IMC preparation seminar, Day 1
 Calculus I

April 19, 2024

1 Theory/Background

Calculus I and Calculus II: Sequences, Series, Sums, Real functions, Limits, Continuity, Differentiation, Riemann Integration.

Reminder: x is a fixed point of $f: X \rightarrow X \Longleftrightarrow f(x)=x$.

2 Problems

2.1 Warm up problems:

Problem 1 Calculate the sum

$$
\sum_{n=0}^{\infty} \arctan \left(\frac{1}{n^{2}+n+1}\right)
$$

Problem 2 Calculate the integral

$$
\int_{0}^{1} \frac{\ln (1+x)}{1+x^{2}} d x
$$

Problem 3 Calculate the following limit:

$$
\lim _{n \rightarrow \infty} \sqrt{\frac{1}{n}+\sqrt{\frac{1}{n}+\sqrt{\frac{1}{n}+\ldots}}}
$$

Problem 4 Is it always true that $\lim _{n \rightarrow \infty} \lim _{m \rightarrow \infty} a_{n, m}=\lim _{m \rightarrow \infty} \lim _{n \rightarrow \infty} a_{n, m}$?
Problem 5 Let $f \in C_{\mathbb{R}}^{2}(\mathbb{R})$ which is also bounded with bounded second derivative. Let

$$
A=\sup _{x \in \mathbb{R}}|f(x)|
$$

and

$$
B=\sup _{x \in \mathbb{R}}\left|f^{\prime \prime}(x)\right| .
$$

Prove that the derivative of f is bounded by $2 \sqrt{A B}$, that is

$$
\sup _{x \in \mathbb{R}}\left|f^{\prime}(x)\right| \leq 2 \sqrt{A B}
$$

Problem 6 Show that the integer nearest to $\frac{n!}{e}$ is divisible by $n-1$ but not by n.

2.2 Harder problems:

Problem 7 Let $h:[0,1) \rightarrow \mathbb{R}$. Prove that if h is uniformly continuous then there exists a continuous $g:[0,1] \rightarrow \mathbb{R}$, such that

$$
\left.g\right|_{[0,1)}=h
$$

that is $g(x)=h(x), \forall x \in[0,1)$.
Problem 8 Let $f:[a, b] \rightarrow \mathbb{R}$ be a differentiable function. Prove that for every n there exists an ascending finite sequence $q_{1}<q_{2}<\cdots<q_{n}$ in (a, b) such that

$$
\frac{f(b)-f(a)}{b-a}=\frac{f^{\prime}\left(q_{1}\right)+f^{\prime}\left(q_{2}\right)+\cdots+f^{\prime}\left(q_{n}\right)}{n} .
$$

Problem 9 Let $f_{0}:[0,1] \rightarrow \mathbb{R}$ a continuous function. We define a sequence of functions $f_{n}:[0,1] \rightarrow \mathbb{R}$ by

$$
f_{n}(x)=\int_{0}^{x} f_{n-1}(t) d t
$$

Prove that if there is an integer $m \in \mathbb{Z}_{\geq 0}$ such that

$$
\int_{0}^{1} f_{m}(t) d t=\frac{1}{(m+1)!}
$$

then the function f_{0} must have a fixed point.
Problem 9 Let $f:[a, b] \rightarrow[a, b]$ a continuous function. Let $x_{1} \in[a, b]$ and define $x_{n+1}=f\left(x_{n}\right)$. Show that the sequence $\left(x_{n}\right)_{n \geq 1}$ converges to a fixed point of f if and only if $\lim _{n \rightarrow \infty} x_{n+1}-x_{n}=0$.

Problem 10 (IMC 2023, Problem 2, Day 2) We define as V the set of all continuous functions $f:[0,1] \rightarrow \mathbb{R}$ differentiable on $(0,1)$ with the property $f(0)=0$ and $f(1)=1$. Determine all $a \in \mathbb{R}$ such that for every $f \in V$, there exists some $z \in(0,1)$ with the property $f(z)+a=f^{\prime}(z)$.

Problem 11 Let $a>0$ and \mathcal{A} the class of all sequences of positive numbers $\left(a_{n}\right)_{n \geq 1}$ such that

$$
\sum_{n=1}^{\infty} a_{n}=a
$$

Find the set

$$
\left\{\sum_{n=1}^{\infty} a_{n}^{2}:\left(a_{n}\right)_{n \geq 1} \in \mathcal{A}\right\} .
$$

