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1 Introduction

This is an introductory course on differentiable manifolds. These are higher dimen-
sional analogues of surfaces like this:

This is the image to have, but we shouldn’t think of a manifold as always sitting
inside a fixed Euclidean space like this one, but rather as an abstract object. One of
the historical driving forces of the theory was General Relativity, where the manifold
is four-dimensional spacetime, wormholes and all:

Spacetime is not part of a bigger Euclidean space, it just exists, but we need to learn
how to do analysis on it, which is what this course is about.

Another input to the subject is from mechanics – the dynamics of complicated me-
chanical systems involve spaces with many degrees of freedom. Just think of the
different configurations that an Anglepoise lamp can be put into:
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How many degrees of freedom are there? How do we describe the dynamics of this if
we hit it?

The first idea we shall meet is really the defining property of a manifold – to be able
to describe points locally by n real numbers, local coordinates. Then we shall need
to define analytical objects (vector fields, differential forms for example) which are
independent of the choice of coordinates. This has a double advantage: on the one
hand it enables us to discuss these objects on topologically non-trivial manifolds like
spheres, and on the other it also provides the language for expressing the equations
of mathematical physics in a coordinate-free form, one of the fundamental principles
of relativity.

The most basic example of analytical techniques on a manifold is the theory of dif-
ferential forms and the exterior derivative. This generalizes the grad, div and curl of
ordinary three-dimensional calculus. A large part of the course will be occupied with
this. It provides a very natural generalization of the theorems of Green and Stokes
in three dimensions and also gives rise to de Rham cohomology which is an analytical
way of approaching the algebraic topology of the manifold. This has been important
in an enormous range of areas from algebraic geometry to theoretical physics.

More refined use of analysis requires extra data on the manifold and we shall simply
define and describe some basic features of Riemannian metrics. These generalize
the first fundamental form of a surface and, in their Lorentzian guise, provide the
substance of general relativity. A more complete story demands a much longer course,
but here we shall consider just two aspects which draw on the theory of differential
forms: the study of geodesics via a vector field, the geodesic flow, on the cotangent
bundle, and some basic properties of harmonic forms.

Certain standard technical results which we shall require are proved in the Appendix
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so as not to interrupt the development of the theory.

A good book to accompany the course is: An Introduction to Differential Manifolds
by Dennis Barden and Charles Thomas (Imperial College Press £19 (paperback)).

2 Manifolds

2.1 Coordinate charts

The concept of a manifold is a bit complicated, but it starts with defining the notion
of a coordinate chart.

Definition 1 A coordinate chart on a set X is a subset U ⊆ X together with a
bijection

ϕ : U → ϕ(U) ⊆ Rn

onto an open set ϕ(U) in Rn.

Thus we can parametrize points of U by n coordinates ϕ(x) = (x1, . . . , xn).

We now want to consider the situation where X is covered by such charts and satisfies
some consistency conditions. We have

Definition 2 An n-dimensional atlas on X is a collection of coordinate charts {Uα, ϕα}α∈I

such that

• X is covered by the {Uα}α∈I

• for each α, β ∈ I, ϕα(Uα ∩ Uβ) is open in Rn

• the map
ϕβϕ

−1
α : ϕα(Uα ∩ Uβ) → ϕβ(Uα ∩ Uβ)

is C∞ with C∞ inverse.

Recall that F (x1, . . . , xn) ∈ Rn is C∞ if it has derivatives of all orders. We shall also
say that F is smooth in this case. It is perfectly possible to develop the theory of
manifolds with less differentiability than this, but this is the normal procedure.
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Examples:

1. Let X = Rn and take U = X with ϕ = id. We could also take X to be any open
set in Rn.

2. Let X be the set of straight lines in the plane:

Each such line has an equation Ax + By + C = 0 where if we multiply A,B,C by a
non-zero real number we get the same line. Let U0 be the set of non-vertical lines.
For each line ` ∈ U0 we have the equation

y = mx+ c

where m, c are uniquely determined. So ϕ0(`) = (m, c) defines a coordinate chart
ϕ0 : U0 → R2. Similarly if U1 consists of the non-horizontal lines with equation

x = m̃y + c̃

we have another chart ϕ1 : U1 → R2.

Now U0 ∩ U1 is the set of lines y = mx+ c which are not horizontal, so m 6= 0. Thus

ϕ0(U0 ∩ U1) = {(m, c) ∈ R2 : m 6= 0}

which is open. Moreover, y = mx+ c implies x = m−1y − cm−1 and so

ϕ1ϕ
−1
0 (m, c) = (m−1,−cm−1)

which is smooth with smooth inverse. Thus we have an atlas on the space of lines.

3. Consider R as an additive group, and the subgroup of integers Z ⊂ R. Let X be
the quotient group R/Z and p : R → R/Z the quotient homomorphism.

Set U0 = p(0, 1) and U1 = p(−1/2, 1/2). Since any two elements in the subset p−1(a)
differ by an integer, p restricted to (0, 1) or (−1/2, 1/2) is injective and so we have
coordinate charts

ϕ0 = p−1 : U0 → (0, 1), ϕ1 = p−1 : U1 → (−1/2, 1/2).
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Clearly U0 and U1 cover R/Z since the integer 0 ∈ U1.

We check:

ϕ0(U0 ∩ U1) = (0, 1/2) ∪ (1/2, 1), ϕ1(U0 ∩ U1) = (−1/2, 0) ∪ (0, 1/2)

which are open sets. Finally, if x ∈ (0, 1/2), ϕ1ϕ
−1
0 (x) = x and if x ∈ (1/2, 1),

ϕ1ϕ
−1
0 (x) = x− 1. These maps are certainly smooth with smooth inverse so we have

an atlas on X = R/Z.

