivalence class of curves. Curves would be equivalent if they agree
infinitesimally in some appropriate sense.

The second thing that we wish to bring out is that a tangent vector can be
used to construct a directional derivative operator. Thus from v, = (p,v) we
get a linear map

C*(M)—R

given by
fro Sl foe
—_
dt|,

where ¢ : I — M is any curve whose velocity at time ¢ = 0 is v,. This is the
idea which we will exploit later when we use the abstract properties of such a
directional derivative to actually define the notion of a tangent vector.

The final aspect we wish to bring out is how v, relates to charts for the
submanifold. If (y,U) is a chart on M with p € M then by inverting we obtain
amapy~!:V — M which we may then think of as a map into the ambient space
RY. The map y~! parameterizes a portion of M. For convenience let us suppose
that y~1(0) = p. Then we have the “coordinate curves” y* — y—1(0, ..., 3, ...,0)
for i = 1,...,n. The resulting tangent vectors at p have principal parts given by
the partial derivatives so that

B = (0, - 0),

It can be shown that (Ei,..., E,) is a basis for T,M. For another coordinate
system § with §7'(0) = p we similarly define a basis (Ei,..., E,). Now if
v, = Yr a'E; = Y" | a'E; then letting a = (a',...,a") and a = (a*,...,a"),

the chain rule can be used to show that

a=D(ye yil)’y(p) @
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which is classically written as

oy’
oyl

—~1

¢’ (summation convention).

Both (a',...,a™) and (@', ...,a") represent the tangent vector v, but with respect
to different charts. This is a simple example of a transformation law.

The various definitions for the notion of a tangent vector given below in the
general setting, will be based in turn on the following three ideas:

1. Equivalence classes of curves through a point. Curves are equivalent if
they are “tangent” at the point.

2. The use of charts and the idea of the components a tangent vector with
respect to the charts. The transformation law for the components of a
tangent vector with respect to various charts, plays a central role here.

3. The use of the idea of a “derivation”, a kind of abstract directional deriva-
tive.

Of course we will also have to show how to relate these various definitions
to see how they are really equivalent. We start with the idea from (1) above to
get a definition that will be our main and default definition.

2.1.1 Tangent space via curves

Let p be a point in a smooth manifold M of dimension n. Suppose that we have
smooth curves c¢; and co mapping into M, each with open interval domains
containing 0 € R and with ¢;(0) = ¢2(0) = p. We say that ¢; is tangent to cq at
p if for all smooth functions f : M — R we have %|t:0 foa = %|t:0 foca.
This is an equivalence relation on the set of all such curves. Define a tangent
vector at p to be an equivalence class X,, = [¢] under this relation. In this case
we will also write ¢(0) = X,. The tangent space T,,M is defined to be the set
of all tangent vectors at p € M.

The definition of tangent space just given is very geometric but it has one
disadvantage. Namely, it is not immediately obvious that T,M is a vector
space in a natural way. The following principle is used to obtain a vector space
structure:

Proposition 2.1 (Consistent transfer of linear structure) Suppose that S
is a set and {Vy}aca is a family of n dimensional vector spaces. Suppose that
for each a we have a bijection b, : V, — S. If for every a, € A the map
bgl 0 by : Voo — V3 is a linear isomorphism then there is a unique vector space
structure on the set S such that each b, is a linear isomorphism.

The proof of this proposition is straightforward.
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Exercise 2.1 Use the above proposition to show that there is a natural vector
space structure on T,M as defined above. Hint: For every chart (x4,U) with
p € U we have a map by : R — T,M given by v — [vy,] where v, : t —
x;  (%a(p) + tv). Show that by, is a bijection and let V,, = R™ for all c.

We will give two more definitions of tangent space and although we will
eventually come to see all these as versions of the same object let us temporarily
called the tangent space defined above the kinematic tangent space and
denote it also by (T,M),,,.. To summarize, if C, is the set of smooth curves
defined on some interval containing 0, then

(TpM) s, = Cp/ ~
where the equivalence is a described above.

Exercise 2.2 Let ¢y and co be smooth curves mapping into a smooth manifold
M, each with open domains containing 0 € R and with ¢1(0) = c2(0) = p. Show

that
d d

dt Tt

for all smooth f if and only if the curves xocy and xo co have the same tangent
vector in R™ for any chart (U, x).

foa

t=0

foce
t=0

2.1.2 Tangents space via charts

Let A be the maximal atlas for a smooth manifold M of dimension n. For fixed
p € M, consider the set I', of all triples (p,v, (U,x)) € {p} x R™ xA such that
p € U. Define an equivalence relation on I', be requiring that (p, v, (U,x)) ~
(p,w, (U,y)) if and only if

D(yox™ ") v =w.

x(p)

In other words, the derivative at x(p) of the coordinate change y o x~1 “iden-

tifies” v with w. The set T',/ ~ of equivalence classes can be given a vector
space structure as follows: For each chart (U, x) containing p we have a map
by : R* — T'y/ ~ given by v — [p,v, (U, x)] where [p,v, (U,x)] denotes the
equivalence class of (p,v,(U,x)). To see that this map is a bijection we just
notice that if [p,v,(U,x)] = [p,w, (U,x)] then v = D(xox‘1)|x(p) -v = w by
definition. By proposition 2.1 we obtain a vector space structure on I'y/ ~. This
is another version of the tangent space at p and we shall (temporarily) denote
this by (7,M),,, .- The subscript “phys” refers to the fact that this version
of the tangent space is based on a “transformation law” and corresponds to a
way of looking at things that has traditionally been popular among physicists.
If v, = [p,v, (U,x)] € (T,M) then we say that v € R™ represents v, with
respect to the chart (U, x).

This viewpoint takes on a more familiar appearance if we use a more classical
notation; Let (U, x) and (V,y) be two charts containing p in their domains. If

phys
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an n—tuple (v',...,v™) represents a tangent vector at p from the point of view
of (U,x) and if the n—tuple (w!,...,w™) represents the same vector from the
point of view of (V,y) then

i ayi
97 | )

v/ (sum over j)
where we write the change of coordinates as y* = y*(x!,...,2") with 1 <i < n.

Notation 2.1 [t is sometimes convenient to index the maximal atlas: A =
{(Ua, %a)}aca. Then we would consider triples of the form (p,v,«) and let the
equivalence relation be (p,v, ) ~ (q,w, ) if and only if p = q and D(xg o x;l)‘x @)
v=w.

2.1.3 Tangent space via derivations

We abstract the notion of directional derivative for our next approach to the
tangent space. There are actually at least two common versions of this and
we explain both. Let M be a smooth manifold of dimension n. A tangent
vector X, at p is a linear map X, : C*°(M) — R with the property that for
f.g€C®(M)

Xp(f9) =g)Xpf + f(p)Xpg.

This is called the Liebniz law. We may say that a tangent vector at p is a
derivation of the algebra C>° (M) with respect to the evaluation map ev, at p
defined by ev,(f) := f(p). Alternatively, we say that X, is a derivation at p.
The set of such derivations at p is easily seen to be a vector space which is called
the tangent space at p and is denoted T, M. We temporarily distinguish this
version of the tangent space from (T,M),;, and (TpM) ,  defined previously
by denoting it by (T,,M),, « and referring to it as the algebraic tangent space.
We could also consider the vector space of derivations of C"(M) at a point for
r < oo but this would not give a finite dimensional vector space and so is not a
good candidate definition for the tangent space (see problem 14).

Definition 2.2 Let (U,x) be a chart on a smooth n dimensional manifold M
with p € U. We write x= (x',...,2™) as usual and denote standard coordinates

on R™ by (ul,...,u"). For f € C(M) define

_ 0(fexT)

of
() S

el (x(p)):

Also, define the operator %

L C(M) =R by

0 _of
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From the usual product rule it follows that % » is a derivation with respect

to ev, and so is an element of (T, M)a1,. We will show that (52

P T ‘p)
2ty g
iS a baSiS fOI‘ (he vector Space (%M)alg.

Lemma 2.1 Letv, € (T,M) a4 (so vy is a derivation as explained above). Then
(1) if f,g € C(M) are equal on some neighborhood of p then v,f = v,g,

(i) if h € C>°(M) is constant on some neighborhood of p then v h = 0.

Proof. (i) Since v, is a linear map it is clear that it suffices to show that
if f =0 on a neighborhood U of p then v,f = 0. Of course v,(0) = 0. Let
be a cut-off function with support in U and §(p) = 1. Then we have that 8f is
identically zero and so

0=v,(Bf) = f(P)vpB + BD)vpf
— v,/ (since 3(p) = 1 and f(p) = 0)

(ii) From what we have just shown, it suffices to assume that h is equal to
a constant ¢ globally on M.
In the special case ¢ = 1 we have

vpl=v,(1-1)=1-v,1+1-v,1
2up1

so that v,1 = 0. Finally we have v,c = v, (1c) =c(v,1) =0. =

Let p € U C M with U open. We construct a rather obvious map P :
(TpU) g — (TpM),,, by using the restriction map C*(M) — C*(U). We for
each w, € T,U we define wy, : C*°(M) — R by w,(f) := w,( f|U). It is simple
to show that w, is a derivation of the appropriate type and so w, € (T,M), o
Thus we get amap & : (T,U), g — (IpM),), which is manifestly linear. We want
to show that this map is an isomorphism but notice that we have not established
the finite dimensionality of either (T,U),,, or (1,M),),. First we show that
® : w, — w, has trivial kernel. So suppose that w, = 0, i.e. w,(f) = 0
for all f € C®°(M). Now let h € C>(U). Pick a cut-off function 8 with
support in U so that Sh extends by zero to a smooth function f on all of
M and agreeing with A on a neighborhood of p. Then by the above lemma
wp(h) = wp(Bh) = wp(f) = 0. Thus, since h was arbitrary, we see that w, =0
and so ® has trivial kernel. Next we show that ® is onto. Let v, € (TpM)alg.
We wish to define wy, € (T,U),, by wy(h) := vy(Bh) where 3 is as above and
Bh extended by zero to a function in C*°(M). Another similar choice of cut-off
function, say 1, would make Sh and 1 h (both extended to all of M) functions
agreeing on a neighborhood of p and so by Lemma 2.1, v,(8h) = v,(81h). Thus
wy is well defined. Now w,(f) := w,(f|U) = v,(8 fIU) = v, (f) since Bf|U
and f agree on a neighborhood of p. Thus ® : (T,U),, — (T,M),, is an
isomorphism.

alg
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Because of this isomorphism we tend to identify (7,U),,, with (T7,,M),,, and

alg

in particular, if (U,x) is a chart we think of the derivations % - 1<i<n

as being simultaneously elements of both (T,U),,, and (T,M),,,. In either case
the formula is the same: 82’7 » f= %(x(p))

Notice that agreeing on a neighborhood of a point is an important thing here
and this provides motivation for employing the notion of a germ of a function
which was defined at the end of section 1.3. We will do this but first we establish
the basis theorem.

Theorem 2.1 Let M be a smooth n—dimensional manifold and (U,x) a chart
with p € U. Then the ordered n—tuple of vectors (derivations) (6%1|p , 91

ooy W p
is a basis for (T,M),,,. Furthermore, for each v, € (T,M),,, we have

vy = vp(2?) =—| (sum overi)
oz* |,

Proof. From our discussion we may assume without loss that U has been
shrunk in such a way that x(U) is a convex set such as a ball of radius ¢ in
R™. By composing with a translation we assume that x(p) = 0. This make no
difference for what we wish to prove since v, applied to a constant is 0. Now
for any smooth function g defined on the convex set x(U) we define

1
gi(u) = / a—g,(tu)dt for all u € x(U).
0 3ul

The fundamental theorem of calculus can be used to show that g = g(0) + g;u’.
Applying % o, We see that g;(0) = aafi . Now for a function f € C°°(U)
we let g :== f ox~! and then using the above, we arrive at the expression
f = f(p) + fiz" and applying 7% | we get fi(p) = & )

derivation v, to f = f(p) + fiz® we get

vf =0+ v(fia')
=0+ va(zl)fl(p) + Zovpfi

0
= va(xl) ('3xfi ,

which shows that v, = va(xi) %
see that (2 o

Ozt lp? " Ozt
> al

> aiég = a7 and since j was arbitrary we get the result. m
There is another version of this definition of a tangent vector as a derivation
that emphasizes the local character. Using this method allows us to worry a bit

Now apply the

p 50 that we have a spanning set. To

p) is a linearly independent set, let us assume that

i Ozt _
ox* -
p

o , =0 (the zero derivation). Applying thisto 2/ weget 0 =" a
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less about the relation between (T,U),,, and (T,M),, . Let F, = C°(M,R) be
the algebra of germs of functions defined near p. Recall that if f is a represen-
tative for the equivalence class [f] € F, then we can unambiguously define the
value of [f] at p by [f](p) = f(p). Thus we have an evaluation map ev, : F, — R.

Remark 2.1 We will sometimes abuse notation and write [ instead of [f] to
denote the germ represented by a function f.

Definition 2.3 A derivation (with respect to the evaluation map ev,) of the
algebra F, is a map D : F, — R such that D([f]lg]) = f(p)Dlg] + g(p)D[f] for
all [f], 9] € Fp.

The set of all these derivations on F, is easily seen to be a real vector space
and is sometimes denoted by Der(F)).

Let M be a smooth manifold of dimension n. Consider the set of all germs
of C* functions F, at p € M. The set Der(F,) of derivations of F,, with respect
to the evaluation map ev, is again a vector space which could be taken as the
definition of the tangent space at p. This would be a slight variation of what
we have called the algebraic tangent space.

2.2 Interpretations

We will now show how to move from one definition of tangent vector to the
next. For simplicity let us assume that M is a smooth (C°°) n-manifold.

Suppose that we think of a tangent vector X, as an equivalence class of
curves represented by ¢ : I — M with ¢(0) = p. We obtain a derivation by
defining

This gives a map (TpM)iin — (TpM)alz which can be shown to be an iso-
morphism.

We also have a natural isomorphism (T, M )xin — (T, M )pnys. Given [c] €
(TpM)xin we obtain an element X, € (T, M)pnys by letting X, be associated to
the triple (p,v, (U, x)) where v’ := %|t:0 x' o c for a chart (U,x) with p € U.

If X, is a derivation at p and (U, x) an admissible chart with domain con-
taining p, then X, as a tangent vector a la definition 2.1.2, is represented by

the triple (p,v, (U, x)) where v = (v}, ...0™) is given by

vt = X" (X, is acting as a derivation)

Next we show how to get an isomorphism (7, M)phys — (TpM )alg. Suppose
that [(p,v, (U,x))] € (T,M)pnys where v € R™. We obtain a derivation by
defining

Xpf = D(foxil)|x(p) v
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We have the more traditional notation

, 0
pr—'l) @pf

for v = (v!,...v™). If is an easy exercise that X, defined in this way is indepen-

dent of the representative triple (p,v, (U, x)).

‘We now adopt the explicitly flexible attitude of interpreting a tan-
gent vector in any of the ways we have described above depending on
the situation. Thus we effectively identify the spaces (T, M )xin, (Tp M )phys
and (T, M )a1g. Henceforth we use the notation T,M for the tangent space of a
manifold M at a point p.

Definition 2.4 The dual space to a tangent space T, M is called the cotangent
space and is denoted by Ty M.

The basis for T,y M that is dual to the coordinate basis { %| ) = |} de-
aTlp p

O
o dw"|p}. By definition dxi‘p (%’p) = 5;

The reason for the differential notation da’ will be explained below. Sometimes
one abbreviates % |p and dz* ’p to % and dz’ but there is some risk of confu-

scribed above is denoted {dx!

sion since later % and dz’ will more properly denote not elements of the vector
spaces T, M and T; M, but rather fields defined over a chart domain. More on
this shortly.

2.3 Tangent spaces on manifolds with boundary

Recall, that a manifold with boundary is modeled on the half space H" := {z €
R™ : 2! < 0}. If M is a manifold with boundary, the tangent space T,M is
defined as before. For instance, even if p € OM the fiber T, M may still be
thought of as consisting of equivalence classes where (p, v, a) ~ (p,w, 3) if and
only if D(xgo x;1)|xa(p) -v = w. Notice that for a given chart (Uy,Xq), the
vectors v in (p,v, ) still run through all of R™ and so T, M still has tangent
vectors “pointing in all directions” as it were. On the other hand, if p € M
then for any half-space chart x, : U, — H" with p in its domain, Tx_*(OH")
is a subspace of T, M. This is the subspace of vectors tangent to the boundary
and is identified with T,,0M the tangent space to dM (also a manifold as well
shall see).

Exercise 2.3 Show that this subspace does not depend on the choice of x,.

Definition 2.5 Let M be a manifold with boundary and suppose that p € OM.
A tangent vector v, = [(p,v,)] € T,M s said to be outward pointing if
v! > 0 and inward pointing if v* < 0. Here a € A indexes charts as before.

Exercise 2.4 Show that the above definition is independent of the choice of the
half-space chart x,, : U, — H.
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2.4 The Tangent Map

The first definition given below of the tangent map at p € M of a smooth map
f: M — N will be considered our main definition but the others are actually
equivalent. Given f and p as above wish to define a linear map T, f : T,M —
TN

Definition 2.6 (Tangent map I) If we have a smooth function between man-
ifolds
f:M—N

and we consider a point p € M and its image ¢ = f(p) € N then we define the
tangent map at p

Tpf : T,M — TyN
in the following way: Suppose that v, € T,M and we pick a curve c with ¢(0) = p
so that v, = [c], then by definition

Tpf -vp=[focd €TyN
where [f oc| € TyN is the vector represented by the curve f o c.

Since we have several definitions of tangent vector we expect to see several
equivalent definitions of the tangent map. Here is another:

Definition 2.7 (Tangent map II) Let f : M — N be a smooth map and
consider a point p € M with image ¢ = f(p) € N. Choose any chart (U,x)
containing p and a chart (V,y) containing ¢ = f(p) so that for any v, € T,M
we have the representative (p,v, (U,x)). Then the tangent map T,,f : T,M —
TN is defined by letting the representative of Ty, f - v, in the chart (V,y) be
given by (g, w, (V,y)) where

v=D(yofox ') w.
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This uniquely determines T, f - v and the chain rule guarantees that this is well
defined (independent of the choice of charts).

Another alternative definition of tangent map is given in terms of derivations:

Definition 2.8 (Tangent Map III) Let M be a smooth n-manifold. View
tangent vectors as derivations as explained above. Then continuing our set up
above we define Tp, f - v, as a derivation by

(Tpf - vp)g =vp(fog)

for g a smooth function . It is easy to check that this defines a derivation so is
also a tangent vector in ToM. This map is yet another version of the tangent
map 1T, f.

In the above definition one could take g to be the germ of a smooth function
defined on a neighborhood of f(p) and then T, f - v, would act as a derivation
of such germs.

Notation 2.2 Another popular way to denote the tangent map T, f is fpx.
Now we introduce the differential of a function.

Definition 2.9 Let M be a smooth manifold let p € M. For f € C*°(M) we
define the differential of f at p as the linear map df (p) : T,M — R defined by

df (p) - vp = vpf
for all v, € T,M.

One may view df,(v,) as the “infinitesimal” version of the composition f o~y
where 7/(0) = vp. The notation df, or df|, is also used in place of df (p). It is
easy to show that df (p) = pry o T, f where we take Tty R = {f(p)} x R and
pro : {f(p)} x R — R is projection onto the second factor which in this context
gives that natural identification of T4, R with R. So, in a way, df (p) is just a
version of the tangent map that takes advantage of the identification of Ty ,)R
with R.

Exercise 2.5 Let (Uy,x4) be a chart with x, = (x',...,2™) and let p € U,.
Show that the definition of dacllp given previously is consistent with the last
general definition.

The differential can be generalized:

Definition 2.10 Let V be a vector space. For a smooth f: M — V withp € M
as above, the differential df (p) : T,M — V is the composition of the tangent
map Ty, f and the canonical map T,V — V where y = f(p). Diagrammatically
we have

df(p) : T,M T,V = {y} x VIE V.
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The notational distinction between T, f and df, is not universal and df, is
itself often used to denote T}, f.

We now consider the inclusion map ¢ : U <— M where U is open. For p € U
we get the tangent map T, : T,U — T,M. Let us look at this map from
several of the points of view corresponding to the various ways one can define
a tangent space. First, consider tangent spaces from the derivation point of
view. From this point of view the map 7). is defined for v, € T,U as acting
on C*° (M) as follows Tp,u(vp)f = v, (f ot) = v, (f|U). We have seen this map
before where we called it ® : (T,U),,, — (T,M),,, and it was observed to be
an isomorphism and we decided to identify (T,U),, with (T,M),) . From the
point of view of equivalence classes of curves, the map T,¢ sends [y] to [t o 7].
But while v is a curve into U the map to~ is simply the same curve but thought
of as mapping into M. We leave it to the reader to verify the expected fact
that T is a linear isomorphism. Thus it makes sense to identify [y] with [¢ o]
and so again to identify T,U with T}, M via this isomorphism. Next consider
vp € T,U to be represented by a triple (p, v, (Ua,%xq)) where (U, x,) is a chart
on the open manifold U. Now since (Uy, X4 ) is also a chart on M the triple also
represents an element of T, M which is none other than T,¢ - v,. The map T,
looks more natural and trivial than ever and we once again see the motivation
for identifying T,,U and T, M.

2.5 Tangents of Products.
Suppose that f: M; x Ms — N is a smooth map. Define the partial maps by

fy() == f(.,y) for fixed y € My
fz() = f(x,.) for fixed z € M,

Notice the comma in f,. The reason for this comma is to avoid confusion in
case M7 = M, since we then need to distinguish f(.,z) from f(z,.).

Definition 2.11 (Partial Tangential) Let f : My x My — N be as above.
Define the partial tangent maps 01f and Oz f by

Ouf) (@,y) = Tofy : TeMy — Tya )N

(02f) (@,y) =Ty fo : TyMz — Ty(z,) N

Next we introduce another natural identification. It is obvious that a curve
c: I — My x M> is equivalent to a pair of curves

c1: 1 — My

Co . I — M2
The infinitesimal version of this fact gives rise to a natural identification
T( (Ml X MQ) = Tle X TyMg

x,y)
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This is perhaps easiest to see if we view tangent vectors as equivalence classes
of curves (tangency classes). If ¢(t) = (c1(t),c2(t)) and ¢(0) = (z,y) then the
map [c¢] — ([c1], [c2]) is a natural isomorphism which we use to simply identify
[c] € Tigy) (M1 x My) with ([c1], [c2]) € T, My x T,M;. For another view,
consider the insertion maps ¢, : y — (x,y) and Y : ¢ — (z,y).

pri pr2

(Mlax) s (Ml X MQ’ (xay)) - (MQ?:E)
W L
T y)Pr1 T(x,y)PT2
T,M; T(m,y)Ml X Mo T,.Ms>
Topt? Tyta

We have linear monomorphisms 7w (z) : T My — T(y ) (M1 x M2) and Tty (y) :
TyMy — Ty, (M1 x Ms). Let us temporarily denote the isomorphic images
of T, My and T,,M> in ey (M; x Ms) under these two maps by the symbols
(TyM); and (TyM)z. We then have the internal direct sum decomposition
(To M)y @ (TyM)z = T(4,)(My x Mz) and the isomorphism

TY x T‘Lz : Tle X TUMQ — (TwM)l 5 (TUM)Q = T(:n,y)(Ml X Mg)
The inverse of this isomorphism is
T(z,y)p'rl X T(I,y)pTQ : T(z,y) (Ml X MQ) — Tli X TyMQ

which is then taken as an identification and, in fact, this is none other than the
map [c] — ([c1], [c2]). Let us say a bit about the naturalness of the identification
of [c] € T,y (M1 x My) with ([c1], [e2]) € T My x T,y M. In the smooth category
there is a product operation. The essential point is that for any two manifolds
M and Ms the manifold M; x M5 together with the two projection maps serves
as the product in the technical sense that for any smooth maps f: N — M,
and g : N — M, we always have the unique map f x g which makes the

following diagram commute:
N
N

Ml <ﬁ M1 X M2 ]N“zﬁ M2
Now for a point © € N write p = f(z) and ¢ = g(z). On the tangent level we
have

T.N

) Ta(fx9) &

Tp,q)Pr1

Tp,q pr
Ty My <2270 T, o (M x My) — 2072

T, M,
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which is a diagram in the vector space category. In the category of vector spaces
the product of T,M; and T,Ms is T,M; x T,Ms (outer direct sum) together
with the projections onto the two factors. It is then quite reassuring to notice
that under the identification introduced above this diagram corresponds to

T,N

TrfxTxg

T,My <" My x TyMy — T,

Notice that we have fo ¥ = f, and foiy = fz.
Looking again at the definition of partial tangential one arrives at

Lemma 2.2 (partials lemma) For a map f: My x My — N we have

Ty f - (0,0) = (O1f) () - 0+ (02]) () - -

where we have used the aforementioned identification T, ;) (M1 x My) = T, My x
T, M,

Proving this last lemma is much easier and more instructive than reading
the proof so we leave it to the reader in good conscience.
The following diagram commutes:

T(:r,y) (Ml X Mg)
N

e X T
(2, y)PT1 XL (2,4)PT2 l Tf(w)y)N

Tli X TyMQ

Essentially, both diagonal maps refer to 7, ,yf because of our identification.

2.6 The Tangent and Cotangent Bundles

2.6.1 Tangent Bundle

We define the tangent bundle of a manifold M as the (disjoint) union of
the tangent spaces; TM = Upe m IpM. Similarly the cotangent bundle is the
(disjoint) union of the cotangent spaces; T"M = J,cp T, M. Also, if U is
an open set in a finite dimensional vector space V then the tangent space at
x € V can be viewed at the set {z} x V and so the tangent bundle of U can be
viewed as the product U x V. We show in proposition 2.2 below that both T'M
and T*M are themselves smooth manifolds but first we introduce a couple of
definitions.
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Definition 2.12 Given a smooth map f : M — N as above then the tangent
maps on the individual tangent spaces combine to give a map Tf : TM — TN
on the tangent bundles that is linear on each fiber called the tangent map or
sometimes the tangent lift of f .

Definition 2.13 If f : M — V where V is a finite dimensional vector space
(most usually R or C ), then we have the differential df (p) : T,M — V for each
p. These maps can be combined to give a single map df : TM — V (also called
the differential) which is defined by df (v) = df (p)(v) when v € T,M.

Looking over the definitions one can see immediately that df = pro o Tf
where pro : TV =V x V — V is projection onto the second factor.

Remark 2.2 (Warning) The notation “df” is subject to interpretation. Be-
side the map df : TM — V described above it could also refer to the map
df : p— df (p) or to another map on vector fields which we describe later in this
chapter.

Definition 2.14 The map nrp : TM — M defined by mrp(v) = p ifv € T,M
is called the tangent bundle projection map. (The set TM together with the
map wry 2 TM — M is an example of a vector bundle which is defined in the
sequel.)

For every chart (U,x) on M we obtain a chart (ﬁ,i) on TM by letting

U:=TU =7"*U)cTM

and defining x on U by the prescription

x(vp) = (' (), ..., ' (p),v', ..., v™) where v, € T,M

and where v, ...,o™ are the (unique) coefficients in the coordinate expression
__ i _0 F—1¢(,,1 n ,1 ny _ ,i _0
v =0 57|, Thus X' (u', ..., u",v', .., 0") = v' 55 1) Now recall that
if v, =2* % then v' = dz*(v,). From this we see that x = (z' om,...,2" o
z? |p

7, dz*, ..., dx™). By creative abuse of notation one can also write X = (!, ..., 2™, v!, ..., 0")
which has the advantage of being relatively uncluttered.

For any (U,x) we have the tangent lift Tx : TU — TV where V = x (U).
This is defined fiberwise as described above T'x : T, U — Ty,)V. Recall that
since V. C R™ we can identify Ty,)V with {x(p)} x R". Let us invoke this
identification. Now let v, € T,U and let v be a curve that represents v, so that
v'(0) = vp. Then Tpx - v, = (x(p), %’t:o (x07)). Now if v, = 5% , then we

can take y(t) := x~!(x (p) + te;) where e; is the i—th member of the standard
basis of R™. Thus T,x - %‘p = (x(p), &|,_, (x(p) +te;)) = (x(p),€;). Now
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suppose that v, = v’ % . Then

P

Tpx - vy

e (U Oxt p)

= (x(p),v'e;) = (z*(p), ..., 2™ (p), v, ..., v™)

From this we see that T'x is none other than x defined above and since U=TU
we see that an alternative and suggestive notation for (U ,32) is (TU,Tx). This

notation reminds one that these charts we have constructed are not just any
charts on T'M but are each associated naturally with a chart on M. They are
called standard or natural charts.

