
5 Tensor products

We have so far encountered vector fields and the derivatives of smooth functions as
analytical objects on manifolds. These are examples of a general class of objects
called tensors which we shall encounter in more generality. The starting point is pure
linear algebra.

Let V,W be two finite-dimensional vector spaces over R. We are going to define a
new vector space V ⊗W with two properties:

• if v ∈ V and w ∈ W then there is a product v ⊗ w ∈ V ⊗W

• the product is bilinear:

(λv1 + µv2)⊗ w = λv1 ⊗ w + µv2 ⊗ w

v ⊗ (λw1 + µw2) = λv ⊗ w1 + µv ⊗ w2

In fact, it is the properties of the vector space V ⊗ W which are more important
than what it is (and after all what is a real number? Do we always think of it as an
equivalence class of Cauchy sequences of rationals?).

Proposition 5.1 The tensor product V ⊗W has the universal property that if B :
V ×W → U is a bilinear map to a vector space U then there is a unique linear map

β : V ⊗W → U

such that B(v, w) = β(v ⊗ w).

There are various ways to define V ⊗W . In the finite-dimensional case we can say
that V ⊗W is the dual space of the space of bilinear forms on V ×W : i.e. maps
B : V ×W → R such that

B(λv1 + µv2, w) = λB(v1, w) + µB(v2, w)

B(v, λw1 + µw2) = λB(v, w1) + µB(v, w2)

Given v, w ∈ V,W we then define v ⊗ w ∈ V ⊗W as the map

(v ⊗ w)(B) = B(v, w).

This satisfies the universal property because given B : V ×W → U and ξ ∈ U∗, ξ ◦B
is a bilinear form on V ×W and defines a linear map from U∗ to the space of bilinear
forms. The dual map is the required homomorphism β from V ⊗W to (U∗)∗ = U .
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A bilinear form B is uniquely determined by its values B(vi, wj) on basis vectors
v1, . . . , vm for V and w1, . . . wn for W which means the dimension of the vector space
of bilinear forms is mn, as is its dual space V ⊗W . In fact, we can easily see that
the mn vectors

vi ⊗ wj

form a basis for V ⊗W . It is important to remember though that a typical element
of V ⊗W can only be written as a sum∑

i,j

aijvi ⊗ wj

and not as a pure product v ⊗ w.

Taking W = V we can form multiple tensor products

V ⊗ V, V ⊗ V ⊗ V = ⊗3V, . . .

We can think of ⊗pV as the dual space of the space of p-fold multilinear forms on V .

Mixing degrees we can even form the tensor algebra:

T (V ) = ⊕∞
k=0(⊗kV ).

An element of T (V ) is a finite sum

λ1 + v0 +
∑

vi ⊗ vj + . . .+
∑

vi1 ⊗ vi2 . . .⊗ vip

of products of vectors vi ∈ V . The obvious multiplication process is based on extend-
ing by linearity the product

(v1 ⊗ . . .⊗ vp)(u1 ⊗ . . .⊗ uq) = v1 ⊗ . . .⊗ vp ⊗ u1 ⊗ . . .⊗ uq

It is associative, but noncommutative.

For the most part we shall be interested in only a quotient of this algebra, called the
exterior algebra. A down-to-earth treatment of this is in the Section b3 Projective
Geometry Notes on the Mathematical Institute website.

5.1 The exterior algebra

Let T (V ) be the tensor algebra of a real vector space V and let I(V ) be the ideal
generated by elements of the form

v ⊗ v

where v ∈ V . So I(V ) consists of all sums of multiples by T (V ) on the left and right
of these generators.
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Definition 19 The exterior algebra of V is the quotient

Λ∗V = T (V )/I(V ).

If π : T (V ) → Λ∗V is the quotient projection then we set

ΛpV = π(⊗pV )

and call this the p-fold exterior power of V . We can think of this as the dual space of
the space of multilinear forms M(v1, . . . , vp) on V which vanish if any two arguments
coincide – the so-called alternating multilinear forms. If a ∈ ⊗pV, b ∈ ⊗qV then
a⊗ b ∈ ⊗p+qV and taking the quotient we get a product called the exterior product:

Definition 20 The exterior product of α = π(a) ∈ ΛpV and β = π(b) ∈ ΛqV is

α ∧ β = π(a⊗ b).

Remark: As in the Projective Geometry Notes, if v1, . . . , vp ∈ V then we define an
element of the dual space of the space of alternating multilinear forms by

v1 ∧ v2 ∧ . . . ∧ vp(M) = M(v1, . . . , vp).

