5 Tensor products

We have so far encountered vector fields and the derivatives of smooth functions as
analytical objects on manifolds. These are examples of a general class of objects
called tensors which we shall encounter in more generality. The starting point is pure
linear algebra.

Let V., W be two finite-dimensional vector spaces over R. We are going to define a
new vector space V ® W with two properties:

e if v € V and w € W then there is a product v@w € V@ W
e the product is bilinear:
(A 4+ pvy) @w = Ay Q@ w + pvg @ w
v® (Awy 4+ pws) = A @ wy + pv ® wy

In fact, it is the properties of the vector space V ® W which are more important
than what it is (and after all what is a real number? Do we always think of it as an
equivalence class of Cauchy sequences of rationals?).

Proposition 5.1 The tensor product V& W has the universal property that if B :
V xW — U is a bilinear map to a vector space U then there is a unique linear map

B: VoW —=U
such that B(v,w) = (v ® w).

There are various ways to define V' @ W. In the finite-dimensional case we can say
that V @ W is the dual space of the space of bilinear forms on V x W: ie. maps
B:V xW — R such that

B(Avy + pvg,w) = AB(vy,w) + uB(vg, w)
B(v, \wy 4+ pwy) = AB(v,w) + puB(v, ws)

Given v,w € V, W we then define v ® w € V @ W as the map
(v & w)(B) = B(v,w).
This satisfies the universal property because given B : VxW — U and £ € U*, (o B

is a bilinear form on V' x W and defines a linear map from U* to the space of bilinear
forms. The dual map is the required homomorphism g from V @ W to (U*)* = U.
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A bilinear form B is uniquely determined by its values B(v;,w;) on basis vectors
v1,...,0, for V and wy,...w, for W which means the dimension of the vector space
of bilinear forms is mn, as is its dual space V ® W. In fact, we can easily see that
the mn vectors

v; Q w;
form a basis for V @ W. It is important to remember though that a typical element
of V.® W can only be written as a sum

Z iV Q Wj
2y
and not as a pure product v ® w.
Taking W =V we can form multiple tensor products
VeV, VeaveV =g,
We can think of ®”V as the dual space of the space of p-fold multilinear forms on V.
Mixing degrees we can even form the tensor algebra:
T(V) = @2 (@"V).
An element of T'(V) is a finite sum
Mtv+ Y i®v+...+) v, ®v;,...00,
of products of vectors v; € V. The obvious multiplication process is based on extend-
ing by linearity the product
(M ®...0U)(NE®..0U) =11 ®...0V, U ®...Q U,

It is associative, but noncommutative.

For the most part we shall be interested in only a quotient of this algebra, called the
exterior algebra. A down-to-earth treatment of this is in the Section b3 Projective
Geometry Notes on the Mathematical Institute website.

5.1 The exterior algebra

Let T(V') be the tensor algebra of a real vector space V' and let I(V) be the ideal
generated by elements of the form
VRV

where v € V. So I(V') consists of all sums of multiples by 7'(V') on the left and right
of these generators.
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Definition 19 The exterior algebra of V' s the quotient
ANV =T(V)/I(V).

If 7:T(V)— A*V is the quotient projection then we set
APV = 7(&PV)

and call this the p-fold exterior power of V. We can think of this as the dual space of
the space of multilinear forms M (vy,...,v,) on V which vanish if any two arguments
coincide — the so-called alternating multilinear forms. If a € ®PV b € ®V then
a®be PV and taking the quotient we get a product called the exterior product:

Definition 20 The exterior product of o = w(a) € APV and 8 = w(b) € A1V is
aAf=mn(a®Db).

Remark: As in the Projective Geometry Notes, if vq,...,v, € V then we define an
element of the dual space of the space of alternating multilinear forms by

VI AV A AU(M) = M(vy, .., 0).
The key properties of the exterior algebra follow:

Proposition 5.2 If o« € APV, 3 € AV then
aNf=(-1)PFAa.

