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Foreword

My friend and UIUC mathematics department colleague Joe Rotman was com-
pletely dedicated to his series of books on algebra. He was correcting his draft of
this revision of Advanced Modern Algebra during what sadly turned out to be his
final hospital visit. At that time, Joe and his family asked me to do what I could
to see this close-to-finished version to publication.

Two more friends and colleague of Joe’s, Jerry Janusz and Paul Weichsel, joined
the project. Jerry did a meticulous line-by-line reading of the manuscript, and all
three of us answered questions posed by the AMS editorial staff, based on Arlene
O’Sean’s very careful reading of the manuscript.

It is clear that this book would have been even richer if Joe had been able to
continue to work on it. For example, he planned a chapter on algebraic geome-
try. We include the first paragraph of that chapter, an example of Joe’s distinctly
personal writing style, as a small memorial to what might have been.

Mathematical folklore is the “standard” mathematics “everyone”
knows. For example, all mathematics graduate students today are
familiar with elementary set theory. But folklore changes with
time; elementary set theory was not part of nineteenth-century
folklore. When we write a proof, we tacitly use folklore, usually
not mentioning it explicitly. That folklore depends on the calendar
must be one of the major factors complicating the history of math-
ematics. We can find primary sources and read, say, publications
of Ruffini at the beginning of the 1800s, but we can’t really follow
his proofs unless we are familiar with his contemporary folklore.

I want to express my thanks to Sergei Gelfand and Arlene O’Sean of the AMS
and to Jerry Janusz and Paul Weichsel of UIUC for all their help. Our overrid-
ing and mutual goal has been to produce a book which embodies Joe Rotman’s
intentions.

Bruce Reznick

May 31, 2017
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Preface to Third Edition:
Part 2

The second half of this third edition of Advanced Modern Algebra has Part 1 as pre-
requisite. This is not to say that everything there must be completely mastered, but
the reader should be familiar with what is there and should not be uncomfortable
upon seeing the words category, functor, module, or Zorn.

The format of Part 2 is standard, but there are interactions between the dif-
ferent chapters. For example, group extensions and factor sets are discussed in the
chapter on groups as well as in the chapter on homology. I am reminded of my
experience as an aspiring graduate student. In order to qualify for an advanced
degree, we were required to take a battery of written exams, one in each of algebra,
analysis, geometry, and topology. At the time, I felt that each exam was limited
to its own area, but as I was wrestling with an algebra problem, the only way I
could see to solve it was to use a compactness argument. I was uncomfortable:
compactness arguments belong in the topology exam, not in the algebra exam! Of
course, I was naive. The boundaries of areas dividing mathematics are artificial;
they really don’t describe what is being studied but how it is being studied. It
is a question of attitude and emphasis. Doesn’t every area of mathematics study
polynomials? But algebraists and analysts view them from different perspectives.
After all, mathematics really is one vast subject, and all its parts and emphases are
related.

A word about references in the text. If I mention Theorem C-1.2 or Exercise
C-1.27 on page 19, then these are names in Part 2 of the third edition. References
to names in Part 1 will have the prefix A- or B- and will say, for example, Theorem
A-1.2 in Part 1 or Exercise B-1.27 on page 288 in Part 1. In an exercise set, an
asterisk before an exercise, say, *C-1.26, means that this exercise is mentioned
elsewhere in the text, usually in a proof.

Thanks goes to Ilya Kapovich, Victoria Corkery, Vincenzo Acciaro, and Stephen
Ullom.

ix





Chapter C-1

More Groups

We continue investigating the structure of groups in this chapter, beginning by
introducing group actions, which essentially show that elements of abstract groups
can be viewed as permutations of sets. In Part 1, we saw that finitely generated
abelian groups are rather uncomplicated: they are direct sums of cyclic groups. The
p-primary components of a finite abelian group generalize to Sylow p-subgroups of
finite nonabelian groups G: if pe is the largest power of a prime p dividing |G|, then
a Sylow p-subgroup is a subgroup of G having order pe. Such subgroups always
exist; they may not be unique, but the number of them can be computed up to
congruence mod p; moreover, any two such subgroups are conjugate and, hence, are
isomorphic. The notions of normal series and solvability that arose in Galois theory
lead to consideration of solvable groups. Here, we will see that solvable groups (and
their cousins nilpotent groups) are interesting in their own right, outside of Galois
theory. The Jordan–Hölder Theorem shows that simple groups are, in a certain
sense, building blocks of finite groups. Consequently, we show that the projective
unimodular groups PSL(n, k), where k is a field, are simple groups (in addition to
the cyclic groups of prime order and the alternating groups An for n ≥ 5 which we
have already proved to be simple). We will give two proofs of this: the first involves
looking at the general linear groups GL(V ); the second involves showing that these
groups act multiply transitively on projective space. Free groups and presentations
are introduced next, for they are useful in constructing and describing arbitrary
groups. The chapter ends with proofs, using topological methods, of the Schreier–
Nielsen Theorem, that every subgroup of a free group is itself a free group, and the
Kurosh Theorem, that every subgroup of a free product is itself a free product.

C-1.1. Group Actions

Group theory originated in Galois theory: groups were subgroups of symmetric
groups on roots of polynomials. In contrast, an abstract group is a set G equipped
with a binary operation (which satisfies some axioms), and its elements need not

1



2 Chapter C-1. More Groups

be functions, let alone permutations. But it is fruitful to view group elements as
permutations, and the next result shows that abstract groups can be so viewed.

Theorem C-1.1 (Cayley). Every group G is isomorphic to a subgroup of the
symmetric group SG. In particular, if |G| = n, then G is isomorphic to a subgroup
of Sn.

Proof. For each a ∈ G, define “translation” τa : G → G by τa(x) = ax for every
x ∈ G (if a �= 1, then τa is not a homomorphism). For a, b ∈ G, (τaτb)(x) =
τa(τb(x)) = τa(bx) = a(bx) = (ab)x, by associativity, so that

τaτb = τab.

It follows that each τa is a bijection, for its inverse is τa−1 :

τaτa−1 = τaa−1 = τ1 = 1G = τa−1a,

and so τa ∈ SG.

Define ϕ : G→ SG by ϕ(a) = τa. Rewriting,

ϕ(a)ϕ(b) = τaτb = τab = ϕ(ab),

so that ϕ is a homomorphism. Finally, ϕ is an injection. Suppose that ϕ(a) = 1G.
Now ϕ(a)(x) = τa(x) = ax; but ϕ(a)(x) = 1G(x) = x for all x ∈ G; that is, a = 1.

The last statement follows from Exercise A-4.46 on page 157 in Part 1, which
says that if X is a set with |X| = n, then SX

∼= Sn. •

The reader may note, in the proof of Cayley’s Theorem, that the permutation
τa : x �→ ax is just the ath row of the multiplication table of G.

To tell the truth, Cayley’s Theorem itself is only mildly interesting, but a
generalization having the identical proof is more useful.

Theorem C-1.2 (Representation on Cosets). If G is a finite group and H is a
subgroup of index n, then there exists a homomorphism ϕ : G→ Sn with kerϕ ⊆ H.

Proof. We denote the family of all the left cosets of H in G by G/H, even though
H may not be a normal subgroup.

For each a ∈ G, define “translation” τa : G/H → G/H by τa(xH) = axH for
every x ∈ G. For a, b ∈ G,

(τaτb)(xH) = τa(τb(xH)) = τa(bxH) = a(bxH) = (ab)xH,

by associativity, so that

τaτb = τab.

It follows that each τa is a bijection, for its inverse is τa−1 :

τaτa−1 = τaa−1 = τ1 = 1G/H = τa−1τa,

and so τa ∈ SG/H . Define ϕ : G→ SG/H by ϕ(a) = τa. Rewriting,

ϕ(a)ϕ(b) = τaτb = τab = ϕ(ab),

so that ϕ is a homomorphism. Finally, if a ∈ kerϕ, then ϕ(a) = 1G/H , so that
τa(xH) = axH = xH for all x ∈ G; in particular, when x = 1, we have aH = H.
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Hence, a ∈ H, by Lemma A-4.42 in Part 1, and ϕ is an injection. The result follows
from Exercise A-4.46 on page 157 in Part 1, for |G/H| = n, and so SG/H

∼= Sn. •

When H = {1}, this is the Cayley Theorem, for then kerϕ = {1} and ϕ is an
injection.

We are now going to classify all groups of order up to 7. By Example A-4.55 in
Part 1, every group of prime order p is isomorphic to Zp, and so, up to isomorphism,
there is just one group of order p. Of the possible orders through 7, four are primes,
namely, 2, 3, 5, and 7, and so we need look only at orders 4 and 6.

Proposition C-1.3. Every group G of order 4 is abelian, and either G ∼= Z4 or
G ∼= V, the four-group. Moreover, Z4 and V are not isomorphic.

Proof. By Lagrange’s Theorem, every element in G has order 1, 2, or 4. If there
is an element of order 4, then G is cyclic. Otherwise, x2 = 1 for all x ∈ G, so that
Exercise A-4.31 on page 138 in Part 1 shows that G is abelian.

Assume that G is not cyclic. If distinct elements x and y in G are chosen,
neither being 1, then we quickly check that xy /∈ {1, x, y}; hence, G = {1, x, y, xy}.
It is easy to see that the bijection f : G→ V, defined by f(1) = 1, f(x) = (1 2)(3 4),
f(y) = (1 3)(2 4), and f(xy) = (1 4)(2 3), is an isomorphism, for the product of any
two nonidentity elements is the third one. We have already seen, in Example A-4.56
in Part 1, that Z4 �∼= V. •

Another proof of Proposition C-1.3 uses Cayley’s Theorem: G is isomorphic to
a subgroup of S4, and it is not too difficult to show, using Table 1 on page 121 in
Part 1, that every subgroup of S4 of order 4 is either cyclic or isomorphic to the
four-group.

Proposition C-1.4. If G is a group of order 6, then G is isomorphic to either Z6

or S3.
1 Moreover, Z6 and S3 are not isomorphic.

Proof.2 By Lagrange’s Theorem, the only possible orders of nonidentity elements
are 2, 3, and 6. Of course, G ∼= Z6 if G has an element of order 6. Now Exer-
cise A-4.33 on page 138 in Part 1 shows that G must contain an element of order
2, say, t. We distinguish two cases.

Case 1. G is abelian.

If there is a second element of order 2, say, a, then it is easy to see, using
at = ta, that H = {1, a, t, at} is a subgroup of G. This contradicts Lagrange’s

1Cayley states this proposition in an article he wrote in 1854. However, in 1878, in the
American Journal of Mathematics, he wrote, “The general problem is to find all groups of a given
order n; . . . if n = 6, there are three groups; a group

1, α, α2, α3, α4, α5 (α6 = 1),

and two more groups

1, β, β2, α, αβ, αβ2 (α2 = 1, β3 = 1),

viz., in the first of these αβ = βα while in the other of them, we have αβ = β2α,αβ2 = βα.”
Cayley’s list is Z6, Z2 × Z3, and S3; of course, Z2 × Z3

∼= Z6. Even Homer nods.
2 We give another proof in Proposition C-1.131.
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Theorem, because 4 is not a divisor of 6. It follows that G must contain an element
b of order 3.3 But tb has order 6, by Proposition A-4.86 in Part 1. Therefore, G is
cyclic if it is abelian.

Case 2. G is not abelian.

If G has no elements of order 3, then x2 = 1 for all x ∈ G, and G is abelian,
by Exercise A-4.31 on page 138 in Part 1. Therefore, G contains an element s of
order 3 as well as the element t of order 2.

Now |
〈
s
〉
| = 3, so that [G :

〈
s
〉
] = |G|/|

〈
s
〉
| = 6/3 = 2, and so

〈
s
〉
is a normal

subgroup of G, by Proposition A-4.65 in Part 1. Since t = t−1, we have tst ∈
〈
s
〉
;

hence, tst = si for i = 0, 1, or 2. Now i �= 0, for tst = s0 = 1 implies s = 1.
If i = 1, then s and t commute, and this gives st of order 6, as in Case 1 (which
forces G to be cyclic, hence abelian, contrary to our present hypothesis). Therefore,
tst = s2 = s−1.

We construct an isomorphism G → S3. Let H =
〈
t
〉
, and consider the homo-

morphism ϕ : G→ SG/H given by

ϕ(g) : xH �→ gxH.

By Theorem C-1.2, kerϕ ⊆ H, so that either kerϕ = {1} (and ϕ is injective)
or kerϕ = H =

〈
t
〉
. Now G/H = {H, sH, s2H} and, in two-rowed permutation

notation,

ϕ(t) =

(
H sH s2H
tH tsH ts2H

)
.

If ϕ(t) is the identity permutation, then tsH = sH, so that s−1ts ∈ H =
〈
t
〉
=

{1, t}, by Lemma A-4.42 in Part 1. But now s−1ts = t (it cannot be 1); hence, ts =
st, contradicting t and s not commuting. Thus, t /∈ kerϕ, and ϕ : G→ SG/H

∼= S3

is an injective homomorphism. Since both G and S3 have order 6, ϕ must be a
bijection, and so G ∼= S3.

It is clear that Z6 �∼= S3, for Z6 is abelian and S3 is not. •

One consequence of this result is that Z6
∼= Z2 × Z3.

Classifying groups of order 8 is more difficult, for we have not yet developed
enough theory. Theorem C-1.132 below says there are only five nonisomorphic
groups of order 8; three are abelian: Z8, Z4 × Z2, and Z2 × Z2 × Z2; two are
nonabelian: the dihedral group D8 and the quaternions Q.

We can continue this discussion for larger orders, but things soon get out of
hand, as Table 1 shows (the number of groups of order 1024 can be found in [19]).
Making a telephone directory of groups is not the way to study them.

Groups arose by abstracting the fundamental properties enjoyed by permu-
tations. But there is an important feature of permutations that the axioms do
not mention: permutations are functions. We shall see that there are interesting
consequences when this feature is restored.

3We will soon prove Cauchy’s Theorem which says that a finite group whose order is divisible
by a prime p must contain an element of order p. In particular, groups of order 6 must contain
an element of order 3.
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Order of Group Number of Groups

2 1
4 2
8 5
16 14
32 51
64 267
128 2, 328
256 56, 092
512 10, 494, 213
1024 49, 487, 365, 422

Table 1. Too many 2-groups.

Definition. A group G acts on a set X if there is a function G×X → X, denoted
by (g, x) �→ gx, such that

(i) (gh)x = g(hx) for all g, h ∈ G and x ∈ X,

(ii) 1x = x for all x ∈ X, where 1 is the identity in G.

If G acts on X, we call X a G-set and we call |X| the degree of X.

Remark. In the definition of action just given, the elements of G act on the left. As
for modules, there is also a “right” version of G-set which is sometimes convenient.
Define a right action to be a function X × G → X, denoted by (x, g) �→ xg,
satisfying

(i) x(gh) = (xg)h for all g, h ∈ G and x ∈ X,

(ii) x1 = x for all x ∈ X, where 1 is the identity in G.

Given a right G-set, we can make it into a left G-set by defining gx = xg−1 for
x ∈ X and g ∈ G.

It is easy to see that every right G-set gives rise to a (left) G-set if we define
G : G×X → X by g−1x = xg. �

We now show that an action of a group G on a set X is merely another way of
viewing a homomorphism G→ SX , where SX is the symmetric group on X.

Theorem C-1.5. Every action α : G×X → X of a group G on a set X determines
a homomorphism G → SX . Conversely, every homomorphism G → SX makes X
into a G-set.

Proof. Given an action α, fixing the first variable, say, g, gives a function αg : X →
X, namely, αg : x �→ gx. This function is a permutation of X, for its inverse is αg−1 :
αgαg−1 = α1 = 1X = αg−1αg. It is easy to see that α : G → SX , defined by
α : g �→ αg, is a homomorphism.

Conversely, given any homomorphism ϕ : G → SX , define α : G×X → X by
α(g, x) = ϕ(g)(x). It is easy to see that α is an action. •
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We say that a G-set X is faithful if the homomorphism α : G → SX is an
injection; that is, G can be viewed (via α) as a subgroup of SX .

The following definitions are fundamental.

Definition. If G acts on X and x ∈ X, then the orbit of x, denoted by O(x), is
the subset

O(x) = {gx : g ∈ G} ⊆ X.

We say that G acts transitively on a set X if there is only one orbit.

The stabilizer of x ∈ X, denoted by Gx, is the subgroup

Gx = {g ∈ G : gx = x} ⊆ G.

The orbit space, denoted by X/G, is the set of all the orbits.

If G acts on a set X, define a relation on X by x ≡ y in case there exists g ∈ G
with y = gx. It is easy to see that this is an equivalence relation whose equivalence
classes are the orbits. The orbit space is the family of equivalence classes.

Cayley’s Theorem says that a group G acts on itself by (left) translations, and
its generalization, Theorem C-1.2, shows that G also acts on the family of (left)
cosets of a subgroup H by (left) translations.

Example C-1.6. We show that G acts on itself by conjugation. For each g ∈ G,
define αg : G→ G to be conjugation

αg(x) = gxg−1.

To verify axiom (i), note that for each x ∈ G,

(αgαh)(x) = αg(αh(x)) = αg(hxh
−1)

= g(hxh−1)g−1 = (gh)x(gh)−1 = αgh(x).

Therefore, αgαh = αgh. To prove axiom (ii), note that α1(x) = 1x1−1 = x for each
x ∈ G, and so α1 = 1G. �

Let us find some orbits and stabilizers.

Example C-1.7. Cayley’s Theorem says that G acts on itself by translations:
τg : a �→ ga. If a ∈ G, then the orbit O(a) = G, for if b ∈ G, then b = (ba−1)a =
τba−1(a). The stabilizer Ga of a ∈ G is {1}, for if a = τg(a) = ga, then g = 1.

More generally, G acts transitively on G/H (the family of (left) cosets of a
(not necessarily normal) subgroup H) by translations τg : aH �→ gaH. The orbit
O(aH) = G/H, for if bH ∈ G/H, then τba−1 : aH �→ bH. The stabilizer GaH of
the coset aH is aHa−1, for gaH = aH if and only if a−1ga ∈ H if and only if
g ∈ aHa−1. �

Example C-1.8. Let X = {1, 2, . . . , n}, let α ∈ Sn, and define the obvious action
of the cyclic group G =

〈
α
〉
on X by αk · i = αk(i). If i ∈ X, then

O(i) = {αk(i) : 0 ≤ k < |G|}.
Suppose the complete factorization of α is α = β1 · · ·βt(α) and i = i1 is moved by α.
If the cycle involving i1 is βj = (i1 i2 . . . ir), then the proof of Theorem A-4.4 in
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Part 1 shows that ik+1 = αk(i1) for all k < r, while αr(i1) = α(αr−1(i1)) = α(ir) =
i1. Therefore,

O(i) = {i1, i2, . . . , ir},
where i = i1. It follows that |O(i)| = r, the length of the cycle βj .

The stabilizer Gi of a number i is G if α fixes i; however, if α moves i, then
Gi depends on the size of the orbit O(i). For example, if α = (1 2 3)(4 5)(6), then
G6 = G, G1 =

〈
α3
〉
, and G4 =

〈
α2
〉
. �

Example C-1.9. Let k be a field and let f(x) ∈ k[x] have distinct roots. If E/k is
a splitting field of f , then Gal(E/k) acts faithfully on the set X of the roots of f .
Moreover, f is irreducible if and only if the action of Gal(E/k) on X is transitive
(Rotman [188], p. 95). �

Example C-1.10. The general linear group GL(Rn) acts on Rn−{0}: if T : Rn →
Rn is a nonsingular linear transformation, then the action is given by v �→ Tv. This
action is transitive, and if v ∈ Rn is nonzero, then the stabilizer of v is the line
containing v and the origin.

There is a matrix version of this action. If GL(n,R) is the multiplicative group
of all nonsingular n × n real matrices, then GL(n,R) acts once a basis of Rn is
chosen. In particular, if e1, . . . , en is the standard basis, then each nonzero v ∈ Rn

has coordinates v = (x1, . . . , xn), and if A ∈ GL(n,R), then Av is the matrix
product Av�. �

Example C-1.11. Let X = {v0, v1, v2, v3} be the vertices of a square, and let G
be the dihedral group D8 acting on X, as in Figure C-1.1 (for clarity, the vertices
in the figure are labeled 0, 1, 2, 3 instead of v0, v1, v2, v3). The lines in the bottom
four squares are axes of symmetry.
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3

01

2 30 1

23 0

21

3

0

1 2

3
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12

3

01

2 3 0 1

23

Figure C-1.1. Dihedral group D8.

Thus,

G = {rotations} ∪ {reflections}
= {(1), (0 1 2 3), (0 2)(1 3), (0 3 2 1)} ∪ {(1 3), (0 2), (0 1)(2 3), (0 3)(1 2)}.

For each vertex vi ∈ X, there is some g ∈ G with gv0 = vi; therefore, O(v0) = X
and D8 acts transitively.
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What is the stabilizer Gv0 of v0? Aside from the identity, only one g ∈ D8 fixes
v0, namely, g = (1 3); hence, Gv0 is a subgroup of order 2. (This example can be
generalized to the dihedral group D2n acting on a regular n-gon.) �

Example C-1.12. When a group G acts on itself by conjugation, then the orbit
O(x) of x ∈ G is commonly denoted by

xG = {y ∈ G : y = axa−1 for some a ∈ G}.
The orbit O(x) is called the conjugacy class of x (we have already mentioned
conjugacy classes in Exercise A-4.49 on page 157 in Part 1). Theorem A-4.7 in
Part 1 shows that if α ∈ Sn, then the conjugacy class of α consists of all the
permutations in Sn having the same cycle structure as α. Also, an element z lies
in the center Z(G) if and only if zG = {z}; that is, no other elements in G are
conjugate to z.

If x ∈ G, then the stabilizer Gx of x is

CG(x) = {g ∈ G : gxg−1 = x}.
This subgroup of G, consisting of all g ∈ G that commute with x, is called the
centralizer of x in G. �

Example C-1.13. Every group G acts by conjugation on the set X of all its
subgroups: if a ∈ G, then a acts by H �→ aHa−1, where H ⊆ G.

If H is a subgroup of a group G, then a conjugate of H is a subgroup of G of
the form

aHa−1 = {aha−1 : h ∈ H},
where a ∈ G. Conjugation h �→ aha−1 is an injection H → G with image aHa−1.
It follows that conjugate subgroups of G are isomorphic; the inverse is given by
g �→ a−1ga. For example, in S3, all cyclic subgroups of order 2 are conjugate (for
their generators are conjugate).

The orbit of a subgroup H consists of all its conjugates; notice that H is the
only element in its orbit if and only if H � G; that is, aHa−1 = H for all a ∈ G.
The stabilizer of H is

NG(H) = {g ∈ G : gHg−1 = H}.
This subgroup of G is called the normalizer of H in G. Of course, H �NG(H);
indeed, the normalizer is the largest subgroup of G in which H is normal. �

We have already defined the centralizer of an element; we now define the cen-
tralizer of a subgroup.

Definition. If H is a subgroup of a group G, then the centralizer of H in G is

CG(H) = {g ∈ G : gh = hg for all h ∈ H}.

It is easy to see that CG(H) is a subgroup of G, and CG(G) = Z(G). Note
that CG(H) ⊆ NG(H).

Recall that an automorphism α of a group G is inner if it is conjugation by
some a ∈ G; that is, α = αa : x �→ axa−1.
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Proposition C-1.14 (N/C Lemma).

(i) If H ⊆ G, then CG(H)�NG(H) and there is an imbedding

NG(H)/CG(H) ↪→ Aut(H).

(ii) G/Z(G) ∼= Inn(G), where Inn(G) is the subgroup of Aut(G) consisting of all
the inner automorphisms.

Proof.

(i) If a ∈ G, denote conjugation g �→ aga−1 by γa. Define ϕ : NG(H)→ Aut(H)
by ϕ : a �→ γa|H. Note that ϕ is well-defined, for γa|H ∈ Aut(H) because
a ∈ NG(H). It is routine to check that ϕ is a homomorphism. Now the
following statements are equivalent: a ∈ kerϕ; γa|H = 1H ; aha−1 = h for all
h ∈ H; a ∈ CG(H). The First Isomorphism Theorem gives CG(H)�NG(H)
and NG(H)/CG(H) ∼= imϕ ⊆ Aut(H).

(ii) In the special case H = G, we have NG(H) = G, CG(H) = Z(G), and
imϕ = Inn(G). •

Remark. We claim that Inn(G)�Aut(G). If ϕ ∈ Aut(G) and g ∈ G, then

ϕγaϕ
−1 : g �→ ϕ−1g �→ aϕ−1ga−1 �→ ϕ(a)gϕ(a−1).

Thus, ϕγaϕ
−1 = γϕ(a) ∈ Inn(G). Recall that an automorphism is called outer if

it is not inner; the outer automorphism group is defined by

Out(G) = Aut(G)/Inn(G). �

Proposition C-1.15. If G acts on a set X, then X is the disjoint union of the
orbits. If X is finite, then

|X| =
∑
i

|O(xi)|,

where one xi is chosen from each orbit.

Proof. As we have mentioned earlier, the relation on X, given by x ≡ y if there
exists g ∈ G with y = gx, is an equivalence relation whose equivalence classes are
the orbits. Therefore, the orbits partition X.

The count given in the second statement is correct: since the orbits are disjoint,
no element in X is counted twice. •

Here is the connection between orbits and stabilizers.

Theorem C-1.16 (Orbit-Stabilizer Theorem). If G acts on a set X and x ∈
X, then

|O(x)| = [G : Gx],

the index of the stabilizer Gx in G.

Proof. Let G/Gx denote the family of all the left cosets of Gx in G. We will exhibit
a bijection ϕ : G/Gx → O(x), and this will give the result, since |G/Gx| = [G : Gx].
Define ϕ : gGx �→ gx. Now ϕ is well-defined: if gGx = hGx, then h = gf for
some f ∈ Gx; that is, fx = x; hence, hx = gfx = gx. Now ϕ is an injection: if
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gx = ϕ(gGx) = ϕ(hGx) = hx, then h−1gx = x; hence, h−1g ∈ Gx, and gGx = hGx.
Lastly, ϕ is a surjection: if y ∈ O(x), then y = gx for some g ∈ G, and so
y = ϕ(gGx). •

In Example C-1.11, D8 acting on the four corners of a square, we saw that
|O(v0)| = 4, |Gv0 | = 2, and [G : Gv0 ] = 8/2 = 4. In Example C-1.8, G =

〈
α
〉
⊆ Sn

acting onX = {1, 2, . . . , n}, we saw that if α = β1 · · ·βt is the complete factorization
into disjoint cycles and � occurs in the rj-cycle βj , then rj = |O(�)|. Theorem C-1.16
says that rj is a divisor of the order k of α (but Theorem A-4.24 in Part 1 tells us
more: k is the lcm of the lengths of the cycles occurring in the factorization).

Corollary C-1.17. If a finite group G acts on a finite set X, then the number of
elements in any orbit is a divisor of |G|.

Proof. This follows at once from Lagrange’s Theorem and Theorem C-1.16. •

Table 1 on page 121 in Part 1 displays the number of permutations in S4 of
each cycle structure; these numbers are 1, 6, 8, 6, 3. Note that each of these
numbers is a divisor of |S4| = 24. Table 2 on page 121 in Part 1 shows that the
corresponding numbers for S5 are 1, 10, 20, 30, 24, 20, and 15, and these are all
divisors of |S5| = 120. We now recognize these subsets as being conjugacy classes,
and the next corollary explains why these numbers divide the group order.

Corollary C-1.18. If x lies in a finite group G, then the number of conjugates
of x is the index of its centralizer :

|xG| = [G : CG(x)],

and hence it is a divisor of |G|.

Proof. As in Example C-1.12, the orbit of x is its conjugacy class xG, and the
stabilizer Gx is the centralizer CG(x). •

Corollary C-1.19. If H is a subgroup of a finite group G, then the number of
conjugates of H in G is [G : NG(H)].

Proof. As in Example C-1.13, the orbit of H is the family of all its conjugates,
and the stabilizer is its normalizer NG(H). •

When we began classifying groups of order 6, it would have been helpful to
be able to assert that any such group has an element of order 3 (we were able to
use an earlier exercise to assert the existence of an element of order 2). We now
prove that if p is a prime divisor of |G|, where G is a finite group, then G contains
an element of order p (Proposition A-4.81 in Part 1 proved the special case of this
when G is abelian).

Theorem C-1.20 (Cauchy). If G is a finite group whose order is divisible by a
prime p, then G contains an element of order p.
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Proof. We prove the theorem by induction on m ≥ 1, where |G| = pm. The base
step m = 1 is true, for Lagrange’s Theorem shows that every nonidentity element
in a group of order p has order p.

Let us now prove the inductive step. If x ∈ G, then the number of conjugates of
x is |xG| = [G : CG(x)], where CG(x) is the centralizer of x in G. If x /∈ Z(G), then
xG has more than one element, and so |CG(x)| < |G|. We are done if p | |CG(x)|,
for the inductive hypothesis gives an element of order p in CG(x) ⊆ G. Therefore,
we may assume that p � |CG(x)| for all noncentral x ∈ G. Better, since p is prime
and |G| = [G : CG(x)]|CG(x)|, Euclid’s Lemma gives

p | [G : CG(x)].

After recalling that Z(G) consists of all those elements x ∈ G with |xG| = 1,
we may use Proposition C-1.15 to see that

|G| = |Z(G)|+
∑
i

[G : CG(xi)],(1)

where one xi is selected from each conjugacy class having more than one element.
Since |G| and all [G : CG(xi)] are divisible by p, it follows that |Z(G)| is divisible
by p. But Z(G) is abelian, and so Proposition A-4.81 in Part 1 says that Z(G),
and hence G, contains an element of order p. •

The next definition, which specializes Proposition C-1.15, gives a name to
Eq. (1) in the proof of Cauchy’s Theorem.

Definition. The class equation of a finite group G is

|G| = |Z(G)|+
∑
i

[G : CG(xi)],

where one xi is selected from each conjugacy class having more than one element.

Definition. If p is prime, then a group G is called a p-group if every element has
order a power of p.

Proposition C-1.21. A finite group G is a p-group if and only if |G| = pn for
some n ≥ 0.

Proof. Let G be a finite p-group. If |G| �= pn, then there is some prime q �= p with
q | |G|. By Cauchy’s Theorem, G contains an element of order q, a contradiction.
The converse follows from Lagrange’s Theorem. •

We have seen examples of groups whose center is trivial; for example, Z(S3) =
{(1)}. Finite p-groups, however, are never centerless.

Theorem C-1.22. If p is prime and G �= {1} is a finite p-group, then the center
of G is nontrivial; Z(G) �= {1}.
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Proof. Consider the class equation

|G| = |Z(G)|+
∑
i

[G : CG(xi)].

Each CG(xi) is a proper subgroup of G, for xi /∈ Z(G). Since G is a p-group,
[G : CG(xi)] is a divisor of |G|, hence is itself a power of p. Thus, p divides each
of the terms in the class equation other than |Z(G)|, and so p | |Z(G)| as well.
Therefore, Z(G) �= {1}. •

McLain gave an example of an infinite p-group G with Z(G) = {1} (see Robin-
son [181], p. 362).

Corollary C-1.23. If p is prime, then every group G of order p2 is abelian.

Proof. If G is not abelian, then its center Z(G) is a proper subgroup, so that
|Z(G)| = 1 or p, by Lagrange’s Theorem. But Theorem C-1.22 says that Z(G) �=
{1}, and so |Z(G)| = p. The center is always a normal subgroup, so that the
quotient G/Z(G) is defined; it has order p, and hence G/Z(G) is cyclic. This
contradicts Exercise A-4.79 on page 172 in Part 1. •

We note that Corollary C-1.23 is false for higher powers of p; for example, the
subgroup of GL(3,Fp) consisting of all upper triangular matrices⎡⎣1 a b

0 1 c
0 0 1

⎤⎦ ,

for a, b, c ∈ Fp, is a nonabelian group of order p3.

Example C-1.24. Who would have guessed that Cauchy’s Theorem (if G is a
group whose order is a multiple of a prime p, then G has an element of order p) and
Fermat’s Theorem (if p is prime, then ap ≡ a mod p) can be proved simultaneously?
The elementary yet ingenious proof of Cauchy’s Theorem is due to McKay in 1959
(Montgomery–Ralston [158], p. 41); A. Mann showed me that McKay’s argument
also proves Fermat’s Theorem.

If G is a finite group and p is prime, denote the cartesian product of p copies
of G by Gp, and define

X = {(a0, a1, . . . , ap−1) ∈ Gp : a0a1 · · · ap−1 = 1}.
Note that |X| = |G|p−1, for having chosen the last p− 1 entries arbitrarily, the 0th
entry must equal (a1a2 · · · ap−1)

−1. Introduce an action of Zp on X by defining, for
0 ≤ i ≤ p− 1,

[i](a0, a1, . . . , ap−1) = (ai, ai+1, . . . , ap−1, a0, a1, . . . , ai−1).

The product of the entries in the new p-tuple is a conjugate of a0a1 · · · ap−1:

aiai+1 · · · ap−1a0a1 · · · ai−1 = (a0a1 · · · ai−1)
−1(a0a1 · · · ap−1)(a0a1 · · · ai−1).

This conjugate is 1 (for a0a1 · · · ap−1 = 1), and so [i](a0, a1, . . . , ap−1) ∈ X. By
Corollary C-1.17, the size of every orbit of X is a divisor of |Zp| = p; since p is
prime, these sizes are either 1 or p. Now orbits with just one element consist of a
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p-tuple all of whose entries ai are equal, for all cyclic permutations of the p-tuple
are the same. In other words, such an orbit corresponds to an element a ∈ G with
ap = 1. Clearly, (1, 1, . . . , 1) is such an orbit; if it were the only such orbit, then we
would have

|G|p−1 = |X| = 1 + kp

for some k ≥ 0; that is, |G|p−1 ≡ 1 mod p. If p is a divisor of |G|, then we have a
contradiction, for |G|p−1 ≡ 0 mod p. We have thus proved Cauchy’s Theorem: if a
prime p is a divisor of |G|, then G has an element of order p.

Choose a group G of order n, say, G = Zn, where n is not a multiple of p. By
Lagrange’s Theorem, G has no elements of order p, so that if ap = 1, then a = 1.
Therefore, the only orbit in Gp of size 1 is (1, 1, . . . , 1), and so

np−1 = |G|p−1 = |X| = 1 + kp;

that is, if p is not a divisor of n, then np−1 ≡ 1 mod p. Multiplying both sides by n,
we have np ≡ n mod p, a congruence also holding when p is a divisor of n; this is
Fermat’s Theorem. �

We have seen, in Proposition A-4.67 in Part 1, that A4 is a group of order 12
having no subgroup of order 6. Thus, the assertion that if d is a divisor of |G|, then
G must have a subgroup of order d, is false. However, this assertion is true when
G is a finite p-group.

Proposition C-1.25. If G is a p-group of order p�, then G has a normal subgroup
of order pk for every k ≤ �.

Proof. We prove the result by induction on � ≥ 0. The base step is obviously true,
and so we proceed to the inductive step. By Theorem C-1.22, the center of G is a
nontrivial normal subgroup: Z(G) �= {1}. Let Z ⊆ Z(G) be a subgroup of order p;
as any subgroup of Z(G), the subgroup Z is a normal subgroup of G. If k ≤ �,
then pk−1 ≤ p�−1 = |G/Z|. By induction, G/Z has a normal subgroup H∗ of order
pk−1. The Correspondence Theorem says there is a subgroup H of G containing Z
with H∗ = H/Z; moreover, H∗ � G/Z implies H � G. But |H/Z| = pk−1 implies
|H| = pk, as desired. •

Abelian groups (and the quaternions) have the property that every subgroup is
normal. At the opposite pole are simple groups G which have no normal subgroups
other than the two obvious ones: {1} and G. We proved, in Part 1, that an abelian
group is simple if and only if it is finite and of prime order; Proposition C-1.25
shows that a finite p-group of order at least p2 is not simple. We also saw, in
Part 1, that the alternating groups An are simple for all n ≥ 5. In fact, A5 is the
smallest nonabelian simple group; there are no simple nonabelian groups of order
less than 60. We will consider other simple groups later in this chapter.
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Exercises

C-1.1. (i) If V is an n-dimensional vector space over a field k, prove that GL(n, k) acts
on Matn(k) by conjugation: if P ∈ GL(n, k) and A ∈ Matn(k), then the action
takes A to PAP−1.

(ii) Prove that there is a bijection from the orbit space Matn(k)/GL(n, k) (the family
of all orbits) to Homk(V, V ).

C-1.2. If a and b are elements in a group G, prove that ab and ba have the same order.

Hint. Use a conjugation.

C-1.3. Prove that if G is a finite group of odd order, then only the identity is conjugate
to its inverse.

Hint. If x is conjugate to x−1, how many elements are in xG?

C-1.4. Prove that no two of the following groups of order 8 are isomorphic:

Z8; Z4 × Z2; Z2 × Z2 × Z2; D8; Q.

∗ C-1.5. Show that S4 has a subgroup isomorphic to D8.

∗ C-1.6. Prove that S4/V ∼= S3, where V is the four-group.

Hint. Use Proposition C-1.4.

∗ C-1.7. (i) Prove that A4 �∼= D12.

Hint. Recall that A4 has no element of order 6.

(ii) Prove that D12
∼= S3 × Z2.

Hint. Each element x ∈ D12 has a unique factorization of the form x = biaj , where
b6 = 1 and a2 = 1.

∗ C-1.8. (i) If G is a group, then a normal subgroup H �G is called a maximal normal
subgroup if there is no normal subgroup K of G with H � K � G. Prove that
a normal subgroup H is a maximal normal subgroup of G if and only if G/H is a
simple group.

(ii) Prove that every finite abelian group G has a subgroup of prime index.
Hint. Use Proposition A-4.92 in Part 1.

(iii) Prove that A6 has no subgroup of prime index.

C-1.9. (i) (Landau) Given a positive integer n and a positive rational q, prove that there
are only finitely many n-tuples (i1, . . . , in) of positive integers with q =

∑n
j=1 1/ij .

(ii) Prove, for every positive integer n, that there are only finitely many finite groups
having exactly n conjugacy classes.
Hint. Use part (i) and the class equation.

C-1.10. Find NG(H) if G = S4 and H =
〈
(1 2 3)

〉
.

∗ C-1.11. If H is a proper subgroup of a finite group G, prove that G is not the union of
all the conjugates of H: that is, G �=

⋃
x∈G xHx−1.
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∗ C-1.12. (i) If H is a subgroup of G and x ∈ H, prove that

CH(x) = H ∩ CG(x).

(ii) If H is a subgroup of index 2 in a finite group G and x ∈ H, prove that either
|xH | = |xG| or |xH | = 1

2
|xG|, where xH is the conjugacy class of x in H.

Hint. Use the Second Isomorphism Theorem.

(iii) Prove that there are two conjugacy classes of 5-cycles in A5, each of which has 12
elements.
Hint. If α = (1 2 3 4 5), then |CS5(α)| = 5 because 24 = 120/|CS5(α)|; hence,
CS5(α) =

〈
α
〉
. What is CA5(α)?

(iv) Prove that the conjugacy classes in A5 have sizes 1, 12, 12, 15, and 20.

C-1.13. (i) Prove that every normal subgroup H of a group G is a union of conjugacy
classes of G, one of which is {1}.

(ii) Use part (i) and Exercise C-1.12 to give a second proof of the simplicity of A5.

∗ C-1.14. (i) For all n ≥ 5, prove that all 3-cycles are conjugate in An.

Hint. Show that (1 2 3) and (i j k) are conjugate by considering two cases: they
are not disjoint (so they move at most 5 letters); they are disjoint.

(ii) Prove that if a normal subgroup H of An contains a 3-cycle, where n ≥ 5, then
H = An. (Remark. We have proved this in Lemma A-4.93 in Part 1 when n = 5.)

C-1.15. Prove that the only normal subgroups of S4 are {(1)}, V, A4, and S4.

Hint. Use Theorem A-4.7 in Part 1, checking the various cycle structures one at a time.

C-1.16. Prove that A5 is a group of order 60 that has no subgroup of order 30.

∗ C-1.17. (i) Prove, for all n ≥ 5, that the only normal subgroups of Sn are {(1)}, An,
and Sn.

Hint. If H � Sn is a proper subgroup and H �= An, then H ∩ An = {(1)}.

(ii) Prove that if n ≥ 3, then An is the only subgroup of Sn of order 1
2
n!.

Hint. If H is a second such subgroup, then H � Sn and (H ∩ An)�An.

(iii) Prove that S5 is a group of order 120 having no subgroup of order 30.
Hint. Use the representation on the cosets of a supposed subgroup of order 30, as
well as the simplicity of A5.

(iv) Prove that S5 contains no subgroup of order 40.

∗ C-1.18. (i) Let σ, τ ∈ S5, where σ is a 5-cycle and τ is a transposition. Prove that
S5 =

〈
σ, τ
〉
.

(ii) Give an example showing that Sn, for some n, contains an n-cycle σ and a trans-
position τ such that

〈
σ, τ
〉
�= Sn.

∗ C-1.19. Let G be a subgroup of Sn.

(i) If G ∩An = {1}, prove that |G| ≤ 2.

(ii) If G is a simple group with more than two elements, prove that G ⊆ An.

∗ C-1.20. (i) If n ≥ 5, prove that Sn has no subgroup of index r, where 2 < r < n.

(ii) Prove that if n ≥ 5, then An has no subgroup of index r, where 2 ≤ r < n.
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C-1.21. (i) Prove that if a simple group G has a subgroup of index n > 1, then G is
isomorphic to a subgroup of Sn.

Hint. Kernels are normal subgroups.

(ii) Prove that an infinite simple group (such do exist) has no subgroups of finite index
n > 1.
Hint. Use part (i).

∗ C-1.22. If G is a group of order n, prove that G is isomorphic to a subgroup of GL(n, k),
where k is a field.

Hint. If σ ∈ Sn, then the n×n permutation matrix Pσ is the matrix obtained from the
n× n identity matrix by permuting its columns via σ. Show that σ 
→ Pσ is an injective
homomorphism Sn → GL(n, k).

∗ C-1.23. Let G be a group with |G| = mp, where p is prime and 1 < m < p. Prove that
G is not simple.

Hint. Show that G has a subgroup H of order p, and use the representation of G on the
cosets of H.

Remark. We can now show that all but 11 of the numbers smaller than 60 are not
orders of nonabelian simple groups (namely, 12, 18, 24, 30, 36, 40, 45, 48, 50, 54, 56).
Theorem C-1.22 eliminates all prime powers (for the center is always a normal subgroup),
and this exercise eliminates all numbers of the form mp, where p is prime and m < p. �

∗ C-1.24. (i) Let a group G act on a set X, and suppose that x, y ∈ X lie in the same
orbit: y = gx for some g ∈ G. Prove that Gy = gGxg

−1.

(ii) Let G be a finite group acting on a set X; prove that if x, y ∈ X lie in the same
orbit, then |Gx| = |Gy|.

Graphs

The Cayley graph of a group G is a nice set on which G acts. Here is a short
account of graphs and directed graphs.

Definition. A graph Γ is an ordered pair Γ = (V,E), where V is a nonempty
set, called vertices, and E is a symmetric relation on V , called adjacency. If
(u, v) ∈ E, we write u ∼ v, and we call {u, v} the edge connecting u and v (since
adjacency is a symmetric relation, {v, u} = {u, v} is another name of the edge).4

Given a graph Γ = (V,E), we may write

Vert(Γ) = V and Edge(Γ) = E.

If Γ = (V,E) and Γ′ = (V ′, E′) are graphs, an isomorphism ϕ : Γ → Γ′

is a bijection ϕ : V → V ′ that preserves adjacency; that is, if u ∼ v in Γ, then
ϕ(u) ∼ ϕ(v) in Γ′. When Γ = Γ′, an isomorphism is called an automorphism,
and all automorphisms of Γ form a group under composition, denoted by

Aut(Γ).

4A related notion is that of multigraph, which may have more than one edge between a pair
of vertices.
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An edge of the form {v, v} (that is, v ∼ v) is called trivial. A graph is discrete
if it has no edges; it is complete if it has no trivial edges and every distinct pair
of vertices are adjacent.

Given a graph Γ = (V,E) and vertices u, v ∈ V , a path connecting u and v is
a sequence of edges {u0, u1}, {u1, u2}, . . . , {un−1, un} with u1 = u and un = v. A
graph is connected if, for each pair of distinct vertices, there is a path connecting
them. A path α = e1 · · · en is reduced if either α is trivial, i.e., α = (v, v), or if no
ei is trivial and no edge ej = (u, v) is adjacent to its inverse (v, u). A circuit is a
reduced closed path. A tree is a connected graph having no circuits.

If Γ is a finite graph, that is, if Γ has only finitely many vertices, say Vert(Γ) =
{v1, . . . , vn}, then its adjacency matrix [aij ] is the n×n symmetric matrix, where

aij =

{
1 if vi ∼ vj ,

0 if vi �∼ vj .

If Γ has no trivial edges, then its adjacency matrix has only 0’s on its diagonal.
The adjacency matrix of a complete graph with n vertices has 0’s on the diagonal
and 1’s everywhere else.

Graphs can be pictured. For example, if Γ is finite with Vert(Γ) = {v1, . . . , vn},
draw n points in the plane, label each with a vertex, and draw a line segment (an
edge) connecting each pair of adjacent vertices. A trivial edge is a point v having
a circular edge from v to v.

Here are some pictures; the first graph is not connected; the others are con-
nected. Graphs (ii) and (v) are trees.

(i) A discrete graph with 2 vertices.

v1 v2

(ii) An edge.

v1 v2

(iii) A triangle (which is a complete graph on 3 vertices)

v1

��
��
��
��

��
��

��
��

v2 v3

(iv) A square

v1 v2

v3 v4

(v) The natural numbers N, where n and n+ 1 are adjacent for all n ≥ 0

0 1 2 · · · vn vn+1 · · ·
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Here are the adjacency matrices of graphs (i) through (iv) (the adjacency matrix
of (v) is infinite).

[
0 0
0 0

]
,

[
0 1
1 0

]
,

⎡⎣0 1 1
1 0 1
1 1 0

⎤⎦ ,

⎡⎢⎢⎣
0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

⎤⎥⎥⎦ .

Remark. If Γ is a finite graph with n vertices and no trivial edges, let V (Γ) be the
vector space over F2 having basis Γ. Now the adjacency matrix A = [aij ] of Γ is a
symmetric matrix of 0’s and 1’s having all diagonal elements zero. If we regard A
as a matrix with entries in F2, then we may view V (Γ) as an inner product space,
where (vi, vj) = aij . Thus, (vi, vj) = 1 if and only if vi and vj are adjacent in Γ. If
we assume that A is nonsingular, that is, det(A) is odd, then V (Γ) is an alternating
space. If T is an n × n symplectic matrix, then (Tvi, T vj) = (vi, vj); that is, T
preserves adjacency. In other words, Aut(Γ) is a subgroup of Sp(n,F2).

Note that if its adjacency matrix A is nonsingular, then Γ must have an
even number of vertices (for nondegenerate alternating spaces are even-dimensional
(Corollary B-3.99 in Part 1)). It can be shown that the complete graph K2n is non-
singular (see Theorem 3.1 and §5 in Hughes–Singhi [100]). �

Definition. A directed graph Γ (or digraph) is an ordered pair Γ = (V,E),
where V is a nonempty set called vertices and E ⊆ V × V is a (not necessarily
symmetric) relation on V . If (u, v) ∈ E, then we call e = (u, v) a (directed) edge
from u to v. If e = (u, v) is an edge, we write o(e) = u (the origin of e) and
t(e) = v (the terminus of e). If Γ = (V,E) is a directed graph, we may write

Vert(Γ) = V and Edge(Γ) = E.

Given a directed graph Γ = (V,E) and vertices u, v ∈ V , a path p from u to
v is a sequence of edges e1 = (u0, u1), e2 = (u1, u2), . . . , en = (un−1, un) with
o(e1) = u1 = u, t(ei) = o(ei+1) for all 1 ≤ i < n, and t(en) = un = v. A directed
graph is connected if, for each pair of distinct vertices, there is a path p connecting
them. Define the length � of a path p = e1, e2, . . . , en to be n; that is, �(p) = n.

Directed graphs are usually labeled : both vertices and edges have names.

The most important directed graph for us is the Cayley graph.

Definition. Let G be a finitely generated group and let S be a finite generating set:
G = 〈S〉. The Cayley graph Γ = Γ(G,S) is the directed graph with Vert(Γ) = G
and edges e = (g, gs), where g ∈ G and s ∈ S.

There are two variations. Some (e.g., Serre [202]) assume, for every edge
e = (u, v), there is an inverse edge e−1 = (v, u); moreover, some assume the
generating set S is symmetric; that is, if s ∈ S, then s−1 ∈ S (remember, S is
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a subset of a group). Note that if e = (g, gs), then e−1 = (gs, g). (We note that
the Cayley graph of a group G does depend on the choice of generating set S.)
Exercise C-1.26 on page 19 says that Cayley graphs are always connected.

Example C-1.26. Here is the Cayley graph of the symmetric group S3 with gen-
erating set S = {α, β}, where α = (1 2 3) and β = (1 2).

β2

β

α

��
��

��
��

��
��

��
��

��
��

��
��

��

α

��
��
��
��
��
��
��
��
��
��
��
��
�

1

α

��
��
��
��

α

��
��

��
��

α2

β��
��
��
��

α
α

β ��
��

��
��

�

βα
α

βα2 �

Proposition C-1.27. If G = 〈S〉 is a group generated by a subset S, then G acts
on the Cayley graph Γ = Γ(G,S).

Proof. If a ∈ G, define ag (where g ∈ G = Vert(Γ)) and a(g, gs) = (ag, ags),
where (g, gs) ∈ Edge(Γ). •

Exercises

C-1.25. If ϕ : Γ → Γ′ is an isomorphism of graphs, prove that Γ is connected if and only
if Γ′ is connected, and that Γ is a tree if and only if Γ′ is a tree.

∗ C-1.26. Let G be a group generated by a subset S, and let Γ(G, S) be the corresponding
Cayley graph. Use the fact that S generates G to prove that the Cayley graph Γ(G,S) is
connected.

∗ C-1.27. Prove that every Cayley graph Γ(G,S) is a metric space if we define

d(u, v) = �(p),

where p is the shortest path from u to v and �(p) is its length.

C-1.28. Let G be a free abelian group of rank 2 with basis S = x, y. Prove that the
vertices of the Cayley graph Γ(G, S) are all the lattice points in the plane.
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Counting

We now use groups to solve some difficult counting problems.

Theorem C-1.28 (Burnside’s Lemma).5 Let G be a finite group acting on a
finite set X. If N is the number of orbits, then

N =
1

|G|
∑
τ∈G

Fix(τ ),

where Fix(τ ) is the number of x ∈ X fixed by τ .

Proof. List the elements of X as follows: choose x1 ∈ X, and then list all the
elements x1, x2, . . . , xr in the orbit O(x1); then choose xr+1 /∈ O(x1), and list the
elements xr+1, xr+2, . . . in O(xr+1); continue this procedure until all the elements
of X are listed. Now list the elements τ1, τ2, . . . , τn of G, and form Figure C-1.2,
where

fi,j =

{
1 if τi fixes xj ,

0 if τi moves xj .

x1 x2 · · · xr+1 xr+2 · · ·
τ1 f1,1 f1,2 · · · f1,r+1 f1,r+2 · · ·
τ2 f2,1 f2,2 · · · f2,r+1 f2,r+2 · · ·

τi fi,1 fi,2 · · · fi,r+1 fi,r+2 · · ·

τn fn,1 fn,2 · · · fn,r+1 fn,r+2 · · ·

Figure C-1.2. Burnside’s Lemma.

Now Fix(τi), the number of x fixed by τi, is the number of 1’s in the ith row of the
array; therefore,

∑
τ∈G Fix(τ ) is the total number of 1’s in the array. Let us now

look at the columns. The number of 1’s in the first column is the number of τi that
fix x1; by definition, these τi comprise Gx1

. Thus, the number of 1’s in column 1
is |Gx1

|. Similarly, the number of 1’s in column 2 is |Gx2
|. By Exercise C-1.24 on

page 16, |Gx1
| = |Gx2

|. By Theorem C-1.16, the number of 1’s in the r columns
labeled by the xi ∈ O(x1) is thus

r|Gx1
| = |O(x1)| · |Gx1

| = (|G|/|Gx1
|) |Gx1

| = |G|.
The same is true for any other orbit: its columns collectively contain exactly |G|
1’s. Therefore, if there are N orbits, there are N |G| 1’s in the array. We conclude
that ∑

τ∈G

Fix(τ ) = N |G|. •

5Burnside himself attributed this lemma to Frobenius. To avoid the confusion that would
be caused by changing a popular name, P. M. Neumann has suggested that it be called “not-
Burnside’s Lemma”. Burnside was a fine mathematician, and there do exist theorems properly
attributed to him. For example, Burnside proved that there are no simple groups of order pmqn,
where p and q are primes.
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We are going to use Burnside’s Lemma to solve problems of the following sort.
How many striped flags are there having six stripes (of equal width) each of which
can be colored red, white, or blue? Clearly, the two flags in Figure C-1.3 are the
same: the bottom flag is just the top one rotated about its center.

r w b r w b

b w r b w r

Figure C-1.3. Striped flags.

Let X be the set of all 6-tuples of colors; if x ∈ X, then

x = (c1, c2, c3, c4, c5, c6),

where each ci denotes either red, white, or blue. Let τ be the permutation that
reverses all the indices:

τ =

(
1 2 3 4 5 6
6 5 4 3 2 1

)
= (1 6)(2 5)(3 4)

(thus, τ “rotates” each 6-tuple x of colored stripes). The cyclic group G =
〈
τ
〉

acts on X; since |G| = 2, the orbit of any 6-tuple x consists of either one or two
elements: either τ fixes x or it does not. Since a flag is unchanged by rotation, it
is reasonable to identify a flag with an orbit of a 6-tuple. For example, the orbit
consisting of the 6-tuples

(r, w, b, r, w, b) and (b, w, r, b, w, r)

describes the flag in Figure C-1.3. The number of flags is thus the number N of
orbits; by Burnside’s Lemma, N = 1

2 [Fix((1)) + Fix(τ )]. The identity permutation

(1) fixes every x ∈ X, and so Fix((1)) = 36 (there are three colors). Now τ fixes
a 6-tuple x if and only if it is a “palindrome”, that is, if the colors in x read the
same forward as backward. For example,

x = (r, r, w, w, r, r)

is fixed by τ . Conversely, if

x = (c1, c2, c3, c4, c5, c6)

is fixed by τ = (1 6)(2 5)(3 4), then c1 = c6, c2 = c5, and c3 = c4; that is, x is a
palindrome. It follows that Fix(τ ) = 33, for there are three choices for each of c1,
c2, and c3. The number of flags is thus

N = 1
2 (3

6 + 33) = 378.

Let us make the notion of coloring more precise.

Definition. If a group G acts (on the right) on X = {1, . . . , n} and C is a set of q
colors, then G acts on the set Cn of all n-tuples of colors by

σ(c1, . . . , cn) = (c1σ, . . . , cnσ) for all σ ∈ G.

An orbit of (c1, . . . , cn) ∈ Cn is called a (q, G)-coloring of X.
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Color each square in a 4× 4 grid red or black (adjacent squares may have the
same color; indeed, one possibility is that all the squares have the same color).

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

13 9 5 1

14 10 6 2

15 11 7 3

16 12 8 4

Figure C-1.4. Chessboard and a rotation.

If X consists of the 16 squares in the grid and C consists of the two colors red
and black, then the cyclic group G =

〈
R
〉
of order 4 acts on X, where R is clockwise

rotation by 90◦; Figure C-1.4 shows how R acts: the right square is R’s action on
the left square. In cycle notation,

R = (1, 4, 16, 13)(2, 8, 15, 9)(3, 12, 14, 5)(6, 7, 11, 10),

R2 = (1, 16)(4, 13)(2, 15)(8, 9)(3, 14)(12, 5)(6, 11)(7, 10),

R3 = (1, 13, 16, 4)(2, 9, 15, 8)(3, 5, 14, 12)(6, 10, 11, 7).

A red-and-black chessboard does not change when it is rotated; it is merely viewed
from a different position. Thus, we may regard a chessboard as a 2-coloring of X;
the orbit of a 16-tuple corresponds to the four ways of viewing the board.

By Burnside’s Lemma, the number of chessboards is

1
4

[
Fix((1)) + Fix(R) + Fix(R2) + Fix(R3)

]
.

Now Fix((1)) = 216, for every 16-tuple is fixed by the identity. To compute Fix(R),
note that squares 1, 4, 16, 13 must all have the same color in a 16-tuple fixed
by R. Similarly, squares 2, 8, 15, 9 must have the same color, squares 3, 12, 14, 5
must have the same color, and squares 6, 7, 11, 10 must have the same color. We
conclude that Fix(R) = 24; note that the exponent 4 is the number of cycles in
the complete factorization of R. A similar analysis shows that Fix(R2) = 28, for
the complete factorization of R2 has 8 cycles, and Fix(R3) = 24, because the cycle
structure of R3 is the same as that of R. Therefore, the number N of chessboards
is

N = 1
4

[
216 + 24 + 28 + 24

]
= 16,456.

We now show, as in the discussion of the 4 × 4 chessboard, that the cycle
structure of a permutation τ allows one to calculate Fix(τ ).
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Lemma C-1.29. Let C be a set of q colors, and let G be a subgroup of Sn. If
τ ∈ G, then

Fix(τ ) = qt(τ),

where t(τ ) is the number of cycles in the complete factorization of τ .

Proof. Since τ (c1, . . . , cn) = (cτ1, . . . , cτn) = (c1, . . . , cn), we see that cτi = ci for
all i, and so τi has the same color as i; that is, under the action of

〈
τ
〉
, all the

points in the orbit of i have the same color. But if the complete factorization of
τ is τ = β1 · · ·βt(τ) and i occurs in βj , then Example C-1.8 shows that the orbit
containing i is the disjoint cycle βj . Thus, for an n-tuple to be fixed by τ , all the
symbols involved in each of the t(τ ) cycles must have the same color; as there are
q colors, there are thus qt(τ) n-tuples fixed by τ . •

Theorem C-1.30. Let G act on a finite set X. If N is the number of (q,G)-
colorings of X, then

N =
1

|G|
∑
τ∈G

qt(τ),

where t(τ ) is the number of cycles in the complete factorization of τ .

Proof. Rewrite Burnside’s Lemma using Lemma C-1.29. •

There is a generalization of this technique, due to Pólya (Biggs [20], p. 403),
giving formulas of the sort that count the number of red, white, blue, and green
flags having 20 stripes exactly 7 of which are red and 5 of which are blue.

Exercises

C-1.29. How many flags are there with n stripes of equal width, each of which can be
colored any one of q given colors?

Hint. The parity of n is relevant.

C-1.30. Let X be the squares in an n× n grid, and let ρ be a rotation by 90o. Define a
chessboard to be a (q,G)-coloring, where the cyclic group G =

〈
ρ
〉
of order 4 is acting

on X. Show that the number of chessboards is

1

4

(
qn

2

+ q�(n
2+1)/2� + 2q�(n

2+3)/4�
)
,

where �x is the greatest integer in the number x.

C-1.31. Let X be a disk divided into n congruent circular sectors, and let ρ be a rotation
by (360/n)o. Define a roulette wheel to be a (q,G)-coloring, where the cyclic group
G =

〈
ρ
〉
of order n is acting on X. Prove that if n = 6, then there are 1

6
(2q+2q2+q3+q6)

roulette wheels having 6 sectors. (The formula for the number of roulette wheels with n
sectors is

1

n

∑
d|n

φ(n/d)qd,

where φ is the Euler φ-function.)
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C-1.32. Let X be the vertices of a regular n-gon, and let the dihedral group G = D2n act
on X [as the usual group of symmetries (Examples A-4.27 and A-4.28 in Part 1)]. Define
a bracelet to be a (q,G)-coloring of a regular n-gon, and call each of its vertices a bead.
(Not only can we rotate a bracelet, we can also flip it: that is, turn it upside down by
rotating it in space about a line joining two beads.)

(i) How many bracelets are there having 5 beads, each of which can be colored any
one of q available colors?
Hint. The group G = D10 is acting. Use Example A-4.28 in Part 1 to assign to
each symmetry a permutation of the vertices, and then show that the number of
bracelets is

1

10

(
q5 + 4q + 5q3

)
.

(ii) How many bracelets are there having 6 beads, each of which can be colored any
one of q available colors?
Hint. The group G = D12 is acting. Assign a permutation of the vertices to each
symmetry, and then show that the number of bracelets is

1

12

(
q6 + 2q4 + 4q3 + 3q2 + 2q

)
.

C-1.2. Sylow Theorems

Recall that a group G is called simple if G �= {1} and it has no normal subgroups
other than {1} and G itself. We saw, in Proposition A-4.92 in Part 1, that the
abelian simple groups are precisely the (finite) cyclic groups Zp of prime order p,
and we saw, in Theorem A-4.97 in Part 1, that An is a nonabelian simple group
for all n ≥ 5. In fact, A5 is the nonabelian simple group of smallest order. How
can we prove that a nonabelian group G of order less than 60 = |A5| is not simple?
Exercise C-1.23 on page 16 states that if G is a group of order mp, where p is prime
and 1 < m < p, then G is not simple. This exercise shows that many of the numbers
less than 60 are not orders of simple groups. After throwing out all prime powers
(finite p-groups of order at least p2 are never simple, by Proposition C-1.25), the
only remaining possibilities are

12, 18, 24, 30, 36, 40, 45, 48, 50, 54, 56.

The solution to Exercise C-1.23 uses Cauchy’s Theorem, which says that G has a
subgroup of order p. We shall see that if G has a subgroup of prime power order
pe instead of p, then the exercise can be generalized and the list of candidates can
be shortened. Proposition C-1.40 below uses this result to show that A5 is, indeed,
the smallest nonabelian simple group.

The first book on group theory, Jordan [117], was published in 1870; more than
half of it is devoted to Galois theory, then called the theory of equations. At about
the same time, but too late for publication in Jordan’s book, three fundamental
theorems were discovered. In 1868, Schering proved the Basis Theorem: every fi-
nite abelian group is a direct product of primary cyclic groups. In 1870, Kronecker,
unaware of Schering’s proof, also proved this result. In 1878, Frobenius and Stickel-
berger proved the Fundamental Theorem of Finite Abelian Groups. In 1872, Sylow
showed, for every finite group G and every prime p, that if pe is the largest power
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of p dividing |G|, then G has a subgroup of order pe (nowadays called a Sylow
p-subgroup). Indeed, Sylow subgroups are analogs for finite nonabelian groups of
the primary components of finite abelian groups. We will use Sylow subgroups to
generalize Exercise C-1.23.

Our strategy for proving the Sylow Theorems works best if we adopt the fol-
lowing definition.

Definition. Let p be prime. A Sylow p-subgroup of a group G is a maximal
p-subgroup P .

Maximality means that if Q is a p-subgroup of G and P ⊆ Q, then P = Q.

It follows from Lagrange’s Theorem that if pe is the largest power of p dividing
the order of a finite group G, then a subgroup of G of order pe, should it exist, is a
maximal p-subgroup. While it is not clear at the outset that G has any subgroups
of order pe, it is clear, using Zorn’s Lemma, that maximal p-subgroups always exist.
We shall prove, in Theorem C-1.35, that Sylow p-subgroups do have order pe.

Let us show that if S is any p-subgroup of a finite group G (perhaps S = {1}),
then there exists a Sylow p-subgroup P containing S. If there is no p-subgroup
strictly containing S, then S itself is a Sylow p-subgroup. Otherwise, there is a p-
subgroup P1 with S � P1. If P1 is maximal, it is Sylow, and we are done. Otherwise,
there is some p-subgroup P2 with P1 � P2. This procedure of producing larger and
larger p-subgroups Pi must end after a finite number of steps because |Pi| ≤ |G|
for all i; the largest Pi must, therefore, be a Sylow p-subgroup.

Recall that a conjugate of a subgroup H ⊆ G is a subgroup of G of the form

aHa−1 = {aha−1 : h ∈ H},
where a ∈ G. The normalizer of H in G is the subgroup

NG(H) = {a ∈ G : aHa−1 = H},
and Corollary C-1.19 states that if H is a subgroup of a finite group G, then the
number of conjugates of H in G is [G : NG(H)].

It is obvious that H�NG(H), and so the quotient group NG(H)/H is defined.

Lemma C-1.31. Let P be a Sylow p-subgroup of a finite group G.

(i) Every conjugate of P is also a Sylow p-subgroup of G.

(ii) |NG(P )/P | is prime to p.

(iii) If a ∈ G has order some power of p and aPa−1 = P , then a ∈ P .

Proof.

(i) If a ∈ G and aPa−1 is not a Sylow p-subgroup of G, then there is a p-subgroup
Q with aPa−1 � Q. Now a−1Qa is a p-subgroup strictly containing P :
P � a−1Qa, which contradicts the maximality of P .

(ii) If p divides |NG(P )/P |, then Cauchy’s Theorem shows that NG(P )/P con-
tains an element aP of order p, and hence NG(P )/P contains a subgroup
S∗ =

〈
aP

〉
of order p. By the Correspondence Theorem, there is a subgroup

S with P ⊆ S ⊆ NG(P ) such that S/P ∼= S∗. But S is a p-subgroup of
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NG(P ) ⊆ G (by Exercise A-4.85 on page 172 in Part 1) strictly larger than
P , contradicting the maximality of P . We conclude that p does not divide
|NG(P )/P |.

(iii) By the definition of normalizer, the element a lies in NG(P ). If a /∈ P , then
the coset aP is a nontrivial element of NG(P )/P having order some power
of p; in light of part (ii), this contradicts Lagrange’s Theorem. •

Since every conjugate of a Sylow p-subgroup is a Sylow p-subgroup, it is natural
to let G act on the Sylow p-subgroups by conjugation.

Theorem C-1.32 (Sylow). Let G be a finite group of order pe11 · · · pett , where the
pi are distinct primes, and let P be a Sylow p-subgroup of G for some prime p = pj.

(i) Every Sylow p-subgroup is conjugate to P .6

(ii) If there are rj Sylow pj-subgroups, then rj is a divisor of |G|/pejj and

rj ≡ 1 mod pj .

Proof. Let X = {P1, . . . , Prj} be the set of all the conjugates of P , where we
have denoted P by P1. If Q is any Sylow p-subgroup of G, then Q acts on X by
conjugation: if a ∈ Q, then it sends

Pi = giPg−1
i �→ a

(
giPg−1

i

)
a−1 = (agi)P (agi)

−1 ∈ X.

By Corollary C-1.17, the number of elements in any orbit is a divisor of |Q|; that is,
every orbit has size some power of p (because Q is a p-group). If there is an orbit
of size 1, then there is some Pi with aPia

−1 = Pi for all a ∈ Q. By Lemma C-1.31,
we have a ∈ Pi for all a ∈ Q; that is, Q ⊆ Pi. But Q, being a Sylow p-subgroup, is
a maximal p-subgroup of G, and so Q = Pi. In particular, if Q = P1, then there is
only one orbit of size 1, namely, {P1}, and all the other orbits have sizes that are
honest powers of p. We conclude that |X| = rj ≡ 1 mod pj .

Suppose now that there is some Sylow p-subgroup Q that is not a conjugate
of P ; thus, Q �= Pi for any i. Again, we let Q act on X, and again we ask if there
is an orbit of size 1, say, {Pk}. As in the previous paragraph, this implies Q = Pk,
contrary to our present assumption that Q /∈ X. Hence, there are no orbits of
size 1, which says that each orbit has size an honest power of p. It follows that
|X| = rj is a multiple of p; that is, rj ≡ 0 mod pj , which contradicts the congruence
rj ≡ 1 mod pj . Therefore, no such Q can exist, and so all Sylow p-subgroups are
conjugate to P .

