
10 APPENDIX: Technical results

10.1 The inverse function theorem

Lemma 10.1 (Contraction mapping principle) Let M be a complete metric space
and suppose T : M →M is a map such that

d(Tx, Ty) ≤ kd(x, y)

where k < 1. Then T has a unique fixed point.

Proof: Choose any point x0, then

d(Tmx0, T
nx0) ≤ kmd(x0, T

n−mx0) for n ≥ m

≤ km(d(x0, Tx0) + d(Tx0, T
2x0) + . . .+ d(T n−m−1x0, T

n−mx0))

≤ km(1 + k + . . .+ kn−m−1)d(x0, Tx0)

≤ km

1− k
d(x0, Tx0)

This is a Cauchy sequence, so completeness of M implies that it converges to x. Thus
x = limT nx0 and so by continuity of T ,

Tx = limT n+1x0 = x

For uniqueness, if Tx = x and Ty = y, then

d(x, y) = d(Tx, Ty) ≤ kd(x, y)

and so k < 1 implies d(x, y) = 0. 2

Theorem 10.2 (Inverse function theorem) Let U ⊆ Rn be an open set and f :
U → Rn a C∞ function such that Dfa is invertible at a ∈ U . Then there exist
neighbourhoods V,W of a and f(a) respectively such that f(V ) = W and f has a C∞

inverse on W .

Proof: By an affine transformation x 7→ Ax + b we can assume that a = 0 and
Dfa = I. Now consider g(x) = x − f(x). By construction Dg0 = 0 so by continuity
there exists r > 0 such that if ‖x‖ < 2r,

‖Dgx‖ <
1

2

84



It follows from the mean value theorem that

‖g(x)‖ ≤ 1

2
‖x‖

and so g maps the closed ball B̄(0, r) to B̄(0, r/2). Now consider

gy(x) = y + x− f(x)

(The choice of gy is made so that a fixed point gy(x) = x solves f(x) = y).

If now ‖y‖ ≤ r/2 and ‖x‖ ≤ r, then

‖gy(x)‖ ≤
1

2
r + ‖g(x)‖ ≤ 1

2
r +

1

2
r = r

so gy maps the complete metric space M = B̄(0, r) to itself. Moreover

‖gy(x1)− gy(x2)‖ = ‖g(x1)− g(x2)‖ ≤
1

2
‖x1 − x2‖

if x1, x2 ∈ B̄(0, r), and so gy is a contraction mapping. Applying Lemma 1 we have a
unique fixed point and hence an inverse ϕ = f−1.

We need to show first that ϕ is continuous and secondly that it has derivatives of all
orders. From the definition of g and the mean value theorem,

‖x1 − x2‖ ≤ ‖f(x1)− f(x2)‖+ ‖g(x1)− g(x2)‖

≤ ‖f(x1)− f(x2)‖+
1

2
‖x1 − x2‖

so
‖x1 − x2‖ ≤ 2‖f(x1)− f(x2)‖

which is continuity for ϕ. It follows also from this inequality that if y1 = f(x1) and
y2 = f(x2) where y1, y2 ∈ B(0, r/2) then x1, x2 ∈ B̄(0, r), and so

‖ϕ(y1)− ϕ(y2)− (Dfx2)
−1(y1 − y2)‖ = ‖x1 − x2 − (Dfx2)

−1(f(x1)− f(x2))‖
≤ ‖(Dfx2)

−1‖‖Dfx2(x1 − x2)− f(x1) + f(x2)‖
≤ A‖x1 − x2‖R

where A is a bound on ‖(Dfx2)
−1‖ and the function ‖x1 − x2‖R is the remainder

term in the definition of differentiability of f . But ‖x1 − x2‖ ≤ 2‖y1 − y2‖ so as
y1 → y2, x1 → x2 and hence R→ 0, so ϕ is differentiable and moreover its derivative
is (Df)−1.