Proposition 2.2 For any smooth M, the set TM is a smooth manifold in a
natural way and «w : TM — M is a smooth map. Furthermore, for a smooth map
f: M — N the tangent lift T f is smooth and the following diagram commutes.

™ T o7N
Ty | ! TTN
M LN

Proof. For every chart (U,x) let TU = 7~ 1(U) and let Tx be the map
Tx : TU — x(U) x R™. The pair (TU,Tx) is a chart on TM. Suppose that
(TU,Tx) and (TV,Ty) are two such charts constructed as above from two charts
(U,x) and (V,y) and that U NV # (. Then TU NTV # () and on the overlap
we have the coordinate transitions Ty o Tx~!:(x,v) — (y,w) where

y=yox ()

w= D(yo x’1)|x(p) v

and so we see that the overlap maps are smooth. It follows from Lemmas 1.2
and 1.4 that TM is Hausdorff and paracompact.

To test for the smoothness of 7 we now look at maps of the form xomo(Tx) ™",
We have

xomo (Tx)™ ' (z,v)

=XOT <Ui i >
02" |1 (@)

=xox '(z)=x

which is just a projection and so clearly smooth. m

If p € x(UNV) and x(p) = (z(p),...,z"(p)) then as in the proof above

TyoTx ! sends (z'(p), ..., x"(p), v, ...,v") to (y*(p), ...,y (p), w', ...,w™) where

. a —1\¢
i dexT

ozk
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If we abbreviate the i-th component of y o x~*(z!(p), ..., 2"(p)) to

y' =y (@' (p), ... 2" (p))
then we could express the tangent bundle overlap map by the relations
y' =y (@' (p), 2" (D))

oy
w' = 8zkvk

Since this is true for all p € x(U N'V) we can write the very classical looking
expression

Y=yt ..., x™)
o
w' = 8zkvk

where we now can interpret (z!,...,2") as an n—tuple of numbers. This is
in the spirit of section 1.9 and equation 2.1.2. It is often the case that local
expression can either be interpreted as living on the manifold in the chart domain
or equally, in Euclidean space on the image of the chart domain. This should
not be upsetting since, after all, one could argue that the charts are there to
identify chart domains in the manifold with open sets in Euclidean space.

Now that T'M has a smooth structure we can inquire about smoothness of
maps which have T M as either domain or codomain. This becomes important
in section 2.7 below. Also we have

Exercise 2.6 For a smooth map f: M — N, the map
Tf:TM — TN
1s itself a smooth map.

We have seen that if U is an open set in a vector space V then the tangent
bundle is U x V. Suppose that for some smooth manifold M the is a diffeo-
morphism F : TM — M x V for some vector space V which is such that the
diagram

™ — MxV

N v
M

commutes and such that the restriction of F' to each tangent space is a linear
map T, M — {p} x V. Then for some purposes, we can identify T'M with M xV.

Definition 2.15 A diffeomorphism F : TM — M x V with the properties
described above is called a (global) trivialization of TM. If a trivialization
exist then we say that TM is trivial. For an open set U C M a trivialization of
TU is called a local trivialization of TM over U.
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For most manifolds, there does not exist a global trivialization of the tangent
bundle. On the other hand, every point p in a manifold M is contained in an
open set U so that T M has a local trivialization over U. The existence of these
local trivializations is quickly deduced from the existence of the special charts
which we constructed for a tangent bundle.

2.6.2 The Cotangent Bundle

Recall that for each p € M, T;, M has a dual space T,y M called the cotangent
space at p.

Definition 2.16 Define the cotangent bundle of a manifold M to be the set

M= | T;M
peEM

and define the map mwpr«pr : T*M — M to be the obvious projection taking
elements in each space Ty M to the corresponding point p.

Remark 2.3 We will denote both the tangent bundle projection and the cotan-
gent bundle projection by simply m whenever no confusion is likely.

We now see that T*M is also a smooth manifold. Let A be an atlas of
admissible charts on M. For each chart (U, x) € A we obtain a chart (T*U, T*x)
for T*M which we now describe. First, T°U = U,y Ty M = U,ep T,U.
Secondly, T%x is a map which we now define directly and then show that in some
sense it is dual to the map Tx. For convenience consider that map p; : 6, — &;
which just peals off the coefficients in the expansion of any ¢, € T,;M in the

basis {dz* |p}:
pi (6p) = pi (fj d$i|p) =&
Notice that we have

0
4 ox?

) = &7 = pi(6,).

p

i 0
p) —hd ‘p(axi

and so

0
pi(6p) = Op( Oz

).

p

Now with the definition of the p; in hand we can define
T*x = (2t om, ..., ™ 0T, P,y oy Pr)-

on T*U. We call (T*U, T*x) a natural chart. If x = (2!, ..., 2") then for the nat-
ural chart (T*U, T*x) we could use the abbreviation T*x = (z?, ..., 2", p1, ..., Pn)-
Another common choice of notation is (¢!, ..., ¢", p1, ..., pn) Where ¢* = x% o 7.
This notation is very popular in applications to mechanics. We will reserve the
option of using ¢; instead of p; which is also a popular choice.
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We now claim that if we take advantage of the identifications of T,R" =
R" = (R")" = T*R"™ where (R")" is the dual space of R™, then T*x acts on
each fiber T;7 M as the inverse of the dual to the map T},x, i.e. the contragradient
of Tpx:

Tpx™' (0,) - (v) = 0, (Tpx~' - v)

Let us unravel this contragradient map. If 6, € T;; M for some p € U then can
write

0p = & da'|

for some numbers §; depending on 6, which are what we have called p;(6,). We
have

Tpx_l* (0p) - (v) =0, (Tpx_l -v)
=¢ dmi‘p . (Tpx_l . v)

; 0
. 7 k
=¢; dx ‘p <v Ik p)

= givi
Thus, under the usual identification of R” with its dual we see that T,x~'" (6,)
is just (&1,...,&n). But recall that T*x (6,) = (' (p), ..., ™ (p), &1, oo, &) Thus
for 6, € T; M we have

Suppose that (T*U, T*x) and (T*V,T*y) are the coordinates constructed as
above from two charts (U,x) and (V,y) respectively with U N’V # (. Then on
the overlap T*U NT*V we have

T*yoT*x ' :x(UNV) x R™ - y(UNV) x R™.

This last map will send something of the form (z,&) € U x R™ to (Z,£) =
(yox™t(z),D(yox~1)* &) where D(y ox~1)* is the dual map to the inverse
of D(yox™!), ie., the contragradient of D(yox™!'). If we identify R™* with R"
and write £ = (&1,..,&,) and & = (&1, ..,&,) then in classical style we have:

Y =yi(zt, . 2"

- Ox*
& =&k oy

(sum)
This should be compared to the expression 2.1.2.

Exercise 2.7 The topology of T* M is paracompact and Hausdorff .
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2.7 Vector fields

Definition 2.17 A smooth vector field is a smooth map X : M — T M such
that X (p) € T,M for allp € M. In other words, a vector field on M is a smooth
section of the tangent bundle 7 : TM — M. We often write X, = X (p).

If (U, %) is a chart on a smooth n-manifold then, writing x = (x!,...,2™), we
have vector fields defined on U by

0 b 0
ox* ozt |,
The set of fields {%, s 6%} is called a coordinate frame field (or also

“holonomic frame field”). If X is a vector field defined on some set including
this chart domain U then for some smooth functions X defined on U we have

: 0
X(p) = X" -
(p) = X"(p) 5
p
or in other words
.0
X, = X"—.
o ort

Notation 2.3 In this context, we will not usually bother to distinguish X from
its restrictions to chart domains and so we just write X = X* 57 -

A vector field is a smooth section of the tangent bundle. Let us unravel what
the smoothness condition means. Let (T'U, T'x) be one of the natural charts that
we constructed for TM from a corresponding chart (U, x) on M. If X is smooth
then restriction to U is also smooth and takes values in TU. Thus to test the
smoothness of X we look at the composition Tx o X o x~1. For z € x(U) we
have

TxoX ox '(z)
=Txo (ZXZail> Oxil(x)
x~1(x)
i(,—1 9
— (x,TX_1($)X (ZX (X ({E)) %

= (z, X' ox 7' (2),... X" 0x (1))

)

Our chart was arbitrary and so we see that the smoothness of X is equivalent
to the smoothness of the component functions X* in every chart.
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Exercise 2.8 Show that if X : M — TM 1is continuous and w o X = id then
X is smooth if and only if X f : p— X, f is a smooth function for every locally
defined smooth function f on M. Show that it is enough to consider globally
defined smooth functions.

Notation 2.4 The set of all smooth vector fields on M is denoted by T' (M, TM)
or by the common notation X(M). Smooth vector fields may at times be defined

only on some open set so we also have the notation X(U) = Xp(U) for these
fields.

Vector fields as derivations
We have seen how individual tangent vectors in T, M can be identified as
derivations with at p. The derivation idea can be globalized

Definition 2.18 Let M be a smooth manifold. A (global) derivation on C* (M)
is a linear map D : C°(M) — C>°(M) such that

D(fg) =D(f)g + [D(9)-
We denote the set of all such derivations of C*°(M) by Der(C'*(M)).

Notice the subtle difference between a derivation in this sense and a deriva-
tion at a point.

Definition 2.19 To a vector field X on M we associate the map Lx : C (M) —
X(M) defined by
(Lxf)p):=Xp- f

Lx s called the Lie derivative on functions.

Remark 2.4 It is important to notice that (Lx f)(p) = X, - f = df (X,) for
any p and so Lxf=df o X.

Lemma 2.3 Let U C M be an open set. If Lxf =0 for all f € C>*°(U) then
X, =0.

Proof. Working locally in a chart (U, x), let Xy be the local representative
of X (defined in section 2.7). Suppose Xy(p) # 0 and that £ : R® — R is a
continuous linear map such that ¢(Xy(p)) # 0. Let f := £ ox. Then the local
representative of Lx f(p) is d({ o x)(X(p)) = D{|, - Xy = €{(Xu(p)) # 0 ie.
Lx f(p) # 0. We have used the fact that Df| ¢ = ¢ (since { is linear). m

Theorem 2.2 For X € X(M) we have Lx € Der(C*°(M)) and if D € Der(C*>®(M))
then D = Lx for a uniquely determined X € X(M).

Proof. That Lx is in Der(C*(M)) follows from the Liebniz law, in other
words, from the fact each X, is a derivation at p. Now if we are given a
derivation D we define a derivation X, at p (i.e. at tangent vector) by the rule
Xpf = (Df)(p). We need to show that the assignment p — X, is smooth.
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Recall that any locally defined function can be extended to a global one by
using a cutoff function. Because of this it suffices to show that X, f is smooth
for any f € C°°(M). But this is clear since X,,f := (Df) (p) and Df € C(M).
Suppose now that Df = Lx, = Lx,. Notice that Lx, —Lx, = Lx,-x, and so
Lx,_x, is the zero derivation. By Lemma 2.3 we have X1 — X5 =0. m

Because of this theorem we can identify Der(C°°(M)) with X(M) and we
can write X f in place of Lx f if we choose. The derivation law (also called the
Liebniz law) Lx(fg) = gLx [+ fLx g becomes simply X(fg) = gX f + fXg.
Another thing worth noting is that if we have a derivation of C*° (M) then that
corresponds to a vector field which is a field of vectors which can be restricted
to any open set U C M and thus we get a derivation of C*°(U). The up shot
of this is that if X € X(M) then X also acts as a derivation on C*°(U) and if
f € C®(U) we write X f instead of the more pedantic X/, f.

While it makes sense to talk of vector fields on M of differentiability r» where
0 < r < oo and these do act as derivations on C"(M), it is only in the smooth
case (r = oco) that we can say that vector fields account for all derivations of

CT(M).
Theorem 2.3 If D1, Dy € Der(C*®(M)) then [D1,D3] := Dy oDy —DyoD; €
Der(C>*(M)).

Proof. We compute

Dy (D2 (fg)) = D1 (Da2(f)g + [Da(g))
= (D1D2f) g+ D2fD1g
+ D1fDag + fD1Dayg

Write out the similar expression for Dy (D; (fg)) and subtracting we obtain
after fortuitous cancellation

[D1,Ds] (fg) = (D1D2f) g + fD1Dayg
— ((D2D1f) g + fD2D1g)
= ([D1,D2]f) g + f[D1,D2lg

Corollary 2.1 If XY € X(M) then there is a unique vector field [X,Y] such
that ,C[X7y] =LxoLy —LyoLx.

We ought to see what the local formula for the Lie derivative looks like

in more conventional “index” notation. Suppose we have X = X* 8213 and

Y =Y?-2.. Then using the summation convention we have

oxt”
oyt . 9Xt .\ 0
XY Z (amj X Oxd Y ) oxt

j

Exercise 2.9 Verify this last formula.
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Definition 2.20 The vector field [X,Y] from the previous corollary is called
the Lie bracket of X and Y.

Proposition 2.3 For any X,Y,Z € X(M),
1. The map (X,Y) — [X,Y] is bilinear over R.
2 [X,Y] = [V, X]
3. [ X, [V, Z]|+ |V, |2, X]] + [Z,[ X, Y]] =0
4. [fX,gY] = fg[X,) Y]+ f(Xg)Y —g (Y f) X for all f,g € C>®(M).

Proof. These results follows from direct (albeit tedious) calculation and the
easily checked fact that L,x1+py = aLlx +bLy for a,b € R and X,Y € X(M).
]

The map (X,Y) — [X,Y] is linear over R but by number 4 it is not linear
over C*°(M).

The R—vector space X(M) together with the R—bilinear map (X,Y) —
[X,Y] is an example of an extremely important abstract algebraic structure:

Definition 2.21 (Lie Algebra) A wvector space a (over a field F) is called a
Lie algebra if it is equipped with a bilinear map a x a — a (a multiplication)
denoted (v,w) — [v,w] such that

[v,w] = —[w,v]

and such that we have the Jacobi identity

[, [y, 2]] + [y, [z, 2]] + [z, [2,9]] = 0
for all xz,y,z € a.

Notice that the Jacobian identity may be restated as [z, [y, z]] = [[=, 9], 2] +
[y, [z, z]] which just says that for fixed x the map y — [z,y] is a derivation of
the Lie algebra a. This is a possibly easier way to remember the identity besides
being significant mathematically. The Lie algebra X(M) is infinite dimensional
(unless M is zero dimensional) but we will later be very interested in certain
finite dimensional Lie algebras.

Given a diffeomorphism ¢ : M — N we define the pull-back ¢*Y € X(M)
for Y € X(N) and the push-forward ¢.X € X(N) of X € X(M) via ¢ by
defining

'Y =Tp oY o¢ and
6. X =ThpoXop L.

In other words, (¢*Y)(p) = T~ - Yy and (¢.X)(p) = T - Xy-1(, . Notice
that ¢*Y and ¢,X are both smooth vector fields.
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Let ¢ : M — N be a smooth map of manifolds. The following commutative
diagrams summarize some of mapping concepts introduced so far:

Pointwise:
v 2% o1,N
! !
(M.p) = (N,¢(p))
Global:
™ % TN
! !
M % N
If ¢ is a diffeomorphism then
(M) L5 x2(N)
! !
M %N
and also i
X(M) < x(N)
! !

M % N
Notice the arrow reversal. If M = N, this gives a right and left pair of actions
of the diffeomorphism group Diff (M) on the space of vector fields: X(M) =
(M, TM).
Diff (M) x X(M) — X(M)
(¢4, X) = 0 X
and
X(M) x Diff (M) — X(M)
(X, ¢) — "X

On functions the pull-back is defined by ¢*g := g o ¢ but if ¢ is a diffeomor-
phism then we can also define a push-forward ¢, = (¢~1)*. With this notation
we have

Proposition 2.4 The Lie derivative on functions is natural with respect to pull-
back and push-forward by diffeomorphisms. In other words, if ¢ : M — N is a
diffeomorphism and f € C*°(M), g€ C*(N), X € X(M) and Y € X(N) then

Lyyvd*g=¢"Lyyg

and

Ly, xP«f = ¢Lx f
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Proof.

(Loyd g)(p) = d(¢"g) o (¢"Y)(p)
= (¢"dg)(T¢™"Yyy,) = dg(TeTd ™' Yyy)
=dg(Ygp) = ¢ (dgoY) (p) = (¢"Lyg)(p)

The second statement follows from the first since ¢, = (¢71)*. m
Now even if f: M — N is not a diffeomorphism it may still be that there
is a vector field Y € () such that

TfoX=Yolf.

Or in other words, T'f - X}, = Y,y for all p in M. In this case we say that Y is
f-related to X and write X ~; Y.

Lemma 2.4 Suppose that f : M — N a smooth map and X € X(M) and
Y € X(N). Then X and Z are f-related if and only if X(go f) = (Yg)o f for
all g € C=(N).

Proof. Let p € M and let g € C*°(N). Then
X(go f)p) =Xp(go f) = (Tpf - Xp) g
and
Ygo f)(p)=Yimy
so that X(go f) = (Yg) o f for all such g if and only if T),f - X}, = Yy(,) m
Proposition 2.5 If f : M — N is a smooth map and X; is f-related toY; for

i =1,2 then [X1, Xo] is f-related to [Y1,Y3]. In particular, if ¢ is a diffeomor-
phism then [« X1, ¢« Xa] = @[ X1, Xa] for all X1, X5 € X(M).

Proof. We use the previous lemma: Let g € C*°(N). The X1X2(go f) =
X1((Yag) o f) = (Y1Yag) o f. In the same way X2 X1(go f) = (YaYig) o f and
subtracting we obtain

[X1, Xa](go f) = X1Xa(go f) — X2Xi(g0 f)
= MYazg)o f — (YaYig) o f
= ([X1,X2]g) o f
and so using the lemma one more time we have the result. m

In case the map f : M — N is not a diffeomorphism we still have a result
when two vector fields are f-related.

Theorem 2.4 Let f : M — N be a smooth map and suppose that X ~y Y.
Then we have for any g € C®(N) Lx (f*g) = f*Lyg.

The proof is similar to the previous theorem and is left to the reader.



74 CHAPTER 2. THE TANGENT STRUCTURE

2.7.1 Integral curves and Flows

All flows of vector fields near points where the field doesn’t vanish
look the same.

A family of diffeomorphisms ®; : M — M is called a (global) flow if ¢ — @,
is a group homomorphism from the additive group R to the diffeomorphism
group of M and such that &;(z) = (¢, z) gives a smooth map RxM — M. A
local flow is defined similarly except that ®(¢,z) may not be defined on all of
RxM but rather on some open neighborhood of {0} x M C RxM and so we
explicitly require that

1. (I)t o @5 = (bt-‘rs and

2.0, ' =0,
for all t and s such that both sides of these equations are defined.

Using a smooth local flow we can define a vector field X® by

X®(p) = 4 ®(t,p) € T,M.
dt|,
If one computes the velocity vector ¢(0) of the curve ¢ : ¢ — ®(t,x) one gets
X?®(z). On the other hand, if we are given a smooth vector field X in open
set U C M then we say that ¢ : (a,b) — M is an integral curve for X if
é(t) = X(ce(t)) for t € (a,b).

Our study begins with a quick recounting of a basic existence and unique-
ness theorem for differential equations stated here in the setting of real Banach
spaces. If desired, the reader may take the Banach space to be a finite dimen-
sional normed space such as R™. The proof may be found in Appendix H.

Theorem 2.5 Let E be a Banach space and let F': U C E — E be a smooth
map. Given any xo € U there is a smooth curve ¢ : (—e,€) — U with ¢(0) = xg
such that c'(t) = F(c(t)) for allt € (—e,€). If c1 : (—e1,e1) — U is another
such curve with ¢1(0) = xg and ¢} (t) = F(c(t)) for allt € (—€1,€1) then c =1
on the intersection (—e1,€1) N (—e, €). Furthermore, there is an open set V' with
xg € V C U and a smooth map ® : V x (—a,a) — U such that t — c,(t) :=
O(x,t) is a curve satisfying ¢’ (t) = F(c(t)) for all t € (—a,a).

Now let X € X(M) and consider a point p in the domain of a chart (U, x).
The local expression for the integral curve equation ¢(t) = X(c(t)) is of the
form treated in the the last theorem and so we see that there certainly exists an
integral curve for X through p defined on at least some small interval (—e, €). We
will now use this theorem to obtain similar but more global results on smooth
manifolds. First of all we can get a more global version of uniqueness:

Lemma 2.5 If ¢y : (—e1,e1) = M and ¢y : (—ea,e2) — M are integral curves
of a vector field X with ¢1(0) = ¢3(0) then ¢; = co on the intersection of their
domains.
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Proof. Let K = {t € (—e1,€e1) N (—€2,€2) : c1(t) = ca(t)}. The set K
is closed since M is Hausdorff. If follows from the local theorem 2.5 that K
contains a (small) open interval (—e¢,€¢). Now let ¢y be any point in K and

consider the translated curves ci°(t) = ¢ (to +t) and () = ca(to +t). These
are also integral curves of X and agree at ¢ = 0 and by 2.5 again we see

that ¢} = ¢ on some open neighborhood of 0. But this means that ¢; and
co agree in this neighborhood so in fact this neighborhood is contained in K
implying K is also open since ty was an arbitrary point in K. Thus, since
I = (—€1,€1) N (—€g,€2) is connected, it must be that I = K and so ¢; and ¢y
agree on I = (—e€y,€1) N (—€z,€2). M

Let X be a C" vector field on M with + > 1. A flow box for X at a point
po € M is a triple (U, a, p) where

1. U is an open set in M containing p.
2. ¢% U x (—a,a) — M isa C" map and 0 < a < co.

3. For each p € M the curve t — c,(t) = ¢X(p,t) is an integral curve of X
with ¢,(0) = p.

4. The map ¢ : U — M given by ¢X(p) = ¢X(p,t) is a diffeomorphism
onto its image for all t € (—a, a).

Now before we prove that flow boxes actually exist, we make the following
observation: If we have a triple that satisfies 1-3 above then both ¢; : t +—
o o(p) and co 1 t — 7 (X (p)) are integral curves of X with ¢1(0) = c2(0) =
©X(p) so by uniqueness (Lemma 2.5) we conclude that ¥ (92X (p)) = ¢, (p)
as long as both sides are defined. This also shows that

X 0o =i, =i 0¥

whenever defined. This is the local group property, so called because if ;¥ were
defined for all t € R (and X a global vector field) then ¢ — ;X would be a group
homomorphism from R into Diff (M). Whenever this happens, that is, whenever
@ is defined for all ¢, we say that X is a complete vector field. The group
property also implies that ;X o X, = id and so in general ;X must at least be
a locally defined diffeomorphism with inverse ¢*,.

Exercise 2.10 Show that on R? the vector fields yza% and 582% are complete

but yza% + xza% s not complete.

Theorem 2.6 (Flow Box) Let X be a C" vector field on an n-manifold M
with r > 1. Then for every point pg € M there exists a flow box for X at pg.
If (U, a1,¢7) and (Uz, a2, 93 ) are two flow bozes for X at po,then o = o5
on (—al,al) N (—ag,ag) x Uy NUs.

Proof. First of all notice that the U in the triple (U, a, ) does not have to
be contained in a chart or even homeomorphic to an open set in R™. However,
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to prove that there are flow boxes at any point we can work in the domain of
a chart (U, x) and so we might as well assume that the vector field is defined
on an open set in R™. Of course, we may have to choose a to be smaller so
that the flow stays within the range of the chart map x. Now a vector field in
this setting can be taken to be a map U — R" so the theorem 2.5 provides us
with the flow box data (V,a, ®) where we have taken a > 0 small enough that
Vi = ®(t,V) C U for all t € (—a,a). Now the flow box is transferred back to
the manifold via x

U=x4V)
¥ (t,p) = @(t, x(p)).

Now if we have two such flow boxes (Uy, a1, ¢y ) and (Uz, az, p3 ) then by lemma
2.5 we have for any x € U; N Uy we must have o7 (t,x) = @3 (t,z) for all t €
(—0,1, al) n (—ag, ag).

Finally, since both X = ¢*(¢,.) and ¢%, = ¢*X(~t,.) are both smooth
and inverse of each other we see that X is a diffeomorphism onto its image
Ut = X_l(‘/;g). |

Now if ¢,(t) is an integral curve of X defined on some interval (a,b) with
¢p(0) = p then we may consider the limit

Jm e(f)
If this limit exists as a point p; € M then we may consider the integral curve
¢p, begining at p;. One may now use Lemma 2.5 to combine ¢ — ¢,(t) with
t — cp, (t — b) to produce an extended integral curve begining at p. We may
repeat this process until the limit fails to exist and so extend the integral curve as
far as possible. Similarly we may extend in the negative direction and so produce
a maximal integral curve defined on a maximal interval J,, := (ij X T;‘ ) where

T, y might be —co and T;‘X might be +oc.

Definition 2.22 Let X be a C" wvector field on M with v > 1. For any given
pE M let J* := (Tp_,X,T;'X) C R be the largest interval (as above) such that
there is an integral curve ¢ : J*™ — M of X with ¢(0) = p. The mazximal
flow X is defined on the set (called the mazimal flow domain)

Dx = |J J2™ x {p}.
peM

by the prescription that t — X (t,p) is the maximal integral curve of X such
that X (0,p) = p

Theorem 2.7 For X € X(M), the set Dx is an open neighborhood of {0} x M
in R x M and the map X : Dx — M is smooth. Furthermore,

X (t+5,p) = ™ (t, 0™ (s,p)) (2.1)
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whenever both sides are defined. If the left hand side is defined then the right
hand side is defined. Ift,s > 0 ort,s < 0 then if the right hand side is defined
so is the left hand side.

Proof. If the left hand side of the equation 2.1 is defined then it is defined
for t 4+ s in some small interval and we may differentiate
*(

d d
7 (t+s,p)= - o™ (u,p)

du u=s-+t
= X(¢™(t+5,p))
we also have @X(t—&-s,p)’tzo = X (s,p) so t — ©X(t + s,p) is an integral
curve starting at ¢ = ¢ (s, p) which means that ¢ (t, X (s,p)) is defined and
X (t+s,p) = o™ (t, 9% (5,p))-

Now let us assume that t,s > 0 and that ¢X(s,p) is defined and that
©X(t,0%(s,p)) is defined. Then X (u,p) is defined for u € (0,5 + ¢;) for
some small ¢; > 0 and X (u — s, 0~ (s, p)) is defined for u — s € (0, + €3) for
some small e > 0. Now define

(1) = 0~ (u,p) for u < s
PRV oX (u— s, 0% (s,p) for s <u< s+t

For u < s we have

£ eplu) = 2 (,p) = X(¢ (w,1)) = X (ey()

On the other hand, for s < u < s+t we also have

%%ngﬁﬂwﬂwﬂmm=xmm»

and since ¢,(0) = p we conclude that ¢ (u, p) exist for 0 < u < s+t and that
cp(u) = X (u,p) for all such u. This means that X (u—s, X (s,p)) = ¢* (u,p)
for 0 <u < s+t and so pX(s+t,p) exists and

X (t, 0% (s,p)) = ™ (s +1t,p)

The fact that Dx is open follows from Theorem 2.6 since the domains of
flow boxes must be contained in Dx.

Now let I, be the set of all t € R such that ¢ is defined and smooth on some
open neighborhood of I; x {p} where I; = [0,¢] if ¢t > 0 and I; = [¢,0] if t < 0.
We will be done if we can show that I}, is equal to J;***. We will show that I,
is nonempty and both open and closed in J7***. Notice that by uniqueness the
restriction of ¢~ to the domain of any local flow box must coincide with that
local flow which is smooth and so I, is not empty since it therefore contains
some neighborhood of 0. Let to € J**N(I,\I,,). Clearly, to # 0. Let us assume
for concreteness that to > 0 (the o < 0 case is similar). Again since we have
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coincidence with the local flows, X must be smooth on a neighborhood O of
[—€, €] x {¢X (to,p)} for some small € > 0. Also, by our choice of tg, the flow X
must be smooth on a neighborhood of [0,%y — €] x {p}. We now show that X
is smooth on some neighborhood of [0,%9] x {p}. Indeed, for (¢,z) sufficiently
close to [0,%0] x {p} we may write (t,x) = (¢ +t”,x) in such a way that (¢, z)
is near[0,ty — €] x {p} and (#,z) is near [—¢, €] x {pX(to,p)}. Then we have

(11" ) = N (1, N ()
which shows that ¢~ is smooth at (¢,z). But this means that ¢, € I, after all
which is a contradiction. Thus I}, is closed and thus equal to J***. =

Remark 2.5 Up until now we have used the notation X ambiguously to refer
to any (local or global) flow of X and now we have used the same notation for the
unique mazimal flow defined on Dx. We could have introduced notation such
as X .. but prefer not to clutter up the notation to that extent unless necessary.
We hope that the reader will be able to tell from context what we are referring
to when we write X

If ¥ is the maximal flow of X then we would like to write ;* for the map
p — ¢ (p). The domain of this map is Dy, = {p:t € (T, x T;:X)}. Note well
that, in general, the domain of ¢X depends on t.

