PROBLEM SOLVING SEMINAR 19/4/2024 NUMBER THEORY DAY 5

1. Basic knowledge

In Number Theory we deal with problems related with the natural numbers $\mathbb{N} = \{1, 2, 3, ...\}$ (or the integers $\mathbb{Z} = \{..., -2, -1, 0, 1, 2, ...\}$) and functions $f : \mathbb{N} \to \mathbb{N}$ or $f : \mathbb{Z} \to \mathbb{Z}$. The prerequisites we want are little, but problems can be extremely difficult. Basic theory: Induction and descent method, Divisibility and prime numbers, Mod arithmetic, Arithmetic functions, Pell equations, Sums of squares.

2. WARM-UP PROBLEMS

Use the above theory and techniques to solve the following warm-up problems.

- 1) Prove that for every natural number $n \ge 3$, at least one of $2^n 1$ and $2^n + 1$ is composite.
- 2) If p is a prime then p|(p-1)! + 1 (Wilson's theorem).
- 3) Prove that if $p \leq n$ then $p \nmid (n! + 1)$. Deduce there are infinitely many primes.
- 4) Can we find a polynomial f(x) with integer coefficients such f(231) = 554 and f(161) = 496?
- 5) If $k \ge 1$ then k(k+1) is not a power > 1.
- 6) Let r be a real number such that $r + r^{-1} \in \mathbb{N}$. Prove that for every $n \in \mathbb{Z}$, $r^n + r^{-n} \in \mathbb{N}$.
- 7) If n is a sum of two squares, then also 2n is.
- 8) Find all $n \in \mathbb{N}$ such that $\lfloor \sqrt{n} \rfloor \mid n$.

3. Challenging problems

More difficulet problems.

9) Prove that for any natural number $n \neq 2, 6$ we have

$$\phi(n) \ge \sqrt{n}.$$

10) Prove that there exist infinitely many integers n such that n, n+1, n+2 are each the sum of the squares of two integers.

11) Prove that for no integer n > 1 does n divide $2^n - 1$.

12) Show that the equation

$$x^2 + 10y^2 = 3z^2$$

has no solution in the positive integers.

13) Let $m, n \in \mathbb{N}$ such that mn divides $m^2 + n^2 + m$. Then m is a square number.

- 14) Find all n such that d(n) = n or $d(n)^2 = n$.
- 15) Prove that the product of four consecutive natural numbers cannot be the square of an integer.

16) Let f(x) be a polynomial with all coefficients being natural numbers. Can we find f(x) by determining only two values of f(n), f(m) for two integers n, m?

17) If n is an integer, then

$$1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} \notin \mathbb{Z}.$$

18) Prove that there exists no n such that $\phi(n) = 14$. Are there infinitely many m such that $\phi(n) = m$ has no solution?

19) We denote by [x] the integral part of x. Prove that if $n \in \mathbb{N}$ and $a \ge 0$ real then

$$\sum_{k=0}^{n-1} \left[a + \frac{k}{n} \right] = [na]$$

20) Prove that if $n \in \mathbb{N}$ then

$$\sum_{k=0}^{\infty} \left[\frac{n+2^k}{2^{k+1}} \right] = n.$$

21) Prove that for every $n \in \mathbb{N}$

$$\frac{1}{\zeta(2)} < \frac{\sigma(n)\phi(n)}{n^2} \le 1.$$

22) (IMC 2012) For every n > 1 let p(n) denote the number of partitions of n, i.e. the number of ways we can write n as a sum of natural numbers. For instance p(3) = 3, p(4) = 5, ... Prove that p(n) - p(n-1) is the number of ways to express n as a sum of integers each of which is strictly greater than 1.

23) Let $f : \mathbb{N} \to \mathbb{N}$ such that f(2) = 2, f(mn) = f(m)f(n) and f(m) > f(n) if m > n. Prove that f(n) = n.

24) (IMC 2014) Let n > 6 be a perfect number, and let $n = p^{a_1} \dots p^{a_k}$ its prime factorization, with $p_1 < \dots < p_k$. Prove that a_1 is an even number.

25) Let A be the set of natural numbers representable in the form $a^2 + 2b^2$ for some integers a and b with $b \neq 0$. Show that if $p^2 \in A$ for a prime p, then $p \in A$.

26) A prime number p cannot be written as a sum of two squares in two different ways.

27) Let f(x) be a polynomial of degree 2 with integer coefficients. Suppose that f(k) is divisible by 5 for every integer k. Prove that all coefficients of f are divisible by 5.

28) If 29 | $(x^4 + y^4 + z^4)$ then 29⁴ | $(x^4 + y^4 + z^4)$.

29) If a, b, c are natural numbers satisfying $a^2 + b^2 + 1 = c^2$ then the quantity

$$\begin{bmatrix} \frac{a}{2} \end{bmatrix} + \begin{bmatrix} \frac{c}{2} \end{bmatrix}$$

is even.

30) If n > 1 then $n^4 + 4^n$ is not a prime.

31) Show that if n has p-1 digits all equal to 1, where p > 7 is a prime, then n is divisible by p.

32) Assume $n \ge 2$. If $f(n) = 2^n + n^2$ is prime, then 3|f(f(n)).

33) Determine all functions $f : \mathbb{N} \to \mathbb{N}$ such that

$$(f(m)+n)(m+f(n))$$

is a perfect square for all $m, n \in \mathbb{N}$.

34) (Putnam 2018, B3) Find all positive integers $n < 10^{100}$ for which simultaneously n divides 2^n , n-1 divides $2^n - 1$, and n-2 divides $2^n - 2$.