4. Let X be the extended complex plane X = C ∪ {∞}. Let U0 = C with ϕ0(z) =
z ∈ C ∼= R2. Now take

U1 = C\{0} ∪ {∞}

and define ϕ1(z̃) = z̃−1 ∈ C if z̃ 6= ∞ and ϕ1(∞) = 0. Then

ϕ0(U0 ∩ U1) = C\{0}

which is open, and

ϕ1ϕ
−1
0 (z) = z−1 =

x

x2 + y2
− i

y

x2 + y2
.

This is a smooth and invertible function of (x, y). We now have a 2-dimensional atlas
for X, the extended complex plane.

5. Let X be n-dimensional real projective space, the set of 1-dimensional vector
subspaces of Rn+1. Each subspace is spanned by a non-zero vector v, and we define
Ui ⊂ RPn to be the subset for which the i-th component of v ∈ Rn+1 is non-zero.
Clearly X is covered by U1, . . . , Un+1. In Ui we can uniquely choose v such that the
ith component is 1, and then Ui is in one-to-one correspondence with the hyperplane
xi = 1 in Rn+1, which is a copy of Rn. This is therefore a coordinate chart

ϕi : Ui → Rn.

The set ϕi(Ui∩Uj) is the subset for which xj 6= 0 and is therefore open. Furthermore

ϕiϕ
−1
j : {x ∈ Rn+1 : xj = 1, xi 6= 0} → {x ∈ Rn+1 : xi = 1, xj 6= 0}

is

v 7→ 1

xi

v

which is smooth with smooth inverse. We therefore have an atlas for RPn.
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2.2 The definition of a manifold

All the examples above are actually manifolds, and the existence of an atlas is suf-
ficient to establish that, but there is a minor subtlety in the actual definition of a
manifold due to the fact that there are lots of choices of atlases. If we had used a
different basis for R2, our charts on the space X of straight lines would be different,
but we would like to think of X as an object independent of the choice of atlas. That’s
why we make the following definitions:

Definition 3 Two atlases {(Uα, ϕα)}, {(Vi, ψi)} are compatible if their union is an
atlas.

What this definition means is that all the extra maps ψiϕ
−1
α must be smooth. Com-

patibility is clearly an equivalence relation, and we then say that:

Definition 4 A differentiable structure on X is an equivalence class of atlases.

Finally we come to the definition of a manifold:

Definition 5 An n-dimensional differentiable manifold is a space X with a differen-
tiable structure.

The upshot is this: to prove something is a manifold, all you need is to find one atlas.
The definition of a manifold takes into account the existence of many more atlases.

Many books give a slightly different definition – they start with a topological space,
and insist that the coordinate charts are homeomorphisms. This is fine if you see the
world as a hierarchy of more and more sophisticated structures but it suggests that
in order to prove something is a manifold you first have to define a topology. As we’ll
see now, the atlas does that for us.

First recall what a topological space is: a set X with a distinguished collection of
subsets V called open sets such that

1. ∅ and X are open

2. an arbitrary union of open sets is open

3. a finite intersection of open sets is open
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Now suppose M is a manifold. We shall say that a subset V ⊆M is open if, for each
α, ϕα(V ∩Uα) is an open set in Rn. One thing which is immediate is that V = Uβ is
open, from Definition 2.

We need to check that this gives a topology. Condition 1 holds because ϕα(∅) = ∅
and ϕα(M ∩ Uα) = ϕα(Uα) which is open by Definition 1. For the other two, if Vi is
a collection of open sets then because ϕα is bijective

ϕα((∪Vi) ∩ Uα) = ∪ϕα(Vi ∩ Uα)

ϕα((∩Vi) ∩ Uα) = ∩ϕα(Vi ∩ Uα)

and then the right hand side is a union or intersection of open sets. Slightly less
obvious is the following:

Proposition 2.1 With the topology above ϕα : Uα → ϕα(Uα) is a homeomorphism.

Proof: If V ⊆ Uα is open then ϕα(V ) = ϕα(V ∩Uα) is open by the definition of the
topology, so ϕ−1

α is certainly continuous.

Now let W ⊂ ϕα(Uα) be open, then ϕ−1
α (W ) ⊆ Uα and Uα is open in M so we need

to prove that ϕ−1
α (W ) is open in M . But

ϕβ(ϕ−1
α (W ) ∩ Uβ) = ϕβϕ

−1
α (W ∩ ϕα(Uα ∩ Uβ)) (1)

From Definition 2 the set ϕα(Uα ∩ Uβ) is open and hence its intersection with the
open set W is open. Now ϕβϕ

−1
α is C∞ with C∞ inverse and so certainly a homeo-

morphism, and it follows that the right hand side of (1) is open. Thus the left hand
side ϕβ(ϕ−1

α W ∩ Uβ) is open and by the definition of the topology this means that
ϕ−1

α (W ) is open, i.e. ϕα is continuous. 2

To make any reasonable further progress, we have to make two assumptions about
this topology which will hold for the rest of these notes:

• the manifold topology is Hausdorff

• in this topology we have a countable basis of open sets

Without these assumptions, manifolds are not even metric spaces, and there is not
much analysis that can reasonably be done on them.
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2.3 Further examples of manifolds

We need better ways of recognizing manifolds than struggling to find explicit coordi-
nate charts. For example, the sphere is a manifold

and although we can use stereographic projection to get an atlas:

there are other ways. Here is one.