Exercise 2.11 Let s and t be real numbers. Show that the domain of ¢X o i
s contained in D?’t and show that for each t, DY is open.

X is a complete vector field if and only if Dx =R x M.

Definition 2.23 The support of a vector field X is the closure of the set {p :
X(p) # 0} and is denoted supp(X).

Lemma 2.6 FEvery vector field that has compact support is a complete vector
field. In particular if M is compact then every vector field is complete.

Proof. Let c be the maximal integral curve through p and J"* =

(ijX,T;X) its domam It is clear that for any t € (TPX,T <) the image
point ¢, X (t) must always lie in the support of X. But we show that if T x <00

then glven any compact set K C M, for example the support of X, there is an
€ > 0 such that for all t € (T, —¢,T.7) the image ¢\ (t) is outside K. If

not then we may take a sequence t; converging to T;' '« such that cff (t;) € K.

But then going to a subsequence if necessary we have x; := cff (t;) » =z € K.
Now there must be a flow box (U, a,x) so for large enough k, we have that ¢
is within a of T+X and z; = cff (t;) is inside U. We then a guaranteed to have

an integral curve ¢ (t) of X that continues beyond T+X and thus can be used
to extend cp a contradlctlon of the maximality of T;‘ - Hence we must have
T; x = 00. A similar argument give the result that 7 = —oco. =

Exercise 2.12 Let a > 0 be any positive real number. Show that if for a given

vector field X the flow X is defined on (—a,a) x M then in fact the (mazimal)
flow is defined on R x M and so X is a complete vector field.
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2.8 Lie Derivative

Let X be a vector field on M and let X (p,t) = X (t) = X (p) be the flow so

that J 5
X X

— t) =T; —

dt O<Pp ®) 0¥p ot

Recall our definition of the Lie derivative of a function (2.19). The following
is an alternative definition.

=X,
0

Definition 2.24 For a smooth function f : M — R and a smooth vector field
X € X(M) define the Lie derivative Lx of f with respect to X by

Lxf)= 5| Foe¥(nh
0
= pf

Exercise 2.13 Show that this definition is compatible with definition 2.19.

We now introduce the important concept of the Lie derivative of a vector
field extending the previous definition. The Lie derivative will be extend further
to tensor fields.

Definition 2.25 Given a vector field X we define a map Lx : X(M) — X(M)

by
LxY :=[X,Y]

this map is called the Lie derivative.

We will further characterized the Lie derivative but we need a technical
lemma:

Lemma 2.7 Let X € X(M) and f € C®(U) with U open and p € U. There is
an interval I5 := [—8,8] and an open set V containing p such that o (Is x V') C
U and a function g € C®(I5 x V) such that

F@X(t,q)) = f(a) +tg(t,q)
for all (t,q) € Is x V and such that g(0,q) = X, f forallge V.

Proof. The existence of the set Is x V with ¢X (I x V) C U follows from
our study of flows. The function 7(7,q) := f(¢~(7,q)) — f(g) is smooth on
Is x V and r(0,q) = 0. Let

L or

so that
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Then f(o™(t,9)) = f(q) +tg(t,q). Also

X J—
9(0,9) = lim %r@’q)  lim flo (t,qt)) 1@ _

Proposition 2.6 Let X and Y be smooth vector fields on M. Let o = ¢~ be
the flow. The function t — Typ_;-Y,, () is differentiable at t =0 and

Ll Ty Yo = (XY, = (£xY) () (2.2)
t=0

Proof. Let f € C°(U) with p € U as in the previous lemma.

Tt Yowm =Yo Yol = (T0 Yo i) f

t t
Yol =Ye i (Fow) Yol =Y . (f +19:)
t t

where g is as in the lemma and g;(q) = ¢g(¢,¢q). Continuing, we have

Yl =Yoo (f o) _ (VN(@ep) (V)
n = t et(p) 9t

Taking the limit as ¢ — 0 and recalling that go = X f on V' we obtain the result

that p
7 (T‘p*t 'Yw(p)) =X Y] f

dt],_q
for all f € C*°(U). Now if we let U be the domain of a chart (U, x) then letting
f be each of the coordinate functions we see that each component T, M-valued
function t — T'p_ - Y, (p) is differentiable at ¢ = 0 and so the function is also.
Then we can conclude that % —0 (To—t Yo ) =X, Y], m
Discussion: Notice that if X is a complete vector field then for each t € R
the map ;¥ is a diffeomorphism M — M and we may define (¢ *Y)(p) =

(TeX) 'Y (0¥ (p)) or
O = (Te) oY 0. (2.3)

One may write

d
LxY = —| (p°Y
X dt 0 (@t )
On the other hand, if X is not complete then there exist no ¢ such that ;¥ is
a diffeomorphism of M since for any specific ¢ there might be points of M for
which ¢ is not even defined! For an X which is not necessarily complete it is
best to consider the map X : (¢, z) — X (¢, z) which is defined on some open
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neighborhood of {0} x M in R x M which just doesn’t need to contain any set
of form (0, €] x M unless € = 0. In fact, suppose that the domain of ¢ contains
such an set with € > 0. It follow that for all 0 < ¢ < e the map <th is defined on
all of M and ;X (p) exists for 0 < t < € independent of p. But now a standard
argument shows that ¢ — ¢ (p) is defined for all ¢+ which means that X is a
complete vector field. If X is not complete we really have no business writing
7 without some qualification. Despite this it has become common to write this
expression anyway especially when we are taking a derivative with respect to t.
Whether or not this is just a mistake or liberal use of notation is not clear. Here
is what we can say. Given any relatively compact open set U C M, the map ¢;*
will be defined at least for all t € (—¢, &) for some e depending only on X and
the choice of U. Because of this, the expression ¢ *Y = (Tpcth)71 oYopsisa
well defined map on U for all ¢t € (—¢,¢). Now if our manifold has a cover by
relatively compact open sets M = |JU; then we can make sense of ¢ *Y on as
large a relatively compact set we like as long as t is small enough. Furthermore,
if <th*Y|Ui and gof(*Y|Uj are both defined for the same t then they both restrict

to cpf(*Y|UﬂU_ . So ¢X*Y makes sense point by point for small enough ¢. At
i 3J

any rate t — (¢ *Y)(p) has a well defined germ at ¢+ = 0. With this in mind
we might still write LxY = %|0 (p;**Y) even for vector fields that are not

complete as long as we take a loose interpretation of X *Y" .

Theorem 2.8 Let X,Y be vector fields on a smooth manifold M. Then

d

Epf‘*Y = ‘Pf(*(ﬁXY)
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Proof.
d
X * X *
- YV = —
p t‘Pt ds @t+s
d * *
= 3, pr (1Y)
X x X x
= Y
(pt dS ((ps )
= ¥ *ﬁXY

|
Now we can see that the infinitesimal version of the action

X(M) x Diff(M) — X (M)
(X, ) = "X

is just the Lie derivative. As for the infinitesimal version of the left action of
Diff (M) on X(M) we have for X,Y € X(M)

% (PiY)(p) = jt OTsotX(Y(so{l(p)))
_ iﬁmﬁrWW4@)

~(LxY) = ~[X.Y]

Proposition 2.7 Let X € X(M) andY € X(N) be ¢-related vector fields for a
smooth map ¢ : M — N. Then

popX =l o¢

whenever both sides are defined. Suppose that ¢ : M — M 1is a diffeomorphism
and X € X(M). Then the flow of $. X = (¢~1)*X is po X 0 p~1 and the flow
of *X is ¢~ o} 0 .

Proof. Differentiating we have 4 (¢ o o) = T¢

[¢]
Yogop. But g0y (x) =d(z) andso i go g (a
Y starting at ¢(z). By uniqueness we have ¢ o ¢ (z)

=T¢poXo Spt =
an integral curve of

e (¢(x)). =

Theorem 2.9 For X,Y € X(M) each of the following are equivalent:

Ly,
@i
) is

1. LxY =[X,Y]=0
2 (p¥)Y =Y
3. The flows of X andY commute:

o oY =Y o X whenever defined.
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Proof. The equivalence of 1 and 2 is follows easily from Proposition 2.6
and Theorem 2.8. The equivalence of 2 and 3 can be seen by noticing that
e oY = pY 0¥ is true and defined exactly when ¢Y = X 0 pY 0 ;¥ which
happens exactly when

oY = )Y
and in turn exactly when Y = (¢)*Y. =

The Lie derivative and the Lie bracket are essentially the same object and
are defined for local sections X € X;(U) as well as global sections. This is
obvious anyway since open subsets are themselves manifolds. As is so often the
case for operators in differential geometry, the Lie derivative is natural with
respect to restriction so we have the commutative diagram

LX)y
—

x(U) x(U)
E T
xv) 2 oxw)

where X|,; denotes the restriction of X € X(M) to the open set U and r{ is
the map that restricts from U to V C U.

2.9 Time Dependent Fields

Definition 2.26 A C*° time dependent vector field on M is a C*° map
X : (a,b) x M — TM such that for each fixed t € (a,b) C R the map Xz : M —
TM given by Xi(x) := X (t,z) is a C> vector field.

Definition 2.27 Let X be a time dependent vector field. A curve c: (a,b) — M
18 called an integral curve of X if and only if

¢(t) = X(t,c(t)) for all t € (a,b).

One can study time dependent vector fields by studying their so called sus-
pensions. Let pry : (a,b) x M — (a,b) and pry : (a,b) x M — M be the
projection maps. Let X € X((a,b) x M) be defined by X (t,p) = (2, X(tp) €
Ti(a,b) x Ty M = T4 p)((a,b) x M). The vector field X is called the suspension

of X. It can be checked quite easily that if ¢ is an integral curve of X then
¢ := pry o ¢ is an integral curve of the time dependent field X. This allows us
to use what we know about integral curves to the time dependent case.

Definition 2.28 The evolution operator <I>ffs for X is defined by the require-
ment that

%@t)fs(x) = X(t, (IDf(S(x)) and q)ﬁfs(x) = 2.

In other words, t — @fis(x) is the integral curve that goes through = at time s.



84 CHAPTER 2. THE TANGENT STRUCTURE

We have chosen to use the term “evolution operator” as opposed to “flow”
in order to emphasize that the local group property does not hold in general.
Instead we have the following

Theorem 2.10 Let X be a time dependent vector field. Suppose that X; €
X(M) for each t and that X : (a,b) x M — TM ‘s continuous. Then ®}, is
C*> and we have @g{a o (I)é(,t = @ﬁft whenever defined.

Exercise 2.14 If (I)ZX,S is the evolution operator of X then the flow of the supsen-

sion X is given by

O(t, (s,p) = (t+ 5,97, . (p))

Let ¢i(p) := ®o,(p). Is it true that ¢s o ¢y(p) = ¢s1¢(p)? The answer is
that in general this equality does not hold. The evolution of a time dependent
vector field does not give rise to is local 1-parameter group diffeomorphism. On
the other hand, we do have

és,r o ér,t = (I)s,t

which is called the Chapman-Kolmogorov law. If in a special case ®,; depends
only on s —t then setting ¢, := ®( ; we recover a flow corresponding to a time-
independent vector field. We need a lemma. In the following, note the reversal
of the order of s and t across the equal sign:

Theorem 2.11 Let X and Y be smooth time dependent vector fields and let
f:RxM — R be smooth. We have the following formulas:

d =X vk p X \x of
@R = () (X + )
and
d X \* _ X \* al
SOV, = (@) (X0 Y] + 5.

Proof. Let f; denote the function f(t,.). Consider the map (u,v) — @5 _f,.
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If we let u(t) = t,v(t) = t and compose, then by the chain rule

% ((cpis)* fv) )= % (u)=(t1) ((q’fﬁs)* fv) (p) + % (u)=(t1) (<<I>f,s)* fv) (p)
- & (@) )@+ CZ}’M ((05) 1) 0
- %  (redu) )+ ((«bt{fs)* ?j) »)
= Plox. di‘u_t @y (p) + ((@fs)* ?9{) )

« 0
= Gilay o @) + (05) 5F) )

— G @o) + ((08) 5) )

Note that a similar but simpler proof shows that if f € C°°(M) then

d P * *
SH@X) = (@) (X ) )

Claim: & (®X,)* f = —X,{(®X,)" f}. Proof of claim: Let g := (®%,)" f.
Fix p and consider the map (u,v) — ((@fu)* (@fs)*g) (p). If we let u(t) =
t,v(t) = t then the composed map ¢ — ((@ft)* (@ffs)* g) (p) = p is constant.
Thus by the chain rule

— & (@X) (@) 9) o)
=il L@ @ 0]

(u,0)=(t;1)

0

[(@X)" (@X)"9) )]

(u,v)=(t,t)

[(@X) (@X)"9) )]

v=t

~ ) (e 08 ) )] +

— % [((@fu)*f) (p)] + (@ft)*(q)g’fs)*th (using (*))

d
= pr [
= % [((@F)7F) )] + Xe[(@F,)" £]

This proves the claim. Next, note that by Proposition 2.4we have that since
X x )1
(I)s,t = ((Dt,s)

(@X)y)r=(@%) (v (@X) 1) (**)
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for Y € X(M) and smooth f. This last equation still holds for ¥; = Y'(¢,.) for
a time dependent Y.

Next consider a time dependent vector field Y. We wish to compute % ((@txs) * Y,g)

using the chain rule as before we have

AR AR CAROYE I (CA oY
- @y (s ) ) (@5)7Y) (wsing )
- ) (v )+ ((@8) 5 s
5 (@) (vi(@X) ) + ((@ifs)* ‘?;) /
= @) (X)) gl @) (v ) s) ¢ (@)
= (%) X (Vo (X)) = (@) ¥ (Xe (@) 1) + ((‘Pz’,‘s)* 33);) f
= (@) (X (@X)7 1) + (@) %
- (((I)%XS)* [[Xt,YH + aa}t/}) f (using (**) again on [X,,Y}])
|

2.10 Covector Fields

Recall the notation mp«ps : T*M — M for the projection map for the tangent
bundle. Recall that a map o : M — T*M such that 7w« oo = id is a called a
section of the cotangent bundle.

Definition 2.29 A smooth (resp. C") section of the cotangent bundle is called
a smooth (resp. C") covector field or also a smooth (resp. C") 1-form . The
set of all C" 1-forms is denoted by X" (M) and the smooth 1-forms are denoted
by X*(M).

Later we will have reason to denote X*(M) also by Q(M).

Definition 2.30 Let f : M — R be a C" function with r > 1. The map df :
M — T*M defined by p — df (p) where df (p) is the differential at p as defined
in definitions 2.9 and 2.10. df is a 1-form called the differential of f.

Three views on a 1-form: The novice may easily become confused about
what should be the argument of a 1-form or covector field. The reason for this
is that one can view a 1-form in at least three different ways. If o is a smooth
one form then

cov
ot

).
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1. We may view « as map o : M — T*M (as in the definition) so that «(.)
takes points as arguments; a(p) € T, » M. We also sometimes need to write
a(p) = a, just as for a vector field X we sometimes write X (p) as X,,.

2. We may view o as a smooth map o : TM — R so that for v € T,M we
make sense of a(v) by a(v) = a,(v).

3. We may view a as a map « : X(M) — C*° (M) where for X € X(M) we
interpret a(X) as the smooth function p — a,(X,).

The second and third interpretation are dependent on the first.

Notice that given a chart (U,x) with x = (2!, ...,2") then dz* : p — dxi‘p
defines covector fields on U such that dz! }p s eery dz™| » forms a basis of Ty M for
each p € U. If a is any smooth 1—form (covector field) defined at least on U
then ,

o = a;dz’
for uniquely determined functions a;. In fact a(%) = a;. In particular

df ( 2) = g g and so we have the following familiar looking formula

of |,
df = ——dx'
f ari "
which is interpreted to mean that at each p € U, we have
af :
d, = | dx*| .
f(p) = 55 da ,

The covector fields dz? form what is called a coordinate coframe field or
holonomic coframe field ! over U. Note that the component functions X* of
a vector field with resect to the chart above are given by X* = da?(X) where
by definition dx?(X) is the function p — dxi’p (Xp). Thus

0

Xy :dmi(X)%.

Note. If a is a 1-form on M and p € M then one can always find many
functions f such that df (p) = a(p) but there may not be a single function f so
that this is true for all points in a neighborhood let alone all points on M. If
in fact df = « for some f € C°°(M) then we say that « is exact. More on this
later.

Let try to picture one covectors and 1-forms. As a warm up lets review how
we might picture a tangent vector v, at a point p € R™. If v is a curve with
v'(0) = vp. If we zoom in on the curve near p then it appear to straighten out
and so begins to look like a curve ¢ — p +tv,. So one might say that a tangent
vector is the infinitesimal representation of a (parameterized ) curve.

1The word holonomic comes from mechanics and just means that the frame field derives

from a chart. A related fact is that [%, %] =0.
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dz

dzp3
«

a o)

At each point a 1—form gives a linear functional in that tangent space and
as we know, the level sets of a linear functional are parallel affine subspaces
or hyperplanes. Of course we must have the the zero level set and one of the
positive level sets labeled so we can see, for example, which way is the direction
of increase. In a strong sense, a covector puts a ruling in the tangents space
that measures tangents vectors stretching across this ruling. For example, the
1—form dz in R? gives a ruling in each tangents space as suggested by figure
2.10 a. Now the fact that the individual dz,’s at each point somehow coalesce
into the level sets of the global function z as shown in 2.10 b, is due to the
fact that the 1-form dz is the differential of z. Now consider a more general
smooth function f defined on an open set in R™ containing a point p. Consider
the level sets (level curves or hypersurfaces) of f near p. If we zoom in again
these look straight and so will in the limit become the straight level sets of an
affine linear function of the form x — f(p) + df,(x — p) for some linear function
dfp. If we picture = — p to be based at p (and so living in T,R"™) then df,, will
be interpreted as a linear functional acting in 7;,R"™ and so a member of TyR™.
Thus since df, is a linear functional its level sets in T, R™ will be parallel (affine)
hyperplanes. If we let p vary then we obtain df and we have a similar picture
at each point. Since df comes from a function these straight level sets which
live in each tangent space coalesce into the level sets of f. Now a more general
1—form « is still pictured as straight parallel hyperplanes in each tangent space.
Because these level sets live in the tangent space we might call them infinitesimal
level sets. It is important to remember that these levels sets must be labeled
or parameterized if they are to represent a covector at the point. In particular,
we must be told which way is uphill so to speak. Now these level sets live in
each tangent space but they may not coalesce into the level sets of any smooth
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function on the manifold. In other words, the 1-form may not be exact. There
are various, increasingly severe ways coalescing may fail to happen. The least
severe situation is when « is not the differential of a global function but is still
locally a differential near each point. For example, if M = R?\{0} then the
familiar 1—form o = (2% + y?) "} (—ydx + xdy) is locally equal to df for some
angle # function measured from some fixed ray such as the positive x axis. But
there is no such single smooth angle functions defined on all of R?\{0}. Thus,
globally speaking, « is not the differential of any function. In figure 2.1 we see
the coalesced result of “integrating” the infinitesimal level sets which live in the
tangent spaces. While these suggest an angular function we see that if we try to
picture rising as we travel around the origin we find that we do not return to the
same level in one full circulation but rather we keep rising. Locally, however,
we really do have level sets of a smooth function

Now the second more severe way that a 1-form may fail to be the differential
of a function is where there is not even a local function that does the job near a
point. The infinitesimal level sets do not coalesce to the level sets of a smooth
function even in small neighborhoods. This is much harder to represent but
figure 2.2 is meant to at least be suggestive. Nearby curves cross inconsistent
numbers of level sets. As an example consider the 1—form

0 = ydx — xdy

The astute read may object that surely radial rays do match up with the
directions described by this 1—form but the point is that a covector in a tangent
space is not completely described by the level sets as such, but rather the level
sets to be though of as labeled according to the values the represent. Here we
have a case where the the level sets coalesce but the values assigned to them do
not; they are 1-dimensional submanifolds that fit the 1-form but they are not
level sets of a smooth function. This brings us the most severe case which only
happens in dimension 3 or above. It can be the case that there are no nice family
of n — 1 dimensional submanifolds that line up with the 1—form either global or
locally. This is the topic of the Frobenius integrability theory for distributions
that we study in the sequel and we shall forgo any further discussion of this
until then.

If¢p: M — NisaC™® mapand f: N — R a C* function we define the
pull-back of f by ¢ as

P f=fod
and the pull-back of a 1-form a € X*(N) by ¢*a = a o T'¢. To get a clearer
picture of what is going on we could view things at a point and then we have
¢*al, v = a|¢(p) (T - v).

Exercise 2.15 The pull-back is contravariant in the sense that if ¢, : M7 — My
and ¢z : My — N then for a € X*(N) we have (¢ 0 ¢1)" = ¢ o ¢3.

Next we describe the local expression for the pull-back of a 1-form. Let (U, x)
be a chart on M and (V,y) be a coordinate chart on N with ¢(U) C V. A typical
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g
N

Figure 2.1: Level sets of overlapping angle functions. No single smooth function
has these as level sets.

1-form has a local expression on V of the form a = Y a;dy’ for a; € C*°(V'). The

local expression for ¢*« on U is ¢*a = > a;0¢d (yi ) ¢) =Y a;0 (ba(g;jd)) dat .

Thus we get a local pull-back formula? convenient for computations:
) 0 (yZ o qﬁ) .
* E Ayt = E : St CAR W
10 ( a;dy ) = a; o ¢ 9 dx

The pull-back of a function or 1-form is defined whether ¢ : M — N happens
to be a diffeomorphism or not. On the other hand, when we define the pull-back
of a vector field in a later section we will only be able to do this if the map that
we are using is a diffeomorphism. Push-forward is another matter.

Definition 2.31 Let ¢ : M — N be a C*° diffeomorphism with r > 1. The
push-forward of a function f € C*(M) is denoted ¢ f and defined by ¢ f(p) :
f(@~Y(p)). We can also define the push-forward of a 1-form as ¢p.a = aoT¢~ 1.

Exercise 2.16 Find the local expression for ¢.f and ¢.«. FExplain why we need
¢ to be a diffeomorphism.

It should be clear that the pull-back is the more natural of the two when it
comes to forms and functions but in the case of vector fields this is not true.

2To ensure clarity we have not use the Einstein summation convention here.
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Lemma 2.8 The differential is natural with respect to pull-back. In other
words, if ¢ : N — M is a C*™ map and f : M — R a C* function with
r > 1 then d(¢*f) = ¢*df. Consequently, the differential is also natural with
respect to restrictions.

Proof. Let v be a curve such that ¢(0) = v. Then

d

e = |

. p(c(t)) = df (Tg - v)

a6 ) = 5

F(@(e(t)))

d
_df%

As for the second statement (besides being obvious from local coordinate ex-
pressions) notice that if U is open in M and ¢ : U < M is the inclusion map
(i.e. identity map idps restricted to U) then f|, = ¢*f and df|,; = ¢*df so the
statement about restrictions is just a special case. m

The tangent and cotangent bundles T'M and T* M are themselves manifolds
and so have their own tangent and cotangent bundles. Among other things, this
means that there exist 1—forms and vector fields on these manifolds. Here we
introduce the canonical 1—form on T*M. This is a form we denote by 6.4, and
it is a section of T* (T M). Let a € T,; M and consider a vector u, € T, (T*M).
We define

Ocan(te) = a(Tym - ug)

where 7 : T*M — M is the usual projection and thus Tym : T.) (T*M) — T,M.
To see that our definition makes sense note that 7,7 u, is a vector in T, M while
a € Ty M which means that a (7,7 - u,) € R. Let (U,x) be a chart containing
P and let (ztom, ..., omar, D1y Pn) = (¢4, .., ¢, D1, ..., Dn) be the associated
natural coordinates for T* M. We wish to show that locally 8.4, = pidg®. It will

suffice to show that (‘)Can( T ’ ) = pi(a) and O.qn( a%i‘ ) =0 for all i. We have

9
opt|,

=a (Taw . 6(;

= (0. Also we have

ecan( )

)-

since in fact T, 7 - a%i

6
can aq

T,m

v

/\/\

\/
| |
S
&
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where we have use the fact that T, - 8%1' = % » which follows from the
a
definition ¢* = 2’ o 7. Indeed, we know that T, - 6ai = cf % for some
av |, zF Ip

constants c¥, but we have

e = da® <Ta7r .

:W*d.’lik( 4 )

oq’
0

=dGeten) (5] )

:qu< 0 ):55

oq*

We will eventually see that this form plays a role in classical mechanics.

oq*

2.11 Line Integrals and Conservative Fields

Just as in calculus on Euclidean space we can consider line integrals on manifolds
and it is exactly the 1—forms that are the appropriate objects to integrate. First
notice that all 1—forms on open sets in R! must be of the form fdt for some
smooth function f and where ¢ is the coordinate function on R'. We begin
by defining the line integral of a 1—form defined and smooth on an interval
[a,b] C R, If 3 = fdt is such a 1—form then

/[a,b] §:= / " poar

Any smooth map v : [a,b] — M is the restriction of a smooth map on some
larger open interval (a — €,b + ¢) and so there is no problem defining the pull-
back y*a. If v : [a,b] — M is a smooth curve then we define the line integral
of a 1—form « along v to be

La:z /[mb] ’y*a:/abf(t)dt

where v*a = fdt. Now if t = ¢(s) is a smooth increasing function then we
obtain a positive reparameterization ¥ =y o0 ¢ : [¢,d] — M where ¢(c) = a and
@(d) = b. With such a reparametrization we have

[e,d] [e,d] le,d]

= }¢*(fdt) =

[e,d

d
f o0 as
[e.d] ds

d b
- / F(6()d (s)ds = / F(t)dt
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where the last line is the standard change of variable formula and where we

have used ¢*(fdt) = st which is a special case of the pull-back formula
mentioned above. We see now that we get the same result as before. This is
just as in ordinary multivariable calculus. We have just transferred the usual
calculus ideas to the manifold setting.

It is convenient to extend the definitions a bit to include integration along
piecewise smooth curves. Thus if v : [a,b] — M is such a curve and we have
a =ty <t; <---<tp=>bwhere v is smooth on each interval [t;,;11] then we
define for a 1-form «

fo-
~

where 7; is the restriction of 4 to the interval [¢;,t;11].
Just as in ordinary multivariable calculus we have the following:

k—1

> / v
[tistiva]

=0

Proposition 2.8 If v : [a,b] — M is a piecewise smooth curve with vy(a) = py
and y(b) = po. If a = df then

/f“ - /Wdf — Fp2) — (1)

In particular, fva is path independent in the sense that it is equal to fca for
any other piecewise smooth path c that also begins at p1 and ends at po.

Definition 2.32 If « is a 1-form on a smooth manifold M such that fc a=20
for all closed piecewise smooth curves ¢ then we say that o is conservative.

We will need a lemma on differentiability.

Lemma 2.9 Suppose f is a function defined on a smooth manifold M and let
o be smooth 1—form on M. Suppose that for any p € M, v, € TM and smooth
curve ¢ with ¢ (0) = v, the derivative %|0 fle(t)) exists and

d

o . fle(t) = ap(vyp)

Then f is smooth and df = «.

Proof. We work in a chart (U,x). If we take c(t) := x~!(x(p) + te;) then
the hypotheses lead to the conclusion that all the first order partial derivatives
of fox~! exist and are continuous. Thus f is C'. But then also df, - v, =
%‘0 f(c(t)) = ap(vy) for all vy, it follows that df = « and this also implies that
f is actually smooth. m

Proposition 2.9 If « is a 1-form on a smooth manifold M then « is conser-
vative if and only if it is exact.
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Proof. We know already that if @« = df then « is a conservative. Now
suppose « is conservative. Fix pg € M. Then we can define f(p) = f,y « where
v is any curve beginning at py and ending at p. Given any v, € T, M we pick
a curve ¢ : [—1,¢) with € > 0 such that ¢(—1) = pg, ¢(0) = p and /(0) = v,.
Then

d
e Of(C(T))
T
at o Jeli-1,7]
d / n d /
= — « —_— (07
dr |y J ¢j[=1,0 dar | J ejjo,7]
=0+ 4 / o
dT 1J0

d S /0 " (bt

dr
=g(0)
where c¢*a = gdt. On the other hand,

, _ d
a(vp) = a(c'(0)) = a(Toe- — 0)
. dl d
=c oz(% 0) = g(0) dt|, <dt 0)

Thus %|0 f(e(r)) = ap(vy) for any v, € T,M and any p € M. Now the result
follows from the previous lemma. m

It is important to realize that when we say that a form is conservative in this
context, we mean that it is globally conservative. It may also be the case that a
form is locally conservative. This would mean that all restrictions of the 1—form
to small contractible open sets are conservative. The following examples explore
in simple terms these differences.