Finally, since all Sylow p-subgroups are conjugate, we have rj = [G : NG(P )],
and so rj is a divisor of |G|. But rj ≡ 1 mod pj implies (rj , p

ej
j ) = 1, so that

Euclid’s Lemma gives rj a divisor of |G|/pejj . •

Corollary C-1.33. A finite group G has a unique Sylow p-subgroup P for some
prime p if and only if P �G.

6It follows that all Sylow p-subgroups of a finite group G are isomorphic. This may not be
true for infinite groups. However, when G is a periodic linear group over a field (a group is linear
if it is isomorphic to a subgroup of a matrix group; for nonabelian groups, the term periodic is
used instead of torsion), then Wehrfritz [229] shows that its Sylow p-subgroups are conjugate.
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Proof. Assume that P , a Sylow p-subgroup of G, is unique. For each a ∈ G, the
conjugate aPa−1 is also a Sylow p-subgroup; by uniqueness, aPa−1 = P for all
a ∈ G, and so P �G.

Conversely, assume that P �G. If Q is any Sylow p-subgroup, then Q = aPa−1

for some a ∈ G; but aPa−1 = P , by normality, and so Q = P . •

Corollary C-1.34. If P is a Sylow p-subgroup of a finite group G, then its nor-
malizer N = NG(P ) is self-normalizing; that is, NG(N) = N .

Proof. Let x ∈ N = NG(P ). Since P �N , we have xPx−1 ⊆ N , so that both P
and xPx−1 are Sylow p-subgroups of N . By Theorem C-1.32(i), there is n ∈ N
with nPn−1 = xPx−1. Hence, nx−1 ∈ N = NG(P ), and x ∈ N . Therefore,
NG(N) ⊆ N = NG(P ). The reverse inclusion always holds, and so NG(N) = N .

•

The next result shows that the order of a Sylow p-subgroup of a group G is the
largest power of p dividing |G|.

Theorem C-1.35 (Sylow). If G is a finite group of order pem, where p is prime
and p � m, then every Sylow p-subgroup P of G has order pe.

Proof. We first show that p � [G : P ]. Now [G : P ] = [G : NG(P )][NG(P ) : P ]. The
first factor, [G : NG(P )] = r, is the number of conjugates of P in G, and so p does
not divide [G : NG(P )] because r ≡ 1 mod p. The second factor, [NG(P ) : P ] =
|NG(P )/P |, is also not divisible by p, by Lemma C-1.31. Therefore, p does not
divide [G : P ], by Euclid’s Lemma.

Now |P | = pk for some k ≤ e, and so [G : P ] = |G|/|P | = pem/pk = pe−km.
Since p does not divide [G : P ], we must have k = e; that is, |P | = pe. •

Example C-1.36.

(i) Let G = S4. Since |S4| = 24 = 233, a Sylow 2-subgroup P of S4 has order 8.
We have seen, in Exercise C-1.5, that S4 contains a copy of the dihedral group
D8 (the symmetries of a square). The Sylow Theorem says that all subgroups
of S4 of order 8 are conjugate, hence isomorphic; thus, P ∼= D8. Moreover,
the number r of Sylow 2-subgroups is a divisor of 24 congruent to 1 mod 2;
that is, r is an odd divisor of 24. Since r �= 1 (Exercise C-1.34), there are
exactly three Sylow 2-subgroups.

(ii) If G is a finite abelian group, then a Sylow p-subgroup is just its p-primary
component (since G is abelian, every subgroup is normal, and so there is a
unique Sylow p-subgroup for every prime p). �

Here is a second proof of the last Sylow Theorem.

Theorem C-1.37. If G is a finite group of order pem, where p is a prime and
p � m, then G has a subgroup of order pe.
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Proof (Wielandt). If X is the family of all those subsets of G having exactly pe

elements, then |X| =
(
pem
pe

)
, and p � |X|.7 Now G acts on X: define gB, for g ∈ G

and B ∈ X, by

gB = {gb : b ∈ B}.
If p divides |O(B)| for every B ∈ X, where O(B) is the orbit of B, then p is a
divisor of |X|, for X is the disjoint union of orbits (Proposition C-1.15). As p � |X|,
there exists a subset B with |B| = pe and with |O(B)| not divisible by p. If GB

is the stabilizer of this subset, Theorem C-1.16 gives [G : GB] = |O(B)|, and so
|G| = |GB| · |O(B)|. Since pe | |G| and (pe, |O(B)|) = 1, Euclid’s Lemma gives
pe | |GB|. Therefore, pe ≤ |GB|.

For the reverse inequality, choose an element b ∈ B. Now GBb is a right coset
of GB, and so |GB| = |GBb|. But GBb ⊆ B, because GBb = {gb : g ∈ GB} and
gb ∈ gB ⊆ B (for g ∈ GB). Therefore, |GB| ≤ |B| = pe. We conclude that GB is a
subgroup of G of order pe. •

Proposition C-1.38. A finite group G all of whose Sylow subgroups are normal
is the direct product of its Sylow subgroups.8

Proof. Let |G| = pe11 · · · pett and let Gpi
be the Sylow pi-subgroup of G. We use

Exercise C-1.33 on page 32. The subgroup S generated by all the Sylow subgroups
is G, for peii | |S| for all i; hence, |S| = |G|. Finally, if x ∈ Gpi

∩
〈⋃

j �=i Gpj

〉
, then

x = si ∈ Gpi
and x =

∏
j �=i sj , where sj ∈ Gpj

. Now xpn
i = 1 for some n ≥ 1. On

the other hand, there is some power of pj , say, qj , with s
qj
j = 1 for all j. Since the

sj commute with each other, by Exercise C-1.33(i), we have 1 = xq = (
∏

j �=i sj)
q,

where q =
∏

j �=i qj . Since (pni , q) = 1, there are integers u and v with 1 = upni + vq,

and so x = x1 = xupn
i xvq = 1. Thus, G is the direct product of its Sylow subgroups.

•

We can now generalize Exercise C-1.23 on page 16 and its solution.

Lemma C-1.39. There is no nonabelian simple group G of order |G| = pem, where
p is prime, p � m, and pe � (m− 1)!.

Proof. Suppose that such a simple group G exists. By Sylow’s Theorem, G con-
tains a subgroup P of order pe, hence of index m. We may assume that m > 1,
for nonabelian p-groups are never simple. By Theorem C-1.2, there exists a ho-
momorphism ϕ : G → Sm with kerϕ ⊆ P . Since G is simple, however, it has
no proper normal subgroups; hence, kerϕ = {1} and ϕ is an injection; that is,
G ∼= ϕ(G) ⊆ Sm. By Lagrange’s Theorem, pem | m!, and so pe | (m− 1)!, contrary
to the hypothesis. •

Proposition C-1.40. There are no nonabelian simple groups of order less than 60.

7If n = pem, where p is a prime not dividing m, then p �
( n
pe

)
; otherwise, cross multiply and

use Euclid’s Lemma.
8Such finite groups G are called nilpotent.
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Proof. The reader may now check that the only integers n between 2 and 59,
neither a prime power nor having a factorization of the form n = pem as in the
statement of Lemma C-1.39, are n = 30, 40, and 56, and so these three numbers
are the only candidates for orders of nonabelian simple groups of order < 60.

Suppose there is a simple group G of order 30. Let P be a Sylow 5-subgroup
of G, so that |P | = 5. The number r5 of conjugates of P is a divisor of 30 and
r5 ≡ 1 mod 5. Now r5 �= 1 lest P � G, so that r5 = 6. By Lagrange’s Theorem,
the intersection of any two of these is trivial (intersections of Sylow subgroups can
be more complicated; see Exercise C-1.35 on page 32). There are four nonidentity
elements in each of these subgroups, and so there are 6×4 = 24 nonidentity elements
in their union. Similarly, the number r3 of Sylow 3-subgroups of G is 10 (for r3 �= 1,
r3 is a divisor of 30, and r3 ≡ 1 mod 3). There are two nonidentity elements in
each of these subgroups, and so the union of these subgroups has 20 nonidentity
elements. We have exceeded 30, the number of elements in G, and so G cannot be
simple.

Let G be a group of order 40, and let P be a Sylow 5-subgroup of G. If r is the
number of conjugates of P , then r | 40 and r ≡ 1 mod 5. These conditions force
r = 1, so that P �G; therefore, no simple group of order 40 can exist.

Finally, suppose there is a simple group G of order 56. If P is a Sylow 7-
subgroup of G, then P must have r7 = 8 conjugates (for r7 | 56 and r7 ≡ 1 mod 7).
Since these groups are cyclic of prime order, the intersection of any pair of them
is {1}, and so there are 48 nonidentity elements in their union. Thus, adding the
identity, we have accounted for 49 elements of G. Now a Sylow 2-subgroup Q has
order 8, and so it contributes 7 more nonidentity elements, giving 56 elements. But
there is a second Sylow 2-subgroup, lest Q � G, and we have exceeded our quota.
Therefore, there is no simple group of order 56. •

The order of the next nonabelian simple group is 168.

The “converse” of Lagrange’s Theorem is false: if G is a finite group of order
n and d | n, then G may not have a subgroup of order d. For example, we proved,
in Proposition A-4.67 in Part 1, that the alternating group A4 is a group of order
12 having no subgroup of order 6.

Proposition C-1.41. Let G be a finite group. If p is prime and pk divides |G|,
then G has a subgroup of order pk.

Proof. If |G| = pem, where p � m, then a Sylow p-subgroup P of G has order
pe. Hence, if pk divides |G|, then pk divides |P |. By Proposition C-1.25, P has a
subgroup of order pk; a fortiori, G has a subgroup of order pk. •

What examples of p-groups have we seen? Of course, cyclic groups of order
pn are p-groups, as is any direct product of copies of these. By the Fundamental
Theorem, this describes all (finite) abelian p-groups. The only nonabelian examples
we have seen so far are the dihedral groups D2n (which are 2-groups when n is a
power of 2) and the quaternions Q of order 8 (of course, for every 2-group A, the
direct products D8 × A and Q × A are also nonabelian 2-groups). Here are some
new examples.
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Definition. A unitriangular matrix over a field k is an upper triangular matrix
each of whose diagonal terms is 1. Define UT(n, k) to be the set of all n × n
unitriangular matrices over k.

For example,
[ a11 a12 a13

0 a22 a23
0 0 a33

]
is upper triangular, and

[
1 a12 a13
0 1 a23
0 0 1

]
is unitriangular.

Remark. We can generalize this definition by allowing k to be any commutative
ring. For example, the group UT(n,Z) is an interesting group; it is a finitely
generated torsion-free nilpotent group (we will define (possibly infinite) nilpotent
groups in the next chapter). �

Proposition C-1.42. If k is a field, then UT(n, k) is a subgroup of GL(n, k).

Proof. Of course, the identity matrix I is unitriangular, so that I ∈ UT(n, k). If
A ∈ UT(n, k), then A = I +N , where N is strictly upper triangular; that is, N is
an upper triangular matrix having only 0’s on its diagonal. Note that Nn = 0, by
Exercise A-7.17 on page 269 in Part 1.

The same Exercise A-7.17 also says that if N,M are strictly upper triangular,
then so are N +M and NM . Hence, (I + N)(I + M) = I + (N + M + NM) is
unitriangular, and UT(n, k) is closed. Now unitriangular matrices are nonsingular
because det(I +N) = 1, but a proof of this without determinants will also show
that A−1 = (I + N)−1 is unitriangular. Recalling the power series expansion
1/(1 + x) = 1 − x + x2 − x3 + · · · , we define B = I − N + N2 − N3 + · · · (this
series stops after n − 1 terms because Nn = 0). The reader may now check that
BA = B(I + N) = I, so that B = A−1. Moreover, N strictly upper triangular
implies that −N +N2 −N3 + · · · ±Nn−1 is also strictly upper triangular, and so
A−1 = B is unitriangular. Therefore, UT(n, k) is a subgroup of GL(n, k). •

Proposition C-1.43. Let q = pe, where p is prime. For each n ≥ 2, UT(n,Fq) is

a p-group of order q(
n
2) = qn(n−1)/2.

Proof. The number of entries in an n×n unitriangular matrix lying strictly above
the diagonal is

(
n
2

)
= 1

2n(n−1) (throw away n diagonal entries from the total of n2

entries; half of the remaining n2 − n entries are above the diagonal). Since each of

these entries can be any element of Fq, there are exactly q(
n
2) n × n unitriangular

matrices over Fq, and so this is the order of UT(n,Fq). •

Recall Exercise A-4.31 on page 138 in Part 1: if G is a group and x2 = 1 for
all x ∈ G, then G is abelian. We now ask whether a group G satisfying xp = 1 for
all x ∈ G, where p is an odd prime, must also be abelian.

Proposition C-1.44. If p is an odd prime, then there exists a nonabelian group
G of order p3 with xp = 1 for all x ∈ G.

Proof. If G = UT(3,Fp), then |G| = p3. Now G is not abelian; for example, the

matrices
[
1 1 0
0 1 1
0 0 1

]
and

[
1 0 1
0 1 1
0 0 1

]
do not commute. If A ∈ G, then A = I +N , where N
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is strictly upper triangular; since p is an odd prime, p ≥ 3, and Np = 0. Finally,
Corollary A-3.6 in Part 1 says that

Ap = (I +N)p = Ip +Np = I. •

Theorem C-1.45. Let Fq denote the finite field with q elements. Then

|GL(n,Fq)| = (qn − 1)(qn − q)(qn − q2) · · · (qn − qn−1).

Proof. Let V be an n-dimensional vector space over Fq. We show first that there
is a bijection Φ: GL(n,Fq) → B, where B is the set of all bases of V .9 Choose,
once for all, a basis e1, . . . , en of V . If T ∈ GL(n,Fq), define

Φ(T ) = Te1, . . . , T en.

By Lemma A-7.26 in Part 1, Φ(T ) ∈ B because T , being nonsingular, carries a basis
into a basis. But Φ is a bijection, for given a basis v1, . . . , vn, there is a unique
linear transformation S, necessarily nonsingular (by Lemma A-7.26 in Part 1), with
Sei = vi for all i (by Theorem A-7.28 in Part 1).

Our problem now is to count the number of bases v1, . . . , vn of V . There are
qn vectors in V , and so there are qn − 1 candidates for v1 (the zero vector is not a
candidate). Having chosen v1, we see that the candidates for v2 are those vectors
not in

〈
v1
〉
, the subspace spanned by v1; there are thus qn − q candidates for v2.

More generally, having chosen a linearly independent list v1, . . . , vi, we see that
vi+1 can be any vector not in

〈
v1, . . . , vi

〉
. Thus, there are qn − qi candidates for

vi+1. The result follows by induction on n. •

Theorem C-1.46. If p is prime and q = pm, then the unitriangular group UT(n,Fq)
is a Sylow p-subgroup of GL(n,Fq).

Proof. Since qn− qi = qi(qn−i− 1), the highest power of p dividing |GL(n,Fq)| is

qq2q3 · · · qn−1 = q(
n
2).

But |UT(n,Fq)| = q(
n
2), and so UT(n,Fq) must be a Sylow p-subgroup. •

Corollary C-1.47. If p is prime and G is a finite p-group, then G is isomorphic
to a subgroup of the unitriangular group UT(|G|,Fp).

Proof. A modest generalization of Exercise C-1.22 on page 16 shows, for any
field k, that every group of order m can be imbedded in GL(m, k). In particu-
lar, G can be imbedded in GL(m,Fp). Now G is a p-group, and so it is contained
in a Sylow p-subgroup P of GL(m,Fp), for every p-subgroup lies in some Sylow
p-subgroup. Since all Sylow p-subgroups are conjugate, there is a ∈ GL(m,Fp)
with P = a (UT(m,Fp)) a

−1. Therefore,

G ∼= a−1Ga ⊆ a−1Pa ⊆ UT(m,Fp). •

9Recall that a basis of a finite-dimensional vector space is an (ordered) list of vectors, not
merely a set of vectors. This distinction is critical in this proof.
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A natural question is to find the Sylow subgroups of symmetric groups. This
can be done, and the answer is in terms of a construction called wreath product (see
Rotman [188], p. 176).

Exercises

∗ C-1.33. (i) Let G be an arbitrary (possibly nonabelian) group, and let S and T be
normal subgroups of G. Prove that if S ∩ T = {1}, then st = ts for all s ∈ S and
t ∈ T .

Hint. Show that sts−1t−1 ∈ S ∩ T .

(ii) If S1, . . . , Sn are normal subgroups of a group G with G =
〈
S1, . . . , Sn

〉
, prove that

G is the direct product S1 × · · · × Sn.

∗ C-1.34. Show that S4 has more than one Sylow 2-subgroup.

∗ C-1.35. Give an example of a finite group G having Sylow p-subgroups (for some prime p)
P , Q, and R such that P ∩Q = {1} and P ∩R �= {1}.
Hint. Consider S3 × S3.

∗ C-1.36. A subgroup H of a group G is called characteristic if ϕ(H) ⊆ H for every
isomorphism ϕ : G → G. A subgroup S of a group G is called fully invariant if ϕ(S) ⊆ S
for every homomorphism ϕ : G → G.

(i) Prove that every fully invariant subgroup is a characteristic subgroup, and that
every characteristic subgroup is a normal subgroup.

(ii) Prove that the commutator subgroup, G′, is a normal subgroup of G by showing
that it is a fully invariant subgroup.

(iii) Give an example of a group G having a normal subgroup H that is not a charac-
teristic subgroup.

(iv) Prove that Z(G), the center of a group G, is a characteristic subgroup (and so
Z(G)�G), but that it need not be a fully invariant subgroup.
Hint. Let G = S3 × Z2.

(v) For any group G, prove that if H �G, then Z(H)�G.

C-1.37. If G is an abelian group, prove, for all positive integers m, that mG and G[m]
are fully invariant subgroups.

C-1.38. Prove that UT(3,F2) ∼= D8; conclude thatD8 is a Sylow 2-subgroup of GL(3,F2).

Hint. You may use the fact that the only nonabelian groups of order 8 are D8 and Q.

∗ C-1.39. Prove that the group of quaternions Q is isomorphic to a Sylow 2-subgroup of
the special linear group SL(2, 5).

Hint. Use Exercise A-4.67 on page 159 in Part 1.

∗ C-1.40. (i) Exhibit all the subgroups of S4; aside from S4 and {(1)}, there are 26 of
them.

(ii) Prove that if d is a positive divisor of 24, then S4 has a subgroup of order d.

(iii) If d �= 4, prove that any two subgroups of S4 having order d are isomorphic.
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C-1.41. Prove that a Sylow 2-subgroup of A5 has exactly five conjugates.

C-1.42. (i) Find a Sylow 3-subgroup of S6.

Hint. {1, 2, 3, 4, 5, 6} = {1, 2, 3} ∪ {4, 5, 6}.

(ii) Show that a Sylow 2-subgroup of S6 is isomorphic to D8 × Z2.
Hint. {1, 2, 3, 4, 5, 6} = {1, 2, 3, 4} ∪ {5, 6}.

∗ C-1.43. (i) Prove that a Sylow 2-subgroup of A6 is isomorphic to D8.

(ii) Prove that a Sylow 3-subgroup of A6 is isomorphic to Z3 × Z3.

(iii) Prove that the normalizer of a Sylow 5-subgroup of A6 is isomorphic to D10.

∗ C-1.44. Let Q be a normal p-subgroup of a finite group G. Prove that Q ⊆ P for every
Sylow p-subgroup P of G.

Hint. Use the fact that any other Sylow p-subgroup of G is conjugate to P .

C-1.45. (i) Let G be a finite group and let P be a Sylow p-subgroup of G. If H � G,
prove that HP/H is a Sylow p-subgroup of G/H and H ∩P is a Sylow p-subgroup
of H.

Hint. Show that [G/H : HP/H] and [H : H ∩ P ] are prime to p.

(ii) Let P be a Sylow p-subgroup of a finite group G. Give an example of a subgroup
H of G with H ∩ P not a Sylow p-subgroup of H.
Hint. Choose a subgroup H of S4 with H ∼= S3, and find a Sylow 3-subgroup P
of S4 with H ∩ P = {1}.

∗ C-1.46. Let G be a group of order 90.

(i) If a Sylow 5-subgroup P of G is not normal, prove that it has six conjugates.
Hint. If P has 18 conjugates, there are 72 elements in G of order 5. Show that G
has more than 18 other elements.

(ii) Prove that G is not simple.
Hint. Use Exercises C-1.19 and C-1.20(ii) on page 15.

C-1.47. Prove that there is no simple group of order 96, 120, 150, 300, 312, or 1000.

C-1.3. Solvable and Nilpotent Groups

Galois introduced groups to investigate polynomials in k[x], where k is a field of
characteristic 0, and he proved that such a polynomial is solvable by radicals if
and only if its Galois group is a solvable group. Solvable groups are an interesting
family of groups in their own right, and we now examine them a bit more. We first
review some results from Part 1.

Recall that a normal series of a group G is a finite sequence of subgroups,
G = G0, G1, . . . , Gn, with

G = G0 ⊇ G1 ⊇ · · · ⊇ Gn = {1}
and Gi+1 �Gi for all i. The factor groups of the series are the groups

G0/G1, G1/G2, . . . , Gn−1/Gn,
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and the length of the series is the number of strict inclusions (equivalently, the
length is the number of nontrivial factor groups). A composition series of a
group is a normal series of maximal length; its factor groups are called composition
factors.

Definition. Two normal series of a group G are equivalent if there is a bijection
between the lists of nontrivial factor groups of each so that corresponding factor
groups are isomorphic.

The Jordan–Hölder Theorem says that any two composition series of a group
are equivalent; it follows from a more general theorem, due to Schreier.

Definition. A refinement of a normal series of a group G is a normal series
G = N0, . . . , Nk = {1} having the original series as a subsequence.

In other words, a refinement of a normal series is a normal series obtained from
the original one by inserting more subgroups.

Theorem C-1.48 (Schreier Refinement Theorem). Any two normal series

G = G0 ⊇ G1 ⊇ · · · ⊇ Gn = {1}
and

G = N0 ⊇ N1 ⊇ · · · ⊇ Nk = {1}
of a group G have equivalent refinements.

Proof. Theorem A-5.29 in Part 1. •

Solvable Groups

We now pass from general groups to solvable groups. We recall the definition.

Definition. A group G is solvable if it has a normal series all of whose factor
groups are abelian (British mathematicians call these groups soluble).

In Part 1, solvable groups arose in determining those polynomials that are
solvable by radicals, and so we focussed on finite solvable groups. But there are
purely group-theoretic theorems about solvable groups making no direct reference
to Galois theory and polynomials. For example, a theorem of Burnside says that if
the order of a finite group G is divisible by only two primes, that is, |G| = pmqn,
where p and q are primes, then G is solvable. The deep Feit–Thompson Theorem
states that every group of odd order is solvable (Exercise C-1.59 on page 42 says
that this is equivalent to every nonabelian finite simple group having even order).

Of course, every abelian group is solvable.

Example C-1.49. The infinite dihedral group

D∞ =
〈
a, x : xax−1 = a−1, x2 = 1

〉
is solvable, for it has a normal series with factor groups Z and Z2. Note that
(xa)2 = 1 and D∞ = 〈xa, x〉.

A group G is polycyclic if it has a normal series each of whose factor groups
is a (possibly infinite) cyclic group. Polycyclic groups are solvable. Every finitely
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generated abelian group is polycyclic, as is D∞; thus, the finite dihedral groups
D2n are also solvable.

Every polycyclic group G has a normal subgroup H of finite index where H
has a normal series each of whose factor groups is infinite cyclic (it follows that H
is torsion-free). Moreover, an infinite polycyclic group has a nontrivial torsion-free
abelian normal subgroup (Robinson [181], p. 153).

A group G satisfies the maximal condition if every nonempty family S of
subgroups of G has a maximal element; that is, there is a subgroup M ∈ S with
S ⊆M for all S ∈ S. A group is polycyclic if and only if it is solvable and satisfies
the maximal condition (Robinson [181], p. 152).

Mal′cev proved that every solvable subgroup of GL(n,Z) is polycyclic, while
L. Auslander10 and Swan, independently, proved the converse: every polycyclic
group can be imbedded in GL(n,Z) for some n. See Wehrfritz [230] for a more
complete account of polycyclic groups. �

Solvability of a group is preserved by standard group-theoretic constructions.
For example, every quotient of a solvable group is itself a solvable group (Propo-
sition A-5.22 in Part 1), and every subgroup of a solvable group is itself solvable
(Proposition A-5.23 in Part 1). An extension of one solvable group by another is
itself solvable (Proposition A-5.25 in Part 1): if K �G and both K and G/K are
solvable, then G is solvable. It follows that a direct product of solvable groups is
itself solvable (Corollary A-5.26 in Part 1).

Proposition C-1.50. Every finite p-group G is solvable.

Proof. If G is abelian, then G is solvable. Otherwise, its center, Z(G), is a proper
nontrivial normal abelian subgroup, by Theorem C-1.22. Now Z(G) is solvable
because it is abelian, and G/Z(G) is solvable, by induction on |G|, and so G is
solvable, by Proposition A-5.25 in Part 1. •

It follows that a direct product of finite p-groups, for various primes p, is
solvable.

Definition. If G is a group and x, y ∈ G, then the commutator [x, y] is the
element

[x, y] = xyx−1y−1.

The commutator subgroup G′ of a group G is the subgroup generated by all the
commutators.

It is clear that two elements x and y in a group G commute if and only if their
commutator [x, y] is 1.

The subset consisting of all the commutators, while closed under inverses, need
not be closed under products, and so the set of all commutators may not be a
subgroup. The smallest group in which a product of two commutators is not a
commutator has order 96 (there are two such groups). See Carmichael’s Exer-
cise C-1.57 on page 42.

10Louis Auslander was a geometer; his brother Maurice Auslander was an algebraist.
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Proposition C-1.51. Let G be a group.

(i) The commutator subgroup G′ is a normal subgroup of G.

(ii) G/G′ is abelian.

(iii) If H �G and G/H is abelian, then G′ ⊆ H.

Proof.

(i) The inverse of a commutator xyx−1y−1 is itself a commutator: [x, y]−1 =
yxy−1x−1 = [y, x]. Therefore, each element of G′ is a product of commuta-
tors. But any conjugate of a commutator (and, hence, a product of commu-
tators) is another commutator:

a[x, y]a−1 = a(xyx−1y−1)a−1

= axa−1aya−1ax−1a−1ay−1a−1

= [axa−1, aya−1].

Therefore, G′ � G. (Alternatively, G′ � G because it is fully invariant: if
ϕ : G→ G is a homomorphism, then ϕ([x, y]) = [ϕ(x), ϕ(y)] ∈ G′.)

(ii) If aG′, bG′ ∈ G/G′, then

aG′bG′(aG′)−1(bG′)−1 = aba−1b−1G′ = [a, b]G′ = G′,

and so G/G′ is abelian.

(iii) Suppose that H �G and G/H is abelian. If a, b ∈ G, then aHbH = bHaH;
that is, abH = baH, and so b−1a−1ba ∈ H. As every commutator has the
form b−1a−1ba, we have G′ ⊆ H. •

Example C-1.52.

(i) A group G is abelian if and only if G′ = {1}.
(ii) If G is a simple group, then G′ = {1} or G′ = G, for G′ is a normal subgroup.

The first case occurs when G has prime order; the second case occurs other-
wise. In particular, (An)

′ = An for all n ≥ 5. A group G for which G′ = G
is called perfect ; thus, every nonabelian simple group is perfect. There are
perfect groups which are not simple; see Exercise C-1.53 on page 41.

(iii) What is (Sn)
′? Since Sn/An

∼= Z2 is abelian, Proposition C-1.51 shows that
(Sn)

′ ⊆ An. For the reverse inclusion, first note that (Sn)
′ ∩An�An; hence,

if n ≥ 5, simplicity of An implies that this intersection is trivial or An.
But (Sn)

′ ∩ An �= {(1)}, so (Sn)
′ ∩ An = An and An ⊆ (Sn)

′. Therefore,
(Sn)

′ = An for all n ≥ 5. Exercise C-1.53 on page 41 shows that the equality
(Sn)

′ = An also holds for n = 2, 3, 4. �
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Let us iterate the formation of the commutator subgroup.

Definition. The derived series11 of G is

G = G(0) ⊇ G(1) ⊇ G(2) ⊇ · · · ⊇ G(i) ⊇ G(i+1) ⊇ · · · ,

where G(0) = G, G(1) = G′, and, more generally, G(i+1) = (G(i))′ for all i ≥ 0.

It is easy to prove, by induction on i ≥ 0, that G(i) is fully invariant (see
Exercise C-1.36 on page 32), which implies that G(i) � G. It follows that G(i) �
G(i−1), and so the derived series is a normal series. We now prove that G is solvable
if and only if its derived series reaches {1}.

Proposition C-1.53. A group G is solvable if and only if there is some n with
G(n) = {1}.

Proof. If G is solvable, there is a normal series

G = G0 ⊇ G1 ⊇ · · · ⊇ Gn = {1}

whose factor groups Gi/Gi+1 are abelian. We show, by induction on i ≥ 0, that
G(i) ⊆ Gi. Since G(0) = G = G0, the base step is obviously true. For the inductive
step, since Gi/Gi+1 is abelian, Proposition C-1.51 gives (Gi)

′ ⊆ Gi+1. On the other
hand, the inductive hypothesis gives G(i) ⊆ Gi, which implies that

G(i+1) = (G(i))′ ⊆ (Gi)
′ ⊆ Gi+1.

In particular, G(n) ⊆ Gn = {1}, which is what we wished to show.

Conversely, if G(n) = {1}, then the derived series is a normal series (a normal
series must end with {1}) with abelian factor groups, and so G is solvable. •

For example, the derived series of G = S4 is easily seen to be

S4 � A4 � V � {(1)},

where V is the four-group.

Nowadays, most authors define a solvable group as one whose derived series
reaches {1} after a finite number of steps. In Exercise C-1.56 on page 41, the
reader is asked to prove, using the criterion in Proposition C-1.53, that subgroups,
quotient groups, and extensions of solvable groups are also solvable.

Definition. A normal subgroup H of a group G is a minimal normal subgroup
if H �= {1} and there is no normal subgroup K of G with {1} � K � H.

Minimal normal subgroups may not exist (the abelian group Q has none), but
they always exist in nontrivial finite groups.

Theorem C-1.54. If G is a finite solvable group, then every minimal normal
subgroup H is elementary abelian; that is, H is a vector space over Zp for some
prime p.

11I wonder whether the derived series is so-called because the notation G′ looks like the
notation for the derivative f ′(x).
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Proof. Exercise C-1.36 on page 32 says that if K char H, then K � G. Since H
is minimal, either K = {1} or K = H. In particular, H ′ char H, so that H ′ = {1}
or H ′ = H. As G is solvable, so is its subgroup H, so that H ′ �= H; hence, H
is abelian. Since H is abelian, a Sylow p-subgroup P of H, for some prime p, is
characteristic in H, so that we may assume that H is an abelian p-group. Finally,
{x ∈ H : xp = 1} char H, so that minimality gives H an elementary p-group. •

Corollary C-1.55. Every finite solvable group G acts on a finite-dimensional vec-
tor space over Fp for some prime p.

Proof. If H � G is a normal subgroup of G, then G acts on H by conjugation.
Now let H be a minimal normal subgroup of G. •

The next theorem was proved by Philip Hall in 1928 (there is a contemporary
group theorist named Marshall Hall, Jr.). We begin with a lemma (proved in 1885)
which turns out to be quite useful.

Lemma C-1.56 (Frattini Argument). Let K be a normal subgroup of a finite
group G. If P is a Sylow p-subgroup of K (for some prime p), then

G = KNG(P ).

Proof. If g ∈ G, then gPg−1 ⊆ gKg−1 = K, because K�G. It follows that gPg−1

is a Sylow p-subgroup ofK, and so there exists k ∈ K with kPk−1 = gPg−1. Hence,
P = (k−1g)P (k−1g)−1, so that k−1g ∈ NG(P ). The required factorization is thus
g = k(k−1g). •

Theorem C-1.57 (P. Hall). If G is a finite solvable group of order ab, where
gcd(a, b) = 1, then G contains a subgroup of order a.

Remark. Hall also proved that any two subgroups of order a are conjugate (see
Rotman [188], p. 108). �

Proof. The proof is by induction on |G| ≥ 1, the base step being trivially true.

Case 1: G contains a normal subgroup H of order a′b′, where a′ | a, b′ | b, and
b′ < b.

In this case, G/H is a solvable group of order (a/a′)(b/b′), which is strictly
less than ab = |G|. By induction, G/H has a subgroup A/H of order a/a′, where
A ⊆ G. Now A has order (a/a′)|H| = ab′ < ab. As A is solvable, induction shows
that it, and hence G, has a subgroup of order a.

If there is some proper normal subgroup of G whose order is not divisible by b,
then the theorem has been proved. We may, therefore, assume that b | |N | for every
proper normal subgroup N . However, if N is a minimal normal subgroup (which
exists because G is finite), then Theorem C-1.54 says that N is an (elementary)
abelian p-group for some prime p. Thus, we may assume that b = pm, so that N
is a Sylow p-subgroup of G. Moreover, N is the unique such subgroup, for normal
Sylow subgroups are unique (Corollary C-1.33). We have reduced the problem to
the following case.
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Case 2: |G| = apm, where p � a, G has a normal abelian Sylow p-subgroup H, and
H is the unique minimal normal subgroup in G.

Remark. One of the first results of cohomology of groups is the Schur–Zassenhaus
Lemma, from which this case follows at once. �

The group G/H is a solvable group of order a. If S is a minimal normal
subgroup of G/H, then |S/H| = qn for some prime q �= p. Hence, |S| = pmqn;
if Q is a Sylow q-subgroup of S, then S = HQ. Let N∗ = NG(Q), and let N =
N∗ ∩ S = NS(Q). We claim that |N∗| = a.

The Frattini Argument, Lemma C-1.56, gives G = SN∗. Since

G/S = SN∗/S ∼= N∗/(N∗ ∩ S) = N∗/N,

we have |N∗| = |G||N |/|S|. But S = HQ and Q ⊆ N ⊆ S gives S = HN . Hence,
|S| = |HN | = |H||N |/|H ∩N |, so that

|N∗| = |G||N |/|S| = |G||N ||H ∩N |/|H||N |
= (|G|/|H|)|H ∩N | = a|H ∩N |.

It follows that |S| = a if S ∩N = {1}. We show that H ∩N = {1} in two stages:
(i) H ∩N ⊆ Z(S); (ii) Z(S) = {1}.

(i) Let x ∈ H ∩ N . Every s ∈ S = HQ has the form s = hy for h ∈ H and
y ∈ Q. Now x commutes with H, for H is abelian, and so it suffices to show
that x commutes with y. But xyx−1y−1 ∈ Q, because x normalizes Q, and
x(yx−1y−1) ∈ H, because H is normal. Therefore, xyx−1y−1 ∈ Q∩H = {1}.

(ii) Now Z(S) � G, by Exercise C-1.36 on page 32. If Z(S) �= {1}, then it
contains a minimal subgroup which must be a minimal normal subgroup of
G. Hence,H ⊆ Z(S), forH is the unique minimal normal subgroup of G. But
since S = HQ, it follows that Q char S. Thus, Q�G, by Exercise C-1.36 on
page 32, and soH ⊆ Q, a contradiction. Therefore, Z(S) = {1},H∩N = {1},
and |N∗| = a. •

Because of this theorem, a subgroup of a finite group is called a Hall subgroup
if its order and index are relatively prime. For example, Sylow subgroups are Hall
subgroups. In more detail, we may call H a Hall p-subgroup if it is a Hall
subgroup and a p-group, while we may call a subgroup K a Hall p′-subgroup if
it is a Hall subgroup and p � |K|.

Definition. If G be a group of order apk, where p is prime and p � a, then a
p-complement is a subgroup of order a.

A p′-complement of a finite group G is a subgroup H such that p � |H| and
[G : H] is a power of p.

If a p-complement exists, then it is a Hall subgroup. Let G be a finite group of
order apk, where p is a prime not dividing a. If P is a Sylow p-subgroup of G and
G has a p-complement H, then |G| = |HP | and G = HP .
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In general, p-complements do not exist. Up to isomorphism, there is only one
group of order 15 (Rotman [188], p. 83), namely, Z15. Hence, A5, a group of
order 60 = 22 · 15, has no 2-complement, for it has no element of order 15.

Hall’s Theorem implies that a finite solvable group has a p-complement for ev-
ery prime p. Now if a finite group G has order pmqn, where p and q are primes,
then G has a p-complement and a q-complement (namely, a Sylow q-subgroup and
a Sylow p-subgroup). In the coming proof of the converse of Theorem C-1.57, we
will use a special case: Burnside’s Theorem : every group of order pmqn is solv-
able (Burnside’s Theorem is proved in Chapter C-2, our chapter on representation
theory).

Here is a second theorem of Philip Hall.

Theorem C-1.58 (P. Hall). If a finite group G has a p-complement for every
prime divisor p of |G|, then G is solvable.

Proof. The proof is by induction on |G|. Assume, on the contrary, that there are
nonsolvable groups G satisfying the hypothesis; choose such a G of smallest possible
order.

If G has a nontrivial normal subgroup N and H is a Hall p′-subgroup of G,
then checking orders shows that H ∩ N is a Hall p′-subgroup of N and HN/N ∼=
H/(H ∩N) is a p′-subgroup of G/N . Then both N and G/N are solvable, for their
orders are strictly smaller than |G|. But G is an extension of N by G/N , so that
G is solvable, a contradiction.

Therefore, we may assume that G is simple. Let |G| = pe11 · · · penn , where the pi
are distinct primes and ei > 0 for all i. For each i, let Hi be a Hall pi-complement
of G, so that [G : Hi] = peii and |Hi| =

∏
j �=i p

ej
j , by Exercise C-1.65 on page 42.

If D = H3 ∩ · · · ∩ Hn, then [G : D] =
∏n

i=3 p
ei
i and |D| = pe11 pe22 . Now D is

solvable, by Burnside’s Theorem. If N is a minimal normal subgroup of D, then
Theorem C-1.54 says that N is elementary abelian; for notation, assume that N
is a p1-group. Exercise C-1.65 shows that [G : D ∩ H2] =

∏n
i=2 p

ei
i ; thus, D is

a Sylow p1-subgroup of D. By Exercise C-1.44 on page 33, N ⊆ D ∩ H2, and
so N ⊆ H2. But, as above, |D ∩ H1| = pe22 , and comparison of orders gives
G = H2(D ∩H1). If g ∈ G, then g = hd, where h ∈ H2 and d ∈ D ∩H1. If x ∈ N ,
then gxg−1 = hdxd−1h−1 = hth−1, where y = dxd−1 ∈ N (because N � D) and
hyh−1 ∈ H2 (because N ⊆ H2). Therefore, NG ⊆ H2, where NG is the normal
subgroup of G generated by N . Since H2 � G, we have NG �= {1} a proper normal
subgroup of G, contradicting the hypothesis that G is simple. •

This proof exhibits two recurring themes in finite group theory. Many theorems
having the form “If a finite group G has property P , then it also has property Q”
are proved by induction on |G| in the following style: assume that G is a least
criminal ; that is, G is a group of smallest order having property P but not prop-
erty Q, and reach a contradiction. The second theme is the reduction of a problem
to the special case of simple groups. This is one reason why the Classification
Theorem of Finite Simple Groups is so important.

See Doerk–Hawkes [55] for more about solvable groups.
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Exercises

C-1.48. Prove that every finitely generated solvable torsion group is finite.

C-1.49. Let G be a polycyclic group. Prove that the number h, called the Hirsch length
or Hirsch number, of infinite cyclic factor groups in a normal series of G is independent
of the series.

C-1.50. If f : G → H is a group homomorphism, prove that f(G′) ⊆ H ′ and the induced

map f#, given by f# : gG′ 
→ f(g)H ′, is a homomorphism G/G′ → H/H ′. Conclude that
there is a functor F : Groups → Ab with F (G) = G/G′.

C-1.51. Let p be prime and let G be a nonabelian group of order p3. Prove that Z(G) =
G′.

Hint. Show first that both subgroups have order p.

C-1.52. Prove that if H is a subgroup of a group G and G′ ⊆ H, then H �G.

Hint. Use the Correspondence Theorem.

∗ C-1.53. (i) Prove that (Sn)
′ = An for n = 2, 3, 4 (see Example C-1.52(ii) for n ≥ 5).

(ii) Prove that (GL(n, k))′ ⊆ SL(n, k). (The reverse inclusion is also true; see Exer-
cise C-1.81 on page 58 for the case n = 2.)

(iii) Prove that SL(2, 5) is a perfect group which is not simple.

∗ C-1.54. If G is a finite group and G = G0 ⊇ G1 ⊇ · · · ⊇ Gn = {1} is a normal series,
prove that the order of G is the product of the orders of the factor groups:

|G| =
n−1∏
i=0

|Gi/Gi+1|.

C-1.55. Prove that any two finite solvable groups of the same order have the same com-
position factors.

∗ C-1.56. Let G be an arbitrary, possibly infinite, group.

(i) Prove that if H ⊆ G, then H(i) ⊆ G(i) for all i. Conclude, using Proposition C-1.53,
that every subgroup of a solvable group is solvable.

(ii) Prove that if f : G → K is a surjective homomorphism, then

f(G(i)) = K(i)

for all i. Conclude, using Proposition C-1.53, that every quotient of a solvable
group is also solvable.

(iii) For every group G, prove, by double induction, that

G(m+n) = (G(m))(n).

(iv) Prove, using Proposition C-1.53, that if H �G and both H and G/H are solvable,
then G is solvable.
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∗ C-1.57. (Carmichael) Let G be the subgroup of S16 generated by the following per-
mutations:

(a c)(b d); (e g)(f h);

(i k)(j �); (m o)(n p);

(a c)(e g)(i k); (a b)(c d)(m o);

(e f)(g h)(m n)(o p); (i j)(k �).

Prove that |G| = 256, |G′| = 16, and

(i k)(j �)(m o)(n p) ∈ G′

is not a commutator.

C-1.58. Let p and q be primes.

(i) Prove that every group of order pq is solvable.
Hint. If p = q, then G is abelian. If p < q, then a divisor r of pq for which
r ≡ 1 mod q must equal 1.

(ii) Prove that every group G of order p2q is solvable.
Hint. If G is not simple, use Proposition A-5.25 in Part 1. If p > q, then r ≡
1 mod p forces r = 1. If p < q, then r = p2 and there are more than p2q elements
in G.

∗ C-1.59. Show that the Feit–Thompson Theorem, “Every finite group of odd order is
solvable,” is equivalent to “Every nonabelian finite simple group has even order.”

Hint. For sufficiency, choose a “least criminal”: a nonsolvable group G of smallest odd
order. By hypothesis, G is not simple, and so it has a proper nontrivial normal subgroup.

C-1.60. (i) Prove that the infinite cyclic group Z does not have a composition series.

(ii) Prove that an abelian group G has a composition series if and only if G is finite.

C-1.61. Prove that if G is a finite group and H � G, then there is a composition series
of G one of whose terms is H.

Hint. Use Schreier’s Theorem.

C-1.62. (i) Prove that if S and T are solvable subgroups of a group G and S �G, then
ST is a solvable subgroup of G.

Hint. Use the Second Isomorphism Theorem.

(ii) If G is a finite group, define NS(G) to be the subgroup of G generated by all normal
solvable subgroups of G. Prove that NS(G) is the unique maximal normal solvable
subgroup of G and that G/NS(G) has no nontrivial normal solvable subgroups.

C-1.63. (i) Prove that the dihedral groups D2n are solvable.

(ii) Give a composition series for D2n.

C-1.64. (Rosset) Let G be a group containing elements x and y such that the orders of
x, y, and xy are pairwise relatively prime; prove that G is not solvable.

∗ C-1.65. (i) If H and K are subgroups of finite index in a group G, prove that H ∩ K
also has finite index in G.

Hint. Show that [G : H ∩K] ≤ [G : H][G : K].
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(ii) If H has finite index in G, prove that the intersection of all the conjugates of H is
a normal subgroup of G having finite index in G. Conclude that an infinite simple
group has no proper subgroup of finite index.

(iii) If gcd([G : H], [G : K]) = 1, prove that [G : H ∩K] = [G : H][G : K].

Nilpotent Groups

It turns out that the same methods giving properties of p-groups extend to a
larger class, nilpotent groups, which may be regarded as generalized p-groups. We
first introduce a convenient notation.

Notation. If X and Y are nonempty subsets of a group G, then [X,Y ] is defined
by

[X,Y ] =
〈
[x, y] : x ∈ X and y ∈ Y

〉
,

the subgroup of G generated by all commutators [x, y] = xyx−1y−1, where x ∈ X
and y ∈ Y .

The commutator subgroup G′ can be written as [G,G], and the higher com-
mutator subgroups can be denoted by G(i+1) = [G(i), G(i)]. Since [x, y] = [y, x]−1,
we see that [X,Y ] = [Y,X].

The following lemma relates [H,K] and centers.

Lemma C-1.59. Let H and K be subgroups of a group G.

(i) If K �G and K ⊆ H ⊆ G, then

[H,G] ⊆ K if and only if H/K ⊆ Z(G/K).

(ii) If f : G→ L, for some group L, then f([H,K]) = [f(H), f(K)].

Proof.

(i) If h ∈ H and g ∈ G, then hKgK = gKhK if and only if [h, g]K = K if and
only if [h, g] ∈ K.

(ii) Both sides are generated by all f([h, k]) = [f(h), f(k)]. •

Definition. Define subgroups γi(G) of a group G by induction:

γ1(G) = G; γi+1(G) = [γi(G), G].

It is easy to see that the subgroups γi(G) are characteristic, hence normal,
subgroups of G.

Definition. The lower central series of a group G (also called the descending
central series) is

G = γ1(G) ⊇ γ2(G) ⊇ · · · ,
where γi+1(G) = [γi(G), G].

The lower central series is a normal series only if it reaches {1}.
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Definition. A group G is called nilpotent if the lower central series reaches {1},
that is, if γc+1(G) = {1} for some c. The smallest integer c for which γc+1(G) = {1}
is called the (nilpotency) class of G.

Note that γ2(G) = [G,G] = G′ = G(1), the commutator subgroup, but the de-
rived series and the lower central series may differ afterward; for example, γ3(G) =
[G′, G] ⊇ G(2), with strict inequality possible. Moreover, Lemma C-1.59(i) shows
that γi+1(G) = [γi(G), G] gives γi(G)/γi+1(G) ⊆ Z(G/γi+1(G)).

The class of nilpotent groups is closed under subgroups, quotients, and finite
direct products, but it is not closed under extensions. Here are the details.

Proposition C-1.60.

(i) Every nilpotent group G is solvable.

(ii) If G is nilpotent of class c and S is a subgroup, then S is nilpotent of class
≤ c.

(iii) If G is nilpotent of class c and H �G, then G/H is nilpotent of class ≤ c.

(iv) If H and K are nilpotent, then the direct product H ×K is nilpotent. �

Proof.

(i) An induction on i shows that G(i) ⊆ γi(G) for all i. It follows that if
γc+1(G) = {1}, then G(c+1) = {1}; that is, if G is nilpotent, then G is
solvable.

(ii) An induction on i shows that S ⊆ G implies γi(S) ⊆ γi(G) for all i. Hence,
γc+1(G) = {1} implies γc+1(S) = {1}.

(iii) If f : G → G/H is the natural map, then Lemma C-1.59(ii) shows that
γc+1(G/H) ⊆ f(γc+1(G)); hence, γc+1(G) = {1} forces γc+1(G/H) = {1}.

(iv) An induction on i shows that γi(H ×K) ⊆ γi(H)× γi(K). Suppose that H
has class c and K has class d; that is, γc+1(H) = {1} and γd+1(K) = {1}. If
m = max{c, d}, then γm+1(H ×K) = {1}. •

There is another series of interest.

Definition. The higher centers of a group G are defined by induction:

ζ0(G) = {1}; ζi+1(G)/ζi(G) = Z
(
G/ζi(G)

)
;

that is, ζi+1(G) is the inverse image of the center Z
(
G/ζi(G)

)
under the natural

map G→ G/ζi(G).

The first higher center is ζ1(G) = Z(G).

Definition. The upper central series of a group G (also called the ascending
central series) is

{1} = ζ0(G) ⊆ ζ1(G) = Z(G) ⊆ ζ2(G) ⊆ · · · .

We abbreviate γi(G) as γi and ζi(G) as ζi in the next proof.
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Proposition C-1.61. If G is a group, then there is an integer c with γc+1(G) =
{1} (that is, G is nilpotent of class ≤ c) if and only if ζc(G) = G. Moreover,

γi+1(G) ⊆ ζc−i(G)

for all i.

Proof. If ζc = G, we prove that the inclusion holds by induction on i. If i = 0,
then γ1 = G = ζc. For the inductive step, assume that γi+1 ⊆ ζc−i. Therefore,

γi+2 = [γi+1, G] ⊆ [ζc−i, G] ⊆ ζc−i+1,

the last inclusion following from Lemma C-1.59(i) with K = ζc−i and H = ζc−i+1.

If γc+1 = {1}, we prove by induction on j that γc+1−j ⊆ ζj (this is the same
inclusion as in the following statement: set j = c− i). If j = 0, then γc+1 = {1} =
ζ0. For the inductive step, if γc+1−j ⊆ ζj , then the Third Isomorphism Theorem
gives a surjective homomorphism G/γc+1−j → G/ζj . Now [γc−j , G] = γc+1−j , so
that Lemma C-1.59(ii) gives γc−j/γc+1−j ⊆ Z(G/γc+1−j). But Exercise C-1.66 on
page 49 (if A ⊆ Z(G) and f : G→ H is surjective, then f(A) ⊆ Z(H)), we have

γc−jζ
j ⊆ Z(G/ζj) = ζj+1/ζj .

Therefore, the inclusion always holds. •

We restate Proposition C-1.61 in words.

Corollary C-1.62. The lower central series of a group G reaches {1} if and only
if the upper central series reaches G.

Proposition C-1.63.

(i) If G is nilpotent and G �= {1}, then Z(G) �= {1}.
(ii) S3 is a solvable group which is not nilpotent. Hence, if H �G and G/H are

nilpotent, then G may not be nilpotent.

Proof.

(i) Since G �= {1}, it is nilpotent of class c ≥ 1, so that γc+1(G) = {1} and
γc(G) �= {1}. By Proposition C-1.61, {1} �= γc(G) ⊆ ζ1(G) = Z(G).

(ii) Since Z(S3) = {(1)}, it follows from (i) that S3 is not nilpotent. •

Since S3 is not nilpotent, an extension of one nilpotent group by another need
not be nilpotent. On the other hand, Exercise C-1.70 on page 49 says that if
G/Z(G) is nilpotent, then G is nilpotent. There is a generalization due to P. Hall.
First, it is easy to see that if H�G, then its commutator subgroup H ′ is also normal
in G. Hall proved that if H �G and G/H ′ are nilpotent, then G is nilpotent (see
Robinson [181], p. 134).

Example C-1.64.

(i) Finite unitriangular groups UT(n,Fq) are nilpotent.

(ii) The unitriangular group UT(n,Z) is nilpotent.
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(iii) TheHeisenberg group HR, where R = R orR = C, is the 3×3 unitriangular
group

H = HR =

⎡⎣1 a b
0 1 c
0 0 1

⎤⎦ ,

where a, b, c ∈ R. This group arises when discussing quantum mechanics.

(iv) If G is a group, denote {g ∈ G : g �= 1} by G#. The following type of group
arises in representation theory. A finite group G is a Frobenius group if it
has a subgroup H such that H ∩ xHx−1 = {1} for every x /∈ H. The subset
N of G, defined by N = G−

⋃
x∈G xH#x−1, is called the Frobenius kernel ;

it turns out that N is a (normal) subgroup of G. A theorem of Thompson
(see Robinson [181], p. 306) says that the Frobenius kernel is nilpotent.

Theorem C-1.65. Every finite p-group is nilpotent.

Proof. Recall Theorem C-1.22; every finite p-group has a nontrivial center. If, for
some i, we have ζi(G) � G, then Z(G/ζi(G)) �= {1}, and so ζi(G) � ζi+1(G). As
G is finite, there must be an integer c with ζc(G) = G; that is, G is nilpotent. •

Here are several interesting characterizations of finite nilpotent groups.

Theorem C-1.66. The following statements for a finite group G are equivalent.

(i) G is nilpotent.

(ii) Every subgroup H of G is subnormal: there are subgroups G = G0 ⊇ G1 ⊇
G2 ⊇ · · · ⊇ Gm = H with Gi �Gi−1 for all i ≤ m.

(iii) G satisfies the normalizer condition: if H � G, then H � NG(H).

(iv) If H is a maximal subgroup of G, then H �G.

(v) G is the direct product of its Sylow subgroups.

Proof.

(i) ⇒ (ii). Note, for all i, that Hζi is a subgroup of G, for ζi �G. Consider the
series

H = Hζ0 ⊆ Hζ1 ⊆ Hζ2 ⊆ · · · ⊆ Hζc = G.

But Hζi �Hζi+1 for all i because ζi+1/ζi = Z
(
G/ζi(G)

)
. Therefore, H is a

subnormal subgroup of G.

(ii) ⇒ (iii). Since H is subnormal, there is a series

H = H0 ⊆ H1 ⊆ · · · ⊆ Hm = G

with Hj �Hj+1 for all j. Since H is a proper subgroup of G, there is some j
with H �= Hj ; if k is the smallest such j, then H = Hk−1 � Hk, and so
Hk ⊆ NG(H).

(iii) ⇒ (iv). Since H is a proper subgroup of G, we have H � NG(H); that is,
H � NG(H) ⊆ G. SinceH is a maximal subgroup of G, we have NG(H) = G;
that is, H �G.
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(iv) ⇒ (v). It suffices to show that every Sylow subgroup P is a normal subgroup
of G, for then Proposition C-1.38 will show that G is the direct product of
its Sylow subgroups. If a Sylow subgroup P is not normal, then its nor-
malizer NG(P ) is a proper subgroup of G and, hence, it is contained in a
maximal subgroup, say, M . By hypothesis, M � G. But this contradicts
Corollary C-1.34, which says that if N = NG(P ), then N = NG(N).

(v) ⇒ (i). Every p-group is nilpotent, and the direct product of nilpotent groups
is nilpotent. •

This theorem is not true for infinite groups.

The following subgroup of a group G is analgous to the Jacobson radical of a
ring.

Definition. The Frattini subgroup Φ(G) of a group G is defined to be the inter-
section of all the maximal subgroups of G. If G has no maximal subgroups, define
Φ(G) = G.12

It is clear that Φ(G) char G, and so Φ(G)�G.

Definition. An element x ∈ G is a nongenerator if can be deleted from any
generating set of G; that is, if G =

〈
x, Y

〉
, then G =

〈
Y
〉
.

Theorem C-1.67. The Frattini subgroup Φ(G) of any group G is the set of all its
nongenerators.

Proof. Let x be a nongenerator of G, and let M be a maximal subgroup of G. If
x /∈ M , then G = 〈x,M〉 = M , a contradiction. Therefore, x ∈ M for all M ; that
is, x ∈ Φ(G).

Conversely, assume that z ∈ Φ(G) and G = 〈z, Y 〉. If 〈Y 〉 �= G, then there is
a maximal subgroup M with 〈Y 〉 ⊆ M . But z ∈ M , so that G = 〈z, Y 〉 ⊆ M , a
contradiction. •

The next theorem was proved in 1885.

Theorem C-1.68 (Frattini). Let G be a finite group.

(i) Φ(G) is nilpotent.

(ii) If G is a finite p-group, then Φ(G) = G′Gp, where G′ is the commutator
subgroup and Gp is the subgroup of G generated by all the pth powers.

(iii) If G is a finite p-group, then G/Φ(G) is a vector space over Fp.

Proof.

(i) Let P be a Sylow p-subgroup of Φ(G) for some prime p. Since Φ(G) � G,
Lemma C-1.56 (the Frattini Argument) gives G = Φ(G)NG(P ). But Φ(G)
consists of nongenerators, and so G = NG(P ); that is, P � G and, hence,

12If G is finite, then G does have maximal subgroups; if G is infinite, it may not have any
maximal subgroups. For example, consider the additive group of rationals Q. Since Q is abelian,
any maximal subgroup H would be normal, and so Q/H would be a simple abelian group; that

is, Q/H ∼= Zp for some prime p. But it is easy to see that Q has no finite nontrivial images.
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P � Φ(G). Therefore, Φ(G) is the direct product of its Sylow subgroups, by
Proposition C-1.38, and so it is nilpotent, by Theorem C-1.66.

(ii) If M is a maximal subgroup of G, where G is now a p-group, then Theo-
rem C-1.66 gives M�G. But G/M is a simple p-group (since M is maximal),
so that G/M is abelian of order p. Hence, G′ ⊆M and Gp ⊆M . Therefore,
G′Gp ⊆ Φ(G).

For the reverse inclusion, observe that G/G′Gp is a finite abelian group of
exponent p; that is, it is a vector space over Fp. Clearly, Φ(G/G′Gp) = {1}. If
H�G and H ⊆ Φ(G), then it is easy to check that Φ(G) is the inverse image
(under the natural map G → G/G′Gp) of Φ(G/H) (for maximal subgroups
correspond). It follows that Φ(G) = G′Gp.

(iii) Since Φ(G) = G′Gp, the quotient group G/Φ(G) is an abelian group of ex-
ponent p; that is, it is a vector space over Fp. •

Definition. A subset X of a group G is a minimal generating set if G =
〈
X
〉

but no proper subset of X generates G.

There is a competing candidate for a minimal generating set of a finite group
G: namely, a generating set of least cardinality. Notice that these two notions can
be distinct. For example, let G =

〈
a
〉
×
〈
b
〉
, where a has order 2 and b has order 3.

Now X = {a, b} is a minimal generating set, for no proper subset generates G.
On the other hand, G =

〈
ab
〉 ∼= Z6, and the generating sets {ab} and {a, b} have

different cardinalities. The next theorem shows that these notions coincide when
G is a finite p-group.

If p is a prime and G is a finite abelian p-group, then Φ(G) = pG.

Theorem C-1.69 (Burnside Basis Theorem). If G is a finite p-group, then
G/Φ(G) is a vector space over Fp, and its dimension is the minimum number of
generators of G.

Proof. If {x1, . . . , xn} is a minimal generating set of G, then the family of cosets
{x̄1, . . . , x̄n} spans the vector space G/Φ(G), where x̄ denotes the coset xΦ(G). If
this family is linearly dependent, then one of them, say, x̄1, lies in

〈
x̄2, . . . , x̄n

〉
.

Thus, there is y ∈
〈
x2, . . . , xn

〉
⊆ G with x1y

−1 ∈ Φ(G). Now {x1y
−1, x2, . . . , xn}

generates G, so that G =
〈
x̄2, . . . , x̄n

〉
, by Theorem C-1.67, and this contradicts

minimality. Therefore, n = dimG/Φ(G), and all minimal generating sets have the
same cardinality.

Conversely, if x /∈ Φ(G), then x̄ �= 0 in the vector space G/Φ(G), and so it
is part of a basis, say, x̄, x̄2, . . . , x̄n. If xi represents the coset x̄i for i ≥ 2, then
G =

〈
Φ(G), x, x2, . . . , xn

〉
=
〈
x, x2, . . . , xn

〉
. Moreover, {x, x2, . . . , xn} is a minimal

generating set, for the cosets of a proper subset do not generate G/Φ(G). •

For deeper results about solvable and nilpotent groups, we suggest the book of
Lennox and Robinson [140]. See also the “Canadian notes” of P. Hall [91], which
are also contained in Hall’s collected works [92].
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Exercises

∗ C-1.66. Prove that if A ⊆ Z(G) and f : G → H is surjective, then f(A) ⊆ Z(H).

C-1.67. If G is a finite nilpotent group and x, y ∈ G have coprime orders, prove that x
and y commute.

C-1.68. Let G be a finite nilpotent group.

(i) If G is a nilpotent group and N is a nontrivial normal subgroup of G, prove that
N ∩ Z(G) �= {1}.

(ii) Prove that a minimal normal subgroup M of a nilpotent group G is contained
in Z(G).

C-1.69. Let A denote the class of all abelian groups, N the class of all nilpotent groups,
and S the class of all solvable groups. Prove that A ⊆ N ⊆ S and that each of the
inclusions is strict; that is, there is a nilpotent group that is not abelian, and there is a
solvable group that is not nilpotent.

∗ C-1.70. If G is a group with G/Z(G) nilpotent of class c, prove that G is nilpotent of
class c+ 1.

C-1.71. (i) If H and K are nilpotent normal subgroups of a group G, prove that HK
is also a nilpotent normal subgroup.

Hint. Let H and K be nilpotent of class c and d, respectively, and let S = HK.
Prove, by induction on c + d, that S is nilpotent. For the inductive step, use
Exercise C-1.70 in considering S/Z(H) and S/Z(K).

(ii) Prove that every finite group G has a unique maximal nilpotent normal subgroup.
It is called the Fitting subgroup, and it is denoted by Fit(G).

(iii) If G is a finite group, prove that Fit(G) char G, and conclude that Fit(G)�G.

∗ C-1.72. (i) Let X be a finite G-set, and let H ⊆ G act transitively on X. Prove that
G = HGx for each x ∈ X.

(ii) Show that the Frattini argument follows from (i).

C-1.73. For each n ≥ 1, let Gn be a finite p-group of class n. Define H to be the subgroup
of
∏

n≥1 Gn with gn = 1 for large n; that is, only finitely many coordinates of (g1, g2, . . .)

are distinct from 1. Prove that H is an infinite p-group which is not nilpotent.

C-1.74. If G is a group and g, x ∈ G, write gx = xgx−1.

(i) Prove, for all x, y, z ∈ G, that [x, yz] = [x, y][x, z]y and [xy, z] = [y, z]x[x, z].

(ii) (Jacobi Identity) If x, y, z ∈ G are elements in a group G, define

[x, y, z] = [x, [y, z]].

Prove that

[x, y−1, z]y [y, z−1, x]z[z, x−1, y]x = 1.

C-1.75. If H,K,L are subgroups of a group G, define

[H,K,L] =
〈{

[h, k, �] : h ∈ H, k ∈ K, � ∈ L
}〉

.

(i) Prove that if [H,K,L] = {1} = [K,L,H], then [L,H,K] = {1}.
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(ii) (Three Subgroups Lemma) If N �G and [H,K,L][K,L,H] ⊆ N , prove that

[L,H,K] ⊆ N.

(iii) Prove that if G is a group with G = G′, then G/Z(G) is centerless.
Hint. If π : G → G/Z(G) is the natural map, define ζ2(G) = π−1(Z(G/Z(G))).
Use the Three Subgroups Lemma with L = ζ2(G) and H = K = G.

(iv) Prove, for all i, j, that [γi(G), γj(G)] ⊆ γi+j(G).

C-1.4. Projective Unimodular Groups

The Jordan–Hölder Theorem shows that simple groups can be viewed as building
blocks of finite groups. As a practical matter, we can often use this fact to reduce
a problem about finite groups to a problem about finite simple groups. Now the
only simple groups we have seen so far are cyclic groups of prime order and the
alternating groups An for n ≥ 5. We will display more simple groups in this section.

General Linear Group GL(n, k)

Recall that if k is a field and V is an n-dimensional vector space over k, then the
general linear group GL(V ) is the group of all nonsingular linear transformations
T : V → V with composition as its binary operation. Given a basis X = v1, . . . , vn
of V , we can assign an n× n matrix A = [αij ] to T , namely, the matrix whose jth
column α1j , . . . , αnj is the coordinate list of T (vj):

T (vj) =

n∑
i=1

αijvi = α1jv1 + · · ·+ αnjvn.

(In Part 1, we showed the dependence of A on T and X by denoting A by X [T ]X .)
The function T �→ X [T ]X = A is a group isomorphism GL(V )→ GL(n, k). When
k = Fq is a finite field with q elements, we often denote GL(n, k) by GL(n, q).

Can we display a composition series for the finite group GL(n, q)? We do know
two normal subgroups of it: the special linear group SL(n, q):

SL(n, q) = {all unimodular matrices A} = {all n× n A : det(A) = 1};
the center

Z(n, q) = {all n× n scalar matrices αI : α ∈ F#
q },

where F#
q is the multiplicative group of nonzero elements in Fq and I is the n× n

identity matrix. If

SZ(n, q) = Z(n, q) ∩ SL(n, q),

then a normal series of GL(n, q) is

GL(n, q) ⊇ SL(n, q) ⊇ SZ(n, q) ⊇ {I}.
Now det : GL(n, q)→ F#

q is easily seen to be a homomorphism. Given a composi-

tion series of the cyclic group F#
q , the Correspondence Theorem interpolates normal

subgroups between GL(n, q) and SL(n, q). The factor group

PSL(n, q) = SL(n, q)/ SZ(n, q)
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is called the projective unimodular group; more generally, for any vector space V ,
define

PSL(V ) = SL(V )/ SZ(V ).

We are going to see that almost all PSL(V ) are simple, which will show, in partic-
ular, that we can compute a composition series for GL(n, q).

The next result begins by recalling Corollary A-7.41 in Part 1: the center of
the general linear group consists of the scalar matrices.

Proposition C-1.70. The center of SL(n, q) is SZ(n, q).

Proof. We first show that the center of GL(n, k), where k is a field, is the sub-
group of the scalar matrices. Every scalar matrix lies in the center; for the reverse
inclusion, let T : kn → kn not be scalar. Then there is v ∈ kn with v, Tv linearly
independent. Extend v, Tv to a basis X = v, Tv, u3, . . . , un of kn. It is easy to see
thatX ′ = v, v+Tv, u3, . . . , un is also a basis. Define S : kn → kn by S(Tv) = v+Tv
while S fixes v, u3, . . . , un. Note that S is nonsingular, for X and X ′ are both bases.
Now S and T do not commute, for TS(v) = Tv while ST (v) = v + Tv. Hence,
T /∈ Z(n, k).

Clearly, SZ(n, q) is contained in the center of SL(n, q). For the reverse inclusion,
note that the matrix of S with respect to the basis X is lower triangular with only
1’s on its diagonal (its northwest 2 × 2 block is [ 1 0

1 1 ]), and so det(S) = 1. Thus,
for every nonscalar matrix, there is a unimodular matrix not commuting with it.
Hence, every matrix in the center of SL is also scalar. Thus, the center of SL(n, q)
is SZ(n, q). •

Remark. We have just seen that the center of SL is SZ = SL∩Z(GL), but it is not
true in general that N ⊆ G implies Z(N) = N ∩ Z(G) (even when N is normal).
We always have N ∩ Z(G) ⊆ Z(N), but this inclusion may be strict. For example,
if G = S3 and N = A3

∼= Z3, then Z(A3) = A3 while A3 ∩ Z(S3) = {1}. �

Here are the orders of these groups.

Theorem C-1.71. Let q = pm.

(i) |GL(n, q)| = (qn − 1)(qn − q)(qn − q2) · · · (qn − qn−1).

(ii) | SL(n, q)| = (qn − 1)(qn − q)(qn − q2) · · · (qn − qn−1)/(q − 1).

(iii) If d = gcd(n, q − 1), then

| SZ(n, q)| = d

and

|PSL(n, q)| = (qn − 1)(qn − q) · · · (qn − qn−1)/d(q − 1).

Proof.

(i) Theorem C-1.45.

(ii) There is an exact sequence

{I} → SL(n, q)→ GL(n, q)
det−−→ F#

q → {1},
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where F#
q is the multiplicative group of nonzero elements of the field Fq.