Theorem 2.2 Let F : U → Rm be a C∞ function on an open set U ⊆ Rn+m and
take c ∈ Rm. Assume that for each a ∈ F−1(c), the derivative

DFa : Rn+m → Rm

is surjective. Then F−1(c) has the structure of an n-dimensional manifold which is
Hausdorff and has a countable basis of open sets.

Proof: Recall that the derivative of F at a is the linear map DFa : Rn+m → Rm

such that
F (a+ h) = F (a) +DFa(h) +R(a, h)
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where R(a, h)/‖h‖ → 0 as h→ 0.

If we write F (x1, . . . , xn+m) = (F1, . . . , Fm) the derivative is the Jacobian matrix

∂Fi

∂xj

(a) 1 ≤ i ≤ m, 1 ≤ j ≤ n+m

Now we are given that this is surjective, so the matrix has rank m. Therefore by
reordering the coordinates x1, . . . , xn+m we may assume that the square matrix

∂Fi

∂xj

(a) 1 ≤ i ≤ m, 1 ≤ j ≤ m

is invertible.

Now define
G : U ×Rm → Rn+m

by
G(x1, . . . , xn+m) = (F1, . . . , Fm, xm+1, . . . , xn+m). (2)

Then DGa is invertible.

We now apply the inverse function theorem to G, a proof of which is given in the
Appendix. It tells us that there is a neighbourhood V of x, and W of G(x) such
that G : V → W is invertible with smooth inverse. Moreover, the formula (2) shows
that G maps V ∩ F−1(c) to the intersection of W with the copy of Rn given by
{x ∈ Rn+m : xi = ci, 1 ≤ i ≤ m}. This is therefore a coordinate chart ϕ.

If we take two such charts ϕα, ϕβ, then ϕαϕ
−1
β is a map from an open set in {x ∈

Rn+m : xi = c1, 1 ≤ i ≤ m} to another one which is the restriction of the map GαG
−1
β

of (an open set in) Rn+m to itself. But this is an invertible C∞ map and so we have
the requisite conditions for an atlas.

Finally, in the induced topology from Rn+m, Gα is a homeomorphism, so open sets
in the manifold topology are the same as open sets in the induced topology. Since
Rn+m is Hausdorff with a countable basis of open sets, so is F−1(c). 2

We can now give further examples of manifolds:

Examples: 1. Let

Sn = {x ∈ Rn+1 :
n+1∑

1

x2
i = 1}
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be the unit n-sphere. Define F : Rn+1 → R by

F (x) =
n+1∑

1

x2
i .

This is a C∞ map and

DFa(h) = 2
∑

i

aihi

is non-zero (and hence surjective in the 1-dimensional case) so long as a is not iden-
tically zero. If F (a) = 1, then

n+1∑
1

a2
i = 1 6= 0

so a 6= 0 and we can apply Theorem 2.2 and deduce that the sphere is a manifold.

2. Let O(n) be the space of n × n orthogonal matrices: AAT = 1. Take the vector
space Mn of dimension n2 of all real n× n matrices and define the function

F (A) = AAT

to the vector space of symmetric n × n matrices. This has dimension n(n + 1)/2.
Then O(n) = F−1(I).

Differentiating F we have

DFA(H) = HAT + AHT

and putting H = KA this is

KAAT + AATKT = K +KT

if AAT = I, i.e. if A ∈ F−1(I). But given any symmetric matrix S, taking K = S/2
shows that DFI is surjective and so, applying Theorem 2.2 we find that O(n) is a
manifold. Its dimension is

n2 − n(n+ 1)/2 = n(n− 1)/2.

2.4 Maps between manifolds

We need to know what a smooth map between manifolds is. Here is the definition:
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Definition 6 A map F : M → N of manifolds is a smooth map if for each point
x ∈M and chart (Uα, ϕα) in M with x ∈ Uα and chart (Vi, ψi) of N with F (x) ∈ Vi,
the composite function

ψiFϕ
−1
α

on F−1(Vi) ∩ Uα is a C∞ function.

Note that it is enough to check that the above holds for one atlas – it will follow from
the fact that ϕαϕ

−1
β is C∞ that it then holds for all compatible atlases.

Exercise 2.3 Show that a smooth map is continuous in the manifold topology.

The natural notion of equivalence between manifolds is the following:

Definition 7 A diffeomorphism F : M → N is a smooth map with smooth inverse.

Example: Take two of our examples above – the quotient group R/Z and the
1-sphere, the circle, S1. We shall show that these are diffeomorphic. First we define
a map

G : R/Z → S1

by
G(x) = (cos 2πx, sin 2πx).

This is clearly a bijection. Take x ∈ U0 ⊂ R/Z then we can represent the point by
x ∈ (0, 1). Within the range (0, 1/2), sin 2πx 6= 0, so with F = x2

1 + x2
2, we have

∂F/∂x2 6= 0. The use of the inverse function theorem in Theorem 2.2 then says that
x1 is a local coordinate for S1, and in fact on the whole of (0, 1/2) cos 2πx is smooth
with smooth inverse. We proceed by taking the other similar open sets to check fully.

3 Tangent vectors and cotangent vectors

3.1 Existence of smooth functions

The most fundamental type of map between manifolds is a smooth map

f : M → R.