Proof: Because for v e V, v®wv € I(V), it follows that v A v = 0 and hence
0= (v1+v2) A(v1+v3) =0+v; Avg +v2 Avg + 0.
So interchanging any two entries from V' in an expression like
v AN\
changes the sign.

Write o as a linear combination of terms v; A ... A v, and 3 as a linear combination
of wy A ... ANw, and then, applying this rule to bring w; to the front we see that

(Vi A AU) A(wr Ao Awy) = (—1)Pwp Avp A ooy Awg Ao A wy.
For each of the ¢ w;’s we get another factor (—1)? so that in the end

(i Ao oA wg) (v Ao A ) = (=1)P (o Ao A ) (wr A A wy).
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Proposition 5.3 IfdimV =n then dim A"V = 1.

Proof: Let wy,...,w, be n vectors on V and relative to some basis let M be the
square matrix whose columns are wy, ..., w,. then

B(wy,...,w,) =det M

is a non-zero n-fold multilinear form on V. Moreover, if any two of the w; coincide,
the determinant is zero, so this is a non-zero alternating n-linear form — an element
in the dual space of A"V

On the other hand, choose a basis vy, ..., v, for V, then anything in ®"V is a linear
combination of terms like v;; ® ... ® v;, and so anything in A"V is, after using
Proposition 5.2 a linear combination of v; A ... A v,.

Thus A™V is non-zero and at most one-dimensional hence is one-dimensional. O

Proposition 5.4 letwvy,...,v, be a basis for V', then the (;) elements vy, Avi, A. . . A\vg,
forip < iy < ... <1, form a basis for APV.

Proof: By reordering and changing the sign we can get any exterior product of the
v;’s so these elements clearly span APV. Suppose then that

Because i; < ip < ... < ip, each term is uniquely indexed by the subset {i1, s, ...,i,} =
I C{1,2,...,n}, and we can write

Za;v[ =0 (8>

If I and J have a number in common, then v; A v; = 0, so if J has n — p elements,
vy Avy = 0 unless J is the complementary subset I’ in which case the product is a
multiple of v; Avy ... Av, and by Proposition 5.3 this is non-zero. Thus, multiplying
(8) by each term vy we deduce that each coefficient a; = 0 and so we have linear
independence. 0

Proposition 5.5 The vector v is linearly dependent on the vectors vy, ..., v, if and
only if v Ava A...ANvy, Av=0.
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Proof: If v is linearly dependent on vy,...,v, then v =) a;v; and expanding
p
vl/\vg/\.../\vp/\v:vl/\vg/\.../\vp/\(Zaivi)
1

gives terms with repeated v;, which therefore vanish. If not, then vy, vs...,v,,v can
be extended to a basis and Proposition 5.4 tells us that the product is non-zero. 0O

Proposition 5.6 If A:V — W 1is a linear transformation, then there is an induced

linear transformation
ANA - APV — APW

such that
ANA(vy Ao AN vy) = Aug A Avg AL A A,

Proof: From Proposition 5.4 the formula
AA(vy Ao Awy) = Aoy A Avg AL A Av,

actually defines what AA is on basis vectors but doesn’t prove it is independent of
the choice of basis. But the universal property of tensor products gives us

QN : QPV — QPW

and ®PA maps the ideal I(V') to I(W) so defines A”A invariantly. O

Proposition 5.7 If dimV = n, then the linear transformation A"A : A"V — A"V is
given by det A.

