10 APPENDIX: Technical results

10.1 The inverse function theorem

Lemma 10.1 (Contraction mapping principle) Let M be a complete metric space and suppose $T: M \to M$ is a map such that

$$d(Tx, Ty) \le kd(x, y)$$

where k < 1. Then T has a unique fixed point.

Proof: Choose any point x_0 , then

$$d(T^{m}x_{0}, T^{n}x_{0}) \leq k^{m}d(x_{0}, T^{n-m}x_{0}) \quad \text{for} \quad n \geq m$$

$$\leq k^{m}(d(x_{0}, Tx_{0}) + d(Tx_{0}, T^{2}x_{0}) + \ldots + d(T^{n-m-1}x_{0}, T^{n-m}x_{0}))$$

$$\leq k^{m}(1 + k + \ldots + k^{n-m-1})d(x_{0}, Tx_{0})$$

$$\leq \frac{k^{m}}{1 - k}d(x_{0}, Tx_{0})$$

This is a Cauchy sequence, so completeness of M implies that it converges to x. Thus $x = \lim_{n \to \infty} T^n x_0$ and so by continuity of T,

$$Tx = \lim T^{n+1}x_0 = x$$

For uniqueness, if Tx = x and Ty = y, then

$$d(x,y) = d(Tx,Ty) \le kd(x,y)$$

and so k < 1 implies d(x, y) = 0.

Theorem 10.2 (Inverse function theorem) Let $U \subseteq \mathbf{R}^n$ be an open set and $f: U \to \mathbf{R}^n$ a C^{∞} function such that Df_a is invertible at $a \in U$. Then there exist neighbourhoods V, W of a and f(a) respectively such that f(V) = W and f has a C^{∞} inverse on W.

Proof: By an affine transformation $x \mapsto Ax + b$ we can assume that a = 0 and $Df_a = I$. Now consider g(x) = x - f(x). By construction $Dg_0 = 0$ so by continuity there exists r > 0 such that if ||x|| < 2r,

$$||Dg_x|| < \frac{1}{2}$$

It follows from the mean value theorem that

$$||g(x)|| \le \frac{1}{2} ||x||$$

and so g maps the closed ball $\bar{B}(0,r)$ to $\bar{B}(0,r/2)$. Now consider

$$g_y(x) = y + x - f(x)$$

(The choice of g_y is made so that a fixed point $g_y(x) = x$ solves f(x) = y).

If now $||y|| \le r/2$ and $||x|| \le r$, then

$$||g_y(x)|| \le \frac{1}{2}r + ||g(x)|| \le \frac{1}{2}r + \frac{1}{2}r = r$$

so g_y maps the complete metric space $M = \bar{B}(0, r)$ to itself. Moreover

$$||g_y(x_1) - g_y(x_2)|| = ||g(x_1) - g(x_2)|| \le \frac{1}{2}||x_1 - x_2||$$

if $x_1, x_2 \in \bar{B}(0, r)$, and so g_y is a contraction mapping. Applying Lemma 1 we have a unique fixed point and hence an inverse $\varphi = f^{-1}$.

We need to show first that φ is continuous and secondly that it has derivatives of all orders. From the definition of g and the mean value theorem,

$$||x_1 - x_2|| \le ||f(x_1) - f(x_2)|| + ||g(x_1) - g(x_2)||$$

 $\le ||f(x_1) - f(x_2)|| + \frac{1}{2}||x_1 - x_2||$

SO

$$||x_1 - x_2|| \le 2||f(x_1) - f(x_2)||$$

which is *continuity* for φ . It follows also from this inequality that if $y_1 = f(x_1)$ and $y_2 = f(x_2)$ where $y_1, y_2 \in B(0, r/2)$ then $x_1, x_2 \in \bar{B}(0, r)$, and so

$$\|\varphi(y_1) - \varphi(y_2) - (Df_{x_2})^{-1}(y_1 - y_2)\| = \|x_1 - x_2 - (Df_{x_2})^{-1}(f(x_1) - f(x_2))\|$$

$$\leq \|(Df_{x_2})^{-1}\|\|Df_{x_2}(x_1 - x_2) - f(x_1) + f(x_2)\|$$

$$\leq A\|x_1 - x_2\|R$$

where A is a bound on $||(Df_{x_2})^{-1}||$ and the function $||x_1 - x_2||R$ is the remainder term in the definition of differentiability of f. But $||x_1 - x_2|| \le 2||y_1 - y_2||$ so as $y_1 \to y_2$, $x_1 \to x_2$ and hence $R \to 0$, so φ is differentiable and moreover its derivative is $(Df)^{-1}$.

Now we know the derivative of φ :

$$D\varphi = (Df)^{-1}$$

so we see that it is continuous and has as many derivatives as f itself, so φ is C^{∞} . \square

10.2 Existence of solutions of ordinary differential equations

Lemma 10.3 Let M be a complete metric space and $T: M \to M$ a map. If T^n is a contraction mapping, then T has a unique fixed point.