Example 2.1 Let a = (2° + y?) (—ydx + xzdy). Let us consider the small cir-
cular path ¢ given by (x,y) = (xg + ecost,yo + esint) with 0 < ¢ < 27 and €.
If (z0,90) = (0,0) we get

/Ca _ /0% (-;,(t)flf + x(t)f;t/) it

:/0 %2(— (esint) (—esint) + (e cost) (ecost)) dt = 27

Thus « is not conservative and hence not exact. On the other hand if (xo,yo) #
(0,0) then we pick a ray Ry that does not pass through (xo,yo) and smooth
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function 0(x,y) which gives the angle of the the ray R passing through (x,y)
measured counterclockwise from Ry. This angle function is smooth and defined
onU =R\Ry. Ife < %\/x(z) + y2 then ¢ has image inside the domain of 0 and
we have that o|U = df. Thus [ o = 60(c(0)) — 0(c(2m)) = 0. We see that o is
locally conservative.

Example 2.2 Consider 3 = ydx — zdy on R?\{0}. If it were that case that for
some small open set U C R*\{0} we had (|, = df then for a closed path ¢ with
image in that set we would expect that [ 3 = f(c(27)) — f(c(0)) = 0. However,

b= [ (s Z 2y ) it
T\ dt

2
= / ((xg +esint) (—esint) — (yo + ecost) (ecost)) dt
0
= —221

so we do not get zero no matter what the point (zg,yo) and no matter how small
€. We conclude that 8 is not even locally conservative.

The distinction between (globally) conservative and locally conservative is
often not made sufficiently clear in the physics and engineering literature.

Example 2.3 In classical physics, the static electric field set up by a fixed point
charge of magnitude q can be described, with an appropriate choice of units, by
the 1—form

q q q

T—Szdaz + T—Sydy + r—gzdz

where we have imposed Cartesian coordinates centered at the point charge and
where r = \/x2 + y2 + 22. Notice that the domain of the form is the punctured
space R3\{0}. In spherical coordinates (1,0, ) this same form is

g
T T

so we see that the form is exact and the field conservative.

2.12 Moving frames

It is important to realize it is possible to get a family of locally defined vector
(resp. covector) fields that are linearly independent at each point in their mutual
domain and yet are not necessarily of the form % (resp. dx?) for any coordinate
chart. In fact, this may be achieved by carefully choosing n? smooth functions
fi (vesp. a¥) and then letting Ej, := fi52 (resp. 0% := afda?).

Definition 2.33 Let Eq, Fs, ..., E,, be smooth vector fields defined on some open
subset U of a smooth n-manifold M. If FEi(p), E2(p), ..., En(p) form a basis
for T,M for each p € U then we say that E, Es, ..., E, is a (non-holonomic)
moving frame or a frame field over U.
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If By, Es, ..., E,, is moving frame over U C M and X is a vector field defined
on U then we may write

X = X'E; on U (summation over )

for some functions X? defined on U. If the moving frame (E1, ..., E,) is not
identical to some frame field (%, ey %) arising from a coordinate chart on U
then we say that the moving frame is non-holonomic. It is often possible to find
such moving frame fields with domains which can never be the domain of any
chart.

Definition 2.34 If Eq, Es, ..., E, is a frame field with domain equal to the whole
manifold M then we call it a global frame field.

Most manifolds do not have global frame fields (see problem

Taking the basis dual to (E1(p), ..., En(p)) in T, M for each p € U we get a
moving coframe field (6*,...,6™). The 6 are 1-forms defined on U. Any 1—form
a can be expanded in terms of these basic 1—forms as a = > a;0". Actually
it is the restriction of a to U that is being expressed in terms of the #% but we
shall not be so pedantic as to indicate this in the notation. In a manner similar
to the case of a coordinate frame we have that for a vector field X defined at
least on U, the components with respect to (E, ..., E,) are given by 6¢(X):

X =0"(X)E; on U.

Let us now consider an important special situation. If M x N is a product
manifold and (U, x) is a chart on M and (V,y) is a chart on N then we have
a chart (U x V,xxy) on M x N where the individual coordinate functions

are x' o pry,...,x™ o pry y' o pro,...,y" o pro which we temporarily denote by

.., 2™y, ..., 7". Now we consider what is the relation between the coordi-
nate frame fields (8%1, ...%), (8%1, %) and the frame field

9 .9
ST g )

The latter set of n + m vector fields is certainly a linearly independent set at

each point (p,q) € U x V. The crucial relations are -2 f = 6‘2% (fopry) and

3 s oz*
a7 — Byt (fop'rQ)-

Exercist; 2.17 Show that %mq) = T (pr1) %p for all q and that % =
T (pra) By

Remark 2.6 In some circumstances it is safe to abuse motation and denote
xtopry by ' and y* opry by y*. Of course we then are denoting % by 8‘21. and
80 on.
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A warning (The fundamental confusion of multidimensional cal-
culus). For a chart (U, x) with x = (z!,...,2") we have defined gf for any
appropriately defined smooth (or C!) function f. However, this notation can
be ambiguous. For example, the meaning of % is not determined by the co-
ordinate function 2! alone but implicitly depends of the rest of the coordinate
functions. For example, in thermodynamics we see the following situation. We
have three functions P,V and T which are not independent but may be in-
terpreted as functions on some 2—dimensional manifold. Then it may be the
case that any two of the three functions my serve as a coordinate system. Now
the meaning of g—lé depends on whether we are using the coordinate functions
(P, V) or alternatively (P,T). We must know not only which function we are

allowing to vary but also which other functions are held fixed. To get rid of

the ambiguity one can use the notations (%)V and (%) . In the first case
T

the coordinates are (P, V) and V is held fixed while in the second case we use
coordinates (P,T) and T is help fixed. Another way to avoid ambiguity would
be to use different names for the same functions depending on the chart of which
they are considered coordinate functions. For example, consider the following
change of coordinates:
yt = 2!+ 22
y? =zl — 22 4 2?
y3 = 2
Here 3 = 23 as functions on the underlying manifold but we use different
symbols. Thus 6%3 may not be the same as 8%3. The chain rule shows that

in fact % = 8%2 + 8%3' This latter method of destroying ambiguity is not
very helpful in our thermodynamic example since the letters P, V and T are
chosen to stand for the physical quantities of pressure, volume and temperature.
Giving these functions more than one name would only be confusing.

2.13 Problems

1. Find the integral curves in R? of the vector field X = e™®-Z + a% and
determine if X is complete or not.

2. Find a concrete description of the tangent bundle for each of the following
manifolds:
(a) Projective space P(R™)
(b) The Grassmann manifold Gr(k,n)

3. Recall that we have charts on RP? given by

[z,y,2] — (u1,u2) = (x/2,y/2) on Us = {z # 0}
[l‘,y,Z} = (Ulan) = (CC/y,Z/y) on U2 = {y 7é 0}
[z,y,2] = (w1, w2) = (y/x,2/x) on Uy = {z # 0}
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10.

11.

12.

Show that there is a vector field on RP? which in the last coordinate chart
above has the following coordinate expression

0 0

Wy H— — Wz
8w1 8’[1}2

What are the expressions for this vector field in the other two charts?
(Caution: your guess may be wrong!).

Show that if f : M — N is a diffeomorphism then for each p € M the
tangent map Tp,f : T,M — Ty, N is a vector space isomorphism

. Show that the graph I'(f) = {(p, f(p)) € M x N : p € M} of a smooth

map f: M — N is a smooth manifold and that we have an isomorphism
Tip. sy (M X N) = T o) I(f) © Ty N-

. Show that a manifold supports a frame field defined on the whole of M

exactly when there is a trivialization of TM (see definitions 2.34 and 2.15.

Find natural coordinates for the double tangent bundle TT'M. Show that
there is a nice map s : TT M — TTM such that s o s = idpry and such
that Tmos = Tawrpy and Trppr 08 = Tw. Here m : TM — M and
mry 2 TTM — T M are the appropriate tangent bundle projection maps.

. Let N be the subspace of R"*! x R"*! defined by N = {(z,y) : ||z|| = 1

and z -y = 0} is a smooth manifold that is diffeomorphic to T'S™.

. (Hessian)Suppose that f € C°°(M) and that df, = 0 for some p €

M. In this case show that for any smooth vector fields X and Y on
M we have that Y,(Xf) = X,(Yf). Let Hyp(v,w) := X,(Y f) where
X and Y are such that X, = v and Y, = w. Show that Hy,(v,w) is
independent of extension vector fields X and Y and that resulting map
Hy¢p: ToM x T,M — R is bilinear. Hy,, is called the Hessian of f at p.
Show that the assumption df, = 0 is needed.

Show that for a smooth map the map F : M — N the (bundle) tangent
map TF : TM — TN is smooth. It sometimes is supposed that the one
can obtain a well defined map F : X (M) — X (N) by thinking of vector
fields as derivations on functions and then letting (F.X)f = X (fo F)
for f € C*°(N). Show why this is misguided. Recall that the proper
definition of F}, : X (M) — X (N) would be F,X :=TF o X o F~! and is
defined in case F' is a diffeomorphism. What if F' is merely surjective.

Show that if ¢ : M’ — M is a smooth covering map then so also is
Ty : TM' — TM.

Define map f : R™" — sym(R"*") by f(A) := AT A where R"*" and
sym(R™*™) are the manifolds of n X n matrices and n X n symmetric ma-
trices respectively. Identifying T4R™ ™ with R™*™ and Ty(4)sym(R"*")
with sym(R™*™) in the natural way for each A. Calculate Ty f : R"*" —
sym(R™*™) using these identifications.
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13. Let f1,...., fx be a set of smooth functions defined on an open subset of
a smooth manifold. Show that if df(p), ..., dfy(p) spans T, M for some
p € U then some ordered subset of { fi,...., fy} provides a coordinate
system on some open subset V of U containing p.

14.

15.

16.

Let A, be the vector space of derivations on C"(M) at p € M where
0 < r < o0 is a positive integer or co. Fill in the details in the following
outline which studies A,.. It will be shown that A, is not finite dimensional
unless r = co.

(a)

We may assume that M = R™ and p = 0 is the origin. Let m, :=
{f € C"(R™) : f(0) = 0} and let m? be the subspace spanned by
functions of the form fg for f,g € m,. We form the quotient space
m, /m? and consider its vector space dual (m,/m2)". Show that if
6 € A, then ¢ restricts to a linear functional on m, and is zero on all
elements of m2. Conclude that § gives a linear functional on m,./m2.
Thus we have a linear map A, — (mr/mf)*.

Show that the map A, — (m, /mg)* given above has an inverse.
Hint: For a A\ € (mT/mg)* take any linear map consider dy(f) :=
M[f — f(0)]) where f € C"(R™) and hence [f — f(0)] € m,./m2. Con-
clude that by taking r = oo we have TyR" = Ay, = (m,./m%)*. This
case r < oo is different as we see next.

Let 7 < co. The goal from here on is to show that m,./m? and hence
(m,/m2)" are infinite dimensional. We start out with the case R =
R. First show that if f € m, then f(z) = zg(x) for g € C"71(R).
Also if f € m2 then f(z) = 2%g(x) for g € C"}(R).

For each r € {1,2,3,...} and each ¢ € (0,1) define

vion . oarte for x>0
ge(2) := 0forz <0

gl(z) € m, but ¢g"(z) ¢ C™(R). Show that for any fixed r €
{1,2,3, ...} the set of elements of the form [g7] := g7 +m?2 for € €
(0,1) is linearly independent in the quotient. Hint: Use induction on
r. In the case of = 1 it would suffice to show that if we are given
O<er<---<g<landif Y\ a; g2, € m? then a; = 0 for all j.

(Thanks to Lance Drager for donating this problem and its solution.)

Find the integral curves of the vector field on R? given by X (z,y) := 22
1%} 1%}
52 T Y5y

Find the integral curves ( and hence the flow) for the vector field on R?
given by X(z,y) := —y% + ma%

17. Find an vector field on S? — { N} which is not complete.
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18.

19.

20.

21.
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Using the usual spherical coordinates (¢,6) on S™ calculate the bracket
[655:055)-

Show that if X and Y are (time independent) vector fields that have flows
0 and ¢} then if [X,Y] = 0, the flow of X + Y is ;¥ 0 ¢} .

Recall that the tangent bundle of the open set Gl(n,R) in M, x,(R) is
identified with Gl(n,R) x M, »,,(R). Consider the vector field on Gi(n,R)
given by X : g — (g,¢?%). Find the flow of X.

cost —sint 0
Let Q; = | sint cost 0 | fort e (0,2n]. Let ¢(t, P) := QP where
0 0 1

P is a plane in R3. Show that this defines a flow on Gr(3,2). Find the

local expression in some coordinate system of the vector field X® that

gives this flow. Do the same thing for the flow induced by the matrices
cost 0 —sint

R, = 0 1 0 t € (0,27, finding the vector field X®. Find
sint 0 cost

the bracket X7, X@].
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Chapter 3

Immersion and Submersion.

Suppose we are given a smooth map f : M — N. Near a point p € M
the tangent map T, f : T,M — T,N is a linear approximation of f. A very
important invariant of a linear map is its rank which is the dimension of its
image. The rank of a smooth map f at p is defined to be the rank of T, f.
It turns out that under certain conditions on the rank of f at p or near p we
can draw conclusions about the behavior of f near p. The basic idea is that
f behaves very much like T,,f. If L : V — W is a linear map on finite vector
spaces then ker L and L(V') are subspaces (and hence submanifolds). In this
section we study the extent to which something similar happens for smooth maps
between manifolds. In this chapter we make heavy use of some basic theorems
of multivariable calculus such as the implicit and inverse mapping theorems as
well as the constant rank theorem. These can be found in appendix C (see
Theorems C.8, C.9 and C.12). Since the constant rank theorem is particularly
useful and often not included in advanced calculus courses we include a proof
in appendix C.

Proposition 3.1 If f : M — N is a smooth map such that Tp,f : T,M — T, N
s an isomorphism for all p € M then f: M — N is a local diffeomorphism.

The proof is a simple application of the inverse mapping theorem.

Definition 3.1 Let f: M — N be C"-map and p € M. We say that p is a
regular point for the map f if T,f is a surjection and is called a singular
point otherwise. A point q in N is called a regular value of f if every point in
the inverse image f~1{q} is a regular point for f. This includes the case where
f~Haq} is empty. A point of N that is not regular is called a critical value.

It is a very useful fact that regular values are easy to come by because most
values are regular. In order to make this precise we will introduce the notion of

103
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measure zero on a second countable smooth manifold. It is actually no problem
to define a Lebesgue measure on such a manifold but for now the notion of
measure zero is all we need.

Definition 3.2 Let M be smooth n dimensional manifold M which is second
countable. A subset A C M is said to be of measure zero if for every admissible
chart (U, x) the set x(ANU) has Lebesgue measure zero in R™.

In order for this to be a reasonable definition, the manifold must be second
countable so that every atlas has a countable subatlas. This way we may be
assured that every set that we have defined to be measure zero is the countable
union of sets that are measure zero as viewed in a some chart. We also need to
know that the local notion of zero measure is independent of the chart. This
follows from

Lemma 3.1 Let M be a second countable n-manifold. The image of a measure
zero set under a differentiable map is of measure zero.

Proof. Since M is Hausdorff and second countable, any set is contained in
the countable union of coordinate charts. Thus we may assume that f : U C
R™ — R™ and A is some Lebesgue measure zero subset of U. In fact, since
A is certainly contained in the countable union of compact balls (all of which
are translates of a ball at the origin) we may as well assume that U = B(0,r)
and that A is contained in a slightly smaller ball B(0,r — §) C B(0,r). By the
mean value theorem, there is a constant ¢ depending only on f and its domain
such that for x,y € B(0,7) we have ||f(y) — f(x)|| < ¢|lz —y||. Let € > 0 be
given. Since A has measure zero there is a sequence of balls B(z;, ¢;) such that

A C UB(zi,¢) and
Zvol (4, €1)) ¢
2"0”

Thus f(B(zi,€)) C B(f(x;),2ce;) and while f(A) C U B(f(x;),2¢ce;) we also
have

vol (UB ), 2ce; ) <
Z vol(B i),2c€;)) < Z vol(Bi)(2ce;)"
et ZVOI (i, €1))

\A

IN
('h

Thus the measure of A is less than or equal to €. Since € was arbitrary it follows
that A has measure zero. ®m

Corollary 3.1 Given a fized atlas A = {(Un,%0)} for M, if xo(ANUy) has
measure zero for all o, then A has measure zero.

We now state and prove the fantastically useful theorem of Sard.
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Theorem 3.1 (Sard) Let N be an n-manifold and M an m-manifold both
assumed second countable. For a smooth map f : N — M the set of critical
values has Lebesgue measure zero.

Proof. Through the use of countable covers of the manifolds in question
by charts, we may immediately reduce to the problem of showing that for a
smooth map f: U C R™ — R™ the set of critical values C' C U has image f(C)
of measure zero. We will use induction on the dimension n. For n = 0, the
set f(C) is just a point (or empty) and so has measure zero. Now assume the
theorem is true for all dimensions j < n — 1. We seek to show that the truth of
the theorem follows for j = n also.

Let us use the following common notation: For any k-tuple of nonnegative
integers a = (i1, ..., 1) we let

alalf 8i1+~--+’ikf
oxo T oxi ... Otk

where |a| :== i1 + ... + ix. Now let

ololf

Ci={xeU: s

(x) =0 for all |a| <i}.

Then
C = (C\C)U (C1\C2) U+ U (Cr—1\Ck) U Cy

so we will be done if we can show that

a) f(C\Cy) has measure zero,

b) f(C;-1\C;) has measure zero and

¢) f(Ck) has measure zero for some sufficiently large k.

Proof of a): We may assume that m > 2 since if m = 1 we have C' = C}.
Now let z € C\C} so that some first partial derivative is not zero at * = a. By
reordering we may assume that this partial is % and so the map

(zt, . z™) = (f(z), 22, ..., 2"™)

restricts to a diffeomorphism ¢ on some open neighborhood containing x. Since
we may always replace f by the equivalent map f o ¢~! we may go ahead and
assume without loss of generality that f has the form

[z ('rlvf2(x)7"'vfm(x)) = (a:l,h(x))

on some perhaps smaller neighborhood V' containing a. The Jacobian matrix
for f in V is of the form
1 0
[ * Dh ]

and so x € V is critical for f if and only if it is critical for h. Now h(C' NV) C
R™~! and so by the induction hypothesis h(C'N V') has measure zero in R™~1.
Now f(CNV)N ({z} x R™™ 1Y) C {x}xh(C NV) which has measure zero in
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{z} x R™~! 2 R™~! and so by Fubini’s theorem f(C N V) has measure zero.
Since we may cover C by a countable number of sets of the form C NV we
conclude that f(C) itself has measure zero.

Proof of (b): The proof of this part is quite similar to the proof of (a). Let
a € C;_1\Cj. It follows that some j-th partial derivative is not zero at a and
after some permutation of the coordinate functions we may assume that

a9 0Pl
oat 28 (70
for some j — 1- tuple 8 = (i1, ...,4;—1) where the function g := 8(‘;;251 is zero at

a since a is in Cj_;. Thus as before we have a map
2 n
© e (9(2), 2%, . 7")

which restricts to a diffeomorphism ¢ on some open set V. We use ¢,V as a
chart about a. Notice that ¢(Cj_; N'V) C 0 x R"~!. We may use this chart ¢
to replace f by g = f o ¢~ which has the form

@ (2!, h(z))

for some map h: V — R™~!. Now by the induction hypothesis the restriction
of g to

go: {0} xRNV - R™
has a set of critical values of measure zero. But each point from ¢(C;_1 N
V) C 0 x R*1 is critical for gg since diffeomorphisms preserve criticality. Thus
go¢(C;_1NV) = f(Cj_1 NV) has measure zero.

Proof of (¢): Let I"(r) C U be a cube of side r. We will show that if
k> (n/m) —1 then f(I™(r) N Ck) has measure zero. Since we may cover by a
countable collection of such V' the result follows. Now Taylor’s theorem gives
that if @ € I"(r) N Cy, and a + h € I"(r) then

\fla+h) = f(a)| < c|n|* (3.1)

for some constant ¢ that depends only on f and I™(r). We now decompose the
cube I"™(r) into R™ cubes of side length r/R. Suppose that we label these cubes
which contain critical points of f as D1, .....Dy. Let D; contain a critical point
a of f. Now if y € D then |y —a| < y/nr/R so using the Taylor’s theorem
remainder estimate above (3.1) with y = a 4+ h we see that f(D;) is contained

in a cube D; C R™ of side

k+1
9 /nr _ b
R RE+1

where the constant b := 2c(y/nr)¥*! is independent of the particular cube D
from the decomposition and depends only on f and I"™(r). The sum of the

volumes of all such cubes D; is

n b "
S <Rk+1>
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which, under the condition that m(k+1) > n, may be made arbitrarily small by
choosing R large (refining the decomposition of I"(r)). The result now follows.
]

Corollary 3.2 If M and N are second countable manifolds then the set of
regular values of a smooth map f: M — N is dense in N.

3.1 Immersions

Definition 3.3 A map f : M — N is called an itmmersion at p € M if
Tpf : TyM — Ty N is an injection. f: M — N is called an immersion if f
is an itmmersion at every p € M.

Figure ?? shows a simple illustration of an immersion of R? into R3. This
example is also an injective immersion (as far as the picture reveals) but an
immersion can come back and cross itself. Being an immersion at p only requires
that the restriction of the map to some small open neighborhood of p is injective.

Example 3.1 We describe an immersion of the torus T? := S' x S into R3.
We can represent points in T? as pairs (e%1,e"2). It is easy to see that for fized
a,b > 0 the following map is well defined:

(eigl , ei92) —s (.’I;(eie] , ei92)7 y<e’i01 , e’i@g)’ Z(e’iel , eiag))
where

x(ei017ei92) = (a + bcosfy) cos Oy
y(ei0176i92) = (a + bcosfy)sin Oy

2(e'% %) = bsin 6,

Exercise 3.1 Show that the map of the above example is an immersion. Give
conditions on a and b that guarantee that the map is a 1-1 immersion.

Theorem 3.2 Let f : M — N be a smooth map that is an immersion at p.
Then there exist charts (x,U) with p € U and (y, V) with f (p) € V so that the
corresponding coordinate expression for f is (x',...,x%) — (2!, ...,2%,0,...,0) €
RE+™ - Here, k +m = n is the dimension of N and k is the rank of Tf.

Proof. Follows easily from theorem C.11. m

Theorem 3.3 If f : M — N is an immersion (so an immersion at every point)
and if f is a homeomorphism onto its image f(M) using the relative topology,
then f(M) is a reqular submanifold of N. In this case we call f : M — N an
embedding.

Proof. This follows from the last theorem plus a little point set topology
(see the problems). m
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Exercise 3.2 Show that every injective immersion of a compact manifold is an
embedding.

Recall that a continuous map f is said to be proper if f~(K) is compact
whenever K is compact.

Exercise 3.3 Show that a proper 1-1 immersion is an embedding. Hint: This
is mainly a topological argument. You may assume (without loss of generality)
that the spaces involved are Hausdorff and second countable. The slightly more
general case of paracompact Hausdorff spaces follows.

Definition 3.4 Let S and M be smooth manifolds. An smooth map f: S — M
will be called smoothly universal if for any smooth manifold N, a mapping
g: N — S is smooth if and only if f o g is smooth.

Definition 3.5 A weak embedding is a 1-1 immersion which is smoothly uni-
versal.

Let f : S — M be a weak embedding and let A be the maximal atlas
that gives the differentiable structure on S. Suppose we consider a different
differentiable structure on S given by a maximal atlas As. Now suppose that f :
S — M is also a weak embedding with respect to As. In seldom used pedantic
notation we are supposing that both f : (S, 4) — M and f : (S,A42) - M
are weak embeddings. From this it is easy to show that the identity map gives
smooth maps (5, A) — (S, A2) and (5, A2) — (S5, A). This means that in fact
A = Aj so that the smooth structure of S is uniquely determined by the fact
that f is a weak embedding.

Exercise 3.4 Show that every embedding is a weak embedding.

In terms of 1-1 immersions we now have the following inclusions:

{1 — 1 immersions} D { weak embeddings}

D { embeddings} D { proper embeddings}

3.2 Immersed and Weakly Embedded Subman-
ifolds

We have already seen the definition of a regular submanifold. The more general
notion of a submanifold is supposed to be the “subobjects” in the category
of smooth manifolds and smooth maps. Submanifolds are to manifolds what
subsets are to sets in general. However, what exactly should be the definition of
a submanifold? The fact is that there is some disagreement on this point. From
the category theoretic point of view it seems natural that a submanifold of M
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should be some kind of smooth map I : S — M. This is not quite in line with
our definition of regular submanifold which is, after all, a type of subset of M.
There is considerable motivation to define submanifolds in general as certain
subsets; perhaps the images of certain nice smooth maps. We shall follow this
route.

Definition 3.6 Let S be a subset of a smooth manifold M. If S is a smooth
manifold such that the inclusion map ¢ : S — M is an injective immersion then
call S an immersed submanifold.

If f: N — M is an injective immersion then f(N) can be given a smooth
structure so that it is an immersed submanifold. Indeed, we can simply transfer
the structure from N via the bijection f : N — f(N). However, this may not
be the only possible smooth structure on f(N) which makes it an immersed
submanifold. Thus it is imperative to specify what smooth structure is being
used. Simply looking at the set is not enough.

Definition 3.7 Let S be a subset of a smooth manifold M. If S is a smooth
manifold such that the inclusion map v : S — M is a weak embedding then we
say that S is a weakly embedded submanifold.

From the properties of weak embeddings we know that for any given subset
S C M there is at most one smooth structure on S that makes it a weakly
embedded submanifold.

Corresponding to each type of injective immersion considered so far we have
in their images different notions of submanifold:

{immersed submanifolds} D { weakly embedded submanifolds}
D { regular manifolds} D { proper submanifolds}
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We wish to further characterize the weakly embedded submanifolds.

Definition 3.8 Let S be any subset of a smooth manifold M. For any x € S,
denote by C,(S) the set of all points of S that can be connected to x by a smooth
curve with image entirely inside S.

Definition 3.9 We say that a subset S of an n—manifold M has property W
if for each sg € S there exists a chart (U,x) centered at sg such that x(Cs, (U N
S)) =x(U) N (R* x {0}). Here R™ = Rk x R"~F,

Together, the next two propositions show that weakly embedded submani-
folds are exactly those subsets which have property W. Our proof follows that
of Michor [?] who refers to subsets with property W as initial submanifolds.
With Michor’s terminology the result will be that initial submanifolds are the
same as the weakly embedded submanifolds.

Proposition 3.2 If an injective immersion I : S — M is smoothly univer-
sal then the image I(S) has property W. In particular, if S C M is a weakly
embedded submanifold of M then it has property W.

Proof. Let dim(S) = k and dim M = n. Choose sp € S. Since I is an
immersion we may pick a coordinate chart (W,w) for S centered at so and a
chart (V,v) for M centered at I(sg) such that

volow '(y) = (y,0).

Choose an r > 0 small enough that B*(0,2r) C w(W) and B"(0,2r) C v(V).
Let U = v~ 1(B"(0,r)) and Wy = w~1(B*(0,7)). Let x := v|,. We show that
the coordinate chart (U, x) satisfies the property W of Definition 3.9.
x~H(x(U) N (RY < {0}) = x7{(y,0) : [lyll <r}
=Tow lo(xolow ) ({(y5,0): lyll <r})
=Tow '({y: |yl <r})=1(W)

Now clearly I(W7) C I(S) but also we have

voI(Wy) Cvolow Y(B*0,r))
= B"(0,7) N {R* x {0}} c B"(0,r)
so that I(Wy) C v=1(B"(0,7)) = U. Thus I(Wy) C UNI(S). Now since I(W;)
is smoothly contractible to I(sg), every point of I(W7) is connected by a smooth

curve to I(sg) completely contained in I(W7) € U N I(S). This implies that
I(W1) C Ci(s0)(UNI(S)). Thus x*(x(U) N (RF x {0})) C Cr(s)(UNI(S)) or

x(U) N (RY x {0}) € x(Cr(ay (UNT(S))).