Hence, |GL |/| SL | = q − 1, and

| SL(n, q)| = |GL(n, q)|/(q − 1).

(iii) Every A in SZ(n, q), being scalar, has the form αI, so that det(A) = 1 = αn.
We claim that if α is any nonzero element in k, then αn = 1 if and only if
αd = 1. Since d | n, we see that αd = 1 implies αn = 1. Conversely, there are
integers r and s with d = rn+ s(q − 1). Thus,

αd = αrn+s(q−1) = αrnαs(q−1) = αrn,

because αq−1 = 1. Hence, αn = 1 implies αd = 1. It follows that SZ(n, q) =
{α ∈ Fq : αn = 1} = {α ∈ Fq : αd = 1}. Thus, if β is a generator of F#

q

(which is a cyclic group), then SZ(n, q) ∼=
〈
βn/d

〉
. Therefore, | SZ(n, q)| = d.

The last equality follows from (ii) and |PSL | = | SL |/| SZ |. •

Simplicity of PSL(2, q)

In this section we focus on the groups PSL(2, q), proving their simplicity for
(almost all) Fq. In the next section, we will prove simplicity of PSL(n, q) for all
n ≥ 3; later in this chapter we will give a second proof using multiple transitivity.

We begin by computing the order of PSL(2, q).

Lemma C-1.72. | SL(2, q)| = (q + 1)q(q − 1).

Proof. By Theorem C-1.71(iii), | SL(2, q)| = (q2−1)(q2−q)/d(q−1). But q2−1 =
(q + 1)(q − 1). •

Theorem C-1.73.

|PSL(2, q)| =
{

1
2 (q + 1)q(q − 1) if q = pm and p is an odd prime,

(q + 1)q(q − 1) if q = 2m.

Proof. By Lemma C-1.72 we have | SL(2, q)| = (q+1)q(q−1). Since PSL = SL / SZ,
we have |PSL(2, q)| = (q + 1)q(q − 1)/d.

Now F×
q is a cyclic group of order q − 1, by Theorem A-3.59 in Part 1. If q is

odd, then q − 1 is even, and the cyclic group F×
q has a unique subgroup of order 2.

For any field k, if γ ∈ k satisfies γ2 = 1, then γ = ±1. In particular, if k = Fq,
where q is a power of 2, then Fq has characteristic 2 and γ2 = 1 implies γ = 1.
Hence, SZ(2, q) = {I}, and so PSL(2, 2m) = SL(2, 2m).

Therefore, |SZ(2, q)| = 2 if q is a power of an odd prime, and |SZ(2, q)| = 1 if
q is a power of 2. •

Here are some matrices that play the same role for n × n linear groups that
3-cycles play for the alternating groups (see Exercise C-1.14).

For the moment, transvections (defined below) are matrices; later, we will con-
sider related linear transformations which are also called transvections.
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Definition. An n× n transvection over a field k is an n× n matrix of the form

Bij(λ) = I + Lij(λ),

where i �= j, λ ∈ k is nonzero, I is the identity matrix, and Lij(λ) is the matrix
having i, j entry λ and all other entries 0.

In particular, a 2× 2 transvection is a matrix of the form

B12(λ) =

[
1 λ
0 1

]
or B21(λ) =

[
1 0
λ 1

]
.

Note that det(Bij(λ)) = 1; that is, transvections are unimodular. Note also
that Bij(λ)

−1 = Bji(−λ), so that the inverse of a transvection is also a transvection.

We have seen transvections before: Bij(λ) is just an elementary matrix of
type II which adds λrow j to row i. The matrix of the linear transformation S
in the proof of Proposition C-1.70 is a transvection.

Lemma C-1.74. Let k be a field. If A = [αij ] ∈ GL(n, q) and det(A) = δ, then

A = UD,

where U is a product of transvections and D(δ) = diag{1, . . . , 1, δ}.

Proof. The proof is essentially Gaussian elimination. We show, by induction on
t ≤ n − 1, that an n × n matrix A = [αij ] can be transformed by a sequence of
elementary row operations of type II (which add a multiple of one row to another
row) into a matrix of the form

At =

[
It ∗
0 C

]
,

where It is the t× t identity matrix and C = [γrs] is an (n− t)× (n− t) matrix.

For the base step, note that the first column of A is not 0, for A is nonsingular.
Adding some row to row 2 if necessary, we may assume that α21 �= 0. Add
α−1
21 (1 − α11)row 2 to row 1 to get 1 in the upper left corner (i.e., in the (1, 1)

position), and now add suitable multiples of row 1 to the lower rows so that all
entries in the first column below row 1 are 0.

For the inductive step, we may assume that A has been transformed into
At displayed above. Note that the matrix C is nonsingular, for 0 �= det(A) =
det(It) det(C) = det(C). If C has at least two rows, we may further assume, as in
the base step, that its upper left corner γt+1,t+1 = 1 (this involves only row (t+ 1)
and rows below it, so that the upper rows 1 through t are not disturbed). Thus,
adding suitable multiples of row (t + 1) to the rows beneath it yields a matrix
At+1.

We may now assume that A has been transformed into

An−1 =

[
In−1 ∗
0 δ

]
,

where δ ∈ k is nonzero. Finally, add multiples of the bottom row to higher rows so
that the higher entries in the last column are 0; that is, we have obtained D(δ).



54 Chapter C-1. More Groups

In terms of matrix multiplication, we have shown that there is a matrix P
which is a product of elementary matrices of type II, that is, P is a product of
transvections, such that PA = D(δ). Therefore, A = P−1D(δ) is the desired
factorization, for U = P−1 is a product of transvections (because the inverse of a
transvection is also a transvection). •

Corollary C-1.75. SL(n, q) is generated by transvections.

Proof. If A ∈ SL(n, k), then Lemma C-1.74 gives a factorization A = UD, where U
is a product of transvections and D = D(δ), where δ = det(A). Since A ∈ SL(n, k),
we have δ = det(A) = 1, and so A = U . •

We now focus on 2× 2 matrices.

Lemma C-1.76. Let N be a normal subgroup of SL(2, q). If N contains a transvec-
tion B12(λ) or B21(λ), then N = SL(2, q).

Proof. Note first that if U =
[
0 −1
1 0

]
, then det(U) = 1 and U ∈ SL(2, q); since N

is a normal subgroup, UB12(λ)U
−1 also lies in N . But UB12(λ)U

−1 = B21(−λ),
from which it follows that N contains a transvection of the form B12(λ) if and only
if it contains a transvection of the form B21(−λ). Since SL is generated by the
transvections, it suffices to show that every transvection B12(λ) lies in N .

The following conjugate of B12(λ) lies in N (because N is normal):[
α β
0 α−1

] [
1 λ
0 1

] [
α−1 −β
0 α

]
=

[
1 λα2

0 1

]
= B12(λα

2).

Define

G = {0} ∪ {μ ∈ Fq : μ is nonzero and B12(μ) ∈ N}.

We have just shown that λα2 ∈ G for all α ∈ Fq. It is easy to check that G is a
subgroup of the additive group of Fq and, hence, it contains all the elements of the
form u = λ(α2 − β2), where α, β ∈ Fq. We claim that G = Fq, which will complete
the proof.

If q is odd, then each τ ∈ Fq is a difference of squares:

τ = ( τ+1
2 )2 − ( τ−1

2 )2.

In particular, if μ ∈ Fq, then there are α, β ∈ Fq with λ−1μ = α2 − β2. Hence,
μ = λ(α2 − β2) ∈ G and G = Fq.

If q is even, then the function μ �→ μ2 is an injection Fq → Fq (for if μ2 = σ2,
then 0 = μ2 − σ2 = (μ− σ)2, and μ = σ). The Pigeonhole Principle says that this
function is surjective, and so every element μ has a square root in Fq. In particular,
there is α ∈ Fq with λ−1μ = α2, and μ = λα2 ∈ G. •

We need one more technical lemma before giving the main result.
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Lemma C-1.77. Let N be a normal subgroup of SL(2, q). If A ∈ N is similar to

R =

[
α β
ψ ω

]
∈ GL(2, q), then there is a nonzero τ ∈ Fq with N containing[

α τ−1β
τψ ω

]
.

Proof. By hypothesis, there is a matrix P ∈ GL(2, q) with R = PAP−1. By
Lemma C-1.74, there is a matrix U ∈ SL and a diagonal matrix D = diag{1, τ}
with P−1 = UD. Therefore, A = UDRD−1U−1; since N �SL, we have DRD−1 =
U−1AU ∈ N . But

DRD−1 =

[
1 0
0 τ

] [
α β
ψ ω

] [
1 0
0 τ−1

]
=

[
α τ−1β
τψ ω

]
. •

The next theorem was proved by Jordan in 1870 for q prime. In 1893, after
Cole had discovered a simple group of order 504, Moore recognized Cole’s group
as PSL(2, 8), and he then proved the simplicity of PSL(2, q) for all prime powers
q ≥ 4.

We are going to use Corollary A-7.38 in Part 1: two 2×2 matrices A and B over
a field k are similar (that is, there exists a nonsingular matrix P with B = PAP−1)
if and only if they both arise from a single linear transformation ϕ : k2 → k2 relative
to two choices of bases of k2. Of course, these statements are true if we replace 2
by n. Recall that two nonsingular n× n matrices A and B are similar if and only
if they are conjugate elements in the group GL(n, k).

Theorem C-1.78 (Jordan–Moore). The groups PSL(2, q) are simple for all
prime powers q ≥ 4.

Remark. By Theorem C-1.73, |PSL(2, 2)| = 6 and |PSL(2, 3)| = 12, so that
neither of these groups is simple (see Exercise C-1.77 on page 58). �

Proof. It suffices to prove that a normal subgroup N of SL(2, q) that contains a
matrix not in the center SZ(2, q) must be all of SL(2, q).

Suppose that N contains a matrix A =
[
α 0
β α−1

]
, where α �= ±1; that is, α2 �= 1.

If B = B21(1), thenN contains the commutator BAB−1A−1 = B21(1−α−2), which
is a transvection because 1−α−2 �= 0. Therefore, N = SL(2, q), by Lemma C-1.76.

To complete the proof, we need only show that N contains a matrix whose top
row is [α 0], where α �= ±1. By hypothesis, there is some matrix M ∈ N that
is not a scalar matrix. Let J : (Fq)

2 → (Fq)
2 be the linear transformation given

by J(v) = Mv, where v is a 2 × 1 column vector. If J(v) = γvv for all v, where
γv ∈ Fq, then the matrix of J relative to any basis of (Fq)

2 is a diagonal matrix.
In this case, M is similar to a diagonal matrix D = diag{α, β}, and Lemma C-1.77
says that D ∈ N . Since M /∈ SZ(2, q), we must have α �= β. But αβ = det(M) = 1,
and so α �= ±1. Therefore, D is a matrix in N of the desired form.

In the remaining case, there is a vector v with J(v) not a scalar multiple of v.
We saw, in Example A-7.32 in Part 1, that M is similar to a matrix of the form
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[
0 α
1 β

]
, and we must have α = −1 because M has determinant 1. Lemma C-1.77

now says that there is some nonzero τ ∈ Fq with

D =

[
0 −τ−1

τ β

]
∈ N.

If T = diag{α, α−1} (where α will be chosen in a moment), then the commutator

V = (TDT−1)D−1 =

[
α2 0

τβ(α−2 − 1) α−2

]
∈ N.

We are done if α2 �= ±1, that is, if there is some nonzero α ∈ Fq with α4 �= 1. If
q > 5, then such an element α exists, for the polynomial x4 − 1 has at most four
roots in a field. If q = 4, then every α ∈ F4 is a root of the equation x4 − x; that
is, α4 = α. Hence, if α �= 1, then α4 �= 1.

Only the case q = 5 remains. The entry β in D shows up in the lower left corner
τβ(α−2 − 1) of the commutator V . There are two subcases depending on whether
β �= 0 or β = 0. In the first subcase, choose α = 2 so that α−2 = 4 = α2 and
μ = (4−1)τβ = 3τβ �= 0. Now N contains V 2 = B21(−2μ), which is a transvection
because −2μ = −6τβ = 4τβ �= 0. Finally, if β = 0, then D has the form

D =

[
0 −τ−1

τ 0

]
.

Conjugating D by B12(ψ) for ψ ∈ F5 gives a matrix B12(ψ)DB12(−ψ) ∈ N (re-
member that B12(ψ)

−1 = B12(−ψ)) whose top row is

[τψ − τψ2 − τ−1].

If we choose ψ = 2τ−1, then the top row is [2 0], and the proof is complete. •

It is true that PSL(2, k) is a simple group for every infinite field k, but our
proof for k = Fq (in Lemma C-1.76) imposes a condition on k.

Definition. A field k is perfect if its characteristic is 0 or it has characteristic p
and every a ∈ k has a pth root in k.

If a field k has characteristic p, then the (Frobenius) map Fr: k → k sending
b �→ bp is always injective. If k is finite, then the Pigeonhole Principle says that Fr
is an isomorphism, so that every finite field is perfect. An example of an infinite
field which is not perfect is k = Fp(x), for the indeterminate x does not have a pth
root in k.

Corollary C-1.79. If k is a perfect field, then PSL(2, k) is simple; in particular,
PSL(2, k) is an infinite simple group if k is a field of characteristic 0.

Proof. In the various lemmas leading up to the proof of simplicity of PSL(2, q),
the finiteness of Fq was used either in computing orders of groups or in the proof
of Lemma C-1.76. In that proof, we used the fact that every element in F2m has a
square root; we did not assume the existence of roots otherwise. •
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Here are the first few orders of these simple groups:

|PSL(2, 4)| = 60,

|PSL(2, 5)| = 60,

|PSL(2, 7)| = 168,

|PSL(2, 8)| = 504,

|PSL(2, 9)| = 360,

|PSL(2, 11)| = 660.

It is known that these numbers are the only orders of nonabelian simple groups
which are under 1000. Some of these, namely, 60 and 360, coincide with orders of
alternating groups. The next proposition shows that PSL(2, 4) ∼= A5

∼= PSL(2, 5),
and Exercise C-1.78 on page 58 shows that PSL(2, 9) ∼= A6. We shall see in the
next section that A8 and PSL(3, 4) are nonisomorphic simple groups of the same
order, namely, 1

28! = 20, 160.

Proposition C-1.80. If G is a simple group of order 60, then G ∼= A5.

Proof. It suffices to show that G has a subgroup H of index 5, for then Theo-
rem C-1.2, the representation on the cosets ofH, gives a homomorphism ϕ : G→ S5

with kerϕ ⊆ H. As G is simple, the proper normal subgroup kerϕ is equal to {1},
and so G is isomorphic to a subgroup of S5 of order 60. By Exercise C-1.17(ii) on
page 15, A5 is the only subgroup of S5 of order 60, and so G ∼= A5.

Suppose that P and Q are Sylow 2-subgroups of G with P ∩ Q �= {1}; choose
x ∈ P ∩Q with x �= 1. Now P has order 4, hence is abelian, and so 4 | |CG(x)|, by
Lagrange’s Theorem. Indeed, since both P and Q are abelian, the subset P ∪Q is
contained in CG(x), so that |CG(x)| ≥ |P ∪Q| > 4. Therefore, |CG(x)| is a proper
multiple of 4 which is also a divisor of 60: either |CG(x)| = 12, |CG(x)| = 20,
or |CG(x)| = 60. The second case cannot occur lest CG(x) have index 3, and
representing G on its cosets would show that G is isomorphic to a subgroup of S3;
the third case cannot occur lest x ∈ Z(G) = {1}. Therefore, CG(x) is a subgroup
of G of index 5, and we are done in this case. We may now assume that every two
Sylow 2-subgroups of G intersect in {1}.

A Sylow 2-subgroup P of G has r = [G : NG(P )] conjugates, where r = 3, 5,
or 15. Now r �= 3 (G has no subgroup of index 3). We show that r = 15 is not
possible by counting elements. Each Sylow 2-subgroup contains three nonidentity
elements. Since any two Sylow 2-subgroups intersect trivially (as we have seen
above), their union contains 15 × 3 = 45 nonidentity elements. Now a Sylow 5-
subgroup of G must have six conjugates (the number r5 of them is a divisor of 60
satisfying r5 ≡ 1 mod 5). But Sylow 5-subgroups are cyclic of order 5, so that the
intersection of any pair of them is {1}, and so the union of them contains 6×4 = 24
nonidentity elements. We have exceeded the number of elements in G, and so this
case cannot occur. •

Corollary C-1.81. PSL(2, 4) ∼= A5
∼= PSL(2, 5).

Proof. All three groups are simple and have order 60. •
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Exercises

C-1.76. Give a composition series for GL(2, 5) and list its factor groups.

∗ C-1.77. (i) Prove that PSL(2, 2) ∼= S3.

(ii) Prove that PSL(2, 3) ∼= A4.

∗ C-1.78. Prove that any simple group G of order 360 is isomorphic to A6. Conclude that
PSL(2, 9) ∼= A6.

Hint. Let NG(P ) be the normalizer of a Sylow 5-subgroup P . Prove that there is an
element α of order 3 such that A =

〈
NG(P ), α

〉
has order 120. Since NG(P ) ∼= D10, by

Exercise C-1.43(iii) on page 33, we have |A| = 30, 60, or 360.

C-1.79. (i) Prove that SL(2, 5) is not solvable.

(ii) Show that a Sylow 2-subgroup of SL(2, 5) is isomorphic to Q, the quaternion group
of order 8.

(iii) Prove that the Sylow p-subgroups of SL(2, 5) are cyclic if p is an odd prime. Con-
clude, for every prime divisor p of |SL(2, 5)|, that all the Sylow p-subgroups of
SL(2, 5) have a unique subgroup of order p.

C-1.80. Prove that GL(2, 7) is not solvable.

∗ C-1.81. (i) Prove that SL(2, q) is the commutator subgroup of GL(2, q) for all prime
powers q ≥ 4.

(ii) What is the commutator subgroup of GL(2, q) when q = 2 and when q = 3?

C-1.82. Let π be a primitive element of F8.

(i) What is the order of [ π 0
1 π ] considered as an element of GL(2, 8)?

(ii) What is the order of
[
π 0 0
1 π 0
0 1 π

]
considered as an element of GL(3, 8)?

Hint. Show that if N =
[
0 0 0
1 0 0
0 1 0

]
, then N2 =

[
0 0 0
0 0 0
1 0 0

]
and N3 = 0, and use the

Binomial Theorem to show that if A =
[
π 0 0
1 π 0
0 1 π

]
, then Am = πmI + mπm−1N +(

m
2

)
πm−2N2.

Simplicity of PSL(n, q)

In 1870, Jordan proved that PSL(n, p) is simple for all n ≥ 3 and all primes p.
In 1897, Dickson proved that PSL(n, q) is simple for all n ≥ 3 and all prime powers
q = pm. In contrast to our proof of the simplicity of PSL(2, q), the proof here of
the simplicity of PSL(n, q) for all n ≥ 3 follows that of E. Artin, using more of the
geometry present in vector spaces.

Lemma C-1.82. Let V be an n-dimensional vector space over a field k, let H be a
hyperplane in V (that is, H is an (n−1)-dimensional subspace), and let T : V → V
be a nonsingular linear transformation fixing H pointwise. Assume that w ∈ V and
w /∈ H.
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(i) Every v ∈ V has a unique expression of the form v = λw + h, where λ ∈ k
and h ∈ H. In particular,

T (w) = μ0w + h0,

where μ0 ∈ k and h0 ∈ H. Moreover, for every v ∈ V , there is h′ ∈ H with

T (v) = μ0v + h′.

(ii) The scalar μ0 depends only on T and not on w. Denote this scalar by

μ0 = μ(T ).

(iii) If μ0 = 1 and v = λw + h as in (i), then

T (v) = v + λh0.

Moreover, if T �= 1V , then every eigenvector of T lies in H.

Proof.

(i) Since H is a hyperplane and w /∈ H, the subspace 〈w〉 = {λw : λ ∈ k} is a
complement of H:

V = 〈w〉 ⊕H.

Thus, each v ∈ V has a unique expression as stated.
If v ∈ V , then v = λw + h. Since T fixes H pointwise,

T (v) = λT (w) + h

= λ(μ0w + h0) + h

= μ0λw + λh0 + μ0h− μ0h+ h

= μ0(λw + h) + (λh0 − μ0h+ h)

= μ0v + h′,

where h′ = λh0 − μ0h+ h ∈ H. Note that if μ0 = 1, then h′ = λh0.

(ii) Let us see that μ0 does not depend on w. Choose w′ ∈ V with w′ /∈ H. As
in (i), T (w′) = μ′

0w
′ + h′

0, where μ′
0 ∈ k and h′

0 ∈ H and, taking v = w′,
T (w′) = μ0w

′+h′′ for some h′′ ∈ H. Thus, (μ′
0−μ0)w

′ = h′′−h′
0 ∈ 〈w′〉∩H =

{0}, so that μ′
0 = μ0.

(iii) Every nonzero vector in H is an eigenvector of T (for the eigenvalue 1),
because T fixes H pointwise; are there any others? By (i), T (v) = μ0v + h′,
where h′ ∈ H. But we noted in the proof of (i) that if μ0 = 1, then h′ = λh0,
and so

T (v) = v + λh0. •

Definition. Let H be a hyperplane in a vector space V , and let T ∈ GL(V ) fix
H pointwise. If μ(T ) �= 1, then T is called a dilatation ; if μ(T ) = 1 and T �= 1V ,
then T is called a transvection.

The next result gives matrix versions of dilatations and transvections. It shows,
in particular, that if dim(V ) = n ≥ 2, then the present definition of transvection
agrees with the definition used in the preceding section.
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Theorem C-1.83. Let H be a hyperplane in a vector space V over a field k, and
let T ∈ GL(V ) fix H pointwise.

(i) If T is a dilatation, then there is a basis X of V so that the matrix of T
relative to X is D(μ) = diag{1, . . . , 1, μ}.

(ii) If T is a transvection, then there is a basis X of V such that the matrix of T
relative to X is B21(1).

Proof. We write μ = μ(T ) in this proof.

(i) We seek g ∈ H with T (w + g) = μ(w + g). Now T (w) = μw + h0, so that
μw+h0+g = μw+μg and (1−μ)g = h0. But T is a dilatation, so μ �= 1, and
we can solve for g. Hence, w + g is a eigenvector of T for μ. If h1, . . . , hn−1

is a basis of H, then h1, . . . , hn−1, w+ g is a basis of V , and the matrix of T
relative to this basis is diag{1, . . . , 1, μ}.

(ii) By Lemma C-1.82(iii), T has no eigenvectors outside of H. Since h0 ∈ H
is nonzero, it is part of a basis of H, say, h0, h2, . . . , hn−1, and adjoining w
gives the basis w, h0, h2, . . . , hn−1 of V . Relative to this basis, T = B21(1),
for T (w) = w + h0, and so T is a transvection. •

Let E = e1, . . . , en be the standard basis of kn. The linear transformation
T : kn → kn arising from the matrix transvection Bij(λ) is given by

T (e�) =

{
e� if � �= i,

ei + λej if � = i.

Now H = 〈e1, . . . , ei−1, ei+1, . . . , en〉 is a hyperplane fixed pointwise by T . If we
define w = ei + λej , then T (w) = w + λej ; note that λej ∈ H, so that μ(T ) = 1
and T is a transvection.

Lemma C-1.84. All (matrix) transvections in GL(n, q) are conjugate in GL(n, q).

Proof. It suffices to prove that there is P ∈ GL(n, q) with Bij(λ) = PB21(1)P
−1,

for then any two matrix transvections are similar to B21(1) and, hence, are similar
to each other.

Let T : kn → kn be the linear transformation arising from a matrix transvection
Bij(λ). As usual, if E is the standard basis of kn, then E [T ]E = Bij(λ). Now
Theorem C-1.83 shows that there is a basis X of kn with respect to which the
matrix of T is B21(1); that is, X [T ]X = B21(1). By Corollary A-7.38 in Part 1,
there is a nonsingular matrix P , namely P = E [1kn ]X , with

Bij(λ) = PX [T ]XP−1 = PB21(1)P
−1. •

Here is a more geometric description of transvections. Let H be a hyperplane
in a vector space V and let T : V → V be a transvection fixing H pointwise. In
Lemma C-1.82(iii), we saw, for every v = λw + h ∈ V , that

T (v) = v + λh0.
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The function ϕ : V → k, given by ϕ(v) = λ, is a linear functional, and we may write

T (v) = v + ϕ(v)h0.

Note that kerϕ = H.

Notation. Let ϕ : V → k be a linear functional with kerϕ = H. If h0 ∈ H, define
[ϕ, h0] : V → V by

[ϕ, h0] : v �→ v + ϕ(v)h0.

Lemma C-1.85. Let V be a vector space over k.

(i) [ϕ, h0] is a transvection.

(ii) Given [ϕ, h0] and [ψ, �0], we have

[ϕ, h0] ◦ [ϕ, �0] = [ϕ, h0 + �0] and [ϕ, h0] ◦ [ψ, h0] = [ϕ+ ψ, h0].

(iii) For all nonzero λ ∈ k,

[λϕ, h0] = [ϕ, λh0].

(iv) [ϕ, h0] = [ψ, �0] if and only if there is a nonzero τ ∈ k with

ψ = τϕ and h0 = τ�0.

(v) If S ∈ GL(V ), then

S[ϕ, h0]S
−1 = [ϕS−1, Sh0].

Proof. All are routine calculations. •

Lemma C-1.84 says that all transvections (which are necessarily unimodular)
are conjugate in GL(n, q); that is, if B and B′ are transvections, then there is some
P ∈ GL(n, q) with B′ = PBP−1. The next theorem says that there is such a
matrix P having determinant 1.

Theorem C-1.86. All transvections in SL(V ) are conjugate in SL(V ) if dim(V )
≥ 3.

.Remark. We have seen that any two transvections are conjugate in GL, but it is
easy to see that

B12(1) =

[
1 1
0 1

]
and

[
1 −1
0 1

]
= B12(−1)

are not conjugate in SL(2, 3) (indeed, these transvections are not conjugate in
SL(2, k) for any field k in which −1 is not a square). The assumption that n ≥ 3 is
thus essential. �

Proof. Let [ϕ, h] and [ψ, �] be transvections, so that H = kerϕ and L = kerψ are
the hyperplanes fixed by each. Choose v, u ∈ V with ϕ(v) = 1 = ψ(u) (it follows
that v /∈ H and u /∈ L). There are bases h, h2, . . . , hn−1 and �, �2, . . . , �n−1 of H
and L, respectively, and adjoining v and u gives bases X = v, h, h2, . . . , hn−1 and
Y = u, �, �2, . . . , �n−1 of V . If T : V → V takes X to Y , then T ∈ GL(V ) and

T (v) = v, T (H) = L, and T (h) = �.(1)
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Let det(T ) = δ. We now modify T so it will be unimodular. Since dim(V ) ≥ 3, we
may assume, in the basis X, that v, h, hn−1 are distinct. Define S so that it agrees
with T on X except that S(hn−1) = δ−1�n−1 (the matrix of S is the matrix of T
except that its last column is multiplied by δ−1). Thus, S has the same properties
as T while det(S) = 1; that is, S ∈ SL(V ).

By Lemma C-1.85, S[ϕ, h]S−1 = [ϕS−1, S(h)] = [ϕS−1, �]. But ϕS−1 and ψ
agree on the basis Y of V , so that ϕS−1 = ψ. Therefore, [ϕ, h] and [ψ, �] are
conjugate in SL(V ). •

Corollary C-1.87. Let N be a normal subgroup of SL(V ), where dim(V ) ≥ 3. If
N contains a transvection U , then N = SL(V ).

Proof. Corollary C-1.75 allows us to prove this for SL(n, k) ∼= SL(V ). If A ∈
SL(n, k), then A = B1 · · ·Bm, where each Bt is a transvection. By hypothesis, for
each t, there is Pt ∈ SL(n, k) with Bt = PtUP−1

t . Since N�SL(n, k), each Bt ∈ N ,
and so A ∈ N . •

Definition. If H is a hyperplane in a vector space V , define

Tran(H) = {1V } ∪ {all transvections fixing H pointwise}.

Lemma C-1.88. Let H be a hyperplane in a vector space V over k.

(i) There is a linear functional ϕ with H = kerϕ so that

Tran(H) = {1V } ∪ {[ϕ, h] : h ∈ H and h �= 0}.

(ii) Tran(H) is an abelian subgroup of SL(V ), and Tran(H) ∼= H.

(iii) The centralizer CSL(Tran(H)) = SZ(V )Tran(H).

Proof.

(i) We show first that ϕ, ψ ∈ Tran(H) are distinct from 1V , i.e., kerϕ = H =
kerψ, if and only if there is a nonzero α ∈ k with ψ = αϕ. It is clear that
ψ = αϕ implies kerϕ = kerψ. Conversely, if kerϕ = H = kerψ, choose
w ∈ V with w /∈ H. Since both ϕ(w) and ψ(w) are nonzero elements of k,
there is α �= 0 with ϕ(w) = αψ(w). Now every v ∈ V can be written as
v = λw + h, where λ ∈ K and h ∈ H. Hence,

ψ(v) = ψ(λw + h) = λψ(w) = λαϕ(w) = αϕ(v).

Now choose [ϕ, h0] ∈ Tran(H). If [ψ, �] ∈ Tran(H), then ψ fixes H pointwise;
by the above, there exists α ∈ k with ψ = αϕ. Hence, [ψ, �] = [αϕ, �] =
[ϕ, α�].

(ii) By (i), we may assume that there is a linear functional ϕ so that every
transvection in Tran(H) has the form [ϕ, h] for some nonzero h ∈ H. If
[ϕ, h], [ϕ, �] ∈ Tran(H), then [ϕ,−�] ∈ Tran(H) and [ϕ, h]◦[ϕ, �] ∈ Tran(H) =
[ϕ, h+ �]. Since [ϕ, h] ◦ [ϕ, �] = [ϕ, h+ �] = [ϕ, �+ h], it follows that Tran(H)
is an abelian subgroup of SL(V ), and it is easy to see that [ϕ, h] �→ h is an
isomorphism Tran(H)→ H.
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(iii) Since Tran(H) is abelian, we have SZ(V )Tran(H) ⊆ CSL(Tran(H)). For the
reverse inclusion, assume that S ∈ SL(V ) commutes with every [ϕ, h]; that
is, for all h ∈ H, S[ϕ, h]S−1 = [ϕ, h]. Now Lemma C-1.85(v) says that
S[ϕ, h]S−1 = [ϕS−1, Sh]. But part (iv) of that lemma says there is a nonzero
α ∈ k with

ϕS−1 = αϕ and Sh = α−1h.(2)

Since αS fixes H pointwise, it is either a dilatation or a transvection. If it is
a transvection, then αS ∈ Tran(H), and so S = α−1(αS) ∈ SZ(V )Tran(H).
If αS is a dilatation, then it has an eigenvector w /∈ H: there is μ ∈ k
with αS(w) = μw, where 1 �= μ = det(αS) = αn (for det(S) = 1); hence,
Sw = αn−1w. But ϕS−1w = ϕ(α−n+1w) = α−n+1wϕ(w), so that Eq. (2)
gives ϕ(w) = αnϕ(w). Since ϕ(w) �= 0 (because w /∈ H), we reach the
contradiction αn = 1. •

Theorem C-1.89 (Jordan–Dickson). For every n ≥ 3 and every field k, the
group PSL(n, k) is simple.

Proof. The proof will consider SL(V ), where dim(V ) = n instead of SL(n, k), that
is, linear transformations instead of matrices. We show that if N is a normal sub-
group of SL(V ) containing some A /∈ SZ(V ), then N = SL(V ); by Corollary C-1.87,
it suffices to show that N contains a transvection.

Since SL(V ) is generated by transvections, there exists a transvection T which
does not commute with A. Hence, the commutator B = T−1A−1TA �= I. Note
that N � SL(V ) gives B ∈ N . Thus,

B = T−1(A−1TA) = T1T2,

where both T1 and T2 are transvections. Now each Ti = [ϕi, hi], where hi ∈ Hi =
kerϕi; that is, for i = 1, 2,

Ti(v) = v + ϕi(v)hi for all v ∈ V.

Let W be the subspace 〈h1, h2〉 of V , so that dim(W ) ≤ 2. Since dim(V ) ≥ 3,
there is a hyperplane L of V containing W . We claim that B(L) ⊆ L. If � ∈ L,
then

B(�) = T1T2(�) = T2(�) + ϕ1(T2(�))h1

= �+ ϕ2(�)h2 + ϕ1(T2(�))h1 ∈ L+W ⊆ L.

Next, we claim that H1∩H2 �= {0}. This is surely true if H1 = H2. Otherwise,
if H1 �= H2, then H1 + H2 = V (hyperplanes are maximal subspaces), so that
dim(H1 +H2) = n. Since

dim(H1) + dim(H2) = dim(H1 +H2) + dim(H1 ∩H2),

we have dim(H1 ∩H2) = n− 2 ≥ 1. Take z ∈ H1 ∩H2 with z �= 0; then

B(z) = T2T2(z) = z.

We may assume that B is not a transvection (or we are done). Therefore, B /∈
Tran(L), which is wholly comprised of transvections. If B = αS, where S ∈
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Tran(L), then z is an eigenvector of S (for z = B(z) = αS(z), and so S(z) =
α−1z). As eigenvectors of transvections lie in the fixed hyperplane, we have z ∈ L;
thus, α = 1, giving the contradiction S = B. Therefore, B /∈ SZ(V )Tran(L) =
CSL(Tran(L)); thus, there exists U ∈ Tran(L) not commuting with B:

UBU−1B−1 �= 1;

of course C, defined by C = UBU−1B−1, lies in N (for N is normal). If � ∈ L,
then

C(�) = UBU−1B−1(�) = UB(B−1(�)) = �,

because B−1(�) ∈ L and U−1 ∈ Tran(L) fixes L pointwise. As the linear transfor-
mation C fixes the hyperplane L, it is either a transvection or a dilatation. However,
C is not a dilatation because det(C) = 1. Therefore, C is a transvection in N . •

We will give another proof of the Jordan–Dickson Theorem in the next section.

The next result gives some interesting information about GL.

Proposition C-1.90. If V is a vector space over k, then the commutator subgroup
of GL(V ) is SL(V ) unless V is a two-dimensional vector space over F2.

Proof. Now det : GL → k# has kernel SL; since the multiplicative group k# is
abelian, we have (GL)′ ⊆ SL. For the reverse inclusion, let π : GL → GL /(GL)′

be the natural map. By Lemma C-1.84, all transvections are conjugate in GL. It
follows that π(T ) = π(S) for all transvections T and S; let δ denote their common
value. Now T = [ϕ, h] for some linear functional ϕ and some h ∈ H. If we avoid
the exceptional case in the statement, then H contains a nonzero vector v (which
might be h) with v + h �= 0. By Lemma C-1.85(ii), [ϕ, h] ◦ [ϕ, �] = [ϕ, h + �] (the
latter is a transvection because h+� �= 0). Applying π to this equation gives δ2 = δ
in GL /(GL)′, whence δ = 1. Thus, every transvection lies in kerπ = (GL)′. But
SL is generated by the transvections, by Lemma C-1.74, and so SL ⊆ (GL)′. •

If V is a two-dimensional vector space over F2, then GL(V ) is a genuine excep-
tion to the proposition. In this case,

GL(V ) = SL(V ) ∼= SL(2, 2) ∼= S3,

and (SL)′ = A3, a proper subgroup.

The first example of nonisomorphic simple groups having the same order was
given by Schottenfels in 1900. Note that the order of PSL(3, 4) is

|PSL(3, 4)| = (43 − 1)(43 − 4)(43 − 42)/3 · 3 = 20, 160,

for n = 3, q = 4, and d = gcd(3, 4− 1) = 3.

Theorem C-1.91 (Schottenfels). PSL(3, 4) and A8 are nonisomorphic simple
groups of order 1

28! = 20, 160.

Proof. The permutations (1 2)(3 4) and (1 2)(3 4)(5 6)(7 8) lie in A8 (they are
even) and they have order 2. Since they have different cycle structure, they are not
conjugate in S8; hence, they are not conjugate in the subgroup A8. We prove the
theorem by showing that all elements of order 2 in PSL(3, 4) are conjugate.
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A nonscalar matrix A ∈ SL(3, 4) corresponds to an element of order 2 in
PSL(3, 4) if and only if A2 is scalar, and A2 is scalar if and only if PAP−1 is
scalar for every nonsingular matrix P . Thus, A can be replaced by any matrix
similar to it; that is, we may assume that A is a rational canonical form, of which
there are three types.

If A is a direct sum of 1 × 1 companion matrices, then A = diag{α, β, γ}.
But A2 is scalar, so that α2 = β2 = γ2. Since F4 has characteristic 2, this gives
α = β = γ; that is, A is scalar, a contradiction.

Assume A is a 3× 3 companion matrix, say,

A =

⎡⎣0 0 α
1 0 β
0 1 γ

⎤⎦ ,

where α �= 0 because A is nonsingular. But A2 has entry α in position (1, 2), so
that A2 is not scalar.

We conclude that A must be a direct sum of a 1× 1 companion matrix and a
2× 2 companion matrix, say,

A =

⎡⎣α 0 0
0 0 β
0 1 γ

⎤⎦ .

Now det(A) = 1 = αβ (remember that −1 = 1 in F4), so that β = α−1; as A2 is
scalar, we must have γ = 0. Thus,

A =

⎡⎣α 0 0
0 0 α−1

0 1 0

⎤⎦ .

If π is a primitive element of F4, there are only three such matrices:

A =

⎡⎣1 0 0
0 0 1
0 1 0

⎤⎦ , B =

⎡⎣π 0 0
0 0 π2

0 1 0

⎤⎦ , C =

⎡⎣π2 0 0
0 0 π
0 1 0

⎤⎦ .

Note that A2 = I, B2 = π2I, and C2 = πI. It follows that if M ∈ SL(3, 4) has
order 2, that is, M2 = I (a stronger condition than M2 being scalar), then M is
similar to A; that is, M = PAP−1 for some P ∈ GL(3, 4). In particular, π2B and
πC have order 2, so there are P,Q ∈ GL(3, 4) with

PAP−1 = π2B and QAQ−1 = πC.

Since the index [GL(3, 4) : SL(3, 4)] = 3 (for GL / SL ∼= F#
4
∼= Z3) and since

diag{π, 1, 1}, which has determinant π �= 1, commutes with A, Exercise C-1.85
allows us to assume that P,Q ∈ SL(3, 4). It follows that A, B, C become conjugate
in PSL(3, 4), as desired. •

Another proof of this theorem is described in Exercise C-1.83 below.

Around 1900, all simple Lie algebras over the complex numbers were classified
by E. Cartan and Killing: there are four infinite families of these, along with
five “sporadic” such families, belonging to no infinite family. Chevalley saw that
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there are finite simple analogs of the simple Lie algebras: projective unimodular
groups, symplectic groups, orthogonal groups, and unitary groups, for example,
which are simple groups, while Ree, Steinberg, and Suzuki constructed others (the
Suzuki groups Sz(q), where q is a power of 2, are the only finite nonabelian simple
groups whose order is not divisible by 3). The Classification Theorem of Finite
Simple Groups says that every finite simple group is cyclic of prime order, is an
alternating group, lies in one of finitely many explicit infinite families of finite simple
groups, collectively called the simple groups of Lie type, or is one of 26 sporadic
simple groups, the largest of which is the “Monster” (of order approximately 8 ×
1053). This theorem, completed around 2004, shows that there are infinitely many
pairs of nonisomorphic simple groups having the same order, but there do not exist
three nonisomorphic simple groups of the same order. (The paper of Cameron [34]
gives many more consequences of the Classification Theorem to finite groups.) For a
more detailed discussion of the Classification Theorem, see E. Artin [8], Carter [37]
(as well as the chapter by Carter in the book edited by Kostrikin–Shafarevich [128]),
Conway et al. [44], Dieudonné [52], and Gorenstein–Lyons–Solomon [81].

Exercises

∗ C-1.83. Give another proof of Theorem C-1.91 by observing that (1 2 3)(4 5 6 7 8) is
an element of order 15 in A8, while PSL(3, 4) contains no elements of order 15.

Hint. Use the Jordan canonical form.

C-1.84. Prove that |PSL(3, 2)| = 168, and show that PSL(3, 2) ∼= PSL(2, 7).

∗ C-1.85. Let G be a finite group.

(i) For every a, x ∈ G, prove that CG(axa
−1) = aCG(x)a

−1.

(ii) If H ⊆ G and h ∈ H, prove that CH(h) = CG(h) ∩H.

(iii) Let H be a normal subgroup of prime index, and let x ∈ H satisfy CH(x) � CG(x).
If y ∈ H is conjugate to x in G, prove that y is conjugate to x in H.

C-1.5. More Group Actions

We continue our discussion of group actions, but we begin by introducing projective
geometry, for PSL acts on projective space. Aside from its value in other branches
of mathematics (in particular, in algebraic topology and in algebraic geometry)
as well as its intrinsic interest, we shall see that PGL(V ) = GL(V )/Z(V ) and
its subgroup13 the projective unimodular group PSL(V ) = SL(V )/SZ(V ) acts on
projective space. This action leads to a second proof of the simplicity of the PSL’s,
using multiple transitivity.

13Note that SL(V )/SZ(V ) = SL(V )/(SL(V )∩Z(V )) ∼= (SL(V )Z(V ) SL(V )) ⊆ GL(V )/Z(V ).
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Projective Geometry

We have seen in Part 1 that modern computers have influenced mathematics.14

An earlier influence occurred about a century before the Renaissance when artists
began drawing in perspective, that is, depicting objects on a two-dimensional sur-
face so as to give the right impression of their height, width, depth, and position
in relation to each other when viewed from the artist’s or the viewer’s eye. For
example, we know that train tracks, which are parallel, seem to get closer as their
distance from us grows. Indeed, it appears that parallel lines actually meet at the
horizon. Figure C-1.5 is a sketch drawn by Alberti around 1435.

Figure C-1.5. Perspective of a tiled floor.

Figure C-1.6. Cimabue.
Figure C-1.7. Masaccio.

14There have always been outside influences on mathematics. For example, commerce, cal-
endars (to know when to plant), areas (to compute taxes after annual Nile flooding), calculus (to
aid naval navigation, among other applications), and physics.
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In the Middle Ages, paintings were essentially flat. For example, Figure C-1.6,
Cimabue’s Madonna enthroned, painted around 1285, contrasts with Figure C-1.7,
the Holy Trinity of Masaccio, painted around 1425, which appears more three
dimensional.

There are two mathematical problems involved in painting the three-dimen-
sional world on a flat canvas. First, what are “vanishing points” (points like v in
Figure C-1.5) to which parallel lines on the plane of the tiled floor seem to converge.
This problem generalizes to three dimensions, for painters are also interested in
vanishing points in space. Second, find the relation between the actual length of
an object and its length in the picture depending on its distance behind the plane
of the canvas. These specific problems were solved by Brunelleschi around 1413,
although the first written account is due to Alberti in 1435. Further theorems were
found by Kepler in 1604, Desargues in 1639, and Pascal in 1640. Ultimately, these
ideas led to the creation in the early 1800s of projective geometry, by Grassmann,
Möbius, Plücker, Poncelet, and von Staudt (see Neumann–Stoy–Thompson [167]
and Stillwell [214]).

We consider only the first problem: how do we attach the horizon to the plane?
Now every line in R2 is parallel to a (unique) line through the origin. Each such
line � through the origin meets the unit circle S1 ⊆ R2 in two antipodal points,
u and −u, either one of which determines �. Since we want to attach only one
(vanishing) point to the family of all lines parallel to �, we identify each point on
S1 with its antipode. Now the interior of S1 is homeomorphic to R2, and we may
view a semicircle, say, {(cos θ, sin θ) : 0 ≤ θ < π}, as the horizon. Actually, once we
identify the endpoints (cos 0, sin 0) and (cosπ, sinπ), we have a circle: indeed, we
can view this circle as arising from the real line R by adjoining a point we call ∞.
This idea extends to 3-space: every line in space is parallel to a unique line through
the origin which intersects the 2-sphere S2 ⊆ R3 in two antipodal points. Since
the interior of S2 is homeomorphic to R3, our previous discussion does generalize.
Indeed, this idea extends to Sn ⊆ Rn+1 for all n ≥ 0. Here is the usual definition
of Pn(R), real projective n-space, used in algebraic topology: it is the quotient
space

Pn(R) = Sn/∼,

where x ∼ y (for x, y ∈ Sn) if x and y are antipodal.

Our problem now is to define Pn(k) for any field k. The key idea is to add a
coordinate, which will distinguish affine points, that is, points in kn, from points
at infinity (the term used nowadays instead of vanishing points).15

If V is a vector space over a field k, define an equivalence relation on V − {0}
by v ∼ v′ if there exists t ∈ k# with v′ = tv (we write k# to denote the set of
nonzero elements in k). Denote the equivalence class of v by

[v] = {tv : t ∈ k#}.

15In the midst of my writing this section, I ran across Nigel Hitchin’s lovely notes on a course
he had taught on projective geomety, and he kindly allowed me to borrow from them.
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If V is finite-dimensional and v ∈ V has coordinates v = (x0, . . . , xn) with respect
to some basis, then we write

[v] = [x0, . . . , xn] = {(tx0, . . . , txn) : t ∈ k#},
and we call [x0, . . . , xn] the homogeneous coordinates of v = (x0, . . . , xn). If
x0 �= 0, then we can recapture the last n coordinates of v:

[v] = [x0, . . . , xn] = [1, x1/x0, . . . , xn/x0].

Note that homogeneous coordinates [x0, . . . , xn] of (x0, . . . , xn) do detect whether
xi = 0 or xi �= 0 for any i. In particular, we are going to distinguish points
[x0, . . . , xn] with x0 = 0 and those with x0 �= 0.

As the construction of P2(R) suggests, we define projective space over an arbi-
trary field k as the set of all lines through the origin in kn.

Definition. Let V be an (n + 1)-dimensional vector space over a field k. The
projective space of dimension n over k is defined by

P(V ) = Pn(k) = {[v] : v ∈ V − {0}}.
If U ⊆ V is a subspace of V , then P(U) is the projective subspace defined by

P(U) = {[u] ∈ P(V ) : u ∈ U}.
A projective hyperplane is a projective subspace P(U) if dim(U) = dim(V )− 1.

For example, a projective line P1(k) is

P1(k) = {[u] : u ∈ U − {0}},
where dim(U) = 2. When k = C, then P1(C) is the Riemann sphere; that is, C
is identified with R2 as usual, and P1(C) is S2, the (real) plane with ∞ adjoined.

Example C-1.92. If k = F2, then k2 has four points: O = (0, 0), a = (1, 0),
b = (0, 1), and c = (1, 1), and six lines, as in Figure C-1.8.

a

bc

O

Figure C-1.8. Affine plane.

O

a

bc

2

1

3

Figure C-1.9. P2(F2).

There are three sets of parallel lines in k2: Oa and bc; Ob and ac; Oc and ab.
The projective plane P2(F2) (sometimes called the Fano plane) is obtained by
adding new points ω1, ω2, and ω3 forcing parallel lines to meet. There are seven
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lines: the six lines in the affine plane k2 (each lengthened with some ωi) plus the
line at infinity ω1, ω2, ω3. �

Proposition C-1.93. For every field k and all n ≥ 1, there is a disjoint union

Pn(k) = kn ∪ Pn−1(k).

Proof. If U = kn+1, then U0, defined by

U0 = {[u] = [1, x1, . . . , xn] ∈ U − {0}} ⊆ Pn(k),

can obviously be identified with kn, while its complement {[u] = [0, x1, . . . , xn] ∈
U − {0}} ⊆ Pn(k) can be identified with Pn−1(k). •

Thus, a line � = {tu = t(x1, . . . , xn)} in kn acquires an extra point in P(V ),
namely, [0, x1, . . . , xn]; the projective line corresponding to � is P(U), where U is
the two-dimensional subspace

U = 〈(1, x1, . . . , xn), (0, x1, . . . , xn)〉 ⊆ V.

Corollary C-1.94. If k is a finite field with q = pm elements, then P2(k) has
exactly q2+ q+1 elements and each projective line in it has exactly q+1 elements.

Proof. Proposition C-1.93 says that |P2(k)| = q2 + |P1(k)|. But a line � in k2 has
q points, and its corresponding projective line has one more point. •

Proposition C-1.95. Let P(V ) be the projective space arising from an n-dimen-
sional vector space V over a field k, where n ≥ 2.

(i) If [x], [y] are distinct elements of P(V ), then x, y are linearly independent.

(ii) Given distinct points [u], [v] ∈ P(V ), there is a unique projective line contain-
ing them.

(iii) If dim(V ) = 3, then distinct lines P(U) and P(U ′) in the projective plane
P(V ) intersect in a unique point.

Proof.

(i) If u, v are not linearly independent in V , then there is a nonzero scalar t ∈ k
with v = tu (or u = tv), which gives a contradiction:

[u] = [tv] = [v].

(ii) By (i), U = 〈u, v〉 is a two-dimensional subspace of V , and so P(U) is a
projective line in P(V ) containing [u] and [v].16

To prove uniqueness, suppose there is a two-dimensional subspace U ′ of
V with P(U ′) = P(U). Since [u], [v] ∈ P(U ′), we have u, v ∈ U ′, and so
U = 〈u, v〉 ⊆ U ′. As dim(U) = 2 = dim(U ′), it follows that U = U ′ and
P(U) = P(U ′).

16Here is a more visual proof. Given a point u ∈ kn, define the pencil at u to be the family
of all lines passing through u; there is a way to view projective lines as pencils. Given pencils at
u and u′, with u �= u′, then their intersection is the projective point arising from the line joining
u and u′.
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(iii) Now

dim(V ) ≥ dim(U + U ′) = dim(U) + dim(U ′)− dim(U ∩ U ′);

that is, 3 ≥ 2 + 2 − dim(U ∩ U ′), so that dim(U ∩ U ′) ≥ 1. Since U and U ′

are two-dimensional, we have dim(U ∩ U ′) ≤ 2 with equality if and only if
U = U ′. But U �= U ′, so that dim(U ∩U ′) = 1, and P(U ∩U ′) is a projective
point in P(U)∩P(U ′). Uniqueness follows from part (i): were there two points
of intersection, then P(U) = P(U ′). •

Two parallel lines � and �′ in R2 have equations

y −mx− b = 0 and y −mx− b′ = 0,

and their corresponding lines in P2(R) intersect in [0, 1,−m]. We have forced par-
allel lines in the plane to meet.

Remark. When investigating magic squares in 1782, Euler considered the follow-
ing combinatorial problem. Suppose there are 36 officers of 6 ranks and from 6
regiments. If the regiments are numbered 1 through 6 and the ranks are captain,
major, lieutenant, ..., then each officer has a double label; for example, captain 3
or major 4. Euler asked whether there is a 6× 6 formation of these officers so that
each row and each column contains exactly one officer of each rank and one officer
from each regiment. More generally, call two n × n Latin squares17 [aij ] and [bij ]
with entries in {1, 2, . . . , n} orthogonal if all the entries in [cij ] are distinct, where
cij = (aij , bij).

18 Thus, Euler asked whether there exists a pair of orthogonal 6× 6
Latin squares. It turns out that the answer is no. But it also turns out that a
positive answer suggests a combinatorial version of a projective plane.

Definition. A projective plane of order n is a set X with |X| = n2 + n + 1
together with a family of subsets, called lines, each having exactly n + 1 points,
such that every two points determine a unique line.

Call a family A1, . . . , Am of n× n Latin squares over {1, 2, . . . , n} orthogonal
if Ar and As are orthogonal for all r �= s.

Theorem. If n ≥ 3, then there exists a projective plane of order n if and only if
there exists an orthogonal family of n− 1 n× n Latin squares.

Proof. Ryser [195], p. 92. •

If k = Fq, then Corollary C-1.94 gives |P2(k)| = q2 + |P1(k)| = q2 + q + 1, for
each projective line has q + 1 points. Thus, P2(Fq) is a projective plane of order q.
Projective planes of order q need not be unique; for example, it is known that there
are four projective planes of order 9, only one of which arises from F9. Euler proved
that if n �≡ 2 mod 4, then there exists an orthogonal pair of n × n Latin squares,

17A Latin square over {1, 2, . . . , n} is an n× n matrix with no integer i occurring twice in
any row or in any column.

18The matrix [cij ] defining orthogonality involves two types of elements, say, rank and reg-
iment, which Euler denoted by ca,β , using two alphabets. He called the matrix [ca,β ] a Graeco-

Latin square, and this is the origin of the term Latin square.
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and so n = 6 was the first number not covered by his theorem (this is why he
asked about 36 officers). Tarry (1901) was the first to prove there is no orthogonal
pair of 6 × 6 Latin squares; it follows that there is no projective plane of order 6
(which requires an orthogonal family of 5 Latin squares). Euler conjectured that
there does not exist an orthogonal pair of n× n matrices if n ≡ 2 mod 4. In 1958,
Parker disproved Euler’s conjecture by constructing an orthogonal pair of 10 × 10
Latin squares (see the cover of [185]). The problem of finding all n for which there
exists a projective plane of order n remains open today.

Here is the best result about nonexistence of projective planes now known.

Theorem (Bruck–Ryser). If n ≡ 1 mod 4 or n ≡ 2 mod 4 and n is not a sum
of two squares, then there does not exist a finite projective plane of order n.

Proof. See Ryser [195], p. 111. •

The contrapositive of the Bruck–Ryser Theorem is also interesting. If n ≡
1 mod 4 or n ≡ 2 mod 4 and a projective plane of order n does exist, then n is a
sum of two squares. The first few n ≥ 3 with n ≡ 1 or 2 mod 4 are

5, 6, 9, 10, 13, 14, 17, 18, 21 22.

Some of these are primes or prime powers,19 so that projective planes of these
orders must exist; these numbers are indeed sums of two squares:

5 = 1 + 4, 9 = 0 + 9, 13 = 4 + 9, 17 = 1 + 16.

However, there are no projective planes of order 6, 14, 21, or 22, for these numbers
are not sums of two squares. The smallest n not covered by the Bruck–Ryser
Theorem is n = 10 (10 ≡ 2 mod 4 and 10 = 1 + 9). Using a massive amount of
computer calculation, Clement Lam showed, in 1988, that no projective plane of
order 10 exists. As of this writing, it is unknown whether a projective plane of
order 12 exists. �

We now show that linear groups act on projective space. We introduced projec-
tive unimodular groups SL(V )/ SZ(V ) by considering composition series of general
linear groups. But there is a geometric reason for dividing out the center SZ(V ), for
the action of GL takes account of homogeneous coordinates of points in projective
space.

Theorem C-1.96. Let V be an (n+ 1)-dimensional vector space over a field k.

(i) If W is a vector space over k, then every nonsingular linear transformation
T : V →W determines a unique function (called a projectivity)

P(T ) : P(V )→ P(W );

namely, P(T ) : [v] �→ [Tv].

19Fermat’s Two Squares Theorem (see Cuoco–Rotman [47], p. 342) says that an odd prime
p is a sum of two squares if and only if p ≡ 1 mod 4. Since there exists a projective plane of
order p, the Bruck–Ryser Theorem implies Fermat’s Theorem. In fact, the Bruck–Ryser Theorem
says that pe is a sum of two squares for all e ≥ 1 if p ≡ 1 mod 4.
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(ii) If T, S : V →W are nonsingular linear transformations, then P(T ) = P(S) if
and only if S = λT for some λ ∈ k#.

(iii) Define the projective general linear group by

PGL(V ) = GL(V )/Z(V ),

where Z(V ) is the center of GL(V ). Then PGL(V ) acts faithfully on P(V ).

(iv) Define

PGL(n+ 1, k) = GL(n+ 1, k)/Z(n+ 1, k),

where Z(n+ 1, k) is the center of GL(n+ 1, k). Then PGL(n+ 1, k) acts on
Pn(k).

Proof.

(i) If U is a subspace of V , then T (U) is a subspace of W ; moreover, T non-
singular implies dim(U) = dim(TU). In particular, if dim(U) = 1, then
dim(TU) = 1, and so [u] = P(U) implies [Tu] = P(TU); that is, P(T ) : P(V )
→ P(W ) is a well-defined function.

(ii) If S = λT for some λ ∈ k#, then for all [v] ∈ P(V ) we have

P(S) : [v] �→ [Sv] = [λTv] = [Tv] = P(T )[v],

and so P(S) = P(T ).
Conversely, if P(S) = P(T ), then [Sv] = [Tv] for all v ∈ V − {0}; that is,

for each nonzero v ∈ V , there is λ ∈ k#, depending on v, with S(v) = λT (v).
In particular, if v0, . . . , vn is a basis of V , then there are λi ∈ k#, for all i,
with

Svi = λiTvi.

But v =
∑n

0 αivi for αi ∈ k, so that

Sv =

n∑
0

αiSvi =

n∑
0

αiλiTvi.

On the other hand,

Sv = λTv =
n∑
0

λαiTvi.

As T is nonsingular, the list Tv0, . . . , T vn is linearly independent; hence,
λαiTvi = λiαiTvi and λi = λ for all i. It follows that S = λT .

(iii) The map π : T �→ P(T ) is a homomorphism GL(V ) → SP(V ) (the symmetric
group), and part (ii) says that kerπ is the subgroup of scalar transformations.
But Corollary A-7.41 in Part 1 says that kerπ = Z(V ), the center of GL(V ),
so that PGL(V ) = GL(V )/Z(V ) acts on P(V ).

To see that P(V ) is a faithful PSL(V )-set, it suffices to show that if
T ∈ GL(V ) fixes P(V ) pointwise, then T is a scalar transformation; that
is, if [Tv] = [v] for every v ∈ V , then T = λ1V for some nonzero λ ∈ k.
If v1, . . . , vn is a basis of V , then [Tvi] = [vi] for all i: there are nonzero
λi ∈ k with Tvi = λivi. We claim, if i �= j, that λi = λj . By hypothesis,
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[T (vi + vj)] = [vi + vj ]; that is, T (vi + vj) = μ(vi + vj) = μvi + μvj for some
nonzero μ ∈ k. But T (vi + vj) = λivi + λjvj . Therefore, λi = μ = λj .

(iv) This follows from part (iii) if we choose a basis of V and write linear transfor-
mations in GL(V ) as matrices and elements of P(V ) in terms of homogeneous
coordinates. •

Example C-1.97. By Theorem C-1.96, PGL(2, k) acts on the projective line P1(k).
A nonsingular linear transformation T : k2 → k2 corresponds to a nonsingular ma-
trix

A =

[
a b
c d

]
,

and P(T ) : [x0, x1] �→ [A(x0, x1)] = [ax0 + bx1, cx0 + dx1]. But cx0 + dx1 �= 0, since
A is nonsingular, and [ax0 + bx1, cx0 + dx1] = [(ax0 + bx1)/(cx0 + dx1), 1], so that
PGL(2, k) acts on P1(k) as linear fractional transformations. �

Further study of projective geometry continues with duality, theorems of De-
sargues and of Pappus, and the introduction of coordinates to projective space (see
Artin [8] or Coxeter–Moser [46]).

Multiple Transitivity

Although some results hold in greater generality, we assume for the remainder
of this section that all groups G and all G-sets X are finite.

Recall that if x ∈ X, where X is a G-set, then its orbit, denoted by O(x), is
{gx : g ∈ G}, and its stabilizer, denoted by Gx, is the subgroup {g ∈ G : gx = x}.
A G-set X is transitive if O(x) = X for some (and hence every) x ∈ X; that is, for
each x, y ∈ X, there exists g ∈ G with y = gx. The degree of X is |X|.

Here are two useful elementary results.

Proposition C-1.98. If X is a G-set and x ∈ X, then X − {x} is a Gx-set.

Proof. If h ∈ Gx and y �= x (that is, y ∈ X − {x}), then hy �= x, for every h ∈ G
permutes X. Hence, hy ∈ X − {x}. •

Proposition C-1.99. Let X be a transitive G-set, and let x, y ∈ X. If y = tx for
some t ∈ G, then Gx and Gy are conjugate: Gy = tGxt

−1.

Proof. If g ∈ Gx, then gx = x and tgt−1y = tgx = tx = y; hence, tGxt
−1 ⊆ Gy.

The reverse inclusion is similar. •

Recall that an action α : G×X → X gives a homomorphism G→ SX ; namely,
g �→ αg : x→ gx. This action is called faithful if G→ SX is injective.

Theorem C-1.100. If G is a finite group, X is a transitive G-set of degree n, and
x ∈ X, then

|G| = n|Gx|.
Moreover, if X is faithful, then |Gx| is a divisor of (n− 1)!.
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Proof. By Theorem C-1.16, we have | O(x)| = [G : Gx], so that |G| = n|Gx|.
If X is faithful, then G is isomorphic to a subgroup of SX . Now X−{x} ⊆ X is

a Gx-set by Proposition C-1.98; since Gx ⊆ G, it follows that X − {x} is a faithful
Gx-set. Thus, Gx can be viewed as a subgroup of SX−{x} ∼= Sn−1, and so |Gx|
divides (n− 1)!. •

Some G-sets are more transitive than others.

Definition. Let X be a G-set of degree n. If r ≤ n, then X is r-transitive if,
for every pair of r-tuples (x1, . . . , xr) and (y1, . . . , yr) having distinct entries in X,
there exists g ∈ G with gxi = yi for all i = 1, . . . , r.

The stabilizer Gx1,...,xr
of x1, . . . , xr in X is defined by

Gx1,...,xr
= {g ∈ G : gxi = xi for all i = 1, . . . , r}.

Clearly, 1-transitivity is transitivity. If r ≥ 2, then every r-transitive G-set X
is (r − 1)-transitive. We say that r-transitive G-sets are multiply transitive if
r ≥ 2. In particular, 2-transitive sets are called doubly transitive, 3-transitive
sets are called triply transitive, and so forth.

Note that if X is a G-set and B = {x1, . . . , xr} ⊆ X, then

GB = {g ∈ G : gxi ∈ B for all i = 1, . . . , r}
may be distinct from Gx1,...,xr

; in general, Gx1,...,xr
⊆ GB, but the inequality may

be strict.

The most obvious example of a multiply transitive G-set occurs when G is the
symmetric group Sn: if X = {1, . . . , n}, then X is an n-transitive Sn-set. If G is
the alternating group An, where n ≥ 3, then X is an (n− 2)-transitive An-set (see
Proposition C-1.106).

Example C-1.101. Mathieu found the first sporadic simple groups in the nine-
teenth century; there are five such groups: M11, M12, M22, M23, M24, and they
are multiply transitive (the subscript gives the degree of the set on which they
act). Now M22 is 3-transitive, M11 and M23 are 4-transitive, and M12 and M24

are 5-transitive. (See Rotman [188], pp. 286–293, for proofs of these results, and
pp. 293–306 for a discussion of the relation of Mathieu groups to Steiner systems.)
�

Example C-1.102. In Example C-1.9, we saw that if k is a field, f(x) ∈ k[x]
is a polynomial with no repeated roots, and if E/k is a splitting field of f , then
G = Gal(E/k) acts faithfully on the set X = {α1, . . . , αn} of the roots of f .
Moreover, f is irreducible if and only if X is a transitive G-set.

Now f factors in k(α1), say, f(x) = (x − α1)f1(x). It is easy to see that
G1 = Gal(E/k(α1)) ⊆ G is the stabilizer of {α1}, and so G1 acts on X − {α1}; in
fact, G1 is the Galois group of f1. Thus, G acts doubly transitively on X if and
only if f ∈ k[x] and f1 ∈ k(α1)[x] are irreducible. Iterating, X is 3-transitive if f2 is
irreducible, where f = (x−α1)(x−α2)f2. It can be proved, using the Classification
Theorem of Finite Simple Groups, that there are no faithful r-transitive G-sets
for r > 5 unless G is a symmetric or an alternating group (see Cameron [34];
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Cameron’s article also gives other applications of the Classification Theorem to
previously unsolved conjectures about finite groups). It follows that if a Galois
group G is r-transitive for r ≥ 6, then G is symmetric or alternating. �

Lemma C-1.103. Let X be a G-set. If r ≥ 2, then X is an r-transitive G-set if
and only if, for each x ∈ X, the Gx-set X − {x} is (r − 1)-transitive.

Proof. Let X be an r-transitive G-set. If (y1, . . . yr−1) and (z1, . . . zr−1) are (r−1)-
tuples of distinct elements in X−{x}, then there is g ∈ G with gx = x and gyi = zi
for all i = 1, . . . , r − 1. By Proposition C-1.98, X − {x} is a Gx-set; since gx = x,
we have g ∈ Gx, and so X − {x} is an (r − 1)-transitive Gx-set.

Conversely, let (x1, . . . xr) and (y1, . . . yr) be r-tuples of distinct elements in X.
By hypothesis, there is g ∈ Gxr

(so gxr = xr) with gxi = yi for all i < r, and there
is h ∈ Gy1

with hyj = yj for all j < r (of course, hy1 = y1 since h ∈ Gy1
). The

composite hg sends xi → yi for all i = 1, . . . , r. Thus, X is r-transitive. •

We now generalize Theorem C-1.100.

Theorem C-1.104. If X is an r-transitive G-set of degree n, then

|G| = n(n− 1)(n− 2) · · · (n− r + 1)|Gx1,...,xr
|

for every choice of r distinct elements x1, . . . , xr in X. Moreover, if X is faithful,
then |Gx1,...,xr

| divides (n− r)!.

Proof. The proof is by induction on r, the base step being Theorem C-1.100. Now
Gx1

acts (r−1)-transitively on X−{x1}, by Lemma C-1.103. Induction completes
the proof. •

Definition. An r-transitive G-set X is sharply r-transitive if only the identity
fixes r distinct elements of X.

Theorem C-1.105. The following conditions are equivalent for a faithful r-transi-
tive G-set X of degree n.

(i) X is sharply r-transitive.

(ii) If (x1, . . . , xr) and (y1, . . . , yr) are r-tuples of distinct elements of X, then
there is a unique g ∈ G with gxi = yi for all i.

(iii) |G| = n(n− 1) · · · (n− r + 1).

(iv) The stabilizer of any r distinct elements of X is trivial.
If r ≥ 2, then these conditions are equivalent to the following:

(v) For every x ∈ X, the Gx-set X − {x} is sharply (r − 1)-transitive.

Proof. All verifications are routine; the proofs (i) ⇒ (ii) ⇒ (iii) ⇒ (iv) ⇒ (i)
are left as exercises for the reader. Finally, the reader should prove that (v) is
equivalent to any of (i) through (iv). •

Proposition C-1.106. The symmetric group Sn acts sharply n-transitively on
X = {1, . . . , n} for every n ≥ 1.

If n ≥ 3, the alternating group An acts sharply (n− 2)-transitively on X.
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Proof. The first statement is obvious, for Sn contains every permutation of X. We
prove the second statement by induction on n ≥ 3. If n = 3, then A3 = 〈(1 2 3)〉
acts sharply transitively on X = {1, 2, 3}. If n > 3, then (An)i, the stabilizer of
i, where 1 ≤ i ≤ n, is isomorphic to An−1; by induction, it acts sharply (n − 3)-
transitively on X − {i}, and Theorem C-1.105 completes the proof. •

PSL Redux

We now give a second proof of simplicity of the projective unimodular groups,
using a simplicity criterion due to Iwasawa. The action of PSL on the projective
line is not as useful as when PSL acts on a projective space of higher dimension,
and so the reader may prefer the previous proof of the simplicity of PSL(2, k).

The following notion arises in representation theory.

Definition. If X is a G-set, then a block is a subset B ⊆ X such that, for every
g ∈ G, either gB = B or gB ∩B = ∅.

A G-set X is primitive if it is transitive and it contains no nontrivial blocks ;
that is, X contains no block other than ∅, X, or one-point subsets.

Theorem C-1.107. Every doubly transitive G-set X is primitive.