The key properties of the exterior algebra follow:

Proposition 5.2 If α ∈ ΛpV, β ∈ ΛqV then

α ∧ β = (−1)pqβ ∧ α.

Proof: Because for v ∈ V , v ⊗ v ∈ I(V ), it follows that v ∧ v = 0 and hence

0 = (v1 + v2) ∧ (v1 + v2) = 0 + v1 ∧ v2 + v2 ∧ v1 + 0.

So interchanging any two entries from V in an expression like

v1 ∧ . . . ∧ vk

changes the sign.

Write α as a linear combination of terms v1 ∧ . . . ∧ vp and β as a linear combination
of w1 ∧ . . . ∧ wq and then, applying this rule to bring w1 to the front we see that

(v1 ∧ . . . ∧ vp) ∧ (w1 ∧ . . . ∧ wq) = (−1)pw1 ∧ v1 ∧ . . . vp ∧ w2 ∧ . . . ∧ wq.

For each of the q wi’s we get another factor (−1)p so that in the end

(w1 ∧ . . . ∧ wq)(v1 ∧ . . . ∧ vp) = (−1)pq(v1 ∧ . . . ∧ vp)(w1 ∧ . . . ∧ wq).

2
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Proposition 5.3 If dimV = n then dim ΛnV = 1.

Proof: Let w1, . . . , wn be n vectors on V and relative to some basis let M be the
square matrix whose columns are w1, . . . , wn. then

B(w1, . . . , wn) = detM

is a non-zero n-fold multilinear form on V . Moreover, if any two of the wi coincide,
the determinant is zero, so this is a non-zero alternating n-linear form – an element
in the dual space of ΛnV .

On the other hand, choose a basis v1, . . . , vn for V , then anything in ⊗nV is a linear
combination of terms like vi1 ⊗ . . . ⊗ vin and so anything in ΛnV is, after using
Proposition 5.2 a linear combination of v1 ∧ . . . ∧ vn.

Thus ΛnV is non-zero and at most one-dimensional hence is one-dimensional. 2

Proposition 5.4 let v1, . . . , vn be a basis for V , then the
(

n
p

)
elements vi1∧vi2∧. . .∧vip

for i1 < i2 < . . . < ip form a basis for ΛpV .

Proof: By reordering and changing the sign we can get any exterior product of the
vi’s so these elements clearly span ΛpV . Suppose then that∑

ai1...ipvi1 ∧ vi2 ∧ . . . ∧ vip = 0.

Because i1 < i2 < . . . < ip, each term is uniquely indexed by the subset {i1, i2, . . . , ip} =
I ⊆ {1, 2, . . . , n}, and we can write ∑

I

aIvI = 0 (8)

If I and J have a number in common, then vI ∧ vJ = 0, so if J has n − p elements,
vI ∧ vJ = 0 unless J is the complementary subset I ′ in which case the product is a
multiple of v1 ∧ v2 . . .∧ vn and by Proposition 5.3 this is non-zero. Thus, multiplying
(8) by each term vI′ we deduce that each coefficient aI = 0 and so we have linear
independence. 2

Proposition 5.5 The vector v is linearly dependent on the vectors v1, . . . , vp if and
only if v1 ∧ v2 ∧ . . . ∧ vp ∧ v = 0.
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Proof: If v is linearly dependent on v1, . . . , vp then v =
∑
aivi and expanding

v1 ∧ v2 ∧ . . . ∧ vp ∧ v = v1 ∧ v2 ∧ . . . ∧ vp ∧ (

p∑
1

aivi)

gives terms with repeated vi, which therefore vanish. If not, then v1, v2 . . . , vp, v can
be extended to a basis and Proposition 5.4 tells us that the product is non-zero. 2

Proposition 5.6 If A : V → W is a linear transformation, then there is an induced
linear transformation

ΛpA : ΛpV → ΛpW

such that
ΛpA(v1 ∧ . . . ∧ vp) = Av1 ∧ Av2 ∧ . . . ∧ Avp.

Proof: From Proposition 5.4 the formula

ΛpA(v1 ∧ . . . ∧ vp) = Av1 ∧ Av2 ∧ . . . ∧ Avp

actually defines what ΛpA is on basis vectors but doesn’t prove it is independent of
the choice of basis. But the universal property of tensor products gives us

⊗pA : ⊗pV → ⊗pW

and ⊗pA maps the ideal I(V ) to I(W ) so defines ΛpA invariantly. 2

Proposition 5.7 If dimV = n, then the linear transformation ΛnA : ΛnV → ΛnV is
given by detA.