Proof: From Proposition 5.3, A"V is one-dimensional and so A" is multiplication
by a real number A\(A). So with a basis vy, ..., v,,

ANA(vi Ao Avy) = Avg A Avg Ao Avy = MA)v AL A oy,
But
AU,L' = Z Ajﬂ)j
J
and so
AUl A\ AUQ VANPIAN AUn = Z Ajl,lvjl A\ AjQ’Q/UjQ VANPIAN Ajmnvjn

= E Aol,lvol A Ao2,2va2 ANIA Aan,nvan
O’GSn
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where the sum runs over all permutations . But if o is a transposition then the term
Vg1 A VUga . .. N\ Uy, changes sign, so

Avy NAvg A ... N\ Av, = Z sgno Ay 14529 .. Aen i AL AUy
oESy

which is the definition of (det A)vy A ... A vy,. O

6 Differential forms

6.1 The bundle of p-forms

Now let M be an n-dimensional manifold and 7' the cotangent space at x. We form

the p-fold exterior power
APTY

and, just as we did for the tangent bundle and cotangent bundle, we shall make

NPT M = | ] AT

zeM

into a vector bundle and hence a manifold.

If x1,...,x, are coordinates for a chart (U, py) then for z € U, the elements
dl’il A dl’iQ VANAN d.ﬁlfip

for i1 < iy < ... <1, form a basis for APT. The (;) coefficients of a € APT then
give a coordinate chart Wy mapping to the open set

ou(U) x AR C R" x R().
When p = 1 this is just the coordinate chart we used for the cotangent bundle:
Oy (z, Zyld:cl) = (1, Ty Y1y -5 Yn)

and on two overlapping coordinate charts we there had

0T; 0T;
@(bflx,...,xn, -'-7n:i‘7'-->~n> —zi,..., _7,2
B8Py (7 Y1 Yn) = (T1 T 8x1y : 8xny)
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For the p-th exterior power we need to replace the Jacobian matrix

0,

J p—
6.Tj

by its induced linear map

APJ : APR™ — APR™.
It’s a long and complicated expression if we write it down in a basis but it is invertible
and each entry is a polynomial in C'*° functions and hence gives a smooth map with
smooth inverse. In other words,

PN
satisfies the conditions for a manifold of dimension n + (Z)

Definition 21 The bundle of p-forms of a manifold M is the differentiable structure
on APT*M defined by the above atlas. There is natural projection p : APT*M — M
and a section is called a differential p-form

Examples:
1. A zero-form is a section of A°T™* which by convention is just a smooth function f.

2. A 1-form is a section of the cotangent bundle 7*. From our definition of the
derivative of a function, it is clear that df is an example of a 1-form. We can write
in a coordinate system

By using a bump function we can extend a locally-defined p-form like dzy A dxy A
... ANdx, to the whole of M, so sections always exist. In fact, it will be convenient
at various points to show that any function, form, or vector field can be written as a
sum of these local ones. This involves the concept of partition of unity.

6.2 Partitions of unity

Definition 22 A partition of unity on M is a collection {¢;}icr of smooth functions
such that

e ;>0
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o {suppp; :i € I} is locally finite
> ipi=1

Here locally finite means that for each « € M there is a neighbourhood U which
intersects only finitely many supports supp ;.

In the appendix, the following general theorem is proved:

Theorem 6.1 Given any open covering {V,} of a manifold M there exists a partition
of unity {¢;} on M such that supp ¢; C V) for some a(i).

We say that such a partition of unity is subordinate to the given covering.

Here let us just note that in the case when M is compact, life is much easier: for each
point x € {V,,} we take a coordinate neighbourhood U, C {V,} and a bump function
which is 1 on a neighbourhood V,, of x and whose support lies in U,. Compactness says
we can extract a finite subcovering of the {V,}.cx and so we get smooth functions
;> 0fori=1,...,N and equal to 1 on V,,. In particular the sum is positive, and

defining
Vi

Ny

Pi
gives the partition of unity.

Now, not only can we create global p-forms by taking local ones, multiplying by ¢;
and extending by zero, but conversely if « is any p-form, we can write it as

Q= (Z pi)o = Z(%‘a)

which is a sum of extensions of locally defined ones.