Proof. If X has a nontrivial block B, then there are elements x, y, z ∈ X with
x, y ∈ B and z /∈ B. Since X is doubly transitive, there is g ∈ G with gx = x and
gy = z. Hence, x ∈ B ∩ gB and B �= gB, a contradiction. •

Here is a characterization of primitive G-sets.

Theorem C-1.108. Let X be a transitive G-set. Then X is primitive if and only
if, for each x ∈ X, the stabilizer Gx is a maximal subgroup of G.

Proof. If Gx is not maximal, there is a subgroup U with Gx � U ⊆ G; we show
that Ux = {gx : G ∈ U} is a nontrivial block. If g ∈ G and Ux ∩ gUx �= ∅, then
ux = gu′x for u, u′ ∈ U . Since u−1gu′ fixes x, we have u−1gu′ ∈ Gx � U , and so
g ∈ U . Hence, Ux is a block, for gUx = Ux.

We now show that Ux is a nontrivial block. Clearly, Ux is nonempty. Choose
g ∈ G with g /∈ U . If Ux = X, then for every y ∈ X, there is u ∈ U with y = ux;
in particular, gx = ux for some u ∈ U , Therefore, g−1u ∈ Gx � U and g ∈ U , a
contradiction. Finally, if Ux is a singleton, then U ⊆ Gx, contradicting Gx � U .
Therefore, X is not primitive.

Assume that every Gx is a maximal subgroup of G and that there exists a
nontrivial block B in X. Define a subgroup S of G:

S = {g ∈ G : gB = B}.
Choose x ∈ B. If gx = x, then x ∈ B ∩ gB, and so gB = B (because B is a block);
hence, Gx ⊆ S. Since B is nontrivial, there is y ∈ B with y �= x. Transitivity
provides g ∈ G with gx = y; hence, y ∈ B ∩ gB, and so gB = B. Thus, g ∈ S
while g /∈ Gx; that is, Gx � S. If S = G, then gB = B for all g ∈ G, and this
contradicts X �= B being a transitive G-set. Therefore, Gx � S � G, contradicting
the maximality of Gx. •
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Lemma C-1.109. Let X be a G-set and let x, y ∈ G.

(i) If H ⊆ G, then Hx ∩Hy �= ∅ implies Hx = Hy.

(ii) If H �G, then for every x ∈ X the subset Hx is a block of X.

Proof.

(i) It is easy to see that Hx = Hy if and only if y ∈ Hx. If Hx ∩Hy �= ∅, then
there are h, h′ ∈ H with hy = h′x. Hence, y = h−1h′x ∈ Hx and Hy = Hx.

(ii) Assume that gHx∩Hx �= ∅. Since H �G, we have gHx∩Hx = Hgx∩Gx.
There are h, h′ ∈ H with hgx = h′x, and so gx = h−1h′x ∈ Hx. Therefore,
gHx = Hx. •

Theorem C-1.110.

(i) If X is a faithful primitive G-set of degree n ≥ 2, if H �G, and if H �= {1},
then X is a transitive H-set.

(ii) n divides |H|.

Proof.

(i) Lemma C-1.109 shows that Hx is a block for every x ∈ X. Since X is
primitive, either Hx = ∅ (obviously impossible), Hx = {x}, or Hx = X. If
Hx = {x} for some x ∈ X, then H ⊆ Gx. But if g ∈ G, then normality of
H gives H = gGxg

−1 ⊆ Ggx. Since X is transitive, H ⊆
⋂

y∈X Gy = {1},
for X is faithful, and this is a contradiction. Therefore, Hx = X and X is a
transitive H-set.

(ii) This follows from Theorem C-1.100. •

The simplicity criterion we will use involves the following group-theoretic prop-
erty.

Definition. A group G is perfect if G = G′.

For example, every simple nonabelian group is perfect: since the commutator
subgroup G′ is a normal subgroup, either G′ = {1} or G′ = G. The first case is
ruled out because we are assuming that G is not abelian.

Here are some examples of perfect groups that are not simple.

Proposition C-1.111. If V is a vector space over a field k, then the groups SL(V )
are perfect unless dim(V ) = 2 and k = F2 or k = F3.

Proof. Suppose first that some transvection T ∈ SL(V ) is a commutator, say,
T = [M,N ] = MNM−1N−1 for some M,N ∈ SL(V ). If T ′ is another transvection,
then T and T ′ are conjugate in GL(V ) (Lemma C-1.84); there is U ∈ GL(V ) with
T ′ = TU , where we write TU = UTU−1. Therefore, T ′ = TU = [M,N ]U =
[MU , NU ]. But both MU and NU lie in SL(V ) because SL�GL, and so T ′ also is
a commutator. Since SL(V ) is generated by transvections, it follows that SL(V ) is
perfect.
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It remains to show that there exists a transvection T ∈ SL(V ) ∼= SL(n, k) which
is a commutator. If n ≥ 3 and e1, . . . , en is the standard basis of V ∼= kn, define
T ∈ GL(V ) by T (ei) = ei for all i �= 3 and T (e3) = e3− e2− e1. The matrix of T is

T =

⎡⎣1 0 −1
0 1 −1
0 0 1

⎤⎦ .

Note that T = [ϕ, h], where h = −e2 − e1 and ϕ is the linear functional which
selects the third coordinate of a vector v = (λ1, . . . , λn); that is, ϕ(v) = λ3. Define
M = B13(−1), and define N by

Ne1 = −e2, Ne2 = e1, Nei = ei for all i ≥ 3.

Now [M,N ] = MNM−1N−1 = T ; we illustrate this in the 3× 3 case:⎡⎣1 0 −1
0 1 0
0 0 1

⎤⎦⎡⎣ 0 1 0
−1 0 0
0 0 1

⎤⎦⎡⎣1 0 1
0 1 0
0 0 1

⎤⎦⎡⎣0 −1 0
1 0 0
0 0 1

⎤⎦ =

⎡⎣1 0 −1
0 1 −1
0 0 1

⎤⎦ .

Finally, if n = 2 and |k| ≥ 4, there exists λ ∈ k with λ2 �= 1. But[
λ 0
0 λ−1

] [
1 1
0 1

] [
λ 0
0 λ−1

] [
1 −1
0 1

]
=

[
1 λ2 − 1
0 1

]
;

thus, the transvection B12(λ
2 − 1) is a commutator. •

Theorem C-1.112 (Iwasawa). Let G be a perfect group and let X be a faithful
primitive G-set. If there is x ∈ X and an abelian normal subgroup U in Gx whose
conjugates {gUg−1 : g ∈ G} generate G, then G is a simple group.

Proof. Let H �= {1} be a normal subgroup of G. By Theorem C-1.110, H acts
transitively on X. By hypothesis, each g ∈ G has the form g =

∏
giuig

−1
i , where

gi ∈ G and ui ∈ U . Now G = HGx, by Exercise C-1.72 on page 49, so that gi = hisi
for each i, where hi ∈ H and si ∈ Gx. Normality of U in Gx now gives

g =
∏

hisiuis
−1
i h−1

i ∈ HUH ⊆ HU,

because H lies in the subgroup HU , and so G = HU . Since U is abelian, G/H =
HU/H ∼= U/(H ∩ U) is abelian, and H ⊇ G′ = G. Therefore, G is simple. •

Theorem C-1.114 below holds for every infinite field k; the proof of Corol-
lary C-1.79 is valid for perfect fields k (all finite fields are perfect), but it does not
apply to all infinite fields. We now prove the simplicity of PSL(V ) by showing that
it satisfies the hypotheses of Iwasawa’s Theorem.

Proposition C-1.113. P(V ) is a faithful primitive PSL(V )-set for every vector
space V over a field k.

Proof. By Theorem C-1.96(iii), P(V ) is a faithful PSL(V )-set.

If ([x], [y]) and ([x′], [y′]) are ordered pairs of distinct elements of P(V ), then x, y
and x′, y′ are linearly independent, by Proposition C-1.95(i). Each of these indepen-
dent lists can be extended to a basis of V , say, x, y, z3, . . . , zn and x′, y′, z′3, . . . , z

′
n.

There exists g ∈ GL(V ) with gx = x′, gy = y′, and gzi = z′i for all i ≥ 3. Hence,
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P(g)[x] = [x′] and P(g)[y] = [y′]. If det(g) = λ, define h ∈ GL(V ) by hx = λ−1x′,
hy = y′, and hzi = z′i for all i ≥ 3. Then det(h) = 1, so that h ∈ SL(V ),
P(h)[x] = [λ−1x′] = [x′] and P(h)[y] = [y′]. Therefore, PSL(V ) acts doubly transi-
tively on PSL(V ) and hence is primitive, by Theorem C-1.107. •

Theorem C-1.114. For every field k, PSL(n, k) is a simple group if (n, k) �=
(2,F2) or (n, k) �= (2,F3).

Proof. We use Iwasawa’s Theorem. Let G = PSL(V ), where V is a vector space
over a field k. By Proposition C-1.113, P(V ) is a faithful doubly transitive, hence
primitive, PSL(V )-set.

Choose a nonzero h in V and define a subgroup U of the stabilitzer G[h] by

U = {P([ϕ, h]) : ϕ(h) = 0} ∪ {1}.
Applying P to the formula [ϕ, h][ψ, h] = [ϕ+ψ, h] of Lemma C-1.85(ii), we see that U
is abelian. By part (v) of this lemma, if S ∈ GL(V ), then S[ϕ, h]S−1 = [ϕS−1, Sh];
this is true, in particular, for S ∈ SL(V ). Now P(S) ∈ G[h] if and only if Sh = λh
for some λ ∈ k. But [ψ, λh] = [λψ, h], by Lemma C-1.85(iii), and this shows that
U �G[h].

We now show that the conjugates of U generate G; it suffices to show that every
P([ψ, h′]) is a conjugate of some P([ϕ, h]) (for SL(V ) is generated by transvections,
each of which has the form [ϕ, h]). Choose S ∈ SL(V ) with Sh = h′; then, for any
[ϕ, h],

P(S)P([ϕ, h])P(S)−1 = P([ϕS−1, h′]),

by Lemma C-1.85. As ϕ varies over all linear functionals annihilating h, the linear
functional ϕS−1 varies over all those annihilating h′ = Sh. In particular, given ψ,
there exists ϕ with ϕ(h) = 0 and ψ = ϕS−1.

Finally, we show that G = PSL(V ) is perfect. By Proposition C-1.111, the
groups SL(V ) are perfect, with two exceptions. But if G is a perfect group, so is
any homomorphic image M . Let f : G → M be surjective. If y ∈ M , there exists
x ∈ G with f(x) = y. Since G is perfect, x is a product of commutators and, hence,
y = f(x) is also a product of commutators.

We conclude that PSL(V ) is simple, with two exceptions. •

Exercises

C-1.86. Let G be a finite group, and let X be an r-transitive G-set of degree n.

(i) Assume that G has a normal subgroup H for which there is no h �= 1 in H with
h(x) = x. Prove that r ≤ 4.

(ii) If r = 4, prove that G ∼= V and |X| = 4.

C-1.87. Let X be a faithful r-transitive G-set where r ≥ 4. Prove that if Gx is simple
for some x ∈ X, then G is simple.

C-1.88. Use the exercises above to prove that An is simple for all n ≥ 5.
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∗ C-1.89. If H and K are (not necessarily distinct) subgroups of a group G, define an
(H −K)-double coset to be a subset of G of the form

HxK = {hxk : x ∈ G, h ∈ H, k ∈ K}.

(i) Prove that the family of all (H −K)-double cosets is a partition of G.

(ii) Generalize Lagrange’s Theorem as follows. IfG is a finite group andG =
⋃n

i=1 HxiK,
prove that

[G : K] =

n∑
i=1

[H : H ∩ xiKx−1
i ].

∗ C-1.90. Let G = GL(n, k), where k is a field. Define B to be the subgroup of all upper
triangular matrices and H the subgroup of all diagonal matrices.

(i) Prove that G is generated by B ∪N , where N = NG(H).

(ii) Prove thatN is the subgroup of allmonomial matrices, i.e., matrices with exactly
one nonzero element in each row and column.

(iii) Prove that H = B ∩N and that H �N .

(iv) Prove that W = N/H is generated by S = {w1H, . . . , wn−1H}, where wi inter-
changes two adjacent rows of a diagonal matrix.

(v) If wiH ∈ S and wH ∈ W (where w ∈ N), then wiBw ⊆ BwiwB ∪BwB ⊆ G.

(vi) No wi normalizes B.

Remark. Every group of Lie type contains subgroups B and N which satisfy analogs of
the properties in Exercise C-1.90. The ordered pair (B,N) is called a (B,N) pair, and it
is used to prove simplicity of these groups. �

C-1.6. Free Groups and Presentations

How can we describe a group? By Cayley’s Theorem, a finite group G of order n is
isomorphic to a subgroup of the symmetric group Sn, and so finite groups can always
be defined as subgroups of Sn generated by certain permutations. An example of
this kind of construction can be found in Exercise C-1.57 on page 42. Carmichael
posed this exercise in the 1930s ([35], p. 39), before the era of high-speed computers,
and he expected his readers to solve it by hand.

A second way of describing a group G is by replacing Sn with GL(n, k), where
n ≥ 2 and k is a field. Every group of order n can be imbedded in GL(n, k) because
the group of all n × n permutation matrices (whose entries are 0’s and 1’s) is a
subgroup of GL(n, k) isomorphic to Sn. A given group G of order n can often
be imbedded in GL(m, k) for m < n if we use entries in k other than 0 and 1;
for example, the quaternions Q can be described as a subgroup of GL(2,C) of
order 8 (page 156 in Part 1). For relatively small groups, descriptions in terms
of permutations or matrices are useful, but when n is large, such descriptions are
impractical. A group of order 18 can get lost in a group of order 18! ∼ 6.4× 1016.

We can also describe groups as being generated by elements subject to certain
relations. For example, the dihedral group D8 can be characterized as a group of
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order 8 that can be generated by two elements a and b such that a4 = 1 = b2 and
bab = a−1. It is necessary to specify the order in this description; if we do not insist
that the order is 8, then each of the groups V, Z2, and {1} is also generated by
two elements satisfying the relations. We know that the dihedral group D8 exists,
for we displayed it in Example C-1.11.

Consider the following definition.

Definition. The generalized quaternions Qn is a group of order 2n having

generators a, b and relations a2
n−1

= 1, bab−1a = 1, b−2a2
n−2

= 1.

If n = 3, then Q3 is the quaternion group Q. Is there a generalized quaternion
group of order 16? If n ≥ 4, does a generalized quaternion group exist? In the
1880s, von Dyck invented free groups, the key to answering such questions.

Here is a modern definition of free group, mimicking the freeness property of free
modules given in Part 1. That definition, in turn, is modeled on Theorem A-7.28 in
Part 1, the fundamental result about bases of vector spaces enabling us to describe
linear transformations by matrices.

Definition. Let X be a subset20 of a group F , and let i : X → F be the inclusion.
Then F is a free group with basis X if, for every group G and every function
f : X → G, there exists a unique homomorphism ϕ : F → G with ϕ(x) = f(x) for
all x ∈ X; that is, ϕi = f ,

F
ϕ

���
�

�
�

X

i

��

f
�� G.

A free group F with basis X may also be denoted by F (X); in particular, if X =
{x1, . . . , xn}, we may denote F = F (X) by F (x1, . . . , xn).

Thus, if F is free with basis X and G is any group, a function f : X → G
specifies values f(x) ∈ G for every x ∈ X, and f extends to a unique homomorphism
ϕ : F → G.

For example, suppose a free group F = F (x, y) exists; let N be the normal

subgroup of F generated by
{
x2n−1

, yxy−1x, y−2x2n−2}
. It is clear that F/N is

generated by two elements a = xN and b = yN which satisfy the relations defining
the generalized quaternion group Qn. However, it is not clear if F/N = Qn, for
we do not know if |F/N | = 2n (it is not obvious whether F/N �= {1}, nor is it
even obvious whether F/N is finite). We will prove, in Proposition C-1.129, that
|F/N | = 2n.

Existence and Uniqueness of Free Groups

Even though the idea behind a construction of free groups is natural, we will
be careful in implementing it.

20The subset X may be infinite. When X is finite, it is convenient, as in our earlier discussion
of bases of vector spaces and bases of free abelian groups, to define bases as lists (ordered sets)
in F rather than as mere subsets.
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Definition. Let X be a set (called an alphabet), let X−1 be a set disjoint from X,
let x �→ x−1 be a bijection X → X−1, and let 1 be a symbol not in X ∪X−1. If n is
a positive integer, a word w on X is either 1 or an n-tuple w = (xe1

1 , xe2
2 , . . . , xen

n ),
where xi ∈ X for all i, ei = ±1, and x1

i = xi.
21 The symbol 1 is called the empty

word. (The empty word 1 is never a “letter” of a word w = (xe1
1 , . . . , xen

n ) because
xei
i ∈ X ∪X−1 for all i.)

The length of a word w = (xe1
1 , xe2

2 , . . . , xen
n ) is defined to be n; the length of

the empty word w = 1 is defined to be 0. Denote the length of any word u by

|u| = n ≥ 0.

The inverse of a nonempty word w = (xe1
1 , xe2

2 , . . . , xen
n ) is

w−1 = (xe1
1 , xe2

2 , . . . , xen
n )−1 = (x−en

n , . . . , x−e2
2 , x−e1

1 ).

The empty word 1 is defined to be its own inverse.

It follows that (u−1)−1 = u for every word u.

Every word on X has a unique spelling, for an n-tuple w and an m-tuple w′ in
a cartesian product of copies of X ∪ X−1 are equal if and only if n = m and, for
each i, the ith letter xei

i of w equals the ith letter of w′. Notice that (x, x−1) is a
word of length 2; in particular, it is not the empty word 1, which has length 0.

Recall that a semigroup is a set having an associative binary operation, and a
monoid is a semigroup having a (two-sided) identity element 1.

Definition. Given a set X, let

W(X)

denote the set of all words on the alphabet X (if X = ∅, then W(X) consists only
of the empty word). Define a binary operation � on W(X), called juxtaposition,
as follows. First, define 1� v = v = v � 1 for every word v. Next, given nonempty

words u = (xe1
1 , . . . , xen

n ) and v = (yf11 , . . . , yfmm ), where yj ∈ X and fj = ±1, define
u� v by

u� v = (xe1
1 , . . . , xen

n , yf11 , . . . , yfmm ).

Note that |u � v| = |u| + |v|. Juxtaposition is associative: if w = (zg11 , . . . , zgrr ),
then both (u� v)�w and u� (v�w) are (n+m+ r)-tuples whose kth letters are
equal for all k. Thus, W(X) is a (noncommutative) monoid whose identity is the
empty word.

The monoid W(X) is our first approximation to a construction of a free group
with basis X. That x� x−1 �= 1 shows that W(X) is not a group.

Definition. A subword of a nonempty word w = (xe1
1 , . . . , xen

n ) ∈ W(X) is either
the empty word or a word of the form u = (xer

r , . . . , xes
s ), where 1 ≤ r ≤ s ≤ n.

21Everyone denotes words by xe1
1 xe2

2 · · ·xen
n instead of (xe1

1 , xe2
2 , . . . , xen

n ), but we shall use

n-tuples now because I think this is clearer. Later, we shall use the common notation.
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Thus, if (xer
r , . . . , xes

s ) is a subword of w, then w = A � (xer
r , . . . , xes

s ) � B,
where A and B are (possibly empty) subwords of w.

The most important words are reduced words.

Definition. A pm-word is a word of the form (xe, x−e) for some x ∈ X and
e = ±1 (pm abbreviates plus/minus).

A word w ∈ W(X) is reduced if either w = 1 or w has no pm-subwords.

Note that every subword of a reduced word is itself reduced.

Lemma C-1.115. If w = (xe1
1 , . . . , xen

n ) is a nonempty reduced word, then w has
a unique factorization

w = xe1
1 � · · · � xen

n .

Proof. That xe1
1 � · · · � xen

n = (xe1
1 , . . . , xen

n ) is proved by induction on n ≥ 1;
uniqueness holds because the expression w = (xe1

1 , . . . , xen
n ) in W(X) is unique. •

Definition. If w ∈ W(X) is not reduced, then w = A � (xe, x−e) � B, where
x ∈ X and e = ±1. If w1 = A � B, then we say that w → w1 is an elementary
cancellation. If a word w is not reduced, then a reduction of w is a finite sequence
of elementary cancellations

w → w1 → · · · → wr

with wr reduced. If w is already reduced, then w → wr is a reduction, where
wr = w.

For example, there is a reduction w = (x, x−1)→ 1; more generally, there is a
reduction w�w−1 → · · · → 1. Given an elementary cancellation w → w1, we have
|w1| = |w|−2, so that |w1| < |w|. However, the number of pm-subwords of w1 may
not be less than that of w: for example, consider w = u� u−1.

Lemma C-1.116. If w ∈ W(X), then either w is reduced or there is a reduction

w → w1 → · · · → wr,

where wr is reduced.

Proof. We use induction on |w| ≥ 0. If w is reduced, there is nothing to prove. If
w is not reduced and w → w1 is an elementary cancellation, then |w1| = |w| − 2.
By induction, either w1 is reduced or there is a reduction w1 → · · · → wr, and so
w → w1 → · · · → wr is a reduction of w. •

A word w that is not reduced can have many reductions.

It is natural to try to define a free group with basis X as the set of all reduced
words in W(X), with juxtaposition as the binary operation, but this is not good
enough, for this set is not closed: u and v reduced does not imply that u � v is
reduced. The obvious way to fix this is to change the operation from juxtaposition
to juxtaposition followed by a reduction. The following lemma shows that this new
binary operation is well-defined.
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Lemma C-1.117. Let X be a set and let w ∈ W(X). If

w → w1 → w2 → · · · → wr and w → w′
1 → w′

2 → · · · → w′
q

are reductions, then wr = w′
q.

Proof. The proof is by induction on |w| ≥ 0. The base step |w| = 0 is obviously
true, for then w = 1. For the inductive step |w| ≥ 1, we may assume that w is
not reduced (or we are done). There are two cases for w1 and w′

1: the canceled
pm-subwords are disjoint or they overlap.

In more detail, the first case has w = A � (p, p−1) � B � (q, q−1) � C (where
B = 1 is allowed), and w1 = A�B� (q, q−1)�C, while w′

1 = A� (p, p−1)�B�C.
If z = A � B � C, then there are elementary cancellations w1 → z and w′

1 → z.
Choose a reduction z → · · · → w′′

d . Since |w1| < |w|, the inductive hypothesis
applies to the reductions w1 → w2 → · · · → wr and w1 → z → · · · → w′′

d , and so
wr = w′′

d . Similarly, the inductive hypothesis applies to w′
1 → z → · · · → w′′

d and
w′

1 → w′
2 → · · · → w′

q, so that w′′
d = w′

q. Therefore, wr = w′
q.

The second case has w = A � (pe, p−e) � pe � B, and w1 = A � pe � B (we
have canceled (pe, p−e)), while w′

1 = A � pe � B (we have canceled (p−e, pe)).
Thus, we have w1 = w′

1 here. Hence, the reduction w′
1 → w′

2 → · · · → w′
q is

w1 → w′
2 → · · · → w′

q. Comparing this reduction with w1 → w2 → · · · → wr gives
w′

q = wr. •

In light of Lemma C-1.117, all reductions of a given word w ∈ W(X) end with
the same reduced word, say, wr. We denote this reduced word by

red(w) = wr.

Corollary C-1.118. If F (X) is the set of all reduced words on X, then

uv = red(u� v)

is a well-defined binary operation on F (X).

Proof. Immediate from Lemmas C-1.116 and C-1.117. •

If u, v are reduced words for which u � v is also reduced, then uv = u � v. It
follows that if u = (xe1

1 , . . . , xen
n ) is reduced, then u = xe1

1 · · ·xen
n . In other words,

since F (X) ⊆ W(X), its elements are n-tuples (xe1
1 , . . . , xen

n ). But having just
introduced the binary operation red(�) on F (X), we are now allowed to use the
simpler notation xe1

1 · · ·xen
n .

Theorem C-1.119. If X is a set, then the set F (X) of all reduced words on X
with binary operation uv = red(u� v) is a free group with basis X.

Proof. It is easy to see that the empty word 1 is the identity element and that the
inverses defined on page 83 satisfy the group axiom for inverses. Only associativity
need be checked. Given reduced words u, v, y, define w = u�v�y inW(X) (we do
not need parentheses, for W(X) is a monoid and its multiplication is associative).
But Lemma C-1.117 says that the reductions w = (u� v)� y → · · · → (uv)� y →
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· · · → wr and w = u� (v� y)→ · · · → u� (vy)→ · · · → w′
q have the same reduced

ending: wr = w′
q; that is, (uv)y = u(vy). Therefore, F (X) is a group.

Let G be a group and let f : X → G be a function. If u ∈ F (X), then u is
reduced, and it has a unique expression u = xe1

1 · · ·xen
n , by Lemma C-1.115. Define

a function ϕ : F (X)→ G by ϕ(1) = 1 and

ϕ(u) = ϕ(xe1
1 · · ·xen

n ) = f(x1)
e1 · · · f(xn)

en .

It suffices to prove that ϕ is a homomorphism, for uniqueness of ϕ will follow
from X generating F (X). If u, v ∈ F (X), we prove that ϕ(uv) = ϕ(u)ϕ(v) by
induction on |u| + |v| ≥ 0. The base step |u| + |v| = 0 is true: if u = 1 = v, then
uv = 1 and ϕ(uv) = ϕ(1) = 1; hence, ϕ(uv) = 1 = ϕ(u)ϕ(v) in this case. In fact,
ϕ(1v) = ϕ(1)ϕ(v), so that we may assume that |u| ≥ 1 in proving the inductive
step. Write the reduced word u = xe1

1 u′, where u′ = xe2
2 · · ·xen

n , and note, since u
is reduced, that

ϕ(u) = f(x1)
e1f(x2)

e2 · · · f(xn)
en = ϕ(xe1

1 )ϕ(u′).

Now uv = xe1
1 (u′v); write the reduced word u′v = zc11 · · · zctt , where z1, . . . , zt ∈ X.

There are two cases.

If xe1
1 �= z−c1

1 , then xe1
1 zc11 · · · zctt is reduced, and the formula defining ϕ gives

ϕ(uv) = ϕ(xe1
1 u′v) = ϕ(xe1

1 zc11 · · · zctt )

= f(x1)
e1f(z1)

c1 · · · f(zt)ct = ϕ(xe1
1 )ϕ(u′v)

= ϕ(xe1
1 )ϕ(u′)ϕ(v) = ϕ(u)ϕ(v)

(the inductive hypothesis gives the penultimate equality).

If xe1
1 = z−c1

1 , then uv = xe1
1 u′v = zc22 · · · zctt . Hence,

ϕ(uv) = ϕ(xe1
1 u′v) = ϕ(zc22 · · · zctt )

= f(z2)
c2 · · · f(zt)ct = [f(x1)

e1f(x1)
e1 ]f(z2)

c2 · · · f(zt)ct

= ϕ(xe1
1 )ϕ(u′v) = ϕ(xe)ϕ(u′)ϕ(v) = ϕ(u)ϕ(v)

because f(x1)
e1f(z1)

c1 = 1. Therefore, ϕ is a homomorphism, and F (X) is a free
group with basis X. •

Theorem C-1.120. For every group G, there is a free group F with G isomorphic
to a quotient of F .

Proof. View the group G as a set, let F be the free group with basis G (whose
existence has just been proved), and let f = 1G : G→ G. Now view G as a group;
there is a homomorphism ϕ : F → G extending f . Clearly, ϕ is surjective, and so
G ∼= F/ kerϕ. •

We may interpret Theorem C-1.120 as saying that every group is encoded inside
some free group.

Informally, we say that a group G is free with basis X if there are no relations
among the reduced words on X. Here is the formal statement.
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Corollary C-1.121. Let G be a group generated by a subset X. If every reduced
word g = xe1

1 · · ·xen
n , where xi ∈ X, ei = ±1, and n ≥ 1, is not equal to 1, then G

is free with basis X.

Proof. Let F be the free group with basis Y , where Y is a set for which there
exists a bijection f : Y → X,

F
ϕ ��			 G

Y

��

f
�� X.

i

��

Since F is free with basis Y , there is a (unique) homomorphism ϕ : F → G with
ϕ(y) = if(x) for all y ∈ Y , where i : X → G is the inclusion. Now ϕ is surjective,
because ϕ(Y ) = X generates G; moreover, ϕ is injective, for if h = ye11 · · · yenn is
a nontrivial reduced word on Y , then h /∈ kerϕ because, by hypothesis, ϕ(h) =
ϕ(ye11 · · · yenn ) = xe1

1 · · ·xen
n �= 1. Therefore, ϕ is an isomorphism and G is free with

basis ϕ(Y ) = X. •

Here are sketches of some other proofs of the existence of free groups.

(i) There is a shorter proof of the existence of the free group with basis a given
set X, due to Barr (see Montgomery–Ralston [158], pp. 2–5)). The Adjoint
Functor Theorem gives a necessary and sufficient condition that a functor
have an adjoint (see Mac Lane [144], pp. 116–119); in particular, the left
adjoint of a forgetful functor creates free objects (see Exercise C-1.96 on
page 91). We have not given this proof here because it does not describe the
elements of F (X) as words on X, and this description is essential in studying
and using free groups.

(ii) Another construction is called the van der Waerden trick (see Rotman
[188], p. 345). Let R be the set of all reduced words on X (of course, this
is the underlying set of F (X)). For each x ∈ X, consider the functions
[x] : R→ R and [x−1] : R→ R, defined as follows. If ε = ±1, then

[xε](xe1
1 , . . . , xen

n ) = (xε, xe1
1 , . . . , xen

n ) if xε �= xe1
1 ,

[x−ε](xe1
1 , . . . , xen

n ) = (xe2
2 , . . . , xen

n ) if xε = xe1
1 .

It turns out that [x] is a permutation of R (its inverse is [x−1]), and the
subgroup F of the symmetric group SR generated by [X] = {[x] : x ∈ X} is
a free group with basis [X].

(iii) There are topological proofs. A pointed space is an ordered pair (X,w),
where X is a topological space and w ∈ X (see Example B-4.15 in Part 1); we
call w the basepoint. A pointed map f : (X,w) → (Y,w′) is a continuous
map f : X → Y with f(w) = w′. The fundamental group π1(X,w) is
the set of all (pointed) homotopy classes of pointed maps (S1, 1) → (X,w),
where S1 is the unit circle {e2πix : x ∈ R} with basepoint 1 = e0. Given
an indexed family of circles, (S1

i , w)i∈I , any two intersecting only in their
common basepoint w, then their union BI (suitably topologized) is called a



88 Chapter C-1. More Groups

bouquet of |I| circles. For example, a figure 8 is a bouquet of two circles.
Then the fundamental group π1(BI , w) is a free group with basis a set of
cardinality |I| (Exercise C-1.116 on page 110).

(iv) If X is a graph (a one-dimensional space constructed of edges and vertices),
then π1(X,w) is also a free group (Serre [202], p. 23, where it is shown that
every connected graph has the homotopy type of a bouquet of circles).

The free group F = F (X) with basisX that we constructed in Theorem C-1.119
is generated by X, but we have just observed that there are other constructions
of free groups. Now F (X) is generated by the basis X; does every basis of a free
group F generate F? Are any two free groups with basis X isomorphic?

Proposition C-1.122.

(i) Let X be a basis of a free group F and let X∗ be a basis of a free group F ∗. If
there is a bijection f : X → X∗, then F ∼= F ∗; indeed, there is an isomorphism
ϕ : F → F ∗ extending f .

(ii) If F is a free group with basis X, then F is generated by X.

Proof.

(i) The following diagram, in which the vertical arrows are inclusions, will help
the reader follow the proof:

F
ϕ �� F ∗
ϕ∗

��

X

��

f �� X∗.

��

f−1

��

We may regard f as having target F ∗, because X∗ ⊆ F ∗; since F is a free
group with basis X, there is a homomorphism ϕ : F → F ∗ extending f .
Similarly, there exists a homomorphism ϕ∗ : F ∗ → F extending f−1. It
follows that the composite ϕ∗ϕ : F → F extends 1X . But the identity 1F
also extends 1X , so that uniqueness of the extension gives ϕ∗ϕ = 1F . In
the same way, we see that the other composite ϕϕ∗ = 1F∗ , and so ϕ is an
isomorphism.

(ii) If F (X) is the free group with basis X constructed in Theorem C-1.119, then
X generates F (X). By part (i), there is an isomorphism ϕ : F (X)→ F with
ϕ(X) = X (take f : X → X to be the identity 1X). Since X generates F (X),
ϕ(X) = X generates imϕ = F ; i.e., X generates F . •

There is a notion of rank for free groups (as there is for free abelian groups),
but we must first check that all bases of a free group have the same number of
elements (which might be an infinite cardinal).

Lemma C-1.123. If F is a free group with basis X, then F/F ′ is a free abelian
group with basis X ′ = {xF ′ : x ∈ X}, where F ′ is the commutator subgroup of F .
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Proof. We begin by noting that X ′ generates F/F ′; this follows from Proposi-
tion C-1.122(ii), which says that X generates F . We prove that F/F ′ is a free
abelian group with basis X ′: given an abelian group G and a function γ : X ′ → G,
we show there is a (necessarily unique) homomorphism g′ : F/F ′ → G extending γ.
Consider the following diagram:

F
π ��

g
��








 F/F ′

g′

���
�
�
�

G

X

p

��

γν

����������
ν

�� X ′,

γ

		

p′

��

where p and p′ are inclusions, π is the natural map, and ν : x �→ xF ′. Let g : F → G
be the unique homomorphism with gp = γν given by the definition of free group
(for γν : X → G is a function), and define g′ : F/F ′ → G by wF ′ �→ g(w) (g′ is
well-defined because G abelian forces F ′ ⊆ ker g). Now g′p′ = γ, for

g′p′ν = g′πp = gp = γν;

since ν is a surjection, it follows that g′p′ = γ. Finally, g′ is the unique such map,
for if g′′ satisfies g′′p′ = γ, then g′ and g′′ agree on the generating set X ′, and hence
they are equal. •

Proposition C-1.124. Let F be a free group with basis X. If |X| = n, then every
basis of F has n elements.

Proof. By Lemma C-1.123, F/F ′ is a free abelian group of rank n. On the other
hand, if Y is a basis of F and |Y | = m, then F/F ′ is a free abelian group of rank
m. By Corollary B-2.23 in Part 1, we have m = n. •

The reader may show, using Theorem B-2.13 in Part 1, that Proposition C-1.124
is true even if a basis is infinite: any two bases of a free group have the same cardinal.
The following definition now makes sense.

Definition. The rank of a free group F , denoted by rank(F ), is the number of
elements in a basis of F .

Proposition C-1.122(i) can now be rephrased: two free groups are isomorphic
if and only if they have the same rank. A free group F of finite rank n is often
denoted by Fn; if X = {x1, . . . , xn} is a basis of F , we may also write Fn(X) or
F (x1, . . . , xn).

We are now going to prove that there is a rich supply of homomorphisms from
free groups to finite groups. Afterward, we will give an example of the construction
of a homomorphism in its proof.

Proposition C-1.125. If F is a free group, g ∈ F , and g �= 1, then there is a
finite group K and a homomorphism ϕ : F → K with ϕ(g) �= 1.



90 Chapter C-1. More Groups

Proof. Let X be a basis of F , and write g as a reduced word:

g = xe1
i1
· · ·xen

in
,

where xik ∈ X and ek = ±1 for k = 1, . . . , n. There are m ≤ n distinct basis
elements occurring in this word, say, x1, . . . , xj , . . . , xm (thus, each xj occurs at
least once as some xik). For each such basis element xj , we are going to construct a

permutation αj ∈ Sn+1. Consider the set of all positions k where xj or x−1
j occurs.

If xj occurs, define αj(k) = k + 1; if x−1
i occurs, define αj(k + 1) = k; that is,

α−1
j (k) = k+1. In other words, αek

j (k) = αek
ik
(k) = k+1 for all k. We have defined

αj on a subset of {1, 2, . . . , n+1}. Exercise A-4.2 on page 122 in Part 1 shows that
each αj can be completed to a permutation in Sn+1.

Since F is free with basis X, we can define a homomorphism ϕ : F → Sn+1 by
specifying its values on the basis X. If x ∈ X is an xj occurring in the spelling
of g, define ϕ(xj) = αj ; if x is not involved in g, define ϕ(x) = 1. We have

ϕ(g) = αe1
i1
· · ·αen

in
.

To apply ϕ(g), remember that writing functions on the left forces us to evaluate a
composite αβ of two functions on some k by (αβ)(k) = β(α(k)). Thus,

ϕ(g)(1) = αen
in
· · ·αe1

i1
(1).

But each αek
j (k) = k + 1, so that ϕ(g) : 1 �→ n+ 1. Therefore, ϕ(g) �= (1). •

We now illustrate the construction in the proof just given. Let F = F (X) be
the free group with basis X and let

g = z−1yyz−1z−1y−1zy,

where z, y ∈ X are distinct. Label the 8 positions from right to left: z or z−1 occurs
in positions 2, 4, 5, 8 and y or y−1 occurs in positions 1, 3, 6, 7. Construct the
permutations αz, αy ∈ S9 in two stages. Here is the first stage for αz:

αz =

(
1 2 3 4 5 6 7 8 9

3 4 5 8

)
.

The second stage uses Exercise A-4.2 on page 122 in Part 1: we can assign values
to the other integers between 1 and 9 to get a permutation in S9. Here is the
analogous construction for αy; its first stage is

αy =

(
1 2 3 4 5 6 7 8 9
2 3 7 8

)
.

Similarly, αy can be completed to a permutation in S9. The composite

ϕ(g) = α−1
z αyαyα

−1
z α−1

z α−1
y αzαy

sends 1 �→ 2 �→ 3 �→ 4 �→ 5 �→ 6 �→ 7 �→ 8 �→ 9, and so ϕ(g) �= (1).

Definition. A group G is residually finite if the intersection of all its normal
subgroups of finite index is trivial.
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Residually finite groups arose (tacitly) in our discussion of infinite Galois ex-

tensions in Part 1. Given a group G, we defined its completion Ĝ as an inverse
limit lim←−G/N , where N ranges over all normal subgroups of finite index. There is

a map G → Ĝ, and it is injective when G is residually finite (see Exercise C-1.65
on page 42).

Every finite group is residually finite, but the additive group of rationals Q is
not.

Corollary C-1.126. Every free group is residually finite.

Proof. It suffices to prove that if g �= 1, then there is some normal subgroup N of
finite index with g /∈ N . By Proposition C-1.125, there is a finite group K and a
homomorphism ϕ : F → K with ϕ(g) �= 1. Hence, g /∈ kerϕ. But K finite forces
N = kerϕ to have finite index. •

Exercises

∗ C-1.91. Let F be a free group with basis X and let A ⊆ X. Prove that if N is the normal
subgroup of F generated by A, then F/N is a free group.

∗ C-1.92. Let F be a free group.

(i) Prove that F has no elements of finite order (other than 1).

(ii) Prove that a free group F is abelian if and only if rank(F ) ≤ 1.
Hint. Map a free group of rank ≥ 2 onto a nonabelian group.

(iii) Prove that if rank(F ) ≥ 2, then Z(F ) = {1}, where Z(F ) is the center of F .

C-1.93. Prove that a free group is solvable if and only if it is infinite cyclic.

C-1.94. If G is a finitely generated group and n is a positive integer, prove that G has
only finitely many subgroups of index n.

Hint. Consider homomorphisms G → Sn.

C-1.95. (i) Prove that each of the generalized quaternion groups Qn has a unique sub-
group of order 2, namely,

〈
b2
〉
, and this subgroup is the center Z(Qn).

(ii) Prove that Qn/Z(Qn) ∼= D2n−1 .

∗ C-1.96. (i) Prove that the forgetful functor U : Groups → Sets (see Example B-4.15
in Part 1) is a functor.

(ii) Prove that F : Sets → Groups, defined as follows, is a functor: F : X 
→ F (X)
(here X is a set and F (X) is the free group with basis X); F : f 
→ ϕ (here
f : X → Y is a function in Sets and ϕ : F (X) → F (Y ) is the homomorphism
determined by the function X → Y → F (Y ), where Y → F (Y ) is the inclusion).

(iii) Prove that (F,U) is an adjoint pair.

C-1.97. (i) If X is a set, a word w is positive if w = 1 or w = (xe1
1 , . . . , xen

n ), where
all ei = 1. Prove that the set P(X) of all positive words on X is a submonoid of
W(X).
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(ii) Let X be a subset of a monoid F , and let i : X → F be the inclusion. Then F is a
free monoid with basis X if, for every monoid M and every function f : X → M ,
there exists a unique homomorphism ϕ : F → M with ϕ(x) = f(x) for all x ∈ X,

F

ϕ



�
�

�
�

X

i

��

f
�� M.

Prove that P(X) is the free monoid with basis X.

Presentations

Let us return to describing groups.

Definition. Let X be a set, F = F (X) the free group with basis X, and R ⊆ F a
set of words on X. A group G has a presentation ,

G = (X | R),

if G ∼= F/N , where N is the normal subgroup of F generated by R; that is, N is
the subgroup of F generated by all conjugates of elements of R.

We call the set X generators and the set R relations. (The term generators
is now being used in a generalized sense, for X is not a subset of G; the subset
{xN : x ∈ X} does generate F/N in the usual sense.)

Theorem C-1.120 says that every group has a presentation.

Example C-1.127.

(i) A group has many presentations. For example, G = Z6 has presentations

(x | x6) and (a, b | a3, b2, aba−1b−1).

This means that there are isomorphisms Z6
∼= F (x)/

〈
x6
〉
and Z6

∼= F (a, b)/N ,

where N is the normal subgroup generated by a3, b2, aba−1b−1. The relation
aba−1b−1 says that a and b commute. If we replace this commutator by
abab, then we have a presentation of S3, for now we have bab = a−1. If we
delete this relation, we obtain a presentation of the infinite modular group M
defined in Exercise A-4.88 on page 173 in Part 1.

(ii) The free group with basis X has a presentation

(X | ∅).

A free group is so called precisely because it has a presentation with no
relations (see Corollary C-1.121). �

A word on notation. Often, we write the relations in a presentation as equa-
tions. Thus, the relations

a3, b2, aba−1b−1

in the second presentation of Z6 may also be written as

a3 = 1, b2 = 1, ab = ba.
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Definition. A group G is finitely generated if it has a presentation (X | R) with
X finite. A group G is called finitely presented if it has a presentation (X | R)
in which both X and R are finite.

It is easy to see that a group G is finitely generated if and only if there exists
a finite subset A ⊆ G with G =

〈
A
〉
. Of course, every finitely generated free group

is finitely presented. There do exist finitely generated groups that are not finitely
presented (Rotman [188], p. 417).

A fundamental problem is how to determine whether two presentations give
isomorphic groups. It can be proved that no algorithm can exist that solves this
problem. Indeed, it is an undecidable problem whether a presentation defines the
(trivial) group of order 1 (Rotman [188], p. 469).

Definition. Let F be the free group with basis X, and let R ⊆ F . A group G is
of type T(X | R) if there is a surjective homomorphism ϕ : F → G with ϕ(r) = 1
for all r ∈ R.

For example, recall that the dihedral group D8 is a group of order 8 that can
be generated by two elements a and b such that a4 = 1 = b2 and bab = a−1. Thus,
D8 has type T(a, b | a4 = 1 = b2, bab = a−1). Note, in saying D8 has this type,
that we have not mentioned that D8 has order 8. More generally, a group G with
presentation G = (X | R) obviously has type T(X | R), but the converse is false.
For example, the trivial group {1} has type T(X | R) for every ordered pair (X | R).

Here is the connection between presentations and types.

Theorem C-1.128 (von Dyck’s Theorem).

(i) If groups G and H have presentations

G = (X | R) and H = (X | R ∪ S),

then H is a quotient of G. In particular, if H is a group of type T(X | R),
then H is a quotient of G.

(ii) Let G = (X | R) and let H be a group of type T(X | R). If G is finite and
|G| = |H|, then G ∼= H.

Proof.

(i) Let F be the free group with basis X. If N is the normal subgroup of F
generated by R and K is the normal subgroup generated by R ∪ S, then
N ⊆ K. Recall the proof of the Third Isomorphism Theorem: the function
ψ : F/N → F/K, given by ψ : fN �→ fK, is a surjective homomorphism (with
kerψ = K/N , so that (F/N)/(K/N) ∼= F/K); that is, H = F/K is a quotient
of G = F/N . In particular, to say that H has type T(X | R) is to say that it
satisfies all the relations holding in G.

(ii) Since G is finite, the Pigeonhole Principle says that the surjective homomor-
phism ψ : G→ H in part (i) is an isomorphism. •

Note that if G = (X | R) is a finite group, then von Dyck’s Theorem implies
that |G| ≥ |H| for every group H of type T(X | R).
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Proposition C-1.129. For every n ≥ 3, the generalized quaternion group Qn

exists: the group with presentation

Qn =
(
a, b | a2n−1

= 1, bab−1 = a−1, b2 = a2
n−2)

has order 2n.

Proof. The cyclic subgroup
〈
a
〉
in Qn has order at most 2n−1, because a2

n−1

= 1.

The relation bab−1 = a−1 implies that
〈
a
〉
�Qn =

〈
a, b

〉
, so that Qn/

〈
a
〉
is gener-

ated by the image of b. Finally, the relation b2 = a2
n−2

shows that |Qn/
〈
a
〉
| ≤ 2.

Hence,

|Qn| ≤ |
〈
a
〉
||Qn/

〈
a
〉
| ≤ 2n−1 · 2 = 2n.

We prove the reverse inequality by constructing a concrete group Hn of type

T(x, y | x2n−1

, yxy−1x, y−2x2n−2

). Consider the complex matrices A =
[
ω 0
0 ω−1

]
and

B =
[

0 1
−1 0

]
, where ω is a primitive 2n−1th root of unity, and let Hn =

〈
A,B

〉
⊆

GL(2,C). We claim that A and B satisfy the necessary relations. For all i ≥ 1,

A2i =

[
ω2i 0

0 ω−2i

]
,

so that A2n−1

= I; indeed, A has order 2n−1. Moreover, B2 =
[−1 0

0 −1

]
= A2n−2

and BAB−1 =
[
ω−1 0
0 ω

]
= A−1. Notice that A and B do not commute; hence,

B /∈
〈
A
〉
, and so the cosets

〈
A
〉
and B

〈
A
〉
are distinct. Since A has order 2n−1, it

follows that

|Hn| ≥ |
〈
A
〉
∪B

〈
A
〉
| = 2n−1 + 2n−1 = 2n.

By von Dyck’s Theorem, 2n ≤ |Hn| ≤ |Qn| ≤ 2n. Therefore, |Qn| = 2n, and
Theorem C-1.128(ii) gives Qn

∼= Hn. •

In Exercise A-4.66 on page 159 in Part 1, we gave a concrete construction of
the dihedral group D2n, and we can use that group—as in the last proof—to give
a presentation of it.

Proposition C-1.130. The dihedral group D2n has a presentation

D2n = (a, b | an = 1, b2 = 1, bab = a−1).

Proof. Let D2n denote the group defined by the presentation, and let C2n be
the group of order 2n constructed in Exercise A-4.66 on page 159 in Part 1. By
von Dyck’s Theorem, |D2n| ≥ |C2n| = 2n. We prove the reverse inequality. The
cyclic subgroup

〈
a
〉
in D2n has order at most n, because an = 1. The relation

bab−1 = a−1 implies that
〈
a
〉
� D2n =

〈
a, b

〉
, so that D2n/

〈
a
〉
is generated by

the image of b. Finally, the relation b2 = 1 shows that |D2n/
〈
a
〉
| ≤ 2. Hence,

|D2n| ≤ |
〈
a
〉
||D2n/

〈
a
〉
| ≤ 2n, and |D2n| = 2n. Therefore, Theorem C-1.128(ii)

gives D2n
∼= C2n. •

In Section C-1.1, we classified the groups of order 7 or less. Since groups of
prime order are cyclic, it was only a question of classifying the groups of orders 4
and 6. The proof we gave, in Proposition C-1.4, that every nonabelian group of
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order 6 is isomorphic to S3 was rather complicated, analyzing the representation of
a group on the cosets of a cyclic subgroup. Here is a proof in the present spirit.

Proposition C-1.131. If G is a nonabelian group of order 6, then G ∼= S3.

Proof. As in the proof of Proposition C-1.4, G must contain elements a and b
of orders 3 and 2, respectively. Now

〈
a
〉
� G, because it has index 2, and so ei-

ther bab−1 = a or bab−1 = a−1. The first possibility cannot occur, because G
is not abelian. Therefore, G has type T(a, b | a3, b2, bab = a−1), and so Theo-
rem C-1.128(ii) gives D6

∼= G (of course, D6
∼= S3). •

We can now classify the groups of order 8.

Theorem C-1.132. Every group G of order 8 is isomorphic to

D8, Q, Z8, Z4 ⊕ Z2, or Z2 ⊕ Z2 ⊕ Z2.

Moreover, no two of the displayed groups are isomorphic.

Proof. If G is abelian, then the Basis Theorem shows that G is a direct sum of
cyclic groups, and the Fundamental Theorem shows that the only such groups are
those listed. Therefore, we may assume that G is not abelian.

Now G cannot have an element of order 8, lest it be cyclic, hence abelian;
moreover, not every nonidentity element can have order 2, lest G be abelian, by
Exercise A-4.31 on page 138 in Part 1. We conclude that G must have an element a
of order 4; hence,

〈
a
〉
has index 2, and so

〈
a
〉
�G. Choose b ∈ G with b /∈

〈
a
〉
; note

that G =
〈
a, b

〉
because

〈
a
〉
, having index 2, must be a maximal subgroup. Now

b2 ∈
〈
a
〉
, because G/

〈
a
〉
is a group of order 2, and so b2 = ai, where 0 ≤ i ≤ 3. We

cannot have b2 = a or b2 = a3 = a−1 lest b have order 8. Therefore, either

b2 = a2 or b2 = 1.

Furthermore, bab−1 ∈
〈
a
〉
, by normality, and so bab−1 = a or bab−1 = a−1 (for

bab−1 has the same order as a). But bab−1 = a says that a and b commute, which
implies that G is abelian. We conclude that bab−1 = a−1. Therefore, there are only
two possibilities:

a4 = 1, b2 = a2, bab−1 = a−1 or a4 = 1, b2 = 1, bab−1 = a−1.

The first equations give relations of a presentation for Q, by Proposition C-1.129,
while the second equations give relations of a presentation of D8, by Proposi-
tion C-1.130. Now von Dyck’s Theorem gives a surjective homomorphism Q→ G
or D8 → G, as |G| = 8. Theorem C-1.128(ii) says that these homomorphisms must
be isomorphisms.

Finally, Exercise A-4.69 on page 159 in Part 1 shows that Q and D8 are not
isomorphic. •

The reader may continue this classification of the groups G of small order
|G| ≤ 15; the results are displayed in Table 2. By Corollary C-1.23, every group
of order p2, where p is prime, is abelian, and so every group of order 9 is abelian.
By the Fundamental Theorem of Finite Abelian Groups, there are only two such
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Order Groups

4 Z4, V

6 Z6, S3

8 Z8, Z4 × Z2, Z2 × Z2 × Z2, D8, Q

9 Z9, Z3 × Z3

10 Z10, D10

12 Z12, Z3 ×V, D12, A4, T

14 Z14, D14

15 Z15

Table 2. Groups of small order.

groups up to isomorphism: Z9 and Z3×Z3. If p is prime, then every group of order
2p is either cyclic or dihedral (Exercise C-1.98). Thus, there are only two groups
of order 10 and only two groups of order 14. There are five groups of order 12
(Rotman [188], p. 84). Two of these are abelian: Z12

∼= Z4 × Z3 and Z3 ×V; the
nonabelian groups of order 12 are D12

∼= S3 × Z2, A4, and a group T having the
presentation

T =
(
a, b | a6 = 1, b2 = a3 = (ab)2

)
(Exercise C-1.99 realizes T as a group of matrices). The group T , sometimes called
a dicyclic group of type (2, 2, 3), is an example of a semidirect product (we shall
discuss semidirect products in the chapter on homological algebra). A group of
order pq, where p < q are primes and q �≡ 1 mod p, must be cyclic, and so there is
only one group of order 15 [Rotman [188], p. 83]. There are fourteen nonisomorphic
groups of order 16, so this is a good place to stop.

Exercises

∗ C-1.98. If p is prime, prove that every group G of order 2p is either cyclic or isomorphic
to D2p.

Hint. By Cauchy’s Theorem, G must contain an element a of order p, and
〈
a
〉
�G because

it has index 2.

∗ C-1.99. Let G be the subgroup of GL(2,C) generated by
[
ω 0
0 ω2

]
and [ 0 i

i 0 ], where ω =

e2πi/3 is a primitive cube root of unity.

(i) Prove that G is a group of order 12 that is not isomorphic to A4 or to D12.

(ii) Prove that G is isomorphic to the group T in Table 2.

C-1.100. Prove that every finite group is finitely presented.

C-1.101. Compute the order of the group G with the presentation

G =
(
a, b, c, d | bab−1 = a2, bdb−1 = d2, c−1ac = b2, dcd−1 = c2, bd = db

)
.



C-1.7. Nielsen–Schreier Theorem 97

C-1.7. Nielsen–Schreier Theorem

We are now going to prove one of the most fundamental results about free groups:
every subgroup is also free. Nielsen proved, in 1921, that finitely generated sub-
groups of free groups are free.22 Even if a free group F has finite rank, Nielsen’s
proof does not show that every subgroup of F is free, for subgroups of a finitely gen-
erated free group need not be finitely generated (Corollary C-1.138). The finiteness
hypothesis was removed by Schreier in 1926, and the subgroup theorem is called
the Nielsen–Schreier Theorem.

In the next section, we will discuss a second proof, found by Baer and Levi in

1933, which uses a correspondence between covering spaces X̃ of a topological space

X and subgroups of its fundamental group π1(X). There are interesting variations
of this idea. One such involves trees (which arise as universal covering spaces of
connected graphs); Serre [202], p. 27, characterizes free groups by their action on
trees, which he then uses to prove the Nielsen–Schreier Theorem ([202], p. 29). A
second variation is due to Higgins [99], pp. 117–118.

There are now many other proofs of the Nielsen–Schreier Theorem, most quite
intricate; we prefer the recent proof of Avinoam Mann [148], p. 16. Let us begin
with an interesting proposition whose proof contains an idea we will use.

Recall the following definition.

Definition. Let H be a subgroup of a group G. A (right) transversal of H in G
is a subset of G consisting of exactly one element τ (Hg) ∈ Hg for every right coset
Hg, and with τ (H) = 1.

Proposition C-1.133. If G is a finitely generated group, then every subgroup H
of finite index is also finitely generated.

Proof. Let G = 〈x1, . . . , xd〉, let [G : H] = s, and let {a1 = 1, a2, . . . , as} be a
transversal τ of H. Let g = xe1

i1
· · ·xen

in
be any element of G, where each xij is

some xi and eij = ±1. If τ (Hxe1
i1
) = ai1 , then there is h1 ∈ H with h1x

e1
i1

= ai1 ;

that is, xe1
i1
a−1
i1

= h−1
1 ∈ H. Thus, g = (xe1

i1
a−1
i1

)ai1x
e2
i2
· · ·xen

in
. If τ (Hai1x

e2
i2
) = ai2 ,

then there is h2 ∈ H with h2ai1x
e2
i2

= ai2 ; that is, ai1x
e2
i2
a−1
i2

= h−1
2 ∈ H, and so

g = (xe1
i1
a−1
i1

)(ai1x
e2
i2
a−1
i2

)ai2 · · ·xen
in
. Continuing in this way,

g = (xe1
i1
a−1
i1

)(ai1x
e2
i2
a−1
i2

)ai2 · · · (ain−1
xen
in
a−1
in

)ain ,

where each aijx
ej+1

ij+1
a−1
ij+1

∈ H; that is, g = hain for h ∈ H. In particular, if g ∈ H,

then hain ∈ H and ain = 1 (because τ (H) = 1). Therefore, every g ∈ H is a
product of elements in H of the form aijx

ej+1

ij+1
a−1
ij+1

(rewrite the first factor xe1
i1
a−1
i1

as 1xe1
i1
a−1
i1

).

22If S is a finitely generated subgroup of a free group, then Nielsen’s proof shows that S is free
by giving an algorithm, analogous to Gaussian elimination in linear algebra, that replaces a finite
generating set with a basis of S (Lyndon–Schupp [142], pp. 4–13). This theoretical algorithm has
evolved into the Schreier–Sims algorithm, an efficient way to compute the order of a subgroup
H ⊆ Sn when a generating set of H is given.
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The subscripts ij occurring in the factors of the triple products depend on the
element g, and they may change when g is replaced by another element of G. Thus,
we may rewrite triple products with simpler subscripts, say, ajx

e
ka

−1
� . But there

are only finitely many a’s and x’s, and so H is generated by finitely many elements.
•

Remark. The proof of Proposition C-1.133 shows that a set of generators of H can
be described in terms of a set of generators of the large group G and a transversal
of H in G: it consists of triple products of the form ajx

e
ka

−1
� . This generating set

may be too big. Since ajx
−1
k a−1

� = (a�xka
−1
j )−1, we may assume that the middle

factor has exponent 1.

Another way to shrink the generating set is to throw out triple products equal
to 1. For example, suppose that ain = xe1

i1
· · ·xen

in
; if the initial segment xe1

i1
· · ·xen−1

in−1

is also a coset representative in the transversal, call it ain−1
, then ain−1

xen
in

= ain ,

and ain−1
xina

−1
in

= 1. This procedure can be iterated if every initial segment
xe1
i1
· · ·xer

ir
of xe1

i1
· · ·xen

in
, for 1 ≤ r < n, lies in the transversal; now every triple

product aij−1
x
ej
ij
a−1
ij

= 1, for 1 ≤ j < n. �

Now consider a free group F with basis X and a subgroup H, not necessarily
of finite index. To prove that H is free, our task is to find a basis of it. We will
find a set of generators of H using a special transversal τ of H, and it will turn out
that a subset of this generating set will be a basis of H.

Definition. Let H be a subgroup of a free group F with basis X. A transversal τ
of H in F is a Schreier transversal if each τ (Hg) = xe1

i1
· · ·xen

in
is a reduced

word on X such that every initial segment xe1
i1
· · ·xer

ir
for r ≤ n is also a coset

representative; that is, xe1
i1
· · ·xer

ir
= τ (Hg′r) for some g′r ∈ F .

Let F be a free group with basis X, let H be a subgroup of F , and let τ be a
transversal of H in F . If a ∈ F and x ∈ X, define

σ(a, x) = τ (Ha) x τ (Hax)−1.

Note that σ(a, x) = 1 if and only if τ (Ha) x = τ (Hax).

Recall that if F is a free group with basis X, then we defined the length |u|
of a word u = xe1

i1
· · ·xen

in
∈ F to be n (remember that u is reduced). Well-order

the basis X of F as x0, x1, . . ., and then well-order X ∪X−1 by setting the inverse
of each basis element xj to be the next term in the ordering: x0, x

−1
0 , x1, x

−1
1 , . . ..

Now well-order F (X), whose elements are the reduced words on X, first by their
length as words on X and then lexicographically for words of the same length (this
is essentially the degree-lexicographic well-ordering we introduced in Part 1 in our
discussion of the division algorithm for polynomials in several variables).

Lemma C-1.134. If F is a free group with basis X and H is a subgroup of F ,
then there exists a Schreier transversal τ of H in F .

Proof. We may assume that the elements of F have been well-ordered, as above.
Define the length |Hg| of a coset Hg to be the first element hg ∈ Hg. We prove,
by induction on the length |Hg|, that there is a representative τ (Hg) ∈ Hg such
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that all its initial segments are representatives of cosets of shorter length. Begin
by defining τ (H) = 1. For the inductive step, let |Hg| = n+ 1 and let uxe ∈ Hz,
where e = ±1 and |uxe| = n + 1. Now |Hu| = n, for if its length were m < n, it
would have a representative v of length m, and then vxe would be a representative
of Hz of length < n + 1, a contradiction. By induction, there exists a = τ (Hu)
with every initial segment also a representative; define τ (Hz) = axe. •

Lemma C-1.135. Let F be a free group with basis X, let H be a subgroup of F ,
and let τ be a Schreier transversal of H in F . Then H is generated by

Y = {σ(a, x) = τ (Ha) x τ (Hax)−1}.

Proof. This follows from the remark just after the proof of Proposition C-1.133.
•

The generating set Y arose by shrinking the larger generating set of all triple
products ajx

e
ka

−1
� in two ways: first, by eliminating all those with e = −1; second,

by eliminating some trivial triple products. It is possible that some surviving triple
products in Y are also trivial; that is, some σ(a, x) = τ (Ha) x τ (Hax)−1 = 1.

Theorem C-1.136 (Schreier–Nielsen). If H is a subgroup of a free group F (X),
then H is free with basis the nontrivial elements of

S = {σ(a, x) = τ (Ha) x τ (Hax)−1 which are distinct from 1},

where τ is a Schreier transversal of H.

Proof. We already know, by Lemma C-1.135, that S generates H. We now exam-
ine the elements of S.

Step 1: The elements σ(aj , xk) = ajxka
−1
� are reduced words on X.

The words aj and a� are reduced, as are all τ (Ha), so that if σ(aj , xk) is not re-

duced, the middle xk can be canceled. If xk is canceled on the left, then aj = ux−1
k ,

where u is an initial segment of aj ; that is, u = τ (Hu). But u = ajxk, and thus

u = τ (Hajxk); that is, u = a�, and ajxka
−1
� = ux−1

k xka
−1
� = 1, a contradiction. If

xk is canceled on the right, apply the same argument to (ajxka
−1
� )−1 = a�xka

−1
j .

Step 2: Let g be any reduced word on S, say, g = σe1
1 · · ·σem

m , where σq =
ajqxkq

a�q , eq = ±1, and m ≥ 1. If g is rewritten as a word in X, then no x
eq
kq

is

canceled.

Simplifying notation to eliminate double subscripts, write

σqσ
e
q+1 = (akxka

−1
� )(arxsa

−1
t )e.

Suppose that xk is canceled from σe
q+1 on its right. Since each σ is reduced as

a word on X, by Step 1, the only cancellation possible is at the interface; a−1
�
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must first be canceled completely, after which xk is canceled. There are only three
possibilities:

(i) xk is canceled by xs. In this case, we must have e = −1 and

σqσ
e
q+1 = σqσ

−1
q+1 = (ajxka

−1
� )(atx

−1
s a−1

r ).

Thus, at = a� and xs = xk. Now the definition of σ(aj , xk) says that a� =
τ (Hajxk); hence, σq+1 = τ (Har)xkτ (Harxk)

−1. It follows that τ (Harxk) =
a� = τ (Hajxk), so that Harxk = Hajxk and Har = Haj . Therefore,
τ (Har) = τ (Haj) = aj , and

σq+1 = σ(ar, xs) = τ (Har)xsa
−1
t = τ (Haj)xka

−1
� = σq,

which contradicts the word g on S being reduced.

(ii) x−1
k occurs in ar (remember that ar is a word on X); we take the first such

occurrence. In this case, we must have e = +1 and ar starts with a�x
−1
k ;

that is, a�x
−1
k is an initial segment of ar = τ (Har). Since τ is a Schreier

transversal, a�x
−1
k = τ (Ha�x

−1
k ). Looking at σ(aj , xk)

−1 = a�x
−1
k a−1

j , we see

that aj = τ (Ha�x
−1
k ) = a�x

−1
k , and thus σ(aj , xk) = 1, a contradiction.

(iii) xk is canceled by the first x−1
k occurring in at. In this case, we must have

e = −1. Inverting g, we get a word in which σ(ar, xs)
−1σ(aj , xk)

−1 occurs,
and the x−1

s in σ(ar, xs) is canceled in the same manner as in the first case
for xk above and, as there, this implies that σ(ar, xs) = 1.

In the same way, we deal with the possibility that xk is canceled from σe′

q−1 on
its left.

It follows from Step 2 that every nontrivial reduced word on S is not equal
to 1, and so Corollary C-1.121 shows that H is free with basis S. •

Here is a nice application of the Nielsen–Schreier Theorem.

Corollary C-1.137. Let F be a free group, and let u, v ∈ F . Then u and v
commute if and only if there is z ∈ F with u, v ∈

〈
z
〉
.

Proof. Sufficiency is obvious; if both u, v ∈
〈
z
〉
, then they lie in an abelian sub-

group, and hence they commute.

Conversely, the Nielsen–Schreier Theorem says that the subgroup
〈
u, v

〉
is

free. On the other hand, the condition that u and v commute says that
〈
u, v

〉
is abelian. But an abelian free group is cyclic, by Exercise C-1.92 on page 91;
therefore,

〈
u, v

〉 ∼= 〈
z
〉
for some z ∈ G. •

The next result shows, in contrast to abelian groups, that a subgroup of a
finitely generated group need not be finitely generated.

Corollary C-1.138. If F is a free group of rank 2, then its commutator subgroup
F ′ is a free group of infinite rank.

Proof. Let {x, y} be a basis of F . Since F/F ′ is free abelian with basis {xF ′, yF ′},
by Lemma C-1.123, every coset F ′b has a unique representative of the form xmyn,
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where m,n ∈ Z; it follows that the transversal choosing τ (F ′b) = xmyn is a Schreier
transversal, for every subword of xmyn is a word of the same form. If n > 0, then
τ (F ′yn) = yn, but τ (F ′ynx) = xyn �= ynx. Therefore, there are infinitely many
elements σ(yn, x) = τ (F ′yn)xτ (F ′ynx)−1 �= 1, and so the result follows from the
Nielsen–Schreier Theorem. •

Recall that Proposition C-1.133 says, if H is a subgroup of finite index of a
finitely generated group, that H is also finitely generated. In particular, if H is
a subgroup of a finitely generated free group, then H is a finitely generated free
group, hence has finite rank. We now compute rank(H).

Corollary C-1.139. If F is a free group of finite rank n and H is a subgroup of
finite index j, then rank(H) = jn− j + 1.

Remark. In geometric proofs of the Nielsen–Schreier Theorem, one sees that
there is a space K, with Euler–Poincaré characteristic χ(K), such that rank(F ) =
−χ(K) + 1 and rank(H) = j(−χ(KH) + 1), where KH is a covering space con-
structed from K and H. �

Proof. Let X = {x1, . . . , xn} be a basis of F and let τ be a Schreier transversal
of H in F . By Theorem C-1.136, a basis of H consists of all those elements σ(a, x)
not equal to 1. There are j choices for Ha and n choices for x, and so there are at
most jn elements in a basis of H, and rank(H) ≤ jn.

Call an ordered pair (Ha, x) trivial if σ(a, x) = 1; that is, if τ (Ha)x = τ (Hax).
We will show that there is a bijection ψ between the family of cosets {Ha : a /∈ H}
and the trivial ordered pairs, so that there are j − 1 trivial ordered pairs. It will
then follow that rank(H) = jn− (j − 1) = jn− j + 1.

Let τ (Ha) = a; since Ha �= H, we have a = uxe, where e = ±1 and u = τ (Hu)
(u = 1 is possible). Define ψ(Ha) as follows, where a = uxe:

ψ(Ha) = ψ(Suxe) =

{
(Hu, x) if e = +1,

(Hux−1, x) if e = −1.

Note that ψ(Huxe) is a trivial ordered pair: if e = +1, then (Hu, x) is trivial,
for τ (Hu)xτ (Hux)−1 = ux(ux)−1 = 1; if e = −1, then (Hux−1, x) is trivial, for
(ux−1)x = u and τ (Hux−1)xτ (Hux−1x)−1 = (ux−1)xu−1 = 1.