Proof: From Proposition 5.3, ΛnV is one-dimensional and so ΛnA is multiplication
by a real number λ(A). So with a basis v1, . . . , vn,

ΛnA(v1 ∧ . . . ∧ vn) = Av1 ∧ Av2 ∧ . . . Avn = λ(A)v1 ∧ . . . ∧ vn.

But
Avi =

∑
j

Ajivj

and so

Av1 ∧ Av2 ∧ . . . ∧ Avn =
∑

Aj1,1vj1 ∧ Aj2,2vj2 ∧ . . . ∧ Ajn,nvjn

=
∑
σ∈Sn

Aσ1,1vσ1 ∧ Aσ2,2vσ2 ∧ . . . ∧ Aσn,nvσn
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where the sum runs over all permutations σ. But if σ is a transposition then the term
vσ1 ∧ vσ2 . . . ∧ vσn changes sign, so

Av1 ∧ Av2 ∧ . . . ∧ Avn =
∑
σ∈Sn

sgnσAσ1,1Aσ2,2 . . . Aσn,nv1 ∧ . . . ∧ vn

which is the definition of (detA)v1 ∧ . . . ∧ vn. 2

6 Differential forms

6.1 The bundle of p-forms

Now let M be an n-dimensional manifold and T ∗x the cotangent space at x. We form
the p-fold exterior power

ΛpT ∗x

and, just as we did for the tangent bundle and cotangent bundle, we shall make

ΛpT ∗M =
⋃

x∈M

ΛpT ∗x

into a vector bundle and hence a manifold.

If x1, . . . , xn are coordinates for a chart (U,ϕU) then for x ∈ U , the elements

dxi1 ∧ dxi2 ∧ . . . ∧ dxip

for i1 < i2 < . . . < ip form a basis for ΛpT ∗x . The
(

n
p

)
coefficients of α ∈ ΛpT ∗x then

give a coordinate chart ΨU mapping to the open set

ϕU(U)× ΛpRn ⊆ Rn ×R(n
p).

When p = 1 this is just the coordinate chart we used for the cotangent bundle:

ΦU(x,
∑

yidxi) = (x1, . . . , xn, y1, . . . , yn)

and on two overlapping coordinate charts we there had

ΦβΦ−1
α (x1, . . . , xn, y1 . . . , yn) = (x̃1, . . . , x̃n,

∑
j

∂x̃i

∂x1

yi, . . . ,
∑

i

∂x̃i

∂xn

yi).
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For the p-th exterior power we need to replace the Jacobian matrix

J =
∂x̃i

∂xj

by its induced linear map
ΛpJ : ΛpRn → ΛpRn.

It’s a long and complicated expression if we write it down in a basis but it is invertible
and each entry is a polynomial in C∞ functions and hence gives a smooth map with
smooth inverse. In other words,

ΨβΨ−1
α

satisfies the conditions for a manifold of dimension n+
(

n
p

)
.

Definition 21 The bundle of p-forms of a manifold M is the differentiable structure
on ΛpT ∗M defined by the above atlas. There is natural projection p : ΛpT ∗M → M
and a section is called a differential p-form

Examples:

1. A zero-form is a section of Λ0T ∗ which by convention is just a smooth function f .

2. A 1-form is a section of the cotangent bundle T ∗. From our definition of the
derivative of a function, it is clear that df is an example of a 1-form. We can write
in a coordinate system

df =
∑

j

∂f

∂xj

dxj.

By using a bump function we can extend a locally-defined p-form like dx1 ∧ dx2 ∧
. . . ∧ dxp to the whole of M , so sections always exist. In fact, it will be convenient
at various points to show that any function, form, or vector field can be written as a
sum of these local ones. This involves the concept of partition of unity.

6.2 Partitions of unity

Definition 22 A partition of unity on M is a collection {ϕi}i∈I of smooth functions
such that

• ϕi ≥ 0
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• {suppϕi : i ∈ I} is locally finite

•
∑

i ϕi = 1

Here locally finite means that for each x ∈ M there is a neighbourhood U which
intersects only finitely many supports suppϕi.

In the appendix, the following general theorem is proved:

Theorem 6.1 Given any open covering {Vα} of a manifold M there exists a partition
of unity {ϕi} on M such that suppϕi ⊂ Vα(i) for some α(i).

We say that such a partition of unity is subordinate to the given covering.

Here let us just note that in the case when M is compact, life is much easier: for each
point x ∈ {Vα} we take a coordinate neighbourhood Ux ⊂ {Vα} and a bump function
which is 1 on a neighbourhood Vx of x and whose support lies in Ux. Compactness says
we can extract a finite subcovering of the {Vx}x∈X and so we get smooth functions
ψi ≥ 0 for i = 1, . . . , N and equal to 1 on Vxi

. In particular the sum is positive, and
defining

ϕi =
ψi∑N
1 ψi

gives the partition of unity.