Now we know the derivative of ϕ:

Dϕ = (Df)−1

so we see that it is continuous and has as many derivatives as f itself, so ϕ is C∞. 2
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10.2 Existence of solutions of ordinary differential equations

Lemma 10.3 Let M be a complete metric space and T : M → M a map. If T n is
a contraction mapping, then T has a unique fixed point.

Proof: By the contraction mapping principle, T n has a unique fixed point x. We
also have

T n(Tx) = T n+1x = T (T nx) = Tx

so Tx is also a fixed point of T n. By uniqueness Tx = x. 2

Theorem 10.4 Let f(t, x) be a continuous function on |t− t0| ≤ a, ‖x−x0‖ ≤ b and
suppose f satisfies a Lipschitz condition

‖f(t, x1)− f(t, x2)‖ ≤ ‖x1 − x2‖.

If M = sup |f(t, x)| and h = min(a, b/M), then the differential equation

dx

dt
= f(t, x), x(t0) = x0

has a unique solution for |t− t0| ≤ h.

Proof: Let

(Tx)(t) = x0 +

∫ t

t0

f(s, x(s))ds

Then Tx is differentiable since f and x are continuous and if Tx = x, x satisfies the
differential equation (differentiate the definition). We use the metric space

X = {x ∈ C([t0 − h, t0 + h],Rn) : ‖x(t)− x0‖ ≤Mh}

with the uniform metric

d(x1, x2) = sup
|t−t0|≤h

‖x1(t)− x2(t)‖

which makes it complete. If x ∈M , then Tx ∈M and we claim

|T kx1(t)− T kx2(t)‖ ≤
ck

k!
|t− t0|kd(x1, x2)
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For k = 0 this is clear, and in general we use induction to establish:

‖T kx1(t)− T kx2(t)‖ ≤
∫ t

t0

‖f(s, T k−1x1(s)− f(s, T k−1x2(s)‖ds

≤ c

∫ t

t0

‖T k−1x1(s)− T k−1x2(s)‖ds

≤ (ck/(k − 1)!)

∫ t

t0

|s− t0|k−1ds d(x1, x2)

≤ (ck/k!)|t− t0|kd(x1, x2)

So T n is a contraction mapping for large enough N , and the result follows. 2

Theorem 10.5 The solution above depends continuously on the initial data x0.

Proof: Take h1 ≤ h and δ > 0 such that Mh+ δ ≤ b, and let

Y = {y ∈ C([t0 − h1, t0 + h1]× B̄(x0, δ);R
n : ‖y(t, x)− x‖ ≤Mh, y(t0, x) = x}

which is a complete metric space as before. Now set

(Ty)(t, x) = x+

∫ t

t0

f(s, y(s, x))ds

Since Mh1 + δ ≤ b, T maps Y to Y and just as before T n is a contraction mapping
with a unique fixed point which satisfies

∂y

∂t
= f(t, y), y(t0, x) = x

Since y is continuous in t and x this is what we need. 2

If f(t, x) is smooth then we need more work to prove that the solution to the equation
is smooth and smoothly dependent on parameters.

10.3 Smooth dependence

Lemma 10.6 Let A(t, x), B(t, x) be continuous matrix-valued functions and take
M ≥ supt,x ‖B‖. The solutions of the linear differential equations

dξ(t, x)

dt
= A(t, x)ξ(t, x), ξ(t0, x) = a(x)

dη(t, x)

dt
= B(t, x)η(t, x), η(t0, x) = b(x)
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satisfy

sup
x
‖ξ(t, x)− η(t, x)‖ ≤ C‖A−B‖e

M |t−t0| − 1

M
+ ‖a− b‖eM |t−t0|

where C is a constant depending only on A and a.