Proof: By the contraction mapping principle, T^n has a unique fixed point x. We also have

$$T^n(Tx) = T^{n+1}x = T(T^nx) = Tx$$

so Tx is also a fixed point of T^n . By uniqueness Tx = x.

Theorem 10.4 Let f(t,x) be a continuous function on $|t-t_0| \le a$, $||x-x_0|| \le b$ and suppose f satisfies a Lipschitz condition

$$||f(t,x_1) - f(t,x_2)|| \le ||x_1 - x_2||.$$

If $M = \sup |f(t,x)|$ and $h = \min(a,b/M)$, then the differential equation

$$\frac{dx}{dt} = f(t, x), \qquad x(t_0) = x_0$$

has a unique solution for $|t - t_0| \le h$.

Proof: Let

$$(Tx)(t) = x_0 + \int_{t_0}^t f(s, x(s))ds$$

Then Tx is differentiable since f and x are continuous and if Tx = x, x satisfies the differential equation (differentiate the definition). We use the metric space

$$X = \{x \in C([t_0 - h, t_0 + h], \mathbf{R}^n) : ||x(t) - x_0|| \le Mh\}$$

with the uniform metric

$$d(x_1, x_2) = \sup_{|t - t_0| \le h} ||x_1(t) - x_2(t)||$$

which makes it complete. If $x \in M$, then $Tx \in M$ and we claim

$$|T^k x_1(t) - T^k x_2(t)| \le \frac{c^k}{k!} |t - t_0|^k d(x_1, x_2)$$

For k=0 this is clear, and in general we use induction to establish:

$$||T^{k}x_{1}(t) - T^{k}x_{2}(t)|| \leq \int_{t_{0}}^{t} ||f(s, T^{k-1}x_{1}(s) - f(s, T^{k-1}x_{2}(s))||ds$$

$$\leq c \int_{t_{0}}^{t} ||T^{k-1}x_{1}(s) - T^{k-1}x_{2}(s)||ds$$

$$\leq (c^{k}/(k-1)!) \int_{t_{0}}^{t} |s - t_{0}|^{k-1}ds \ d(x_{1}, x_{2})$$

$$\leq (c^{k}/k!)|t - t_{0}|^{k}d(x_{1}, x_{2})$$

So T^n is a contraction mapping for large enough N, and the result follows.

Theorem 10.5 The solution above depends continuously on the initial data x_0 .

Proof: Take $h_1 \leq h$ and $\delta > 0$ such that $Mh + \delta \leq b$, and let

$$Y = \{ y \in C([t_0 - h_1, t_0 + h_1] \times \bar{B}(x_0, \delta); \mathbf{R}^n : ||y(t, x) - x|| \le Mh, y(t_0, x) = x \}$$

which is a complete metric space as before. Now set

$$(Ty)(t,x) = x + \int_{t_0}^t f(s,y(s,x))ds$$

Since $Mh_1 + \delta \leq b$, T maps Y to Y and just as before T^n is a contraction mapping with a unique fixed point which satisfies

$$\frac{\partial y}{\partial t} = f(t, y), \qquad y(t_0, x) = x$$

Since y is continuous in t and x this is what we need.

If f(t, x) is smooth then we need more work to prove that the solution to the equation is smooth and smoothly dependent on parameters.

10.3 Smooth dependence

Lemma 10.6 Let A(t,x), B(t,x) be continuous matrix-valued functions and take $M \ge \sup_{t,x} \|B\|$. The solutions of the linear differential equations

$$\frac{d\xi(t,x)}{dt} = A(t,x)\xi(t,x), \qquad \xi(t_0,x) = a(x)$$

$$\frac{d\eta(t,x)}{dt} = B(t,x)\eta(t,x), \qquad \eta(t_0,x) = b(x)$$

satisfy

$$\sup_{x} \|\xi(t,x) - \eta(t,x)\| \le C\|A - B\|\frac{e^{M|t-t_0|} - 1}{M} + \|a - b\|e^{M|t-t_0|}$$

where C is a constant depending only on A and a.