Now, not only can we create global p-forms by taking local ones, multiplying by ϕi

and extending by zero, but conversely if α is any p-form, we can write it as

α = (
∑

i

ϕi)α =
∑

i

(ϕiα)

which is a sum of extensions of locally defined ones.

At this point, it may not be clear why we insist on introducing these complicated
exterior algebra objects, but there are two motivations. One is that the algebraic
theory of determinants is, as we have seen, part of exterior algebra, and multiple
integrals involve determinants. We shall later be able to integrate p-forms over p-
dimensional manifolds.

The other is the appearance of the skew-symmetric cross product in ordinary three-
dimensional calculus, giving rise to the curl differential operator taking vector fields
to vector fields. As we shall see, to do this in a coordinate-free way, and in all
dimensions, we have to dispense with vector fields and work with differential forms
instead.
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6.3 Working with differential forms

We defined a differential form in Definition 21 as a section of a vector bundle. In a
local coordinate system it looks like this:

α =
∑

i1<i2<...<ip

ai1i2...ip(x)dxi1 ∧ dxi2 . . . ∧ dxip (9)

where the coefficients are smooth functions. If x(y) is a different coordinate system,
then we write the derivatives

dxik =
∑

j

∂xik

∂yj

dyj

and substitute in (9) to get

α =
∑

j1<j2<...<jp

ãj1j2...jp(y)dyj1 ∧ dyj2 . . . ∧ dyjp .

Example: Let M = R2 and consider the 2-form ω = dx1 ∧ dx2. Now change to
polar coordinates on the open set (x1, x2) 6= (0, 0):

x1 = r cos θ, x2 = r sin θ.

We have

dx1 = cos θdr − r sin θdθ

dx2 = sin θdr + r cos θdθ

so that
ω = (cos θdr − r sin θdθ) ∧ (sin θdr + r cos θdθ) = rdr ∧ dθ.

We shall often write
Ωp(M)

as the infinite-dimensional vector space of all p-forms on M .

Although we first introduced vector fields as analytical objects on manifolds, in many
ways differential forms are better behaved. For example, suppose we have a smooth
map

F : M → N.
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The derivative of this gives at each point x ∈M a linear map

DFx : TxM → TF (x)N

but if we have a section of the tangent bundle TM – a vector field X – then DFx(Xx)
doesn’t in general define a vector field on N – it doesn’t tell us what to choose in
TaN if a ∈ N is not in the image of F .

On the other hand suppose α is a section of ΛpT ∗N – a p-form on N . Then the dual
map

DF ′
x : T ∗F (x)N → T ∗xM

defines
Λp(DF ′

x) : ΛpT ∗F (x)N → ΛpT ∗xM

and then
Λp(DF ′

x)(αF (x))

is defined for all x and is a section of ΛpT ∗M – a p-form on M .

Definition 23 The pull-back of a p-form α ∈ Ωp(N) by a smooth map F : M → N
is the p-form F ∗α ∈ Ωp(M) defined by

(F ∗α)x = Λp(DF ′
x)(αF (x)).

Examples:

1. The pull-back of a 0-form f ∈ C∞(N) is just the composition f ◦ F .

2. Let F : R3 → R2 be given by

F (x1, x2, x3) = (x1x2, x2 + x3) = (x, y)

and take
α = xdx ∧ dy.

Then

F ∗α = (x ◦ F )d(x ◦ F ) ∧ d(y ◦ F )

= x1x2d(x1x2) ∧ d(x2 + x3)

= x1x2(x1dx2 + x2dx1) ∧ d(x2 + x3)

= x2
1x2dx2 ∧ dx3 + x1x

2
2dx1 ∧ dx2 + x1x

2
2dx1 ∧ dx3
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From the algebraic properties of the maps

ΛpA : ΛpV → ΛpV

we have the following straightforward properties of the pull-back:

• (F ◦G)∗α = G∗(F ∗α)

• F ∗(α+ β) = F ∗α+ F ∗β

• F ∗(α ∧ β) = F ∗α ∧ F ∗β

6.4 The exterior derivative

We now come to the construction of the basic differential operator on forms – the
exterior derivative which generalizes the grads, divs and curls of three-dimensional
calculus. The key feature it has is that it is defined naturally by the manifold structure
without any further assumptions.