Conversely, let z € Cr5,)(U N I(S)). By definition there must be a smooth
curve ¢ : [0,1] — S starting at I(sg), ending at z and with ¢([0,1]) C U N I(S).
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Since I : S — M is injective and smoothly universal there is a unique smooth
curve ¢ : [0,1] — S with Toc¢; =c.

Claim: ¢;([0,1]) C W.

Assume not. Then there is some number ¢ € [0, 1] with ¢1(t) € w™ ({r < ||y|| <
2r}). Then

(voI)(e(t) € (volow )({r < |yll <2r})
={(y,0):r <|ly]| <2r} C{zeR":r <|2| < 2r}.
Now this implies that (volocy)(t) = (voc)(t) € {z € R" : r < ||z|| < 2r} which
in turn implies the contradiction ¢(t) ¢ U. The claim is proven.
Now the fact that ¢1([0,1]) € W; implies ¢1(1) = I71(2) € W; and so
z € I(Wy). As a result we have Cy(4,) (U NI(S)) = I(W1) which together with
the first half of the proof gives the result:

I(Wh) = ="' (x(U) N (R x {0})) © Cl(so (Uﬂf( )
x(x(U) N (R* x {0})) so)(U
) N

N(R* x {0}) = X(CI (

(W)
(S))
).

Hﬂll

)=
N I(
x(U 1(5))

]
Conversely we have

Proposition 3.3 If S C M has property W then it has a unique smooth struc-
ture on S which makes it a weakly embedded submanifold of M.

Proof. We are given that for every s € S there exists a chart (Us, x5) with
x4(s5) = 0 and with x(Cs(U N S)) = x(U) N (R* x {0}). The charts on S will be
the restrictions of the charts (Us,xs) to the sets Cs(U NS). The overlap maps
are smooth because they are restrictions of overlap maps on M to subsets of
the form V N (R* x {0}) for V open in R™. Notice however that the induced
topology on S is finer than the subspace topology that S inherits from M. This
is because the sets of the form Cs(UN.S) are not necessarily open in the subspace
topology. Since it is a finer topology it is also Hausdorff.

It is clear that with this smooth structure on S, the inclusion ¢ : S — M is
an injective immersion.

We now show that the inclusion map ¢ : S — M is smoothly universal and
hence a weak embedding. By the comments following Definition 3.5 the smooth
structure on S is unique. Let g : N — S be a map with g(N) C S and suppose
that ¢ o g is smooth. Given x € M, choose a chart (U, xs) where s = g(x). The
set g~1(U,) is open since 1o g is continuous and (1o g)~ " (Uy) = g Lo 1 (U,) =
g~ 1(Us). We may choose a chart (V, y) centered at = with V C g=1(Us) and we
may arrange that y(V') is a ball centered at the origin. This means that g(V)
is smoothly contractible in Uy(;y NS and hence g(V') C Cy(z)(Ugy(zy) N S). But
then

XS|CS(USOS) ogoy ' =x,0(tog)oy!

and so g is smooth because ¢ o g is smooth.
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To be completely finished we need to show that with the topology induced by
the charts (the submanifold topology) each connected component of S is second
countable. We can give a quick proof but it depends on Riemannian metrics
which we have yet to discuss. The idea is that on any paracompact smooth
manifold, there are plenty of Riemannian metrics. A choice of Riemannian
metric gives a notion of distant making every connected component a second
countable metric space. Now if we put such a metric on M then it induces
one on S (by restriction). Now this means that each component of S is also
a separable metric space and hence a second countable Hausdorff topological
space. ®

We say that two immersions I; : Ny — M and Is : Ny — M are equivalent
if there exists a diffeomorphism ® : N; — Ny such that I, o ® = I; ; i.e. so that
the following diagram commutes

=)

N1 — N2

pN e
M

If I: N - M is a weak embedding (resp. embedding) then there is a unique
smooth structure on S = I(N) such that S is a weakly embedded (reps. em-
bedded) submanifold and I : N — M is equivalent to the inclusion ¢ : § — M
in the above sense.

We now come to a question that has perhaps been bothering the reader.
Namely, which of these types of submanifold is meant when one just refers to
a “submanifold”. Unfortunately, there is no universally accepted convention.
We shall follow the convention that “submanifold” when used alone without a
qualifier is to mean a regular submanifold. What R. Sharpe [Shrp, Sharp] calls
a “submanifold” refers to something more restrictive than the weakly embedded
submanifolds but still less restrictive that the regular submanifolds. Sharpe’s
definition of submanifold seems designed to exclude examples like the following.

cost

Example 3.2 The image of the map I : (0,00)— R? given by I(t) := (
s a weakly embedded submanifold.

1 1 :
In(21¢2) » In(21¢2) S t)

The celebrated Whitney embedding theorem states that any smooth second-
countable n-dimensional manifold can be embedded in a Euclidean of dimension
2n. We do not prove the full embedding theorem of Whitney but we will settle
for the following easier result:

Theorem 3.4 Suppose that M is an n— manifold that has a finite atlas. Then
there exists an injective immersion of M into R>"T1. Consequently, every com-
pact n—dimensional smooth manifold can be embedded into R?"+1,

Proof. Let M be a smooth manifold with a finite atlas. In particular, M
is second countable. Initially, we will settle for an immersion into R for some
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possibly very large dimension D. Let {O;, ¢;}icn be an atlas with cardinality
N < 0o. The cover {O;} cover may be refined to two other covers {U; };cn and
{Vi}ien such that U; € V; € V; C O;. Also, we may find smooth functions
fi : M — [0, 1] such that

fi(z) =1 for all x € U;
supp(fi) C O;.

Next we write ¢; = (z},...27) so that xf : O; — R is the j—th coordinate

PR %

function of the i-th chart and then let
fij = fzxz (no sum)

which is defined and smooth on all of M after extension by zero.
Now we put the functions f; together with the functions f;; to get a map
i: M — RN

Z-:(fl)"'7f1’7,7fll7f127"'7.}0217 """ aan)

Now we show that ¢ is injective. Suppose that i(z) = i(y). Now f(z) must
be 1 for some k since x € Uy, for some k. But then also f;(y) = 1 also and this
means that y € Vi (why?). Now then, since fx(x) = fr(y) = 1 it follows that
frj(x) = fr;(y) for all j. Remembering how things were defined we see that x
and y have the same image under ¢y : O — R™ and thus z = y.

To show that T, is injective for all z € M we fix an arbitrary such  and
then = € Uy for some k. But then near this x the functions fi1, fi2, ..., frn, are
equal to z}, ...z} and so the rank of i must be at least n and in fact equal to n
since dim T, M = n.

So far we have an injective immersion of M into R**+~",

We show that there is a projection 7 : RP — L ¢ RP where L = R?"*! is a
2n+1 dimensional subspace of R”, such that 7o f is an injective immersion. The
proof of this will be inductive. So suppose that there is an injective immersion f
of M into R? for some d with D > d > 2n+1. We show that there is a projection
g : RY — L4122 R4=1 guch that mqo f is still an injective immersion. To this
end, define a map h : M x M x R — R? by h(z,y,t) := t(f(z) — f(y)). Now
since d > 2n + 1, Sard’s theorem 3.1 implies that there is a vector y € R? which
is neither in the image of the map h nor in the image of the map df : TM — R%.
This y cannot be 0 since 0 is certainly in the image of both of these maps. Now
if pri, is projection onto the orthogonal complement of y, then pr, o f is
injective; for if pry, o f(x) = priyo f(y) then f(z) — f(y) = ay for some a € R.
But suppose x # y. Since f is injective we must have a # 0. This state of affairs
is impossible since it results in the equation h(z,y,1/a) = y which contradicts
our choice of y. Thus pry, o f is injective.

Next we examine T,(pr,, o f) for an arbitrary « € M. Suppose that
Typ(priyo f)v = 0. Then d(priyo f)|,v = 0 and since pry, is linear this
amounts to pr, o df|, v = 0 which gives df|, v = ay for some number a € R,
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and which cannot be 0 since f is assumed an immersion. But then df]|, év =y
which also contradicts our choice of y.

We conclude that pr, o f is an injective immersion. Repeating this process
inductively we finally get a composition of projections pr : RP? — R2"*+! such
that pro f : M — R?"*! i an injective immersion. m

3.2.1 Level sets as submanifolds

If f: M — N is a smooth map that has the same rank at each point, then we
say it has constant rank. Similarly, if f has the same rank for each p in a
open subset U then we say that f has constant rank on U.

Theorem 3.5 (Level Submanifold Theorem) Let f: M — N be a smooth
map and consider the level set f~(qo) for qo € N. If f has constant rank
k on an open neighborhood of each p € f~1(qo) then f~1(qo) a closed regular
submanifold of codimension k.

Proof. Clearly f~1(qo) is a closed subset of M. Let po € f~'(qo) and
consider a chart (U, ) centered at py and a chart (V,4) centered at gy with
f(U) C V. We may choose U small enough that f has rank k on U. By Theorem
C.12 we may compose with diffeomorphisms to replace (U, ) by a new chart
(U’,x) also centered at py and also replace (V1) by a chart (V' y) centered at
qo such that f := yo fox~!is given by (a',...,a") — (a',...,a*,0,...,0). We
show that

U'nf e ={pel a'(p)=-=a"p)=0}
IfpeU' N f~1(qg) then yo f(p) =0and yo fox 1 (z'(p),...,2"(p)) =0 or
z'(p)=---=a"@p)=0
On the other hand, suppose that p € U’ and z!(p) = --- = 2¥(p) = 0. Then

we can reverse the logic to obtain that y o f(p) = 0 and hence f(p) = go. Since
po was arbitrary we have verified the existence of a cover by charts adapted to

f " q). =

3.3 Submersions

Definition 3.10 A map f : M — N is called a submersion at p € M if
Tpf : TyM — TN is surjection. f: M — N is called a submersion if f is
a submersion at every p € M.

Example 3.3 The map of the punctured space R® — {0} onto the sphere S?
given by x — |x| is a submersion. To see this, use any spherical coordinates
(p,®,0) on R® — {0} and the induced submanifold coordinates (¢,6) on so S2.
Expressed with respect to these coordinates, the map becomes (p, $,0) — (¢, 0)
on the domain of the spherical coordinate chart. Here we ended up locally with
a projection onto a second factor R x R2— R? but this is clearly good enough to
prove the point.
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As in the last example, to show that a map is a submersion at some p is is
enough to find charts containing p and f(p) so that the coordinate representative
of the map is just a projection. Conversely, we have

Theorem 3.6 Let M be an m—manifold and N an n—manifold and let f :
M — N be a smooth map that is an submersion at p. Then there exist charts
(U,x) and (V,y) containing p and f(p) respectively and with f(U) C V such
that yo fox~! is given by (z',..., 2%, ...,2") — (2!, ...,2%) € R*. Here k is both
the dimension of N and the rank of T, f.

Proof. Follows directly from theorem C.10 of Appendix G. =

In certain contexts, submersions, especially surjective submersions, are re-
ferred to as projections. We often denote such map by the letter 7. Recall that
if m: M — N is a smooth map then a smooth local section of 7 is a smooth
map o : V — M defined on an open set V' such that m o 0 = idy. Also, we
adopt the terminology that subsets of M of the form 7~!(g) are called fibers
of the submersion.

Proposition 3.4 If 7 : M — N is a submersion then it is an open map and
every point p € M is in the image of a smooth local section.

Proof. Let p € M be arbitrary. We choose a chart (U,x) centered at
p and a chart (V,y) centered at m(p) such that y o 7 o x~! is of the form
(!, ... 2t 2 a™) — (2%, ...,2'). By shrinking the domains if necessary
we can arrange that x(U) has the form A x B C R! x R* and y(V) = B c R.
Then we may transfer the section i : @ — (a,b) where b = x(p). More precisely
we let 0 :=x"1oi,oyon A.

Now let O be any open set in M. To show that w(O) is open we pick any
q € 7(O) and choose p € 7~ 1(q). Now we choose a chart (U,x) as above but
with U C O. Then ¢ is in the domain of a section which is open and contained
in7(0). m

Proposition 3.5 Let m: M — N be a surjective submersion. If f: N — P is
any map then f is smooth if and only if f o is smooth.

M
ﬂ.l \fcm'r
N Lop

Proof. One direction is trivial. For the other direction, assume that f o
is smooth. We check for smoothness about an arbitrary point ¢ € N. Pick
p € 7 1(q). By the previous proposition p is in the image of a smooth section
o :V — M. This means that f and (f o7) o o agree on a neighborhood of ¢
and since that later is smooth we are done. m

Next suppose that we have a surjective submersion 7 : M — N and
consider a smooth map g : M — P which is constant on fibers. That is, we
assume that if py,ps € 77 1(q) for some ¢ € N then f(p;) = f(p2). Clearly
there is a unique induced map f : N — P so that ¢ = f onw. By the above
proposition f must be smooth. This we record as
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Corollary 3.3 If g : M — P is a smooth which is constant on the fibers
of a surjective submersion m : M —— N then there is a unique smooth map
f+N — P such that g= fom.

The following technical lemma is needed later and represents one more sit-
uation where second countability is needed:

Lemma 3.2 Suppose that M is a second countable smooth manifold. If f :
M — N is a smooth map with constant rank that is also surjective then it is
a submersion.

Proof. Let dim M = m, dim N = n and rank(f) = k and chose p € M.
Suppose that f is not a submersion so that £ < n. We can cover M by a
countable collection of charts (Uy,, %) and cover N by charts (V;,y;) such that
for every « there is an i = i(a) with f (U,) C V; and y; o fox, (2!, ...,2") =
(x',...,2%,0,...,0). But this means that f (U,) has Lebesgue measure zero. But
f(M) = Uusf (Us) and so f(M) is also of measure zero which contradicts the
surjectivity of f. This contradiction means that f must be a submersion after
all. m

Proposition 3.6 Let M and N be smooth manifolds of dimension m and n
respectively with n > m. Consider any smooth map f: M — N. Then if g € N
is a reqular value, the inverse image set f=1(q) is a regular submanifold.

Proof. It is clear that since f must have maximal rank it also has constant
rank (this also follows from the previous local result). We may now apply
Theorem 3.5. m

Example 3.4 (The unit sphere) The set S" ' ={z e R":z-z =1} isa
codimension 1 submanifold of R™ since we can use the map (x,y) — % +y? as
our map and let ¢ = 1.

Given k functions F7(x,y) on R! x R¥ we define the locus
M = {(z,y) e R' x R* : F/(z,y) = ¢}

where each ¢/ is a fixed number in the range of F7. If the Jacobian determinant
at (o, yo) € M;

O(FY, ..., FF)

ST & (20, Y0

Ay', ...y (%0:%0)

is not zero then near (zp,yo) then we can apply the theorem. We can see things

more directly: Since the Jacobian determinant is nonzero, we can solve the

equations F7(x,y) = ¢/ for y',...,9* in terms of 2!, ..., 2
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and then (z!, ..., z!) — (2, ..., 2!, f1(z), ..., f¥(x)) parameterizes M near (o, o)
in such a nice way that the inverse is a chart for M. This latter statement is

due to the inverse mapping theorem in this case. If the Jacobian determinant

never vanishes on M then we have a cover by charts and M is a submanifold of

R! x R* of dimension [ and codimension k.

Example 3.5 The set of all square matrices M, «,, s a manifold by virtue of
the obvious isomorphism M, x, = R™. The set sym(n,R) of all symmetric
matrices is an n(n + 1)/2-dimensional manifold by virtue of the obvious 1-1
correspondence sym(n,R) = R™"+1/2 given by using n(n + 1)/2 independent
entries in the upper triangle of the matriz as coordinates.

Now the set O(n,R) of all n x n orthogonal matrices is a submanifold of M, xp, .
We can show this using Theorem 3.6 as follows. Consider the map f : My, x,, —
shym(n,R) given by A — A'A. Notice that by definition of O(n,R) we have
f7H(I) = O(n,R). Let us compute the tangent map at any point Q € f~1(I) =
O(n,R). The tangent space of shym(n,R) at I is shm(n,R) itself since sym(n, R)
s a vector space. Similarly, M, . is its own tangent space. Under the identi-
fications of section 2.5 we have

Tof -v="0(Q + 2')(AQ + sv) = v'Q + Q'

Now this map is clearly surjective onto sym(n,R) when @ = I. On the other
hand, for any Q € O(n,R) consider the map Lo-1 : My xn — My given by
Lo-1(B)=Q 'B. The map TgLg-1 is actually just ToLo-1-v = Q™ v which
is a linear isomorphism since Q) is nonsingular. We have that f o Lo = f and
so by the chain rule

TQf U= TIf o TQ(LQ—I) * v
=Tif-Q 'v
which shows that Tq f is also surjective.

The following proposition shows an example of the simultaneous use of Sard’s
theorem and theorem 3.6.

Proposition 3.7 Let S be a connected submanifold of R™ and let L be a linear
subspace of R™. Then there exist x € R™ such that (x+ L) NS is a submanifold
of S.

Proof. Start with a line [ through the origin that is normal to L. Let
pr : R™ — S be orthogonal projection onto [ . The restriction 7 := pr|g — [
is easily seen to be smooth. If 7(S) were just a single point = then 7 !(x)
would be all of S. Now 7(S) is connected and a connected subset of [ = R
must contain an interval which means that w(S) has positive measure. Thus by
Sard’s theorem there must be a point € [ that is a regular value of w. But
then 3.6 implies that 7=!(z) is a submanifold of S. But this is the conclusion
since 77 '(v) = (z+L)NS. =m

We can generalize theorem 3.6 using the concept of transversality .
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Definition 3.11 Let f : M — N be a smooth map and S C N a submanifold
of N. We say that f is transverse to S if for every p € f~1(S) we have

Typ)N = Typ)S + Tp f (T, M).
If f is transverse to S we write f i S.

Theorem 3.7 Let f : M — N be a smooth map and S C N a submanifold of
N of codimension k and suppose that f ' S. Then f~1(S) is a submanifold of
M with codimension k. Furthermore we have T,(f~1(S)) = Ty (Ttp)S)
for allp € f=1(S) and codim(f~1(S)) = codim(S).

Proof. Let p = f(s) € S and choose a regular submanifold chart (U, x)
with p € U so that x(SNU) = x(U) N (R* % x0). If7:R*"k xRF - Rk
is the projection then the transversality condition implies that 0 is a regular
value of moxo f . Thus (moxo f)~'(0) = f~1(S) N U is submanifold of U of
codimension k. Since this is true for all s € f~1(S) the result follows. m

It can also be shown that if S in the above theorem is only a weakly embedded
submanifold then f~!(S) is also a weakly embedded submanifold of the same
codimension.

We can also define when two maps are transverse to each other:

Definition 3.12 If f1 : My — N and fy : My — N are smooth maps, we say
that fi1 and fs are transverse at q € N if

TipyN = Ty, [1(Tp, M) + Ty, fo(Tp, M) whenever fi(p1) = fa(p2) = q

(Note that fi is transverse to fo al any point not in the image of one of the
maps f1 and fa). If f1 and fo are transverse for all ¢ € N then we sat that fi
and fo are transverse and we write fi M fo.

One can check that if f : M — N is a smooth map and S is a submanifold
of N then f and the inclusion ¢ : § < N are transverse if and only if f M S
according to definition 3.7.

If fi : My — N and fy : My — N are smooth maps then we can consider
the set

(fi % f2) H(A) i= {(p1,p2) € My x My : fi(p1) = fo(p2)}

which is the inverse image of the diagonal {(q1,q2) € N X N : ¢1 = g2}

Corollary 3.4 (Transverse pullbacks) If fi : My — N and fo : My — N
are transverse smooth maps then (f1 X fg)_1 (A) is a submanifold of My x Ms.
If 9 : P — My and g2 : P — My are any two maps with the property fio
g1 = fao g then the map (91,92) : P — (f1 x f2) ' (A) given by (g1, 92) (z) =
(g1(x), g2(z)) is smooth and is the unique smooth map such that prio(g1,92) =
g1 and prz o (g1, 92) = ga.

Proof. We leave the proof as an exercise. Hint: f; X fo is transverse to A
if and only if f1 M fo. =
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3.4 Morse Functions

If we consider a smooth function f : M — R and assume that M is a compact
manifold (without boundary) then f must achieve both a maximum at one or
more points of M and a minimum at one or more points of M. Let p. be one of
these points. The usual argument shows that df| p. =0 (Recall that under the
usual identification of R with any of its tangent spaces we have df| pe = Ip. ).
Now let p be some point for which df|p =0, i.e. pis a critical point for f. Does
f achieve either a maximum or a minimum at p? How does the function behave
in a neighborhood of 3?7 As the reader may well be aware, these questions are
easier to answer in case the second derivative of f at p is nondegenerate. But
what is the second derivative in this case?

Definition 3.13 The Hesstan matriz of f at one of its critical points p and

with respect to coordinates x = (x*,...,x™) is the matriz of second partials:
82 —1 62 —1
azpflogml ('TO) e 8mflc;3xw” (1‘0)
[Hf7p]x = . .
62 -1 82 -1
Bmfnoi}){zl (LL'()) e 8951:‘051:” (‘TO)

where xo = x(p). The critical point p is called nondegenerate if H is nonsin-
gular.

Now any such matrix H is symmetric and by Sylvester’s law of inertia this
matrix is equivalent to a diagonal matrix whose diagonal entries are either 1
or —1. The number of —1’s occurring in this diagonal matrix is called the
index of the critical point. According to problem 9 we may define the Hessian
Hy, : T,M xT,M — R which is a symmetric bilinear form at each critical point
p of f by letting Hy ,(v.w) = X,(Y f) = Y, (X f) for any vector fields X and YV’
which respectively take the values v and w at p. Now we may give a coordinate
free definition of a nondegenerate point for f. Namely, p is nondegenerate point
for f if and only if Hy ,, is a nondegenerate bilinear form. H , is a nondegenerate
if for each fixed nonzero v € T,M the map Hy,(v,.) : T,M — R is a nonzero
element of the dual space Ty M.

Exercise 3.5 Show that the nondegeneracy is well defined by ether of the two
definitions given above and the definitions agree. Hint: Hf)p(% , %D =

82 fox~ !

e (x(p))-

Exercise 3.6 Show that nondegenerate critical points are isolated. Show by
example that this need not be true for general critical points.

The structure of a function near one of its nondegenerate critical points is
given by the following famous theorem of M. Morse:

Theorem 3.8 (Morse Lemma) Let f : M — R be a smooth function and
let o be a nmondegenerate critical point for f of index i. Then there is a local
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coordinate system (U,x) containing xo such that the local representative fy :=
fox™! for f has the form

fU(xl, vy ™) = f(x0) + hijxizj

and where it may be arranged that the matriz h = (h;j) is a diagonal matriz of
the form diag(—1,... — 1,1,...,1) for some number (perhaps zero) of ones and
minus ones. The number of minus ones is exactly the index i.

Proof. This is clearly a local problem and so it suffices to assume f :
R™ — R and also that f(0) = 0. Then our task is to show that there exists a
diffeomorphism ¢ : R” — R" such that fo¢(z) = x*hx for a matrix of the form
described. The first step is to observe that if g : U C R” — R is any function
defined on a convex open set U and ¢(0) = 0 then

1
d
g(ula"'aun) = / ag(tulvvtun)dt
0

1 n
= / Zuiaig(tul,...,tun)dt
0 =1

Thus g is of the form g = >, u;g; for certain smooth functions g;,1 <i <n
with the property that 9;9(0) = g;(0). Now we apply this procedure first to f
to get f =Y u;fi where 9;f(0) = f;(0) = 0 and then apply the procedure
to each f; and substitute back. The result is that

flug,yuy) = Z uiujhij(ul,...,un) (3.2)

ij=1

for some functions A%/ with the property that h%() is nonsingular at and there-
fore near 0. Next we symmetrize (h%) by replacing it with (k" + h?%) if nec-
essary. This leaves the expression 3.2 untouched. Now the index of the matrix
(h9(0)) is i and this remains true in a neighborhood of 0. The trick is to find
a matrix C(z) for each z in the neighborhood that effects the diagonalization
guaranteed by Sylvester’s theorem: D = C(x)h(z)C(x)~!. The remaining de-
tails, including the fact that the matrix C'(z) may be chosen to depend smoothly
on z, is left to the reader. m

3.5 Problems.

1. Show that a submersion always maps open set to open set (it is an open
mapping). Further show that if M is compact and N connected then a
submersion f : M — N must be surjective.

2. Prove Theorem 3.3.

3. Define a function s : R"*1\{0} — RP™ by the rule that s(z) is the line
through z. Show that s is a submersion.
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. Given a smooth surjection f : M — N, define a local section of f over

an open U C N to be a smooth map ¢ : U — M such that foo = idy.
Show that f is a submersion if and only if for each p € M there is a local
section ¢ whose range contains p.

. Show that if p(z) = p(x1, ..., z,) is a homogeneous polynomial so that for

some m € Z
p(tay, .., tay) = t"p(a1, ..y 2p)

then as long as ¢ # 0 the set p~*(c) is a n — 1 dimensional submanifold of
R™.

. Suppose that g : M — N is transverse to a submanifold W C N. For

another smooth map f : Y — M show that f th g=}(IV) if and only if
(gof)mW.

. Suppose that ¢ : [a,b] — M is a smooth map. Show that given any

compact subset C C (a,b) and any € > 0 there is an immersion 7 :
(a,b) — M that agrees with ¢ on the set C' and such that

|v(t) — c(t)] < eforallt € (a,b).

. Show that there is a continuous map f : R? — R? such that f(B(0,1)) C

f(B<07 1))5 f(RQ\B(Oa 1)) C f(RQ\BEL 1)) and fﬁB(O,l) = idaB(O,l) and
with the properties that f is C° on B(0,1) and on R*\B(0,1) while f is
not C* on R2.

. Construct an embedding of R x S™ into R**!

Construct an embedding of G(n, k) into G(n, k + 1) for each [ > 1.

Show that the map f : P2 — R3 defined by f([z,v,2]) = (yz, 2z, 2y) is an
immersion at all but six points p € P2.

Let h : M — R™ be smooth and let N C R™ a regular submanifold. Prove
that for each € > 0 there exists a v € R™, with |v| < ¢, so that the map
p — h(p) + v is transverse to N. (Think about the map M x N — R"

given by (p,y) — y — f(p).)

Define ¢ : S' — R by ¢ — 6 for 0 < 6 < 2r. Define A : R —S! by
6 — €. Show that A is an immersion, that \ o ¢ is smooth but that ¢ is
not differentiable (it isn’t even continuous).
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Chapter 4

Lie Groups I

4.1 Definitions and Examples

One approach to geometry is to view geometry as the study of invariance and
symmetry. In our case, we are interested in studying symmetries of smooth
manifolds, Riemannian manifolds, symplectic manifolds etc. Now the usual
way to talk about symmetry in mathematics is by the use of the notion of a
transformation group. The wonderful thing for us is that the groups that arise
in the study of geometric symmetries are often themselves smooth manifolds.
Such “group manifolds” are called Lie groups.

In physics, Lie groups play a big role in connection with physical symmetries
and conservation laws (Noether’s theorem). Within physics, perhaps the most
celebrated role played by Lie groups is in particle physics and gauge theory. In
mathematics, Lie groups play a prominent role in Harmonic analysis (generalized
Fourier theory), group representations and in virtually every branch of geometry
including Riemannian geometry, Cartan geometry, algebraic geometry, Kéahler
geometry, and symplectic geometry.

Definition 4.1 A smooth manifold G is called a Lie group if it is a group
(abstract group) such that the multiplication map p : G x G — G and the
inverse map v : G — G given respectively by u(g,h) = gh and v(g) = g=! are
C™ maps. If the group is abelian we sometimes opt to use the additive notation

g+ h for the group operation.

Example 4.1 R is a one-dimensional (abelian) Lie group were the group mul-
tiplication is the usual addition 4. Similarly, any real or complex vector space
s a Lie group under vector addition.

Example 4.2 The circle S* = {z € C : |z|> = 1} is a I-dimensional (abelian)
Lie group under complex multiplication. It is also traditional to denote this
group by U(1).

123
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Exercise 4.1 Let g € G (a Lie group). Show that each of the following maps
G — G is a diffeomorphism:

1) Ly : x — gz (left translation)

2) Ry : x — xg (right translation)

3) Cy:x v grg~' (conjugation).

4)inv:x— x~ (inversion)

If G and H are Lie groups then so is the product manifold G x H where
multiplication is (g1, h1) - (92, h2) = (9192, h1h2). G x H is called the product
Lie group.

Definition 4.2 Let H be an abstract subgroup of a Lie group G. If H is a Lie
group such that the inclusion map H — G is an immersion then we say that H
is a Lie subgroup of G.

Proposition 4.1 If H is an abstract subgroup of a Lie group G that is also a
reqular submanifold then H is a closed Lie subgroup.