Proof: By the existence theorem we know how to find solutions as limits of ξ_n, η_n where

$$\xi_k = a + \int_{t_0}^t A\xi_{k-1} ds$$

$$\eta_k = b + \int_{t_0}^t B\eta_{k-1} ds$$

Let $g_k(t) = \sup_x \|\xi_k(t, x) - \eta_k(t, x)\|$ and $C = \sup_{k, x, t} \|\xi_k\|$. Then

$$g_n(t) \le ||a - b|| + C||A - B|||t - t_0|| + M \int_{t_0}^t g_{n-1}(s)ds$$

Now define f_n by $f_0(t) = ||a - b||$ and then inductively by

$$f_n(t) = ||a - b|| + C||A - B|||t - t_0|| + M \int_{t_0}^t f_{n-1}(s) ds$$

Comparing these two we see that $f_n \geq g_n$. This is a contraction mapping, so that $f_n \to f$ with

$$f(t) = ||a - b|| + C||A - B|||t - t_0|| + M \int_{t_0}^{t} f(s)ds$$

and solving the corresponding differential equation we get

$$f(t) = ||a - b||e^{M|t - t_0|} + C||A - B||\frac{e^{M|t - t_0|} - 1}{M}$$

As $g_n(t) \leq f_n(t)$,

$$\sup_{x} \|\xi_n(t,x) - \eta_n(t,x)\| \le f_n(t)$$

and the theorem follows by letting $n \to \infty$.

Theorem 10.7 If f is C^k and

$$\frac{d}{dt}\alpha(t,x) = f(t,\alpha(t,x)), \qquad \alpha(0,x) = x$$

then α is also C^k .

Proof: The hardest bit is k=1. Assume f is C^1 so that $\partial f/\partial t$ and $\partial f/\partial x_i$ exist and are continuous. We must show that α is C^1 in all variables. If that were true, then the matrix valued function λ where $(\lambda_i = \partial \alpha/\partial x_i)$ would be the solution of the differential equation

$$\frac{d\lambda}{dt} = D_x f(t, \alpha) \lambda \tag{25}$$

so we shall solve this equation by the existence theorem and prove that the solution is the derivative of α . Let F(s) = f(t, a + s(b - a)). Then

$$\frac{dF}{ds} = D_x f(t, a + s(b - a))(b - a)$$

SO

$$f(t,b) - f(t,a) = \int_0^1 D_x f(t, a + s(b-a))(b-a)ds$$

But then

$$\frac{d}{dt}(\alpha(t,x+y) - \alpha(t,x)) = f(t,\alpha(t,x+y)) - f(t,\alpha(t,x))$$

$$= \int_0^1 D_x f(t,\alpha(t,x) + s(\alpha(t,x+y) - \alpha(t,x)))(\alpha(t,x+y) - \alpha(t,x))ds$$

Let $A(t,x) = D_x f(t,\alpha(t,x))$ and $\xi(t,x) = \lambda(t,x)y$ and

$$B_y(t,x) = \int_0^1 D_x f(t,\alpha(t,x) + s(\alpha(t,x+y) - \alpha(t,x))) ds, \quad \eta_y(t,x) = \alpha(t,x+y) - \alpha(t,x)$$

Apply the previous lemma and we get

$$\sup_{|t| \le \epsilon} \|\lambda(t, x)y - (\alpha(t, x + y) - \alpha(x))\| = o(\|y\|)$$

and so $D_x \alpha = \lambda$, which is continuous in (t, x). Since also $d\alpha/dt = f(t, \alpha)$ this means that α is C^1 in all variables.

To continue, suppose inductively that the theorem is true for k-1, and f is C^k . Then $A(t,x) = D_x f(t,\alpha(t,x))$ is C^{k-1} but since

$$\frac{d\lambda}{dt} = A\lambda$$

we have λ is C^{k-1} . Now $D_x \alpha = \lambda$ so the x_i -derivatives of α are C^{k-1} . But also $d\alpha/dt = f(t,\alpha)$ is C^{k-1} too, so α is C^k .

10.4 Partitions of unity on general manifolds

Definition 39 A partition of unity on M is a collection $\{\varphi_i\}_{i\in I}$ of smooth functions such that

- $\varphi_i \geq 0$
- $\{\operatorname{supp} \varphi_i : i \in I\}$ is locally finite
- $\sum_{i} \varphi_i = 1$

Here locally finite means that for each $x \in M$ there is a neighbourhood U which intersects only finitely many supports supp φ_i .

Theorem 10.8 Given any open covering $\{V_{\alpha}\}$ of M there exists a partition of unity $\{\varphi_i\}$ on M such that supp $\varphi_i \subset V_{\alpha(i)}$ for some $\alpha(i)$.

Proof: (by exhaustion – !)