We can add these and multiply by constants so they form a vector space C∞(M), the
space of C∞ functions on M . In fact, under multiplication it is also a commutative
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ring. So far, all we can assert is that the constant functions lie in this space, so let’s
see why there are lots and lots of global C∞ functions. We shall use bump functions
and the Hausdorff property.

First note that the following function of one variable is C∞:

f(t) = e−1/t t > 0

= 0 t ≤ 0

Now form

g(t) =
f(t)

f(t) + f(1− t)

so that g is identically 1 when t ≥ 1 and vanishes if t ≤ 0. Next write

h(t) = g(t+ 2)g(2− t).

This function is completely flat on top.

Finally make an n-dimensional version

k(x1, . . . , xn) = h(x1)h(x2) . . . h(xn).

We can rescale the domain of this so that it is zero outside some small ball of radius
2r and identically 1 inside the ball of radius r.

We shall use this construction several times later on. For the moment, let M be
any manifold and (U,ϕU) a coordinate chart. Choose a function k of the type above
whose support (remember supp f = {x : f(x) 6= 0}) lies in ϕU(U) and define

f : M → R

by

f(x) = k ◦ ϕU(x) x ∈ U
= 0 x ∈M\U.
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Is this a smooth function? The answer is yes: clearly supp k is closed and bounded
in Rn and so compact and since ϕU is a homeomorphism, supp f is compact. If
y ∈ M\U then y is not in supp f , and if M is Hausdorff we can find an open set
containing y which does not intersect supp f . Then clearly f is smooth, since it is
zero in a neighbourhood of y.

3.2 The derivative of a function

Smooth functions exist in abundance. The question now is: we know what a differ-
entiable function is – so what is its derivative? We need to give some coordinate-
independent definition of derivative and this will involve some new concepts. The
derivative at a point a ∈M will lie in a vector space T ∗a called the cotangent space.

First let’s address a simpler question – what does it mean for the derivative to vanish?
This is more obviously a coordinate-invariant notion because on a compact manifold
any function has a maximum, and in any coordinate system in a neighbourhood of
that point, its derivative must vanish. We can check that: if f : M → R is smooth
then

g = fϕ−1
α

is a C∞ function of x1, . . . xn. Suppose its derivative vanishes at ϕU(a) and now take
a different chart ϕβ with h = fϕ−1

β . Then

g = fϕ−1
α = fϕ−1

β ϕβϕ
−1
α = hϕβϕ

−1
α .

But from the definition of an atlas, ϕβϕ
−1
α is smooth with smooth inverse, so

g(x1, . . . , xn) = h(y1(x), . . . , yn(x))

and by the chain rule
∂g

∂xi

=
∑

j

∂h

∂yj

(y(a))
∂yj

∂xi

(a).

Since y(x) is invertible, its Jacobian matrix is invertible, so that Dga = 0 if and
only if Dhy(a) = 0. We have checked then that the vanishing of the derivative at a
point a is independent of the coordinate chart. We let Za ⊂ C∞(M) be the subset of
functions whose derivative vanishes at a. Since Dfa is linear in f the subset Za is a
vector subspace.

Definition 8 The cotangent space T ∗a at a ∈M is the quotient space

T ∗a = C∞(M)/Za.

The derivative of a function f at a is its image in this space and is denoted (df)a.
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Here we have simply defined the derivative as all functions modulo those whose deriva-
tive vanishes. It’s almost a tautology, so to get anywhere we have to prove something
about T ∗a . First note that if ψ is a smooth function on a neighbourhood of x, we
can multiply it by a bump function to extend it to M and then look at its image in
T ∗a = C∞(M)/Za. But its derivative in a coordinate chart around a is independent of
the bump function, because all such functions are identically 1 in a neighbourhood
of a. Hence we can actually define the derivative at a of smooth functions which
are only defined in a neighbourhood of a. In particular we could take the coordinate
functions x1, . . . , xn. We then have

Proposition 3.1 Let M be an n-dimensional manifold, then

• the cotangent space T ∗a at a ∈M is an n-dimensional vector space

• if (U,ϕ) is a coordinate chart around x with coordinates x1, . . . , xn, then the
elements (dx1)a, . . . (dxn)a form a basis for T ∗a

• if f ∈ C∞(M) and in the coordinate chart, fϕ−1 = φ(x1, . . . , xn) then

(df)a =
∑

i

∂φ

∂xi

(ϕ(a))(dxi)a (3)

Proof: If f ∈ C∞(M), with fϕ−1 = φ(x1, . . . , xn) then

f −
∑ ∂φ

∂xi

(ϕ(a))xi

is a (locally defined) smooth function whose derivative vanishes at a, so

(df)a =
∑ ∂f

∂xi

(ϕ(a))(dxi)a

and (dx1)a, . . . (dxn)a span T ∗a .

If
∑

i λi(dxi)a = 0 then
∑

i λixi has vanishing derivative at a and so λi = 0 for all i.
2

Remark: It is rather heavy handed to give two symbols f, φ for a function and its
representation in a given coordinate system, so often in what follows we shall use just
f . Then we can write (3) as

df =
∑ ∂f

∂xi

dxi.
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With a change of coordinates (x1, . . . , xn) → (y1(x), . . . , yn(x)) the formalism gives

df =
∑

j

∂f

∂yj

dyj =
∑
i,j

∂f

∂yj

∂yj

∂xi

dxi.

Definition 9 The tangent space Ta at a ∈M is the dual space of the cotangent space
T ∗a .