To see that ψ is injective, suppose that ψ(Ha) = ψ(Hb), where a = uxe and
b = vyη; we assume that x, y lie in the given basis of F and that e = ±1 and η = ±1.
There are four possibilities, depending on the signs of e and η. If e = +1 = η, then
(Hu, x) = (Hv, y); hence, x = y and Hu = Hv; that is, u = v, for τ is a Schreier
transversal and u, v ∈ im τ . Thus, a = ux = vy = b and Ha = Hb. Similar
calculations show that Ha = Hb when e = −1 = η and when e, η have opposite
sign.

To see that ψ is surjective, take a trivial ordered pair (Hw, x), and so τ (Hw)x =
wx = τ (Hwx). Now w = uxe, where u ∈ im τ and e = ±1. If e = +1, then w does
not end with x−1, and ψ(Hwx) = (Hw, x). If e = −1, then w does end with x−1,
and so ψ(Hu) = (Hux−1, x) = (Hw, x). •
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Corollary C-1.140. There exist nonisomorphic finitely presented groups G and
H each of which is isomorphic to a subgroup of the other.

Proof. If G is a free group of rank 2 and H is a free group of rank 3, then G �∼= H.
Both G and H are finitely generated free groups and, hence, are finitely presented.
Clearly, G is isomorphic to a subgroup of H. On the other hand, the commutator
subgroup G′ is free of infinite rank, and so G′, hence G, contains a free subgroup
of rank 3; that is, H is isomorphic to a subgroup of G. •

Exercises

C-1.102. Prove that if F is free of finite rank n ≥ 2, then its commutator subgroup F ′

is free of infinite rank.

C-1.103. Let G be a finite group that is not cyclic. If G ∼= F/N , where F is a free group
of finite rank, prove that rank(N) > rank(F ).

C-1.104. Prove that if G is a finite group generated by two elements a, b having order 2,
then G ∼= D2n for some n ≥ 2.

∗ C-1.105. Let Y and S be groups, and let ϕ : Y → S and θ : S → Y be homomorphisms
with ϕθ = 1S.

(i) If ρ : Y → Y is defined by ρ = θϕ, prove that ρρ = ρ and ρ(a) = a for every
a ∈ im θ. (The homomorphism ρ is called a retraction.)

(ii) If K is the normal subgroup of Y generated by all y−1ρ(y) for y ∈ Y , prove that
K = kerϕ.
Hint. Note that kerϕ = ker ρ because θ is an injection. Use the equation y =
ρ(y)(ρ(y)−1)y for all y ∈ Y .

C-1.8. The Baer–Levi Proof

Covering spaces arise in studying various mathematical topics such as Riemann
surfaces, Lie groups, and fundamental groups, for example. Highlights of this theory
are presented here, but we will merely sketch proofs or just state theorems (a more
complete account can be found in Rotman [191], Chapter 10, which discusses the
topological setting, or in Rotman [188], pp. 366–406, and Rotman [190], which
discuss the simpler combinatorial setting). Baer and Levi gave an elegant proof of
the Schreier–Nielsen Theorem using covering spaces, which we will give here. We
shall also use covering spaces to prove a theorem of Kurosh which describes the
subgroups of free products.

The Categories Simp and Simp∗
Perhaps the simplest topological spaces are those which can be triangulated,

that is, spaces that are homeomorphic to spaces which can be constructed from
gluing together points, line segments, triangles, pyramids, etc.
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Definition. A complex K (often called an abstract simplicial complex ) is
either the empty set ∅ or a family of nonempty finite subsets, called simplexes,
of a set Vert(K), called vertices, such that

(i) if v ∈ Vert(K), then {v} is a simplex;

(ii) if s is a simplex, then so is every nonempty subset of s.

The complex K = ∅ has no simplexes.

A simplex s = {v0, . . . , vq} with q + 1 different vertices is called a q-simplex,
and we say that s has dimension q, denoted by dim(s) = q. We say that a complex
K is an n-complex, denoted by dim(K) = n, if n is the largest dimension of a
simplex in K (if there is no simplex of largest dimension, then dim(K) =∞).

A 0-simplex is a 1-point set {v} ⊆ Vert(K) (which we usually identify with
the vertex v ∈ Vert(K)); a 1-simplex {v0, v1} can be viewed as a line segment
with endpoints v0, v1; a 2-simplex {v0, v1, v2} can be viewed as a (two-dimensional)
triangle with vertices v0, v1, v2; a 3-simplex {v0, v1, v2, v3} can be viewed as a solid
tetrahedron with vertices v0, v1, v2, v3, and so forth. For our discussion here, 2-
complexes will suffice. Geometrically, a complex is a space obtained by assembling
various simplexes together nicely.

Here are more definitions (fortunately, most are quite intuitive).

Definition. A complex L is a subcomplex of a complex K if L = ∅ or Vert(L) ⊆
Vert(K) and every simplex in L is also a simplex in K.

If L1 and L2 are subcomplexes of a complex K, then both

L1 ∪ L2 = {all simplexes s in L1} ∪ {all simplexes s′ in L2}

and

L1 ∩ L2 = {all simplexes s in both L1 and L2}

are subcomplexes of K.

Given a complex K, define the q-skeleton Kq, for each q ≥ 0, by

Kq = {all simplexes s in K : dim(s) ≤ q}.

Note that Vert(K) = K0 and K0 ⊆ K1 ⊆ K2 ⊆ · · · .
For example, if s = {v0, v1, v2} is a 2-simplex, its 1-skeleton s1 is a circle, the

1-complex having 1-simplexes {v0, v1}, {v0, v2}, and {v1, v2} (so s1 is the perimeter
of the triangle with vertices {v0, v1, v2}).

A 1-complex can be viewed as a graph, where vertices v0, v1 are adjacent if
{v0, v1} is a q-simplex for q ≤ 1. In particular, the 1-skeleton K1 of a complex K
can be regarded as a graph. Thus, graph-theoretical definitions in Section C-1.1
can be used here.
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There is also a notion of quotient complex.

Definition. Let K be a complex and let ≡ be an equivalence relation on Vert(K).
The quotient complex K/≡ is the complex with

Vert(K/ ≡) = {all equivalence classes [v] of ≡}

and simplexes {[vi0 ], . . . , [viq ]} if there are vertices vij ∈ [vij ] with {vi0 , . . . , viq} a
simplex in K.

The reader may check that K/≡ is a complex.

We now define morphisms of complexes.

Definition. If K and L are complexes, then a simplicial map ϕ : K → L is
a function ϕ : Vert(K) → Vert(L) that takes simplexes to simplexes; that is, if
s = {v0, . . . , vq} is a simplex in K, then ϕs = {ϕv0, . . . , ϕvq} is a simplex in L.

A (simplicial) map ϕ : K → L is an isomorphism if there is a simplicial map
ψ : L→ K with ψϕ = 1K and ϕψ = 1L. A simplicial map ϕ : K → L is surjective
if, for each simplex s′ in L, there is a simplex s in K with ϕs = s′.

If ϕ : K → L is a simplicial map, then the simplex ϕs = {ϕv0, . . . , ϕvq} in Lmay
have repeated vertices; thus, dim(s) ≥ dim(ϕs), and strict inequality is possible.
For example, the constant function ϕ : Vert(K) → Vert(L), given by ϕv = w for
all v ∈ Vert(K), where w ∈ Vert(L), is a simplicial map.

The inclusion i : L→ K of a subcomplex is a simplicial map. Another example
arises from an equivalence relation ≡ on Vert(K), where K is a complex. The
natural map ν : K → K/≡, defined by ν : v �→ [v], is a simplicial map, where [v]
is the equivalence class of v.

It is easy to check that the composite of simplicial maps is again a simplicial
map and that

Simp,

consisting of all complexes and simplicial maps, is a category.

A related category is a variation of Simp. If K is a complex, a choice of
vertex w ∈ Vert(K) is called a basepoint, and an ordered pair (K,w) is called a
pointed complex. If (K,w) and (L,w′) are pointed complexes, then a pointed
map ϕ : (K,w)→ (L,w′) is a simplicial map ϕ : K → L with ϕw = w′.23 It is easy
to check that any composite of pointed maps is a pointed map, and we define

Simp∗

to be the category of pointed complexes.

Fundamental Group

We are now going to define paths in complexes. This will enable us to define
fundamental groups of complexes (actually, of pointed complexes) which gives a
functor π1 : Simp∗ → Groups.

23We have defined pointed topological spaces and pointed maps on page 87.
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Earlier, we remarked that the 1-skeleton K1 of a complex K can be viewed as
a graph; we now make it into a directed graph.

Definition. Let K be a complex, and let u, v ∈ Vert(K). If {u, v} is a q-simplex
in K, where q ≤ 1, then the ordered pair e = (u, v) is called an edge in K; we
write u = o(e) and v = t(e) (origin and terminus); the edge e−1 = (v, u) has
v = o(e−1) and u = t(e−1).24 A path α in K of length n from u to v is a sequence
of n edges

α = e1 · · · en = (u, v1)(v1, v2) · · · (vn−1, v),

where t(ei) = o(ei+1) for all i. We call u the origin of α, denoting it by o(α), and v
the terminus of α, denoting it by t(α). A path α is closed at w if o(α) = w = t(α).

Simplicial maps take paths into paths.

Definition. Let K and L be complexes, and let α = (u, v1)(v1, v2) · · · (vn−1, v) be
a path in K from u to v. If ϕ : K → L is a simplicial map, then

ϕα = (ϕu, ϕv1)(ϕv1, ϕv2) · · · (ϕvn−1, ϕv).

It is clear that ϕα is a path in L from ϕu to ϕv.

Definition. A complexK is connected if, for every pair of vertices u, v ∈ Vert(K),
there is a path in K from u to v.

Proposition C-1.141. Let K and L be complexes, and let ϕ : K → L be a surjec-
tive simplicial map. If K is connected, then L is connected.

Proof. Let u′, v′ ∈ Vert(L); since ϕ is surjective, there are u, v ∈ Vert(K) with
ϕu = u′ and ϕv = v′. As K is connected, there is a path α in K from u to v, and
ϕα is a path in L from u′ to v′. •

Here is a combinatorial version of homotopy.

Definition. Define two types of elementary moves that can be applied to a path
α in a complex K.

(i) Replace a pair of adjacent edges (u, v)(v, w) in α by the single edge (u,w) if
{u, v, w} is a simplex in K;

(ii) the inverse operation: replace an edge (u,w) in α by (u, v)(v, w) if {u, v, w}
is a simplex in K.

Paths α and β in a complex K are homotopic, denoted by α � β, if β can be
obtained from α by finitely many elementary moves.

If α � β, then o(α) = o(β) and t(α) = t(β). In particular, if α is a closed path
at w and α � β, then β is a closed path at w.

It is clear that homotopy is an equivalence relation on the family of all paths
in K.

24We think of (u, v) as an edge from u to v, while the edge (v, u) is viewed as going backwards,
from v to u.
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Definition. If α is a path in a complex K, then its equivalence class with respect
to homotopy is called its path class ; it is denoted by

[α].

Since homotopic paths have the same origin and the same terminus, we can
define the origin and terminus of path classes: if α is a path in a complex K, then

o([α]) = o(α) and t([α]) = t(α).

Paths in a complex can be multiplied if the first ends where the second begins.

Definition. If α = e1 · · · en and β = d1 · · · dm are paths in a complex K with
t(α) = o(β), where the ei and dj are edges, then their product is

αβ = e1 · · · end1 · · · dm,

which is a path from o(α) to t(β). In particular, if both α and β are closed paths
at w, then αβ is defined and it is also a closed path at w.

Observe that multiplication of paths is associative.

Homotopy is compatible with multiplication of paths.

Lemma C-1.142. Let α, α′, β, and β′ be paths in a complex K with t(α) = o(β).
If α � α′ and β � β′, then αβ � α′β′.

Proof. First, t(α) = t(α′) and o(β) = o(β′) implies that the product α′β′ is
defined. Second, it is easy to see that αβ � α′β and α′β � α′β′. Since homotopy
is a transitive relation, we have αβ � α′β′. •

Corollary C-1.143. Let (K,w) be a pointed complex. Then

[α][β] = [αβ]

is a well-defined binary operation on

π1(K,w) = {[α] : α is a closed path in K at w}.

Proof. If α and β are closed paths in K at w, then so is their product αβ. That
[α][β] = [αβ] follows from Lemma C-1.142. •

Here is the important definition.

Definition. If (K,w) is a pointed complex, then π1(K,w) is called its fundamen-
tal group (or its edgepath group).

Just because we call π1(K,w) a group doesn’t automatically make it one.

Theorem C-1.144. The fundamental group π1(K,w) of a pointed complex (K,w)
is a group with binary operation the multiplication of path classes in Corollary
C-1.143.



C-1.8. The Baer–Levi Proof 107

Proof. Recall Exercise A-4.27 on page 138 in Part 1 which gives a short list of
axioms defining a group. Let H be a semigroup containing an element e such that
ex = x for all x ∈ H. If, for every x ∈ H, there is x′ ∈ H with x′x = e, then H is
a group.

That multiplication of path classes is associative follows from associativity of
multiplication of paths:

([α][β])[γ] = [αβ][γ] = [(αβ)γ]

= [α(βγ)] = [α][βγ] = [α]([β][γ]).

Now (w,w) is a closed path in K at w; it is called the trivial path, and its
path class ε = [(w,w)] is the identity: [ε][α] = [α].

Define the inverse of an edge e = (u, v) to be e−1 = (v, u), and define the
inverse of a closed path α = e1 · · · en to be the path α−1 = e−1

n · · · e−1
1 . Then

[e−1
n · · · e−1

1 ][e1 · · · en] = ε. •

Exercise C-1.107 on page 109 says that if w and w′ are vertices in a connected
complex K, then π1(K,w) ∼= π1(K,w′).

Remark. Every complex K has a geometric realization : a topological space |K|
that can be triangulated according to the simplexes in K (Rotman [191], p. 142),
and the fundamental group π1(|K|, w), defined in Example B-4.15 in Part 1, is
isomorphic to π1(K,w) (see Rotman [191], Theorem 7.36). �

Theorem C-1.145. The fundamental group defines a (covariant) functor

π1 : Simp∗ → Groups.

Proof. If ϕ : (K,w)→ (L,w′) is a pointed simplicial map, define ϕ∗ : π1(K,w)→
π1(L,w

′) by

ϕ∗ : [α] �→ [ϕα]. •

Here are several general theorems that compute fundamental groups.

Theorem C-1.146. Given a group G, there exists a connected pointed 2-complex
(K,w) with G ∼= π1(K,w). Moreover, G is finitely presented if and only if there is
such a (K,w) with Vert(K) finite.

Proof. See Rotman [188], Theorem 11.64 and Corollary 11.65. •

Tietze’s Theorem below gives a presentation of π1(K,w) when K is connected.
We need the notion of a tree to state this theorem; recall the definition from Section
C-1.1.

Definition. A path α = e1 · · · en is reduced if either α is trivial, i.e., α = (v, v), or
if no ei is trivial and no edge ej = (u, v) is adjacent to its inverse (v, u). A circuit
is a reduced closed path. A tree is a connected graph T having no circuits.

Lemma C-1.147. Every closed path α in a complex K is homotopic either to a
trivial path or a circuit.
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Proof. If α contains a subpath (u, v)(v, u), then α � α′, where α′ is the path
obtained from α by replacing (u, v)(v, u) by the trivial edge (u, u). If α′ is trivial,
we are done; if α′ is not trivial, then α′ � α′′, where α′′ is obtained from α′ by
removing (u, u). These elementary moves can be iterated, each time reducing the
length of the path, and the final path reached is either reduced or trivial. But a
reduced closed path is a circuit. •

Definition. A pointed complex (K,w) is simply connected if π1(K,w) = {1}.

Proposition C-1.148. Every tree T is simply connected.

Proof. By Lemma C-1.147, every closed path in T is homotopic to a trivial path
or a circuit. But a tree has no circuits. •

Definition. If K is a connected complex, then a subcomplex T of K is a maximal
tree if T is a tree and there does not exist a subcomplex T ′, which is a tree, such
that T � T ′ ⊆ K.

Proposition C-1.149. Let K be a connected complex.

(i) K contains a maximal tree.

(ii) A tree T ⊆ K is a maximal tree if and only if Vert(T ) = Vert(K).

Proof.

(i) A routine application of Zorn’s Lemma.

(ii) Suppose that T is a tree in K and there is v ∈ Vert(K) which is not a
vertex of T . Choose a vertex v0 ∈ Vert(T ); as K is connected, there is a
path e1 · · · en in K from v0 to v. Since v0 ∈ Vert(T ) and v /∈ Vert(T ), there
is some ei = (vi, vi+1) with vi ∈ Vert(T ) and vi+1 /∈ Vert(T ). Consider
the subcomplex T ′ of K obtained from T by adjoining vi+1 and the simplex
{vi, vi+1}. Clearly, T ′ is connected; moreover, any circuit in T ′ must involve
the new vertex vi+1. Now there are only two nontrivial edges in T ′ involving
vi+1, namely, e = (vi, vi+1) and its inverse (vi+1, vi). Thus, any closed path
in T ′ involving vi+1 (not as its origin) is not reduced, while any circuit at
vi+1 yields a circuit in T at vi+1. Thus, T

′ is a tree properly containing T , so
that the tree T is not maximal. The proof of the converse is similar to that
just given. •

A connected complex may have many maximal trees.

Theorem C-1.150 (Tietze). If T is a maximal tree in a connected pointed com-
plex (K,w), then a presentation of π1(K,w) is

(X | R1 ∪R2),

where X is the set of all edges (u, v) in K, R1 = {(u, v) ∈ T}, and R2 =
{(u, v)(v, y) = (u, y) : {u, v, y} is a q-simplex in K for q ≤ 2}.

Proof. See Rotman [188], Theorem 11.31. •
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Corollary C-1.151. Let (K,w) be a pointed complex. If dim(K) ≤ 1, then
π1(K,w) is a free group.

Proof. R2 = ∅. •

The next result says that if (K,w) is a pointed complex containing pointed
subcomplexes (L1, w) and (L2, w) (same basepoints) whose union and intersection
are connected, then a presentation of π1(K,w) can be given in terms of presentations
of π1(L1, w) and π1(L2, w).

Theorem C-1.152 (van Kampen). Let (K,w) be a connected pointed complex,
and let (L1, w) and (L2, w) be connected pointed subcomplexes. If K = L1 ∪L2 and
L1 ∩ L2 are connected, then π1(K,w) is the pushout of the diagram

π1(L1 ∩ L2, w)
j1∗ ��

j2∗

��

π1(L1, w)

π1(L2, w)

where ji : Li → K is the inclusion for i = 1, 2. Moreover, a presentation of π1(K,w)
can be given in terms of presentations of π1(L1, w) and π1(L2, w).

Proof. See Rotman [188], p. 396. •

The pushout is called a free product with amalgamated subgroup in the
special case in which the homomorphisms j1∗ and j2∗ are injections.

Exercises

∗ C-1.106. Let K be a complex. Define a relation on Vert(K) by u ≡ v if there is a path
in K from u to v.

(i) Prove that ≡ is an equivalence relation on Vert(K). The equivalence classes are
called the components of K.

(ii) Prove that every component of K is a connected subcomplex.

(iii) If (K,w) is a pointed complex and L is the component of K containing w, prove
that π1(K,w) ∼= π1(L,w).

∗ C-1.107. If K is a connected complex and w, v ∈ Vert(K), prove that

π1(K,w) ∼= π1(K, v).

Hint. If γ is a path in K from w to v, prove that [α] 
→ [γ−1][α][γ] is an isomorphism.

C-1.108. Does the First Isomorphism Theorem hold for complexes; that is, if ϕ : K → L
is a surjective simplicial map of complexes, is there an equivalence relation ≡ on Vert(K)
with L ∼= K/≡?

C-1.109. Prove that a complex K is connected if and only if its 1-skeleton K1 is con-
nected.
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C-1.110. Let In be the 1-complex with Vert(In) = {t0, . . . , tn} and simplexes {ti, ti+1}
for all i ≥ 0. Prove that any path of length n in a complex K is a simplicial map In → K.

C-1.111. If T is a tree and u, v ∈ Vert(T ), prove that there is a unique path in T from
u to v.

C-1.112. Prove that every simplex is simply connected.

∗ C-1.113. Let K be a connected complex, and let L be a subcomplex that is a disjoint
union of trees. Prove that there exists a maximal tree in K containing L.

Hint. Construct a suitable equivalence relation ≡ on Vert(K), and use the quotient
complex K/≡.

C-1.114. Use Tietze’s Theorem to show that π1(K,w) ∼= Z, where K is the 1-skeleton
of a 2-simplex. (This isomorphism is needed to prove that winding numbers are well-
defined.)

∗ C-1.115. Let F be a free group with basis X = {x, y}, and let Γ be the Cayley graph
of F with respect to the generating set X. Prove that Γ is a tree.

∗ C-1.116. (i) Use Tietze’s Theorem to prove that if K is a connected 1-complex, then
π1(K,w) is a free group. Moreover, if T is a maximal tree in K, then

rank(π1(K,w)) = |{1-simplexes not in T}|.

(ii) Let Bn be the 1-complex with Vert(Bn) = {w} ∪ {ui, vi : 1 ≤ i ≤ n} and
1-simplexes {{ui, vi}, {ui, w}, {vi, w} : 1 ≤ i ≤ n} (Bn is called the bouquet of n
circles). Prove that π1(Bn, w) is a free group of rank n.

(iii) If K is a finite complex, define its Euler–Poincaré characteristic χ(K) by

χ(K) =

dim(K)∑
q=0

(−1)qσq(K),

where σq(K) is the number of q-simplexes in K.

Show that σ1(Bn) = 3n and σ0(Bn) = 2n+ 1. Conclude that χ(Bn) = −n+ 1.

(iv) Prove that π1(Bn, w) is free of rank −χ(Bn) + 1.

Covering Complexes

The usual definition of a covering space of a topological space X is an ordered
pair (E, p), where E and X are connected topological spaces and p : E → X is
continuous, such that

(i) p is a surjection;

(ii) each x ∈ X has an open neighborhood Vx such that p−1(Vx) is a disjoint

union of subspaces Ṽi ⊆ E with p|Ṽi : Ṽi → Vx a homeomorphism for all i.

For example, exp: R → S1, defined by exp: t �→ e2πit, is a covering space. If

z = e2πix ∈ S1, define Vz = {e2πit : 0 < t < 1}; the subspaces Ṽn are the open

intervals Ṽn = (n, n+ 1) for all n.
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We give the version for complexes after defining the inverse image of a simplicial
map.

Definition. Let p : K → L be a simplicial map of complexes. If s is a simplex
in L, then its inverse image is

p−1(s) = {all simplexes s′ in K : p(s′) = s}.

The inverse image p−1(s) is a subcomplex of K.

Definition. A covering complex of a connected complex K is an ordered pair

(K̃, p), where K̃ is a connected complex and p : K̃ → K is a simplicial map, such
that

(i) p is a surjection;

(ii) for each simplex s in K, the inverse image p−1(s) is a disjoint union
⋃

i∈I s̃i ⊆
K̃ of simplexes with p|s̃i : s̃i → s an isomorphism for all i.

All the ingredients have names: p is the projection ; K̃ is a covering ; K is
the base, the s̃i are called the sheets over s, and p−1(v) is called the fiber over v,

where v ∈ Vert(K). Instead of saying that an ordered pair (K̃, p) is a covering

complex, we usually write p : K̃ → K is a covering complex.

Since, for every simplex s in K, each sheet s̃i ∼= s, it follows that

dim(K̃) = dim(K).(1)

It is true (Theorem C-1.159 below) that if (K,w) is a connected complex and

H ⊆ π1(K,w) is any subgroup, then there exists a covering complex p : K̃H → K

with π1(K̃, w̃) ∼= H. The analog of this result for a topological space X requires
more hypotheses; X must be connected, locally path connected, and semilocally
1-connected (Rotman [191], Theorem 10.36). These hypotheses necessarily hold
for the geometric realization |K| of a connected complex K.

Theorem C-1.153 (Unique Path Lifting). Let p : K̃ → K be a covering com-
plex, let w be a basepoint in K, and let w̃ ∈ p−1(w).

(i) Given a path α in K with origin w, there is a unique path α̃ in K̃ with origin
w̃ and pα̃ = α. We call α̃ the lifting of α at w̃.

(ii) If α and β are homotopic paths in K with origin w, then their liftings α̃, β̃

with origin w̃ are homotopic and t(α̃) = t(β̃).

Proof.

(i) The proof is by induction on the length n of α. If n = 1, then α = (w, v),
where s = {w, v} is a simplex; we may assume that w �= v; that is, s is a
1-simplex. If s̃ is the sheet over s containing w̃, then ṽ ∈ s̃ (because s̃ ∼= s),
and so α̃ = (w̃, ṽ) is a lifting of α. The inductive step n > 1 is routine.

To prove uniqueness, suppose again that α = (w, v) has length 1. If α

has another lifting (w̃, ũ), then s̃′ = {w̃, ũ} is a 1-simplex. Both s̃ and s̃′ are
sheets over s, but they are not disjoint, a contradiction. For the inductive
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step, let α = (w, v)β, where β is a path of length n−1 beginning at v. By the
base step, there is a unique (w̃, ṽ) lifting (w, v); by the inductive hypothesis,

there is a unique lifting β̃ of β beginning at ṽ, and it is easy to see that the

lifting α̃ = (w̃, ṽ)β̃ is unique.

(ii) It suffices to prove that if (w̃, ṽ)(ṽ, x̃) is a lifting of (u, v)(v, x), where {u, v, x}
is a simplex in K, then {ũ, ṽ, x̃} is a simplex in K̃. Let s̃ = {ṽ, ũ′, x̃′} be the

sheet over s containing ṽ, and let t̃ = {ũ, ṽ′′, x̃′′} be the sheet over s containing
ũ, where pṽ = pṽ′′ = v and pũ = pũ′′ = u. Now (ũ, ṽ) and (ũ, ṽ′′) are liftings

of (u, v) beginning at ũ, so that uniqueness of lifting gives ṽ = ṽ′′. Thus, the

sheets s̃ and t̃ are not disjoint; that is, s̃ = t̃, and so ũ′ = ũ and x̃′ = x̃′′. A
similar argument comparing s̃ with the sheet over s containing x̃ shows that

x̃ = x̃′. •

Theorem C-1.154. Let p : K̃ → K be a covering complex, let w be a basepoint

in K, and let w̃ ∈ p−1(w). Then p∗ : π1(K̃, w̃)→ π1(K,w) is an injection.

Proof. Assume that [A], [B] ∈ π1(K̃, w̃) and p∗[A] = p∗[B]; that is, [pA] = [pB].
Writing α = pA, we have A is a lifting of α beginning at w̃, and uniqueness of lifting

gives A = α̃. Similarly, writing β = pB gives B = β̃. But [α] = [pA] = [pB] = [β],
so that Theorem C-1.153 gives A � B and [A] = [B]. •

What happens to the subgroup p∗π1(K̃, w̃) of π1(K,w) if we change the base-
point w̃?

Theorem C-1.155. Let p : K̃ → K be a covering complex, let w be a basepoint

in K, and let w̃ ∈ p−1(w). If ũ ∈ p−1(w), then p∗π1(K̃, w̃) and p∗π1(K̃, ũ) are
conjugate subgroups of π1(K,w).

Conversely, if H is a subgroup of π1(K,w) which is conjugate to p∗π1(K̃, w̃),

then there is ũ in the fiber over w with H = p∗π1(K̃, ũ).

Proof. Since K̃ is connected, there is a path B from w̃ to ũ. Then β = pB is a
closed path at w, [β] ∈ π1(K,w), and Exercise C-1.107 on page 109 gives

[B−1]π1(K̃, w̃)[B] = π1(K̃, ũ).

Hence,

[β−1]p∗π1(K̃, w̃)[β] = π1(K̃, ũ).

Conversely, assume that H = [α−1]p∗π1(K̃, w̃)[α]. If α̃ is the lifting of α at w̃
and if t(α̃) = ũ, then pũ = w. By Exercise C-1.107,

[α̃−1]π1(K̃, w̃)[α̃] = π1(K̃, ũ).

Hence, p∗π1(K̃, ũ) = p∗[α̃
−1]π1(K̃, w̃)[α̃] = H. •

If p : K̃ → K is a covering complex and w is a basepoint in K, then the
fundamental group π1(K,w) acts on the fiber p−1(w).
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Proposition C-1.156. If K is a connected complex with basepoint w and p : K̃ →
K is a covering complex, then the fiber X = p−1(w) is a right π1(K,w)-set. The
action is given by

x̃[α] = t(α̃),

where x̃ ∈ X, [α] ∈ π1(K,w), and α̃ is the lifting of α at x̃.

Proof. Theorem C-1.153 shows that the given definition does not depend on the
choice of the representative α in the path class [α]. We now verify the axioms for
a right π1(K,w)-set.

The identity in π1(K,w) is [ε] = [(w,w)]; its lifting at x̃ is obviously (x̃, x̃), and

its terminus is also x̃. Thus, x̃[ε] = x̃[(w,w)] = t((̃w,w)) = t((x̃, x̃)) = x̃.

Let [α], [β] ∈ π1(K,w), let α̃ be the lifting at x̃, and let ỹ = t(α̃). If β̃ is the

lifting of β at ỹ, then α̃β̃ is a lifting of αβ at x̃. By uniqueness of lifting, α̃β̃ is the

lifting of αβ at x̃, and so x̃[αβ] = t(α̃β) = t(α̃β̃) = t(β̃) = ỹ. On the other hand,

(x̃[α])[β] = (t(α̃))[β] = ỹ[β] = t(β̃) = ỹ. •

Theorem C-1.157. If p : K̃ → K is a covering complex and w is a basepoint in K,
then the fiber X = p−1(w) is a transitive right π1(K,w)-set and the stabilizer of a

point w̃ is p∗π1(K̃, w̃).

Proof. To see that X is transitive, let x̃, ỹ ∈ p−1(w). Since K̃ is connected, there

is a path A in K̃ from x̃ to ỹ. If α = pA, then [α] ∈ π1(K,w) and [α]x̃ = t(A).

The stabilizer of a point x̃ ∈ X consists of all [α] ∈ π1(K,w) for which t(α̃) = x̃.

But t(α̃) = x̃ if and only if [α̃] ∈ π1(K̃, x̃) if and only if [α] ∈ p∗π1(K̃, x̃). •

Corollary C-1.158. Let p : K̃ → K be a covering complex.

(i) If w is a basepoint in K and w̃ ∈ p−1(w), then the index

[π1(K,w) : p∗π1(K̃, w̃)] = |p−1(w)|.

(ii) If w and u are basepoints in K, then |p−1(w)| = |p−1(u)|.

Proof.

(i) The number of elements in a transitive set is the index of the stabilizer of a
point.

(ii) If ũ ∈ p−1(u), then there is a path B in K̃ from w̃ to ũ; denote pB by β.

Define homomorphisms Φ: π1(K̃, w̃) → π1(K̃, ũ) by [A] �→ [B−1AB], and
define ϕ : π1(K,w) → π1(K,u) by [α] �→ [β−1αβ]. It is easy to check that
the following diagram commutes:

π1(K̃, w̃)
Φ ��

p∗

��

π1(K̃, ũ)

p∗

��
π1(K,w)

ϕ
�� π1(K,u).
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Since Φ and ϕ are isomorphisms, it follows that the index of im p∗ on the left
is equal to the index of im p∗ on the right. •

We are now going to construct coverings of connected complexes; in fact, we
construct simply connected covering complexes.

Definition. Let (K,w) be a pointed complex with K connected and let H be a
subgroup of π1(K,w). Define a relation ∼H on the family of all paths in K with
origin w by

α ∼H β if t(α) = t(β) and [αβ−1] ∈ H.

It is routine to check that ∼H is an equivalence relation. Denote the equivalence
class of such a path α by

cls α,

and denote the family of all such classes by KH :

KH = {cls α : α is a path in K with o(α) = w}.

The set KH can be made into a complex.

Definition. Let s be a simplex in K. If α is a path in K with o(α) = w and
t(α) ∈ s, then a continuation of α in s is a path β = αα′ with α′ wholly in s;
that is, t(α) = o(α′) and every edge in α′ joins two vertices in s. For each simplex
s in K and cls α ∈ KH , define

[s, cls α] = {cls β : β is a continuation of α in s},

and define simplexes in KH to be the nonempty subsets of all [s, cls α].

If ε = (w,w) is the trivial path, then ε is a path in K with o(ε) = w. Define

w̃ = cls ε

to be a basepoint in KH .

Theorem C-1.159. If K is a connected complex with basepoint w and H is a

subgroup of π1(K,w), then there exist a covering complex p : K̃H → K and w̃ ∈
p−1(w) with p∗π1(K̃H , w̃) = H.

Proof. Define a function p : KH → K by cls α �→ t(α); note that pw̃ = w. The
proof is a series of verifications: KH is connected; p is a surjective simplicial map;
(KH , p) is a covering complex; p∗π1(KH , w̃) = H. For details of a proof, see
Rotman [188], Theorem 11.43. •

Corollary C-1.160. Let (K,w) be a connected pointed complex, and let H ⊆
π1(K,w). If p : KH → K is the covering complex in Theorem C-1.159, then
π1(K,w) acts on KH .

Proof. If [γ] ∈ π1(K,w) and cls α ∈ KH , define

[γ]cls α = cls (γα).

The reader should check that this is a well-defined (left) action. •



C-1.8. The Baer–Levi Proof 115

The theory of covering spaces for topological spaces was well known when the
Baer–Levi proof was given .

Theorem C-1.161 (Schreier–Nielsen Redux). Every subgroup H of a free
group F is itself free.

Proof (Baer–Levi). Exercise C-1.116 on page 110 says that there is a bouquet
of circles K with F ∼= π1(K,w), and we may assume that H ⊆ π1(K,w). If
p : KH → K is the corresponding covering complex, then H = p∗π1(KH , w̃),
by Theorem C-1.154. Now dim(KH) = dim(K), by Eq. (1) on page 111. But
dim(K) = 1, so that dim(KH) = 1, and Corollary C-1.151 says that H is a free
group. •

Here is another proof of Corollary C-1.139.

Proposition C-1.162. If F is a free group of finite rank n and H is a subgroup
of finite index j, then rank(H) = jn− j + 1.

Proof. If K = Bn is a bouquet of n circles, Exercise C-1.116 on page 110 says
that σ1(Bn) = 3n and σ0(Bn) = 2n+1, where σq(K) is the number of q-simplexes
in K; moreover, n = rank(F ) = rank(π1(K,w)) = −χ(H) + 1. If p : KH → K
is the covering complex from H, then Exercise C-1.119 gives σ1(KH) = 3jn and
σ0(KH) = 2jn+ j; hence, χ(KH) = −jn+ j. Since H is free, we have rank(H) =
rank(π1(Kh, w̃)) = −χ(KH) + 1 = jn− j + 1. •

Exercises

∗ C-1.117. Let p : K̃ → K be a covering complex. If L is a connected subcomplex of K

and L̃1 is a component of p−1(L), prove that p|L̃1 : L̃1 → L is a covering complex.

∗ C-1.118. Let a tree T be a subcomplex of a connected complex K.

(i) If p : K̃ → K is a covering complex, prove that p−1(T ) is a disjoint union of trees.

(ii) Use Exercise C-1.113 on page 110 to prove that there exists a maximal tree in K̃
containing p−1(T ).

∗ C-1.119. Let p : K̃ → K be a covering complex. If the fiber p−1(v) over a vertex v is

finite, say, j = |p−1(v)|, prove that there are exactly j sheets in K̃ over every simplex
in K. Conclude that

χ(K̃) = jχ(K).

Co-Galois Theory

An analog of Galois theory emerges when we try to classify all the covering com-
plexes of a connected complex K. We begin by comparing two covering complexes
of K.
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Proposition C-1.163. Let p : (K̃1, w̃1) → (K,w) and q : (K̃2, w̃2) → (K,w) be
covering complexes, where (K,w) is a connected pointed complex and pw̃1 = w =
qw̃2.

(i) If

q∗π1(K̃2, w̃2) ⊆ p∗π1(K̃1, w̃1),

then there exists a unique simplical map h : K̃2 → K̃1 making the following
diagram commute:

(K̃2, w̃2)
h ��			

q
����

���
���

��
(K̃1, w̃1)

p

��
(K,w).

(ii) h : (K̃2, w̃2)→ (K̃1, w̃1) is a covering complex.

(iii) If q∗π1(K̃2, w̃2) = p∗π1(K̃1, w̃1), then h is an isomorphism.

Proof. Rotman [190], Theorem 3.3 and Corollary 3.4. •

In the diagram above, let us call the covering complex K̃1 an intermediate

covering complex between K̃2 and K. A covering complex Ũ of a connected com-
plex K is a universal covering complex if every covering space of K is intermediate

between Ũ and K.

Definition. A universal covering complex of a connected complex K is a

covering complex q : Ũ → K such that, for every covering complex p : K̃ → K, there

exists a unique simplicial map h : Ũ → K making the following diagram commute:

Ũ
h ��			

q
���

��
��

��
� K̃

p

��
K.

As usual, a solution to a universal mapping problem is unique (via a unique
isomorphism) if it exists.

Theorem C-1.164. Every connected complex K has a universal covering complex.

Moreover, a covering complex q : K̃ → K is universal if and only if K̃ is simply
connected.

Proof. Rotman [190], Theorem 3.6. Existence is proved by taking K̃ = KH , where
H = {1}. •

We note that Theorem C-1.164 may not be true if we replace complexes by topo-
logical spaces; a simply connected covering space is universal only if it is semilocally
1-connected.
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Recall that if E/k is an extension field, then Gal(E/k) consists of all automor-
phisms σ : E → E fixing k pointwise. If i : k → E is the inclusion, this says that
the following diagram commutes:

E
σ �� E

k.

i

�������� i

����������

Definition. Let p : K̃ → K be a covering complex. A covering map (or deck
transformation) is a simplicial isomorphism making the following diagram com-
mute:

K̃
h ��

p
���

��
��

��
� K̃

p
����
��
��
��

K.

Define

Cov(K̃/K) = {all covering maps K̃ → K̃}.

Note that Cov(K̃/K) is a group under composition.

Galois theory classifies intermediate fields of E/k if E/k is a Galois extension.

Definition. A covering complex p : K̃ → K is regular if there are basepoints

w ∈ Vert(K) and w̃ ∈ Vert(K̃) with pw̃ = w such that p∗π1(K̃, w̃) is a normal
subgroup of π1(K,w).

Theorem C-1.165. If p : K̃ → K is a regular covering complex, then

Cov(K̃/K) ∼= π1(K,w)/p∗π1(K̃, w̃).

In particular, if K̃ is a universal covering complex, then

Cov(K̃/K) ∼= π1(K,w).

Proof. Rotman [190], Theorem 3.9. •

Note that Cov(K̃/K) ∼= π1(K,w)/K) describes the fundamental group π1(K̃, w̃)
without mentioning basepoints.

Finally, here is an analog of the Fundamental Theorem of Galois Theory.

Theorem C-1.166. If p : K̃ → K is a regular covering complex, then there is a
bijection S → C, where S is the family of intermediate subgroups G with

p∗π1(K̃, w̃) ⊆ G ⊆ π1(K,w)

and C is the family of all intermediate covering complexes between K̃ and K.

Proof. See Rotman [190], Theorem 3.15, for a more precise statement and its
proof. •
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C-1.9. Free Products and the Kurosh Theorem

Given a family (Ai)i∈I of groups, their direct product P =
∏

i∈I Ai is the group
whose elements are the I-tuples (ai) in the cartesian product (so ai ∈ Ai) and
whose operation is pointwise:

(ai)(a
′
i) = (aia

′
i).

For each i ∈ I, the group Ai is imbedded in the product P as all I-tuples λi(ai)
having ai in the ith coordinate and 1 in every other coordinate. Note that if i �= j,
then λi(ai) and λj(aj) commute. In contrast, the free product will be a group C
having injections τi : Ai → C in which, for i �= j, the elements τi(ai) and τj(aj) do
not commute.

Exercise C-1.120 on page 123 says that the direct product
∏

i∈I Ai is the cate-
gorical product in Groups.

Definition. Given a family (Ai)i∈I of groups, their free product

C = ∗i∈I Ai

is their coproduct in Groups; that is, for each i ∈ I, there is an injection
τi : Ai → C such that, for every group G and every family of homomorphisms
(fi : Ai → G)i∈I , there exists a unique homomorphism θ : C → G making the
following diagram commute for every i:

Ai

fi

���
��

��
��

τi

����
��
��
�

C
θ ��							 G.

If the index set I is finite, we usually denote the free product by

A1 ∗ · · · ∗ An.

As usual, if free products do exist, then they are unique to isomorphism. Fur-
thermore, the injections τi : Ai → C in the definition of coproduct are actually
injections (i.e., one-to-one) here: if G = Ai and fi = 1Ai

, then θτi = 1Ai
.

We are obliged to prove that free products exist. The proof is similar to the
proof of existence of free groups, and so we give only the highlights.

Definition. If A is a group, denote the subset of all its nontrivial elements by A#:

A# = A− {1}.

Assume that the underlying sets of the Ai are pairwise disjoint (or, if you are
fussy, consider their disjoint union as defined in Part 1). Define the alphabet to

be
⋃

i∈I A
#
i ; define a word to be either the empty word 1 (which we assume

does not lie in the alphabet) or an n-tuple w = (a1, . . . , an) for n ≥ 1, where each

coordinate aj lies in the alphabet: aj ∈ A#
ij

for some ij ∈ I.
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A word w is reduced if either w = 1 (the empty word) or w = (a1, . . . , an),

where adjacent coordinates belong to different A#
i ’s. We define

W∗

to be the set of all words, and we define

C = {all reduced words in W∗}.

If w = (a1, . . . , an) and w′ = (b1, . . . , bm), define juxtaposition by

w � w′ = (a1, . . . , an)� (b1, . . . , bm) = (a1, . . . , an, b1, . . . , bm).

As for free groups, the product of reduced words need not be reduced, and

� : C × C →W∗.
Theorem C-1.167. The free product C = ∗i∈I Ai of a family (Ai)i∈I of groups
exists.

Proof. Note that the spelling of every (reduced) word in W∗ is unique.

If a word w ∈ W∗ is not reduced, then w �= 1 and w = (a1, . . . , an), where

two adjacent coordinates aj and aj+1 lie in the same A#
i . There are two types of

elementary reduction w → w1: if ajaj+1 �= 1, then

w1 = (a1, . . . , aj−1, ajaj+1, aj+2, . . . , an)

has length n− 1; if ajaj+1 = 1, then

w1 = (a1, . . . , aj−1, , aj+2, . . . , an)

has length n− 2. A reduction is a finite sequence of elementary reductions

w → w1 → · · · → wr,

where wr is reduced. As in Corollary C-1.118, the function

red: W∗ → C,

given by w �→ wr, is well-defined, as is the function C × C → C, given by

ww′ = red(w � w′).

That C is a group which is the coproduct of (Ai)i∈I is proved by adapting the proof
of Theorem C-1.119. In particular, if G is a group, (fi : Ai → G)i∈I is a family of

homomorphisms, and w = (a1, . . . , an), where aj ∈ A#
ij
, then

θ : (a1, . . . , an) �→ fi1(a1) · · · fin(an). •

Corollary C-1.168. Pushouts exist in the category Groups.

Proof. The proof that pushouts exist in RMod, Proposition B-4.13 in Part 1,
constructed the pushout as a quotient of a direct sum. But the direct sum of
modules is their coproduct, and that proof can be adapted here to show the pushout
is a quotient of a free product. •
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Corollary C-1.169. The free group F with basis X is a free product of copies
of Z.

Proof. For each x ∈ X, define the infinite cyclic group Zx =
〈
x
〉
⊆ F . Since F is

free with basis X, if G is a group and f : X → G is a function, there exists a unique
homomorpism θ : F → G with θ(x) = f(x) for all x ∈ X. Now define injections
τx : Zx → G by τx = θ|Zx, and we see that F ∼= ∗x∈X Zx. •

Corollary C-1.170 (Normal Form). Every g ∈ ∗i∈I Ai with g �= 1 has a unique
factorization

g = a1 · · · an,
where each factor ak �= 1 lies in some Ai and adjacent factors lie in distinct Ai’s.

Proof. The spelling of every (reduced) word in W∗ is unique. •

Theorem C-1.171. Let (Ai)i∈I be a family of groups. If (Xi | Δi) is a presentation
of Ai, then a presentation of ∗i∈I Ai is

∗i∈I Ai =

(⋃
i∈I

Xi |
⋃
i∈I

Δi

)
.

Proof. By Exercise C-1.122 on page 123 below, if (Fi)i∈I is a family of free groups
with Fi having basis Xi, then F = ∗i∈I Fi is a free group with basis

⋃
i∈I Xi. Let

{τi : Ai → ∗i∈I Ai} be the injections. If Ni is the normal subgroup of Fi generated
by the relations Δi and if νi : Fi → Ai = Fi/Ni is the natural map (so ker νi = Ni),
then the map ϕ : F → ∗i∈I Ai extending all composites Fi → Ai → ∗i∈I Ai has
kernel the normal subgroup generated by all Ni, which is the normal subgroup
generated by

⋃
i∈I Δi. •

Another proof of the existence of free products can now be given by showing
that the group with the presentation given in Theorem C-1.171 is a free product.

We only state the next result.

Theorem C-1.172 (Grushko). If F is a free group and ϕ : F → ∗i∈I Ai is a
surjective homomorphism, then F = ∗i∈I Fi, where ϕ(Fi) ⊆ Ai for all i.

An algebraic proof of this theorem is in Kurosh [130], pp. 57–70, but a proof via
covering spaces due to Stallings [211] can be found in Massey [149], pp. 225–233.
The review of Stallings’s proof in Mathematical Reviews says, “The terrifying can-
cellation arguments and inductions within inductions within inductions, to which
one was subjected in the past, can now be entirely avoided.”

Here is one consequence of Grushko’s Theorem. If A is a finitely generated
group, let μ(A) denote the smallest number of elements that can generate A. Your
first guess is that

μ(A ∗B) = μ(A) + μ(B).

This follows from Grushko’s Theorem, and it is very difficult to prove directly.
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We are now going to prove, using covering complexes, that every subgroup
of a free product is itself a free product. The reader can better appreciate this
proof after looking at the terrifying proof of the Kurosh Theorem in Kurosh [130],
pp. 17–26.

Lemma C-1.173. Let (K,w) be a pointed connected complex having connected
subcomplexes (Ki)i∈I such that K =

⋃
i∈I Ki. If there is a tree T in K with

T = Ki ∩Kj for all i �= j, then

πi(K,w) ∼= ∗i∈I π1(Ki, wi)

for vertices wi in Ki.

Proof. For each i, choose a maximal tree Ti in Ki containing T . By Exer-
cise C-1.113 on page 110, T ∗ =

⋃
i∈I Ti is a tree in K; by Proposition C-1.149,

T ∗ is a maximal tree because it contains every vertex of K.

By Tietze’s Theorem, π1(Ki, wi) has a presentation (Ei | Ri
1 ∪ Ri

2), where Ei

is the set of all edges in Ki, R
i
1 consists of relations (u, v) = 1 if (u, v) ∈ Ti, and

Ri
2 consists of relations (u, v)(v, x) = (u, x) if {u, v, x} is a simplex in Ki. Another

application of Tietze’s Theorem gives a presentation

π1(K,w) =

(⋃
i∈I

Ei |
⋃
i∈I

(Ri
1 ∪Ri

2)

)
.

It now follows from Theorem C-1.171 that π1(K,w) ∼= ∗i∈I π1(Ki, wi). •

Theorem C-1.174 (Kurosh). If H is a subgroup of the free product ∗i∈I Ai, then

H = F ∗ (∗λ∈ΛHλ),

where F is a free group, Λ is some (possibly empty) index set, and each Hλ is a
conjugate of a subgroup of some Ai.

Proof. Choose connected pointed complexes (Ki, wi) with Ai
∼= π1(Ki, wi), and

let X be the disjoint union
⋃

i∈I Vert(Ki). Define a new pointed complex (K,w)
as follows: Vert(K) = X ∪ {w} for some w /∈ X; {a, b, c} is a 2-simplex in K if and
only if it a simplex in some Ki; {a, b} is a 1-simplex in K if it is a 1-simplex in
some Ki or it has the form {w,wi} for i ∈ I. If T is the tree in K consisting of all
the vertices {w,wi}, then Lemma C-1.173 gives

π1(K,w) ∼= ∗i∈I π1(Ki ∪ T,wi).

But Tietze’s Theorem gives π1(Ki ∪ T,wi) ∼= π1(Ki, wi) ∼= Ai for all i; hence

π1(K,w) ∼= ∗i∈I Ai.

Identify π1(K,w) with ∗i∈I Ai, let p : KH → K be the covering complex cor-
responding to the subgroup H, and choose w̃ ∈ p−1(w) with p∗π1(KH , w̃) = H.
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Now p−1(Ki) may not be connected, but it is the disjoint union of its components

K̃ij :
25

p−1(Ki) =
⋃
ij

K̃ij .

Choose a maximal tree T̃ij in K̃ij , and define a 1-complex in KH by

L̃ = p−1(T ) ∪
⋃
ij

T̃ij .

Finally, let T̃ be a maximal tree in L̃ containing
⋃

ij T̃ij , which exists by Exer-

cise C-1.118 on page 115. Observe that T̃ ∩K̃ij = T̃ij lest we violate the maximality

of T̃ij in K̃ij .

For all i, j, consider the subcomplexes K̃ij ∪ T̃ of KH . Clearly, KH is the union

of L̃ and all of these, while the intersection of any pair of them is the tree T̃ . By
Lemma C-1.173,

π1(KH , w̃) ∼= π1(L̃, w̃) ∗
( ∗ij π1(K̃ij ∪ T̃ , w̃ij)

)
,

where w̃ij ∈ p−1(w) ∩ K̃ij . Now π1(L̃, w̃) is free, because dim(L̃) = 1. Since T̃ is

a maximal tree in K̃ij ∪ T̃ , Tietze’s Theorem gives π1(K̃ij ∪ T̃ , w̃ij) ∼= π1(K̃ij , w̃ij)

for all i, j. By Exercise C-1.117 on page 115, p|K̃ij : K̃ij → Ki is a covering com-

plex, and so p∗π1(K̃ij , w̃ij) is isomorphic, via (p|K̃ij)∗, to a subgroup of π1(Ki, w).
Finally, Theorem C-1.155 shows that this subgroup is a conjugate of a subgroup of
π1(Ki, w). •

Corollary C-1.175 (Schreier–Nielsen Again). Every subgroup of a free group
is itself free.

Proof. This is a special case of the Kurosh Theorem, for a free group is a free
product of infinite cyclic groups. •

Corollary C-1.176. Let a group G be a free product ∗i∈I Ai.

(i) If each Ai is torsion, then every torsion-free subgroup of G is a free group.

(ii) Every finite subgroup of G is conjugate to a subgroup of some Ai. In partic-
ular, every element of finite order in G is conjugate to an element of finite
order is some Ai.

Proof.

(i) By the Kurosh Theorem, every nontrivial subgroup H of G is the free product
of a free group and conjugates of subgroups of the Ai. But the latter groups
all have elements of finite order, and so none of them occurs as a subgroup
of H; that is, H is free.

(ii) Every nontrivial free product contains elements of infinite order. •

25The index j depends on i, but more accurate notation would only make things look more
complicated without enlightening anyone.
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This last corollary shows that the Sylow Theorems can fail for infinite groups.
If A and B are any two finite p-groups, then each is a maximal p-subgroup of
G = A ∗ B. For example, if |A| = p and |B| = p2, then both A and B are Sylow
p-subgroups of G; obviously, A and B are not isomorphic, let alone conjugate.

Exercises

∗ C-1.120. Given a family (Ai)i∈I of groups, their direct product is the cartesian product
P =

∏
i∈I Ai with operation (ai)(a

′
i) = (aia

′
i). For each j ∈ I, define the projection

pj : P → Aj by pj : (ai) 
→ aj . Prove that P is the categorical product in Groups; that
is, for every group G and every family of homomorphisms (fi : G → Ai)i∈I , there exists a
unique homomorphism θ : G → P making the following diagram commute for every i:

Ai

P

pi

���������
G.

θ
��	 	 	 	 	 	 	

fi

�������

C-1.121. Prove that pullbacks exist in Groups.

∗ C-1.122. Let (FI)i∈I be a family of free groups, where Fi has basis Xi. Prove that
∗i∈I Fi is a free group with basis

⋃
i∈I Xi.

∗ C-1.123. (i) If A and B are nontrivial groups, prove that A ∗ B contains elements of
infinite order.

(ii) Prove that A ∗B is an infinite centerless group; that is, Z(A ∗B) = {1}.

(iii) Prove that every group can be imbedded in a centerless group. (In Exercise C-3.3
on page 235, this result will be used to prove that there are no injectives in the
category Groups other than {1}.)

C-1.124. If A and B are groups, prove that (A ∗ B)/N ∼= B, where N is the normal
subgroup generated by A.

C-1.125. Prove that the infinite dihedral group D∞, defined by

D∞ = Z2 ∗ Z2,

has a presentation (s, t | t2 = 1, tst−1 = s−1).

C-1.126. Recall the modular group M defined in Exercise A-4.88 on page 173 in Part 1:
let A,B ∈ GL(2,Q), where

A =

[
0 −1
1 0

]
and B =

[
0 1
−1 1

]
,

and define M = E/{±I}, where E is the subgroup generated by A and B.

(i) Prove that M ∼= SL(2,Z)/{±I} = PSL(2,Z).

(ii) Prove that PSL(2,Z) ∼= LF (Z), the group of all linear fractional transformations

z 
→ az + b

cz + d
,

where a, b, c, d ∈ Z and ad− bc = 1.
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(iii) Prove that PSL(2,Z) has a presentation (a, b | a2 = 1 = b3).
Hint. Use Exercise A-4.30 on page 138 in Part 1.

(iv) Prove that PSL(2,Z) ∼= Z2 ∗ Z3.

(v) Prove that PSL(2,Z) has a normal subgroup of index 6.

C-1.127. Prove that no group G is both a direct product and a free product; that is,
there do not exist nontrivial groups A,B,C,D such that G = A ∗B and G = C ×D.

Hint. (P. M. Neumann) If G = A ∗ B and a ∈ A and b ∈ B are nontrivial, then the
centralizer CG(ab) ∼= Z. If G = C ×D, choose nontrivial elements c ∈ C and d ∈ D with
ab = cd, and show that CG(ab) = CG(cd) is a direct product.

C-1.128. Use Grushko’s Theorem to prove that if A and B are finitely generated groups,
then

μ(A ∗B) = μ(A) + μ(B),

where μ(A) denotes the smallest number of elements that can generate A.

C-1.10. Epilog

Here is a bit of history. Groups were invented by Galois around 1830; in modern
terminology, they were subgroups of the symmetric group SX , where X is the set of
roots of a polynomial. Permutations and products of them, but not groups of them,
had been studied earlier by Lagrange in 1770, Ruffini in 1799, Cauchy in 1815, and
Abel in 1824. For this reason, finite groups were the focus of those first studying
groups. Cayley published axioms for (not necessarily finite) groups in the 1850s.
The first group theory book [117], written by Jordan in 1870, discussed abstract
groups, but in the context of Galois theory (then called theory of equations). When
infinite groups were studied at that time, by Riemann and Lie, for example, they
were usually topological groups. Free groups were introduced by von Dyck, in the
1880s, to treat generators and relations. Representation theory began toward the
end of the century, with work of Frobenius, Burnside, and Schur.

In the twentieth century, there continued to be two streams of research in
groups: finite groups and infinite groups, with topological groups still being the
most popular type of infinite group. Finite groups were the most studied groups;
the crowning achievement was the classification of all finite simple groups in the
1990s and early 2000s. But infinite discrete nonabelian groups were also studied.
The connection with logic and computing, using presentations of groups, was called
combinatorial group theory ; it investigates properties of groups following from
constraints on their presentations. For example, can a finite group have a presenta-
tion with the same number of generators as relations? One of the most remarkable
results is the unsolvability of the word problem. A group G has a solvable word
problem if it has a presentation G = (X | R) for which there exists an algorithm
(i.e., a Turing machine) which determines whether an arbitrary word w on X is
equal to the identity element in G (if X and R are finite, it can be proved that this
property is independent of the choice of presentation). In the late 1950s, Novikov
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and Boone, independently, proved that there exists a finitely presented groupG that
does not have a solvable word problem (Rotman [188], p. 431). Other problems
involve finding presentations for known groups, as we have done for Qn and D2n;
such questions are treated in Coxeter–Moser [46] and Johnson [116].

Another problem is whether a group defined by a presentation is finite or infi-
nite. For example, Burnside’s problem asks whether a finitely generated group G
of finite exponent m, that is, xm = 1 for all x ∈ G, must be finite (Burnside had
proved that if such a group G happens to be a subgroup of GL(n,C) for some n,
then G is finite (Robinson [181], p. 221)). However, the answer is negative in gen-
eral; such a group can be infinite. This was first proved for m odd and large, in
1968, by Novikov and Adian, in a long and complicated paper [2]. Using a geo-
metric technique involving van Kampen diagrams, Ol′shanskii gave a much shorter
and simpler proof in 1982 (Ol′shanskii [171]). Finally, Ivanov [109] completed the
solution by showing that the presented group can be infinite when m is even and
large. It is an open question whether a finitely presented group of finite exponent
must be finite.

The interaction between presentations and algorithms is both theoretical and
practical. A theorem of G. Higman (Rotman [188], p. 451) states that a finitely
generated group G can be imbedded as a subgroup of a finitely presented group H if
and only if G is recursively presented : there is a presentation of G whose relations
can be given by an algorithm. On the practical side, many efficient algorithms
solving group-theoretic problems have been implemented (Sims [207]). The first
such algorithm was coset enumeration (see Lyndon–Schupp [142], pp. 163–167)
which computes the order of a group G defined by a presentation, provided that
|G| is finite (unfortunately, there can be no algorithm to determine, in advance,
whether G is finite (Rotman [188], p. 469)).

Two major areas of interest today arose from work of Gromov in the 1980s
analyzing Cayley graphs: one investigates the influence of growth functions [83];
the other is called geometric group theory.

If G = 〈x1, . . . , xd〉 is a finitely generated group, each element g ∈ G has an
expression g = xe1

i1
· · ·xem

im
, where eij = ±1 for all j. This expression may not be

unique, and the number of terms in a shortest one is called the length of g. Define
aG(n) to be the number of elements in G of length n, and define sG(n) to be the
number of elements in G of length ≤ n. The functions aG and sG are called growth
functions of G. In general, these functions are not recursive, hence are very difficult
(if not impossible) to compute; however, their asymptotic behavior can be studied.
In fact, if G is a finitely presented group, then G has a solvable word problem
if and only if aG is recursive ([148], p. 9). Another result is that the generating
function

∑
n aG(n)x

n is a rational function if and only if G has a normal abelian
subgroup of finite index. In 1968, Milnor andWolf proved that if a finitely generated
group G is virtually nilpotent, that is, G has a normal nilpotent subgroup of finite
index, then aG has polynomial growth: aG(n) ≤ Cnk for some constant C and
positive integer k. Using the solution to Hilbert’s fifth problem, Gromov proved
the converse: G is virtually nilpotent if and only if aG has polynomial growth.
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Geometric group theory studies connections between algebraic properties of
discrete groups and geometric properties of spaces admitting nice actions of such
groups. It owes much to the study of hyperbolic groups introduced by Gro-
mov [84]. A hyperbolic group is a finitely presented group having a Cayley graph
which, when viewed as a metric space, resembles hyperbolic space. Examples of hy-
perbolic groups are finite groups, free groups, groups having an infinite cyclic group
of finite index, fundamental groups of negatively curved surfaces. It is known that
a subgroup of a hyperbolic group need not be hyperbolic; for example, since hy-
perbolic groups are finitely generated, the commutator subgroup of a free group of
rank 2 is not hyperbolic. In 1986, Culler and Vogtmann introduced outer space, the
boundary of a compactification of a Cayley graph (analogous to Teichmuller spaces
in complex variables). They obtained information about automorphism groups
of free groups by proving that Out(Fn) = Aut(Fn)/ Inn(Fn) acts nicely on outer
space; for example, Out(Fn) has a subgroup of finite index whose cohomological
dimension is 2n − 3 (see Bridson–Haefliger [27], Collins–Grigorchuk–Kurchanov–
Zieschang [43], and Stillwell [213]). These results show that geometric group theory
is intimately related to the study of the mapping class group M(S), where S
is an orientable surface. This rich subject touches on many areas of mathemat-
ics, including algebraic geometry, algebraic topology, group theory, and Riemann
surfaces (see [64]).
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Representation Theory

An abstract group is a “cloud”, a capital letter G. In contrast, there are familiar
concrete groups, such as the symmetric group SX of all permutations of a set X.
The idea underlying representation theory is that comparing abstract groups with
familiar groups via homomorphisms can yield useful information.1 For example,
Chapter C-1 began by discussing G-sets: groups can act on sets. This leads to
interesting results such as Cauchy’s Theorem: if the order of a finite group G is
divisible by a prime p, then G has an element of order p.

In Theorem C-1.5, we saw that an action of a group G on a set X is merely
another way of viewing homomorphisms G→ SX . In this chapter, we will focus on
finite groups acting on finite-dimensional vector spaces, that is, homomorphisms
G → GL(V ), and we will see, in Proposition C-2.13, that when a group G acts
on a vector space V over a field k, then V can be viewed as a kG-module. Such
representations will yield numerical data that will enable us to prove important
theorems of Burnside and of Frobenius.

C-2.1. Artinian and Noetherian

We begin by investigating noncommutative rings with the goal of understanding
the group algebras kG. Let us recall some basic facts. There are three types of
ideals in a noncommutative ring R: left, right, and two-sided. In Mat2(R), for
example, the equation [

a b
c d

] [
r 0
s 0

]
=

[
∗ 0
∗ 0

]
shows that the “first columns” (that is, the matrices that are 0 off the first column),
form a left ideal (the “second columns” also form a left ideal); neither of these left

1There are representation theories for other algebraic systems; for example, Lie groups, as-
sociative algebras, Lie algebras (see Fulton–Harris [75] or Humphreys [101]).
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ideals is a right ideal. The equation[
r s
0 0

] [
a b
c d

]
=

[
∗ ∗
0 0

]
shows that the “first rows” (that is, the matrices that are 0 off the first row) form a
right ideal (the “second rows” also form a right ideal); neither of these right ideals
is a left ideal. The only two-sided ideals are {0} and Mat2(R).

If I is a left ideal in R, then the quotient R/I is a left R-module, and if J is
a right ideal in R, then the quotient R/J is a right R-module. If I is a two-sided
ideal in R, then R/I is a ring.

In Part 1, we considered chain conditions on rings.

Definition. A ring R is left noetherian if it has ACC on left ideals: every
ascending chain of left ideals I1 ⊆ I2 ⊆ I3 ⊆ · · · stops; that is, there is some t ≥ 1
with It = It+1 = It+2 = · · · .

A ring R is left artinian if it has DCC: every descending chain of left ideals
I1 ⊇ I2 ⊇ I3 ⊇ · · · stops; that is, there is some t ≥ 1 with It = It+1 = It+2 = · · · .

The Hilbert Basis Theorem says that k[x1, . . . , xn] is noetherian if k is a field.
There are examples of left noetherian rings that are not right noetherian and of left
artinian rings that are not right artinian (Exercises B-1.28 and B-1.30 on page 288
in Part 1). If k is a field, then every finite-dimensional k-algebra A is both left
and right artinian, for if dimk(A) = n, then there are at most n strict inclusions in
any descending chain of left ideals or of right ideals. In particular, if G is a finite
group, then kG is finite-dimensional, and so it is left and right artinian. Similarly,
finite-dimensional algebras over a field are left and right noetherian. We conclude
that kG has both chain conditions (on the left and on the right) when k is a field
and G is a finite group.

Here is Proposition B-1.10 in Part 1.

Proposition C-2.1. The following conditions on a ring R are equivalent.

(i) R is left noetherian; that is, R has ACC on left ideals.

(ii) R satisfies the left maximum condition : every nonempty family F of left
ideals in R has a maximal element; that is, there is some M ∈ F for which
there is no I ∈ F with M � I.

(iii) Every left ideal is finitely generated.

Here is Proposition B-1.18 in Part 1.

Proposition C-2.2. The following conditions are equivalent for a ring R.

(i) R is left artinian; that is, R has DCC on left ideals.

(ii) R satisfies the left minimum condition : every nonempty family F of left
ideals in R has a minimal element; that is, there is some M ∈ F for which
there is no I ∈ F with M � I.

Proposition C-2.3. A left R-module M over a ring R has a composition series if
and only if M has both chain conditions on submodules.
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Proof. Proposition B-1.41 in Part 1. •

Definition. A left ideal L in a ring R is a minimal left ideal if L �= (0) and
there is no left ideal J with (0) � J � L.

A ring need not contain minimal left ideals; for example, Z has no minimal
ideals. Every nonzero ideal I in Z has the form I = (n) for some nonzero integer n,
and I = (n) � (2n) �= (0); hence, I is not minimal. However, minimal left ideals
do exist in left artinian rings.

Recall that a left R-module L (in particular, a left ideal) is simple if L �= {0}
and its only submodules are {0} and L itself.

Proposition C-2.4.

(i) Every minimal left ideal L in a ring R is a simple left R-module.

(ii) If R is left artinian, then every nonzero left ideal I contains a minimal left
ideal.

Proof.

(i) A submodule S of L is a left ideal of R. If {0} � S � L, then S would
contradict the minimality of L.

(ii) If F is the family of all nonzero left ideals contained in I, then F �= ∅ because
I is nonzero. By Proposition B-1.18 in Part 1, F has a minimal element, and
any such element is a minimal left ideal. •

Let R = Matn(k), where k is a division ring. For any � between 1 and n, let
col(�) denote the �th columns; that is,

col(�) =
{
[aij ] ∈ Matn(k) : aij = 0 for all j �= �

}
.

If e1, . . . , en is the standard basis of kn and we identify R = Matn(k) with Endk(k
n),

then col(�) is identified with

col(�) = {T : kn → kn : T (ej) = 0 for all j �= �}.

Proposition C-2.5. If k is a division ring and 1 ≤ � ≤ n, then col(�) is a
minimal left ideal in Matn(k).

Proof. If I ⊆ col(�) is a nonzero left ideal, we must show that col(�) = I; that
is, col(�) ⊆ I. We first choose a nonzero T ′ ∈ I ⊆ Endk(k

n). Now T ′(e�) = u �= 0;
otherwise, T ′ would kill every basis element (since T ′ ∈ col(�) implies T ′(ei) = 0
for i �= �) and T ′ = 0, a contradiction.

Take T ∈ col(�), and let T (u) = w. Since u �= 0 (for u = T ′(e�)), there is
S ∈ Endk(k

n) with S(u) = w. Observe that

ST ′(ei) =

{
0 if i �= �,

S(u) = w if i = �.

Hence, T = ST ′, because they agree on a basis, and since I is a left ideal, T ∈ I.
Therefore, col(�) = I, and col(�) is a minimal left ideal. •
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C-2.2. Jacobson Radical

The Jacobson radical of a ring R is the analog of the Frattini subgroup in group
theory; it is a two-sided ideal whose behavior has an impact on R. For example, the
class of semisimple rings, which contains many group algebras, will be characterized
in terms of the Jacobson radical and chain conditions.

Definition. If R is a ring, then its Jacobson radical J(R) is defined to be the
intersection of all the maximal left ideals in R. A ring R is called Jacobson
semisimple if J(R) = (0).