- 1. M is locally compact since each $x \in M$ has a neighbourhood homeomorphic to, say, the open unit ball in \mathbf{R}^n . So take U homeomorphic to a smaller ball, then \bar{U} is compact. Since M is Hausdorff, \bar{U} is closed (compact implies closed in Hausdorff spaces).
- 2. M has a countable basis of open sets $\{U_j\}_{j\in\mathbb{N}}$, so $x\in U_j\subset U$ and $\bar{U}_j\subset \bar{U}$ is compact so M has a countable basis of open sets with \bar{U}_j compact.
- 3. Put $G_1 = U_1$. Then

$$\bar{G}_1 \subset \bigcup_{j=1}^{\infty} U_j$$

so by compactness there is k > 1 such that

$$\bar{G}_1 \subset \bigcup_{j=1}^k U_j = G_2$$

Now take the closure of G_2 and do the same. We get compact sets \bar{G}_j with

$$\bar{G}_j \subset G_{j+1} \qquad M = \bigcup_{j=1}^{\infty} U_j$$

4. By construction we have

$$\bar{G}_j \backslash G_{j-1} \subset G_{j+1} \backslash \bar{G}_{j-2}$$

and the set on the left is compact and the one on the right open. Now take the given open covering $\{V_{\alpha}\}$. The sets $V_{\alpha} \cap (G_{j+1} \setminus \bar{G}_{j-2})$ cover $\bar{G}_{j} \setminus G_{j-1}$. This latter set is compact so take a finite subcovering, and then proceed replacing j with j+1. This process gives a countable locally finite refinement of $\{V_{\alpha}\}$, i.e. each $V_{\alpha} \cap (G_{j+1} \setminus \bar{G}_{j-2})$ is an open subset of V_{α} . It is locally finite because

$$G_{j+1}\backslash \bar{G}_{j-2}\cap G_{j+4}\backslash \bar{G}_{j+1}=\emptyset$$

- 5. For each $x \in M$ let j be the largest natural number such that $x \in M \setminus \bar{G}_j$. Then $x \in V_\alpha \cap (G_{j+2} \setminus \bar{G}_{j-1})$. Take a coordinate system within this open set and a bump function f which is identically 1 in a neighbourhood W_x of x.
- 6. The W_x cover $\bar{G}_{j+1}\backslash G_j$ and so as x ranges over the points of $G_{j+2}\backslash \bar{G}_{j-1}$ we get an open covering and so by compactness can extract a finite subcovering. Do this for each j and we get a countable collection of smooth functions ψ_i such that $\psi_i \geq 0$ and, since the set of supports is locally finite,

$$\psi = \sum \psi_i$$

is well-defined as a smooth function on M. Moreover

$$\operatorname{supp} \psi_i \subset V_\alpha \cap (G_m \backslash \bar{G}_{m-3}) \subset V_\alpha$$

so each support is contained in a V_{α} . Finally define

$$\varphi_i = \frac{\psi_i}{\psi}$$

then this is the required partition of unity.

10.5 Sard's theorem (special case)

Theorem 10.9 Let M and N be differentiable manifolds of the same dimension n and suppose $F: M \to N$ is a smooth map. Then the set of critical values of F has measure zero in N. In particular, every smooth map F has at least one regular value.

Proof: Since a countable union of null sets (=sets of measure zero) is null, and M and N have a countable basis of open sets, it suffices to consider the local case of $F: U \to \mathbf{R}^n$. Moreover since U is a countable union of compact cubes we need only prove that the image of the set of critical points in the compact cube $K = \{x \in \mathbf{R}^n : |x_i| \leq 1\}$ is of measure zero.

Now suppose $a \in K$ is a critical point, so that the image of DF_a is contained in a proper subspace of \mathbf{R}^n , and so is annihilated by a linear form f. Let $H \subset \mathbf{R}^n$ be the hyperplane f(x - F(a)) = 0. Then

$$d(F(x), H) \le ||F(x) - (F(a) + DF_a(x - a))|| \tag{26}$$

On the other hand since F is C^{∞} , from Taylor's theorem we have a constant C such that

$$||F(x) - F(y) - DF_y(x - y)|| \le C||x - y||^2$$

for all $x, y \in K$, since K is compact. Substituting in (26) this yields

$$d(F(x), H) \le C||x - a||^2$$

If $||x - a|| \le \eta$, then $d(F(x), H) \le C\eta^2$. Let $M = \sup\{||DF_x|| : x \in K\}$, then by the mean value theorem

$$||F(x) - F(a)|| \le M||x - a||$$

for $x, a \in K$ and so $d(F(x), F(a)) \leq M\eta$. Thus F(x) lies in the intersection of a slab of thickness $2C\eta^2$ around H and a ball of radius $M\eta$ centred on F(a). Putting the ball in a cube of side $2M\eta$, the volume of this intersection is less than

$$2C\eta^2(2M\eta)^{n-1} = 2^n CM^{n-1}\eta^{n+1}$$

Now subdivide the cube into N^n cubes of side 1/N, and repeat the argument for each cube. Since now $||x-y|| \leq \sqrt{n}/N$, critical points in this cube lie in a volume less than

$$2^{n}CM^{n-1}\left(\frac{\sqrt{n}}{N}\right)^{n+1}$$

Since there are at most N^n such volumes, the total is less than

$$(2^n M^{n-1} C n^{(n+1)/2}) N^{-1}$$

which tends to zero as $N \to \infty$.

Thus the set of critical values is of measure zero.