At this point, it may not be clear why we insist on introducing these complicated
exterior algebra objects, but there are two motivations. One is that the algebraic
theory of determinants is, as we have seen, part of exterior algebra, and multiple
integrals involve determinants. We shall later be able to integrate p-forms over p-
dimensional manifolds.

The other is the appearance of the skew-symmetric cross product in ordinary three-
dimensional calculus, giving rise to the curl differential operator taking vector fields
to vector fields. As we shall see, to do this in a coordinate-free way, and in all
dimensions, we have to dispense with vector fields and work with differential forms
instead.
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6.3 Working with differential forms

We defined a differential form in Definition 21 as a section of a vector bundle. In a
local coordinate system it looks like this:

o = Z ailig...ip (QJ)dQ}'” AN dl’h AN dxip (9)

11 <12 <...<ip

where the coefficients are smooth functions. If z(y) is a different coordinate system,
then we write the derivatives

8:17i
dr;, = Z ay; dyj
J

and substitute in (9) to get

o= Z Wjy jo...jp (y)dyj, Ndyj, ... A dy;, -

J1<j2<...<Jp

Example: Let M = R? and consider the 2-form w = dx; A dz,. Now change to
polar coordinates on the open set (x,z3) # (0,0):

x1 =rcost, xo=rsinf.
We have

dry = cosfdr — rsinfdb
dre = sinfdr + rcos8do

so that
w = (cos @dr — rsin0df) A (sin@dr + r cos 0df) = rdr A d6.

We shall often write
QP (M)

as the infinite-dimensional vector space of all p-forms on M.
Although we first introduced vector fields as analytical objects on manifolds, in many
ways differential forms are better behaved. For example, suppose we have a smooth

map
F:M— N.
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The derivative of this gives at each point x € M a linear map
DF, : T,M — Ty N

but if we have a section of the tangent bundle TM — a vector field X — then DF,(X,)
doesn’t in general define a vector field on N — it doesn’t tell us what to choose in
T,N if a € N is not in the image of F.

On the other hand suppose « is a section of APT*N — a p-form on N. Then the dual
map

defines
A(DF)) : APT}(x)N — NPTXM

and then
A(DF;)(op())

is defined for all  and is a section of APT*M — a p-form on M.

Definition 23 The pull-back of a p-form a € QP(N) by a smooth map F : M — N
is the p-form F*a € QP(M) defined by

(F*a>m = A%DF;)(&F(%)).

Examples:
1. The pull-back of a O-form f € C°°(N) is just the composition f o F.
2. Let F': R®* — R2 be given by

F(x1, 29, 23) = (2122, 29 + 23) = (2, )

and take
a = xdr A dy.

Then
Fra = (zoF)d(zoF)ANd(yoF)
= £L‘1[E2d(1‘1172) VAN d(l’g + IL‘3)
= xixo(r1dry + xodxy) A d(29 + 23)

= x%.ﬂ?gdﬂfg Adzrs + a:lasgdxl A dxs + :le%dxl A dxs
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From the algebraic properties of the maps
AA - APV — APV

we have the following straightforward properties of the pull-back:

e (FoGya=G(Fa)
o I'(a+f) = F*a+ F*j
o F*(a N B) = Fra N F*j3

6.4 The exterior derivative

We now come to the construction of the basic differential operator on forms — the
exterior derivative which generalizes the grads, divs and curls of three-dimensional
calculus. The key feature it has is that it is defined naturally by the manifold structure
without any further assumptions.