Theorem 6.2 On any manifold M there is a natural linear map

d : Ωp(M) → Ωp+1(M)

called the exterior derivative such that

1. if f ∈ Ω0(M), then df ∈ Ω1(M) is the derivative of f

2. d2 = 0

3. d(α ∧ β) = dα ∧ β + (−1)pα ∧ dβ if α ∈ Ωp(M)

Examples: Before proving the theorem, let’s look at M = R3, following the rules
of the theorem, to see d in all cases p = 0, 1, 2.

p = 0: by definition

df =
∂f

∂x1

dx1 +
∂f

∂x2

dx2 +
∂f

∂x3

dx3

which we normally would write as grad f .

p = 1: take a 1-form
α = a1dx1 + a2dx2 + a3dx3
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then applying the rules we have

d(a1dx1 + a2dx2 + a3dx3) = da1 ∧ dx1 + da2 ∧ dx2 + da3 ∧ dx3

=

(
∂a1

∂x1

dx1 +
∂a1

∂x2

dx2 +
∂a1

∂x3

dx3

)
∧ dx1 + . . .

=

(
∂a1

∂x3

− ∂a3

∂x1

)
dx3 ∧ dx1 +

(
∂a2

∂x1

− ∂a1

∂x2

)
dx1 ∧ dx2 +

(
∂a3

∂x2

− ∂a2

∂x3

)
dx2 ∧ dx3.

The coefficients of this define what we would call the curl of the vector field a but
a has now become a 1-form α and not a vector field and dα is a 2-form, not a
vector field. The geometrical interpretation has changed. Note nevertheless that the
invariant statement d2 = 0 is equivalent to curl grad f = 0.

p = 2: now we have a 2-form

β = b1dx2 ∧ dx3 + b2dx3 ∧ dx1 + b3dx1 ∧ dx2

and

dβ =
∂b1
∂x1

dx1 ∧ dx2 ∧ dx3 +
∂b2
∂x2

dx1 ∧ dx2 ∧ dx3 +
∂b3
∂x3

dx1 ∧ dx2 ∧ dx3

=

(
∂b1
∂x1

+
∂b2
∂x2

+
∂b3
∂x3

)
dx1 ∧ dx2 ∧ dx3

which would be the divergence of a vector field b but in our case is applied to a 2-form
β. Again d2 = 0 is equivalent to div curlb = 0.

Here we see familiar formulas, but acting on unfamiliar objects. The fact that we can
pull differential forms around by smooth maps will give us a lot more power, even in
three dimensions, than if we always considered these things as vector fields.

Let us return to the Theorem 6.2 now and give its proof.

Proof: We shall define dα by first breaking up α as a sum of terms with support in
a local coordinate system (using a partition of unity), define a local d operator using
a coordinate system, and then show that the result is independent of the choice.

So to begin with write a p-form locally as

α =
∑

i1<i2<...<ip

ai1i2...ip(x)dxi1 ∧ dxi2 ∧ . . . ∧ dxip
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and define
dα =

∑
i1<i2<...<ip

dai1i2...ip ∧ dxi1 ∧ dxi2 ∧ . . . ∧ dxip .

When p = 0, this is just the derivative, so the first property of the theorem holds.

For the second part, we expand

dα =
∑

j,i1<i2<...<ip

∂ai1i2...ip

∂xj

dxj ∧ dxi1 ∧ dxi2 ∧ . . . ∧ dxip

and then calculate

d2α =
∑

j,k,i1<i2<...<ip

∂2ai1i2...ip

∂xj∂xk

dxk ∧ dxj ∧ dxi1 ∧ dxi2 . . . ∧ dxip .

The term
∂2ai1i2...ip

∂xj∂xk

is symmetric in j, k but it multiplies dxk∧dxj in the formula which is skew-symmetric
in j and k, so the expression vanishes identically and d2α = 0 as required.

For the third part, we check on decomposable forms

α = fdxi1 ∧ . . . ∧ dxip = fdxI

β = gdxj1 ∧ . . . ∧ dxjq = gdxJ

and extend by linearity. So

d(α ∧ β) = d(fgdxI ∧ dxJ)

= d(fg) ∧ dxI ∧ dxJ

= (fdg + gdf) ∧ dxI ∧ dxJ

= (−1)pfdxI ∧ dg ∧ dxJ + df ∧ dxI ∧ gdxJ

= (−1)pα ∧ dβ + dα ∧ β

So, using one coordinate system we have defined an operation d which satisfies the
three conditions of the theorem. Now represent α in coordinates y1, . . . , yn:

α =
∑

i1<i2<...<ip

bi1i2...ipdyi1 ∧ dyi2 ∧ . . . ∧ dyip
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and define in the same way

d′α =
∑

i1<i2<...<ip

dbi1i2...ip ∧ dyi1 ∧ dyi2 ∧ . . . ∧ dyip .

We shall show that d = d′ by using the three conditions.