Strictly speaking, we should call J(R) the left Jacobson radical, for we can
obviously define another Jacobson radical: the intersection of all the maximal right
ideals. However, Proposition C-2.12 below shows that these ideals coincide.

Example C-2.6.

(i) The ring Z is Jacobson semisimple. The maximal ideals in Z are the nonzero
prime ideals (p), and J(Z) =

⋂
p prime(p) = (0).

(ii) Recall that a ring R is (left) local if it has a unique maximal left ideal m. If
R is a local ring, then J(R) = m. For example, R = {a/b ∈ Q : b is odd} is
such a ring; its unique maximal ideal is

m = (2) = {2a/b : b is odd}.

(iii) In Proposition C-2.4, we saw that if R = Matn(k), where k is a division ring,
then col(�) is a minimal left ideal, where 1 ≤ � ≤ n and

col(�) =
{
[aij ] ∈ Matn(k) : aij = 0 for all j �= �

}
.

Let us use these minimal left ideals to construct some maximal left ideals in
R. Define

col
∗(�) =

⊕
j �=�

col(j);

col
∗(�) is a left ideal with R/col∗(�) ∼= col(�) as left R-modules. Since

col(�) is a minimal left ideal, it is a simple left R-module, and the Corre-
spondence Theorem shows that col∗(�) is a maximal left ideal. Therefore,

J(R) ⊆
⋂
�

col
∗(�) = (0),

and so Matn(k) is Jacobson semisimple. �

Proposition C-2.7. The following conditions are equivalent for an element x in
a ring R :

(i) x ∈ J(R);

(ii) for every r ∈ R, the element 1− rx has a left inverse; that is, there is u ∈ R
with u(1− rx) = 1;

(iii) xM = (0) for every simple left R-module M ;

(iv) x(R/I) = (0) for every maximal left ideal I.
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Proof.

(i) ⇒ (ii). If there is r ∈ R with 1− rx not having a left inverse, then R(1− rx)
is a proper left ideal, for it does not contain 1. By Exercise B-2.1 on page 318
in Part 1, there is a maximal left ideal I with 1− rx ∈ R(1− rx) ⊆ I. Now
rx ∈ J(R) ⊆ I, because J(R) is a left ideal, and so 1 = (1− rx) + rx ∈ I, a
contradiction.

(ii) ⇒ (iii). Suppose there is a simple moduleM for which xM �= (0); hence, there
is m ∈ M with xm �= 0 (of course, m �= 0). It follows that the submodule
Rxm �= (0), for it contains 1xm. Since M is simple, it has only one nonzero
submodule, namely, M itself, and so Rxm = M . Therefore, there is r ∈ R
with rxm = m; that is, (1 − rx)m = 0. By hypothesis, 1 − rx has a left
inverse, say, u(1− rx) = 1. Hence, 0 = u(1− rx)m = m, a contradiction.

(iii) ⇒ (iv). By the Correspondence Theorem, a left R-module M is simple if and
only if M ∼= R/I, where I is a maximal left ideal.

(iv) ⇒ (i). If x(R/I) = (0), then x(1 + I) = x+ I = I; that is, x ∈ I. Therefore,
if x(R/I) = (0) for every maximal left ideal I, then x ∈

⋂
I I = J(R). •

Notice that condition (ii) in Proposition C-2.7 can be restated: x ∈ J(R) if
and only if 1− z has a left inverse for every z ∈ Rx, where Rx is the principal left
ideal generated by x.

The following result is most frequently used in commutative algebra.

Corollary C-2.8 (Nakayama’s Lemma). If A is a finitely generated left R-
module and JA = A, where J = J(R) is the Jacobson radical, then A = {0}.

In particular, let R be a commutative local ring with unique maximal ideal m.
If A is a finitely generated R-module with mA = A, then A = {0}.

Proof. Let a1, . . . , an be a generating set of A that is minimal in the sense that no
proper subset generates A. Since JA = A, we have a1 =

∑n
i=1 riai, where ri ∈ J .

It follows that

(1− r1)a1 =

n∑
i=2

riai.

Since r1 ∈ J , Proposition C-2.7 says that 1 − r1 has a left inverse, say, u, and so
a1 =

∑n
i=2 uriai. This is a contradiction, for now A can be generated by the proper

subset {a2, . . . , an}. The second statement follows at once because J(R) = m when
R is a local ring with maximal ideal m. •

Remark. The hypothesis in Nakayama’s Lemma that the module A be finitely
generated is necessary. For example, it is easy to check that R = {a/b ∈ Q :
b is odd} is a local ring with maximal ideal m = (2), while Q is an R-module with
mQ = 2Q = Q. �

Remark. There are other characterizations of J(R). One such will be given in
Proposition C-2.12, in terms of elements having two-sided inverses. Another char-
acterization is in terms of left quasi-regular elements: those x ∈ R for which there
exist y ∈ R with x+ y− yx = 0. A left ideal is called left quasi-regular if each of
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its elements is left quasi-regular. It can be proved that J(R) is the unique maximal
left quasi-regular ideal in R (Lam [133], pp. 67–68). �

Recall that an element a in a ring R is nilpotent if am = 0 for some m ≥ 1.

Definition. A left ideal I in a ring R is nilpotent if there is some integer m ≥ 1
with Im = (0).

The left ideal Im is the set of all sums of products of the form a1 · · · am, where
aj ∈ I for all j; that is,

Im =

{∑
i

ai1 · · · aim : aij ∈ I

}
.

It follows that if I is nilpotent, then every element a ∈ I is nilpotent; that is,
am = 0 for some m. On the other hand, if a ∈ R is a nilpotent element, it does
not follow that Ra, the left ideal generated by a, is a nilpotent ideal. For example,
let R = Mat2(k), for some commutative ring k, and let a = [ 0 1

0 0 ]. Now a2 = [ 0 0
0 0 ],

but Ra contains e = [ 0 0
1 0 ] [

0 1
0 0 ] = [ 0 0

0 1 ], which is idempotent : e �= 0 and e2 = e.
Hence, em = e �= 0 for all m, and so (Re)m �= (0).

Corollary C-2.9. If R is a ring, then I ⊆ J(R) for every nilpotent left ideal I
in R.

Proof. Let In = (0), and let x ∈ I. For every r ∈ R, we have rx ∈ I, and so
(rx)n = 0. The equation

(1 + rx+ (rx)2 + · · ·+ (rx)n−1)(1− rx) = 1

shows that 1− rx is left invertible, and so x ∈ J(R), by Proposition C-2.7. •

Proposition C-2.10. If R is a left artinian ring, then J(R) is a nilpotent ideal.

Proof. Denote J(R) by J in this proof. The descending chain of left ideals

J ⊇ J2 ⊇ J3 ⊇ · · ·
stops, because R is left artinian; say, Jm = Jm+1 = · · · . Define I = Jm; it follows
that I2 = I. We will assume that I �= (0) and reach a contradiction.

Let F be the family of all nonzero left ideals B with IB �= (0); note that F �= ∅
because I ∈ F . By Proposition C-2.2, there is a minimal element B0 ∈ F . Choose
b ∈ B0 with Ib �= (0). Now

I(Ib) = I2b = Ib �= (0),

so that Ib ⊆ B0 ∈ F , and minimality gives B0 = Ib. Since b ∈ B0, there is
x ∈ I ⊆ J = J(R) with b = xb. Hence, 0 = (1− x)b. But 1− x has a left inverse,
say, u, by Proposition C-2.7, so that 0 = u(1− x)b = b, a contradiction. •

The Jacobson radical is obviously a left ideal, being an intersection of left ideals,
but it turns out to be a right ideal as well; that is, J(R) is a two-sided ideal. We
begin by giving another general source of two-sided ideals other than kernels of ring
maps.
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Definition. If R is a ring and M is a left R-module, the annihilator of M is

ann(M) = {a ∈ R : am = 0 for all m ∈M}.

Let us show that ann(M) is a two-sided ideal in R. Now ann(M) is a left ideal,
for if am = 0, then (ra)m = r(am) = 0. To see that ann(M) is a right ideal, let
a ∈ ann(M), r ∈ R, and m ∈ M . Since M is a left R-module, we have rm ∈ M ;
since a annihilates every element of M , we have a(rm) = 0. Finally, associativity
gives (ar)m = 0 for all m, and so ar ∈ ann(M).

Corollary C-2.11.

(i) J(R) =
⋂

I =maximal
left ideal

ann(R/I), and so J(R) is a two-sided ideal in R.

(ii) R/J(R) is a Jacobson semisimple ring.

Proof.

(i) If x ∈ J(R), then xM = {0} for every simple left R-module M , by Propo-
sition C-2.7(iii). But M ∼= R/I for some maximal left ideal I; that is,
x ∈ ann(R/I). Thus, x ∈

⋂
I =maximal

left ideal

ann(R/I).

For the reverse inclusion, if x ∈
⋂

I =maximal
left ideal

ann(R/I), then xM = {0} for

every left R-module M of the form M ∼= R/I for some maximal left ideal I.
But every simple left R-module has this form. Therefore, x ∈ J(R).

(ii) First, R/J(R) is a ring, because J(R) is a two-sided ideal, and Exercise C-2.7
on page 135 says that if I is any two-sided ideal in R contained in J(R), then
J(R/I) = J(R)/I. The result follows if I = J(R). •

We now show that the Jacobson radical could have been defined using right
ideals instead of left ideals.

Definition. A unit in a ring R is an element u ∈ R having a two-sided inverse;
that is, there is v ∈ R with

uv = 1 = vu.

Proposition C-2.12.

(i) If R is a ring, then

J(R) = {x ∈ R : 1 + rxs is a unit in R for all r, s ∈ R}.
(ii) If R is a ring and J ′(R) is the intersection of all the maximal right ideals of

R, then J ′(R) = J(R).

Proof.

(i) Let W be the set of all x ∈ R such that 1 + rxs is a unit for all r, s ∈ R. If
x ∈W , then setting s = −1 gives 1−rx a unit for all r ∈ R. Hence, 1−rx has
a left inverse, and so x ∈ J(R), by Proposition C-2.7. Therefore, W ⊆ J(R).
For the reverse inclusion, let x ∈ J(R). Since J(R) is a two-sided ideal, by
Corollary C-2.11, we have xs ∈ J(R) for all s ∈ R. Proposition C-2.7 says
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that 1 − rxs is left invertible for all r ∈ R; that is, there is u ∈ R with
u(1 − rxs) = 1. Thus, u = 1 + urxs. Now (−ur)xs ∈ J(R), since J(R) is
a two-sided ideal, and so u has a left inverse (Proposition C-2.7 once again).
On the other hand, u also has a right inverse, namely, 1−rxs. By Exercise B-
1.19 on page 282 in Part 1, u is a unit in R. Therefore, 1 − rxs is a unit in
R for all r, s ∈ R. Finally, replacing r by −r, we have 1 + rxs a unit, and so
J(R) ⊆W .

(ii) The description of J(R) in (i) is left-right symmetric. After proving right-
sided versions of Proposition C-2.7 and Corollary C-2.11, we see that J ′(R)
can also be described as in (i). We conclude that J ′(R) = J(R). •

Exercises

∗ C-2.1. If k is a field and A is a finite-dimensional k-algebra, define

L = {λa ∈ Endk(A) : λa : x 
→ ax} and R = {ρa ∈ Endk(A) : ρa : x 
→ xa}.
Prove that L and R are k-algebras and that there are k-algebra isomorphisms

L ∼= A and R ∼= Aop,

where Aop is the opposite ring.

Hint. Show that the function A → L, defined by a 
→ λa, is an injective k-algebra map
which is surjective because A is finite-dimensional.

∗ C-2.2. Let k be a division ring.

(i) Prove that the center Z(k) is a field.

(ii) If k× is the multiplicative group of nonzero elements of k, prove that Z(k×) =
Z(k)×; that is, the center of the multiplicative group k× consists of the nonzero
elements of Z(k).

∗ C-2.3. (i) Let C be a subdivision ring of a division ring k. Prove that k is a left vector
space over C, and conclude that [k : C] = dimC(k) is defined (if k is an infinite-
dimensional vector space over C, we merely say dimC(k) = ∞).

(ii) If Z ⊆ C ⊆ D is a tower of division rings with [k : C] and [C : Z] finite, prove that
[k : Z] is finite and

[k : Z] = [k : C][C : Z].

Hint. If u1, . . . , um is a basis of k as a left vector space over C and c1, . . . , cd is a
basis of C as a left vector space over Z, show that the set of all ciuj (in this order)
is a basis of k over Z.

∗ C-2.4. (i) (Peirce2 Decomposition). Prove that if e is an idempotent in a ring R,
then

R = Re⊕R(1− e).

(ii) Let R be a ring having left ideals I and J such that R = I ⊕ J . Prove that there
are idempotents e ∈ I and f ∈ J with 1 = e+ f ; moreover, I = Ie and J = Jf .
Hint. Decompose 1 = e+ f , and show that ef = 0 = fe.

2This unusual spelling is not a misprint.
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C-2.5. (i) If R is a commutative ring with J(R) = (0), prove that R has no nilpotent
elements.

(ii) Give an example of a commutative ring R having no nilpotent elements and for
which J(R) �= (0).

C-2.6. Let k be a field and R = Mat2(k). Prove that a = [ 0 1
0 0 ] is left quasi-regular, but

that the principal left ideal Ra is not a left quasi-regular ideal.

∗ C-2.7. Prove, for every ring R, that if I is any two-sided ideal contained in J(R), then
J(R/I) = J(R)/I.

C-2.8. Prove that R is Jacobson semisimple if and only if Rop is.

C-2.9. Let I be a two-sided ideal in a ring R. Prove that if I ⊆ J(R), then

J(R/I) = J(R)/I.

C-2.3. Group Actions on Modules

We begin by showing the connection between group representations and group
algebras.

Definition. Let k be a commutative ring. A k-representation of a group G is a
homomorphism

σ : G→ Aut(V ),

where V is a k-module.

The most interesting special case for us is when k is a field (indeed, when
k = C), V is a finite-dimensional vector space over k, and Aut(V ) = GL(V ).

Proposition C-2.13. Every k-representation σ : G→ GL(V ) equips the k-module
V with the structure of a left kG-module: define scalar multiplication kG× V → V
by (∑

g∈G

agg
)
v =

∑
g∈G

agσg(v),

where v ∈ V and ag ∈ k. Denote this left kG-module by

V σ.

Conversely, every left kG-module V determines a k-representation σ : G→ GL(V ).

Proof. Given a homomorphism σ : G → GL(V ), denote σ(g) : V → V by σg, and
define an action kG × V → V as in the statement. A routine calculation shows
that V , equipped with this scalar multiplication, is a left kG-module.

Conversely, assume that V is a left kG-module. If g ∈ G, then v �→ gv defines
a linear transformation Tg : V → V ; moreover, Tg is nonsingular, for its inverse is
Tg−1 . It is easily checked that the function σ : G→ GL(V ), given by σ : g �→ Tg, is
a k-representation. •
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Remark. If dim(V ) = n, then GL(V ) contains an isomorphic copy of Sn. If
X = v1, . . . , vn is a basis of V and τ ∈ SX , then there is a unique nonsingular
linear transformation T : V → V with T (vi) = vτ(i) for all i, and τ �→ T is an
injective homomorphism SX → GL(V ). Therefore, representations G → SX can
be viewed as k-representations; that is, G-sets are special cases of kG-modules. �

Example C-2.14.

(i) If G is a finite group and V is a vector space over a field k, then the trivial
homomorphism σ : G → GL(V ) is defined by σ(x) = 1V for all x ∈ G.
The corresponding kG-module V σ is called the trivial kG-module: if v ∈ V ,
then xv = v for all x ∈ G. The trivial module k (also called the principal
kG-module) is denoted by

V0(k).

(ii) Given a representation σ : G → GL(V ), where V is an n-dimensional vector
space, then a choice of basis of V gives a matrix representation, a family
of n× n matrices with

{σ(g) : g ∈ G} = {A(g) = [aij(g)] : g ∈ G}. �

If σ, τ : G → GL(V ) are k-representations and V σ, V τ are the kG-modules
determined by σ, τ in Proposition C-2.13, when is V τ ∼= V σ?

Proposition C-2.15. Let G be a group and let σ, τ : G→ GL(V ) be k-representa-
tions, where k is a field. If V σ and V τ are the corresponding kG-modules defined
in Proposition C-2.13, then V σ ∼= V τ as kG-modules if and only if there exists a
nonsingular k-linear transformation ϕ : V → V with

ϕτ (g) = σ(g)ϕ

for every g ∈ G.

Remark. We often say that ϕ intertwines σ and τ . �

Proof. If ϕ : V τ → V σ is a kG-isomorphism, then ϕ : V → V is an isomorphism
of vector spaces with

ϕ
(∑

aggv
)
=
(∑

agg
)
ϕ(v)

for all v ∈ V and all g ∈ G. But the definition of scalar multiplication in V τ is
gv = τ (g)(v), while the definition of scalar multiplication in V σ is gv = σ(g)(v).
Hence, for all g ∈ G and v ∈ V , we have ϕ(τ (g)(v)) = σ(g)(ϕ(v)). Therefore,

ϕτ (g) = σ(g)ϕ

for all g ∈ G.

Conversely, the hypothesis gives ϕτ (g) = σ(g)ϕ for all g ∈ G, where ϕ is a
nonsingular k-linear transformation, and so ϕ(τ (g)v) = σ(g)ϕ(v) for all g ∈ G and
v ∈ V . It now follows easily that ϕ is a kG-isomorphism; that is, ϕ preserves scalar
multiplication by

∑
g∈G agg. •
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We restate the last proposition in terms of matrices.

Corollary C-2.16. Let G be a group and let σ, τ : G→ Matn(k) be k-representa-
tions. Then (kn)σ ∼= (kn)τ as kG-modules if and only if there is a nonsingular
n× n matrix P with

Pτ (x)P−1 = σ(x)

for every x ∈ G.

Proof. Choose a basis of V , view σ and τ as matrix representations, and let P be
the matrix of ϕ. •

C-2.4. Semisimple Rings

In Chapter B-2 in Part 1, we introduced the class of semisimple rings, and we will
now see that this class contains most group algebras kG.

Recall that a left R-module M (over some ring R) is simple if M �= {0} and
its only submodules are {0} and M itself; M is semisimple if it is a direct sum
of (possibly infinitely many) simple modules. In particular, a ring R (considered a
left module over itself) is simple if it is not the zero ring and its only left ideals
are {0} and R itself. In light of Proposition C-2.4, which says that minimal left
ideals are simple left R-modules, we restate the definition of left semisimple ring.

Definition. A ring R is left semisimple3 if it is a direct sum of minimal left
ideals.

Although every minimal left ideal is a simple left R-module, it is not obvious,
conversely, that every simple left R-module is isomorphic to a minimal left ideal.
This is, in fact, true, and it is proved in Theorem C-2.33 below.

The next result shows that left semisimple rings are direct sums of only finitely
many summands.

Proposition C-2.17. Let R be a left semisimple ring.

(i) R is a direct sum of finitely many minimal left ideals.

(ii) R has both chain conditions on left ideals.

Proof.

(i) This is Lemma B-2.31 in Part 1, but we repeat its short proof here. Since R
is left semisimple, it is a direct sum of minimal left ideals: R =

⊕
i Li. Let

1 =
∑

i ei, where ei ∈ Li. If r =
∑

i ri ∈
⊕

i Li, then r = 1r and so ri = eiri.
Hence, if ei = 0, then Li = 0. We conclude that there are only finitely many
nonzero Li; that is, R = L1 ⊕ · · · ⊕ Ln.

3We can define a ring to be right semisimple if it is a direct sum of minimal right ideals,
but we shall see, in Corollary C-2.36, that a ring is a left semisimple ring if and only if it is right
semisimple.
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(ii) The series

R = L1 ⊕ · · · ⊕ Ln ⊇ L2 ⊕ · · · ⊕ Ln ⊇ · · · ⊇ Ln ⊇ (0)

is a composition series, for the factor modules are L1, . . . , Ln, which are
simple. It follows from Proposition C-2.3 that R (as a left R-module over
itself) has both chain conditions. •

Corollary C-2.18. The direct product R = R1× · · ·×Rm of left semisimple rings
R1, . . . , Rm is also a left semisimple ring.

Proof. This is Corollary B-2.32 in Part 1. •

Corollary C-2.19.

(i) If R is a left semisimple ring, then every left R-module M is a semisimple
module.

(ii) If I is a two-sided ideal in a left semisimple ring R, then the quotient ring
R/I is also a semisimple ring.

Proof.

(i) There is a free left R-module F and a surjective R-map ϕ : F →M . Now R
is a semisimple module over itself (this is the definition of semisimple ring),
and so F is a semisimple module (for F is a direct sum of copies of R). Thus,
M is a quotient of the semisimple module F , and so it is itself semisimple,
by Corollary B-2.30 in Part 1.

(ii) First, R/I is a ring, because I is a two-sided ideal. The left R-module R/I
is semisimple, by (i), and so it is a direct sum R/I ∼=

⊕
Sj , where the Sj are

simple left R-modules. But each Sj is also simple as a left (R/I)-module, for
any (R/I)-submodule of Sj is also an R-submodule of Sj . Therefore, R/I is
semisimple. •

It follows that a finite direct product of fields is a commutative semisimple ring
(we will prove the converse later). For example, if n = p1 · · · pt is a squarefree
integer, then Zn

∼= Fp1
× · · · × Fpt

is a semisimple ring. Similarly, if k is a field
and f(x) ∈ k[x] is a product of distinct irreducible polynomials, then k[x]/(f) is a
semisimple ring.

Left semisimple rings can be characterized in terms of the Jacobson radical.

Theorem C-2.20. A ring R is left semisimple if and only if it is left artinian and
Jacobson semisimple; that is, J(R) = (0).

Proof. If R is left semisimple, then there is a left ideal I with R = J(R) ⊕ I,
by Proposition B-2.29 in Part 1. It follows from Exercise C-2.4 on page 134 that
there are idempotents e ∈ J(R) and f ∈ I with 1 = e + f . Since e ∈ J(R),
Proposition C-2.7 says that f = 1−e has a left inverse; there is u ∈ R with uf = 1.
But f is an idempotent, so that f = f2. Hence, 1 = uf = uf2 = (uf)f = f , so
that e = 1 − f = 0. Since J(R)e = J(R), by Exercise C-2.4 on page 134, we have
J(R) = (0). Finally, Proposition C-2.17(ii) shows that R is left artinian.
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Conversely, assume that R is left artinian and J(R) = (0). We show first that
if I is a minimal left ideal of R, then I is a direct summand of R. Now I �= (0),
and so I � J(R); therefore, there is a maximal left ideal A not containing I. Since
I is minimal, it is simple, so that I ∩ A is either I or (0). But I ∩ A = I implies
I ⊆ A, a contradiction, and so I ∩A = (0). Maximality of A gives I +A = R, and
so R = I ⊕A.

Choose a minimal left ideal I1, which exists because R is left artinian. As we
have just seen, R = I1⊕B1 for some left ideal B1. Now B1 contains a minimal left
ideal, say, I2, by Proposition C-2.4, and so there is a left ideal B2 with B1 = I2⊕B2.
This construction can be iterated to produce a strictly decreasing chain of left ideals
B1 � B2 � · · · � Br as long as Br �= (0). If Br �= (0) for all r, then DCC is violated.
Therefore, Br = (0) for some r, so that R = I1 ⊕ · · · ⊕ Ir and R is semisimple. •

Note that the chain condition is needed. For example, Z is Jacobson semisimple,
but Z is not a semisimple ring.

We can now prove the following remarkable result.

Theorem C-2.21 (Hopkins–Levitzki). If a ring R is left artinian, then it is
left noetherian.

Proof. It suffices to prove that R, regarded as a left module over itself, has a
composition series, for then Proposition C-2.3 applies at once to show that R has
the ACC on left ideals (its submodules).

If J = J(R) denotes the Jacobson radical, then Jm = (0) for some m ≥ 1, by
Proposition C-2.10, and so there is a descending chain

R = J0 ⊇ J ⊇ J2 ⊇ J3 ⊇ · · · ⊇ Jm = (0).

Since each Jq is an ideal in R, it has DCC, as does its quotient Jq/Jq+1. Now R/J
is a semisimple ring, by Theorem C-2.20 (it is left artinian, being a quotient of a left
artinian ring, and Jacobson semisimple, by Corollary C-2.11(ii)). The factor mod-
ule Jq/Jq+1 is an (R/J)-module; hence, by Corollary B-2.30 in Part 1, Jq/Jq+1 is
a semisimple module, and so it can be decomposed into a direct sum of (perhaps
infinitely many) simple (R/J)-modules. But there can be only finitely many sum-
mands, for every (R/J)-submodule of Jq/Jq+1 is necessarily an R-submodule, and
Jq/Jq+1 has DCC on R-submodules. Hence, there are simple (R/J)-modules Si

with

Jq/Jq+1 = S1 ⊕ S2 ⊕ · · · ⊕ Sp.

Throwing away one simple summand at a time yields a series of Jq/Jq+1 whose ith
factor module is

(Si ⊕ Si+1 ⊕ · · · ⊕ Sp)/(Si+1 ⊕ · · · ⊕ Sp) ∼= Si.

Now the simple (R/J)-module Si is also a simple R-module, by Corollary C-2.8,
for it is an R-module annihilated by J , so that we have constructed a composition
series for Jq/Jq+1 as a left R-module. Finally, refine the original series for R in
this way, for every q, to obtain a composition series for R. •
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The converse of Theorem C-2.21 is false: Z is noetherian but not artinian.

The next result is fundamental.

Theorem C-2.22 (Maschke’s Theorem). If G is a finite group and k is a field
whose characteristic does not divide |G|, then kG is a left semisimple ring.

Remark. The hypothesis holds if k has characteristic 0. �

Proof. By Proposition B-2.29 in Part 1, it suffices to prove that every left ideal I
of kG is a direct summand. Since k is a field, kG is a vector space over k and I
is a subspace. By Corollary B-2.9 in Part 1, I is a (vector space) direct summand:
there is a subspace V (which may not be a left ideal in kG) with kG = I ⊕ V .
There is a k-linear transformation

d : kG→ I

with d(b) = b for all b ∈ I and with ker d = V (each u ∈ kG has a unique expression
of the form u = b + v, where b ∈ I and v ∈ V , and d(u) = b). Were d a kG-map,
not merely a k-map, then we would be done, by the criterion of Corollary B-2.15
in Part 1 (I is a summand of kG if and only if it is a retract: there is a kG-map
D : kG → I with D(u) = u for all u ∈ I). We now force d to be a kG-map by an
“averaging process”.

Define D : kG→ kG by

D(u) =
1

|G|
∑
x∈G

xd(x−1u)

for all u ∈ kG. Note that |G| �= 0 in k, by the hypothesis on the characteristic of
k, and so 1/|G| is defined. It is obvious that D is a k-map.

(i) imD ⊆ I.
If u ∈ kG and x ∈ G, then d(x−1u) ∈ I (because im d ⊆ I), and

xd(x−1u) ∈ I because I is a left ideal. Therefore, D(u) ∈ I, for each term in
the sum defining D(u) lies in I.

(ii) If b ∈ I, then D(b) = b.
Since b ∈ I, so is x−1b, and so d(x−1b) = x−1b. Hence, xd(x−1b) =

xx−1b = b. Therefore,
∑

x∈G xd(x−1b) = |G|b, and so D(b) = b.

(iii) D is a kG-map.
It suffices to prove that D(gu) = gD(u) for all g ∈ G and all u ∈ kG:

gD(u) =
1

|G|
∑
x∈G

gxd(x−1u) =
1

|G|
∑
x∈G

gxd(x−1g−1gu)

=
1

|G|
∑

y=gx∈G

yd(y−1gu) = D(gu)

(as x ranges over all of G, so does y = gx). •

The converse of Maschke’s Theorem is true: if G is a finite group and k is a
field whose characteristic p divides |G|, then kG is not left semisimple; a proof is
outlined in Exercise C-2.12 on page 145.
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Before analyzing left semisimple rings further, let us give several characteriza-
tions of them.

Proposition C-2.23. The following conditions on a ring R are equivalent.

(i) R is left semisimple.

(ii) Every left R-module is a semisimple module.

(iii) Every left R-module is injective.

(iv) Every short exact sequence of left R-modules splits.

(v) Every left R-module is projective.

Proof.

(i) ⇒ (ii). This follows at once from Corollary B-2.30 in Part 1, which says that
if R is a semisimple ring, then every left R-module is a semisimple module.

(ii) ⇒ (iii). Let E be a left R-module; Proposition B-4.52 in Part 1 says that E is
injective if every exact sequence 0→ E → B → C → 0 splits. By hypothesis,
B is a semisimple module, and so Proposition B-2.29 in Part 1 implies that
the sequence splits; thus, E is injective.

(iii) ⇒ (iv). If 0 → A → B → C → 0 is an exact sequence, then it must split
because, as every module, A is injective, by Proposition B-4.52 in Part 1.

(iv) ⇒ (v). Given a module M , there is an exact sequence

0→ F ′ → F →M → 0,

where F is free. This sequence splits, by hypothesis, and so F ∼= M ⊕ F ′.
Therefore, M is a direct summand of a free module, and hence it is projective,
by Theorem B-4.44 in Part 1.

(v) ⇒ (i). If I is a left ideal of R, then

0→ I → R→ R/I → 0

is an exact sequence. By hypothesis, R/I is projective, and so this sequence
splits, by Proposition B-4.41 in Part 1; thus, I is a direct summand of R. By
Proposition B-2.29 in Part 1, R is a semisimple left R-module; that is, R is
a left semisimple ring. •

Modules over semisimple rings are so nice that there is a notion of global di-
mension of a ring R that measures how far removed R is from being semisimple.
We will discuss global dimension in the chapter on homological algebra.

In order to give more examples of left semisimple rings, we look at endomor-
phism rings of direct sums. Consider HomR(A,B), where both A and B are left
R-modules that are finite direct sums: say, A =

⊕n
i=1 Ai and B =

⊕m
j=1 Bj . Since

a direct product of a finite family of modules is their direct sum, Theorem B-4.8 in
Part 1 gives

HomR(A,B) ∼=
⊕
i,j

HomR(Ai, Bj).
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More precisely, if αi : Ai → A is the ith injection and pj : B → Bj is the jth
projection, then each f ∈ HomR(A,B) gives maps

fji = pjfαi ∈ HomR(Ai, Bj).

Thus, f defines a generalized m×n matrix [fji] (we call [fji] a generalized matrix
because entries in different positions need not lie in the same algebraic system). The
map f �→ [fji] is an isomorphism HomR(A,B) →

⊕
ij HomR(Ai, Bj). Similarly, if

g : B → C, where C =
⊕�

k=1 Ck, then g defines a generalized � ×m matrix [gkj ],
where gkj = qkgβj : Bj → Ck, βj : Bj → B are the injections, and qk : C → Ck are
the projections.

The composite gf : A → C defines a generalized � × n matrix, and we claim
that it is given by matrix multiplication: (gf)ki =

∑
j gkjfji:∑

j

gkjfji =
∑
j

qkgβjpjfαi = qkg
(∑

j

βjpj

)
fαi = qkgfαi = (gf)ki,

because
∑

j βjpj = 1B.

By adding some hypotheses, we can pass from generalized matrices to honest
matrices.

Proposition C-2.24. Let V =
⊕n

i=1 Vi be a left R-module. If there is a left
R-module L and, for each i, an isomorphism ϕi : Vi → L, then there is a ring
isomorphism

EndR(V ) ∼= Matn(EndR(L)).

Proof. Define θ : EndR(V )→ Matn(EndR(L)) by

θ : f �→ [ϕjpjfαiϕ
−1
i ],

where αi : Vi → V and pj : V → Vj are injections and projections, respectively.
That θ is an additive isomorphism is just the identity

Hom
(⊕

i

Vi,
⊕
i

Vi

)
∼=
⊕
i,j

Hom(Vi, Vj),

which holds when the index sets are finite. In the paragraph above defining gen-
eralized matrices, the home of the ij entry is HomR(Vi, Vj), whereas the present
home of this entry is the isomorphic replica HomR(L,L) = EndR(L).

We now show that θ preserves multiplication. If g, f ∈ EndR(V ), then θ(gf) =
[ϕjpjgfαiϕ

−1
i ], while the matrix product is

θ(g)θ(f) =
[∑

k

(ϕjpjgαkϕ
−1
k )(ϕkpkfαiϕ

−1
i )

]
=
[∑

k

ϕjpjgαkpkfαiϕ
−1
i

]
=
[
ϕjpjg

(∑
k

αkpk

)
fαiϕ

−1
i

]
=
[
ϕjpjgfαiϕ

−1
i

]
. •
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Corollary C-2.25. If V is an n-dimensional left vector space over a division ring
k, then there is an isomorphism of rings

Endk(V ) ∼= Matn(k)
op.

Proof. The isomorphism Endk(V ) ∼= Matn(k
op) is the special case of Proposi-

tion C-2.24 for V = V1 ⊕ · · · ⊕ Vn, where each Vi is one-dimensional, hence is
isomorphic to k. Note that Endk(k) ∼= kop, by Proposition B-1.24 in Part 1. Now
apply Proposition B-1.25 in Part 1, which says that Matn(k

op) ∼= Matn(k)
op. •

The next result involves a direct sum decomposition at the opposite extreme
of that in Proposition C-2.24.

Corollary C-2.26. Let an R-module M be a direct sum M = B1 ⊕ · · · ⊕ Br in
which HomR(Bi, Bj) = {0} for all i �= j. Then there is a ring isomorphism

EndR(M) ∼= EndR(B1)× · · · × EndR(Br).

Proof. If f, g ∈ EndR(M), let [fij ] and [gij ] be their generalized matrices. It
suffices to show that [gij ][fij ] is the diagonal matrix

diag(g11f11, . . . , grrfrr).

But if i �= j, then gikfkj ∈ HomR(Bi, Bj) = 0; hence, (gf)ij =
∑

k gikfkj = 0. •

We can now give more examples of semisimple rings. The Wedderburn–Artin
Theorems (proved in the next section) will say that there are no others.

Proposition C-2.27.

(i) If k is a division ring and V is a left vector space over k with dim(V ) = n,
then Endk(V ) ∼= Matn(k

op) is a left semisimple ring.

(ii) If k1, . . . , kr are division rings, then

Matn1
(k1)× · · · ×Matnr

(kr)

is a left semisimple ring.

Proof.

(i) By Proposition C-2.24, we have

Endk(V ) ∼= Matn(Endk(k));

by Proposition B-1.24 in Part 1, Endk(k) ∼= kop. Therefore, Endk(V ) ∼=
Matn(k

op).
Let us now show that Endk(V ) is left semisimple. If v1, . . . , vn is a basis

of V , define

col(j) = {T ∈ Endk(V ) : T (vi) = 0 for all i �= j}.
It is easy to see that col(j) is a left ideal in Endk(V ): if S ∈ Endk(V ), then
S(Tvi) = 0 for all i �= j. Recall Proposition C-2.5: if we look in Matn(k

op) ∼=
Endk(V ), then col(j) corresponds to all those linear transformations killing
those vi with i �= j. It is obvious that

Matn(k
op) = col(1)⊕ · · · ⊕ col(n).
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Hence, Endk(V ) is also such a direct sum. We saw, in Example C-2.6(iii),
that each col(�) is a minimal left ideal, and so Endk(V ) is a left semisimple
ring.

(ii) This follows at once from (i) and Corollary C-2.18, for if k is a division ring,
then so is kop, by Exercise B-1.38 on page 300 in Part 1. •

Corollary C-2.28. If V is an n-dimensional left vector space over a division ring
k, then the minimal left ideals col(�) in Endk(V ), for 1 ≤ � ≤ n, are all isomorphic.

Proof. Let v1, . . . , vn be a basis of V . For each �, define p� : V → V to be the
linear transformation that interchanges v� and v1 and that fixes all the other vj . It
is easy to see that T �→ Tp� is an isomorphism col(1)→ col(�). •

There may be minimal left ideals other than col(�) for some �. However,
we will see (in Lemma C-2.40(ii)) that all the minimal left ideals in Endk(V ) are
isomorphic to one of these.

Definition. A ring R is simple if it is not the zero ring and it has no proper
nonzero two-sided ideals.

Our language is a little deceptive. It is true that left artinian simple rings are
semisimple (Proposition C-2.38), but there are simple rings that are not semisimple.

Proposition C-2.29. If k is a division ring, then R = Matn(k) is a simple ring.

Proof. A matrix unit Epq is the n × n matrix whose p, q entry is 1 and all of
whose other entries are 0. The matrix units form a basis for Matn(k) viewed as a
left vector space over k, for each matrix A = [aij ] has a unique expression

A =
∑
i,j

aijEij .

(Of course, this says that dimk(Matn(k)) = n2.) A routine calculation shows that
matrix units multiply according to the following rule:

EijEk� =

{
0 if j �= k,

Ei� if j = k.

Suppose that N is a nonzero two-sided ideal in Matn(k). If A is a nonzero
matrix in N , it has a nonzero entry; say, aij �= 0. Since N is a two-sided ideal, N
contains EpiAEjq for all p, q. But

EpiAEjq = Epi

∑
k,�

ak�Ek�Ejq = Epi

∑
k

akjEkq =
∑
k

akjEpiEkq = aijEpq.

Since aij �= 0 and k is a division ring, a−1
ij ∈ k, and so Epq ∈ N for all p, q. But the

collection of all Epq span the left vector space Matn(k) over k, and so N = Matn(k).
•
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Exercises

C-2.10. Prove that a finitely generated left semisimple R-module M over a ring R is a
direct sum of a finite number of simple left modules.

C-2.11. LetA be an n-dimensional k-algebra over a field k. Prove thatA can be imbedded
as a k-subalgebra of Matn(k).

Hint. If a ∈ A, define La : A → A by La : x 
→ ax.

∗ C-2.12. Let G be a finite group, and let k be a commutative ring. Define ε : kG → k by

ε
(∑
g∈G

agg
)
=
∑
g∈G

ag

(this map is called the augmentation , and its kernel, denoted by G, is called the aug-
mentation ideal).

(i) Prove that ε is a kG-map and that kG/G ∼= k as k-algebras. Conclude that G is a
two-sided ideal in kG.

(ii) Prove that kG/G ∼= V0(k), where V0(k) is k viewed as a trivial kG-module.
Hint. G is a two-sided ideal containing xu− u = (x− 1)u.

(iii) Use (ii) to prove that if kG = G ⊕ V , then V =
〈
v
〉
, where v =

∑
g∈G g.

Hint. Argue as in Example C-2.34.

(iv) Assume that k is a field whose characteristic p does divide |G|. Prove that kG is
not left semisimple.
Hint. First show that ε(v) = 0, and then show that the short exact sequence

0 → G → kG
ε−→ k → 0

does not split. (If G is a finite p-group and k is a field of characteristic p, then the
Jacobson radical J(kG) is the augmentation ideal; see Lam [133], p. 131).

∗ C-2.13. Let M be a left R-module over a semisimple ring R. Prove that M is indecom-
posable if and only if M is simple.

C-2.14. If k is a division ring, prove that every two minimal left ideals in Matn(k) are
isomorphic. (Compare Corollary C-2.28.)

∗ C-2.15. Let k be a division ring and let D ⊆ k be a subdivision ring.

(i) Prove that k is a left vector space over D, and conclude that dimD(k) is defined
(of course, dimD(k) = ∞ is possible).

(ii) If Z ⊆ D ⊆ k is a tower of division rings with dimD(k) and dimZ(D) finite, prove
that dimZ(k) is finite and

dimZ(k) = dimD(k) dimZ(D).

Hint. Adapt the proof of Proposition B-1.40 in Part 1.

C-2.16. Let T : V → V be a linear transformation, where V is a vector space over a field
k, and let k[T ] be defined by

k[T ] = k[x]/(m(x)),

where m(x) is the minimum polynomial of T .

(i) If m(x) =
∏

p p(x)
ep , where the p(x) ∈ k[x] are distinct irreducible polynomials

and ep ≥ 1, prove that k[T ] ∼=
∏

p k[x]/(p(x)
ep).
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(ii) Prove that k[T ] is a semisimple ring if and only if m(x) is a product of distinct
linear factors. (In linear algebra, we show that this last condition is equivalent to
T being diagonalizable; that is, any matrix of T (arising from some choice of basis
of T ) is similar to a diagonal matrix.)

C-2.17. If H is the division ring of real quaternions, prove that its multiplicative group
H× has a finite subgroup that is not cyclic. Compare with Theorem A-3.59 in Part 1.

C-2.5. Wedderburn–Artin Theorems

We are now going to prove the converse of Proposition C-2.27(ii): every left semisim-
ple ring is isomorphic to a direct product of matrix rings over division rings. The
first step shows how division rings arise.

Theorem C-2.30 (Schur’s Lemma). Let M and M ′ be simple left R-modules
over a ring R.

(i) Every nonzero R-map f : M →M ′ is an isomorphism.

(ii) EndR(M) is a division ring. In particular, if L is a minimal left ideal in a
ring R, then EndR(L) is a division ring.

Proof.

(i) Since M is simple, it has only two submodules: M itself and {0}. Now
the submodule ker f �= M because f �= 0, so that ker f = {0} and f is an
injection. Similarly, the submodule im f �= {0}, so that im f = M ′ and f is
a surjection.

(ii) If f : M →M and f �= 0, then f is an isomorphism, by part (i), and hence it
has an inverse f−1 ∈ EndR(M). Thus, EndR(M) is a division ring. •

Here is a surprising result.

Theorem C-2.31 (Wedderburn). Every finite division ring k is a field; that is,
multiplication in k is commutative.

Proof (Witt).4 If Z denotes the center of k, then Z is a finite field, and so it has
q elements (where q is a power of some prime). It follows that k is a vector space
over Z, and so |k| = qn for some n ≥ 1; that is, if we define

[k : Z] = dimZ(k),

then [k : Z] = n. The proof will be complete if we can show that n > 1 leads to a
contradiction.

If a ∈ k, define C(a) = {u ∈ k : ua = au}. It is routine to check that C(a)
is a subdivision ring of k that contains Z: if u, v ∈ k commute with a, then so do
u + v, uv, and u−1 (when u �= 0). Consequently, |C(a)| = qd(a) for some integer

4We shall give another proof of this in Theorem C-2.124.
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d(a); that is, [C(a) : Z] = d(a). We do not know whether C(a) is commutative,
but Exercise C-2.15 on page 145 gives

[k : Z] = [k : C(a)][C(a) : Z],

where [k : C(a)] denotes the dimension of k as a left vector space over C(a). That
is, n = [k : C(a)]d(a), and so d(a) is a divisor of n.

Since k is a division ring, its nonzero elements k× form a multiplicative group
of order qn − 1. By Exercise C-2.2 on page 134, the center of the group k× is Z×

and, if a ∈ k×, then its centralizer Ck×(a) = C(a)×. Hence, |Z(k×)| = q − 1 and
|Ck×(a)| = qd(a) − 1, where d(a) | n.

The class equation for k× is

|k×| = |Z×|+
∑
i

[k× : Ck×(ai)],

where one ai is chosen from each noncentral conjugacy class. But

[k× : Ck×(ai)] = |k×|/|Ck×(ai)| = (qn − 1)/(qd(ai) − 1),

so that the class equation becomes

qn − 1 = q − 1 +
∑
i

qn − 1

qd(ai) − 1
.(1)

We have already noted that each d(ai) is a divisor of n, while the condition that ai
is not central says that d(ai) < n.

Recall that the nth cyclotomic polynomial is Φn(x) =
∏
(x−ζ), where ζ ranges

over all the primitive nth roots of unity. In Corollary A-3.108 in Part 1, we proved
that Φn(q) is a common divisor of qn − 1 and (qn − 1)/(qd(ai) − 1) for all i, and so
Eq. (1) gives

Φn(q) | (q − 1).

If n > 1 and ζ is a primitive nth root of unity, then ζ �= 1, and hence ζ is a point
on the unit circle to the left of the vertical line through (1, 0). Since q is a prime
power, it is a point on the x-axis with q ≥ 2, and so the distance |q − ζ| > q − 1.
Therefore,

|Φn(q)| =
∏
|q − ζ| > q − 1,

and this contradicts Φn(q) | (q − 1). We conclude that n = 1; that is, k = Z, and
so k is commutative. •

The second step for the Wedderburn–Artin Theorems investigates minimal left
ideals.

Lemma C-2.32. If L and L′ are minimal left ideals in a ring R, then each of the
following statements implies the one below it:

(i) LL′ �= (0).

(ii) HomR(L,L
′) �= {0} and there exists b′ ∈ L′ with L′ = Lb′.

(iii) L ∼= L′ as left R-modules.

If also L2 �= (0), then (iii) implies (i) and the three statements are equivalent.
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Proof.

(i) ⇒ (ii). If LL′ �= (0), then there exists b ∈ L and b′ ∈ L′ with bb′ �= 0. Thus,
the function f : L → L′, defined by x �→ xb′, is a nonzero R-map, and so
HomR(L,L

′) �= {0}. Moreover, Lb′ = L′, for it is a nonzero submodule of the
minimal left ideal L′.

(ii) ⇒ (iii). If HomR(L,L
′) �= {0}, then there is a nonzero f : L → L′, and f is

an isomorphism, by Schur’s Lemma; that is, L ∼= L′.

(iii) and L2 �= (0) ⇒ (i). Assume now that L2 �= (0), so there are x, y ∈ L with
xy �= 0. If g : L→ L′ is an isomorphism, then 0 �= g(xy) = xg(y) ∈ LL′, and
so LL′ �= (0). •

Note that if J(R) = (0), then L2 �= (0); otherwise, L is a nilpotent left ideal
and Corollary C-2.9 gives L ⊆ J(R) = (0), a contradiction.

Theorem C-2.33. If R = L1 ⊕ · · · ⊕ Ln is a left semisimple ring, where the Lp

are minimal left ideals, then every simple R-module S is isomorphic to some Lp.

Proof. Now S ∼= HomR(R,S) �= {0}, by Corollary B-4.27 in Part 1. But, if
HomR(Lp, S) = {0} for all p, then HomR(R,S) = {0} (for R = L1⊕· · ·⊕Ln). Thus,
HomR(Lp, S) �= {0} for some p. Since both Lp and S are simple, Theorem C-2.30(i)
gives Lp

∼= S. •

Here is a fancier proof of Theorem C-2.33.

Theorem C-2.33 Again. If R = L1⊕ · · · ⊕Ln is a left semisimple ring, where the
Lp are minimal left ideals, then every simple R-module S is isomorphic to some Lp.

Proof. By Corollary B-1.33 in Part 1, there is a left ideal I with S ∼= R/I, and so
there is a series

R ⊇ I ⊇ (0).

In Proposition C-2.17, we saw that

R = L1 ⊕ · · · ⊕ Ln ⊇ L2 ⊕ · · · ⊕ Ln ⊇ · · · ⊇ Ln ⊇ (0)

is a composition series with factor modules L1, . . . , Ln. The Schreier Refinement
Theorem (Theorem B-1.37 in Part 1) now says that these two series have equivalent
refinements. Since a composition series admits only refinements that repeat a term,
the factor module S occurring in the refinement of the first series must be isomorphic
to one of the factor modules in the second series; that is, S ∼= Lp for some p. •

Example C-2.34. The trivial kG-module V0(k) (Example C-2.14) is a simple kG-
module (for it is one-dimensional, hence has no subspaces other than {0} and itself).
By Theorem C-2.33, V0(k) is isomorphic to some minimal left ideal L of kG. We
shall find L by searching for elements u =

∑
g∈G agg in kG with hu = u for all

h ∈ G. For such elements u,

hu =
∑
g∈G

aghg =
∑
g∈G

agg = u.
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Since the elements in G form a basis for the vector space kG, we may equate
coefficients, and so ag = ahg for all g ∈ G; in particular, a1 = ah. As this holds for
every h ∈ G, all the coefficients ag are equal. Therefore, if we define γ ∈ kG by

γ =
∑
g∈G

g,

then u is a scalar multiple of γ. It follows that L =
〈
γ
〉
is a left ideal isomorphic

to the trivial module V0(k); moreover,
〈
γ
〉
is the unique such left ideal. �

An abstract left semisimple ring R is a direct sum of finitely many minimal left
ideals: R =

⊕
j Lj , and we now know that EndR(Lj) is a division ring for every j.

The next step is to find the direct summands of R that will ultimately turn out to
be matrix rings; they arise from a decomposition of R into minimal left ideals by
collecting isomorphic terms.

Definition. Let R be a left semisimple ring, and let

R = L1 ⊕ · · · ⊕ Ln,

where the Lp are minimal left ideals. Reindex the summands so that no two of the
first r ideals L1, . . . , Lr are isomorphic, while every Lp in the given decomposition
is isomorphic to some Li for 1 ≤ i ≤ r. The left ideals

Bi =
⊕

Lp
∼=Li

Lp

are called the simple components of R relative to the decomposition R =
⊕

p Lp.

We shall see, in Corollary C-2.41, that the simple components do not depend
on the particular decomposition of R as a direct sum of minimal left ideals.

We divide the usual version of the Wedderburn–Artin Theorem5 classifying
semisimple rings into two parts: an existence theorem and a uniqueness theorem.

Theorem C-2.35 (Wedderburn–Artin I). A ring R is left semisimple if and
only if R is isomorphic to a direct product of matrix rings over division rings.

Proof. Sufficiency is Proposition C-2.27(ii).

For necessity, if R is left semisimple, then it is the direct sum of its simple
components:

R = B1 ⊕ · · · ⊕Br,

where each Bi is a direct sum of isomorphic minimal left ideals. Proposition B-1.24
in Part 1 says that there is a ring isomorphism

Rop ∼= EndR(R),

where R is regarded as a left module over itself. Now HomR(Bi, Bj) = {0} for all
i �= j, by Lemma C-2.32, so that Corollary C-2.26 applies to give a ring isomorphism

Rop ∼= EndR(R) ∼= EndR(B1)× · · · × EndR(Br).

5Wedderburn proved Theorems C-2.35 and C-2.43 for semisimple k-algebras, where k is a
field. E. Artin generalized these theorems to semisimple rings with left DCC. These theorems are
why artinian rings are so called.
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By Proposition C-2.24, there are isomorphisms of rings

EndR(Bi) ∼= Matni
(EndR(Li)),

because Bi is a direct sum of isomorphic copies of Li. By Schur’s Lemma, EndR(Li)
is a division ring, say, ki, and so

Rop ∼= Matn1
(k1)× · · · ×Matnr

(kr).

Hence,

R ∼= Matn1
(k1)

op × · · · ×Matnr
(kr)

op.

Finally, Proposition B-1.25 in Part 1 gives

R ∼= Matn1
(kop1 )× · · · ×Matnr

(kopr ).

This completes the proof, for kopi is also a division ring for all i, by Exercise B-1.38
on page 300 in Part 1. •

Corollary C-2.36. A ring R is left semisimple if and only if it is right semisimple.

Proof. It is easy to see that a ring R is right semisimple if and only if its op-
posite ring Rop is left semisimple. But we saw, in the middle of the proof of
Theorem C-2.35, that

Rop ∼= Matn1
(k1)× · · · ×Matnr

(kr),

where ki = EndR(Li). •

As a consequence of this corollary, we say that a ring is semisimple without
the adjectives left or right.

Corollary C-2.37. A commutative ring R is semisimple if and only if it is iso-
morphic to a direct product of finitely many fields.

Proof. A field is a semisimple ring, and so a direct product of finitely many fields
is also semisimple, by Corollary C-2.18. Conversely, if R is semisimple, it is a direct
product of matrix rings over division rings. Since R is commutative, all the matrix
rings must be of size 1× 1 and all the division rings must be fields. •

Even though the name suggests it, it is not clear that simple rings are semisim-
ple. Indeed, we must assume a chain condition: if V is an infinite-dimensional vector
space over a field k, then R = Endk(V ) is a simple ring which is not semisimple
(Lam [133], pp. 43–44).

Proposition C-2.38. A simple left artinian ring R is semisimple.

Proof (Janusz). Since R is left artinian, it contains a minimal left ideal, say, L;
of course, L is a simple left R-module. For each a ∈ R, the function fa : L → R,
defined by fa(x) = xa, is a map of left R-modules: if r ∈ R, then

fa(rx) = (rx)a = r(xa) = rfa(x).

Now im fa = La, while L being a simple module forces ker fa = L or ker fa = (0).
In the first case, we have La = (0); in the second case, we have L ∼= La. Thus, La
is either (0) or a minimal left ideal.
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Consider the sum I =
〈⋃

a∈R La
〉
⊆ R. Plainly, I is a left ideal; it is a right

ideal as well, for if b ∈ R and La ⊆ I, then (La)b = L(ab) ⊆ I. Since R is a simple
ring, the nonzero two-sided ideal I must equal R. We claim that R is a sum of only
finitely many La’s. As any element of R, the unit 1 lies in some finite sum of La’s,
say, 1 ∈ Le1+ · · ·+Len. If b ∈ R, then b = b1 ∈ b(Le1+ · · ·+Len) ⊆ Le1+ · · ·+Len
(because Le1 + · · ·+ Len is a left ideal). Hence, R = Le1 + · · ·+ Len.

To prove that R is semisimple, it remains to show that it is a direct sum of
simple submodules. Choose n minimal such that R = Le1 + · · · + Len; we claim
that R = Le1 ⊕ · · · ⊕Len. By Proposition C-2.17, it suffices to show, for all i, that

Lei ∩
(⊕

j �=i

Lej

)
= (0).

If this intersection is not (0), then simplicity of Lei says that Lei∩(
⊕

j �=i Lej) = Lei;

that is, Lei ⊆
⊕

j �=i Lej , and this contradicts the minimal choice of n. Therefore,
R is a semisimple ring. •

The following corollary follows at once from Proposition C-2.38 and Theo-
rem C-2.35, the Wedderburn–Artin Theorem I.

Corollary C-2.39. If A is a simple left artinian ring, then A ∼= Matn(k) for some
n ≥ 1 and some division ring k.

The next lemma gives some interesting properties enjoyed by semisimple rings;
it will be used to complete the Wedderburn–Artin Theorems by proving uniqueness
of the constituent parts. In particular, it will say that the integer n and the division
ring k in Corollary C-2.39 are uniquely determined by R.

Lemma C-2.40. Let R be a semisimple ring, and let

R = L1 ⊕ · · · ⊕ Ln = B1 ⊕ · · · ⊕Br,(2)

where the Lp are minimal left ideals indexed so that no two of the first r ideals
L1, . . . , Lr are isomorphic, while every Lp is isomorphic to one of these.

Let Bi be the corresponding simple component of R; that is, Bi is the direct
sum of all the Lp in Eq. (2) with Lp

∼= Li.

(i) Each Bi is a ring that is also a two-sided ideal in R, and BiBj = (0) if j �= i.

(ii) If L is any minimal left ideal in R, not necessarily some Lp in Eq. (2), then
L ∼= Li for some i with 1 ≤ i ≤ r, and L ⊆ Bi.

(iii) Every two-sided ideal D in R is a direct sum of simple components.

(iv) Each Bi is a simple ring.

Proof.

(i) Each Bi is a left ideal. To see that it is also a right ideal, consider

BiR = Bi(B1 ⊕ · · · ⊕ Br) ⊆ BiB1 + · · ·+BiBr.

Recall, for each i with 1 ≤ i ≤ r, that Bi is a direct sum of left ideals Lp

isomorphic to Li. If L ∼= Li and L′ ∼= Lj , then the contrapositive, “not (iii)”
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⇒ “not (i)” in Lemma C-2.32, applies to give LL′ = (0) if j �= i. Hence, if
j �= i,

BiBj =
(⊕
L∼=Li

L
)( ⊕

L′∼=Lj

L′
)
⊆
⊕

LL′ = (0).

Thus, BiB1 + · · ·+BiBr ⊆ BiBi. Since Bi is a left ideal, BiBi ⊆ RBi ⊆ Bi.
Therefore, BiR ⊆ Bi, so that Bi is a right ideal and, hence, is a two-sided
ideal.

In the last step, proving that Bi is a right ideal, we saw that BiBi ⊆ Bi;
that is, Bi is closed under multiplication. Therefore, to prove that Bi is a
ring, it now suffices to prove that it contains a unit element. If 1 is the unit
element in R, then 1 = e1 + · · ·+ er, where ei ∈ Bi for all i. If bi ∈ Bi, then

bi = 1bi = (e1 + · · ·+ er)bi = eibi,

for BjBi = (0) whenever j �= i. Similarly, the equation bi = bi1 gives
biei = bi, and so ei is a unit in Bi. Thus, Bi is a ring.6

(ii) By Theorem C-2.33, a minimal left ideal L is isomorphic to Li for some i.
Now

L = RL = (B1 ⊕ · · · ⊕Br)L ⊆ B1L+ · · ·+BrL.

If j �= i, then BjL = (0), by Lemma C-2.32, so that

L ⊆ BiL ⊆ Bi,

because Bi is a right ideal.

(iii) A nonzero two-sided ideal D in R is a left ideal, and so it contains some
minimal left ideal L, by Proposition C-2.4. Now L ∼= Li for some i, by
Theorem C-2.33; we claim that Bi ⊆ D. By Lemma C-2.32, if L′ is any
minimal left ideal in Bi, then L′ = Lb′ for some b′ ∈ L′. Since L ⊆ D and
D is a right ideal, we have L′ = Lb′ ⊆ LL′ ⊆ DR ⊆ D. We have shown
that D contains every left ideal isomorphic to Li; as Bi is generated by such
ideals, Bi ⊆ D. Write R = BI ⊕ BJ , where BI =

⊕
i Bi with Bi ⊆ D and

BJ =
⊕

j Bj with Bj �⊆ D. By Corollary B-2.16 in Part 1 (which holds for

modules over noncommutative rings), D = BI⊕(D∩BJ). But D∩BJ = (0);
otherwise, it would contain a minimal left ideal L ∼= Lj for some j ∈ J and,
as above, this would force Bj ⊆ D. Therefore, D = BI .

(iv) A left ideal in Bi is also a left ideal in R: if a ∈ R, then a =
∑

j aj , where
aj ∈ Bj ; if bi ∈ Bi, then

abi = (a1 + · · ·+ ar)bi = aibi ∈ Bi,

because BjBi = (0) for j �= i. Similarly, a right ideal in Bi is a right ideal
in R, and so a two-sided ideal D in Bi is a two-sided ideal in R. By (iii),
the only two-sided ideals in R are direct sums of simple components, and so
D ⊆ Bi implies D = (0) or D = Bi. Therefore, Bi is a simple ring. •

6Bi is not a subring of R because its unit ei is not the unit 1 in R.
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Corollary C-2.41. If R is a semisimple ring, then the simple component Bi con-
taining a minimal left ideal Li is the left ideal generated by all the minimal left
ideals that are isomorphic to Li, where 1 ≤ i ≤ r. Therefore, the simple compo-
nents B1, . . . , Br of a semisimple ring do not depend on a decomposition of R as a
direct sum of minimal left ideals.

Proof. This follows from Lemma C-2.40(ii). •

Corollary C-2.42. Let A be a simple artinian ring.

(i) A ∼= Matn(k) for some division ring k. If L is a minimal left ideal in A, then
every simple left A-module is isomorphic to L; moreover, kop ∼= EndA(L).

(ii) Two finitely generated left A-modules M and N are isomorphic if and only
if dimk(M) = dimk(N).

Proof.

(i) Since A is a semisimple ring, by Proposition C-2.38, every left module M is
isomorphic to a direct sum of minimal left ideals. By Lemma C-2.40(ii), all
minimal left ideals are isomorphic, say, to L.

We now prove that kop ∼= EndA(L). We may assume that A = Matn(k)
and that L = col(1), the minimal left ideal consisting of all the n×nmatrices
whose last n−1 columns are 0 (Proposition C-2.27). Define ϕ : k → EndA(L)
as follows: if d ∈ k and � ∈ L, then ϕd : � �→ �d. Note that ϕd is an A-map:
it is additive and, if a ∈ A and � ∈ L, then ϕd(a�) = (a�)d = a(�d) =
aϕd(�). Next, ϕ is a ring antihomomorphism: ϕ1 = 1L, it is additive, and
ϕdd′ = ϕd′ϕd: if � ∈ L, then ϕd′ϕd(�) = ϕd(�d

′) = �d′d = ϕdd′(�); that is,
ϕ is a ring homomorphism kop → EndA(L). To see that ϕ is injective, note
that each � ∈ L ⊆ Matn(k) is a matrix with entries in k; hence, �d = 0
implies � = 0. Finally, we show that ϕ is surjective. Let f ∈ EndA(L). Now
L = AE11, where E11 is the matrix unit (every simple module is generated
by any nonzero element in it). If ui ∈ k, let [u1, . . . , un] denote the n × n
matrix in L whose first column is (u1, . . . , un)

� and whose other entries are
all 0. Write f(E11) = [d1, . . . , dn]. If � ∈ L, then � has the form [u1, . . . , un],
and using only the definition of matrix multiplication, it is easy to see that
[u1, . . . , un] = [u1, . . . , un]E11. Since f is an A-map,

f([u1, . . . , un]) = f([u1, . . . , un]E11)

= [u1, . . . , un]f(E11)

= [u1, . . . , un][d1, . . . , dn]

= [u1, . . . , un]d1 = ϕd1
([u1, . . . , un]).

Therefore, f = ϕd1
∈ imϕ, as desired.

(ii) All minimal left ideals in A are isomorphic to L, and so M is a direct sum of
dimk(M)/n copies of L. If M ∼= N as left Matn(k)-modules, then M ∼= N as
left k-modules, and so dimk(M) = dimk(N). Conversely, if dimk(M) = nd =
dimk(N), then both M and N are direct sums of d copies of L, and hence
M ∼= N as left A-modules. •
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The number m of simple components of R is an invariant, for it is the number of
nonisomorphic simple left R-modules (even better, we will see, in Theorem C-2.49,
that if R = CG, then m is the number of conjugacy classes in G). However, there
is a much stronger uniqueness result.

Theorem C-2.43 (Wedderburn–Artin II). Every semisimple ring R is a direct
product,

R ∼= Matn1
(k1)× · · · ×Matnr

(kr),

where ni ≥ 1, ki is a division ring, and the numbers r and ni, as well as the division
rings ki, are uniquely determined by R.

Proof. Let R be a semisimple ring, and let R = B1 ⊕ · · · ⊕Br be a decomposition
into simple components arising from some decomposition of R as a direct sum of
minimal left ideals. Suppose that R = B′

1 × · · · × B′
t, where each B′

� is a two-
sided ideal that is also a simple ring. By Lemma C-2.40, each two-sided ideal B′

�

is a direct sum of Bi’s. But B′
� cannot have more than one summand Bi, lest the

simple ring B′
� contain a proper nonzero two-sided ideal. Therefore, t = r and,

after reindexing, B′
i = Bi for all i.

Dropping subscripts, it remains to prove that if B = Matn(k) ∼= Matn′(k′) =
B′, then n = n′ and k ∼= k′. In Proposition C-2.27, we proved that col(�),
consisting of the matrices with jth columns 0 for all j �= �, is a minimal left ideal
in B, so that col(�) is a simple B-module. Therefore,

(0) ⊆ col(1) ⊆ [col(1)⊕ col(2)] ⊆ · · · ⊆ [col(1)⊕ · · · ⊕ col(n)] = B

is a composition series of B as a module over itself. By the Jordan–Hölder Theorem
(Theorem B-1.38 in Part 1), n and the factor modules col(�) are invariants of B.
Now col(�) ∼= col(1) for all �, by Corollary C-2.42, and so it suffices to prove that
k can be recaptured from col(1). But this has been done in Corollary C-2.42(i):
k ∼= EndB(col(1))

op. •

The description of the group algebra kG simplifies when the field k is alge-
braically closed. Here is the most useful version of Maschke’s Theorem.

Corollary C-2.44 (Molien). If G is a finite group and k is an algebraically closed
field whose characteristic does not divide |G|, then

kG ∼= Matn1
(k)× · · · ×Matnr

(k).

Proof. By Maschke’s Theorem, kG is a semisimple ring, and its simple compo-
nents are isomorphic to matrix rings of the form Matn(D), where D arises as
EndkG(L)

op for some minimal left ideal L in kG. Therefore, it suffices to show that
EndkG(L)

op = D = k.

Now EndkG(L)
op ⊆ Endk(L)

op, which is finite-dimensional over k because L is;
hence, D = EndkG(L)

op is finite-dimensional over k. Each f ∈ EndkG(L) is a kG-
map, hence is a k-map; that is, f(au) = af(u) for all a ∈ k and u ∈ L. Therefore,
the map ϕa : L→ L, given by u �→ au, commutes with f ; that is, k (identified with
all ϕa) is contained in Z(D), the center of D. If δ ∈ D, then δ commutes with
every element in k, and so k(δ), the subdivision ring generated by k and δ, is a
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(commutative) field. As D is finite-dimensional over k, so is k(δ); that is, k(δ) is a
finite extension of the field k, and so δ is algebraic over k, by Proposition A-3.84 in
Part 1. But k is algebraically closed, so that δ ∈ k and D = k. •

The next corollary makes explicit a detail from the Wedderburn–Artin Theorem
II, using Molien’s simplification.

Corollary C-2.45. If G is a finite group and Li is a minimal left ideal in CG,
then CG = B1 ⊕ · · · ⊕ Br, where Bi is the ideal generated by all the minimal left
ideals isomorphic to Li. If dimC(Li) = ni, then

Bi = Matni
(C).

Example C-2.46. There are nonisomorphic finite groups G and H having iso-
morphic complex group algebras. If G is an abelian group of order d, then CG is
a direct product of matrix rings over C, because C is algebraically closed. But G
abelian implies CG commutative. Hence, CG is the direct product of d copies of C
(for Matn(C) is commutative only when n = 1). It follows that if H is any abelian
group of order d, then CG ∼= CH. In particular, Z4 and Z2⊕Z2 are nonisomorphic
groups having isomorphic complex group algebras. It follows from this example
that certain properties of a group G get lost in the group algebra CG. �

Corollary C-2.47. If G is a finite group and k is an algebraically closed field
whose characteristic does not divide |G|, then

|G| = n2
1 + n2

2 + · · ·+ n2
r,

where the ith simple component Bi of kG consists of ni × ni matrices. Moreover,
we may assume that n1 = 1.7

Remark. Theorem C-2.97 says that all the ni are divisors of |G|. �

Proof. As vector spaces over k, both kG and Matn1
(k)× · · · ×Matnr

(k) have the
same dimension, for they are isomorphic, by Corollary C-2.44. But dim(kG) = |G|,
and the dimension of the right side is

∑
i dim(Matni

(k)) =
∑

i n
2
i .

Finally, Example C-2.34 shows that there is a unique minimal left ideal isomor-
phic to the trivial module V0(k); the corresponding simple component, say, B1, is
one-dimensional, and so n1 = 1. •

The number m of simple components in CG has a group-theoretic interpreta-
tion; we begin by finding the center of the group algebra.

Definition. Let C1, . . . , Cr be the conjugacy classes in a finite group G. For each
Cj , define the class sum to be the element zj ∈ CG given by

zj =
∑
g∈Cj

g.

Here is a ring-theoretic interpretation of the number r of conjugacy classes.

7By Example C-2.34, the group algebra kG always has a unique minimal left ideal isomorphic
to V0(k), even when k is not algebraically closed.
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Lemma C-2.48. If c is the number of conjugacy classes in a finite group G, then

c = dimC(Z(CG)),

where Z(CG) is the center of the group algebra. In fact, a basis of Z(CG) consists
of all the class sums.

Proof. If zj =
∑

g∈Cj
g is a class sum, then we claim that zj ∈ Z(CG). If h ∈ G,

then hzjh
−1 = zj , because conjugation by any element of G merely permutes the

elements in a conjugacy class. Note that if j �= �, then zj and z� have no nonzero
components in common, and so z1, . . . , zr is a linearly independent list. It remains
to prove that the zj span the center.

