IMC preparation seminar, Day 4

April 12, 2024

1 Theory/Background

Some necessary material from Linear Algebra.
Definition 1.1. (Characteristic polynomial) Let $A \in M_{n}(\mathbb{C})$, then the characteristic polynomial of A is defined as:

$$
\chi_{A}(\lambda)=\operatorname{det}\left(\lambda \mathbb{I}_{n}-A\right) .
$$

For $A \in M_{2}(\mathbb{C})$ we have

$$
\chi_{A}(\lambda)=\lambda^{2}-\operatorname{tr}(A) \lambda+\operatorname{det} A
$$

The following theorem is crucial in the theory of finite matrices.
Theorem 1.2. (Cayley-Hamilton) For $A \in M_{n}(\mathbb{C})$ we have $\chi_{A}(A)=O_{n}$. In particular, for $A \in M_{2}(\mathbb{C})$ we get

$$
A^{2}-\operatorname{tr}(A) A+\operatorname{det} A I_{2}=O_{2}
$$

Lemma 1.3. Let $A, B \in M_{2}(\mathbb{C})$ and $z \in \mathbb{C}$, then

$$
\operatorname{det}(A+z B)=\operatorname{det} A+v z+\operatorname{det} B z^{2}
$$

If the entries of A, B are from a field \mathbb{F}, so is v.
We will need the basic parts of the theory of determinants. One particular example is the following famous determinant of Vandermonde:

$$
\left|\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
x_{1} & x_{2} & \ldots & x_{n} \\
\vdots & \vdots & \ddots & \vdots \\
x_{1}^{n-1} & x_{2}^{n-1} & \ldots & x_{n}^{n-1}
\end{array}\right|=\prod_{1 \leq j<i \leq n}\left(x_{i}-x_{j}\right)
$$

2 Problems

2.1 Warm up problems

Problem 1 Find a non-linear map $f: \mathbb{R}^{n} \rightarrow \mathbb{R}, n \in \mathbb{N}$, satisfying:

$$
f(a x)=a f(x)
$$

for every $a \in \mathbb{R}$ and $x \in \mathbb{R}^{n}$.
Problem 2 Let $A, B \in M_{n}(\mathbb{R})$, such that $A B=B A$. Prove that

$$
\operatorname{det}\left(A^{2}+B^{2}\right) \geq 0
$$

When does equality hold? Does the inequality hold for non-commuting matrices?
Problem 3 Let $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in M_{2}(\mathbb{R})$ such that $a^{2}+b^{2}+c^{2}+d^{2}<\frac{1}{5}$. Show that $A+I$ is invertible.

Problem 4 Let $A \in M_{2}(\mathbb{Q})$ such that $\operatorname{det}\left(A^{2}-2 I_{2}\right)=0$. Prove that $A^{2}=2 I_{2}$.
Problem 5 Let $A, B \in M_{2}(\mathbb{C})$, such that $\operatorname{det}(A B-B A) \leq 0$. Prove that

$$
\operatorname{det}\left(I_{2}+A B\right) \leq \operatorname{det}\left(I_{2}+\frac{1}{2}(A B+B A)\right)
$$

2.2 Harder problems

Problem 6 Let $n \geq 2$ be a positive integer and $A, B \in M_{2}(\mathbb{C})$ two non-commuting matrices, such that $(A B)^{n}=(B A)^{n}$. Deduce that $(A B)^{n}=a I_{2}$, where $a \in \mathbb{C}$.

Problem 7 Prove that

$$
\left|\begin{array}{ccc}
\left(x^{2}+1\right)^{2} & (x y+1)^{2} & (x z+1)^{2} \\
(x y+1)^{2} & \left(y^{2}+1\right)^{2} & (y z+1)^{2} \\
(x z+1)^{2} & (y z+1)^{2} & \left(z^{2}+1\right)^{2}
\end{array}\right|=2(x-y)^{2}(y-z)^{2}(z-x)^{2}
$$

Problem 8 Prove that for any matrix $A \in M_{n}(\mathbb{C}), n \in \mathbb{N}$ there exists a matrix $B \in$ $M_{n}(\mathbb{C})$, such that

$$
A B A=A
$$

Problem 9 Find all $A \in M_{n}(\mathbb{C})$ such that

$$
A^{2023}=A^{*} A-A A^{*}
$$

Problem 10 Let $A \in M_{2020}(\mathbb{C})$, such $\operatorname{rank}(A)=2019$. Prove that

$$
A^{2}=A \Leftrightarrow A+\operatorname{adj}(A)=I_{2020}
$$

Problem 11 (SEEMOUS 2024, P2) Let $A, B \in M_{n}(\mathbb{R})$ two real, symmetric matrices with nonnegative eigenvalues. Prove that $A^{3}+B^{3}=(A+B)^{3}$ if and only if $A B=O_{n}$.