From (1) and (3),

dα = d(
∑

bi1i2...ipdyi1 ∧ dyi2 . . . ∧ dyip) =∑
dbi1i2...ip ∧ dyi1 ∧ dyi2 ∧ . . . ∧ dyip +

∑
bi1i2...ipd(dyi1 ∧ dyi2 ∧ . . . ∧ dyip)

and from (3)

d(dyi1 ∧ dyi2 ∧ . . . ∧ dyip) = d(dyi1) ∧ dyi2 ∧ . . . ∧ dyip − dyi1 ∧ d(dyi2 ∧ . . . ∧ dyip).

From (1) and (2) d2yi1 = 0 and continuing similarly with the right hand term, we get
zero in all terms.

Thus on each coordinate neighbourhood U dα =
∑

i1<i2<...<ip
dbi1i2...ip ∧ dyi1 ∧ dyi2 ∧

. . . ∧ dyip = d′α and dα is thus globally well-defined. 2

One important property of the exterior derivative is the following:

Proposition 6.3 Let F : M → N be a smooth map and α ∈ Ωp(N). then

d(F ∗α) = F ∗(dα).

Proof: Recall that the derivative DFx : TxM → TF (x)N was defined in (11) by

DFx(Xx)(f) = Xx(f ◦ F )

so that the dual map DF ′
x : T ∗F (x)N → T ∗xM satisfies

DF ′
x(df)F (x) = d(f ◦ F )x.

From the definition of pull-back this means that

F ∗(df) = d(f ◦ F ) = d(F ∗f) (10)
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Now if
α =

∑
i1<i2<...<ip

ai1i2...ip(x)dxi1 ∧ dxi2 ∧ . . . ∧ dxip ,

F ∗α =
∑

i1<i2<...<ip

ai1i2...ip(F (x))F ∗dxi1 ∧ F ∗dxi2 ∧ . . . ∧ F ∗dxip

by the multiplicative property of pull-back and then using the properties of d and
(10)

d(F ∗α) =
∑

i1<i2<...<ip

d(ai1i2...ip(F (x))) ∧ F ∗dxi1 ∧ F ∗dxi2 ∧ . . . ∧ F ∗dxip

=
∑

i1<i2<...<ip

F ∗dai1i2...ip ∧ F ∗dxi1 ∧ F ∗dxi2 ∧ . . . ∧ F ∗dxip

= F ∗(dα).

2

6.5 The Lie derivative of a differential form

Suppose ϕt is the one-parameter (locally defined) group of diffeomorphisms defined
by a vector field X. Then there is a naturally defined Lie derivative

LXα =
∂

∂t
ϕ∗tα

∣∣∣∣
t=0

of a p-form α by X. It is again a p-form. We shall give a useful formula for this
involving the exterior derivative.

Proposition 6.4 Given a vector field X on a manifold M , there is a linear map

i(X) : Ωp(M) → Ωp−1(M)

(called the interior product) such that

• i(X)df = X(f)

• i(X)(α ∧ β) = i(X)α ∧ β + (−1)pα ∧ i(X)β if α ∈ Ωp(M)
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The proposition tells us exactly how to work out an interior product: if

X =
∑

i

ai
∂

∂xi

,

and α = dx1 ∧ dx2 ∧ . . . ∧ dxp is a basic p-form then

i(X)α = a1dx2 ∧ . . . ∧ dxp − a2dx1 ∧ dx3 ∧ . . . ∧ dxp + . . . (11)

In particular

i(X)(i(X)α) = a1a2dx3 ∧ . . . ∧ dxp − a2a1dx3 ∧ . . . ∧ dxp + . . . = 0.

Example: Suppose

α = dx ∧ dy, X = x
∂

∂x
+ y

∂

∂y

then
i(X)α = xdy − ydx.

The interior product is just a linear algebra construction. Above we have seen how
to work it out when we write down a form as a sum of basis vectors. We just need to
prove that it is well-defined and independent of the way we do that, which motivates
the following more abstract proof:

Proof: In Remark 5.1 we defined ΛpV as the dual space of the space of alternating
p-multilinear forms on V . If M is an alternating (p − 1)-multilinear form on V and
ξ a linear form on V then

(ξM)(v1, . . . , vp) = ξ(v1)M(v2, . . . , vp)− ξ(v2)M(v1, v3, . . . , vp) + . . . (12)

is an alternating p-multilinear form. So if α ∈ ΛpV we can define i(ξ)α ∈ Λp−1V by

(i(ξ)α)(M) = α(ξM).