Let u =
∑

g∈G agg ∈ Z(CG). If h ∈ G, then huh−1 = u, and so ahgh−1 = ag
for all g ∈ G. Thus, if g and g′ lie in the same conjugacy class of G, then their
coefficients in u are the same. But this says that u is a linear combination of the
class sums zj . •

Theorem C-2.49. If G is a finite group, then the number r of simple components
in CG is equal to the number c of conjugacy classes in G.

Proof. We have just seen, in Lemma C-2.48, that c = dimC(Z(CG)). On the
other hand, Z(Matni

(C)), the center of a matrix ring, is the subspace of all scalar
matrices, so that r = dimC(Z(CG)), by Lemma C-2.48. •

We began this section by seeing that k-representations of a group G correspond
to kG-modules. Let us now return to representations.

Definition. A k-representation of a group σ : G → GL(V ) is irreducible if the
corresponding kG-module V σ is simple.

For example, a one-dimensional (necessarily irreducible) k-representation is a
group homomorphism λ : G→ k×, where k× is the multiplicative group of nonzero
elements of k. The trivial kG-module V0(k) corresponds to the representation
λg = 1 for all g ∈ G.

Theorem C-2.50. Every irreducible representation of a finite abelian group G is
linear.

Proof. By the Wedderburn–Artin Theorem I, CG is a direct sum of matrix rings
CG = L1 ⊕ · · · ⊕ Lt, where each Lj

∼= Matnj
(C). Moreover, Theorem C-2.33 says

that every irreducible CG-module is isomorphic to some Lj . It follows that Lj is
one-dimensional, for CG is commutative (because G is abelian) and Lj

∼= Matnj
(C)

is noncommutative if nj > 1. •

The next result is basic to the construction of the character table of a finite
group.

Theorem C-2.51. If G is a finite group, then the number of its irreducible complex
representations is equal to the number r of its conjugacy classes.



C-2.5. Wedderburn–Artin Theorems 157

Proof. By Theorem C-2.33, every simple CG-module is isomorphic to a minimal
left ideal. Since the number of minimal left ideals is r (the number of simple
components of CG), we see that r is the number of irreducible C-representations of
G. But Theorem C-2.49 equates r with the number c of conjugacy classes in G. •

Example C-2.52.

(i) If G = S3, then CG is six-dimensional. There are three simple components,
for S3 has three conjugacy classes (by Theorem A-4.7 in Part 1, the number
of conjugacy classes in Sn is equal to the number of different cycle structures)
having dimensions 1, 1, and 4, respectively. (We could have seen this without
Theorem C-2.49, for this is the only way to write 6 as a sum of squares aside
from a sum of six 1’s.) Therefore,

CS3
∼= C× C×Mat2(C).

One of the one-dimensional irreducible representations is the trivial one;
the other is sgn (= signum).

(ii) We now analyze kG for G = Q, the quaternion group of order 8. If k = C,
then Corollary C-2.44 gives

CQ ∼= Matn1
(C)× · · · ×Matnr

(C),

while Corollary C-2.47 gives

|Q| = 8 = 1 + n2
2 + · · ·+ n2

r.

It follows that either all ni = 1 or four ni = 1 and one ni = 2. The first case
cannot occur, for it would imply that CQ is a commutative ring, whereas the
group Q of quaternions is not abelian. Therefore,

CQ ∼= C× C× C× C×Mat2(C).

We could also have used Theorem C-2.49, for Q has exactly five conjugacy
classes, namely, {1}, {1}, {i, i}, {j, j}, {k, k}.

The group algebra RQ is more complicated because R is not algebraically
closed. Exercise B-1.14 on page 281 in Part 1 shows that H is a quotient
of RQ, hence H is isomorphic to a direct summand of RQ because RQ is
semisimple. It turns out that

RQ ∼= R× R× R× R×H. �

Here is an amusing application of the Wedderburn–Artin Theorems.

Proposition C-2.53. Let R be a ring whose group of units U = U(R) is finite
and of odd order. Then U is abelian and there are positive integers mi with

|U | =
t∏

i=1

(2mi − 1).

Proof. First, we note that 1 = −1 in R, lest −1 be a unit of even order. Consider
the group algebra kU , where k = F2. Since k has characteristic 2 and |U | is odd,
Maschke’s Theorem says that kU is semisimple. There is a ring map ϕ : kU → R
carrying every k-linear combination of elements of U to “itself”. Now R′ = imϕ
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is a finite subring of R containing U (for kU is finite); since dropping to a subring
cannot create any new units, we have U = U(R′). By Corollary C-2.19, the ring
R′ is semisimple, so that Wedderburn–Artin Theorem I gives

R′ ∼=
t∏

i=1

Matni
(ki),

where each ki is a division ring.

Now ki is finite, because R′ is finite, and so ki is a finite division ring. By the
“other” theorem of Wedderburn, Theorem C-2.31, each ki is a field. But −1 = 1 in
R implies that −1 = 1 in ki (for ki ⊆ R′), and so each field ki has characteristic 2;
hence,

|ki| = 2mi

for integers mi ≥ 1. All the matrix rings must be 1 × 1, for any matrix ring of
larger size must contain an element of order 2, namely, I+K, where K has entry 1
in the first position in the bottom row, and all other entries 0. For example,[

1 0
1 1

]2
=

[
1 0
2 1

]
= I.

Therefore, R′ is a direct product of finite fields of characteristic 2, and so U = U(R′)
is an abelian group whose order is described in the statement. •

It follows, for example, that there is no ring having exactly five units.

The Jacobson–Chevalley Density Theorem, an important generalization
of the Wedderburn–Artin Theorems for certain nonartinian rings, was proved in the
1930s. Call a ring R left primitive if there exists a faithful simple left R-module S;
that is, S is simple and, if r ∈ R and rS = {0}, then r = 0. It can be proved that
commutative primitive rings are fields, while left artinian left primitive rings are
simple. Assume now that R is a left primitive ring, that S is a faithful simple left
R-module, and that k denotes the division ring EndR(S). The Density Theorem
says that if R is left artinian, then R ∼= Matn(k), while if R is not left artinian,
then for every integer n > 0, there exists a subring Rn of R with Rn

∼= Matn(k).
We refer the reader to Lam [133], pp. 191–193.

The Wedderburn–Artin Theorems led to several areas of research, two of which
are descriptions of division rings and of finite-dimensional algebras. Division rings
will be considered later in the context of central simple algebras.

Let us discuss finite-dimensional algebras now. Thanks to the theorems of
Maschke and Molien, the Wedderburn–Artin Theorems apply to ordinary repre-
sentations of a finite group G, that is, to kG-modules, where k is a field whose
characteristic does not divide |G|, for kG is semisimple in this case. However,
modular representations, that is, kG-modules for which the characteristic of k
does divide |G|, arise naturally. For example, if G is a finite solvable group, then
a minimal normal subgroup N is a vector space over Fp for some prime p (The-
orem C-1.54). Now G acts on N (by conjugation), and so N is an FpG-module.
Modular representations are used extensively in the classification of the finite simple
groups.
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In his study of modular representations, Brauer observed that the important
modules M are indecomposable rather than irreducible. Recall that a module M
is indecomposable if M �= {0} and there are no nonzero modules A and B with
M = A ⊕ B. In the ordinary case, a module is indecomposable if and only if it is
irreducible, but this is no longer true in the modular case.

There is a uniqueness theorem for direct sums.

Theorem (Krull−Schmidt).8 Let A be a left R-module over some ring R. If A
has both chain conditions on its submodules and

A = H1 ⊕ · · · ⊕Hs = K1 ⊕ · · · ⊕Kt,

where the Hi,Kj are indecomposable modules, then s = t and, after reindexing,
Hi

∼= Ki for all i. Moreover, there is a replacement property: given any r
between 1 and s, the reindexing may be chosen so that

G = H1 ⊕ · · · ⊕Hr ⊕Kr+1 ⊕ · · · ⊕Ks.

Given the Basis Theorem, the Krull–Schmidt Theorem implies the Fundamen-
tal Theorem of Finite Abelian Groups.

Corollary If a finite abelian group G is a direct sum

G = H1 ⊕ · · · ⊕Hs = K1 ⊕ · · · ⊕Kt,

where each Hi and Kj is a primary cyclic group, then s = t and after reindexing,
Hi
∼= Ki for all i.

Proof. Cyclic primary groups are indecomposable. We assume that G is finite so
that it has both chain conditions on its subgroups. •

When kG is semisimple, Theorem C-2.33 says that there are only finitely many
simple modules, which implies that there are only finitely many indecomposables.
This is not true in the modular case, however. For example, if k is an algebraically
closed field of characteristic 2, kV and kA4 have infinitely many nonisomorphic
indecomposable modules.

A finite-dimensional k-algebra R over a field k is said to have finite repre-
sentation type if there are only finitely many nonisomorphic finite-dimensional
indecomposable R-modules. D. G. Higman proved, for a finite group G, that kG
has finite representation type for every field k if and only if all its Sylow subgroups
G are cyclic (Curtis–Reiner [48], p. 431). In the 1950s, the following two problems,
known as the Brauer–Thrall conjectures, were posed. Let R be a ring not of
finite representation type.

(I) Are the dimensions of the indecomposable R-modules unbounded?

(II) Is there a strictly increasing sequence n1 < n2 < · · · with infinitely many
nonisomorphic indecomposable R-modules of dimension ni for every i?

8The Krull–Schmidt Theorem also holds for direct products of nonabelian groups (Rot-
man [188], p. 149). The proof generalizes to groups with operators, a special case of which
is modules.
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The positive solution of the first conjecture, by Roiter in 1968, had a great im-
pact. Shortly thereafter, Gabriel [78] introduced graph-theoretic methods, associat-
ing finite-dimensional algebras to certain oriented graphs, called quivers. He proved
that a connected quiver has a finite number of nonisomorphic finite-dimensional rep-
resentations if and only if the quiver is a Dynkin diagram of type An, Dn, E6, E7, or
E8. Dynkin diagrams are multigraphs that classify simple complex Lie algebras;
in addition to those just mentioned, there are diagrams Bn, Cn, F4, and G2 (see
page 167). Gabriel’s result can be rephrased in terms of left hereditary k-algebras
(all left ideals are projective modules). Dlab and Ringel generalized this classifica-
tion to include other left hereditary algebras, thereby extending Gabriel’s result to
all Dynkin diagrams.

A positive solution of the Brauer–Thrall conjecture (II) above for all finite-
dimensional algebras over an algebraically closed field follows from results of
Bautista, Gabriel, Roiter, and Salmerón. M. Auslander and Reiten created a theory
involving almost split sequences and Auslander–Reiten quivers. As of this writing,
Auslander–Reiten theory is the most powerful tool in the study of representations
of finite-dimensional algebras. We refer the reader to Artin–Nesbitt–Thrall [9],
Dlab–Ringel [54], Drozd–Kirichenko [57], Jacobson [114], and Rowen [194] for a
discussion of these ideas.

Exercises

C-2.18. If k is a division ring whose center is a field of characteristic p > 0, prove that
every finite subgroup G of k× is cyclic.

Hint. Consider FpG, and use Theorem C-2.31.

C-2.19. Find CG if G = D8, the dihedral group of order 8.

C-2.20. Find CG if G = A4.

Hint. A4 has four conjugacy classes.

C-2.21. (i) Let k be a field, and view sgn: Sn → {±1} ⊆ k. Define Sig(k) to be k
made into a kSn-module (as in Proposition C-2.13): if γ ∈ Sn and a ∈ k, then
γa = sgn(γ)a. Prove that if Sig(k) is an irreducible kSn-module and k does not
have characteristic 2, then Sig(k) �∼= V0(k).

(ii) Find CS5.
Hint. There are five conjugacy classes in S5.

C-2.22. Let G be a finite group, and let k and K be algebraically closed fields whose
characteristics p and q, respectively, do not divide |G|.

(i) Prove that kG and KG have the same number of simple components.

(ii) Prove that the degrees of the irreducible representations of G over k are the same
as the degrees of the irreducible representations of G over K.
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C-2.6. Introduction to Lie Algebras

We have just discussed semisimple rings in general; the next step in studying group
representations is to discuss group algebras kG in particular. Since we have men-
tioned Dynkin diagrams, however, we say a bit about them here. Readers who
prefer more groups now, however, may skip this section and proceed to studying
characters.

There are interesting examples of nonassociative algebras, the most important
of which are Lie algebras. In the late nineteenth century, Lie (pronounced Lee)
studied the solution space S of a system of partial differential equations using a
groupG of transformations of S. The underlying set of G is a differentiable manifold
and its group operation is a C∞-function; such groups are called Lie groups. The
solution space is intimately related to its Lie group G; in turn, G is studied using
its associated Lie algebra, a considerably simpler object, which arises as the tangent
space at the identity element of G. Moreover, the classification of the simple finite-
dimensional complex Lie algebras, due to Killing and Cartan at the turn of the
twentieth century, served as a model for the recent classification of all finite simple
groups. Chevalley recognized that one could construct analogous families of finite
simple groups by imitating the construction of simple Lie algebras, and Chevalley’s
groups are called groups of Lie type. Aside from this fundamental reason for
their study, Lie algebras turn out to be the appropriate way to deal with families
of linear transformations on a vector space (in contrast to the study of canonical
forms of a single linear transformation given in the first sections of Chapter C-1).

Before defining Lie algebras, we first generalize the notion of derivation.

Definition. A not-necessarily-associative k-algebra A over a commutative
ring k is a k-module equipped with a binary operation A × A → A, denoted by
(a, b) �→ ab, such that

(i) a(b+ c) = ab+ ac and (b+ c)a = ba+ ca for all a, b, c ∈ A;

(ii) ua = au for all u ∈ k and a ∈ A;

(iii) a(ub) = (au)b = u(ab) for all u ∈ k and a, b ∈ A.

A derivation of A is a k-map d : A→ A such that, for all a, b ∈ A,

d(ab) = (da)b+ a(db).

Aside from ordinary differentiation in calculus, which is a derivation because
the product rule (fg)′ = f ′g + fg′ holds, another example is provided by the R-
algebra A of all real-valued functions f(x1, . . . , xn) of several variables: the partial
derivatives ∂/∂xi are derivations, for i = 1, . . . , n.

The composite of two derivations need not be a derivation. For example, if
d : A→ A is a derivation, then d2 = d ◦ d : A→ A satisfies the equation

d2(fg) = d2(f)g + 2d(f)d(g) + fd2(g);

thus, the mixed term 2d(f)d(g) is the obstruction to d2 being a derivation. The
Leibniz formula for ordinary differentiation on the ring of all C∞-functions gen-
eralizes to derivations on any not-necessarily-associative algebra A. If f, g ∈ A,
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then

dn(fg) =

n∑
i=0

(
n

i

)
dif · dn−ig.

It is worthwhile to compute the composite of two derivations d1 and d2. If A is a
not-necessarily-associative algebra and f, g ∈ A, then

d1d2(fg) = d1 [(d2f)g + f(d2g)]

= (d1d2f)g + (d2f)(d1g) + (d1f)(d2g) + f(d1d2g).

Of course,

d2d1(fg) = (d2d1f)g + (d1f)(d2g) + (d2f)(d1g) + f(d2d1g).

If we denote d1d2 − d2d1 by [d1, d2], then

[d1, d2](fg) = ([d1, d2]f)g + f([d1, d2]g);

that is, [d1, d2] = d1d2 − d2d1 is a derivation.

Example C-2.54. If k is a commutative ring, equip Matn(k) with the bracket
operation :

[A,B] = AB −BA.

Of course, A and B commute if and only if [A,B] = 0. It is easy to find examples
showing that the bracket operation is not associative. However, for any fixed n×n
matrix M , the function

adM : Matn(k)→ Matn(k),

defined by

adM : A �→ [M,A],

is a derivation:

[M, [A,B]] = [[M,A], B] + [A, [M,B]].

The verification of this identity should be done once in one’s life. �

The definition of Lie algebra involves a vector space with a binary operation
generalizing the bracket operation.

Definition. A Lie algebra is a vector space L over a field k equipped with a
bilinear operation L×L→ L, denoted by (a, b) �→ [a, b] (and called bracket), such
that

(i) [a, a] = 0 for all a ∈ L;

(ii) for each a ∈ L, the function ada : b �→ [a, b] is a derivation.

For all u, v ∈ L, bilinearity gives

[u+ v, u+ v] = [u, u] + [u, v] + [v, u] + [v, v],

which, when coupled with the first axiom [a, a] = 0, gives

[u, v] = −[v, u];
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that is, bracket is anticommutative. The second axiom is often written out in
more detail. If b, c ∈ L, then their product in L is [b, c]; that ada is a derivation is
to say that

[a, [b, c]] = [[a, b], c] + [b, [a, c]];

rewriting,

[a, [b, c]]− [b, [a, c]]− [[a, b], c] = 0.

The anticommutativity from the first axiom now gives the Jacobi identity :

[a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0 for all a, b, c ∈ L

(just cyclically permute a, b, c). Thus, a vector space L is a Lie algebra if and only
if [a, a] = 0 for all a ∈ L and the Jacobi identity holds.

Here are some examples of Lie algebras.

Example C-2.55.

(i) If V is a vector space over a field k, define [a, b] = 0 for all a, b ∈ V . It
is obvious that V so equipped is a Lie algebra; it is called an abelian Lie
algebra.

(ii) In R3, define [u, v] = u × v, the cross product (or vector product) defined
in calculus. It is routine to check that v× v = 0 and that the Jacobi identity
holds, so that R3 is a Lie algebra. This example may be generalized: for
every field k, cross product can be defined on the vector space k3 making it
a Lie algebra.

(iii) A subalgebra S of a Lie algebra L is a subspace that is closed under bracket:
if a, b ∈ S, then [a, b] ∈ S. It is easy to see that every subalgebra of a Lie
algebra is itself a Lie algebra.

(iv) If k is a field, then Matn(k) is a Lie algebra with bracket defined by

[A,B] = AB −BA.

We usually denote this Lie algebra by gl(n, k). This example is quite general,
for it is a theorem of Ado that every finite-dimensional Lie algebra over a
field k of characteristic 0 is isomorphic to a subalgebra of gl(n, k) for some n
(Jacobson [113], p. 202).

(v) An interesting subalgebra of gl(n, k) is sl(n, k), which consists of all n× n
matrices of trace 0. In fact, if G is a Lie group whose associated Lie alge-
bra is g, then there is an analog of exponentiation g → G. In particular,
if g = gl(n,C), then this map is exponentiation A �→ eA. Thus, Propo-
sition B-3.71(viii) in Part 1 shows that exponentiation sends sl(n,C) into
SL(n,C).

(vi) If A is any algebra over a field k, then

Der(A/k) = {all derivations d : A→ A},

with bracket [d1, d2] = d1d2 − d2d1, is a Lie algebra.
It follows from the Leibniz rule that if k has characteristic p > 0, then

dp is a derivation for every d ∈ Der(A/k), since
(
p
i

)
≡ 0 mod p whenever
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0 < i < p. (This is an example of what is called a restricted Lie algebra
of characteristic p.)

There is a Galois theory for certain purely inseparable extensions (Jacob-
son [111], pp. 533–536). If k is a field of characteristic p > 0 and E/k is a
finite purely inseparable extension of height 1, that is, αp ∈ k for all α ∈ E,
then there is a bijection between the family of all intermediate fields and the
restricted Lie subalgebras of Der(E/k), given by

B �→ Der(E/B);

the inverse of this function is given by

L �→
{
e ∈ E : D(e) = 0 for all D ∈ L

}
. �

Not surprisingly, all Lie algebras over a field k form a category.

Definition. Let L and L′ be Lie algebras over a field k. Then a function f : L→ L′

is a Lie homomorphism if f is a k-linear transformation that preserves bracket:
for all a, b ∈ L,

f([a, b]) = [fa, fb].

Definition. An ideal of a Lie algebra L is a subspace I such that [x, a] ∈ I for
every x ∈ L and a ∈ I.

Even though a Lie algebra need not be commutative, its anticommutativity
shows that every left ideal (as just defined) is necessarily a right ideal; that is,
every ideal is two-sided.

A Lie algebra L is called simple if L �= {0} and L has no nonzero proper ideals.

Definition. If I is an ideal in L, then the quotient L/I is the quotient space
(considering L as a vector space and I as a subspace) with bracket defined by

[a+ I, b+ I] = [a, b] + I.

It is easy to check that this bracket on L/I is well-defined. If a′ + I = a + I
and b′ + I = b+ I, then a− a′ ∈ I and b− b′ ∈ I, and so

[a′, b′]− [a, b] = [a′, b′]− [a′, b] + [a′, b]− [a, b]

= [a′, b′ − b] + [a′ − a, b′] ∈ I.

Example C-2.56.

(i) If f : L→ L′ is a Lie homomorphism, then its kernel is defined as usual:

ker f = {a ∈ L : f(a) = 0}.

It is easy to see that ker f is an ideal in L.
Conversely, the natural map ν : L → L/I, defined by a �→ a + I, is a

Lie homomorphism whose kernel is I. Thus, a subspace of L is an ideal if
and only if it is the kernel of some Lie homomorphism.
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(ii) If I and J are ideals in a Lie algebra L, then

IJ =
{∑

r

[ir, jr] : ir ∈ I and jr ∈ J
}
.

In particular, L2 = LL is the analog for Lie algebras of the commutator
subgroup of a group: L2 = {0} if and only if L is abelian.

(iii) There is an analog for Lie algebras of the derived series of a group. The
derived series of a Lie algebra L is defined inductively:

L(0) = L, L(n+1) = (L(n))2.

A Lie algebra L is called solvable if there is some n ≥ 0 with L(n) = {0}.
(iv) There is an analog for Lie algebras of the descending central series of a group.

The descending central series is defined inductively:

L1 = L, Ln+1 = LLn.

A Lie algebra L is called nilpotent if there is some n ≥ 0 with Ln = {0}. �

We merely mention the first two theorems in the subject. If L is a Lie algebra
and a ∈ L, then ada : L → L, given by ada : x �→ [a, x], is a linear transformation
on L (viewed merely as a vector space). We say that a is ad-nilpotent if ada is a
nilpotent operator; that is, (ada)

m = 0 for some m ≥ 1.

Theorem C-2.57 (Engel’s Theorem).

(i) Let L be a finite-dimensional Lie algebra over any field k. Then L is nilpotent
if and only if every a ∈ L is ad-nilpotent.

(ii) Let L be a Lie subalgebra of gl(n, k) all of whose elements A are nilpotent
matrices. Then L can be put into strict upper triangular form (all diagonal
entries are 0); that is, there is a nonsingular matrix P so that PAP−1 is
strictly upper triangular for every A ∈ L.

Proof. Humphreys [101], p. 12. •

Compare Engel’s Theorem with Exercise B-3.40 in Part 1, which is the much
simpler version for a single nilpotent matrix. Nilpotent Lie algebras are so called
because of Engel’s Theorem; it is likely that nilpotent groups are so called by
analogy with Engel’s Theorem. Corollary C-1.47, which states that every finite
p-group can be imbedded as a subgroup of unitriangular matrices over Fp, may be
viewed as a group-theoretic analog of Engel’s Theorem.

Theorem C-2.58 (Lie’s Theorem). Every solvable subalgebra L of gl(n, k),
where k is an algebraically closed field, can be put into (not necessarily strict)
upper triangular form; that is, there is a nonsingular matrix P so that PAP−1 is
upper triangular for every A ∈ L.

Proof. Humphreys [101], p. 16. •
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Further study of Lie algebras leads to the classification of all finite-dimensional
simple Lie algebras over an algebraically closed field of characteristic 0, due to
Cartan and Killing (see Humphreys [101], Chapter IV, and Jacobson [113], Chap-
ter IV). To each such algebra, they associated a certain geometric configuration
called a root system, which is characterized by a Cartan matrix. Cartan matrices
are, in turn, characterized by the Dynkin diagrams. Thus, Dynkin diagrams
arise from simple Lie algebras over C, and two such algebras are isomorphic if and
only if they have the same Dynkin diagram. This study uses representations anal-
ogous to representations of groups. A representation of a Lie algebra L is a Lie
homomorphism σ : L → gl(n,C). The radical Rad(L) of a Lie algebra L is the
largest solvable ideal (Rad(L) exists and is unique). Amongst other results, there
is an analog of Wedderburn’s Theorem: Weyl’s Theorem says that every Lie
algebra L with Rad(L) = {0} is a direct sum of simple Lie algebras ([101], p. 28).
Recently, Block, Premet, Strade, and Wilson classified all finite-dimensional simple
Lie algebras over algebraically closed fields of characteristic p ≥ 5: there are two
other types aside from analogs given by Dynkin diagrams (see Strade [215]).

Dynkin diagrams have also appeared in work of Gabriel [78] in classifying
finite-dimensional algebras over fields.

There are other not-necessarily-associative algebras of interest. Jordan alge-
bras are algebras A which are commutative (instead of anticommutative) and in
which the Jacobi identity is replaced by

(x2y)x = x2(yx)

for all x, y ∈ A. These algebras were introduced by P. Jordan to provide an algebraic
setting for doing quantum mechanics. An example of a Jordan algebra is a subspace
of all n× n matrices, over a field of characteristic not 2, equipped with the binary
operation A ∗B, where

A ∗B = 1
2 (AB +BA).

Another source of not-necessarily-associative algebras comes from combina-
torics. The usual construction of a projective plane P (k) over a field k, as the
family of all lines in k3 passing through the origin, leads to descriptions of its
points by “homogeneous coordinates” [x, y, z], where x, y, z ∈ k. Define an abstract
projective plane to be an ordered pair (X,L), where X is a finite set and L is a
family of subsets of X, called lines, subject to the following axioms:

(i) All lines have the same number of points.

(ii) Given any two points in X, there is a unique line containing them.

We want to introduce homogeneous coordinates to describe the points of such a
projective plane, but there is no field k given at the outset. Instead, we look at a
collection K of functions on X, called collineations, and we equip K with two binary
operations (called addition and multiplication). In general, K is a not-necessarily-
associative algebra, but certain algebraic properties follow from the geometry of the
plane. A theorem of Desargues holds if and only if multiplication is associative and
K is a division ring; a theorem of Pappus also holds if and only if multiplication
is commutative and K is a field (Reid–Szendrői [179], p. 88). Thus, Wedderburn’s
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Figure C-2.1. Dynkin diagrams.

Theorem C-2.31 implies that if Desargues’s Theorem holds in a finite projective
plane, then so does the Pappus Theorem.

An interesting nonassociative algebra is the algebra ofCayley numbers (some-
times called octonions), which is an eight-dimensional real vector space containing
the quaternions as a subalgebra (see the article by Curtis in Albert [3]). Indeed,
the Cayley numbers almost form a real division algebra (“almost”, for even though
every nonzero element has a multiplicative inverse, multiplication in the Cayley
numbers is not associative). The algebra of Cayley numbers acquires added in-
terest (as do other not-necessarily-associative algebras) because its automorphism
group has interesting properties. For example, the exceptional simple Lie algebra
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E8 is isomorphic to the Lie algebra of all the derivations of the Cayley numbers,
while the Monster, the largest sporadic finite simple group, is the automorphism
group of a certain nonassociative algebra constructed by Griess.

Exercises

∗ C-2.23. Consider the de Rham complex when n = 2:

0 → Δ0(X)
d0→ Δ1(X)

d1→ Δ2(X) → 0.

Prove that if f(x, y) ∈ A(X) = Δ0(X), then

d0f =
∂f

∂x
dx+

∂f

∂y
dy,

and that if Pdx+Qdy is a 1-form, then

d1(Pdx+Qdy) =

(
∂Q

∂x
− ∂P

∂y

)
dx ∧ dy.

C-2.24. Prove that if L and L′ are nonabelian two-dimensional Lie algebras, then L ∼= L′.

C-2.25. (i) Prove that the center of a Lie algebra L, defined by

Z(L) = {a ∈ L : [a, x] = 0 for all x ∈ L},
is an abelian ideal in L.

(ii) Give an example of a Lie algebra L for which Z(L) = {0}.
(iii) If L is nilpotent and L �= {0}, prove that Z(L) �= {0}.

C-2.26. Prove that if L is an n-dimensional Lie algebra, then Z(L) cannot have dimension
n− 1. (Compare Exercise A-4.79 on page 172 in Part 1.)

C-2.27. Equip C3 with a cross product (using the same formula as the cross product on
R3). Prove that

C3 ∼= sl(2,C).

C-2.7. Characters

Characters will enable us to use the preceding results about group algebras to
produce numerical invariants whose arithmetic properties help to prove theorems
about finite groups. The first important instance of this technique is the following
theorem.

Theorem C-2.59 (Burnside). Every group of order pmqn, where p and q are
primes, is a solvable group.

Notice that Burnside’s Theorem cannot be improved to groups having orders
with only three distinct prime factors, for A5 is a simple group of order 60 = 22 ·3·5.

Proposition C-2.60. If Burnside’s Theorem is false, then there exists a simple
group G of order pmqn for primes p and q which has a conjugacy class of G whose
size is a power of p > 1.
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Proof. Assume that Burnside’s Theorem is false, and let G be a “least criminal”;
that is, G is a nonsolvable group of smallest order pmqn. If G has a proper normal
subgroup H with H �= {1}, then both H and G/H are solvable, for their orders
are smaller than |G| and are of the form piqj . By Proposition A-5.25 in Part 1,
G is solvable, and this is a contradiction. We may assume, therefore, that G is a
nonabelian simple group.

Let Q be a Sylow q-subgroup of G. If Q = {1}, then G is a p-group, contra-
dicting G being a nonabelian simple group; hence, Q �= {1}. Since the center of
Q is nontrivial, by Theorem C-1.22, there exists an element x �= 1 with x ∈ Z(Q).
Now Q ⊆ CG(x), for every element in Q commutes with x, and so

[G : Q] = [G : CG(x)][CG(x) : Q];

that is, [G : CG(x)] is a divisor of [G : Q] = pm. Of course, [G : CG(x)] is the
number of elements in the conjugacy class xG of x (Corollary C-1.18). •

We will use characters to prove Theorem C-2.106, which says no such simple
group exists.

We now specialize the definition of k-representation from arbitrary fields k to
the complex numbers C; we abbreviate “C-representation” as “representation”.

Definition. A representation of a group G is a homomorphism

σ : G→ GL(V ),

where V is a vector space over C. The degree of σ is dimC(V ).

For the rest of this section, groups G are finite and representations
σ : G→ GL(V ) have V a finite-dimensional vector space over C.

We may view a representation σ : G → GL(V ) either as a left CG-module V σ

(its corresponding module) or as a matrix representation. The scalar multipli-
cation on V σ is given, for each g ∈ G and v ∈ V , by

gv = σ(g)(v).

One of the most important representations is the regular representation.

Definition. If G is a group, then the representation ρ : G→ GL(CG) defined, for
all g, h ∈ G, by

ρ(g) : h �→ gh

is called the regular representation.

The module corresponding to the regular representation is CG considered as a
left module over itself, for the original scalar multiplication on CG coincides with
the scalar multiplication given by ρ; that is, ρ(g)(v) is just the product gv in CG.

Example C-2.61. A choice of basis of V allows each σ(g) to be regarded as an
n × n nonsingular complex matrix A(g) = [aij(g)]. We remind the reader of a
remark made on page 136: G-sets give representations. If X = v1, . . . , vn is a basis
of a complex vector space V and τ ∈ SX , then there is a unique nonsingular linear
transformation T : V → V with T (vj) = vτ(j) for all j, and τ �→ T is an injective
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homomorphism SX → GL(V ). In more detail, the matrix of T is a permutation
matrix : it arises by permuting the columns of the identity matrix I by τ ; thus, it
has exactly one entry equal to 1 in each row and column while all its other entries
are 0. �

Two representations σ : G→ GL(V ) and τ : G→ GL(W ) can be added.

Definition. If σ : G→ GL(V ) and τ : G→ GL(W ) are representations, then their
sum σ + τ : G→ GL(V ⊕W ) is defined by

(σ + τ )(g) : (v, w) �→ (σ(g)v, τ (g)w)

for all g ∈ G, v ∈ V , and w ∈W .

In matrix terms, if σ : G→ GL(n,C) and τ : G→ GL(m,C), then

σ + τ : G→ GL(n+m,C),

and if g ∈ G, then (σ + τ )(g) is the direct sum of blocks σ(g)⊕ τ (g); that is,

(σ + τ )(g) =

[
σ(g) 0
0 τ (g)

]
.

The following terminology is the common one used in group representations.

Definition. A representation σ of a group G is irreducible if the corresponding
CG-module is simple. A representation σ is completely reducible if σ = τ1+ · · ·+
τm, where each τi is irreducible.

9 A representation σ is linear if degree(σ) = 1.

Example C-2.62.

(i) The trivial representation of any group G is linear, for the principal module
V0(C) is one-dimensional. If G = Sn, then sgn : G → {±1} is also a linear
representation.

(ii) Every linear representation is irreducible, for the corresponding CG-module
must be simple; after all, every submodule is a subspace, and {0} and V are
the only subspaces of a one-dimensional vector space V . It follows that the
trivial representation of any group G is irreducible, as is the representation
sgn of Sn. �

Recall the proof of the Wedderburn–Artin Theorem: there are pairwise non-
isomorphic minimal left ideals L1, . . . , Lr in CG and CG = B1 ⊕ · · · ⊕ Br, where
Bi is generated by all minimal left ideals isomorphic to Li. By Corollary C-2.45,
Bi
∼= Matni

(C), where ni = dimC(Li). But all minimal left ideals in Matni
(C)

are isomorphic, by Corollary C-2.41, so that Li
∼= col(1) ∼= Cni (see Exam-

ple C-2.6(iii)). Therefore,

Bi
∼= EndC(Li).

9Since representation here means C-representation, Maschke’s Theorem (with Molien’s as-
sistance) says that every representation is completely reducible.
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Proposition C-2.63.

(i) For each minimal left ideal Li in CG, there is an irreducible representation
λi : G→ GL(Li), given by left multiplication:

λi(g) : ui �→ gui,

where g ∈ G and ui ∈ Li; moreover, degree(λi) = ni = dimC(Li).

(ii) The representation λi extends to a C-algebra map λ̃i : CG→ EndC(Li) if we
define

λ̃i(g)uj =

{
gui if j = i,

0 if j �= i

for g ∈ G and uj ∈ Bj.

Proof.

(i) Since Li is a left ideal in CG, each g ∈ G acts on Li by left multiplication,
and so the representation λi of G is as stated. Thus, λi is the restriction of
the regular representation, so that the corresponding module Lσ

i is Li, and
λi is an irreducible representation (because Li, being a minimal left ideal, is
a simple module).

(ii) If we regard CG and EndC(Li) as vector spaces over C, then λi extends to a

linear transformation λ̃i : CG → EndC(Li) (because the elements of G are a
basis of CG):

λ̃i :
∑
g∈G

cgg �→
∑
g∈G

cgλi(g);

remember that λi(g) ∈ GL(Li) ⊆ EndC(Li). Let us show that λ̃i : CG →
EndC(Li) is an algebra map. Now CG = B1 ⊕ · · · ⊕ Br, where the Bj are

two-sided ideals. To prove that λ̃i is multiplicative, it suffices to check its
values on products of basis elements. If uj ∈ Bj and g, h ∈ G, then

λ̃i(gh) : uj �→ (gh)uj ,

while

λ̃i(g)λ̃i(h) : uj �→ huj �→ g(huj);

these are the same, by associativity. Thus,

λ̃i(gh) = λ̃i(g)λ̃i.

Finally, λ̃i(1) = λi(1) = 1Li
, and so λ̃i is an algebra map. •

It is natural to call two representations equivalent if their corresponding mod-
ules are isomorphic. The following definition arises from Corollary C-2.16, which
gives a criterion that CG-modules (Cn)σ and (Cn)τ are isomorphic as CG-modules.

Definition. Let σ, τ : G→ GL(n,C) be representations of a group G. Then σ and
τ are equivalent , denoted by σ ∼ τ , if there is a nonsingular n× n matrix P that
intertwines them; that is, for every g ∈ G,

Pσ(g)P−1 = τ (g).
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Corollary C-2.64.

(i) Every irreducible representation of a finite group G is equivalent to one of the
representations λi given in Proposition C-2.63(i).

(ii) If σ : G → GL(V ) is a matrix representation of a finite group G, then σ(g)
is similar to a diagonal matrix for each g ∈ G.

Proof.

(i) If σ : G → GL(V ) is an irreducible representation σ, then the corresponding
CG-module V σ is a simple module. Therefore, V σ ∼= Li, for some i, by
Theorem C-2.33. But Li

∼= V λi , so that V σ ∼= V λi and σ ∼ λi.

(ii) If τ = σ|
〈
g
〉
, then τ (g) = σ(g). Now τ is a representation of the abelian

group
〈
g
〉
, and so part (i) implies that the module V τ is a direct sum of

one-dimensional submodules. If V τ =
〈
v1
〉
⊕ · · · ⊕

〈
vm

〉
, then the matrix of

σ(g) with respect to the basis v1, . . . , vm is diagonal. •

Example C-2.65.

(i) By Theorem C-2.50, every irreducible representation of a finite abelian group
is linear.

(ii) The Wedderburn–Artin Theorems can be restated to say that every represen-
tation τ : G→ GL(V ) is completely reducible: τ = σ1 + · · ·+ σk, where each
σj is irreducible; moreover, the multiplicity of each σj is uniquely determined
by τ . Since each σj is equivalent to the irreducible representation λi arising
from a minimal left ideal Li, we usually collect terms and write τ ∼

∑
i miλi,

where the multiplicities mi are nonnegative integers.

(iii) The regular representation ρ : G→ GL(CG) is important because every irre-
ducible representation is a summand of it. Now ρ is equivalent to the sum

ρ ∼ n1λ1 + · · ·+ nrλr,

where ni is the degree of λi (recall that CG =
⊕

i Bi, where Bi
∼= EndC(Li) ∼=

Matni
(C); as a CG-module, the simple module Li can be viewed as the first

columns of ni×ni matrices, and so Bi is a direct sum of ni copies of Li). �

Recall that the trace of an n×n matrix A = [aij ] with entries in a commutative
ring k is the sum of the diagonal entries: tr(A) =

∑n
i=1 aii. We remind the reader

of some elementary facts about the trace.

Proposition C-2.66.

(i) If I is the n × n identity matrix and k is a field of characteristic 0, then
tr(I) = n.

(ii) tr(A) = −
∑n

i=1 αi, where α1, . . . , αn are the eigenvalues of A (with multi-
plicities).
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(iii) If A = [aij ] and B = [bij ] are n × n matrices with entries in a commutative
ring k, then

tr(A+B) = tr(A) + tr(B) and tr(AB) = tr(BA).

(iv) If B = PAP−1, then tr(B) = tr(A).

Proof.

(i) The sum of the diagonal entries is n, which is not 0 because k has character-
istic 0.

(ii) Proposition B-3.54 in Part 1.

(iii) The additivity of trace follows from the diagonal entries of A + B being
aii + bii. If (AB)ii denotes the ii entry of AB, then

(AB)ii =
∑
j

aijbji,

and so

tr(AB) =
∑
i

(AB)ii =
∑
i,j

aijbji.

Similarly,

tr(BA) =
∑
j,i

bjiaij .

The entries commute because they lie in the commutative ring k, and so
aijbji = bjiaij for all i, j. It follows that tr(AB) = tr(BA), as desired.

(iv) Using (ii), we have

tr(B) = tr
(
(PA)P−1

)
= tr

(
P−1(PA)

)
= tr(A). •

It follows from Proposition C-2.66(iii) that we can define the trace of a linear
transformation T : V → V , where V is a vector space over a field k, as the trace
of any matrix arising from it: if A and B are matrices of T , determined by two
choices of bases of V , then B = PAP−1 for some nonsingular matrix P , and so
tr(B) = tr(A).

Definition. If σ : G→ GL(V ) is a representation, then its character is the func-
tion χσ : G→ C defined by

χσ(g) = tr(σ(g)).

We call χσ the character afforded by σ. An irreducible character is a character

afforded by an irreducible representation. The degree of χσ is defined to be the
degree of σ; that is,

degree(χσ) = degree(σ) = dim(V ).

A character of degree 1 is called linear.

If σ : G→ GL(1, k) = k× is a linear representation, then the character afforded
by σ is linear.
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Remark. Where does the definition of character come from? Linear characters
ϕ : G→ GL1(k) are really homomorphisms ϕ : G→ k×, the multiplicative group of
nonzero elements of k. In particular, when k = C, values are just roots of unity, for
these are the only elements of finite order in C×. Such functions arose in number
theory, in work of Gauss (and earlier), for example. In the 1880s, in his study of
discriminants of algebraic number fields, Dedekind saw an analogy with groups. If
G is a finite group of order n, he considered the |G|×|G| matrix A over C[X], where
X = {xg : g ∈ G} is a set of n commuting indeterminates, and A = [agh] = [xgh−1 ].
For G a cyclic group, this matrix is reminiscent of circulants (matrices familiar to
nineteenth-century mathematicians and whose eigenvalues were explicitly known).
Denote det(A) by Θ(G); it is a polynomial of total degree n, and it was called the
group determinant. Dedekind was able to factor Θ(G) for abelian G as a product

of linear forms whose coefficients are characters; in fact, if Ĝ is the character group
Hom(G,C×), then

Θ(G) =
∏
χ∈G̃

(∑
g∈G

χ(g)xg

)
.

Dedekind also computed Θ(G) for certain nonabelian groups G of small order (fac-
tors are not necessarily linear). In 1896, not making progress understanding such
factorizations, Dedekind wrote two letters to Frobenius. As Lam writes in [134],
these letters “became the catalyst for the creation of the character theory for ab-
stract nonabeliean groups.” �

Example C-2.67.

(i) Every linear character is irreducible, for every linear representation is simple.

(ii) The representation λi : G → GL(Li), given by λi : ui �→ gui if ui ∈ Li, is
irreducible (see Proposition C-2.63(i)). Thus, the character χi afforded by
λi, defined by

χi = χλi
,

is irreducible.

(iii) In light of Proposition C-2.63(ii), it makes sense to speak of χi(u) for every
u ∈ CG. If we write u = u1 + · · ·+ur ∈ B1⊕ · · · ⊕Br, where uj ∈ Bj , define

χi(u) = λ̃i(ui). In particular, χi(ui) = tr(λ̃i(ui)) and χi(uj) = 0 if j �= i.

(iv) If σ : G→ GL(V ) is a representation, then σ(1) is the identity matrix. Hence,
Proposition C-2.66(i) gives χσ(1) = n, where n is the degree of σ.

(v) Let σ : G→ SX be a homomorphism; as in Example C-2.61, we may regard σ
as a representation on V , where V is the vector space over C with basisX. For
every g ∈ G, the matrix σ(g) is a permutation matrix, and its xth diagonal
entry is 1 if σ(g)x = x; otherwise, it is 0. Thus,

χσ(g) = tr(σ(g)) = Fix(σ(g)),

the number of x ∈ X fixed by σ(g). In other words, if X is a G-set, then
each g ∈ G acts on X, and the number of fixed points of the action of g is
a character value (see Example C-2.87 for a related discussion). �
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Proposition C-2.68. If χσ is the character afforded by a representation σ : G→
GL(V ), then for each g ∈ G, χσ(g) is a sum of roots of unity.

Proof. Since G is finite (our standing assumption), each g ∈ G has finite order. If
gn = 1, then σ(g)n = I, so that every eigenvalue of σ(g) is an nth root of unity.
The result now follows from Proposition B-3.54 in Part 1: tr(σ(g)) is the sum of
the eigenvalues of σ(g). •

Characters are compatible with addition of representations. If σ : G→ GL(V )
and τ : G→ GL(W ), then σ + τ : G→ GL(V ⊕W ), and

tr((σ + τ )(g)) = tr

([
σ(g) 0
0 τ (g)

])
= tr(σ(g)) + tr(τ (g)).

Therefore,

χσ+τ = χσ + χτ .

If σ and τ are equivalent representations, then

tr(σ(g)) = tr(Pσ(g)P−1) = tr(τ (g))

for all g ∈ G; that is, they have the same characters: χσ = χτ . It follows that if
σ : G→ GL(V ) is a representation, then its character χσ can be computed relative
to any convenient basis of V .

Theorem C-2.69.

(i) The only irreducible characters of G are χ1, . . . , χr, the characters afforded
by the irreducible representations λi.

(ii) Every character χσ is a linear combination χσ =
∑

i miχi, where mi ≥ 0 are
nonnegative integers and

χi = χλi

is the irreducible character afforded by the irreducible representation λi arising
from the minimal left ideal Li.

(iii) Equivalent representations have the same character.

Proof.

(i) This follows from Corollary C-2.64(i).

(ii) The character χσ arises from a representation σ of G, which, in turn, arises
from a CG-module V . But V is a semisimple module (because CG is a
semisimple ring), and so V is a direct sum of simple modules: V =

⊕
j Sj .

By (i), each Sj
∼= Li for some Li. If, for each i, we let mi ≥ 0 be the number

of Sj isomorphic to Li, then χσ =
∑

i miλi.

(iii) This follows from of Proposition C-2.66(ii) and Corollary C-2.64(i). •

As a consequence of Theorem C-2.69, we call χ1, . . . , χr the irreducible char-
acters of G.
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Example C-2.70.

(i) The (linear) character χ1 afforded by the trivial representation σ : G → C
with σ(g) = 1 for all g ∈ G is called the trivial character . Thus, χ1(g) = 1
for all g ∈ G.

(ii) Let us compute the regular character ψ = χρ afforded by the regular
representation ρ : G → GL(CG), where ρ(g) : u �→ gu for all g ∈ G and
u ∈ CG. Any basis of CG can be used for this computation; we choose the
usual basis comprised of the elements of G. If g = 1, then Example C-2.67(iv)
shows that ψ(1) = dim(CG) = |G|. On the other hand, if g �= 1, then for all
h ∈ G, we have gh a basis element distinct from h. Therefore, the matrix of
ρ(g) has 0’s on the diagonal, and so its trace is 0. Thus,

ψ(g) =

{
0 if g �= 1,

|G| if g = 1.
�

Exercises

C-2.28. Let ϕ : G → GL(V ) be a representation of a finite group G. If V = W ⊕W ′ and
imϕ ⊆ W , prove that a matrix afforded by ϕ is given by

x 
→
[
A(x) C(x)
0 B(x)

]
.

C-2.8. Class Functions

We proved, in Theorem C-2.69, that equivalent representations have the same char-
acter. The coming discussion will give the converse (Theorem C-2.72): two repre-
sentations have the same character if and only if they are equivalent.

We paraphrase a remark of Isaacs [105], p. 14. Representations contain too
much information. If σ, τ : G→ GL(n,C) are matrix representations, then for every
g ∈ G, the matrices σ(g) and τ (g) each contain n2 entries, many of which determine
whether σ and τ are similar. The trace eliminates much of this unnecessary data;
indeed, Theorem C-2.72 shows that it eliminates just the right amount.

Definition. A function ϕ : G→ C is a class function if it is constant on conju-
gacy classes; that is, if h = xgx−1, then ϕ(h) = ϕ(g).

Every character χσ afforded by a representation σ is a class function: if h =
xgx−1, then

σ(h) = σ(xgx−1) = σ(x)σ(g)σ(x)−1,

and so tr(σ(h)) = tr(σ(g)); that is,

χσ(h) = χσ(g).
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The converse is not true; not every class function is a character. For example,
if χ is a character, then −χ is a class function; it is not a character because −χ(1)
is negative, and so it cannot be a degree of a representation.

Definition. We denote the set of all class functions G→ C by CF(G):

CF(G) = {ϕ : G→ C : ϕ(g) = ϕ(xgx−1) for all x, g ∈ G}.

It is easy to see that CF(G) is a vector space over C.

An element u =
∑

g∈G cgg ∈ CG is an n-tuple (cg) of complex numbers; that

is, u is a function u : G→ C with u(g) = cg for all g ∈ G. From this viewpoint, we
see that CF(G) is a subring of CG. Note that a class function is a scalar multiple
of a class sum; therefore, Lemma C-2.48 says that CF(G) is the center Z(CG), and
so

dim(CF(G)) = r,

where r is the number of conjugacy classes in G (Theorem C-2.49).

Definition. Write CG = B1 ⊕ · · · ⊕ Br, where Bi
∼= EndC(Li), and let ei denote

the identity element of Bi; hence,

1 = e1 + · · ·+ er,

where 1 is the identity element of CG. The elements ei are called the idempotents
in CG.

Not only is each ei an idempotent, that is, ei �= 0 and e2i = ei, but it is easy to
see that

eiej = δijei,

where δij is the Kronecker delta.

Lemma C-2.71. The irreducible characters χ1, . . . , χr form a basis of CF(G).

Proof. We have just seen that dim(CF(G)) = r, and so it suffices to prove that
χ1, . . . , χr is a linearly independent list, by Corollary A-7.20 in Part 1. We have
already noted that χi(uj) = 0 for all j �= i; in particular, χi(ej) = 0. On the other
hand, χi(ei) = ni, where ni is the degree of χi, for it is the trace of the ni × ni

identity matrix.

Suppose now that
∑

i ciχi = 0. It follows, for all j, that

0 =
(∑

i

ciχi

)
(ej) = cjχj(ej) = cjnj .

Therefore, all cj = 0, as desired. •

Since χi(1) is the trace of the ni × ni identity matrix, we have

(1) ni = χi(1) =
∑
j

χi(ej) = χi(ei),

where ei is the identity element of Bi.

Theorem C-2.72. Two representations σ, τ of a finite group G are equivalent if
and only if they afford the same character : χσ = χτ .
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Proof. We have already proved necessity, in Theorem C-2.69(iii). For sufficiency,
Theorem C-2.69(ii) says that every representation is completely reducible: there are
nonnegative integers mi and �i with σ ∼

∑
i miλi and τ ∼

∑
i �iλi. By hypothesis,

the corresponding characters coincide:∑
i

miχi = χσ = χτ =
∑
i

�iχi.

As the irreducible characters χ1, . . . , χr are a basis of CF(G), mi = �i for all i, and
so σ ∼ τ . •

There are relations between the irreducible characters that facilitate their cal-
culation. We begin by finding the expression of the idempotents ei in terms of the
basis G of CG. Observe, for all y ∈ G, that

(2) χi(eiy) = χi(y),

for y =
∑

j ejy, and so χi(y) =
∑

j χi(ejy) = χi(eiy), because ejy ∈ Bj .

Proposition C-2.73. If ei =
∑

g∈G aigg, where aig ∈ C, then

aig =
niχi(g

−1)

|G| .

Proof. Let ψ be the regular character; that is, ψ is the character afforded by the
regular representation. Now eig

−1 =
∑

h aihhg
−1, so that

ψ(eig
−1) =

∑
h∈G

aihψ(hg
−1).

By Example C-2.70(ii), ψ(1) = |G| when h = g and ψ(hg−1) = 0 when h �= g.
Therefore,

aig =
ψ(eig

−1)

|G| .

On the other hand, since ψ =
∑

j njχj , we have

ψ(eig
−1) =

∑
j

njχj(eig
−1) = niχi(eig

−1),

by Proposition C-2.63(ii). But χi(eig
−1) = χi(g

−1), by Eq. (1). Therefore, aig =
niχi(g

−1)/|G|. •

It is now convenient to equip CF(G) with an inner product.

Definition. If α, β ∈ CF(G), define

(α, β) =
1

|G|
∑
g∈G

α(g)β(g),

where c denotes the complex conjugate of a complex number c.
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It is easy to see that we have defined an inner product10; that is, for all
c1, c2 ∈ C,

(i) (c1α1 + c2α2, β) = c1(α1, β) + c2(α2, β);

(ii) (β, α) = (α, β).

Note that (α, α) is real, by (ii), and the inner product is definite; that is, (α, α) > 0
if α �= 0.

Theorem C-2.74. With respect to the inner product just defined, the irreducible
characters χ1, . . . , χr form an orthonormal basis ; that is,

(χi, χj) = δij .

Proof. By Proposition C-2.73, we have

ej =
1

|G|
∑
g

njχj(g
−1)g.

Hence,

χi(ej)/nj =
1

|G|
∑
g

χj(g
−1)χi(g) =

1

|G|
∑
g

χi(g)χj(g) = (χi, χj);

the next to last equation follows from Exercise C-2.30 on page 198, for χj is a

character (not merely a class function), and so χj(g
−1) = χj(g).

11 The result now
follows, for χi(ej)/nj = δij , by Eqs. (1) and (2). •

The inner product on CF(G) can be used to check irreducibility.

Definition. A generalized character ϕ on a finite group G is a Z-linear combi-
nation

ϕ =
∑
i

miχi,

where χ1, . . . , χr are the irreducible characters of G and all mi ∈ Z.

If θ is a character, then θ =
∑

i miχi, where all the coefficients are nonnegative
integers, by Theorem C-2.69.

Corollary C-2.75. A generalized character θ of a group G is an irreducible char-
acter if and only if θ(1) > 0 and (θ, θ) = 1.

Proof. If θ is an irreducible character, then θ = χi for some i, and so (θ, θ) =
(χi, χi) = 1. Moreover, θ(1) = deg(χi) > 0.

Conversely, let θ =
∑

j mjχj , where mj ∈ Z, and suppose that (θ, θ) = 1. Then

1 =
∑

j m
2
j ; hence, some m2

i = 1 and all other mj = 0. Therefore, θ = ±χi, and so

θ(1) = ±χi(1). Since χi(1) = deg(χi) > 0, the hypothesis θ(1) > 0 gives mi = 1.
Therefore, θ = χi, and so θ is an irreducible character. •

10This is not really an inner product, for it is not symmetric: (β, α) = (α, β), not (α, β). It
is, however, a hermitian form. In spite of this, we will continue to call it an inner product.

11Recall that if z lies on the unit circle, in particular, if z is a root of unity, then z−1 = z.
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C-2.9. Character Tables and Orthogonality Relations

Let us assemble the notation we will use from now on.

Notation. If G is a finite group, we denote its conjugacy classes by

C1, . . . , Cr,

a choice of elements, one from each conjugacy class, by

g1 ∈ C1, . . . , gr ∈ Cr,

its irreducible characters by
χ1, . . . , χr,

their degrees by
n1 = χ1(1), . . . , nr = χr(1),

and the sizes of the conjugacy classes by

h1 = |C1|, . . . , hr = |Cr|.

The matrix [χi(gj)] is a useful way to display information.

Definition. The character table of G is the r×r complex matrix whose ij entry
is χi(gj).

We always assume that C1 = {1} and that χ1 is the trivial character. Thus,
the first row consists of all 1’s, while the first column consists of the degrees of
the characters: χi(1) = ni for all i, by Example C-2.67(iv). The ith row of the
character table consists of the values

χi(1), χi(g2), . . . , χi(gr).

There is no obvious way of labeling the other conjugacy classes (or the other irre-
ducible characters), so that a finite group G has many character tables. Neverthe-
less, we usually speak of “the” character table of G.

Since the inner product on CF(G) is summed over all g ∈ G, not just the
chosen gi (one from each conjugacy class), it can be rewritten as a “weighted”
inner product:

(χi, χj) =
1

|G|

r∑
k=1

hkχi(gk)χj(gk).

Theorem C-2.74 says that the weighted inner product of distinct rows in the char-
acter table is 0, while the weighted inner product of any row with itself is 1.

Example C-2.76.

(i) A character table can have complex entries. For example, it is easy to see
that the character table for a cyclic group G =

〈
x
〉
of order 3 is given in

Table 1, where ω = e2πi/3 is a primitive cube root of unity.

(ii) Write the four-group in additive notation:

V = {0, a, b, a+ b}.
As a vector space over F2, V has basis a, b, and the “coordinate functions” on
V, which take values in {1,−1} ⊆ C, are linear; hence, they are irreducible
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gi 1 x x2

hi 1 1 1

χ1 1 1 1
χ2 1 ω ω2

χ3 1 ω2 ω

Table 1. Character table of Z3.

representations. For example, the character χ2 arising from the function that
is nontrivial on a and trivial on b is

χ2(v) =

{
−1 if v = a or v = a+ b,

1 if v = 0 or v = b.

Table 2 is the character table for V.

gi 0 a b a+ b
hi 1 1 1 1

χ1 1 1 1 1
χ2 1 −1 1 −1
χ3 1 1 −1 −1
χ4 1 −1 −1 1

Table 2. Character table of V.

(iii) We now discuss Table 3, the character table for the symmetric group G = S3.
Since two permutations in Sn are conjugate if and only if they have the same
cycle structure, there are three conjugacy classes, and we choose elements 1,
(1 2), and (1 2 3) from each. (In Example C-2.52(i), we saw that there are
three irreducible representations: λ1 = the trivial representation, λ2 = sgn,
and a third representation λ3 of degree 2.) Since χ2 = sgn, the second row
records the fact that (1) and (1 2 3) are even while (1 2) is odd. The third
row has entries

2 a b,

gi 1 (1 2) (1 2 3)
hi 1 3 2

χ1 1 1 1
χ2 1 −1 1
χ3 2 0 −1

Table 3. Character table of S3.
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where a and b are to be found. The weighted inner products of row 3 with
the other two rows give the equations

2 + 3a+ 2b = 0,

2− 3a+ 2b = 0.

It follows easily that a = 0 and b = −1. �

The following lemma will be used to describe the inner products of the columns
of the character table.

Lemma C-2.77. If A is the character table of a finite group G, then A is nonsin-
gular and its inverse A−1 has ij entry

(A−1)ij =
hiχj(gi)

|G| .

Proof. If B is the matrix whose ij entry is displayed in the statement, then

(AB)ij =
1

|G|
∑
k

χi(gk)hkχj(gk) =
1

|G|
∑
g

χi(g)χj(g) = (χi, χj) = δij ,

because hkχj(gk) =
∑

y∈Ck
χj(y). Therefore, AB = I. •

The next result is fundamental.

Theorem C-2.78 (Orthogonality Relations). Let G be a finite group of order
n with conjugacy classes C1, . . . , Cr of cardinalities h1, . . . , hr, respectively, and
choose elements gi ∈ Ci. Let the irreducible characters of G be χ1, . . . , χr, and let
χi have degree ni. Then the following relations hold:

(i)
r∑

k=1

hkχi(gk)χj(gk) =

{
0 if i �= j,

|G| if i = j.

(ii)
r∑

i=1

χi(gk)χi(g�) =

{
0 if k �= �,

|G|/hk if k = �.

Proof.

(i) This is just a restatement of Theorem C-2.74.

(ii) If A is the character table of G and B = [hiχj(gi)/|G|], we proved, in
Lemma C-2.77, that AB = I. It follows that BA = I; that is, (BA)k� = δk�.
Therefore,

1

|G|
∑
i

hkχi(gk)χi(g�) = δk�. •

In terms of the character table, the second orthogonality relation says that
the usual (unweighted, but with complex conjugation) inner product of distinct
columns is 0 while, for every k, the usual inner product of column k with itself
is |G|/hk.
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The orthogonality relations yield the following special cases.

Corollary C-2.79.

(i) |G| =
∑r

i=1 n
2
i .

(ii)
∑r

i=1 niχi(gk) = 0 if k > 1.

(iii)
∑r

k=1 hkχi(gk) = 0 if i > 1.

(iv)
∑r

k=1 hk|χi(gk)|2 = |G|.

Proof.

(i) This equation records the inner product of column 1 with itself: it is Theo-
rem C-2.78(ii) when k = � = 1.

(ii) This is the special case of Theorem C-2.78(ii) with � = 1, for χi(1) = ni.

(iii) This is the special case of Theorem C-2.78(i) in which j = 1.

(iv) This is the special case of Theorem C-2.78(i) in which j = i. •

We can now give another proof of Burnside’s Lemma, Theorem C-1.28, which
counts the number of orbits of a G-set.

Theorem C-2.80 (Burnside’s Lemma Again). Let G be a finite group and let
X be a finite G-set. If N is the number of orbits of X, then

N =
1

|G|
∑
g∈G

Fix(g),

where Fix(g) is the number of x ∈ X with gx = x.

Proof. Let V be the complex vector space having X as a basis. As in Exam-
ple C-2.61, the G-set X gives a representation σ : G → GL(V ) by σ(g)(x) = gx
for all g ∈ G and x ∈ X; moreover, if χσ is the character afforded by σ, then
Example C-2.67(v) shows that χσ(g) = Fix(g).

Let O1, . . . ,ON be the orbits of X. We begin by showing that N = dim(V G),
where V G is the space of fixed points :

V G = {v ∈ V : gv = v for all g ∈ G}.
For each i, define si to be the sum of all the x in Oi; it suffices to prove that these
elements form a basis of V G. It is plain that s1, . . . , sN is a linearly independent list
in V G, and it remains to prove that they span V G. If u ∈ V G, then u =

∑
x∈X cxx,

so that gu =
∑

x∈X cx(gx). Since gu = u, however, cx = cgx. Thus, given x ∈ X
with x ∈ Oj , each coefficient of gx, where g ∈ G, is equal to cx; that is, all the
x lying in the orbit Oj have the same coefficient, say, cj , and so u =

∑
j cjsj .

Therefore,

N = dim(V G).

Now define a linear transformation T : V → V by

T =
1

|G|
∑
g∈G

σ(g).
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It is routine to check that T is a CG-map, that T |(V G) = identity, and that
imT = V G. Since CG is semisimple, V = V G ⊕W for some submodule W . We
claim that T |W = 0. If w ∈ W , then σ(g)(w) ∈ W for all g ∈ G, because W is
a submodule, and so T (w) ∈ W . On the other hand, T (w) ∈ imT = V G, and so
T (w) ∈ V G ∩W = {0}, as claimed.

If w1, . . . , w� is a basis of W , then s1, . . . , sN , w1, . . . , w� is a basis of V =
V G ⊕W . Note that T fixes each si and annihilates each wj . Since trace preserves
sums,

tr(T ) =
1

|G|
∑
g∈G

tr(σ(g)) =
1

|G|
∑
g∈G

χσ(g) =
1

|G|
∑
g∈G

Fix(g).

It follows that
tr(T ) = dim(V G),

for the matrix of T with respect to the chosen basis is the direct sum of an identity
block and a zero block, and so tr(T ) is the size of the identity block, namely,
dim(V G) = N . Therefore,

N =
1

|G|
∑
g∈G

Fix(g). •

Character tables can be used to detect normal subgroups (after all, normal
subgroups are unions of conjugacy classes).

Definition. If χτ is the character afforded by a representation τ : G → GL(V ),
then

kerχτ = ker τ.

Proposition C-2.81. Let θ = χτ be the character of a finite group G afforded by
a representation τ : G→ GL(V ).

(i) For each g ∈ G, we have

|θ(g)| ≤ θ(1).

(ii)
ker θ = {g ∈ G : θ(g) = θ(1)}.

(iii) If θ =
∑

j mjχj, where the mj are positive integers, then

ker θ =
⋂
j

kerχj .

(iv) If N is a normal subgroup of G, there are irreducible characters χi1 , . . . , χis

with N =
⋂ s

j=1 kerχij .

Proof.

(i) By Lagrange’s Theorem, g|G| = 1 for every g ∈ G; it follows that the eigen-
values ε1, . . . , εd of τ (g), where d = θ(1), are |G|th roots of unity, and so
|εj | = 1 for all j. By the triangle inequality in C,∣∣θ(g)∣∣ = ∣∣∣ d∑

j=1

εj

∣∣∣ ≤ d = θ(1).
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(ii) If g ∈ ker θ = ker τ , then τ (g) = I, the identity matrix, and θ(g) = tr(I)

= θ(1). Conversely, suppose that θ(g) = θ(1) = d; that is,
∑d

j=1 εj = d. By
Proposition A-3.109 in Part 1, all the eigenvalues εj are equal, say, εj = ω
for all j. Therefore, τ (g) = ωI, by Corollary C-2.64(ii), and so

θ(g) = θ(1)ω.

But θ(g) = θ(1), by hypothesis, and so ω = 1; that is, τ (g) = I and g ∈ ker τ .

(iii) For all g ∈ G, we have

θ(g) =
∑
j

mjχj(g);

in particular,

θ(1) =
∑
j

mjχj(1).

By (ii), if g ∈ ker θ, then θ(g) = θ(1). Suppose that χj′(g) �= χj′(1) for
some j′. Since χj′(g) is a sum of roots of unity (by Proposition C-2.68),
Proposition A-3.109 in Part 1 applies to force |χj′(g)| < χj′(1), and so
|θ(g)| ≤

∑
j mj |χj(g)| <

∑
j χj(1) = 1, which implies that θ(g) �= θ(1), a con-

tradiction. Therefore, g ∈
⋂

j kerχj . For the reverse inclusion, if g ∈ kerχj ,

then χj(g) = χj(1) for some j, and so

θ(g) =
∑
j

mjχj(g) =
∑
j

mjχj(1) = θ(1);

hence, g ∈ ker θ, by (ii).

(iv) It suffices to find a representation of G whose kernel is N . By (ii) and
Example C-2.70(ii), the regular representation ρ of G/N is faithful (i.e., is an
injection), and so its kernel is {1}. If π : G→ G/N is the natural map, then
ρπ is a representation of G having kernel N . If θ is the character afforded by
ρπ, then θ =

∑
j mjχj , where the mj are positive integers, by Lemma C-2.71,

and so (iii) applies. •

Example C-2.82.

(i) Table 6 on page 193 is the character table of S4. We can see there that
kerχ2 = A4 and kerχ3 = V are the only two normal subgroups of S4 (other
than {1} and S4).

(ii) In Example C-2.83, we can see that kerχ2 = {1}∪zG∪yG (where zG denotes
the conjugacy class of z in G) and kerχ3 = {1} ∪ zG ∪ xG. Another normal
subgroup occurs as kerχ2 ∩ kerχ3 = {1} ∪ zG.

(iii) A normal subgroup described by characters is given as a union of conjugacy
classes; this viewpoint can give another proof of the simplicity of A5. In
Exercise C-1.12 on page 15, we saw that A5 has five conjugacy classes, of sizes
1, 12, 12, 15, and 20. Since every subgroup contains the identity element,
the order of a normal subgroup of A5 is the sum of some of these numbers,
including 1. But it is easy to see that 1 and 60 are the only such sums that
are divisors of 60, and so the only normal subgroups are {1} and A5 itself.

�
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C-2.10. Induced Characters

The orthogonality relations help to complete a character table but, obviously, it
would be useful to have a supply of characters. One important class of characters
consists of those arising by lifting a representation of a quotient group. Another,
induced representations, arises from representations of a subgroup H of G.

Definition. Let H �G and let σ : G/H → GL(V ) be a representation. If π : G→
G/H is the natural map, then the representation σπ : G→ GL(V ) is called a lifting
of σ.

Scalar multiplication of G on a C(G/H)-module V is given, for v ∈ V , by

gv = (gH)v.

Thus, every C(G/H)-submodule of V is also a CG-submodule; hence, if V is a
simple C(G/H)-module, then it is also a simple CG-module. It follows that if
σ : G/H → GL(V ) is an irreducible representation of G/H, then its lifting σπ is
also an irreducible representation of G.

Example C-2.83. We know that D8 and Q are nonisomorphic nonabelian groups
of order 8; we now show that they have the same character tables.

IfG is a nonabelian group of order 8, then its center has order 2, say, Z(G) =
〈
z
〉
.

Now G/Z(G) is not cyclic, by Exercise A-4.79 on page 172 in Part 1, and so
G/Z(G) ∼= V. Therefore, if σ : V → C is an irreducible representation of V, then
its lifting σπ is an irreducible representation of G. This gives four (necessarily
irreducible) linear characters of G, each of which takes value 1 on z. As G is not
abelian, there must be an irreducible character χ5 of degree n5 > 1 (if all ni = 1,
then CG is commutative and G is abelian). Since

∑
i n

2
i = 8, we see that n5 = 2.