This is a roundabout way of defining Ta, but since the double dual V ∗∗ of a finite
dimensional vector space is naturally isomorphic to V the notation is consistent. If
x1, . . . , xn is a local coordinate system at a and (dx1)a, . . . , (dxn)a the basis of T ∗a
defined in (3.1) then the dual basis for the tangent space Ta is denoted(

∂

∂x1

)
a

, . . . ,

(
∂

∂x1

)
a

.

This definition at first sight seems far away from our intuition about the tangent
space to a surface in R3:

The problem arises because our manifold M does not necessarily sit in Euclidean
space and we have to define a tangent space intrinsically. The link is provided by the
notion of directional derivative. If f is a function on a surface in R3, then for every
tangent direction u at a we can define the derivative of f at a in the direction u,
which is a real number: u · ∇f(a) or DFa(u). Imitating this gives the following:

Definition 10 A tangent vector at a point a ∈M is a linear map Xa : C∞(M) → R
such that

Xa(fg) = f(a)Xag + g(a)Xaf.

This is the formal version of the Leibnitz rule for differentiating a product.
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Now if ξ ∈ Ta it lies in the dual space of T ∗a = C∞(M)/Za and so

f 7→ ξ((df)a)

is a linear map from C∞(M) to R. Moreover from (3),

d(fg)a = f(a)(dg)a + g(a)(df)a

and so
Xa(f) = ξ((df)a)

is a tangent vector at a. In fact, any tangent vector is of this form, but the price paid
for the nice algebraic definition in (10) which is the usual one in textbooks is that we
need a lemma to prove it.

Lemma 3.2 Let Xa be a tangent vector at a and f a smooth function whose derivative
at a vanishes. Then Xaf = 0.

Proof: Use a coordinate system near a. By the fundamental theorem of calculus,

f(x)− f(a) =

∫ 1

0

∂

∂t
f(a+ t(x− a))dt

=
∑

i

(xi − ai)

∫ 1

0

∂f

∂xi

(a+ t(x− a))dt.

If (df)a = 0 then

gi(x) =

∫ 1

0

∂f

∂xi

(a+ t(x− a))dt

vanishes at x = a, as does xi − ai. Now although these functions are defined locally,
using a bump function we can extend them to M , so that

f = f(a) +
∑

i

gihi (4)

where gi(a) = hi(a) = 0.

By the Leibnitz rule
Xa(1) = Xa(1.1) = 2Xa(1)

which shows that Xa annihilates constant functions. Applying the rule to (4)

Xa(f) = Xa(
∑

i

gihi) =
∑

i

(gi(a)Xahi + hi(a)Xagi) = 0.

This means that Xa : C∞(M) → R annihilates Za and is well defined on T ∗a =
C∞(M)/Za and so Xa ∈ Ta. 2
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The vectors in the tangent space are therefore the tangent vectors as defined by (10).
Locally, in coordinates, we can write

Xa =
n∑
i

ci

(
∂

∂xi

)
a

and then

Xa(f) =
∑

i

ci
∂f

∂xi

(a) (5)

3.3 Derivatives of smooth maps

Suppose F : M → N is a smooth map and f ∈ C∞(N). Then f ◦ F is a smooth
function on M .

Definition 11 The derivative at a ∈ M of the smooth map F : M → N is the
homomorphism of tangent spaces

DFa : TaM → TF (a)N

defined by
DFa(Xa)(f) = Xa(f ◦ F ).

This is an abstract, coordinate-free definition. Concretely, we can use (5) to see that

DFa

(
∂

∂xi

)
a

(f) =
∂

∂xi

(f ◦ F )(a)

=
∑

j

∂Fj

∂xi

(a)
∂f

∂yj

(F (a)) =
∑

j

∂Fj

∂xi

(a)

(
∂

∂yj

)
F (a)

f

Thus the derivative of F is an invariant way of defining the Jacobian matrix.

With this definition we can give a generalization of Theorem 2.2 – the proof is virtually
the same and is omitted.

Theorem 3.3 Let F : M → N be a smooth map and c ∈ N be such that at each
point a ∈ F−1(c) the derivative DFa is surjective. Then F−1(c) is a smooth manifold
of dimension dimM − dimN .
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In the course of the proof, it is easy to see that the manifold structure on F−1(c)
makes the inclusion

ι : F−1(c) ⊂M

a smooth map, whose derivative is injective and maps isomorphically to the kernel of
DF . So when we construct a manifold like this, its tangent space at a is

Ta
∼= KerDFa.

This helps to understand tangent spaces for the case where F is defined on Rn:

Examples:

1. The sphere Sn is F−1(1) where F : Rn+1 → R is given by

F (x) =
∑

i

x2
i .

So here
DFa(x) = 2

∑
i

xiai

and the kernel of DFa consists of the vectors orthogonal to a, which is our usual
vision of the tangent space to a sphere.

2. The orthogonal matrices O(n) are given by F−1(I) where F (A) = AAT . At A = I,
the derivative is

DFI(H) = H +HT

so the tangent space to O(n) at the identity matrix is KerDFI , the space of skew-
symmetric matrices H = −HT .

The examples above are of manifolds F−1(c) sitting inside M and are examples of
submanifolds. Here we shall adopt the following definition of a submanifold, which is
often called an embedded submanifold:

Definition 12 A manifold M is a submanifold of N if there is an inclusion map

ι : M → N

such that

• ι is smooth
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• Dιx is injective for each x ∈M

• the manifold topology of M is the induced topology from N

Remark: The topological assumption avoids a situation like this:

ι(t) = (t2 − 1, t(t2 − 1)) ∈ R2

for t ∈ (−1, 1). This is smooth, injective with injective derivative, but any open set
in R2 containing 0 intersects both ends of the interval. The curve is the left hand
loop of the singular cubic: y2 = x2(x+ 1).