Taking V = T ∗ and ξ = X ∈ V ∗ = (T ∗)∗ = T gives the interior product. Equation
(12) gives us the rule (11) for working out interior products. 2

Here then is the formula for the Lie derivative:

Proposition 6.5 The Lie derivative LXα of a p-form α is given by

LXα = d(i(X)α) + i(X)dα.
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Proof: Consider the right hand side

RX(α) = d(i(X)α) + i(X)dα.

Now i(X) reduces the degree p by 1 but d increases it by 1, so RX maps p-forms to
p-forms. Also,

d(d(i(X)α) + i(X)dα) = di(X)dα = (di(X) + i(X)d)dα

because d2 = 0, so RX commutes with d. Finally, because

i(X)(α ∧ β) = i(X)α ∧ β + (−1)pα ∧ i(X)β

d(α ∧ β) = dα ∧ β + (−1)pα ∧ dβ

we have
RX(α ∧ β) = (RXα) ∧ β + α ∧RX(β).

On the other hand
ϕ∗t (dα) = d(ϕ∗tα)

so differentiating at t = 0, we get

LXdα = d(LXα)

and
ϕ∗t (α ∧ β) = ϕ∗tα ∧ ϕ∗tβ

and differentiating this, we have

LX(α ∧ β) = LXα ∧ β + α ∧ LXβ.

Thus both LX and RX preserve degree, commute with d and satisfy the same Leibnitz
identity. Hence, if we write a p-form as

α =
∑

i1<i2<...<ip

ai1i2...ip(x)dxi1 ∧ dxi2 ∧ . . . ∧ dxip

LX and RX will agree so long as they agree on functions. But

RXf = i(X)df = X(f) =
∂

∂t
f(ϕt)

∣∣∣∣
t=0

= LXf

so they do agree. 2
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6.6 de Rham cohomology

In textbooks on vector calculus, you may read not only that curl grad f = 0, but also
that if a vector field a satisfies curl a = 0, then it can be written as a = grad f for
some function f . Sometimes the statement is given with the proviso that the open
set of R3 on which a is defined satisfies the topological condition that it is simply
connected (any closed path can be contracted to a point).

In the language of differential forms on a manifold, the analogue of the above state-
ment would say that if a 1-form α satisfies dα = 0, and M is simply-connected, there
is a function f such that df = α.

While this is true, the criterion of simply connectedness is far too strong. We want
to know when the kernel of

d : Ω1(M) → Ω2(M)

is equal to the image of
d : Ω0(M) → Ω1(M).

Since d2f = 0, the second vector space is contained in the first and what we shall do
is simply to study the quotient, which becomes a topological object in its own right,
with an algebraic structure which can be used to say many things about the global
topology of a manifold.

Definition 24 The p-th de Rham cohomology group of a manifold M is the quotient
vector space:

Hp(M) =
Ker d : Ωp(M) → Ωp+1(M)

Im d : Ωp−1(M) → Ωp(M)

Remark:

1. Although we call it the cohomology group, it is simply a real vector space. There
are analogous structures in algebraic topology where the additive group structure is
more interesting.

2. Since there are no forms of degree −1, the group H0(M) is the space of functions
f such that df = 0. Now each connected component Mi of M is an open set of M
and hence a manifold. The mean value theorem tells us that on any open ball in a
coordinate neighbourhood of Mi, df = 0 implies that f is equal to a constant c, and
the subset of Mi on which f = c is open and closed and hence equal to Mi.

Thus if M is connected, the de Rham cohomology group H0(M) is naturally isomor-
phic to R: the constant value c of the function f . In general H0(M) is the vector
space of real valued functions on the set of components. Our assumption that M
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has a countable basis of open sets means that there are at most countably many
components. When M is compact, there are only finitely many, since components
provide an open covering. The cohomology groups for all p of a compact manifold
are finite-dimensional vector spaces, though we shall not prove that here.

It is convenient in discussing the exterior derivative to introduce the following termi-
nology:

Definition 25 A form α ∈ Ωp(M) is closed if dα = 0.

Definition 26 A form α ∈ Ωp(M) is exact if α = dβ for some β ∈ Ωp−1(M).

The de Rham cohomology group Hp(M) is by definition the quotient of the space of
closed p-forms by the subspace of exact p-forms. Under the quotient map, a closed
p-form α defines a cohomology class [α] ∈ Hp(M), and [α′] = [α] if and only if
α′ − α = dβ for some β.

Here are some basic features of the de Rham cohomology groups:

Proposition 6.6 The de Rham cohomology groups of a manifold M of dimension n
have the following properties:

• Hp(M) = 0 if p > n

• for a ∈ Hp(M), b ∈ Hq(M) there is a bilinear product ab ∈ Hp+q(M) which
satisfies

ab = (−1)pqba

• if F : M → N is a smooth map, it defines a natural linear map

F ∗ : Hp(N) → Hp(M)

which commutes with the product.