Proof. The multiplication and inversion maps, H x H — H and H — H
are the restrictions of the multiplication and inversion maps on G and since H
is a regular submanifold we obtain the needed smoothness of these maps. The
harder part is to show that H is closed. So let o € H be arbitrary. Let (U, x)
be a chart adapted to H whose domain contains e. Let § : G x G — G be the
map d(g1,92) = gflgg and choose an open set V such that e € V. C V C U.
By continuity of the map § we can find an open neighborhood O of the identity
element such that O x O C §=1(V). Now if h; is a sequence in H converging
to 29 € H then x5'h; — e and x5'h; € O for all sufficiently large i. Since
hj_lhi = (Ialhj)71 xalhi we have that hj_lhi € V for sufficiently large i, j.
Now for any sufficiently large fixed j we have

lim h;'hi =h;'zg eV CU

i—oo 7 J
Each hj_lhi isin H and since UNH is closed in U we see that hj_lxo ceUNHCH
for all sufficiently large j. This shows that ¢y € H and since xy was arbitrary
we are done. ®m

By a closed Lie subgroup we shall always mean one that is a regular

submanifold as in the previous theorem. It is a nontrivial fact that an abstract
subgroup of a Lie group that is also a closed subset is automatically a closed
Lie subgroup in this sense (see 4.5).

Example 4.3 The product group S' x S* is called the 2-torus. More generally,
the torus groups are defined by T™ = S* x ... x S'.

n-times

Example 4.4 S embedded as S* x {1} in the torus S* x S' is a closed subgroup.
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4.2 Linear Lie Groups

The group Aut(V) of all linear automorphisms of a vector space V over a field
F (=R or C) is an open submanifold of the vector space End(V) (the space of
linear maps V. — V). This group is easily seen to be a Lie group and in that
context it is usually denoted by GI(V) and referred to as the general linear
group of V. In case V = R", the group is usually identified with the group of
invertible n x n real matrices and is denoted Gi(n,R) (or by Gi(n)). Similarly,
if V.= R", the group GI(C") is identified with the invertible n x n complex
matrices denoted Gl(n,C). Lie groups which are subgroups of GI(V) for some
vector space V are referred to as linear Lie groups are usually realized as
matrix groups. These are the linear Lie groups and by choosing a basis we
always have the associated group of matrices.

Recall that the determinant of a linear transformation from a vector space
to itself is defined independent of any choice of basis.

Theorem 4.1 Let V be an n—dimensional vector space over the field F which
we take to be either R or C. Let § be a nondegenerate R—bilinear form on V.
Each of the following groups is a closed (Lie) subgroup of GI(V):

1. SI(V) :={A e GI(V) : det(A) = 1}

2. Aut(V,p):={A4 € GUV): B(Av, Aw) = B(v,w) for all v,w € V}
3. SAut(V, ) = Aut(V, ) N SI(V)

Proof. They are clearly closed subgroups. The fact that they are Lie
subgroups follows from theorem 4.5 from the sequel. However, as we shall
see most of the specific cases arising from various choices of § can be proved
to be Lie groups by direct argument. That they are Lie subgroups follows
from proposition 4.1 once we show that they are regular submanifolds of the
appropriate group GI(V,F). We will return to this later once we have introduced
another powerful theorem that will allow us to verify this without the use of the
theorem 4.5. m

Notice that even in the case that F = C, we have specified that 3 may
only be R-linear. There reason for this is that we wish to include the case
that 8 is a Hermitian form (also called a sesquilinear form). Here, [ satisfies
B(v,w) = B(w,v) and is required to be linear in one slot and conjugate linear in
the other slot: S(av,w) = af(v,w) for a € C. Depending on whether F = C or
R and on whether 3 is symmetric, Hermitian, or skewsymmetric, the notation
for the linear groups takes on a special conventional forms. Also, when choosing
a basis in order to represent the group in its matrix version, it is usually the
case that one uses a basis under which the matrix which represents § takes on
a canonical form. Let us look at the usual examples. Let dim 'V = n.

Example 4.5 After choosing a basis the groups GI(V,F) and SI(V,F) become
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the matriz groups

Gl(n,F) :={A € M xn(F) : det A # 0}
Sl(n,F) :={A € Mpxn(F):det A=1}

Example 4.6 (The (semi) Orthogonal Groups) Here we consider the case
where V is a real vector space and where the bilinear form 3 is symmetric and
nondegenerate. Then (V,[(3) is a general scalar product space. In this case
we write Aut(V, ) as O(V,3) and refer to it as the semi-orthogonal group
associated to 3. By Sylvester’s law of inertia we may choose a basis so that (8
1s represented by a diagonal matriz of the form

1 0 0
0 0
0 1
Mp.q =
-1 0
: 0 .0
L0 - e 0 =1

where there are p ones and q minus ones down the diagonal. The group of
matrices arising from O(V, 3) with such a choice of basis is denoted O(p, q) and
consists ezactly of the real matrices A satisfying An, qA* = np4. These are
called the semi-orthogonal matriz groups. With such an orthonormal choice of
basis as above, the bilinear form (scalar product) is given as a canonical form
onR" (p+qg=mn) :

p n
(wy) = a'y' = Y @y
i=1 i=pt1

and we have the alternative description

O(p,q) ={Q € Gl(n) : (Qz,Qy) = (x,y) for all z,y € R"}

We write O(n,0) as O(n) and refer to it as the (real) orthogonal (matriz)
group.

Example 4.7 There are also complex orthogonal groups (not to be con-
fused with unitary groups). In matriz representation we have O(n,C) := {Q €

Gl(n,C): Q'Q = I}.

Example 4.8 In this example we consider the situation where F = C and where
B is complex linear in one argument (say the first one) and conjugate linear in
the other. Thus [3 is a sesquilinear form and (V,(3) is a complex scalar product
space. In this case we write Aut(V, 5,F) as U(V, ) and refer to it as the semi-
unitary group associated to the sesquilinear form (3. If B is positive definite,
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then we call it a unitary group. Again we may choose a basis for V such that
0B is represented by the canonical sesquilinear form on C"

p .o prazn .
(@y) =Y 'y = > z'y
i=1 i=pt1

We then obtain the semi-unitary matrix group
U(p,q) ={A € Gi(n,C) : (Az, Ay) = (z,y) for all z,y € R"}
We write U(n,0) as U(n) and refer to it as the unitary (matriz) group.
In particular, U(1) = S1 = {2z € C: |z| = 1}.

Example 4.9 (Symplectic groups) We will describe both the real and the
complex symplectic groups. Suppose now that 3 is a skewsymmetric C—bilinear
(resp. R—bilinear) form on a 2n dimensional complex (resp. real) vector space
V. The group Aut(V,B) (resp. Aut(V,p)) is called the complex (resp. real)
symplectic group and denoted by Sp(V,C) (resp. Sp(V,R)). There exists a
basis {f;} for V such that B is represented in canonical form by

n n
(v,w) = E Vit — g V"Il
i=1 j=1

and the symplectic matriz groups are given by

Sp(2n,C)={A € Ma,x2,(C) : (Av, Aw) = (v,w)}
Sp(2n,R)={A € Mapx2,(R) : (Av, Aw) = (v,w)}

Exercise 4.2 ForF = C or R, show that A € Sp(2n,F) if and only if ALJA = J

where
0 id
J= ( —id 0 )

The groups of the form SAut(V,b,F) = Aut(V,b,F) N SI(V,F) are usually
designated by use of the word “special”. We have the special orthogonal and
special semi-orthogonal groups SO(n) and SO(p,q), the special unitary
and special semi-unitary groups SU(n)and SU(p, q) etc.

Exercise 4.3 Show that SU(2) is simply connected.

Much of the above can be generalized somewhat more. Recall that the
algebra of quaternions H is a copy of R* endowed with a multiplication described
as follows: First let a generic elements of R* be denoted by x = (20, 2!, 22, 23),

y = (y°, vy, 4%, y3) etc. Thus we are using {0, 1,2,3} as our index set. Let the
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standard basis be denoted by 1,i,j,k. We define a multiplication by taking
these basis elements as generators and insisting on the following relations

P=j=k*=-1

ij=—ji=k
jk=-kj=1i
ki = —ik = j

Of course, H is a vector space over R since it is just R* with some extra structure.
It is common to identify the R-linear span of 1 with R and correspondingly
write 1 as 1. As a ring, H is a division algebra which is very much like a field
lacking only the property of commutativity. In particular, we shall see that every
nonzero element of H has a multiplicative inverse. As we said, elements of the
form al for a € R are identified with the corresponding real numbers and such
quaternions are called real quaternions. By analogy with complex numbers
the set of all quaternions of the form z'i + 22j + 2%k are called imaginary
quaternions. For a given quaternion = z°1 + 2'i + 22j + 2%k the quaternion
x'i + 22j + 23k is called the imaginary part of z and 2°1 =20 is called the real
part of x. We also have a conjugation defined by

z— T =21 —z'i— 2% — 2%k
Notice that zZ = Zz is real and equal to (1‘0)2 + (a:l)z + (x2)2 + (333)2. We

denote the positive square root of this by |z| so that Tz = |;1c|2

Exercise 4.4 Verify the following for x,y € H and a,b € R

ar + by = aZT + by (Z) ==
|lzy| = || [y |Z| = ||
TY = yx

Notice the strong the analogy with complex number arithmetic.

Example 4.10 The set of unit quaternions is U(1,H) := {|z| = 1}. This set
is closed under multiplication. As a manifold it is (diffeomorphic to) S3. With
quaternionic multiplication S® = U(1,H) is a compact Lie group. Compare this
to Ezample 4.2 where we saw that U(1,C) = S*. For the future, we unify things
by letting U(1,R) := Zy = S° C R. In other words, we take the 0-sphere to be
the subset {—1,1} with its natural structure as a multiplicative group.
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Exercise 4.5 Prove the assertions in the last example.

We now consider the n—fold product H"™ which as a real vector space (and
smooth manifold) is R*". However, let us think of elements of H" as column
vectors with quaternion entries. We want to treat H™ as a vector space over H
with addition defined just as for R™ and C™ but since H is not commutative we
are not properly dealing with a vector space. In particular, we should decide
whether scalars should multiply column vectors on the right or on the left. We
choose to multiply on the right and this could take some getting used to but
there is a good reason for our choice. This puts us into the category of right
H-modules were elements of H are the “scalars”. The reader should have no
trouble catching on and so we do not make formal definitions at this time (see
Appendix D). For v,w € H" and a,b € H we have

v(a +b) = va + vb
(v 4+ w)a = va + wa

(va) b= v (ab).

A map A : H" — H" is said to be H-linear if A(va) = A(v)a for all v € H"
and a € H. There is no problem with doing matrix algebra with matrices with
quaternion entries as long as one respects the noncommutativity of H. For

example, if A = (a}) and B = (b}) are matrices with quaternion entries then
writing C' = AB we have

j
= Y

but we can not expect that Y ajbs = Y bFaj. For any A = (a) the map

H" — H" defined by v +— Av is H-linear since A (va) = (Av) a.

Definition 4.3 The set of all m xn matrices with quaternion entries is denoted
M sn(H). The subset Gl(n,H) is defined as the set of all Q € My, wn(H) such
that the map v — Qu is a bijection.

We will now see that Gl(n,H) is a Lie group isomorphic to a subgroup of
Gl(2n,C). First we defined a map ¢ : C2— H as follows: For (z1,22) € C with
z1 = 2" + 2tiand 2o = 2 + 2%, we let o(21,22) = (20 + 2ti) + (2% 4 2%) ]
where on the right hand side we interpret i as a quaternion. Note that (z° +
o) + (22 4+ 2%1) j = 2% 4+ 2'i + 2%j + 2%k . Tt is easily shown that this map is
an R-linear bijection and we use this map to identify C? with H. Another way
of looking at this is that we identify C with the span of 1 and i in H and then
every quaternion has a unique representation as z' 4 z2j for (21,22) € CC H.
Now we extend this idea to square quaternionic matrices; we can write every
Q € M, xn(H) in the form A + Bj for A, B € C™*" in a unique way. Now
this representation makes it clear that M,,«,(H) has a natural complex vector
space structure where the scalar multiplication is z(A + Bj) =zA + zBj. Direct
computation shows that

(A + Bj) (C + Dj) = (AC — BD) + (AD + BC)j
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for A+ Bj € M5 (H) and C' + Dj GM,ka(H) and where we have used the fact
that for @ € M,,x,(H) we have Qj = jQ. From this it is not hard to show that
the map Jpxn @ Myxn(H) — Moy, w2, (C) given by

. A B

is an injective R—linear map which respects matrix multiplication and thus is
an R—algebra isomorphism onto its image. We may identify M., (H) with
. . A B
the subspace of Ma,,x2,(C) consisting of all matrices of the form ( B A )
where A, B € C™*™. In particular, if m = n the we obtain an injective R—linear
algebra homomorphism @« : My xn(H) — Moy x2,(C) and thus the image of
this map in May,x2,(C) is another realization of the matrix algebra M,y (H).
If we specialize to the case of n = 1 we get a realization of H as the set of all

1;} ) This set of matrices is closed

2 X 2 complex matrices of the form (

under multiplication and forms an algebra over the field R. Let us denote this
algebra of matrices by the symbol R* since it is diffeomorphic with H = R*.
We now have an algebra isomorphism 1 : H — R* under which the quaternions
11i,j, and k correspond to the matrices

(o0):(6 %) ()= (V5)

respectively. Since H is a division algebra, each of its nonzero elements has a
multiplicative inverse. Thus R* must contain the matrix inverse of each of its
nonzero elements. This can be seen directly:

(50) =m0 )
—w  Z L2 2\ w =z
|2|” + |w]

Here we have used the easily verified fact that

det( . w):|z|2+|w|2
Wz

Consider again the group of unit quaternions U(1,H). We have already seen
that as a smooth manifold U(1,H) is S®. However, under the isomorphism
H — R* C Myyo(C) just mentioned U(1,H) manifests itself as SU(2). We
record this as

Proposition 4.2 S3 = U(1,H) = SU(2). The second isomorphism is given by

. z w
xz+w3r—>( _ >
—w Z

where © = 2% + ' + 22j + 23k and z = 2° + 2'j and w = 22 + 23j.
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Proof. The first equality has already been easily established. Notice that

then
|z = |2 + |w|? :det( v )
w z

and so x € U(1,H) if and only if ( _Zu,)

1;} > has determinant one. On the

other hand if det ( Z_ 1f ) =1 then
w oz

z w

andso( _ )ESU(Q). ]
—w  Z
Exercise 4.6 Show that Q € Gl(n,H) if and only if det(d,xn(Q)) # 0.

The set of all elements of GI(2n,C) which are of the form ( —AB g )
is a subgroup of GI(2n,C) and in fact a Lie group. Using this last exercise
we see that we may identify Gi(n,H) as a Lie group with this subgroup of
Gl(2n,C). We want to find a quaternionic analogue of U(n, C) and so we define
b:H" x H* — H by

b(v,w) = v'w.

Explicitly, if

vl w!
v = and w =
" w"
then
wl
b(v,w) = [ v! o™ | :
wn

= g v'w®

Note that while b is obviously R-bilinear, if a € H then we have b(va,w) =
b(v,w)a and b(v,w) = b(v,w)a. Notice that we consistently use right multi-
plication by quaternionic scalars. Thus b is the quaternionic analogue of an
Hermitian scalar product.

Definition 4.4 We define U(n,H):
U(n,H) :={Q € Gl(n,H) : b(Qv, Qu) = b(v,w) for all v,w € H"}

U(n,H) is called the quaternionic unitary group.
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U(n,H) is is sometimes called the symplectic group and denoted Sp(n) but
we will avoid this since we want no confusion with the symplectic groups we
have already defined.

U(n,H) is in fact a group since we may consider H" a real vector space and
b a nondegenerate R-binear form with some special properties. Then U (n,H)
is just the group of linear maps which preserve this bilinear from. The image
of U(n,H) under the isomorphism ¥y, xn : Myxn(H) — Fpxn(Mpxn(H)) is de-
noted USp(2n,C). Since it is easily established that ﬁnxn|U(n,H) is a group
homomorphism, the image USp(2n, C) is a subgroup of Gi(2n,C).

_ N\t
Exercise 4.7 Show that ¥ xn(AY) = <ﬂan(A)) .

Exercise 4.8 Show that USp(2n,C) is a Lie subgroup of Gl(2n,C).
Exercise 4.9 Show that USp(2n,C) = U(2n) N Sp(2n,C). Hint: Show that
nscn(Mpxn(H)) = {A € GI(2n,C) : JAJ ' = A}

where J = ( —gd z(;l ) Neat show that if A € U(2n) then JAJ~1 = A if and

only if AtJA = J.

4.3 Lie Group Homomorphisms

Definition 4.5 A smooth map f : G — H is called a Lie group homomor-
phism if

[(9192) = f(g1)f(g2) for all g1,92 € G and
flgH = f(g) " forallgeG.

and o Lie group isomorphism in case it has an inverse that is also a Lie
group homomorphism. A Lie group isomorphism G — G is called a Lie group
automorphism.

Example 4.11 The inclusion SO(n,R) — Gl(n,R) is a Lie group homomor-
phism.

Example 4.12 The circle S C C is a Lie group under complex multiplication
and the map
cos(f) sin(d) O
z=¢% - | —sin(d) cos(@) 0
0 0 Iy—o

is a Lie group homomorphism of S' into SO(n).
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Example 4.13 The conjugation map Cy : G — G is a Lie group automor-
phism.

Exercise 4.10 (*) Show that the multiplication map p : G x G — G has tan-
gent map at (e,e) € GxG given as T(. oyp(v,w) = v+w. Recall that we identify
T(e,e) (G X G) with T.G x T.G.

Exercise 4.11 Gi(n,R) is an open subset of the vector space of all n X n ma-
trices Mpxn(R). Using the natural identification of T,Gl(n,R) with M, x,(R)
show that as a map My xn(R) = Mpxn(R) we have

T.Cy: x — grg
where g € Gl(n,R) and x € My (R).

Example 4.14 The map t — e

st ccC.

is a Lie group homomorphism from R to

Remark 4.1 It is an unfortunate fact that in this setting a map itself is some-
times referred to as a “subgroup”. The term “one-parameter subgroup” from the
next definition is such a case.

Definition 4.6 A homomorphism from the additive group R into a Lie group
18 called a one-parameter subgroup.

Example 4.15 We have seen that the torus S* x S* is a Lie group under multi-
plication given by (e'™, 1) (e'™2, 1%2) = (e!(T1H72) i01402)) " Byery homomor-
phism of R into S' x S, that is, every one parameter subgroup of S' x S' is of
the form t v+ (e'% ) for some pair of real numbers a,b € R.

Example 4.16 The map R : R — SO(3) given by

cosf@ —sinf O
0 — sinf cosf O
0 0 1

s a one parameter subgroup.

Recall that an n x n complex matrix A is called Hermitian (resp. skew-
Hermitian) if A' = A (resp. A® = —A).

Example 4.17 Given an element g of the group SU(2) we define the map Ad, :
su(2) — su(2) by Ad, : x — grg~'. Now the skew-Hermitian matrices of zero

trace can be identified with R3 by using the following matrices as a basis:

(%000 ) ()
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These are just —i times the Pauli matrices 01,092,035 and so the corre-
spondence su(2) — R3 is given by —wioy — yioy — izos +— (v,y,2). Un-
der this correspondence the inner product on R3 becomes the inner product
(A, B) = trace(AB). But then

(AdgA,Ad,B) = trace(gAgg ' Bg™!)
= trace(AB) = (A, B)

so Ady can be thought of as an element of O(3). More is true; Ady acts as an
element of SO(3) and the map g — Adgy is then a homomorphism from SU(2)
to SO(su(2)) =2 SO(3). This is a special case of the adjoint map studied later.

Definition 4.7 If a Lie group homomorphism ¢ : G — G is also a covering
map then we say that G is a covering group and @ is a covering homomorphism.
If G is simply connected then G (resp. p) is called the universal covering group
(resp. universal covering homomorphism) of G.

Exercise 4.12 Show that if p : M — G is a smooth covering map and G is a
Lie group then M can be given a unique Lie group structure such that @ becomes
a covering homomorphism.

Example 4.18 The group Mob of transformations of the complex plane given

by Ta:z+— Zzz_ts for A= ( CCL i)l € S1(2,C) can be given the structure of

a Lie group. The map p : SI(2,C) — Mob given by p : A — T4 is onto but
not injective. In fact, it is a (two fold) covering homomorphism. When do two
elements of SI(2,C) map to the same element of Mob?

4.4 The Lie algebra

Definition 4.8 A wvector field X € X(G) is called left invariant if and only if
(Lg)«X =X for all g € G. A vector field X € X(G) is called right invariant
if and only if (Ry)«X = X for all g € G. The set of left invariant (resp. right
invariant) vectors Fields is denoted £(G) or XL(G) (resp. R(G) or XE(G)).

Recall that by definition (Lg).X = TLg 0 X o L' and so left invariance
means that TLg o X o L;!' = X or that TLy0 X = X o L,. Thus X € X(G) is
left invariant if and only if the following diagram commutes for every g € G.

e ™ 16
X 1 X
¢ X ¢

There is a similar diagram for right invariance.

Remark 4.2 As we mentioned previously, Lg. is sometimes used to mean T'L,
and so left invariance of X would then amount to the requirement that for any
fized p € G we have Ly X, = Xgp for all g € G.
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Lemma 4.1 XL(Q) is closed under the Lie bracket operation.
Proof. Suppose that X,Y € XL(G). Then by Proposition 2.5 we have

(L) [X. Y] = (L) (£xY) = L1y x Ly
= Ly X LpY] = [X.Y]

Corollary 4.1 X%(G) is an n-dimensional Lie algebra under the bracket of
vector fields (see definition 2.20).

Given a vector v € T.G we can define a smooth left (resp. right) invariant
vector field LY (resp. RY) such that L¥(e) = v (resp. R"(e) = v) by the simple
prescription

L(g)=TLy-v
(resp. R’(g) = TRy -v)

Furthermore, the map v +— LY (resp. v +— RY) is a linear isomorphism from
T.G onto XL(G) (resp.X®(G)) . The proof that this prescription gives smooth
invariant vector fields is left to the reader (see Problem 3) . We now restrict
attention to the the left invariant fields but keep in mind that essentially all of
what we say for this case has analogies in the right invariant case. In any case
we will discover a conduit (the adjoint map) between the two cases.

The linear isomorphism T.G =2 X% (@) just discovered shows that XZ(G) is,
in fact, a finite dimensional vector space and using this isomorphism we can
transfer the Lie algebra structure to T.G. This is the content of the following

Definition 4.9 For a Lie group G, define the bracket of any two elements
v,w € T.G by
[v,w] := [LY, L*](e).

With this bracket, the vector space T.G becomes a Lie algebra (see definition
2.21) and so we now have two Lie algebras, X(G) and T, G which are isomorphic
by construction. The abstract Lie algebra isomorphic the either/both of them
is often referred to as the Lie algebra of the Lie group G and denoted variously
by L(G), Lie(G) or g. Of course, we are implying that £ie(H) is denoted h and
Lie(K) by € etc. In some computations we will have to use a specific realization
of g. Our default convention will be that g = £ie(G) := T.G with the bracket
defined above and then occasionally identify this with the left invariant fields
XL(G) under the vector field Lie bracket.

Definition 4.10 Given two Lie algebras over a field F, say (a,[,]q) and (b, [,]s),
an F-linear map o is called a Lie algebra homomorphism if and only if

o([v,w]q) = [ov, ow]p

for all v,w € a. A Lie algebra isomorphism is defined in the obvious way. A
Lie algebra isomorphism g — g is called an automorphism of g.
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It is not hard to show that the set of all automorphisms of g, denoted Aut(g),
forms a Lie group (actually a Lie subgroup of Gi(g)).

Recall that if V is a finite dimensional vector space then each tangent space
T,V is naturally isomorphic to V. Now Gl(n) is an open subset of the vector
space of n x n real matrices M,,x, and so we obtain natural vector space iso-
morphisms T ;Gl(n) = M, ,, for all g € GI(n). To move to the level of bundles
we reconstitute these isomorphisms to get maps T,Gl(n) — {g} x M,,x,, which
we can then bundle together to get a trivialization T Gl(n) — Gl(n) x M, xn
(recall definition 2.15). One could use this trivialization to identify T Gi(n)
with Gl(n) x M, «, and this trivialization is just a special case of the general
situation: When U is an open subset of a vector space V, we have a trivial-
ization TU = U x V. Further on, we introduce two more trivializations of
T Gl(n) =2 Gl(n) x M, x,, defined using the (left or right) Maurer-Cartan form
defined below. This will work for general Lie groups. Since these trivializations
could also be used as identifying isomorphisms we had better introduce a bit
of nonstandard terminology. Let us refer to the identification of T'Gl(n) with
Gl(n) XM, , or more generally TU with U x V, as the canonical identification.

Let us explicitly recall one way to describe the isomorphism T,Gl(n) =
M, xn. If vy € TyG then there is some curve (of matrices) ¢? : t — ¢(t) such
that ¢?(0) = g and ¢7(0) = v, € T;G. By definition ¢9(0) := Ty - %|0 which
is based at g. If we just take the ordinary derivative we get the matrix that
represents vg: If ¢(t) is given by

gn (1)
then ¢(0) = vy is identified with the matrix
d 1 d 2
E|t=0 91 a@tli=o 91
— d 1 .
e=1 & |t:0 92

d
dt |t:0 9n

As a particular case, we have a vector space isomorphism gl(n) = T ;Gl(n) =
M,,«r, where I is the identity matrix in GIl(n). This we want to use to identify
gl(n) with M,,»,,. Now gl(n) = T7Gl(n) has a Lie algebra structure and we
would like to transfer the Lie bracket from gl(n) to M, is such a way that
this isomorphism becomes a Lie algebra isomorphism. Below we discover that
the Lie bracket that we end up with for M,, ., is the commutator bracket defined
by [A, B] := AB — BA. This is so natural that we can safely identify the Lie
algebra gl(n) with M,,,,. Along these lines we will also be able to identify the
Lie algebras of subgroups of Gi(n) (or Gi(n,C)) with linear subspaces of M,,»,
(or M, 55 (C)).

Initially, the Lie algebra of GIl(n) is given as the space of left invariant
vectors fields on GL(n). The bracket is the bracket of vector fields that we met
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earlier. This bracket is transferred to T;Gl(n) according to the isomorphism of
X(GL(n)) with TrGL(n) given in this case by X + X (I). The situation is that
we have two Lie algebra isomorphisms

X(Gl(n)) = TyGl(n) = Myxn

and the origin of all of the Lie algebra structure is X(GI(n)). The plan is then
to figure out what is the left invariant vector field that corresponds to a given
matrix from M, x,. This gives a direct route between X(Gi(n)) and M, «,
allowing us to see what the correct bracket on M, «, should be. Note that a
global coordinate system for Gl(n) is given by the maps zf which are defined
by the requirement that f(A) = af whenever A = (a%). Thus any vector fields
X,Y € X(Gl(n)) can be written

; 0
X=1j oxt
j

i a
Y =9 oz’
j

for some functions f; and g; Now let (a}) = A € My x,. The corresponding
element of T ;GI(n) can be written A; = aé 8‘;

ilr
is a left invariant vector field X4 which is given by X4 () = TrL, - va which
in turn corresponds to the matrix %’Omc(t) = zA. Thus X4 is given by

X = f; ai']% where f;(x) =zA = (gczaf) Similarly, let B be another matrix

with corresponding left invariant vector field XZ. The bracket [X4, XB] can
now be computed as follows:

. Corresponding to Ay there

iaglk iafzk 9

A By _ (gi i g
(X7, X }_(J(“)x; ]8x§)axf
. 0(zkby) . 0(zkaf)) 0
— ( T S‘ _ Zb’l" S _ _
(Iraj oz’ T ox’, oxl

_ k_rps kyr s
= (:Urasbl — x,bsal) 9ok
l

Evaluating at I = (8!) we have

(X4, XP)(1) = (6ralb} — 670Lap)

k
Ay |,

0

= (akb} — bka}) Dat

1

which corresponds to the matrix AB — BA. Thus the proper Lie algebra struc-
ture on M, x, is given by the commutator [A, B] = AB — BA. In summary, we
have
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Proposition 4.3 Under the canonical of identification of gl(n) = TrGl(n) with
M, xn the Lie bracket is the commutator bracket

[A,B] = AB — BA
Similarly, under the identification of TiaGl(V) with End(V) the bracket is
[A,B]=AoB - BoA.