Proof: By the existence theorem we know how to find solutions as limits of ξn, ηn

where

ξk = a+

∫ t

t0

Aξk−1ds

ηk = b+

∫ t

t0

Bηk−1ds

Let gk(t) = supx ‖ξk(t, x)− ηk(t, x)‖ and C = supk,x,t ‖ξk‖. Then

gn(t) ≤ ‖a− b‖+ C‖A−B‖|t− t0|+M

∫ t

t0

gn−1(s)ds

Now define fn by f0(t) = ‖a− b‖ and then inductively by

fn(t) = ‖a− b‖+ C‖A−B‖|t− t0|+M

∫ t

t0

fn−1(s)ds

Comparing these two we see that fn ≥ gn. This is a contraction mapping, so that
fn → f with

f(t) = ‖a− b‖+ C‖A−B‖|t− t0|+M

∫ t

t0

f(s)ds

and solving the corresponding differential equation we get

f(t) = ‖a− b‖eM |t−t0| + C‖A−B‖e
M |t−t0| − 1

M

As gn(t) ≤ fn(t),
sup

x
‖ξn(t, x)− ηn(t, x)‖ ≤ fn(t)

and the theorem follows by letting n→∞. 2

Theorem 10.7 If f is Ck and

d

dt
α(t, x) = f(t, α(t, x)), α(0, x) = x

then α is also Ck.
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Proof: The hardest bit is k = 1. Assume f is C1 so that ∂f/∂t and ∂f/∂xi exist
and are continuous. We must show that α is C1 in all variables. If that were true,
then the matrix valued function λ where (λi = ∂α/∂xi) would be the solution of the
differential equation

dλ

dt
= Dxf(t, α)λ (25)

so we shall solve this equation by the existence theorem and prove that the solution
is the derivative of α. Let F (s) = f(t, a+ s(b− a)). Then

dF

ds
= Dxf(t, a+ s(b− a))(b− a)

so

f(t, b)− f(t, a) =

∫ 1

0

Dxf(t, a+ s(b− a))(b− a)ds

But then

d

dt
(α(t, x+ y)− α(t, x)) = f(t, α(t, x+ y))− f(t, α(t, x))

=

∫ 1

0

Dxf(t, α(t, x) + s(α(t, x+ y)− α(t, x)))(α(t, x+ y)− α(t, x))ds

Let A(t, x) = Dxf(t, α(t, x)) and ξ(t, x) = λ(t, x)y and

By(t, x) =

∫ 1

0

Dxf(t, α(t, x)+s(α(t, x+y)−α(t, x)))ds, ηy(t, x) = α(t, x+y)−α(t, x)

Apply the previous lemma and we get

sup
|t|≤ε

‖λ(t, x)y − (α(t, x+ y)− α(x))‖ = o(‖y|)

and so Dxα = λ, which is continuous in (t, x). Since also dα/dt = f(t, α) this means
that α is C1 in all variables.

To continue, suppose inductively that the theorem is true for k − 1, and f is Ck.
Then A(t, x) = Dxf(t, α(t, x)) is Ck−1 but since

dλ

dt
= Aλ

we have λ is Ck−1. Now Dxα = λ so the xi-derivatives of α are Ck−1. But also
dα/dt = f(t, α) is Ck−1 too, so α is Ck. 2
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10.4 Partitions of unity on general manifolds

Definition 39 A partition of unity on M is a collection {ϕi}i∈I of smooth functions
such that

• ϕi ≥ 0

• {suppϕi : i ∈ I} is locally finite

•
∑

i ϕi = 1

Here locally finite means that for each x ∈ M there is a neighbourhood U which
intersects only finitely many supports suppϕi.

Theorem 10.8 Given any open covering {Vα} of M there exists a partition of unity
{ϕi} on M such that suppϕi ⊂ Vα(i) for some α(i).

Proof: (by exhaustion – !)

1. M is locally compact since each x ∈ M has a neighbourhood homeomorphic to,
say, the open unit ball in Rn. So take U homeomorphic to a smaller ball, then Ū
is compact. Since M is Hausdorff, Ū is closed (compact implies closed in Hausdorff
spaces).

2. M has a countable basis of open sets {Uj}j∈N, so x ∈ Uj ⊂ U and Ūj ⊂ Ū is
compact so M has a countable basis of open sets with Ūj compact.