4 Vector fields

4.1 The tangent bundle

Think of the wind velocity at each point of the earth.
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This is an example of a vector field on the 2-sphere S2. Since the sphere sits inside
R3, this is just a smooth map X : S2 → R3 such that X(x) is tangential to the sphere
at x.

Our problem now is to define a vector field intrinsically on a general manifold M ,
without reference to any ambient space. We know what a tangent vector at a ∈ M
is – a vector in Ta – but we want to describe a smoothly varying family of these. To
do this we need to fit together all the tangent spaces as a ranges over M into a single
manifold called the tangent bundle. We have n degrees of freedom for a ∈ M and n
for each tangent space Ta so we expect to have a 2n-dimensional manifold. So the set
to consider is

TM =
⋃

x∈M

Tx

the disjoint union of all the tangent spaces.

First let (U,ϕU) be a coordinate chart for M . Then for x ∈ U the tangent vectors(
∂

∂x1

)
x

, . . . ,

(
∂

∂xn

)
x

provide a basis for each Tx. So we have a bijection

ψU : U ×Rn →
⋃
x∈U

Tx

defined by

ψU(x, y1, . . . , yn) =
n∑
1

yi

(
∂

∂xi

)
x

.

Thus
ΦU = (ϕU , id) ◦ ψ−1 :

⋃
x∈U

Tx → ϕU(U)×Rn
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is a coordinate chart for
V =

⋃
x∈U

Tx.

Given Uα, Uβ coordinate charts on M , clearly

Φα(Vα ∩ Vβ) = ϕα(Uα ∩ Uβ)×Rn

which is open in R2n. Also, if (x1, . . . , xn) are coordinates on Uα and (x̃1, . . . , x̃n) on
Uβ then (

∂

∂xi

)
x

=
∑

j

∂x̃j

∂xi

(
∂

∂x̃j

)
x

the dual of (3). It follows that

ΦβΦ−1
α (x1, . . . , xn, y1 . . . , yn) = (x̃1, . . . , x̃n,

∑
j

∂x̃1

∂xi

yi, . . . ,
∑

i

∂x̃n

∂xi

yi).

and since the Jacobian matrix is smooth in x, linear in y and invertible, ΦβΦ−1
α is

smooth with smooth inverse and so (Vα,Φα) defines an atlas on TM .

Definition 13 The tangent bundle of a manifold M is the 2n-dimensional differen-
tiable structure on TM defined by the above atlas.

The construction brings out a number of properties. First of all the projection map

p : TM →M

which assigns to Xa ∈ TaM the point a is smooth with surjective derivative, because
in our local coordinates it is defined by

p(x1, . . . , xn, y1, . . . , yn) = (x1, . . . , xn).

The inverse image p−1(a) is the vector space Ta and is called a fibre of the projection.
Finally, TM is Hausdorff because if Xa, Xb lie in different fibres, since M is Hausdorff
we can separate a, b ∈ M by open sets U,U ′ and then the open sets p−1(U), p−1(U ′)
separate Xa, Xb in TM . If Xa, Ya are in the same tangent space then they lie in a
coordinate neighbourhood which is homeomorphic to an open set of R2n and so can
be separated there. Since M has a countable basis of open sets and Rn does, it is
easy to see that TM also has a countable basis.

We can now define a vector field:
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Definition 14 A vector field on a manifold is a smooth map

X : M → TM

such that
p ◦X = idM .

This is a clear global definition. What does it mean? We just have to spell things
out in local coordinates. Since p ◦X = idM ,

X(x1, . . . , xn) = (x1, . . . , xn, y1(x), . . . , yn(x))

where yi(x) are smooth functions. Thus the tangent vector X(x) is given by

X(x) =
∑

i

yi(x)

(
∂

∂xi

)
x

which is a smoothly varying field of tangent vectors.

Remark: We shall meet other manifolds Q with projections p : Q → M and the
general terminology is that a smooth map s : M → Q for which p◦s = idM is called a
section. When Q = TM is the tangent bundle we always have the zero section given
by the vector field X = 0. Using a bump function ψ we can easily construct other
vector fields by taking a coordinate system, writing

X(x) =
∑

i

yi(x)

(
∂

∂xi

)
x

multiplying by ψ and extending.

Remark: Clearly we can do a similar construction using the cotangent spaces T ∗a
instead of the tangent spaces Ta, and using the basis

(dx1)x, . . . , (dxn)x

instead of the dual basis (
∂

∂x1

)
x

, . . . ,

(
∂

∂x1

)
x

.

This way we form the cotangent bundle T ∗M . The derivative of a function f is then
a map df : M → TM satisfying p ◦ df = idM , though not every such map of this
form is a derivative. The tangent bundle and cotangent bundle are examples of vector
bundles.
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Perhaps we should say here that the tangent bundle and cotangent bundle are exam-
ples of vector bundles. Here is the general definition:

Definition 15 A real vector bundle of rank m on a manifold M is a manifold E with
a smooth projection p : E →M such that

• each fibre p−1(x) has the structure of an m-dimensional real vector space

• each point x ∈M has a neighbourhood U and a diffeomorphism

ψU : p−1(U) ∼= U ×Rm

such that ψU maps the vector space p−1(x) isomorphically to the vector space
{x} ×Rm

• on the intersection U ∩ V

ψ−1
U ψV : U ∩ V ×Rm → U ∩ V ×Rm

is of the form
(x, v) 7→ (x, gUV (x)v)

where gUV (x) is a smooth function on U∩V with values in the space of invertible
m×m matrices.