Theorem 6.2 On any manifold M there is a natural linear map
d: QP (M) — QPTH(M)
called the exterior deriwative such that

1. if f € Q%M), then df € QY (M) is the derivative of f
2. d>=0
3. dlaNp)=danp+(—1Pandb if a € QP(M)

Examples: Before proving the theorem, let’s look at M = R?, following the rules
of the theorem, to see d in all cases p =0, 1, 2.

p = 0: by definition

_of of of
df = axl dﬂl’l + 8513'2 dl‘g + axgd.%g

which we normally would write as grad f.

p = 1: take a 1-form
a = a1dxy + asdzy + azdrs
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then applying the rules we have

d(aldlj + CLQdCL’Q + agdl‘g) = da1 VAN dl’l + d(lg VAN dl’g + da3 VAN d$3

daq day Oa,
= | =—d —d —d ANd e
(8:1:1 1+ Oy To + 0 3:3) X1+
8&1 8a3 aag 80,1 aag 8@2
=|=——=—)dxsAd — — — |dz1 Nd — — — | dzy N dxs.
(691:3 8:61) 3 o1t (89&1 61’2) = T2t ((9332 8953) 2 3

The coefficients of this define what we would call the curl of the vector field a but
a has now become a l-form « and not a vector field and da is a 2-form, not a
vector field. The geometrical interpretation has changed. Note nevertheless that the
invariant statement d* = 0 is equivalent to curl grad f = 0.

p = 2: now we have a 2-form
ﬁ = bldl‘g N deg + defL’?, A dl’l + bgdl‘l N dIL‘Q

and

b b b
dB = ZLday Ades Ades + —day Adag A das + —day A dag A das
89[;1 (91’2 81’3
B ((%1 Oby  Obs

8x1 + 8x2 + 8[)33

) dl‘l N dl‘Q VAN dxg

which would be the divergence of a vector field b but in our case is applied to a 2-form
3. Again d? = 0 is equivalent to div curlb = 0.

Here we see familiar formulas, but acting on unfamiliar objects. The fact that we can
pull differential forms around by smooth maps will give us a lot more power, even in
three dimensions, than if we always considered these things as vector fields.

Let us return to the Theorem 6.2 now and give its proof.

Proof: We shall define da by first breaking up « as a sum of terms with support in
a local coordinate system (using a partition of unity), define a local d operator using
a coordinate system, and then show that the result is independent of the choice.

So to begin with write a p-form locally as

o = Z aimmip (l’)dl‘ll AN dl’iQ AN dl’ip

11 <i2<...<ip
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and define
do = Z dailbmip N d$il A dl’i2 VANRAN d.ﬁl?ip.

11 <t2<...<ip

When p = 0, this is just the derivative, so the first property of the theorem holds.

For the second part, we expand

0a;,i,..i
da= 3T TS Adu Ade A A,

7,01 <i2<...<ip

and then calculate

O%ai... -
To = — 2 e Ada A dwg, Adxg, .. A do
jk’zl; <i awjaﬂfk J i1 ia .
"y .o D
The term 2
O iriz. iy

is symmetric in j, & but it multiplies dx, Adx; in the formula which is skew-symmetric
in j and k, so the expression vanishes identically and d?a = 0 as required.

For the third part, we check on decomposable forms

a = fdry N...Ndx;,, = fdr;
B = gdrj N...Ndv;, = gdv,

and extend by linearity. So

dlaNp) = d(fgdxr Ndzy)

d(fg) Ndxr Ndx,

(fdg + gdf) Ndzy N\ dxy

= (=DPfdx; Ndg Ndzxy+df Ndxp A gdzy
(—D)PaANdB+daNS

So, using one coordinate system we have defined an operation d which satisfies the
three conditions of the theorem. Now represent « in coordinates ¥, ..., yn:

o= Z bilig...ipdyil N dy22 VAN dyzp

11 <12 <...<ip
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and define in the same way

do = Z dbiliz...ip A dyil N dyig VANPIRIAN dyip.

11 <12<...<ip

We shall show that d = d’ by using the three conditions.
From (1) and (3),

do = d(> iy dys, Ndys, . N dy;,) =
> dbiyiyiy Adyi, Adysy, A A dys, + > by, d(dys, Adys, A A dys,)
and from (3)
d(dy;, Ndyi, N ... Ndy;,) = d(dyi,) A dyi, AN dy;, — dy;, Ad(dyi, AN dy;).