3. Put G1 = U1. Then

Ḡ1 ⊂
∞⋃

j=1

Uj

so by compactness there is k > 1 such that

Ḡ1 ⊂
k⋃

j=1

Uj = G2

Now take the closure of G2 and do the same. We get compact sets Ḡj with

Ḡj ⊂ Gj+1 M =
∞⋃

j=1

Uj
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4. By construction we have

Ḡj\Gj−1 ⊂ Gj+1\Ḡj−2

and the set on the left is compact and the one on the right open. Now take the given
open covering {Vα}. The sets Vα ∩ (Gj+1\Ḡj−2) cover Ḡj\Gj−1. This latter set is
compact so take a finite subcovering, and then proceed replacing j with j + 1. This
process gives a countable locally finite refinement of {Vα}, i.e. each Vα∩ (Gj+1\Ḡj−2)
is an open subset of Vα. It is locally finite because

Gj+1\Ḡj−2 ∩Gj+4\Ḡj+1 = ∅

5. For each x ∈ M let j be the largest natural number such that x ∈ M\Ḡj. Then
x ∈ Vα ∩ (Gj+2\Ḡj−1). Take a coordinate system within this open set and a bump
function f which is identically 1 in a neighbourhood Wx of x.

6. The Wx cover Ḡj+1\Gj and so as x ranges over the points of Gj+2\Ḡj−1 we get
an open covering and so by compactness can extract a finite subcovering. Do this
for each j and we get a countable collection of smooth functions ψi such that ψi ≥ 0
and, since the set of supports is locally finite,

ψ =
∑

ψi

is well-defined as a smooth function on M . Moreover

suppψi ⊂ Vα ∩ (Gm\Ḡm−3) ⊂ Vα

so each support is contained in a Vα. Finally define

ϕi =
ψi

ψ

then this is the required partition of unity. 2

10.5 Sard’s theorem (special case)

Theorem 10.9 Let M and N be differentiable manifolds of the same dimension n
and suppose F : M → N is a smooth map. Then the set of critical values of F has
measure zero in N . In particular, every smooth map F has at least one regular value.
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Proof: Since a countable union of null sets (=sets of measure zero) is null, and M
and N have a countable basis of open sets, it suffices to consider the local case of
F : U → Rn. Moreover since U is a countable union of compact cubes we need only
prove that the image of the set of critical points in the compact cube K = {x ∈ Rn :
|xi| ≤ 1} is of measure zero.

Now suppose a ∈ K is a critical point, so that the image of DFa is contained in a
proper subspace of Rn, and so is annihilated by a linear form f . Let H ⊂ Rn be the
hyperplane f(x− F (a)) = 0. Then

d(F (x), H) ≤ ‖F (x)− (F (a) +DFa(x− a))‖ (26)

On the other hand since F is C∞, from Taylor’s theorem we have a constant C such
that

‖F (x)− F (y)−DFy(x− y)‖ ≤ C‖x− y‖2

for all x, y ∈ K, since K is compact. Substituting in (26) this yields

d(F (x), H) ≤ C‖x− a‖2

If ‖x− a‖ ≤ η, then d(F (x), H) ≤ Cη2. Let M = sup{‖DFx‖ : x ∈ K}, then by the
mean value theorem

‖F (x)− F (a)‖ ≤M‖x− a‖
for x, a ∈ K and so d(F (x), F (a)) ≤Mη. Thus F (x) lies in the intersection of a slab
of thickness 2Cη2 around H and a ball of radius Mη centred on F (a). Putting the
ball in a cube of side 2Mη, the volume of this intersection is less than

2Cη2(2Mη)n−1 = 2nCMn−1ηn+1

Now subdivide the cube into Nn cubes of side 1/N , and repeat the argument for each
cube. Since now ‖x − y‖ ≤

√
n/N , critical points in this cube lie in a volume less

than

2nCMn−1

(√
n

N

)n+1

Since there are at most Nn such volumes, the total is less than(
2nMn−1Cn(n+1)/2

)
N−1

which tends to zero as N →∞.

Thus the set of critical values is of measure zero. 2
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