For the tangent and cotangent bundle, gUV is the Jacobian matrix of a change of
coordinates or its inverse transpose.

4.2 Vector fields as derivations

The algebraic definition of tangent vector in Definition 10 shows that a vector field
X maps a C∞ function to a function on M :

X(f)(x) = Xx(f)

and the local expression for X means that

X(f)(x) =
∑

i

yi(x)

(
∂

∂xi

)
x

(f) =
∑

i

yi(x)
∂f

∂xi

(x).

Since the yi(x) are smooth, X(f) is again smooth and satisfies the Leibnitz property

X(fg) = f(Xg) + g(Xf).

In fact, any linear transformation with this property (called a derivation of the algebra
C∞(M)) is a vector field:

24



Proposition 4.1 Let X : C∞(M) → C∞(M) be a linear map which satisfies

X(fg) = f(Xg) + g(Xf).

Then X is a vector field.

Proof: For each a ∈ M , Xa(f) = X(f)(a) satisfies the conditions for a tangent
vector at a, so X defines a map X : M → TM with p ◦X = idM , and so locally can
be written as

Xx =
∑

i

yi(x)

(
∂

∂xi

)
x

.

We just need to check that the yi(x) are smooth, and for this it suffices to apply
X to a coordinate function xi extended by using a bump function in a coordinate
neighbourhood. We get

Xxi = yi(x)

and since by assumption X maps smooth functions to smooth functions, this is
smooth. 2

The characterization of vector fields given by Proposition 4.1 immediately leads to a
way of combining two vector fields X, Y to get another. Consider both X and Y as
linear maps from C∞(M) to itself and compose them. Then

XY (fg) = X(f(Y g) + g(Y f)) = (Xf)(Y g) + f(XY g) + (Xg)(Y f) + g(XY f)

Y X(fg) = Y (f(Xg) + g(Xf)) = (Y f)(Xg) + f(Y Xg) + (Y g)(Xf) + g(Y Xf)

and subtracting and writing [X, Y ] = XY − Y X we have

[X, Y ](fg) = f([X, Y ]g) + g([X, Y ]f)

which from Proposition 4.1 means that [X, Y ] is a vector field.

Definition 16 The Lie bracket of two vector fields X, Y is the vector field [X, Y ].

Example: If M = R then X = fd/dx, Y = gd/dx and so

[X, Y ] = (fg′ − gf ′)
d

dx
.

We shall later see that there is a geometrical origin for the Lie derivative.
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4.3 One-parameter groups of diffeomorphisms

Think of wind velocity (assuming it is constant in time) on the surface of the earth
as a vector field on the sphere S2. There is another interpretation we can make. A
particle at position x ∈ S2 moves after time t seconds to a position ϕt(x) ∈ S2. After
a further s seconds it is at

ϕt+s(x) = ϕs(ϕt(x)).

What we get this way is a homomorphism of groups: from the additive group R to
the group of diffeomorphisms of S2 under the operation of composition. The technical
definition is the following:

Definition 17 A one-parameter group of diffeomorphisms of a manifold M is a
smooth map

ϕ : M ×R →M

such that (writing ϕt(x) = ϕ(x, t))

• ϕt : M →M is a diffeomorphism

• ϕ0 = id

• ϕs+t = ϕs ◦ ϕt.

We shall show that vector fields generate one-parameter groups of diffeomorphisms,
but only under certain hypotheses. If instead of the whole surface of the earth our
manifold is just the interior of the UK and the wind is blowing East-West, clearly after
however short a time, some particles will be blown offshore, so we cannot hope for
ϕt(x) that works for all x and t. The fact that the earth is compact is one reason why it
works there, and this is one of the results below. The idea, nevertheless, works locally
and is a useful way of understanding vector fields as “infinitesimal diffeomorphisms”
rather than as abstract derivations of functions.

To make the link with vector fields, suppose ϕt is a one-parameter group of diffeo-
morphisms and f a smooth function. Then

f(ϕt(a))

is a smooth function of t and we write

∂

∂t
f(ϕt(a))|t=0 = Xa(f).
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It is straightforward to see that, since ϕ0(a) = a the Leibnitz rule holds and this is a
tangent vector at a, and so as a = x varies we have a vector field. In local coordinates
we have

ϕt(x1, . . . , xn) = (y1(x, t), . . . , yn(x, t))

and

∂

∂t
f(y1, . . . , yn) =

∑
i

∂f

∂yi

(y)
∂yi

∂t
(x)|t=0

=
∑

i

ci(x)
∂f

∂xi

(x)

which yields the vector field

X =
∑

i

ci(x)
∂

∂xi

.

We now want to reverse this: go from the vector field to the diffeomorphism. The
first point is to track that “trajectory” of a single particle.

Definition 18 An integral curve of a vector field X is a smooth map ϕ : (α, β) ⊂
R →M such that

Dϕt

(
d

dt

)
= Xϕ(t).

Example: Suppose M = R2 with coordinates (x, y) and X = ∂/∂x. The derivative
Dϕ of the smooth function ϕ(t) = (x(t), y(t)) is

Dϕ

(
d

dt

)
=
dx

dt

∂

∂x
+
dy

dt

∂

∂y

so the equation for an integral curve of X is

dx

dt
= 1

dy

dt
= 0

which gives
ϕ(t) = (t+ a1, a2).