Proof: The first part is clear since ΛpT ∗ = 0 for p > n.

For the product, this comes directly from the exterior product of forms. If a = [α], b =
[β] we define

ab = [α ∧ β]
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but we need to check that this really does define a cohomology class. Firstly, since
α, β are closed,

d(α ∧ β) = dα ∧ β + (−1)pα ∧ dβ = 0

so there is a class defined by α and β. Suppose we now choose a different representative
α′ = α+ dγ for a. Then

α′ ∧ β = (α+ dγ) ∧ β = α ∧ β + d(γ ∧ β)

since dβ = 0, so d(γ ∧ β) = dγ ∧ β. Thus α′ ∧ β and α ∧ β differ by an exact form
and define the same cohomology class. Changing β gives the same result.

The last part is just the pull-back operation on forms. Since

dF ∗α = F ∗dα

F ∗ defines a map of cohomology groups. And since

F ∗(α ∧ β) = F ∗α ∧ F ∗β

it respects the product. 2

Perhaps the most important property of the de Rham cohomology, certainly the
one that links it to algebraic topology, is the deformation invariance of the induced
maps F . We show that if Ft is a smooth family of smooth maps, then the effect on
cohomology is independent of t. As a matter of terminology (because we have only
defined smooth maps of manifolds) we shall say that a map

F : M × [a, b] → N

is smooth if it is the restriction of a smooth map on the product with some slightly
bigger open interval M × (a− ε, b+ ε).

Theorem 6.7 Let F : M × [0, 1] → N be a smooth map. Set Ft(x) = F (x, t) and
consider the induced map on de Rham cohomology F ∗

t : Hp(N) → Hp(M). Then

F ∗
1 = F ∗

0 .

Proof: Represent a ∈ Hp(N) by a closed p-form α and consider the pull-back form
F ∗α on M × [0, 1]. We can decompose this uniquely in the form

F ∗α = β + dt ∧ γ (13)
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where β is a p-form onM (also depending on t) and γ is a (p−1)-form onM , depending
on t. In a coordinate system it is clear how to do this, but more invariantly, the form
β is just F ∗

t α. To get γ in an invariant manner, we can think of

(x, s) 7→ (x, s+ t)

as a local one-parameter group of diffeomorphisms of M × (a, b) which generates a
vector field X = ∂/∂t. Then

γ = i(X)F ∗α.

Now α is closed, so from (13),

0 = dMβ + dt ∧ ∂β

∂t
− dt ∧ dMγ

where dM is the exterior derivative in the variables of M . It follows that

∂

∂t
F ∗

t α =
∂β

∂t
= dMγ

so that, integrating with respect to the parameter t,

F ∗
1α− F ∗

0α =

∫ 1

0

∂

∂t
F ∗

t α dt = d

∫ 1

0

γ dt.

So the closed forms F ∗
1α and F ∗

0α differ by an exact form and

F ∗
1 (a) = F ∗

0 (a).

2

Here is an immediate corollary:

Proposition 6.8 The de Rham cohomology groups of M = Rn are zero for p > 0.

Proof: Define F : Rn × [0, 1] → Rn by

F (x, t) = tx.

Then F1(x) = x which is the identity map, and so

F ∗
1 : Hp(Rn) → Hp(Rn)

is the identity.
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But F0(x) = 0 which is a constant map. In particular the derivative vanishes, so the
pull-back of any p-form of degree greater than zero is the zero map. So for p > 0

F ∗
0 : Hp(Rn) → Hp(Rn)

vanishes.

From Theorem 6.7 F ∗
0 = F ∗

1 and we deduce that Hp(Rn) vanishes for p > 0. Of
course Rn is connected so H0(Rn) ∼= R. 2

Example: Show that the previous proposition holds for a star shaped region in Rn:
an open set U with a point a ∈ U such that for each x ∈ U the straight-line segment
ax ⊂ U . This is usually called the Poincaré lemma.

We are in no position yet to calculate many other de Rham cohomology groups, but
here is one non-trivial example. Consider the case of R/Z, diffeomorphic to the circle.
In the atlas given earlier, we had ϕ1ϕ

−1
0 (x) = x or ϕ1ϕ

−1
0 (x) = x − 1 so the 1-form

dx = d(x− 1) is well-defined, and nowhere zero. It is not the derivative of a function,
however, since R/Z is compact and any function must have a minimum where df = 0.
We deduce that

H1(R/Z) 6= 0.

To get more information we need to study the other aspect of differential forms:
integration.
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