From (1) and (2) d*y;, = 0 and continuing similarly with the right hand term, we get
zero in all terms.

Thus on each coordinate neighbourhood U da = Zi1<i2<...<ip dbiyiy..i, N dys, N dyi, N
... Ndy;, = d'a and do is thus globally well-defined. ]

One important property of the exterior derivative is the following:

Proposition 6.3 Let F': M — N be a smooth map and o € QP(N). then
d(F*a) = F*(da).
Proof: Recall that the derivative DF, : T,M — Tp)N was defined in (11) by
DF(X2)(f) = Xo(f o F)
so that the dual map DF} : Ty N — T M satisfies
DFE,(df )pz) = d(f o F),.
From the definition of pull-back this means that

Fr(df) = d(f o F) = d(F"f) (10)
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Now if
o= Z ailig...ip (x)dle A dxiQ VANRRAN d$ip’
11 <i2<...<ip
Fa= 3ty (F@)Fde, AFdeg A A Fd,
11 <ig<...<ip

by the multiplicative property of pull-back and then using the properties of d and
(10)

d(F*Oé) = Z d(CLHZQzP(F(JI))) VAN F*dﬂ?“ VAN F*dl’w VAP F*dIiP
11 <12 <...<ip
= Z F*daili%ip VAN F*dl'zl VAN F*dl'm VANPIAN F*dllfip
11<i2<...<ip
= F*(da).

6.5 The Lie derivative of a differential form

Suppose ¢, is the one-parameter (locally defined) group of diffeomorphisms defined
by a vector field X. Then there is a naturally defined Lie derivative

0
Lxo= 2o
XEZ 9

of a p-form o by X. It is again a p-form. We shall give a useful formula for this
involving the exterior derivative.

Proposition 6.4 Given a vector field X on a manifold M, there is a linear map
i(X): QP (M) — QP (M)
(called the interior product) such that

o i(X)df = X()
o i(X)(anB) =i(X)aAB+ (—1)Pani(X)3 if a € QM)
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The proposition tells us exactly how to work out an interior product: if
0
X = i,
2.0
and a = dxy Adxy A ... Ndx, is a basic p-form then

iW(X)a =ardrs A\ ... Ndx, — asdry ANdxs A ... ANdxy, + ... (11)

In particular

W(X)(i(X)) = apagdzs A ... Ndxy — agaqdzz A ... ANdzy,+ ... =0.
Example: Suppose
0 0
=dx Nd X =x— —
Q x Y, :138$ + y(’?y

then
(X))o = zdy — ydz.

The interior product is just a linear algebra construction. Above we have seen how
to work it out when we write down a form as a sum of basis vectors. We just need to
prove that it is well-defined and independent of the way we do that, which motivates
the following more abstract proof:

Proof: In Remark 5.1 we defined APV as the dual space of the space of alternating
p-multilinear forms on V. If M is an alternating (p — 1)-multilinear form on V' and
¢ a linear form on V' then

(EM)(vy,...,vp) = &(v1)M(vq, ..., v) — E(va) M (vy,v3, ..., 0p) + ... (12)

is an alternating p-multilinear form. So if & € APV we can define i(¢)a € AP~V by

(i(§)a)(M) = a(EM).

Taking V =T* and £ = X € V* = (T*)* = T gives the interior product. Equation
(12) gives us the rule (11) for working out interior products. O

Here then is the formula for the Lie derivative:

Proposition 6.5 The Lie derivative Lxa of a p-form « is given by

Lxa=d(i(X)a)+i(X)dao.
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Proof: Consider the right hand side
Rx(a) = d(i(X)a) + i(X)da.