If G C Gl(n) is some matrix group then 77G may be identified with a linear
subspace of M, «, and it turns out that this linear subspace will be closed
under the commutator bracket and so we actually have an identification of Lie
algebras: g is identified with a subspace of M, x,. It is often the case that G
is defined by some matrix equation(s). By differentiating this equation we find
the defining equation(s) for g (the subspace of M,, ). We first prove a general
result for Lie algebras of closed subgroups and then we apply his to some matrix
groups. Recall that if N is a submanifold of M and ¢ : N — M is the inclusion
map, then we identify T, N with T,,.(T,N) and T, is an inclusion. Now if H is
a closed Lie subgroup of a Lie group G and v € h = T, H then v corresponds to
a left invariant vector field on G which is obtained by using the left translation
in G but also to a left invariant vector field on H obtain from left translation
in H. The notation we have been using so far is not sensitive to the distinction
so let us introduce an alternative notation.

Notation 4.1 For a Lie group G we have the alternative notation v¥ for the
left invariant vector field whose value at e is v. If H is a closed Lie subgroup of
G and v € T.H then v € X*(G) while vf € XX (H).

Proposition 4.4 Let H be a closed Lie subgroup of a Lie group G. Let
XL(H) = {X € XX(G) : X(e¢) € T.H}

then then the restriction of elements of ﬁ(H) to the submanifold H are ele-
ments of XL (H). This induces an isomorphism of Lie algebras of vector fields

XL(H) = xF(H). For v,w € b we have
[U’w]h = [UH’wH]e = [’Uava]e = [U7w]g

and so b is a Lie subalgebra of g; the bracket on b is the same as that inherited
from g.

Proof. The Lie bracket on h = T.H is given by [v,w] := [ wf](e).
Notice that if H is a closed Lie subgroup of a Lie group G then for h € H we
have left translation by h as a map G — G and also as a map H — H. The
latter is the restriction of the former. To avoid notational clutter let us denote
Lyp|y by lp. If o+ H — G is the inclusion then we have ¢ ol = Lj, ot and so
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TioTly = TLy o Ti. Now if v € XI'(H) then we have

The (v () = Thu(Telp(v)) = Teo Tly(v)
=TLpoTu(v) =TeLp (Tet(v))
=T.Lj, (v) = v°(h) = (v 01) (R)

so that v and v® are t-related for any v € T.H C T.G. Thus for v,w € T.H

we have

H H]
€

[vvw}h = [U » W “ G]

= [v",w"]e = [v,w]y

which is the formula we wanted. Next, notice that if we take Tt as an inclusion
so that Te (v (h)) = v (h) for all h then we have really shown that if v € T, H
then v! is the restriction of v“ to H. Also it is easy to see that

XL(H)={v° v e T.H}

and so the restrictions of elements of gL(H ) are none other than the elements

of XL(H) and from what we have shown, the restriction map XL (H) — XL'(H)
is given by v — v and is a surjective Lie algebra homomorphism. It also
has kernel zero since if v¥ is the zero vector field then v = 0 which implies that
v% is the zero vector field. m

Because [v,w]y, = [v,w]g, the inclusion h — g is a Lie algebra homomor-
phism. Examining the details of the previous proof we see that we have a
commutative diagram

XL(H) = xI(H)
AN /!
)

of Lie algebra homomorphisms where the top horizontal map is restriction to H,
the left diagonal map is v — v% and the right diagonal map is v —— v. In
practice, what this last proposition shows is that in order to find the Lie algebra
of a closed subgroup H C G we only need to find the subspace h = T, H since
the bracket on b is just the restriction of the bracket on g. The following is also
easily seen to be a commutative diagram of Lie algebra homomorphisms:

where both vertical maps are v — v©.

Now since the Lie algebra of Gi(n) is the set of all square matrices with the
commutator bracket and since we have just shown that the bracket for the Lie
algebra of a subgroup is just the restriction of the bracket on the containing
group we see that the bracket on matrix subgroups can also be taken to be the
commutator bracket.
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Example 4.19 Consider the orthogonal group O(n) C Gl(n). Given a curve
of orthogonal matrices Q(t) with Q(0) = I an % —o @(0) = A we compute by
differentiating the defining equation I = Q'Q).

d t
0- 4| @@
d t d
_ (dt y Q) Q(0) + Q'(0) (dt y Q)
=A'+ A

So that the space of skewsymmetric matrices is contained in the tangent space
T70(n). But both TrO(n) and the space of skewsymmetric matrices have dimen-
sion M=b g they are equal. This means that we can identify o(n) with the
space of skewsymmetric matrices with the commutator bracket (inherited from
Gl(n)). One can easily check that the commutator bracket of two such matrices

s skewsymmetric as expected.

We have considered matrix groups as subgroups of Gl(n) but it is often more
convenient to consider subgroups of Gl(n,C). Since Gi(n,C) can be identified
with a subgroup of GI(2n) this is only a slight change in viewpoint. The essential
parts of our discussion go through for Gi(n,C) without any essential change.

Example 4.20 Consider the unitary group U(n) C Gl(n,C). Given a curve
of unitary matrices Q(t) with Q(0) = I and % =0 Q(0) = A we compute by
differentiating the defining equation I = Q*Q.

d At
A

4
dt|,_,

=A"+A

2) e+ @) (&

°)
t=0

ezamining dimensions as before we see that we can identify u(n) with the space
of skewhermitian matrices (A = —A) under the commutator bracket.

We would now like to relate Lie group homomorphisms to Lie algebra ho-
momorphisms.

Proposition 4.5 Let h : G; — G5 be a Lie group homomorphism. The map
T.h : g1 — g2 is a Lie algebra homomorphism called the Lie differential which
is denoted in this context by dh : g1 — g2 or by Lh : g1 — go.
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Proof. For v € g; and = € G we have

Tph-L¥(x) =Tyh - (TeL, - v)
=T.(hoLy)-v
=Te(Lp@yoh)-v
= TeLp@)(Teh - v)
= L7 (h(x))

so LV «p, LMW Thus by 2.5 we have for any v,w € g; that Ll oy
[L@) | L)) or in other words, [L¥(¥), L (®)] o b = Th o LI**] which at e
gives

[dh(v), dh(w)] = [v,w].

Theorem 4.2 Invariant vector fields are complete. The integral curves through
the identity element are the one-parameter subgroups.

Proof. Let X be aleft invariant vector field and ¢ : (a,b) — G be the integral
curve of X with ¢(0) = X (p). Let a < t; < t3 < b and choose an element g € G
such that ge(t1) = c(t2). Let At =ty —t; and define ¢: (a + At,b+ At) - G
by &(t) = gc(t — At). Then we have

dt)=TLy-c'(t—At) =TLy- X(c(t — At))
= X(ge(t — At)) = X(e(t))

and so ¢ is also an integral curve of X. Now on the intersection (a + At,b) of
their domains, ¢ and ¢ are equal since they are both integral curve of the same
field and since &(t2) = ge(t1) = ¢(t2). Thus we can concatenate the curves to get
a new integral curve defined on the larger domain (a, b+ At). Since this exten-
sion can be done again for the same fixed At, we see that ¢ can be extended to
(a,00). A similar argument shows that we can extend in the negative direction
to get the needed extension of ¢ to (—o0, 00).

Next assume that ¢ is the integral curve with ¢(0) = e. The proof that
c(s+1t) = c(s)c(t) proceeds by considering v(t) = c(s) te(s+t). Then v(0) = e
and also

’)//(t) = TLC(S)71 . CI(S + t) = TLC(S)—I . X(C(S + t))
= X(c(s)te(s + 1)) = X (y(t)).
By the uniqueness of integral curves we must have ¢(s) 'c(s +t) = ¢(t) which
implies the result. Conversely, suppose ¢ : R — G is a one parameter subgroup

and let X, = ¢(0). There is a left invariant vector field X such that X (e) = X,
namely, X = L*¢. We must show that the integral curve through e of the field
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X is exactly ¢. But for this we only need that ¢(t) = X (c(t)) for all t. Now
c(t +s) = c(t)c(s) or ¢(t 4 5) = Leyc(s). Thus

olt) = el 8) = (T ) (0) = X(elt)

and we are done. m

Lemma 4.2 Let v € g = T.G and the corresponding left invariant field L".
Then with ¥ (t) := @F" (e) we have that

p"(st) = ¢*(t) (4.1)
A similar statement holds with R replacing L°.

d
Proof. Letu = st. We have that %|t20 @Y (st) = du d%|t:o ¥ (u) G = sv
and so by uniqueness ¢v(st) = ¢V (t). m

Theorem 4.3 Let G be a Lie group. For a smooth curve ¢ : R — G with
¢(0) = e and ¢(0) = v, the following are all equivalent:

1. c(t) = L () for all t.

2. c(t) = oF (e) for all t.

3. ¢ is a one parameter subgroup with ¢(0) = v.
4. oF = Ry for all t.

. 4,0,{3”” = L) for all t.

Proof. By definition ¢’ (e) = exp(tv). We have already shown that 1
implies 3. The proof that 2 implies 3 would be analogous. We have also already
shown that 3 implies 1.

Also, 4 implies 1 since then ¢f" () = R, (e) = c(t). Now assuming 1 we
have

c(t) = o (e)
d

Sl ey =10
SRR
d d
4 = L Lyt
| 90 = 5| Lotet®)
=TL,v = L°(g) for any ¢
d
7| Bew9= L"(g) for any g
0

Ry = ¢t ’

The rest is left to the reader. m
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Definition 4.11 (The Exponential Map) For anyv € g = T,G we have the
corresponding left invariant field LY which has an integral curve through e that
we denote by exp(tv). Thus the map t — exp(tv) is a Lie group homomorphism
from R into G that is a one-parameter subgroup. The map v — exp(lv) =
exp®(v) is referred to as the exponential map exp® : g — G.

Lemma 4.3 The map exp® : g — G is smooth.

Proof. Consider the map R x G x g — G X g given by (t,g,v) — (g -
exp(tv),v). This map is easily seen to be the flow on G x g of the vector field
X : (g,v) — (L”(g),0) and so is smooth. Now the restriction of this smooth
flow to the submanifold {1} x {e} x g is (1,e,v) — (exp®(v),v) is also smooth,
which clearly implies that exp®(v) is smooth also. m

Note that exp®(0) = e. In the following theorem we use the canonical
identification of the tangent space of T.G at the zero element (that is To(T.G))
with T, G itself.

Theorem 4.4 The tangent map of the exponential map exp® : g — G is the
identity at 0 € T.G = g and exp s a diffeomorphism of some neighborhood of
the origin onto its image in G.

Teexp=id: T.G — T,G

Proof. By lemma 4.3 we know that exp® : g — G is a smooth map. Also,
%| 0 exp®(tv) = v which means the tangent map is v — v. If the reader thinks
through the definitions carefully, he or she will discover that we have here used
the identification of g with Tpyg. =

Remark 4.3 The “one-parameter subgroup” exp®(tv) corresponding to a vec-
torv € g s actually a homomorphism rather than a subgroup but the terminology
18 conventional. It is also an immersion whose image is an initial submanifold.

From the definitions and Theorem 4.3 we have

o (p) = pexptv

ot (p) = (exptv)p

forallv e g, allt € R and all p € G.

Proposition 4.6 For a (Lie group) homomorphism h : G — G the following
diagram commutes:

dh
g1 — g2
GXPG1 ! eXPG2 !

o, Gy
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Proof. The curve t — h(exp®!(tv)) is clearly a one parameter subgroup.
Also,

7 . h(exp©(tv)) = dh(v)

so by uniqueness of integral curves h(exp© (tv)) = exp®?(tdh(v)). m

Remark 4.4 We will usually not index the maps and shall just write exp for
the exponential map of any Lie group.

If H is a Lie subgroup of G, then the inclusion ¢ : H — G is an injective
homomorphism and the above Proposition 4.6 tell us that the exponential map
on h C g is the restriction of the exponential map on g. Thus, to understand the
exponential map for linear Lie groups, we must understand the exponential map
for the general linear group. Let V be a finite dimensional vector space.lt will
be convenient to pick an inner product (.,.) on V and define the norm of v € V
by |[v]| := v/(v,v). In case V is a complex vector space we use an hermitian
inner product. We put a norm on set of linear transformations L(V;V) by

| Av]|

|All =
HvH;ﬁO [v]l

We have |Ao B|| < ||A| | B|| which implies that ||A*|| < [|A]|*. If we use the
identification of gl(V) with the (or equivalently the identification of gl(n,R)
with the linear space of n x n matrices), then the exponential map is given by
a power series

o0
1
A exp(A) = EA’“
k=0
The sequence of partial sums sy := ZkN:O %Ak is a Cauchy sequence in the

normed space gl(V).

N
<| 2 A

k=M
N
k
<Y Al
k=M
From this we see that
N M
. 1 1

and so {sy} is a Cauchy sequence. Since gl(V) together with the given norm is
known to be a Banach space we see that >, %Ak converges. Now for a fixed
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A the gl(V) function « : t — a(t) = exp(tA) is the unique solution of the initial
value problem

o (t) = Aa(t)
a(0)=A

This can be seen by differentiating term by term

o0

d k gk 1 k=1 gk
—exp (tA) Z k't A Z (k'fl)!t A

=A
2T

So under our identifications, this says that « is the integral curve corresponding
to the left invariant vector field determined by A. Thus we have a concrete real-
ization of the exponential map for gl(V) and, by restriction, each Lie subgroup of
gl(V). Applying what we know about exponential maps in the abstract setting a
general Lie group we have in this concrete case exp((s + t) A) = exp(sA) exp(tA)
and exp(—tA) = (exp(tA))fl. Let A, B € gl(V). Then

1)'tk_1Ak_1 = Aexp(tA)

oo

> o) (X

JOJ

=1

E = itk AiBE
Jlk!

k=0

On the other hand, suppose that Ao B = B o A. Then we have

exp(4) exp(B)

L, Z"" 1 ZOO .
m=0 j+k:m

titk A7 Bk

M8 iMss

1
P

~
Il

O

Thus in case A commutes with B, we have
exp(A + B) = exp(A) exp(B)

The Lie algebra of a Lie group and the group itself are closely related in
many ways. One observation is the following:

Proposition 4.7 If G is a connected Lie group then for any open neighborhood
V C g of 0 the group generated by exp(V) is all of G.

sketch of proof. Since T exp = id we have that exp is an open map near
0. The subgroup H generated by exp(V) is a subgroup containing an open
neighborhood of e. The complement is also open by exercise 4.13 below. Thus
H is a connected component of G which contains the identity. m
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Exercise 4.13 Let H be a subgroup of G and consider the cosets gH. Recall
that we have a disjoint union G = UgH. Show that if H is open then so are
all the cosets. Conclude that the complement H¢ is also open and hence H is
closed..

Since most Lie groups of interest in practice are linear Lie groups, it will pay
to understand the exponential map a bit better in this case. Let V be a finite
dimensional vector space equiped with an inner product as before and also take
the induced norm on gl(V). By Problem 13 we can define a map log : U — gl(V)
where

U={BeGI(V):|B|]| <1}

by using power series:

log B := i (_kl)k (B—1)k
k=0

If we compute formally, then for A € gl(V)

log(exp A) = Ar i) (g tpe i
OBLSXP ) = 21 2 2

1 1L\
+3<A+2!A) +oe

1 1 1 1 1
a2ty ( T Las i las) oo
+ (2! 2 ) * (3! T3

We will argue that the above makes sense if ||A]| < log2 and that there must
be cancelations in the last line so that log(exp A) = A. In fact, |lexp A — I] <
el — 1 and so the double series on the first line for log(exp A) must converge
absolutely if el4l — 1 < 1 or if ||A|| < log2. This means that we may free
rearrange terms and expect the same cancelations as we find for the analogous
calculation of log(exp z) for complex z with |z| < log2. But since log(exp z) = z
for such z we have the desired conclusion. Similarly one may argue that

exp(logB)=Bif |B-1I|| <1

This last argument appeals to what is sometimes called the substitution princi-
ple:

Proposition 4.8 (Substitution Principle) LetV be a finite dimensional normed
space and let L(V,V) be endowed with the induced norm. Let F(z) and G(z)
formal power series with real or complex coefficients. Then one may compute
the formal power series (F + G) (z), (FG) (z) and assuming G(0) = 0 we may
also compute the composition formal power series (F o G)(x). Consider the
coresponding real or complex power series for F' and G and suppose that the
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radii of convergence for F(x) and G(x) are r1 and ro respectively. Then for
A € L(V,V) we have

(F+G)(A)=F(A)+ G(A) for |A|l < min{ry,ro}
(FG)(A) = F(A)G(A) for |A|| < min{ry,ra}
(FoQ@)(A) =F(G(A)) for |Al| <71 and G(A) < 1o

Now we prove a remarkable theorem that shows how an algebraic assump-
tion can have implications in the differentiable category. First we need some
notation.

Notation 4.2 If S is any subset of a Lie group G then we define
St={s1:5€8}

and for any x € G we define
xS ={xs:se€S}.

Theorem 4.5 An abstract subgroup H of a Lie group G is a (regular) subman-
ifold if and only if H is a closed set in G. If follows that H is a (regular) Lie
subgroup of G.

Proof. First suppose that H is a (regular) submanifold. Then H is locally
closed. That is, every point x € H has an open neighborhood U such that
U N H is a relatively closed set in H. Let U be such a neighborhood of the
identity element e. We seek to show that H is closed in G. Let y € H and
x€yU 'NH. Thus € H and y € 2U. Now this means that y € H NzU, and
hence 27 'y € HNU = HNU. So y € H and we have shown that H is closed.

Now conversely, let us suppose that H is a closed abstract subgroup of G.
Since we can always use the diffeomorphism to translate any point to the iden-
tity, it suffices to find a neighborhood U of e such that U N H is a submanifold.
The strategy is to find out what Lie(H) = b is likely to be and then exponentiate
a neighborhood of e € b.

First we will need to have an inner product on T.G so choose any such.
Then norms of vectors in TcG makes sense. Choose a small neighborhood U of
0 € T.G = g on which exp is a diffeomorphism, say exp : U — U, with inverse
denoted by logy;. Define the set H in U by H = logy;(H N U).

Claim 4.1 If h, is a sequence in H converging to zero and such that u, =
hn/ |hn| converges to v € g then exp(tv) € H for allt € R.

Proof of claim: Note that th,/ |h,| — tv while |h,| converges to zero. But
since [hy| — 0 we must be able to find a sequence k(n) € Z such that k(n) |hy| —
t. From this we have exp(k(n)h,) = exp(k(n) |hy| %) — exp(tv). But by the
properties of exp proved previously, we have exp(k(n)hy,) = (exp(hy))*™. But
exp(hy,) € HNU C H and so (exp(h,))*™ € H. But since H is closed we have
exp(tv) = lim,, o (exp(hy )™ € H.
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Claim 4.2 The set W of all tv where v can be obtained as a limit hy,,/ |hy| — v

with h, € H 1is a vector space.
Proof of claim: It is enough to show that if hy,/ |hn| — v and k. /|hl| — w
with hl,, hy, € H then there is a sequence of elements hl! from H with

v+ w

hll h// .

This will follow from the observation that
h(t) = logy (exp(tv) exp(tw))
is in H and by exercise 4.10 we have that

ltlf(()lh(t)/t =v+w

and so
h(t)/t v 4w

— .
W@/t v+ wl
The proof of the next claim will finish the proof of the theorem.

Claim 4.3 Let W be the set from the last claim. Then exp(W) contains an
open neighborhood of e in H. Let W be the orthogonal compliment of W with

respect to the inner product chosen above. Then we have T,G = W+ @ W. It is
not difficult to show that the map ¥.: W @ W+ — G defined by

v+ w — exp(v) exp(w)

is a diffeomorphism in a neighborhood of the origin in T,G. Now suppose that
exp(W) does not contain an open neighborhood of e in H. Then we can choose
a sequence (vn,w,) € W & W with (v,,w,) — 0 and exp(v,)exp(w,) € H
and yet w,, # 0. The space W is closed and the unit sphere in W+ is compact
so after passing to a subsequence we may assume that wy,/ |w,| — w € W and
of course lw| = 1. Since exp(vy,) € H and H is at least an algebraic subgroup
we see that since exp(vy,) exp(wy,) € H, it must be that exp(w,) € H also. But
then by the definition of W we have that w € W which contradicts the fact that
lw| =1 and w € W+.

4.5 The Adjoint Representation of a Lie group

Definition 4.12 Fiz an element g € G. The map Cy : G — G defined by
Cy(x) = gwg™! is a Lie group automorphism called the conjugation map and
the tangent map T.Cy : g — g, denoted Adg, is called the adjoint map.

Exercise 4.14 C,; : G — G is a Lie group homomorphism. The proof is easy.
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Proposition 4.9 The map C : g — Cy is a Lie group homomorphism G —
Aut(G).

The image of the map C' inside Aut(G) is a subgroup called the group of
inner automorphisms and is denoted by Inn(G).
Using proposition 4.5 we get the following

Corollary 4.2 Ad, : g — g is Lie algebra homomorphism.

Proposition 4.10 The map Ad : g — Ady is a homomorphism G — Gi(g)
which is called the adjoint representation of G.

Proof. We have

Ad(91g2) = Tecglgz = e(Cg1 o C!Jz)
=T1.Cy 0 T.Cy, = Ady, 0 Adg,

which shows that Ad is a group homomorphism. The smoothness follows from
the following lemma applied to the map C : (g,z) — Cy(x). m

Lemma 4.4 Let f : M x N — N be a smooth map and define the partial map
atx € M by f.(y) = f(z,y). Suppose that for every x € M the point yq s fized

fa(yo) = yo for all x.

The the map Ay, : © — Ty, fz is a smooth map from M to GI(Ty,N).

Proof. It suffices to show that A,, composed with an arbitrary coordinate
function from some atlas of charts on GI(Ty,N) is smooth. But GI(T,,N) has
an atlas consisting of a single chart. Namely, choose a basis vy, va, ..., v, of Ty, N
and let v*,v?,...,v™ the dual basis of Tyx N, then x} : A v'(Av;) is a typical
coordinate function. Now we compose;

X; © Ayo (l‘) = Ui(Ayo (.Z‘)’Uj)
= Ui(Tyofﬂl ’ Uj)'

Now it is enough to show that T, f, - v; is smooth in z. But this is just the
composition the smooth maps M — TM x TN 2T (M x N) — T(N) given by

z = ((,0), (Yo, v;)) = (01f) (,90) - 0+ (82f) (2, 90) - v;
= Tyo fo- Uy -
(The reader might wish to review the discussion leading up to Lemma 2.2).
]

Recall that for v € g we have the associated left invariant vector field LY as
well as the right invariant field R". Using this notation we have

Lemma 4.5 Let v € g. Then L(x) = RAd="V,
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Proof. LV(x) = Te(Ly) - v = T(Ry)T(Ryp-1)Te(Ly) - v = T(Rz)T(Ry—1 ©
L,)-v=RAGY, g
We now go one step further and take the differential of Ad.

Definition 4.13 For a Lie group G with Lie algebra g define the adjoint rep-
resentation of g, a map ad : g — gl(g) by

ad = T, Ad = d (Ad)
Proposition 4.11 ad(v)w = [v,w] for allv,w € g .

Proof. Let v!,...,o™ be a basis for g so that Ad(x)w = 3 a;(x)v* for some
functions a;. Then we have

ad(v)w = T.(Ad()w)v
=d(>_ai( ')
= (das|, v)v’
= (La;)(e)v’
On the other hand, by lemma 4.5
L*(x) = RM®Y = R(Y " ai(x)v’)
=" ai(@)R" ()
Then we have
L2, L) = [L°,) a:OR" ()] =0+ > L*(a;)R"".
Finally, we have
[w,v] = [L*, L") (e)
=" L(ai)(e)R" (e) = Y L"(ai) (e}’
ad(v)w.

]

The map ad : g —gl(g) = End(7.G) is given as the tangent map at the
identity of Ad which is a Lie algebra homomorphism. Thus by Proposition 4.5
we have obtain

Proposition 4.12 ad : g —gl(g) is a Lie algebra homomorphism.

Since ad is defined as the Lie differential of Ad, Proposition 4.6 tells us that the
following diagram commutes for any Lie group G:

g — ol(g)
exp | | exp
G — Gl(g)
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On the other hand, for any g € G, the map C :  — gxg~ ! is also a homomor-

phism and so Proposition 4.6 applies again giving the following commutative
diagram:

Ad,
g — 9
exp | 1 exp
¢ & @

In other words,
exp (tAd,v) = gexp(tv)g™"
for any g € G,v € g and t € R.

In the case of linear Lie groups G C GI(V) we have identified g with a
subspace of gl(V) which is in turn identified with L(V,V). In this case the
exponential map is given by the power series as explained above. It is easy to
show from the power series that Boexp(tA)o B! = exp(tBo Ao B~!) for any
A € gl(V) and B € GI(V). In this special set of circumstances we have

AdgA=BoAoB™!

This is seen as follows:

AdpA = 4 Boexp(tA)o B™*
dt|,_o
= — exp(tBoAoB ')=BoAoB™!
dt],_o

Earlier we noted that for a general Lie group we always have Ado exp = exp oad.
In the current context of linear Lie groups this can be written as
o0
exp(A) o Boexp(—A) =
k=0

| —

(ad(4))* B

o

for any A € gl(V) and any B € GI(V).

We have already defined the group Aut(G) and the subgroup Inn(G). We
have also defined Aut(g) as the space of Lie algebra automorphisms of g. The
image of ad : g — gl(g) is denoted Inn(g) and elements of Inn(g) are referred to
as inner automorphisms of the Lie algebra g.

4.6 The Maurer-Cartan Form
Define the maps wg : TG — g (resp. wgght : TG — g) by
wG(Xg) = TLg—l . Xg
(resp. wi?"(X,) = TRy - X).

we is a g valued 1-form called the (left-) Maurer-Cartan form. We will call
wgght the right Maurer-Cartan form but we will not be using it to the extent

of waG-
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As we have seen, Gl(n) is an open set in a vector space and so its tangent
bundle is trivial TGIl(n) = Gl(n) X M, x,. A general abstract Lie group G is
not an open subset of a vector space but we are still able to show that TG
is trivial. There are two such trivializations obtained from the Maurer-Cartan
forms. These are trivy : TG — G x g and trivg : TG — G X g and defined by

trivy (vg) = (9,wa(vg))
triv(vy) = (g, w6 (vy))
for vy € T4G. These maps are both trivializations. Thus we have the following:

Proposition 4.13 The tangent bundle of a Lie group is trivial: TG = G X g.

Proof. It is easy to check that triv; and trivg are trivializations in the
sense of definition 2.15. m

We will refer to trivy and trivg as the (left and right) Maurer-Cartan
trivializations. How do these two trivializations compare? There is no special
reason to prefer right multiplication. We could have used right invariant vector
fields as our means of producing the Lie algebra and the whole theory would
work ‘on the other side’ so to speak. What is the relation between left and right
in this context? The bridge between left and right is the adjoint map.

Lemma 4.6 (Left-right lemma) For any v € g the map g — trinl(g,v) is
a left invariant vector field on G while g — trivgl(g, v) is right invariant. Also,
trivg o triv; (g, v) = (g, Ady(v)).

Proof. The invariance is easy to check and is left as an exercise. Now the
second statement is also easy:

trivg o triv, (g, v)
= (9, TRy-1TLgv) = (9, T(Ry-1Lyg) - v)
= (g, Ady(v)).

]

It is often convenient to actually identify the tangent bundle T'G of a Lie
group G with G x g. Of course we must specify which of the two trivializations
described above is being invoked. Unless indicated otherwise we shall use the
“left version” described above: vy — (g,wa(vg)) = (9, TLy " (vg)).

Warning: It must be realized that we now have three natural ways to
trivialize the tangent bundle of the general linear group. In fact, the usual one
which we introduced earlier is actually the restriction to TGl(n) of the Maurer-
Cartan trivialization of the abelian Lie group (M, xn, +).

In order to use the (left) Maurer-Cartan trivialization as an identification
effectively, we need to find out how a few basic operations look when this iden-
tification is imposed.

The picture obtained from using the trivialization produced by the
left Maurer-Cartan form:
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1. The tangent map of left translation T'L, : TG — TG takes the form
“TLy" : (x,v) — (gz,v). Indeed, the following diagram commutes:

¢ ™4 7

! !

3

s
Gxg — Gxg

where elementwise we have

TL
Uy ——— > TL, vy

| |

(z, TL; 'v,) (92, TL; v,)
= (z,v) = (gz,v)

2. The tangent map of multiplication: This time we will invoke two iden-
tifications. First, group multiplication is a map p : G x G — G and
so on the tangent level we have a map T(G x G) — G. Now recall
that we have a natural isomorphism T(G x G) = TG x TG given by
Ty x Tt (V(ay)) = (T71 - V(ay), TT2 - Vizy)). If we also identify TG
with G x g then TG x TG = (G X g) x (G x g) and we end up with the
following “version” of T'u:

“Tp’ (G % g) x (G x g) = G x g
“T:u” : ((1‘, U)v (yv w)) = (my, TRZ/U + Twa)

(See exercise 4.15).