In our wind analogy, the particle at (a1, a2) is transported to (t+ a1, a2).
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In general we have:

Theorem 4.2 Given a vector field X on a manifold M and a ∈ M there exists a
maximal integral curve of X through a.

By “maximal” we mean that the interval (α, β) is maximal – as we saw above it may
not be the whole of the real numbers.

Proof: First consider a coordinate chart (Uα, ϕα) around a then if

X =
∑

i

ci(x)
∂

∂xi

the equation

Dϕt

(
d

dt

)
= Xϕ(t)

can be written as the system of ordinary differential equations

dxi

dt
= ci(x1, . . . , xn).

The existence and uniqueness theorem for ODE’s (see Appendix) asserts that there
is some interval on which there is a unique solution with initial condition

(x1(0), . . . , xn(0)) = ϕα(a).

Suppose ϕ : (α, β) → M is any integral curve with ϕ(0) = a. For each x ∈ (α, β)
the subset ϕ([0, x]) ⊂ M is compact, so it can be covered by a finite number of
coordinate charts, in each of which we can apply the existence and uniqueness theorem
to intervals [0, α1], [α1, α2], . . . , [αn, x]. Uniqueness implies that these local solutions
agree with ϕ on any subinterval containing 0.

We then take the maximal open interval on which we can define ϕ. 2

To find the one-parameter group of diffeomorphisms we now let a ∈ M vary. In the
example above, the integral curve through (a1, a2) was t 7→ (t+a1, a2) and this defines
the group of diffeomorphisms

ϕt(x1, x2) = (t+ x1, x2).

Theorem 4.3 Let X be a vector field on a manifold M and for (t, x) ∈ R×M , let
ϕ(x, t) = ϕt(x) be the maximal integral curve of X through x. Then
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• the map (t, x) 7→ ϕt(x) is smooth

• ϕt ◦ ϕs = ϕt+s wherever the maps are defined

• if M is compact, then ϕt(x) is defined on R ×M and gives a one-parameter
group of diffeomorphisms.

Proof: The previous theorem tells us that for each a ∈M we have an open interval
(α(a), β(a)) on which the maximal integral curve is defined. The local existence
theorem also gives us that there is a solution for initial conditions in a neighbourhood
of a so the set

{(t, x) ∈ R×M : t ∈ (α(x), β(x))}
is open. This is the set on which ϕt(x) is maximally defined.

The theorem (see Appendix) on smooth dependence on initial conditions tells us that
(t, x) 7→ ϕt(x) is smooth.

Consider ϕt ◦ϕs(x). If we fix s and vary t, then this is the unique integral curve of X
through ϕs(x). But ϕt+s(x) is an integral curve which at t = 0 passes through ϕs(x).
By uniqueness they must agree so that ϕt ◦ϕs = ϕt+s. (Note that ϕt ◦ϕ−t = id shows
that we have a diffeomorphism wherever it is defined).

Now consider the case where M is compact. For each x ∈ M , we have an open
interval (α(x), β(x)) containing 0 and an open set Ux ⊆M on which ϕt(x) is defined.
Cover M by {Ux}x∈M and take a finite subcovering Ux1 , . . . , UxN

, and set

I =
N⋂
1

(α(xi), β(xi))

which is an open interval containing 0. By construction, for t ∈ I we get

ϕt : I ×M →M

which defines an integral curve (though not necessarily maximal) through each point
x ∈M and with ϕ0(x) = x. We need to extend to all real values of t.

If s, t ∈ R, choose n such that (|s| + |t|)/n ∈ I and define (where multiplication is
composition)

ϕt = (ϕt/n)n, ϕs = (ϕs/n)n.

Now because t/n, s/n and (s+ t)/n lie in I we have

ϕt/nϕs/n = ϕ(s+t)/n = ϕs/nϕt/n
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and so because ϕt/n and ϕs/n commute, we also have

ϕtϕs = (ϕt/n)n(ϕs/n)n

= (ϕ(s+t)/n)n

= ϕs+t

which completes the proof. 2

4.4 The Lie bracket revisited

All the objects we shall consider will have the property that they can be transformed
naturally by a diffeomorphism, and the link between vector fields and diffeomorphisms
we have just observed provides an “infinitesimal’ version of this.

Given a diffeomorphism F : M →M and a smooth function f we get the transformed
function f ◦F . When F = ϕt, generated according to the theorems above by a vector
field X, we then saw that

∂

∂t
f(ϕt)|t=0 = X(f).

So: the natural action of diffeomorphisms on functions specializes through one-parameter
groups to the derivation of a function by a vector field.

Now suppose Y is a vector field, considered as a map Y : M → TM . With a
diffeomorphism F : M →M , its derivative DFx : Tx → TF (x) gives

DFx(Yx) ∈ TF (x).

This defines a new vector field Ỹ by

ỸF (x) = DFx(Yx) (6)

Thus for a function f ,
(Ỹ )(f ◦ F ) = (Y f) ◦ F (7)

Now if F = ϕt for a one-parameter group, we have Ỹt and we can differentiate to get

Ẏ =
∂

∂t
Ỹt

∣∣∣∣
t=0

From (7) this gives
Ẏ f + Y (Xf) = XY f

so that Ẏ = XY −Y X is the Lie derivative defined above. Thus the natural action of
diffeomorphisms on vector fields specializes through one-parameter groups to the Lie
bracket [X, Y ].
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