Now i(X) reduces the degree p by 1 but d increases it by 1, so Rx maps p-forms to
p-forms. Also,

d(d(i(X)a) +i(X)da) = di(X)da = (di(X) + i(X)d)do
because d? = 0, so Rx commutes with d. Finally, because

i(X)(aNp) = i(X)aAB+ (—1)Pani(X)s
dlaNp) = daNf+(—1)PaNdp

we have

Rx(a N ﬁ) = (RXa) VAN 5 +aA Rx(ﬁ)

On the other hand
¢; (da) = d(pra)

so differentiating at t = 0, we get
ﬁxda == d(ﬁxOé)

and
Yi(aNB) =pia i3

and differentiating this, we have
Lx(aNpB)=LxaNG+aNLxp.

Thus both L£x and Rx preserve degree, commute with d and satisfy the same Leibnitz
identity. Hence, if we write a p-form as

a = Z a’iliz...ip (l’)dl’ll A d.TiQ VANPIIAN dl’ip

11<i2<...<ip

Lx and Ry will agree so long as they agree on functions. But

Ryl =i(X)if = X(f) = 2 (@) = Lxf

t=0

so they do agree. O
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6.6 de Rham cohomology

In textbooks on vector calculus, you may read not only that curl grad f = 0, but also
that if a vector field a satisfies curla = 0, then it can be written as a = grad f for
some function f. Sometimes the statement is given with the proviso that the open
set of R3 on which a is defined satisfies the topological condition that it is simply
connected (any closed path can be contracted to a point).

In the language of differential forms on a manifold, the analogue of the above state-
ment would say that if a 1-form « satisfies da = 0, and M is simply-connected, there
is a function f such that df = a.

While this is true, the criterion of simply connectedness is far too strong. We want
to know when the kernel of

d: QY M) — Q*(M)

is equal to the image of
d: QM) — QY (M).

Since d?f = 0, the second vector space is contained in the first and what we shall do
is simply to study the quotient, which becomes a topological object in its own right,
with an algebraic structure which can be used to say many things about the global
topology of a manifold.

Definition 24 The p-th de Rham cohomology group of a manifold M 1is the quotient
vector space:

~ Kerd: QP(M) — QPFY(M)

~ Imd: (M) — Qp(M)

HP(M)

Remark:

1. Although we call it the cohomology group, it is simply a real vector space. There
are analogous structures in algebraic topology where the additive group structure is
more interesting.

2. Since there are no forms of degree —1, the group H°(M) is the space of functions
f such that df = 0. Now each connected component M; of M is an open set of M
and hence a manifold. The mean value theorem tells us that on any open ball in a
coordinate neighbourhood of M;, df = 0 implies that f is equal to a constant ¢, and
the subset of M; on which f = ¢ is open and closed and hence equal to M,;.

Thus if M is connected, the de Rham cohomology group H®(M) is naturally isomor-
phic to R: the constant value c of the function f. In general H°(M) is the vector
space of real valued functions on the set of components. Our assumption that M
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has a countable basis of open sets means that there are at most countably many
components. When M is compact, there are only finitely many, since components
provide an open covering. The cohomology groups for all p of a compact manifold
are finite-dimensional vector spaces, though we shall not prove that here.

It is convenient in discussing the exterior derivative to introduce the following termi-
nology:

Definition 25 A form o € QP(M) is closed if do = 0.
Definition 26 A form « € QP(M) is exact if a = df for some 3 € QP71 (M).

The de Rham cohomology group H?(M) is by definition the quotient of the space of
closed p-forms by the subspace of exact p-forms. Under the quotient map, a closed
p-form « defines a cohomology class [« € HP(M), and [o/] = [a] if and only if
o —a = df for some (3.

Here are some basic features of the de Rham cohomology groups:

Proposition 6.6 The de Rham cohomology groups of a manifold M of dimension n
have the following properties:

e HY(M)=01ifp>n

e fora € HP(M),b € HI(M) there is a bilinear product ab € HPTI(M) which
satisfies
ab = (—1)"ba

o if ': M — N is a smooth map, it defines a natural linear map
F*: HP(N) — H?(M)
which commutes with the product.
Proof: The first part is clear since APT™* = 0 for p > n.