3. The (left) Maurer-Cartan form is a map wg : TG — T.G = g and so there
must be a “version”, “wg”, that uses the identification TG = G x g. In
fact, the map we seek is just projection:

“ 7

we” ¢ (z,0) — v

4. The right Maurer-Cartan form is a little more complicated since we are
using the isomorphism T'G & G X g obtained from the left Maurer-Cartan
form. The result follows from the “left-right lemma 4.6:

“wgght” (x,v) — Adg(v)
The adjoint map is nearly the same thing as the right Maurer-Cartan

form once we decide to use the (left) trivialization TG = G X g as an
identification.
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5. A vector field X € X(G) should correspond to a section of the product
bundle G x g —G which must have the form X iz (z, FX(x)) for some
smooth g-valued function FX € C*°(G;g). It is an easy consequence of the
definitions that FX (z) = we(X(x)) = TL;! - X(z). We ought to be able
to identify how X acts on C*(G). We have (?f)(x) = (z, FX(z))f =
(TL, - FX(z))f. Under this identification, a left invariant vector field
becomes a constant section of G x g. For example, if X is left invariant
then the corresponding constant section is z — (x, X (e)).

Exercise 4.15 Refer to 2. Show that the map “T'u” defined so that the diagram
below commutes is ((z,v), (y,w)) — (zy, TRyv + T Lyw).

T(G x G) Tu
~raxre LG
i !

“pp

(Gxg)x(Gxg) — Gxg

4.7 Spinors and rotation

The matrix Lie group SO(3) is the group of orientation preserving rotations of
R3 acting by matrix multiplication on column vectors. The group SU(2) is the
group of complex 2 x 2 unitary matrices of determinant 1. We shall now expose
an interesting relation between these groups. First recall the Pauli matrices:

(10 (01 (0 —i (1 0
%9={p 1) %=1 0) 270 o 3= o 1

The real vector space spanned by o1,09,03 is the space of traceless Hermi-
tian matrices. Let us temporarily denote the latter by R3. We have a linear
isomorphism R? — R3 given by (z1,2% 2%) — zloy + 2209 + 2303 which we
abbreviate to # — Z. Now it is easy to check that det(z) is just — |Z°. In

fact, if introduce an inner product on R3 by the formula (Z,7) := f%tr('fﬁ)

o~

then the map & +— 7 is an isometry. Next we notice that SU(2) acts on R3 by
(9,%) — g2g~!
to see that (p(g)Z, p(9)y) = (Z,7y) and so under the identification R? < R3 we
see that SU(2) act on R? as an element of O(3).

= gZTg* thus giving a representation p of SU(2) in R3. It is easy

Exercise 4.16 Show that in fact, the map SU(2) — O(3) has image SO(3)
and is actually a covering homomorphism onto SO(3) with kernel {1} = Zs.

Exercise 4.17 Show that the algebra generated by the matrices oy, —ioy, —i02, —i03
1s isomorphic to the quaternion algebra and that the set of matrices —ioy, —ios, —io3
span a real vector space which is equal as a set to the traceless skew Hermitian
matrices su(2).
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Let I = —ioy, J = —ioy and —io3 = K. One can redo the above analysis
using the isometry R — su(2) given by

(z 2% 2%) = o' T+ 22T + 2° K
Z—2Z

where this time (2, §) := $tr(Zy*) = —5tr(Zy). Notice that su(2) = span{I, J, K}
is the Lie algebra of SU(2) the action (g,7) — gZg~! = gZg* is just the adjoint
action to be defined in a more general setting below. Anticipating this, let us
write Ad(g) : T — gZg*. This gives the map g — Ad(g); a Lie group homomor-
phism SU(2) — SO(su(2), (,)). Once again we get the same map SU(2) — O(3)
which is a Lie group homomorphism and has kernel {+1} = Z,. In fact, we
have the following commutative diagram:

SU@R) =  SU@)
pl Ad |
SO(3) = SO0(su(2),(,))

Exercise 4.18 Check the details here!

What is the differential of the map p : SU(2) — O(3) at the identity?

Let g(t) be a curve in SU(2) with %’tzog = ¢'. We have % (g(t)Ag*(t)) =

(%g(t))Ag*(t) + g(t)A(%g(t))* and so the map ad: ¢’ — ¢g’A+ Ag™* = [¢’, A]

& 97,97) = 5 5tr(oF(6i)")
Sr(ld' 3 3)°) + 5er(E (i 31)°)

1 1

- itr([g/a"fL (@ ) - Qtr(a% [g 7@])

= (¢ 7,9) — (=,[g", 4]

= (ad(g")Z,y) — (&, ad(g'))
From this is follows that the differential of the map SU(2) — O(3) takes su(2)
isomorphically onto the space so(3). We have

su(2) = s5u(2)

dp | ad |

s0(3) = so(su(2),(,)

where so(su(2), (,)) denotes the linear maps su(2) — su(2) skew-symmetric with
respect to the inner product (Z,y) := $tr(Zy*).

4.8 Lie Group Actions

The basic definitions for group actions were given earlier in definition 1.24 and
1.25. As before we give most of our definitions and results for left actions and
ask the reader to notice that analogous statements can be made for right actions.
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Definition 4.14 Letl: G x M — M be a left action where G is a Lie group
and M a smooth manifold. Ifl is a smooth map then we say that | is a (smooth)
Lie group action.

As before, we also use either of the notations gz or l4(p) for {(g,p). For
right actions r : M x G — M we write pg = r4(p) = r(p,g). A right action
corresponds to a left action by the rule gp := pg~!. Recall that for p € M the
orbit of p is denoted Gp and we call the action transitive if Gp = M.

Definition 4.15 Let [ be a Lie group action as above. For a fized p € M the
isotropy group of p is defined to be

Gp={9€G:gp=p}
The isotropy group of p is also called the stabilizer of p.

Exercise 4.19 Show that G, is a closed subset and abstract subgroup of G.
This means that G, is a closed Lie subgroup.

Recalling the definition of a free action, it is easy to see that an action is
free if and only if the isotropy subgroup of every point is the trivial subgroup
consisting of the identity element alone.

Definition 4.16 Suppose that we have Lie group action of G on M. If N is
a subset of M and gx € x for oll x € N then we say that N is an invariant
subset. If N is also a submanifold then it is called an invariant submanifold.

In this definition we include the possibility that N is an open submanifold.
If N is an invariant subset of N then it is easy to set that gN = N where
gN = [4(N) for any g. Furthermore, if N is a submanifold then the action
restricts to a Lie group action G x N — N.

If G is zero dimensional then by definition it is just a group with discrete
topology and we recover the definition of discrete group action. We have already
seen several examples of discrete group actions and now we list a few examples
of more general Lie group actions.

Example 4.21 In case M = R"™ then the Lie group GL(n,R) acts on R™ by
matriz multiplication. Similarly, GL(n,C) acts on C". More abstractly, GL(V')
acts on the vector space V. This action is smooth since Ax depends smoothly
(polynomially) on the components of A and on the components of x € R™.

Example 4.22 Any Lie subgroup of GL(n,R) acts on R™ also by matriz mul-
tiplication. For example, O(n,R) acts on R™. For every x € R™ the orbit of x is
the sphere of radius ||z||. This is trivially true if ||| = 0. In general, if ||z|| # 0
then, ||gz|| = ||z|| for any g € O(n,R). On the other hand, if z,y € R™ and
Izl = |lyll = r then let T := x/r and § := y/r. Extend to orthonormal bases
(Z =e1,...,en) and (§ = f1,..., fn). Then there exists an orthogonal matriz S
such that Se; = f; fori=1,...,n. In particular, ST =y and so Sz = y.
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Exercise 4.20 From the last example we can restrict the action of O(n,R) to a
transitive action on S"~*. Now SO(n,R) also acts on R™ and by restriction on
S™=1. From the last example we know that O(n,R) acts transitively on S™*.
Show that the same is true for SO(n,R) as long asn > 1.

A Lie group acts on itself in an obvious way:

Definition 4.17 For a Lie group G and a fized element g € G, the maps Ly :
G — G and Ry : G — G are defined by

Lyx =gz forz e G
Ryx=xg forx e G

and are called left translation and right translation (by g) respectively.

The maps G x G — G given by (g,x) — Ly and (g, z) — Ry are Lie group
actions.

Example 4.23 If H is a Lie subgroup of a Lie group G then we can consider
Ly, for any h € H and thereby obtain an action of H on G.

Recall that a subgroup H of a group G is called a normal subgroup if gkg~! €
K for any k € H and all g € G. In other word, H is normal if gHg~! C H for
all all g € G and it is easy to see that in this case we always have gHg~ ' = H.

Example 4.24 If H is a normal Lie subgroup of G, then G acts on H by
conjugation:
Cyh = ghg™"

Suppose now that a Lie group G acts on smooth manifolds M and N. For
simplicity we take both actions to be left action which we denote by [ and A
respectively. A map ® : M — N such that ®ol; = A, 0 ® for all g € G, is said
to be an equivariant map (equivariant with respect to the given actions). This
means that for all g the following diagram commutes:

M 2% N
lgl l)‘g
M 2 N

If @ is also a diffeomorphism then we have an equivalence of Lie group actions.

Example 4.25 If ¢ : G — H is a Lie group homomorphism then we can define
an action of G on H by X(g,g1) = A\g(h) = Lggyh. We leave it to the reader to
verify that this is indeed a Lie group action. In this situation ¢ is equivariant
with respect to the actions A and L (left translation).
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Example 4.26 Let T" = S! x --- x S be the n—torus where we identify S*
with the complex numbers of unit modulus. Fix k = (ki,...,k,) € R™.Then R
acts on R™ by 7%(t,z) =t -2 := x + tk. On the other hand, R acts on T" by
te(21, ..., 2") = (eltkrzl .. eFnz™). The map R™ — T™ given by (2%, ...,2") s

y 5TV . . . . .
(e",...,e"") is equivariant with respect to these actions.

Theorem 4.6 (Equivariant Rank Theorem) Suppose that f : M — N s
smooth and that a Lie group G acts on both M and N with the action on M
being transitive. If f is equivariant then it has constant rank. In particular,
each level set of f is a closed reqular submanifold.

Proof. Let the actions on M and N be denoted by I and A respectively as
before. Pick any two points p1,ps € M. Since G acts transitively on M there is
a g with lgp1 = p2. By hypothesis, we have the following commutative diagram

M LN
lg 1 1 Ag
M LN

which, upon application of the tangent functor gives the commutative diagram

Tpy f
N

M N
Tplg | ! Tf(p1)>‘9
Tpy f
M = N

Since the maps T, 1, and Ty, )\, are linear isomorphisms we see that T}, f
must have the same rank as T}, f. Since p; and p, were arbitrary we see that
the rank of f is constant on M. m

There are several corollaries of this neat theorem. For example, we know
that O(n,R) is the level set f~1(I) where f : GL(n,R) — gl(n,R) =M (n,R)
is given by f(A) = ATA. The group O(n,R) acts on itself via left translation
and we also let O(n,R) act on gl(n,R) by Q - A := QTAQ (adjoint action).
One checks easily that f is equivariant with respect to these actions and since
the first action (left translation) is certainly transitive we see that O(n,R) is
a closed regular submanifold of GL(n,R). It follows from proposition 4.1 that
O(n,R) is a closed Lie subgroup of GL(n,R). Similar arguments apply for
U(n,C) C GL(n,C) and other linear Lie groups. In fact we have the following
general corollary to Theorem 4.6 above.

Corollary 4.3 If ¢ : G — H is a Lie group homomorphism then the kernel
Ker(h) is a closed Lie subgroup of G.

Proof. Let G act on itself and on H as in example 4.25. Then ¢ is equiv-
ariant and ¢~'(e) = Ker(h) is a closed Lie subgroup by Theorem 4.6 and
Proposition 4.1. =

We also have use for the
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Corollary 4.4 Letl: G x M — M be a Lie group action and G, the isotropy
subgroup of some p € M. Then G\, is a closed Lie subgroup of G.

Proof. The orbit map 6, : G — M given by 6,(g) = gp is an equivariant
with respect to left translation on G and the given action on M. Thus by
the equivariant rank theorem, G, is a regular submanifold of G an then by
Proposition 4.1 it is a closed Lie subgroup. m

4.8.1 Proper Lie Group Actions

Definition 4.18 Letl: Gx M — M be a smooth (or merely continuous) group
action. If the the map P: G x M — M x M given by (g9,p) — (l4p,p) is proper
we say that the action is a proper action.

It is important to notice that a proper action is not defined to be an action
such that the defining map [ : G x M — M is proper.

We now give a useful characterization of a proper action. For any subset
KcM,letg-K:={gr:xz€K}.

Proposition 4.14 Letl : G x M — M be a smooth (or merely continuous)
group action. Then | is a proper action if and only if the set

Gk ={9eG:(g-K)NK # 0}
18 compact whenever K is compact.

Proof. We follow the proof from [Lee, John];
Suppose that [ is proper so that the map P is a proper map. Let mg be the
first factor projection G x M — G. Then

Gk ={g: there exists a © € K such that gz € K}
= {g: there exists a x € M such that P(g,z) € K x K}
= (P YK x K))

and so Gk is compact.

Next we assume that G is compact for all compact K. If C C M x M is
compact then letting K = 71 (C) N w2(C') where 7 and 7o are first and second
factor projections M x M — M respectively we have

PHC)c PYK xK)C{(g,x):gp€ K}
Cc G x K.

Since P~1(C) is a closed subset of the compact set G x K it is compact. This
means that P is proper since C' was an arbitrary compact subset of M x M. m

Using this proposition, one can show that definition 1.29 for discrete actions
is consistent with definition 4.18 above.
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Proposition 4.15 If G is compact then any smooth action | : G x M — M is
proper.

Proof. Let K C M x M be compact. We find compact C' C M such that
K C C x C as in the proof of proposition 4.14.
Claim: P~1(K) is compact. Indeed,

PYK) C P~YC x C) = Uecc P 1(C x {c})
= Ucect(9,p) : (9p,p) € C x {c}}

= Ucec{(g,c) 1 gp € C}
CUeec (Gx{c})=GxC

Thus P71(K) is a closed subset of the compact set G x C' and hence is
compact. ®m

Exercise 4.21 Prove the following

i) If 1 : Gx M — M is a proper action and H C G is a closed subgroup then
the restricted action H x M — M 1is proper.

it) If N is an invariant submanifold for a proper actionl: G x M — M then
the restricted action G x N — N 1is also proper.

Let us now consider a Lie group action | : G x M — M that is both proper
and free. The map orbit map at p is the map 6, : G — M given by 0,(g9) = g-p.
It is easily seen to be smooth and its image is obviously G - p. In fact, if the
action is free then each orbit map is injective. Also, 8, is equivariant with
respect to the left action of G on itself and the action [ :

Op(9r) = (92) -p=g- (- p)
=g 6;0(17)

forall z,g € G. It now follows from Theorem 4.6 (the equivariant rank theorem)
that 0, has constant rank and since it is injective it must be an immersion. Not
only that, but it is a proper map. Indeed, for any compact K C M the set
9;1(K) is a closed subset of the set G'xy,} and since the later set is compact
by Theorem 4.14, 6, L(K) is compact. Now by exercise 3.3 obtain the result
that 0, is an embedding and each orbit is a regular submanifold of M.

It will be very convenient to have charts on M which fit the action of G in

a nice way. See figure 4.1.

Definition 4.19 Let M be an n-manifold and G a Lie group of dimension k.
Ifl: G x M — M 1is a Lie group action then an action-adapted chart on M
is a chart (U,x) such that

i) x(U) is a product open set Vi x Vi C R¥ x R"=F = R"

it) if an orbit has nonempty intersection with U then that intersection has the
form

)

{htt =t L e = R)
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Figure 4.1: Action-adapted chart

for some constants c ., k.

Theorem 4.7 Ifl: Gx M — M is a free and proper Lie group action then for
every p € M there is an action-adapted chart centered at p.

Proof. Let p € M be given. Since G - p is a regular submanifold we may
choose a regular submanifold chart (W,y) centered at p so that (G-p)NW is
exactly given by y*T! = ... = y® = 0in W. Let S be the complementary slice
in W given by 4! = ... = y¥ = 0. Note that S is a regular submanifold. The
tangent space T, M decomposes as

T,M =T, (G -p)&T,S

Let ¢ : G xS — M be the restriction of the action [ to the set G x S. Also, let
ip : G — G x S be the insertion map g — (g,p) and let j. : S — G x S be the
insertion map s — (e,s). These insertion maps are embeddings and we have
0, = poi, and also poj. = ¢ where ¢ is the inclusion S — M. Now T.0,(T.G) =
T,(G - p) since 6, is an embedding. On the other hand, 70, = Ty o T, and
so the image of T )¢ must contain 7),(G - p). Similarly, from the composition
o jo = we see that the image of T{, ) must contain 7),S. It follows that
Teep) : Tiep) (G x S) — T, M is surjective and since T\, ,)(G x S) and T, M
have the same dimension it is also injective.
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By the inverse function theorem, there is neighborhood O of (e, p) such that
©] O is a diffeomorphism. By shrinking O further if necessary we may assume
that ¢(O) C W. We may also arrange that O has the form of a product
O = A x B for A open in G and B open in S. In fact, we can assume that
there are diffeomorphisms o : I¥ — A and 3 : I"* — B where I* and 1"~ *
are the open cubes in R* and R"* given respectively by I* = (—1,1)* and
I"*F = (=1,1)"* and where a(e) = 0 € R* and B(p) = 0 € R*"*. Let
U:=p(AxB). The map g o (ax ) : I*¥ x I"* — U is a diffeomorphism
and so its inverse is a chart. We must make one more adjustment. We must
show that B can be chosen small enough that the intersection of each orbit
with B is either empty or a single point. If this were not true then there would
be a sequence of open sets B; with compact closure (and with corresponding
diffeomorphisms f3; : I¥ — B; as above) such that for every i there is a pair of
distinct points p;,p; € B; with g;p; = p} for some sequence {g;} C G. Since
manifolds are first countable and normal, we may assume that the sequence
{B;} is a nested neighborhood basis which means that B;;; C B; for all ¢
and for each neighborhood V of p, we have B; C V for large enough 4. This
forces both p;, and p; = g;p; to converge to p. From this we see that the
set K = {(gipi,pi), (p,p)} € M x M is compact. Recall that by definition
the map P : (g,2) — (gx,x) is proper. Since (g;,p;) = P~ (gipi, pi) we see
that {(g;,pi)} is a subset of the compact set P~!(K). Thus after passing to
a subsequence we have that (g;,p;) converges to (g,p) for some g and hence
g; — g and g;p; — gp. But this means we have

gp = lim g;p; = lim p} =p
71— 00 1— 00

and since the action is free we conclude that g = e. But this is impossible since
it would mean that for large enough ¢ we would have g; € A and in turn this
would imply that

e(gi:pi) = lg, (pi) = P = le(p;) = (e, p})
contradicting the injectivity of ¢ on A x B. Thus after shrinking B we may
assume that the intersection of each orbit with B is either empty or a single
point. We leave it to the reader to check that with x := (¢ o (ax 8))"": U —

I* x I"~% C R™ we obtain a chart (U,x) with the desired properties. m
For the next lemma we continue with the convention that I is the interval

(—1,1).

Lemma 4.7 Let x = (po(ax @) : U — I* x I""F = " C R" be an
action-adapted chart map obtained as in the proof of Theorem 4.7 above. Then
given any p1 € U, there exists a diffeomorphism 1 : I — I™ such that ¥ o x is
an action-adapted chart centered at p;.

Proof. Clearly all we need to do is show that for any a € I" there is a
diffeomorphism 1 : I — I"™ such that 1)(a) = 0. Let a’ be the i—th component
of a. Let ¢; : I — I be defined by

Vi =@ot_ga)0P
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AXB

GXS
Je

where t_.(z) :=x —cand ¢ : (—1,1) — R is the useful diffeomorphism ¢ : z —
tan(% ). The diffeomorphism we want is now ¢ (z) = (¢1(z!),...,¢1(a™)). =

4.8.2 Quotients

Ifl: Gx M — M is a Lie group action, then there is a natural equivalence
relation on M whereby the equivalence classes are exactly the orbits of the
action. The quotient space space (or orbit space) is denoted G\M and we have
the quotient map 7 : M — G\M. We put the quotient topology on G\M so
that A C G\M is open if and only if 77! (A) is open in M. The quotient map
is also open. Indeed, let U C M be open. We want to show that w(U) is open
and for this it suffices to show that 7! (7(U)) is open. But 7! (7 (U)) is the
union Ugly(U) and this is open since each [4(U) is open.

Lemma 4.8 G\M is a Hausdorff space if the set T := {(gp,p) : g€ G, p € M}
18 a closed subset of M x M.

Proof. Let p,q € G\M with 7(p) = p and 7(q) = ¢q. If p # ¢ then p and ¢
are not in the same orbit. This means that (p,q) ¢ I and so there must be a
product open set U x V such that (p,q) € UxV and U x V disjoint from I". This
means that 7 (U) and 7 (V') are disjoint neighborhoods of p and ¢ respectively
[

Proposition 4.16 Ifl: G x M — M is a free and proper action then G\M s
Hausdorff and paracompact.
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Proof. To show that G\M is Hausdorff we use the previous lemma. We
must show that T is closed. But I' = P(G x M) is closed since P is proper.

To show that G\M is paracompact it suffices to show that each connected
component of G\ M is second countable. This reduces the situation to the case
where G\M is connected. In this case we can see that if {U;} is a countable
basis for the topology on M then {7 (U;)} is a countable basis for the topology
on G\M. m

We will shortly show that if the action is free and proper then G\M has a
smooth structure which makes the quotient map 7 : M — G\M a submersion.
Before coming to this lets us note that if such a smooth structure exists then
it is unique. Indeed, if (G\M)4 is G\M with a smooth structure given by
maximal atlas A and similarly for (G\M)p for another atlas B then we have
the following commutative diagram:

M
T/ N T

(G\M)4 L (G\M)s

Since 7 is a surjective submersion, Proposition 3.5applies to show that (G\M) 4 _d,
(G\M)p is smooth as is its inverse. This means that A = B.

Theorem 4.8 Ifl : G x M — M 1is a free and proper Lie group action then
there is a unique smooth structure on the quotient G\M such that

(i) the induced topology is the quotient topology and hence G\M is a smooth
manifold,

(i) the projection m: M — G\M is a submersion,
(iii) dim(G\M) = dim(M) — dim(G).

Proof. Let dim(M) = n and dim(G) = k. We have already show that G\ M
is a paracompact Hausdorff space. All that is left is to exhibit an atlas such that
the charts are homeomorphisms with respect to this quotient topology. Let g €
G\ M and choose p with 7(p) = ¢. Let (U, x) be an action-adapted chart centered
at p and constructed exactly as in Theorem 4.7. Let 7(U) =V C G\M and let
B be the slice 2! = --- = 2 = 0. By construction m|p : B — V is a bijection
and in fact it is easy to check that 7|, is a homeomorphism and o := (7| )"
is the corresponding local section. Consider the map y = w9 0 x 0 o where w9 is
the second factor projection my : R¥ x R*~% — R™~F_ This is a homeomorphism
since (mg 0 x)|p is a homeomorphsim and My 0ox 00 = (m 0x)|goo. We now
have chart (V,y).

Given two such charts (V,y) and (V,§) we must show that §7! oy~! is
smooth. The (V,y) and (V,§) are constructed from associated action adapted
charts (U,x) and (U,%) on M. Let ¢ € VNV. As in the proof of Lemma 4.7 we
may find diffeormorphsims 1 and ¢ so that (U, o x) and (U, o %) are action

1
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adapted charts centered at points p; € 77 1(¢q) and py € _7r_1(q) respectively.
Corresponding to this modifications the charts (V,y) and (V,§) are modified to
charts (V,yy) and (V,§;) centered at ¢ where

Yy i=Tp0Yoxoo0

Vi Z:TFQO’(LO}_{OO'

1

One checks yy, oy~ = mg 0% and similarly for §; o §~1. From this it follows

1

that the overlap map 7;1 oy, will be smooth if and only if 7' oy~ is smooth.

Thus we have reduced to the case where (U,x) and (U, %) are centered at p; €
771(q) and py € 77 1(q) respectively. This entails that both (V,y) and (V,¥)
are centered at ¢ € VN V. Now if we choose a g € G such that ly(p1) = po
then by composing with the diffeomorphism I, we can reduce further to the
case where p; = pa. Here we use the fact that [, takes the set of orbits to the
set of orbits in a bijective manner and the special nature of our adapted charts
with respect to these orbits. In this case the overlap map % ox~! must have the
form (a,b) — (f(a,b), g(b)) for some smooth functions f and g. It follows that
51 oy~! has the form b g(b). m

Similar results hold for right actions. In fact, some of the most important
examples of proper actions are usually presented as right actions (the right
action associated to a principal bundle). In fact, we shall see situations where
there is both a right and a left action in play.

Example 4.27 Consider S*"~1 as the subset of C" given by S*"~1 = {¢ €
C™: |¢| = 1}. Here € = (2',...,2") and |£] = > z'2". Now we let S' act on
S2=1 by (a,€) — af = (az',...,az™). This action is free and proper. The
quotient is the complex projective space CP™ 1,

S2n—l

!
cpr-t

These maps (one for each n) are called the Hopf maps. In this context S* is
usually denoted by U(1).

In the sequel we will be considering the similar right action S™ x U(1) — S™.
In this case we think of C™t! as consisting of column vector and the action is
given by (&, a) — &a. Of course, since U(1) is abelian this makes essentially no
difference but in the next example we consider the quaternionic analogue where
keeping track of order is important.

The quaternionic projective HP™ ! space is defined by analogy with CP"1.
The elements of HP"~! as 1-dimensional subspaces of the the right H-vector
space H". Lets use called these H-lines for clarity. Each of these are of real
dimension 4. Each element of H"\{0} determines an H-line and the H-line
determined by (£1,...,€™)" will be the same as that determined (€1, ...,€")" if
and only if there is a nonzero element a € H so that (€1, ...,€")" = (€1, ..., £")ta =
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(€ta,...,E"a)t. This defines an equivalence relation ~ on H™\{0} and thus we
may also think of HP"™! as (H"\{0}) / ~. The element of HP"~! determined
by (€1, ...,£™)t is denoted by [£1, ..., €"]. Notice that the subset {£ € H" : || = 1}
is S4n~1. Just as for the complex projective spaces we observe that all such H-
lines contain points of S4*"~! and two points &, ¢ € S4"~! determine the same
H-line if and only if € = Ca for some a with |a| = 1. Thus we can think of HP"~!
as a quotient of $4”~!. When viewed in this way, we also denote the equivalence
class of & = (¢1,....,&") € S4~1 by [¢] = [¢1,...,€"]. The equivalence classes
are clearly the orbits of an action as described in the following example.

Example 4.28 Consider S*"~1 considered as the subset of H" given by S4"~1 =
{¢ cH" : |¢] = 1}. Here &€ = (€4,...,&™) and [¢] = Y. €€, Now we define a
right action of U(1,H) on S*"~1 by (¢, a) — &a = (£'a,...,E"a)t. This action
is free and proper. The quotient is the quaternionic projective space HP™ ' and
we have the quotient map denoted by p

S4n71

pl
Hpr-t

This map is also referred to as an Hopf map. Recall that Zo = {1,—1}
acts on S"~! = R" on the right (or left) by multiplication and the action is
a (discrete) proper and free action with quotient RP"~! and so the above two
examples generalize this.

For completeness we describe an atlas for HP"~!. View HP" ! as the
quotient $4"~1/ ~ described above. Let

Uy :={[¢] € S 1 cH" : &% # 0}
and define @y, : U, — H"~! =2 R4"~1 by
(Pk([g]) = (@i([fb 7§7LD = (5151_17 "'7/1\7 76”5771)

where as for the real and complex cases the caret symbol ~ indicates that we
have omitted the 1 in the i-th slot so as to obtain an element of H"~!. Notice
that we insist that the & Lin this expression multiply from the right. The
general pattern for the overlap maps become clear from the example 3 o 5 L
Here have

©3 005 (Y1, Y35 s Un) = ©3([Y1, 1, Y3, -, Yn))
= (y1y3 "y vays o ynys )

In the special case n = 1, we have an atlas of just two charts {(U1, ¢1), (Uz, ¢2)}
and in close analogy with the complex case we have 