PROBLEM SOLVING SEMINAR 19/4/2024 NUMBER THEORY DAY 5

1. Basic knowledge

In Number Theory we deal with problems related with the natural numbers $\mathbb{N}=\{1,2,3, \ldots\}$ (or the integers $\mathbb{Z}=\{\ldots,-2,-1,0,1,2, \ldots\})$ and functions $f: \mathbb{N} \rightarrow \mathbb{N}$ or $f: \mathbb{Z} \rightarrow \mathbb{Z}$. The prerequisites we want are little, but problems can be extremely difficult. Basic theory: Induction and descent method, Divisibility and prime numbers, Mod arithmetic, Arithmetic functions, Pell equations, Sums of squares.

2. WARM-UP PROBLEMS

Use the above theory and techniques to solve the following warm-up problems.

1) Prove that for every natural number $n \geq 3$, at least one of $2^{n}-1$ and $2^{n}+1$ is composite.
2) If p is a prime then $p \mid(p-1)!+1$ (Wilson's theorem).
3) Prove that if $p \leq n$ then $p \nmid(n!+1)$. Deduce there are infinitely many primes.
4) Can we find a polynomial $f(x)$ with integer coefficients such $f(231)=554$ and $f(161)=496$?
5) If $k \geq 1$ then $k(k+1)$ is not a power >1.
6) Let r be a real number such that $r+r^{-1} \in \mathbb{N}$. Prove that for every $n \in \mathbb{Z}, r^{n}+r^{-n} \in \mathbb{N}$.
7) If n is a sum of two squares, then also $2 n$ is.
8) Find all $n \in \mathbb{N}$ such that $[\sqrt{n}] \mid n$.

3. Challenging problems

More difficulet problems.
9) Prove that for any natural number $n \neq 2,6$ we have

$$
\phi(n) \geq \sqrt{n}
$$

10) Prove that there exist infinitely many integers n such that $n, n+1, n+2$ are each the sum of the squares of two integers.
11) Prove that for no integer $n>1$ does n divide $2^{n}-1$.
12) Show that the equation

$$
x^{2}+10 y^{2}=3 z^{2}
$$

has no solution in the positive integers.
13) Let $m, n \in \mathbb{N}$ such that $m n$ divides $m^{2}+n^{2}+m$. Then m is a square number.
14) Find all n such that $d(n)=n$ or $d(n)^{2}=n$.
15) Prove that the product of four consecutive natural numbers cannot be the square of an integer.
16) Let $f(x)$ be a polynomial with all coefficients being natural numbers. Can we find $f(x)$ by determining only two values of $f(n), f(m)$ for two integers n, m ?
17) If n is an integer, then

$$
1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n} \notin \mathbb{Z}
$$

18) Prove that there exists no n such that $\phi(n)=14$. Are there infinitely many m such that $\phi(n)=m$ has no solution?
19) We denote by $[x]$ the integral part of x. Prove that if $n \in \mathbb{N}$ and $a \geq 0$ real then

$$
\sum_{k=0}^{n-1}\left[a+\frac{k}{n}\right]=[n a]
$$

20) Prove that if $n \in \mathbb{N}$ then

$$
\sum_{k=0}^{\infty}\left[\frac{n+2^{k}}{2^{k+1}}\right]=n
$$

21) Prove that for every $n \in \mathbb{N}$

$$
\frac{1}{\zeta(2)}<\frac{\sigma(n) \phi(n)}{n^{2}} \leq 1
$$

22) (IMC 2012) For every $n>1$ let $p(n)$ denote the number of partitions of n, i.e. the number of ways we can write n as a sum of natural numbers. For instance $p(3)=3, p(4)=5, \ldots$. Prove that $p(n)-p(n-1)$ is the number of ways to express n as a sum of integers each of which is strictly greater than 1.
23) Let $f: \mathbb{N} \rightarrow \mathbb{N}$ such that $f(2)=2, f(m n)=f(m) f(n)$ and $f(m)>f(n)$ if $m>n$. Prove that $f(n)=n$.
24) (IMC 2014) Let $n>6$ be a perfect number, and let $n=p^{a_{1}} \ldots p^{a_{k}}$ its prime factorization, with $p_{1}<\ldots<p_{k}$. Prove that a_{1} is an even number.
25) Let A be the set of natural numbers representable in the form $a^{2}+2 b^{2}$ for some integers a and b with $b \neq 0$. Show that if $p^{2} \in A$ for a prime p, then $p \in A$.
26) A prime number p cannot be written as a sum of two squares in two different ways.
27) Let $f(x)$ be a polynomial of degree 2 with integer coefficients. Suppose that $f(k)$ is divisible by 5 for every integer k. Prove that all coefficients of f are divisible by 5 .
28) If $29 \mid\left(x^{4}+y^{4}+z^{4}\right)$ then $29^{4} \mid\left(x^{4}+y^{4}+z^{4}\right)$.
29) If a, b, c are natural numbers satisfying $a^{2}+b^{2}+1=c^{2}$ then the quantity

$$
\left[\frac{a}{2}\right]+\left[\frac{c}{2}\right]
$$

is even.
30) If $n>1$ then $n^{4}+4^{n}$ is not a prime.
31) Show that if n has $p-1$ digits all equal to 1 , where $p>7$ is a prime, then n is divisible by p.
32) Assume $n \geq 2$. If $f(n)=2^{n}+n^{2}$ is prime, then $3 \mid f(f(n))$.
33) Determine all functions $f: \mathbb{N} \rightarrow \mathbb{N}$ such that

$$
(f(m)+n)(m+f(n))
$$

is a perfect square for all $m, n \in \mathbb{N}$.
34) (Putnam 2018, B3) Find all positive integers $n<10^{100}$ for which simultaneously n divides 2^{n}, $n-1$ divides $2^{n}-1$, and $n-2$ divides $2^{n}-2$.