For the product, this comes directly from the exterior product of forms. If a = [a],b =
(3] we define
ab = [a A f]
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but we need to check that this really does define a cohomology class. Firstly, since
a, ( are closed,
dlaNp)=daNf+(—1)PaNdB=0

so there is a class defined by a and 3. Suppose we now choose a different representative
o = a+ dvy for a. Then

dANB=(a+dy)ANB=aAB+dvyApS)

since d = 0, so d(y A B) = dy A B. Thus &’ A § and o A § differ by an exact form
and define the same cohomology class. Changing /3 gives the same result.

The last part is just the pull-back operation on forms. Since
dFa = Frda
F* defines a map of cohomology groups. And since
F*(anp)=FaNFj

it respects the product. O

Perhaps the most important property of the de Rham cohomology, certainly the
one that links it to algebraic topology, is the deformation invariance of the induced
maps F. We show that if F} is a smooth family of smooth maps, then the effect on
cohomology is independent of . As a matter of terminology (because we have only
defined smooth maps of manifolds) we shall say that a map

F: M xla,b| = N

is smooth if it is the restriction of a smooth map on the product with some slightly
bigger open interval M X (a — €,b+ €).

Theorem 6.7 Let F': M x [0,1] — N be a smooth map. Set Fy(x) = F(z,t) and
consider the induced map on de Rham cohomology F} : HP(N) — HP(M). Then

Fy = F}.

Proof: Represent a € HP(N) by a closed p-form « and consider the pull-back form
F*a on M x [0,1]. We can decompose this uniquely in the form

Fra=0+dt Ny (13)
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where (3 is a p-form on M (also depending on t) and v is a (p—1)-form on M, depending
on t. In a coordinate system it is clear how to do this, but more invariantly, the form
B is just Fya. To get 7 in an invariant manner, we can think of

(z,8) — (x,s+ 1)

as a local one-parameter group of diffeomorphisms of M x (a,b) which generates a

vector field X = 0/0t. Then

v =1i(X)Fa.
Now « is closed, so from (13),
0
Oszﬂ—I—dt/\a—f—dt/\de
where d;; is the exterior derivative in the variables of M. It follows that
0 ap3
—Fa=—=4d
art T o — M7

so that, integrating with respect to the parameter ¢,

1 o 1
Ffa—Fga:/ —F/a dt:d/7 dt.
o Ot 0

So the closed forms Fj'a and Fjjo differ by an exact form and

F(a) = Fg(a).

Here is an immediate corollary:

Proposition 6.8 The de Rham cohomology groups of M = R"™ are zero for p > 0.
Proof: Define F': R" x [0,1] — R" by
F(x,t) =tx.
Then Fi(z) = x which is the identity map, and so
F;: HP(R") — H?(R")
is the identity.
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But Fy(z) = 0 which is a constant map. In particular the derivative vanishes, so the
pull-back of any p-form of degree greater than zero is the zero map. So for p > 0

Fy : HP(R") — H?(R")

vanishes.
From Theorem 6.7 Fj = F} and we deduce that H?(R") vanishes for p > 0. Of
course R™ is connected so H°(R™) = R.. O

Example: Show that the previous proposition holds for a star shaped region in R™:
an open set U with a point a € U such that for each x € U the straight-line segment
ax C U. This is usually called the Poincaré lemma.

We are in no position yet to calculate many other de Rham cohomology groups, but
here is one non-trivial example. Consider the case of R/Z, diffeomorphic to the circle.
In the atlas given earlier, we had 105" (z) = z or p195 " (z) = 2 — 1 so the 1-form
dx = d(z — 1) is well-defined, and nowhere zero. It is not the derivative of a function,
however, since R/Z is compact and any function must have a minimum where df = 0.
We deduce that

H'(R/Z) # 0.

To get more information we need to study the other aspect of differential forms:
integration.
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