Thus, there are five irreducible representations and, hence, five conjugacy classes;
choose representatives gi to be 1, z, x, y, w. Table 4 is the character table. The
values for χ5 are computed from the orthogonality relations of the columns. For
example, if the last row of the character table is

2 a b c d,

then the inner product of columns 1 and 2 gives the equation 4 + 2a = 0, so that
a = −2. The reader may verify that 0 = b = c = d.

gi 1 z x y w
hi 1 1 2 2 2

χ1 1 1 1 1 1
χ2 1 1 −1 1 −1
χ3 1 1 1 −1 −1
χ4 1 1 −1 −1 1
χ5 2 −2 0 0 0

Table 4. Character table of D8 and of Q.

�
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It is more difficult to find representations of a group arising from representa-
tions of its subgroups. The original construction of induced representations, due
to Frobenius, is rather complicated. Tensor products make this construction more
natural. The ring CG is a (CG,CH)-bimodule (for CH is a subring of CG), so that
if V is a left CH-module, then the tensor product CG ⊗CH V is defined; Proposi-
tion B-4.82 in Part 1 says that this tensor product is, in fact, a left CG-module.

Definition. Let H be a subgroup of a group G. If ρ : H → GL(V ) is a represen-
tation with left CH-module V , then the induced module is the left CG-module

V �G= CG⊗CH V.

The corresponding representation ρ�G : G→ V G is called the induced represen-
tation . The character of G afforded by ρ�G is called the induced character , and
it is denoted by χρ�G.

Let us recognize at the outset that the character of an induced representation
need not restrict to the original representation of the subgroup. For example,
we have seen that there is an irreducible character χ of A3

∼= Z3 having complex
values, whereas every irreducible character of S3 has (real) integer values. A related
observation is that two elements may be conjugate in a group but not conjugate in
a subgroup (for example, 3-cycles are conjugate in S3, for they have the same cycle
structure, but they are not conjugate in the abelian group A3).

The next lemma will help us compute the character afforded by an induced
representation.

Lemma C-2.84.

(i) If H ⊆ G, then CG is a free right CH-module on [G : H] generators.

(ii) If a left CH-module V has a (vector space) basis e1, . . . , em, then a (vector
space) basis of the induced module V �G= CG⊗CHV is the family of all ti⊗ej,
where t1, . . . , tn is a transversal of H in G.

Proof.

(i) Since t1, . . . , tn is a transversal of H in G (of course, n = [G : H]), we see
that G is the disjoint union

G =
⋃
i

tiH;

thus, for every g ∈ G, there is a unique i and a unique h ∈ H with g = tih.
We claim that t1, . . . , tn is a basis of CG viewed as a right CH-module.

If u ∈ CG, then u =
∑

g agg, where ag ∈ C. Rewrite each term

agg = agtih = tiagh

(scalars in C commute with everything), collect terms involving the same ti,
and obtain u =

∑
i tiηi, where ηi ∈ CH.
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To prove uniqueness of this expression, suppose that 0 =
∑

i tiηi, where
ηi ∈ CH. Now ηi =

∑
h∈H aihh, where aih ∈ C. Substituting,

0 =
∑
i,h

aihtih.

But tih = tjh
′ if and only if i = j and h = h′, so that 0 =

∑
i,h aihtih =∑

g∈G aihg, where g = tih. Since the elements of G form a basis of CG
(viewed as a vector space over C), we have aih = 0 for all i, h, and so ηi = 0
for all i.

(ii) By Theorem B-4.86 in Part 1,

CG⊗CH V ∼=
⊕
i

tiCH ⊗CH V.

It follows that every u ∈ CG ⊗CH V has a unique expression as a C-linear
combination of ti ⊗ ej , and so these elements comprise a basis. •

Notation. If H ⊆ G and χ : H → C is a function, then χ̇ : G→ C is given by

χ̇(g) =

{
0 if g /∈ H,

χ(g) if g ∈ H.

Theorem C-2.85. If χσ is the character afforded by a representation σ : H →
GL(V ) of a subgroup H of a group G, then the induced character χσ�G is given by

χσ�G(g) =
1

|H|
∑
a∈G

χ̇σ(a
−1ga).

Proof. Let t1, . . . , tn be a transversal of H in G, so that G is the disjoint union
G =

⋃
i tiH, and let e1, . . . , em be a (vector space) basis of V . By Lemma C-2.84,

a basis for the vector space V G = CG ⊗CH V consists of all ti ⊗ ej . If g ∈ G, we
compute the matrix of left multiplication by g relative to this basis. Note that

gti = tk(i)hi,

where hi ∈ H, and so

g(ti ⊗ ej) = (gti)⊗ ej = tk(i)hi ⊗ ej = tk(i) ⊗ σ(hi)ej

(the last equation holds because we can slide any element of H across the tensor
sign). Now g(ti ⊗ ej) is written as a C-linear combination of all the basis elements
of V �G, for the coefficients tp ⊗ ej for p �= k(i) are all 0. Hence, σ�G(g) gives the
nm×nm matrix whose m columns labeled by ti⊗ej , for fixed i, are all zero except
for an m×m block equal to

[apq(hi)] = [apq(t
−1
k(i)gti)].

Thus, the big matrix is partitioned into m×m blocks, most of which are 0, and a
nonzero block is on the diagonal of the big matrix if and only if k(i) = i; that is,

t−1
k(i)gti = t−1

i gti = hi ∈ H.
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The induced character is the trace of the big matrix, which is the sum of the traces
of these blocks on the diagonal. Therefore,

χσ�G(g) =
∑

t−1
i gti∈H

tr([apq(t
−1
i gti)]) =

∑
i

χ̇σ(t
−1
i gti)

(remember that χ̇σ is 0 outside of H). We now rewrite the summands (to get a
formula that does not depend on the choice of the transversal): if t−1

i gti ∈ H, then

(tih)
−1g(tih) = h−1(t−1

i gti)h in H, so that, for fixed i,∑
h∈H

χ̇σ

(
(tih)

−1g(tih)
)
= |H|χ̇σ(t

−1
i gti),

because χσ is a class function on H. Therefore,

χσ�G(g) =
∑
i

χ̇σ(t
−1
i gti) =

1

|H|
∑
i,h

χ̇σ

(
(tih)

−1g(tih)
)
=

1

|H|
∑
a∈G

χ̇σ(a
−1ga). •

Remark. We have been considering induced characters, but it is easy to generalize
the discussion to induced class functions . If H ⊆ G, then a class function θ on
H has a unique expression as a C-linear combination of irreducible characters of
H, say, θ =

∑
ciχi, and so we can define

θ�G =
∑

ciχi�G.

It is plain that θ�G is a class function on G and that the formula in Theorem C-2.85
extends to induced class functions. �

If, for h ∈ H, the matrix of σ(h) (with respect to the basis e1, . . . , em of V ) is

B(h), then define m×m matrices Ḃ(g), for all g ∈ G, by

Ḃ(g) =

{
0 if g /∈ H,

B(g) if g ∈ H.

The proof of Theorem C-2.85 allows us to picture the matrix of the induced repre-
sentation in block form

σ�G(g) =

⎡⎢⎢⎢⎢⎣
Ḃ(t−1

1 gt1) Ḃ(t−1
1 gt2) · · · Ḃ(t−1

1 gtn)

Ḃ(t−1
2 gt1) Ḃ(t−1

2 gt2) · · · Ḃ(t−1
2 gtn)

...
...

...
...

Ḃ(t−1
n gt1) Ḃ(t−1

n gt2) · · · Ḃ(t−1
n gtn)

⎤⎥⎥⎥⎥⎦ .

Corollary C-2.86. Let H be a subgroup of a finite group G and let χ be a character
on H.

(i) χ�G(1) = [G : H]χ(1).

(ii) If H �G, then χ�G(g) = 0 for all g /∈ H.
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Proof.

(i) For all a ∈ G, we have a−11a = 1, so that there are |G| terms in the sum
χ�G(1) = 1

|H|
∑

a∈G χ̇(a−1ga) that are equal to χ(1); hence,

χ�G(1) = |G|
|H|χ(1) = [G : H]χ(1).

(ii) If H � G, then g /∈ H implies that a−1ga /∈ H for all a ∈ G. Therefore,
χ̇(a−1ga) = 0 for all a ∈ G, and so χ�G(g) = 0. •

Example C-2.87. Let H ⊆ G be a subgroup of index n, let X = {t1H, . . . , tnH}
be the family of left cosets of H, and let ϕ : G → SX be the (permutation) rep-
resentation of G on the cosets of H. As in Example C-2.67(v), we may regard
ϕ : G→ GL(V ), where V is the vector space over C having basis X; that is, ϕ is a
representation in the sense of this section.

We claim that if χϕ is the character afforded by ϕ, then χϕ = ε�G, where ε is
the trivial character on H. On the one hand, Example C-2.67(v) shows that

χϕ(g) = Fix(ϕ(g))

for every g ∈ G. On the other hand, suppose ϕ(g) is the permutation (in two-rowed
notation)

ϕ(g) =

(
t1H . . . tnH
gt1H . . . gtnH

)
.

Now gtiH = tiH if and only if t−1
i gti ∈ H. Thus, ε̇(t−1

i gti) �= 0 if and only if
gtiH = tiH, and so

ε�G(g) = Fix(ϕ(g)). �

Even though a character λ of a subgroup H is irreducible, its induced character
need not be irreducible. For example, let G = S3 and let H be the cyclic subgroup
generated by (1 2). The linear representation σ = sgn: H → C is irreducible, and
it affords the character χσ with

χσ(1) = 1 and χσ((1 2)) = −1.
Using the formula for the induced character, we find that

χσ�S3(1) = 3, χσ�S3((1 2)) = −1, and χσ�S3((1 2 3)) = 0.

Corollary C-2.75 shows that χσ�S3 is not irreducible, for (χσ�S3 , χσ�S3) = 2. It
is easy to see that χσ�S3= χ2 + χ3, the latter being the nontrivial irreducible
characters of S3.

Here is an important result of Brauer. Call a subgroup E of a finite group G
elementary if E = Z ×P , where Z is cyclic and P is a p-group for some prime p.

Theorem C-2.88 (Brauer). Every complex character θ on a finite group G has
the form

θ =
∑
i

miμi�G,

where mi ∈ Z and the μi are linear characters on elementary subgroups of G.

Proof. See Curtis-Reiner [48], p. 283, or Serre [201], Chapter 10. •
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Definition. If H is a subgroup of a group G, then every representation σ : G →
GL(V ) gives, by restriction, a representation σ|H : H → GL(V ). (In terms of
modules, every left CG-module V can be viewed as a left CH-module.) We call
σ|H the restriction of σ, and we denote it by σ�H . The character of H afforded
by σ�H is denoted by χσ�H .

The next result displays the relation between characters on a group and char-
acters on a subgroup.

Theorem C-2.89 (Frobenius Reciprocity). Let H be a subgroup of a group G,
let χ be a class function on G, and let θ be a class function on H. Then

(θ�G, χ)G = (θ, χ�H)H ,

where (�,�)G denotes the inner product on CF(G) and (�,�)H denotes the inner
product on CF(H).

Proof. We have

(θ�G, χ)G =
1

|G|
∑
g∈G

θ�G (g)χ(g)

=
1

|G|
∑
g∈G

1

|H|
∑
a∈G

θ̇(a−1ga)χ(g)

=
1

|G|
1

|H|
∑

a,g∈G

θ̇(a−1ga)χ(a−1ga),

the last equation occurring because χ is a class function. For fixed a ∈ G, as g
ranges over G, then so does a−1ga. Therefore, writing x = a−1ga, the equations
continue:

=
1

|G|
1

|H|
∑

a,x∈G

θ̇(x)χ(x)

=
1

|G|
1

|H|
∑
a∈G

(∑
x∈G

θ̇(x)χ(x)
)

=
1

|G|
1

|H| |G|
∑
x∈G

θ̇(x)χ(x)

=
1

|H|
∑
x∈G

θ̇(x)χ(x)

= (θ, χ�H)H ,

the next to last equation holding because θ̇(x) vanishes off the subgroup H. •
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The following elementary remark facilitates the computation of induced class
functions.

Lemma C-2.90. Let H be a subgroup of a finite group G, and let χ be a class
function on H. Then

χ�G(g) = 1

|H|
∑
i

|CG(gi)|χ̇(g−1
i ggi).

Proof. Let |CG(gi)| = mi. If a−1
0 gia0 = g, we claim that there are exactly mi

elements a ∈ G with a−1gia = g. There are at least mi elements in G conjugating
gi to g, namely, all aa0 for a ∈ CG(gi). There are at most mi elements, for if
b−1gib = g, then b−1gib = a−1

0 gia0, and so a0b ∈ CG(gi). The result now follows by
collecting terms involving gi’s in the formula for χ�G(g). •

gi (1) (1 2 3) (1 3 2) (1 2)(3 4)
hi 1 4 4 3

χ1 1 1 1 1
χ2 1 ω ω2 1
χ3 1 ω2 ω 1
χ4 3 0 0 −1

Table 5. Character table of A4.

Example C-2.91. The group A4 consists of the identity, eight 3-cycles, and three
products of disjoint transpositions. In S4, all the 3-cycles are conjugate; if g =
(1 2 3), then [S4 : CS4

(g)] = 8. It follows that |CS4
(g)| = 3, and so CS4

(g) =
〈
g
〉
.

Therefore, in A4, the number of conjugates of g is [A4 : CA4
(g)] = 4 (we know

that CA4
(g) = A4 ∩ CS4

(g) =
〈
g
〉
). The reader may show that g and g−1 are not

conjugate, and so we have verified the first two rows of the character table. Table 5
is the character table of A4, where ω = e2πi/3 is a primitive cube root of unity.

The rows for χ2 and χ3 are liftings of linear characters of A4/V ∼= Z3. Note
that if h = (1 2)(3 4), then χ2(h) = χ2(1) = 1, because V is the kernel of the
lifted representation; similarly, χ3(h) = 1. Now χ4(1) = 3, because 3 + (n4)

2 = 12.
The bottom row arises from orthogonality of the columns. (We can check, using
Corollary C-2.75, that the character of degree 3 is irreducible.) �

Example C-2.92. Table 6 is the character table of S4. We know, for all n, that two
permutations in Sn are conjugate if and only if they have the same cycle structure;
the sizes of the conjugacy classes in S4 were computed in Table 1 on page 121 in
Part 1.

The rows for χ2 and χ3 are liftings of irreducible characters of S4/V ∼= S3.
The entries in the fourth column of these rows arise from (1 2)V = (1 2 3 4)V; the
entries in the last column of these rows arise from V being the kernel (in either
case), so that χj((1 2)(3 4)) = χj(1) for j = 2, 3.

We complete the first column using 24 = 1+1+4+n2
4+n2

5; thus, n4 = 3 = n5.
Let us see whether χ4 is an induced character; if it is, then Corollary C-2.86(i)
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gi (1) (1 2) (1 2 3) (1 2 3 4) (1 2)(3 4)
hi 1 6 8 6 3

χ1 1 1 1 1 1
χ2 1 −1 1 −1 1
χ3 2 0 −1 0 2
χ4 3 1 0 −1 −1
χ5 3 −1 0 1 −1

Table 6. Character table of S4.

shows that it arises from a linear character of a subgroup H of index 3. Such a
subgroup has order 8, and so it is a Sylow 2-subgroup; that is, H ∼= D8. Let us
choose one such subgroup:

H =
〈
V, (1 3)

〉
= V ∪ {(1 3), (2 4), (1 2 3 4), (1 4 3 2)}.

The conjugacy classes are

C1 = {1},
C2 = {(1 3)(2 4)},
C3 = {(1 2)(3 4), (1 4)(2 3)},
C4 = {(1 3), (2 4)},
C5 = {(1 2 3 4), (1 4 3 2)}.

Let θ be the character on H defined by

C1 C2 C3 C4 C5

1 1 −1 1 −1.

Define χ4 = θ�S4 . Using the formula for induced characters, assisted by
Lemma C-2.90, we obtain the fourth row of the character table. However, before
going on to row 5, we observe that Corollary C-2.75 shows that χ4 is irreducible,
for (χ4, χ4) = 1. Finally, the orthogonality relations allow us to compute row 5. �

C-2.11. Algebraic Integers Interlude

At this point in the story, we must introduce algebraic integers. Recall that a
complex number z is an algebraic number if it is a root of a nonzero f(x) ∈ Q[x].
An algebraic integer is a complex number z which is a root of a monic g(x) ∈ Z[x].
Since G is a finite group, Lagrange’s Theorem gives g|G| = 1 for all g ∈ G. It follows
that if σ : G→ GL(V ) is a representation, then σ(g)|G| = I for all g; hence, all the
eigenvalues of σ(g) are |G|th roots of unity, and so all the eigenvalues are algebraic
integers. The trace of σ(g), being the sum of the eigenvalues, is also an algebraic
integer.

Definition. A complex number α is called an algebraic integer if α is a root of
a monic f(x) ∈ Z[x].
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We note that it is crucial, in the definition of algebraic integer, that f(x) ∈ Z[x]
be monic. Every algebraic number z, that is, every complex number z that is a root
of some polynomial g ∈ Q[x], is necessarily a root of some polynomial h ∈ Z[x];
just clear the denominators of the coefficients of g.

Of course, every ordinary integer is an algebraic integer. To contrast ordinary
integers with more general algebraic integers, elements of Z may be called rational
integers. Theorem A-3.101 in Part 1 can be rephrased: an algebraic integer is
either an integer or it is irrational.

The next proposition shows that the sum and product of algebraic integers are
themselves algebraic integers. If α and β are algebraic integers, it is not too difficult
to show there are monic polynomials in Q[x] having α+ β and αβ as roots, but it
is harder to show there are such polynomials in Z[x].

We now characterize algebraic integers.

Proposition C-2.93. Let α ∈ C and define Z[α] =
{
g(α) : g(x) ∈ Z[x]

}
.

(i) Z[α] is a subring of C.

(ii) α is an algebraic integer if and only if Z[α] is a finitely generated additive
abelian group.

(iii) The set A of all the algebraic integers is a subring of C, and A ∩Q = Z.

Proof.

(i) If g = 1 is the constant polynomial, then g ∈ Z[x]; hence, 1 = g(α) and so
1 ∈ Z[α]. Suppose that f(α), g(α) ∈ Z[α], where f(x), g(x) ∈ Z[x]. Now f+g
and fg lie in Z[x], so that f(α) + g(α), f(α)g(α) ∈ Z[α]. Therefore, Z[α] is a
subring of C.

(ii) If α is an algebraic integer, there is a monic polynomial f(x) ∈ Z[x] having
α as a root. We claim that if deg(f) = n, then Z[α] = G, where G is the set
of all linear combinations m0+m1α+ · · ·+mn−1α

n−1 with mi ∈ Z. Clearly,
G ⊆ Z[α]. For the reverse inclusion, each element u ∈ Z[α] has the form
u = g(α), where g(x) ∈ Z[x]. Since f is monic, the Division Algorithm gives
q(x), r(x) ∈ Z[x] with g = qf + r, where either r = 0 or deg(r) < deg(f) = n
(see Corollary A-3.48 in Part 1). Therefore,

u = g(α) = q(α)f(α) + r(α) = r(α) ∈ G.

Thus, the additive group of Z[α] is finitely generated.
Conversely, if the additive group of the commutative ring Z[α] is finitely

generated, that is, Z[α] =
〈
g1, . . . , gm

〉
as an abelian group, then each gj

is a Z-linear combination of powers of α. Let m be the largest power of α
occurring in any of these g’s. Since Z[α] is a commutative ring, αm+1 ∈
Z[α]; hence, αm+1 can be expressed as a Z-linear combination of smaller
powers of α; say, αm+1 =

∑m
i=0 biα

i, where bi ∈ Z. Therefore, α is a root of
f(x) = xm+1 −

∑m
i=0 bix

i, which is a monic polynomial in Z[x], and so α is
an algebraic integer.

(iii) Suppose α and β are algebraic integers; let α be a root of a monic f ∈ Z[x]
of degree n, and let β be a root of a monic g ∈ Z[x] of degree m. Now Z[αβ]
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is an additive subgroup of G =
〈
αiβj : 0 ≤ i < n, 0 ≤ j < m

〉
. Since G is

finitely generated, so is its subgroup Z[αβ], by Theorem B-2.28 in Part 1,
and so αβ is an algebraic integer. Similarly, Z[α+β] is an additive subgroup
of

〈
αiβj : i+ j ≤ n+m− 2

〉
, and so α+ β is also an algebraic integer.

The last statement is Theorem A-3.101 in Part 1: if an algebraic integer
is not an integer, it is irrational. •

Theorem C-2.94. If G is a finite group, then χ(g) is an algebraic integer for every
character χ and every g ∈ G.

Proof. This follows from Proposition C-2.68 and Proposition C-2.93(i). •

Corollary C-2.95.

(i) If M is a finitely generated abelian group that is a faithful left R-module for
some ring R, then the additive group of R is finitely generated.

(ii) Let Z[α] be the subring of C generated by a complex number α. If there is a
faithful Z[α]-module M that is finitely generated as an abelian group, then α
is an algebraic integer.

Proof.

(i) The ring R is isomorphic to a subring of EndZ(M), by Proposition B-1.22 in
Part 1, for M is faithful. Since M is finitely generated, Exercise B-4.16 on
page 474 in Part 1 shows that EndZ(M) = HomZ(M,M) is finitely generated.
Therefore, the additive group ofR is finitely generated, by Proposition C-2.93.

(ii) It suffices to prove that the ring Z[α] is finitely generated as an abelian group,
by Proposition C-2.93, and this follows from part (i). •

This last corollary gives a technique for proving that an integer a is a divisor
of an integer b. If we can prove that b/a is an algebraic integer, then it must be an
integer, for it is obviously rational.

Since Z[x] ⊆ Q[x], every algebraic integer α has a unique minimal polynomial
m(x) = irr(α,Q) ∈ Q[x], and m is irreducible in Q[x].

Corollary C-2.96. If α is an algebraic integer, then irr(α,Q) lies in Z[x].

Proof. Let p(x) ∈ Z[x] be the monic polynomial of least degree having α as a
root. If p(x) = G(x)H(x) in Q[x], where deg(G) < deg(p) and deg(H) < deg(p),
then α is a root of either G or H. By Gauss’s Lemma A-3.65 in Part 1, there is a
factorization p = gh in Z[x] with deg(g) = deg(G) and deg(h) = deg(H); in fact,
there are rationals c and d with g = cG and h = dH. If a is the leading coefficient
of g and b is the leading coefficient of h, then ab = 1, for p is monic. Therefore, we
may assume that a = 1 = b, for a, b ∈ Z (the only other option is a = −1 = b); that
is, we may assume that both g and h are monic. Since α is a root of g or h, we
have contradicted p being a monic polynomial in Z[x] of least degree having α as a
root. It follows that p(x) = irr(α,Q), for the latter is the unique monic irreducible
polynomial in Q[x] having α as a root. •
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Remark. We define the (algebraic) conjugates of α to be the roots of irr(α,Q),
and we define the norm of α to be the absolute value of the product of the conju-
gates of α. Of course, the norm of α is just the absolute value of the constant term
of irr(α,Q), and so it is an (ordinary) integer. �

We can now prove the following interesting result.

Theorem C-2.97. The degrees ni of the irreducible characters of a finite group G
are divisors of |G|.

Proof. By Theorem A-3.101 in Part 1, the rational number α = |G|/ni is an
integer if it is also an algebraic integer. Now Corollary C-2.95 says that α is an
algebraic integer if there is a faithful Z[α]-module M that is a finitely generated
abelian group, where Z[α] is the smallest subring of C containing α.

By Proposition C-2.73, we have

ei =
∑
g∈G

ni

|G|χi(g
−1)g =

∑
g∈G

1

α
χi(g

−1)g.

Hence, αei =
∑

g∈G χi(g
−1)g. But ei is an idempotent: e2i = ei, and so

αei =
∑
g∈G

χi(g
−1)gei.

Define M to be the abelian subgroup of CG generated by all elements of the form
ζgei, where ζ is a |G|th root of unity and g ∈ G; of course, M is a finitely generated
abelian group.

To see that M is a Z[α]-module, it suffices to show that αM ⊆M . But

αζgei = ζgαei = ζg
∑
h∈G

χi(h
−1)hei =

∑
h∈G

χi(h
−1)ζghei.

This last element lies in M , however, because χi(h
−1) is a sum of |G|th roots of

unity.

Finally, if β ∈ C and u ∈ CG, then βu = 0 if and only if β = 0 or u = 0. Since
Z[α] ⊆ C and M ⊆ CG, however, it follows that M is a faithful Z[α]-module, as
desired. •

In Tables 3 and 6, we saw that all character values of the symmetric groups S3

and S4 are integers, while Table 4 shows that this is also true of D8 and Q. We
now show that this is true for all the symmetric groups.

Lemma C-2.98. If χ is a character of a finite group G and g ∈ G, then χ(g) is
an integer if and only if χ(g) is rational.

Proof. Since χ(g) is an algebraic integer, by Theorem C-2.94, the result follows
from Proposition C-2.93(iii). •

Here is the key group-theoretic property.

Definition. A finite group G is generator-conjugate if, for all pairs g, g′ ∈ G
with 〈g〉 = 〈g′〉, the elements g and g′ are conjugate.



C-2.11. Algebraic Integers Interlude 197

Lemma C-2.99. If G is a finite generator-conjugate group, then χ(g) ∈ Q for
every g ∈ G and character χ.

Remark. The converse is also true. �

Proof. Let τ : G→ GL(V ) be a representation affording the character χτ . If g has
order m and ζ is a primitive mth root of unity, then all the eigenvalues of τ (g) are
powers of ζ:

χτ (g) = tr(τ (g)) = ε1 + · · ·+ εt,

where each εi = ζji . If g′ is another generator of 〈g〉, then g′ = gk for some k with
gcd(k,m) = 1. Since g′ has order m, all the eigenvalues of τ (g′) are also mth roots
of unity; these eigenvalues are εki : if τ (g)(v) = εiv, then τ (gk)(v) = τ (g)k(v) = εki v).

χτ (g
′) = χτ (g

k) = tr(τ (gk)) = εk1 + · · ·+ εkt .

The extension field Q(ζ)/Q is a Galois extension; indeed, it is the splitting field
of xm − 1 over Q. Recall Proposition A-5.12 in Part 1: Gal(Q(ζ)/Q) is a cyclic
group with generator σk : ζ �→ ζk, where k satisfies gcd(k,m) = 1. Now

σk(χτ (g)) = σk(ε1 + · · ·+ εt)

= σk(ε1) + · · ·+ σk(εt)

= εk1 + · · ·+ εkt

= χτ (g
′).

By hypothesis, g and g′ are conjugate, so that χτ (g
′) = χτ (g

′) = χτ (g), because
χτ is a class function, and so

σk(χτ (g)) = χτ (g).

Therefore, χτ (g) ∈ Q, the fixed field, for σk generates Gal(Q(ζ)/Q). •

Theorem C-2.100. If G is a finite generator-conjugate group, then all the entries
in its character table are integers.

Remark. The converse is also true. �

Proof. Lemma C-2.99 says that the statement is true if integers is replaced by
rationals, while Lemma C-2.98 allows this replacement. •

Corollary C-2.101. All the character values of Sn, D8, and Q lie in Z.

Proof. See Exercise C-2.42 below. •

We will present two important applications of character theory in the next
section; for other applications, as well as a more serious study of representations,
the interested reader should look at the books by Curtis–Reiner [48], Feit [65],
Huppert [102], Isaacs [105], and Serre [201].
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Representation theory is used throughout the proof of the Classification The-
orem of Finite Simple Groups. An account of this theorem, describing the infinite
families of such groups as well as the 26 sporadic simple groups, can be found in
the ATLAS [44]. This book contains the character tables of every simple group of
order under 1025 as well as the character tables of all the sporadic groups.

Exercises

C-2.29. Prove that if θ is a generalized character of a finite group G, then there are
characters χ and ψ with θ = χ− ψ.

∗ C-2.30. Prove that if G is a finite group and σ : G → GL(V ) is a representation, then

χσ(g
−1) = χσ(g)

for all g ∈ G.

Hint. Use the fact that every eigenvalue of σ(g) is a root of unity, as well as the fact that
if A is a nonsingular matrix over a field k and if u1, . . . , un are the eigenvalues of A (with
multiplicities), then the eigenvalues of A−1 are u−1

1 , . . . , u−1
n ; that is, u1, . . . , un.

C-2.31. If σ : G → GL(n,C) is a representation, its contragredient σ∗ : G → GL(n,C)
is the function given by

σ∗(g) = σ(g−1)	,

where �	 denotes transpose.

(i) Prove that the contragredient of a representation σ is a representation that is
irreducible when σ is irreducible.

(ii) Prove that the character χσ∗ afforded by the contragredient σ∗ is

χσ∗(g) = χσ(g),

where χσ(g) is the complex conjugate. Conclude that if χ is a character of G, then
χ is also a character.

∗ C-2.32. Construct an irreducible representation of S3 of degree 2.

C-2.33. (i) Let g ∈ G, where G is a finite group. Prove that g is conjugate to g−1 if and
only if χ(g) is real for every character χ of G.

(ii) Prove that every character of Sn is real-valued. (It is a theorem of Frobenius that
every character of Sn is integer-valued.)

C-2.34. (i) Recall that the character group G∗ of a finite abelian group G is

G∗ = Hom(G,C×),

where C× is the multiplicative group of nonzero complex numbers. Prove that
G∗ ∼= G.

Hint. Use the Fundamental Theorem of Finite Abelian Groups.

(ii) Prove that Hom(G,C×) ∼= Hom(G,Q/Z) when G is a finite abelian group.

Hint. C× ∼= R/Z, by Corollary B-4.75 in Part 1.
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∗ C-2.35. Prove that the only linear character of a simple group is the trivial character.
Conclude that if χi is not the trivial character, then ni = χi(1) > 1.

∗ C-2.36. Let θ = χσ be the character afforded by a representation σ of a finite group G.

(i) If g ∈ G, prove that |θ(g)| = θ(1) if and only if σ(g) is a scalar matrix.

Hint. Use Proposition A-3.109 in Part 1.

(ii) If θ is an irreducible character, prove that

Z(G/ ker θ) = {g ∈ G : |θ(g)| = θ(1)}
(Z(H) denotes the center of a group H).

∗ C-2.37. If G is a finite group, prove that the number of its (necessarily irreducible) linear
representations is [G : G′].

C-2.38. Let G be a finite group.

(i) If g ∈ G, show that its centralizer |CG(g)| =
∑r

i=1 |χi(g)|2. Conclude that the
character table of G gives |CG(g)|.

(ii) Show how to use the character table of G to see whether G is abelian.

(iii) Show how to use the character table of G to find the lattice of normal subgroups
of G and their orders.

(iv) If G is a finite group, show how to use its character table to find the commutator
subgroup G′.

Hint. If K �G, then the character table of G/K is a submatrix of the character
table of G, and so we can find the abelian quotient of G having largest order.

(v) Show how to use the character table of a finite group G to determine whether G is
solvable.

C-2.39. (i) Show how to use the character table of G to find |Z(G)|.

(ii) Show how to use the character table of a finite group G to determine whether G is
nilpotent.

C-2.40. Recall that the group Q of quaternions has the presentation

Q = (a, b | a4 = 1, a2 = b2, bab−1 = a−1).

(i) Show that there is a representation σ : Q → GL(2,C) with

a 
→
[
i 0
0 −i

]
and b 
→

[
0 1
−1 0

]
.

(ii) Prove that σ is an irreducible representation.

C-2.41. (i) If σ : G → GL(V ) and τ : G → GL(W ) are representations, prove that

σ ⊗ τ : G → GL(V ⊗W )

defined by

(σ ⊗ τ)(g) = σ(g)⊗ τ(g)

is a representation.

(ii) Prove that the character afforded by σ ⊗ τ is the pointwise product:

χσχτ : g 
→ tr(σ(g)) tr(τ(g)).

(iii) Prove that CF(G) is a commutative ring (usually called the Burnside ring of G).
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∗ C-2.42. (i) Prove that the groups Sn, for n ≥ 2, D8, and Q are generator-conjugate,
and conclude that all the entries in their character tables are integers.

(ii) Show directly, without using Table 5, that A4 is not generator-conjugate.

(iii) Find a generator-conjugate group G not listed in part (i).

C-2.43. Prove the converse of Theorem C-2.100.

Hint. Use Lemma C-2.71.

C-2.12. Theorems of Burnside and of Frobenius

Character theory will be used in this section to prove two important results in group
theory: Burnside’s pmqn Theorem and a theorem of Frobenius. We begin with the
following variation of Schur’s Lemma.

Proposition C-2.102 (Schur’s Lemma II). If σ : G→ GL(V ) is an irreducible
representation and if a linear transformation ϕ : V → V satisfies

ϕσ(g) = σ(g)ϕ

for all g ∈ G, then ϕ is a scalar transformation: there exists ω ∈ C with ϕ = ω1V .

Proof. The vector space V is a CG-module with scalar multiplication gv = σ(g)(v)
for all v ∈ V , and any linear transformation θ satisfying the equation θσ(g) = σ(g)θ
for all g ∈ G is a CG-map V σ → V σ (for θ(gv) = θσ(g)(v) = σ(g)θ(v) = gθ(v)).
Since σ is irreducible, the CG-module V σ is simple.

Schur’s Lemma (Theorem C-2.30) says that End(V σ) is a division ring, and
so every nonzero element in it is nonsingular. Now ϕ − ω1V ∈ End(V σ) for every
ω ∈ C; in particular, this is so when ω is an eigenvalue of ϕ (which lies in C because
C is algebraically closed). The definition of eigenvalue says that ϕ−ω1V is singular,
and so ϕ− ω1V is zero; that is, ϕ = ω1V , as desired. •

Recall that if Li is a minimal left ideal in CG and λi : G → EndC(Li) is the
corresponding irreducible representation, then we extended λi to a linear transfor-

mation λ̃i : CG→ EndC(Li):

λ̃i(g)uj =

{
gui if j = i,

0 if j �= i.

Thus, λ̃i(g) = λi(g) for all g ∈ G. In Proposition C-2.63(ii), we proved that λ̃i is a
C-algebra map.

Corollary C-2.103. Let Li be a minimal left ideal in CG, let λi : G→ EndC(Li)

be the corresponding irreducible representation, and let λ̃i : CG→ EndC(Li) be the
algebra map of Proposition C-2.63(ii).

(i) If z ∈ Z(CG), then there is ωi(z) ∈ C with

λ̃i(z) = ωi(z)I.

(ii) The function ωi : Z(CG)→ C, given by z �→ ωi(z), is an algebra map.
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Proof.

(i) Let z ∈ Z(CG). We verify the hypothesis of Schur’s Lemma II in the special

case V = Li, σ = λi, and ϕ = λ̃i(z). For all g ∈ G, we have λ̃i(z)λi(g) =

λi(zg) (for λ̃i is a multiplicative map extending λi), while λi(g)λ̃i(z) = λi(gz).
These are equal, for zg = gz since z ∈ Z(CG). Proposition C-2.102 now says

that λ̃i(z) = ωi(z)I for some ωi(z) ∈ C.

(ii) This follows from the equation λ̃i(z) = ωi(z)I and λ̃i being an algebra map.
•

Recall the notation on page 180. Lemma C-2.48 says that a basis for Z(CG)
consists of the class sums

zi =
∑
g∈Ci

g,

where the conjugacy classes of G are C1, . . . , Cr.

Proposition C-2.104. Let z1, . . . , zr be the class sums of a finite group G.

(i) For each i, j, we have

ωi(zj) =
hjχi(gj)

ni
,

where gj ∈ Cj.

(ii) There are nonnegative integers aijν with

zizj =
∑
ν

aijνzν .

(iii) The complex numbers ωi(zj) are algebraic integers.

Proof.

(i) Computing the trace of λ̃i(zj) = ωi(zj)I gives

niωi(zj) = χi(zj) =
∑
g∈Cj

χi(g) = hjχi(gj),

for χi is constant on the conjugacy class Cj . Therefore,

ωi(zj) = hjχi(gj)/ni.

(ii) Choose gν ∈ Cν . The definition of multiplication in the group algebra shows
that the coefficient of gν in zizj is

|{(gi, gj) ∈ Ci × Cj : gigj = gν}|,
the cardinality of a finite set, and hence it is a nonnegative integer. As all the
coefficients of zν are equal (for we are in Z(CG)), it follows that this number
is aijν .

(iii) Let M be the (additive) subgroup of C generated by all ωi(zj), for j =
1, . . . , r. Since ωi is an algebra map,

ωi(zj)ωi(z�) =
∑
ν

aj�νωi(zν),
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so that M is a ring that is finitely generated as an abelian group (because
aijν ∈ Z). Hence, for each j, M is a Z[ωi(zj)]-module that is a finitely
generated abelian group. If M is faithful, then Corollary C-2.95 will give
ωi(zj) an algebraic integer. But M ⊆ C, so that the product of nonzero
elements is nonzero, and this implies that M is a faithful Z[ωi(zj)]-module,
as desired. •

We are almost ready to complete the proof of Burnside’s Theorem.

Proposition C-2.105. If (ni, hj) = 1 for some i, j, then either |χi(gj)| = ni or
χi(gj) = 0.

Proof. By hypothesis, there are integers s and t in Z with sni + thj = 1, so that,
for gj ∈ Cj , we have

χi(gj)

ni
= sχi(gj) +

thjχi(gj)

ni
.

Hence, Proposition C-2.104 gives χi(gj)/ni an algebraic integer, and so |χi(gj)| ≤
ni, by Proposition C-2.81(i). Thus, it suffices to show that if |χi(gj)/ni| < 1, then
χi(gj) = 0.

Let m(x) ∈ Z[x] be the minimum polynomial of α = χi(gj)/ni; that is, m(x)
is the monic polynomial in Z[x] of least degree having α as a root. We proved, in
Corollary C-2.96, that m(x) is irreducible in Q[x]. If α′ is a root of m(x), then
Proposition A-5.14 in Part 1 shows that α′ = σ(α) for some σ ∈ Gal(E/Q), where
E/Q is the splitting field of m(x)(x|G| − 1). But

α =
1

ni
(ε1 + · · ·+ εni

) ,

where the ε’s are |G|th roots of unity, and so α′ = σ(α) is also such a sum. It
follows that |α′| ≤ 1 (as in the proof of Proposition C-2.81(i)). Therefore, if N(α)
is the norm of α (which is, by definition, the absolute value of the product of all the
roots of m(x); see the remark on page 196), then N(α) < 1, for we are assuming
that |α| < 1. But N(α) is the absolute value of the constant term of m(x), which
is an integer. Therefore, N(α) = 0, hence α = 0, and so χi(gj) = 0, as claimed. •

At last, we can use Proposition C-2.60 to complete the proof of Burnside’s
Theorem.

Theorem C-2.106.

(i) If G is a nonabelian finite simple group, then {1} is the only conjugacy class
whose size is a prime power.

(ii) Burnside’s Theorem is true: every group of order pmqn, where p and q are
primes, is solvable.

Proof.

(i) Assume, on the contrary, that hj = pe > 1 for some j. By Exercise C-2.36
on page 199, for all i, we have

Z(G/ kerχi) = {g ∈ G : |χi(g)| = ni}.
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Since G is simple, kerχi = {1} for all i, and so Z(G/ kerχi) = Z(G) = {1}.
By Proposition C-2.105, if (ni, hj) = 1, then either |χi(gj)| = ni or χi(gj) = 0.
Of course, χ1(gj) = 1 for all j, where χ1 is the trivial character. If χi is not
the trivial character, then we have just seen that the first possibility cannot
occur, and so χi(gj) = 0. On the other hand, if (ni, hj) �= 1, then p | ni (for
hj = pe). Thus, for every i �= 1, either χi(gj) = 0 or p | ni.

Consider the orthogonality relation Corollary C-2.79(ii):
r∑

i=1

niχi(gj) = 0.

Now n1 = 1 = χ1(gj), while each of the other terms is either 0 or of the form
pαi, where αi is an algebraic integer. It follows that

0 = 1 + pβ,

where β is an algebraic integer. This implies that the rational number −1/p
is an algebraic integer, hence lies in Z, and we have the contradiction that
−1/p is an integer.

(ii) Proposition C-2.60. •

Another early application of characters is a theorem of Frobenius. We begin
by recalling doubly transitive permutation groups. Let G be a finite group and X
a finite G-set. Recall that if x ∈ X, then its orbit is O(x) = {gx : g ∈ G} and its
stabilizer is Gx = {g ∈ G : gx = x}. Theorem C-1.16 shows that |O(x)||Gx| = |G|.
A G-set X is transitive if it has only one orbit: if x, y ∈ X, then there exists g ∈ G
with y = gx; in this case, O(x) = X. We will also mention the stabilizer of two
points: Gx,y = {g ∈ G : gx = x and gy = y}.

Definition. A transitive G-set X is called regular if only the identity element of
G fixes any element of X; that is, Gx = {1} for all x ∈ X.

For example, Cayley’s Theorem shows that every group G is isomorphic to a
regular subgroup of SG (indeed, this is why the regular representation is so called).

Notation. If G is a group, then G# = {g ∈ G : g �= 1}.

We now consider transitive groups G such that each g ∈ G# has at most one
fixed point.12 In case every g ∈ G# has no fixed points, we say that the action of G
is fixed-point-free. Thompson proved that if a finite group H has a fixed-point-
free automorphism α of prime order (that is, the action of the group G =

〈
α
〉
on

H# is fixed-point-free), then H is nilpotent (Robinson [181], pp. 306–307). Thus,
let us consider such actions in which there is some g ∈ G# that has a fixed point;
that is, the action of G is not regular.

12Proving general theorems about groups G by first normalizing is a common feature of group
theory (and of mathematics!). We first prove special cases by assuming extra properties of G until
only the difficult case remains. This strategy often leaves groups satisfying what appears to be
unnatural hypotheses; and if these hypotheses occur in other situations, we create a definition
that also seems unnatural. Such is the case with Frobenius groups, for example.
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Definition. A finite group G is a Frobenius group if there exists a transitive
G-set X such that

(i) every g ∈ G# has at most one fixed point;

(ii) there is some g ∈ G# that does have a fixed point.

If x ∈ X, we call Gx a Frobenius complement of G.

Note that condition (i) implies that the G-set X in the definition is necessarily
faithful. Let us rephrase the two conditions: (i) if every g ∈ G# has at most one
fixed point, then the stabilizer of two points Gx,y = {1}; (ii) if there is some g ∈ G#

that does have a fixed point, then the stabilizer of one point Gx �= {1}.

Example C-2.107.

(i) The symmetric group S3 is a Frobenius group: X = {1, 2, 3} is a faithful
transitive S3-set; no α ∈ (S3)

# fixes two elements; each transposition (i j)
fixes one element. The cyclic subgroups

〈
(i j)

〉
are Frobenius complements

(so Frobenius complements need not be unique). A permutation β ∈ S3 has
no fixed points if and only if β is a 3-cycle. We are going to prove, in every
Frobenius group, that 1 together with all those elements having no fixed
points comprise a normal subgroup.

(ii) The example of S3 in (i) can be generalized. Let X be a G-set, with at least
three elements, which is a sharply doubly transitive G-set; that is, X is a
doubly transitive G-set and Gx,y = {1} for every pair of x �= y. Thus, X is
transitive and Gx �= {1} (for if x, y, z ∈ X are distinct, there exists g ∈ G
with x = gx and z = gy). Therefore, every sharply doubly transitive group
G is a Frobenius group. �

The significance of the next proposition is that it translates the definition of
Frobenius group from the language of G-sets into the language of abstract groups.

Proposition C-2.108. A finite group G is a Frobenius group if and only if it
contains a proper nontrivial subgroup H such that H∩gHg−1 = {1} for all g /∈ H.13

Proof. Let X be a G-set as in the definition of Frobenius group. Choose x ∈ X,
and define H = Gx. Now H is a proper subgroup of G, for transitivity does
not permit gx = x for all g ∈ G. To see that H is nontrivial, choose g ∈ G#

having a fixed point; say, gy = y. If y = x, then g ∈ Gx = H. If y �= x, then
transitivity provides h ∈ G with hy = x, and Exercise C-1.24 on page 16 gives
H = Gx = hGyh

−1 �= {1}. If g /∈ H, then gx �= x. Now g(Gx)g
−1 = Ggx. Hence,

if h ∈ H ∩ gHg−1 = Gx ∩Ggx, then h fixes x and gx; that is, h ∈ Gx,y = {1}.
For the converse, we take X to be the G-set G/H of all left cosets of H in G,

where g : aH �→ gaH for all g ∈ G. Example C-1.7(i) says that X is a transitive
G-set and that the stabilizer of each aH ∈ G/H is the subgroup aHa−1 of G. Since

13A subset H of a finite G-set X is called a T.I. set (trivial intersection set) if, for all g ∈ G,
either H ∩ gHg−1 = X or H ∩ gHg−1 ⊆ {1}. Thus, if G acts on itself by conjugation, then the
subgroup H is a T.I. set. See Exercise C-2.47.
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H �= {1}, we see that GaH �= {1}. Finally, if aH �= bH, then

GaH,bH = GaH ∩GbH = aHa−1 ∩ bHb−1 = a
(
H ∩ a−1bHb−1a

)
a−1 = {1},

because a−1b /∈ H. Therefore, G is a Frobenius group. •

Definition. Let X be a G-set. The Frobenius kernel of G is the subset

N = {1} ∪ {g ∈ G : g has no fixed points}.

When X is transitive, we can describe N in terms of a stabilizer Gx. If a /∈ N#,
then there is some y ∈ X with ay = y. Since G acts transitively, there is g ∈ G
with gx = y, and a ∈ Gy = gGxg

−1. Hence, a ∈
⋃

g∈G gGxg
−1. For the reverse

inclusion, if a ∈
⋃

g∈G gGxg
−1, then a ∈ gGxg

−1 = Ggx for some g ∈ G, and so a

has a fixed point; that is, a /∈ N . We have proved that

N = {1} ∪
(
G−

(⋃
g∈G

gGxg
−1
))

.

Exercise C-1.11 on page 14 shows that if Gx is a proper subgroup of G, then
G �=

⋃
g∈G gGxg

−1, and so N �= {1} in this case.

Proposition C-2.109. If G is a Frobenius group with Frobenius complement H
and Frobenius kernel N , then |N | = [G : H].

Proof. By Proposition C-2.108, there is a disjoint union

G = {1} ∪
(⋃
g∈G

gH#g−1
)
∪N#.

Note that NG(H) = H: if g /∈ H, then H ∩ gHg−1 = {1}, and so gHg−1 �= H.
Hence, the number of conjugates of H is [G : NG(H)] = [G : H] (Corollary C-1.19).
Therefore, |

⋃
g∈G gH#g−1| = [G : H](|H| − 1), and so

|N | = |N#|+ 1 = |G| − ([G : H](|H| − 1)) = [G : H]. •

The Frobenius kernel may not be a subgroup of G. It is very easy to check that
if g ∈ N , then g−1 ∈ N and aga−1 ∈ N for every a ∈ G; the difficulty is in proving
that N is closed under multiplication. For example, if V = kn is the vector space
of all n× 1 column vectors over a field k, then V #, the set of nonzero vectors in V ,
is a faithful transitive GL(V )-set. Now A ∈ GL(V ) has a fixed point if and only if
there is some v ∈ V # with Av = v; that is, A has a fixed point if and only if 1 is
an eigenvalue of A. Thus, the Frobenius kernel now consists of the identity matrix
together with all linear transformations which do not have 1 as an eigenvalue. Let
|k| ≥ 4, and let α be a nonzero element of k with α2 �= 1. Then A = [ α 0

0 α ] and
B =

[
α−1 0
0 α

]
lie in N , but their product AB =

[
1 0
0 α2

]
does not lie in N . However,

if G is a Frobenius group, then N is a subgroup; the only known proof of this fact
uses characters.

We have already remarked that if ψ is a character on a subgroup H of a group
G, then the restriction (ψ�G)H of the induced character ψ�G need not equal ψ. The
next proof shows that irreducible characters of a Frobenius complement do extend
to irreducible characters of G.
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Lemma C-2.110. Let G be a Frobenius group with Frobenius complement H and
Frobenius kernel N . For every irreducible character ψ on H other than the trivial
character ψ1, define the generalized character

ϕ = ψ − dψ1,

where d = ψ(1). Then ψ∗ = ϕ�G + dχ1 is an irreducible character on G, and
ψ∗
H = ψ; that is, ψ∗(h) = ψ(h) for all h ∈ H.

Proof. Note first that ϕ(1) = 0. We claim that the induced generalized character
ϕ�G satisfies the equation

(ϕ�G)H = ϕ.

If t1 = 1, . . . , tn is a transversal of H in G, then for g ∈ G, the matrix of ϕ�G(g)
on page 189 has the blocks Ḃ(t−1

i gti) on its diagonal, where Ḃ(t−1
i gti) = 0 if

t−1
i gti /∈ H (this is just the matrix version of Theorem C-2.85). If h ∈ H, then

t−1
i hti /∈ H for all i �= 1, and so Ḃ(t−1

i hti) = 0. Therefore, there is only one nonzero
diagonal block, and

tr(ϕ�G(h)) = tr(B(h));

that is,

ϕ�G(h) = ϕ(h).

We have just seen that ϕ�G is a generalized character onG such that (ϕ�G)H =ϕ.
By Frobenius Reciprocity,

(ϕ�G, ϕ�G)G = (ϕ, (ϕ�G)H)H = (ϕ, ϕ)H .

But ϕ = ψ − dψ1, so that orthogonality of ψ and ψ1 gives

(ϕ, ϕ)H = 1 + d2.

Similarly,

(ϕ�G, χ1)G = (ϕ, ψ1)H = −d,
where χ1 is the trivial character on G. Define

ψ∗ = ϕ�G + dχ1.

Now ψ∗ is a generalized character on G, and

(ψ∗, ψ∗)G = (ϕ�G, ϕ�G)G + 2d(ϕ�G, χ1)G + d2 = 1 + d2 − 2d2 + d2 = 1.

We have

(ψ∗)H = (ϕ�G)H + d(χ1)H = ϕ+ dψ1 = (ψ − dψ1) + dψ1 = ψ.

Since ψ∗(1) = ψ(1) > 0, Corollary C-2.75 says that ψ∗ is an irreducible character
on G. •

Theorem C-2.111 (Frobenius). Let G be a Frobenius group with Frobenius
complement H and Frobenius kernel N . Then N is a normal subgroup of G,
N ∩H = {1}, and NH = G.

Remark. A group G having a subgroup Q and a normal subgroup K such that
K ∩ Q = {1} and KQ = G is called a semidirect product. We will discuss such
groups in the chapter on homology. �
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Proof. For every irreducible character ψ on H other than the trivial character ψ1,
define the generalized character ϕ = ψ−dψ1, where d = ψ(1). By Lemma C-2.110,
ψ∗ = ϕ�G + dχ1 is an irreducible character on G. Define

N∗ =
⋂

ψ �=ψ1

kerψ∗.

Of course, N∗ is a normal subgroup of G.

By Lemma C-2.110, ψ∗(h) = ψ(h) for all h ∈ H; in particular, if h = 1, we
have

ψ∗(1) = ψ(1) = d.(1)

If g ∈ N#, then for all a ∈ G, we have g /∈ aHa−1 (for g has no fixed points),
and so ϕ̇(aga−1) = 0. The induced character formula, Theorem C-2.85, now gives
ϕ�G(g) = 0. Hence, if g ∈ N#, then Eq. (1) gives

ψ∗(g) = ϕ�G(g) + dχ1(g) = d.

We conclude that if g ∈ N , then

ψ∗(g) = d = ψ∗(1);

that is, g ∈ kerψ∗. Therefore,

N ⊆ N∗.

The reverse inclusion will arise from a counting argument.

Let h ∈ H ∩ N∗. Since h ∈ H, Lemma C-2.110 gives ψ∗(h) = ψ(h). On the
other hand, since h ∈ N∗, we have ψ∗(h) = ψ∗(1) = d. Therefore, ψ(h) = ψ∗(h) =
d = ψ(1), so that h ∈ kerψ for every irreducible character ψ on H. Consider the
regular character, afforded by the regular representation ρ on H: χρ =

∑
i niψi.

Now χρ(h) =
∑

i niψi(h) �= 0, so that Example C-2.70(ii) gives h = 1. Thus,

H ∩N∗ = {1}.

Next, |G| = |H|[G : H] = |H||N |, by Proposition C-2.109. Note that HN∗ is
a subgroup of G, because N∗ �G. Now |HN∗||H ∩N∗| = |H||N∗|, by the Second
Isomorphism Theorem; since H ∩ N∗ = {1}, we have |H||N | = |G| ≥ |HN∗| =
|H||N∗|. Hence, |N | ≥ |N∗|. But |N | ≤ |N∗|, because N ⊆ N∗, and so N = N∗.
Therefore, N �G, H ∩N = {1}, and HN = G. •

Much more can be said about the structure of Frobenius groups. Every Sy-
low subgroup of a Frobenius complement is either cyclic or generalized quaternion
(Huppert [103], p. 502), and it is a consequence of Thompson’s Theorem on fixed-
point-free automorphisms that every Frobenius kernel is nilpotent (Robinson [181],
p. 306); that is, N is the direct product of its Sylow subgroups. The reader is re-
ferred to Curtis–Reiner [48], pp. 242–246, or Feit [65], pp. 133–139.
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Exercises

C-2.44. Prove that the affine group Aff(1,Fq) is sharply doubly transitive.

C-2.45. Assume that the family of left cosets G/H of a subgroup H ⊆ G is a G-set via the
representation on cosets. Prove that G/H is a faithful G-set if and only if

⋂
a∈G aHa−1 =

{1}. Give an example in which G/H is not a faithful G-set.

C-2.46. Prove that every Sylow subgroup of SL(2,F5) is either cyclic or quaternion.

C-2.47. A subset A of a group G is a T.I. set (trivial intersection set) if A ⊆ NG(A)
and A ∩ gAg−1 ⊆ {1} for all g /∈ NG(A).

(i) Prove that a Frobenius complement H in a Frobenius group G is a T.I. set.

(ii) Let A be a T.I. set in a finite group G, and let N = NG(A). If α is a class function
vanishing on N−A and β is a class function onN vanishing on

(⋃
g∈G(A

g∩N)
)
−A,

prove, for all g ∈ N#, that α�G(g) = α(g) and β�G(g) = β(g).
Hint. See the proofs of Theorem C-2.111 and Lemma C-2.110.

(iii) If α(1) = 0, prove that (α, β)N = (α�G, β�G)G.
(iv) Let H be a self-normalizing subgroup of a finite group G; that is, H = NG(H). If

H is a T.I. set, prove that there is a normal subgroup K of G with K ∩H = {1}
and KH = G.
Hint. See Feit [65], p. 124.

∗ C-2.48. Prove that there are no nonabelian simple groups of order n, where 60 < n ≤ 100.

Hint. By Burnside’s Theorem, the only candidates for n in the given range are 66, 70,
78, 84, and 90; note that 90 was eliminated in Exercise C-1.46 on page 33.

C-2.49. Prove that there are no nonabelian simple groups of order n, where 101 ≤ n <
168. We remark that PSL(2,F7) is a simple group of order 168, and it is the unique
such group up to isomorphism. In view of Proposition C-1.40, Corollary C-1.81, and
Exercise C-2.48, we see that A5 is the only nonabelian simple group of order strictly less
than 168.

Hint. By Burnside’s Theorem, the only candidates for n in the given range are 102, 105,
110, 120, 126, 130, 132, 138, 140, 150, 154, 156, and 165. Use Exercise C-1.23 on page 16
and Exercise C-1.47 on page 33.

C-2.13. Division Algebras

When applying the Wedderburn–Artin Theorems to group algebras kG, where k is
algebraically closed, we used Molien’s Theorem (Corollary C-2.44) to assume that
the matrix rings have entries in k. If k is not algebraically closed, then (noncom-
mutative) division rings can occur. At the moment, the only example we know of
such a ring is the quaternions H (or certain subalgebras of H; see Example B-1.1(x)
in Part 1), and it is not at all obvious how to construct other examples.

Linear representations of a finite group over a field k are the simplest ones, for
every finite subgroup of the multiplicative group k× of nonzero elements is cyclic
(Theorem A-3.59 in Part 1). Herstein proved that every finite subgroup of D× is
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cyclic if D is a division ring whose center is a field of characteristic p > 0, but
it is false when Z(D) has characteristic 0 (obviously, the group of quaternions is
a subgroup of H×). All finite subgroups of multiplicative groups of division rings
were found by Amitsur [4].

That the tensor product of algebras is, again, an algebra, is used in the study
of division rings.

Definition. A division algebra over a field k is a division ring regarded as an
algebra over its center k.

Let us begin by considering the wider class of simple algebras.

Definition. A finite-dimensional14 k-algebra A over a field k is central simple if
it is simple (no two-sided ideals other than A and {0}) and its center Z(A) = k.

Notation. If A is an algebra over a field k, then we write

[A : k] = dimk(A).

Example C-2.112.

(i) Every division algebra k that is finite-dimensional over its center k is a central
simple k-algebra. The ring H of quaternions is a central simple R-algebra,
and every field is a central simple algebra over itself.

(ii) If k is a field, then Matn(k) is a central simple k-algebra (it is simple, by
Proposition C-2.29, and its center consists of all scalar matrices {aI : a ∈ k},
by Exercise B-1.8 on page 281 in Part 1).

(iii) If A is a central simple k-algebra, then its opposite algebra Aop is also a
central simple k-algebra. �

Theorem C-2.113. Let A be a central simple k-algebra. If B is a simple k-algebra,
then A⊗kB is a central simple Z(B)-algebra. In particular, if B is a central simple
k-algebra, then A⊗k B is a central simple k-algebra.

Proof. Each x ∈ A⊗k B has an expression of the form

x = a1 ⊗ b1 + · · ·+ an ⊗ bn,(1)

where ai ∈ A and bi ∈ B. For nonzero x, define the length of x to be n if there is no
such expression having fewer than n terms. We claim that if x has length n, that
is, if Eq. (1) is a shortest such expression, then b1, . . . , bn is a linearly independent
list in B (viewed as a vector space over k). Otherwise, there is some j and ui ∈ k,
not all zero, with bj =

∑
i uibi. Substituting and collecting terms gives

x =
∑
i �=j

(ai + uiaj)⊗ bi,

which is a shorter expression for x.

Let I �= (0) be a two-sided ideal in A⊗kB. Choose x to be a (nonzero) element
in I of smallest length, and assume that Eq. (1) is a shortest expression for x. Now

14We assume that central simple algebras are finite-dimensional, but some authors do not.
Hilbert gave an example of an infinite-dimensional division algebra (Drozd–Kirichenko [57], p. 81).
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a1 �= 0. Since Aa1A is a two-sided ideal in A, simplicity gives A = Aa1A. Hence,
there are elements a′p and a′′p in A with 1 =

∑
p a

′
pa1a

′′
p . Since I is a two-sided ideal,

x′ =
∑
p

a′pxa
′′
p = 1⊗ b1 + c2 ⊗ b2 + · · ·+ cn ⊗ bn(2)

lies in I, where, for i ≥ 2, we have ci =
∑

p a
′
paia

′′
p . At this stage, we do not know

whether x′ �= 0, but we do know, for every a ∈ A, that (a ⊗ 1)x′ − x′(a ⊗ 1) ∈ I.
Now

(a⊗ 1)x′ − x′(a⊗ 1) =
∑
i≥2

(aci − cia)⊗ bi.(3)

First, this element is 0, lest it be an element in I of length smaller than the length
of x. Since b1, . . . , bn is a linearly independent list, the k-subspace it generates is〈
b1, . . . , bn

〉
=
〈
b1
〉
⊕ · · · ⊕

〈
bn
〉
, and so

A⊗k

〈
b1, . . . , bn

〉
= A⊗k

〈
b1
〉
⊕ · · · ⊕A⊗k

〈
bn
〉
.

It follows from Eq. (3) that each term (aci − cia)⊗ bi must be 0. Hence, aci = cia
for all a ∈ A; that is, each ci ∈ Z(A) = k. Eq. (2) becomes

x′ = 1⊗ b1 + c2 ⊗ b2 + · · ·+ cn ⊗ bn

= 1⊗ b1 + 1⊗ c2b2 + · · ·+ 1⊗ cnbn

= 1⊗ (b1 + c2b2 + · · ·+ cnbn).

Now b1+ c2b2+ · · ·+ cnbn �= 0, because b1, . . . , bn is a linearly independent list, and
so x′ �= 0. Therefore, I contains a nonzero element of the form 1⊗b. But simplicity
of B gives BbB = B, and so there are b′q, b

′′
q ∈ B with

∑
q b

′
qbb

′′
q = 1. Hence, I

contains
∑

q(1⊗ b′q)(1⊗ b)(1⊗ b′′q ) = 1⊗ 1, which is the unit in A⊗k B. Therefore,
I = A⊗k B and A⊗k B is simple.

We now seek the center of A⊗k B. Clearly, k ⊗k Z(B) ⊆ Z(A⊗k B). For the
reverse inequality, let z ∈ Z(A⊗k B) be nonzero, and let

z = a1 ⊗ b1 + · · ·+ an ⊗ bn

be a shortest such expression for z. As in the preceding argument, b1, . . . , bn is a
linearly independent list over k. For each a ∈ A, we have

0 = (a⊗ 1)z − z(a⊗ 1) =
∑
i

(aai − aia)⊗ bi.

It follows, as above, that (aai − aia) ⊗ bi = 0 for each i. Hence, aai − aia = 0,
so that aai = aia for all a ∈ A and each ai ∈ Z(A) = k. Thus, z = 1 ⊗ x, where
x = a1b1 + · · ·+ anbn ∈ B. But if b ∈ B, then

0 = z(1⊗ b)− (1⊗ b)z = (1⊗ x)(1⊗ b)− (1⊗ b)(1⊗ x) = 1⊗ (xb− bx).

Therefore, xb− bx = 0 and x ∈ Z(B). We conclude that z ∈ k ⊗k Z(B). •

It is not generally true that the tensor product of simple k-algebras is again
simple; we must pay attention to the centers. Exercise C-2.54 on page 221 shows
that if E/k is a field extension, then E⊗kE need not be a field. The tensor product
of division algebras need not be a division algebra, as we see in the next example.
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Example C-2.114. The algebra C⊗R H is an eight-dimensional R-algebra, but it
is also a four-dimensional C-algebra with basis

1 = 1⊗ 1, 1⊗ i, 1⊗ j, 1⊗ k.

We let the reader prove that the vector space isomorphism C⊗RH→ Mat2(C) with

1⊗ 1 �→
[
1 0
0 1

]
, 1⊗ i �→

[
i 0
0 −i

]
, 1⊗ j �→

[
0 1
−1 0

]
, 1⊗ k �→

[
0 i
i 0

]
is an isomorphism of C-algebras. It follows that C⊗R H, though a simple algebra,
is not a division ring. �

Another way to see that C ⊗R H ∼= Mat2(C) arises from Example C-2.52(ii).
We remarked then that

RQ ∼= R× R× R× R×H;

tensoring by C gives

CQ ∼= C⊗R RQ ∼= C× C× C× C× (C⊗R H).

It follows from the uniqueness in Wedderburn–Artin Theorem II that C ⊗R H ∼=
Mat2(C) (we give yet another proof of this in the next theorem).

The next theorem puts the existence of the isomorphism in Example C-2.114
into the context of central simple algebras.

Theorem C-2.115. Let k be a field and let A be a central simple k-algebra.

(i) If k is the algebraic closure of k, then there is an integer n with

k ⊗k A ∼= Matn(k).

In particular, C⊗R H ∼= Mat2(C).

(ii) If A is a central simple k-algebra, then there is an integer n with

[A : k] = n2.

Proof.

(i) By Theorem C-2.113, k ⊗k A is a simple k-algebra. Hence, Wedderburn’s
Theorem (actually, Corollary C-2.42) gives k ⊗k A ∼= Matn(D) for some
n ≥ 1 and some division ring D. Since D is a finite-dimensional division
algebra over k, the argument in Molien’s Theorem (Corollary C-2.44) shows
that D = k. In particular, since C is the algebraic closure of R, we have
C⊗R H ∼= Matn(C) for some n; as dimR(C⊗R H) = 8, we have n = 2.

(ii) We claim that [A : k] = [k ⊗k A : k], for if a1, . . . , am is a basis of A over k,
then 1⊗ a1, . . . , 1⊗ am is a basis of k⊗k A over k (essentially because tensor
product commutes with direct sum). Therefore,

[A : k] = [k ⊗k A : k] = [Matn(k) : k] = n2. •

Definition. A splitting field for a central simple k-algebra A is a field extension
E/k for which there exists an integer n such that E ⊗k A ∼= Matn(E).
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Theorem C-2.115 says that the algebraic closure k of a field k is a splitting field
for every central simple k-algebra A. We are going to see that there always exists
a splitting field that is a finite extension of k, but we first develop some tools in
order to prove it.

Definition. If A is a k-algebra and X ⊆ A is a subset, then its centralizer,
CA(X), is defined by

CA(X) = {a ∈ A : ax = xa for every x ∈ X}.

It is easy to check that centralizers are always subalgebras.

The key idea in the next proof is that a subalgebra B of A makes A into a
(B,A)-bimodule and that the centralizer of B can be described in terms of an
endomorphism ring.

Theorem C-2.116 (Double Centralizer). Let A be a central simple algebra over
a field k and let B be a simple subalgebra of A.

(i) CA(B) is a simple k-algebra.

(ii) B ⊗k Aop ∼= Mats(D) and CA(B) ∼= Matr(D) for some division algebra D,
where r | s.

(iii) [B : k][CA(B) : k] = [A : k].

(iv) CA(CA(B)) = B.

Proof. Associativity of the multiplication in A shows that A can be viewed as a
(B,A)-bimodule. As such, it is a left (B⊗kA

op)-module (Proposition B-5.9 in Part
1), where (b⊗a)x = bxa for all x ∈ A; we denote this module by A∗. But B⊗kA

op is
a simple k-algebra, by Theorem C-2.113, so that Corollary C-2.42 gives B⊗kA

op ∼=
Mats(D) for some integer s and some division algebra D over k; in fact, B ⊗k A

op

has a unique (up to isomorphism) minimal left ideal L, and Dop ∼= EndB⊗kAop(L).
Therefore, as (B ⊗k Aop)-modules, Corollary C-2.18 gives A∗ ∼= Lr = L⊕ · · · ⊕ L,
the direct sum of r copies of L, and so EndB⊗kAop(A∗) ∼= Matr(D).

We claim that

CA(B) ∼= EndB⊗kAop(A∗) ∼= Matr(D);

this will prove (i) and most of (ii). If ϕ ∈ EndB⊗kAop(A∗), then it is, in particular,
an endomorphism of A as a right A-module. Hence, for all a ∈ A, we have

ϕ(a) = ϕ(1a) = ϕ(1)a = ua,

where u = ϕ(1). In particular, if b ∈ B, then ϕ(b) = ub. On the other hand,
taking the left action of B into account, we have ϕ(b) = ϕ(b1) = bϕ(1) = bu.
Therefore, ub = bu for all b ∈ B, and so u ∈ CA(B). Thus, ϕ �→ ϕ(1) is a function
EndB⊗kAop(A∗) → CA(B). It is routine to check that this function is an injective
k-algebra map; it is also surjective, for if u ∈ CA(B), then the map A→ A, defined
by a �→ ua, is a (B ⊗k A

op)-map.

We now compute dimensions. Define d = [D : k]. Since L is a minimal left
ideal in Mats(D), we have Mats(D) ∼= Ls (concretely, L = col(1), all the first
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columns of s × s matrices over D). Therefore, [Mats(D) : k] = s2[D : k] and
[Ls : k] = s[L : k], so that

[L : k] = sd.

Also,
[A : k] = [A∗ : k] = [Lr : k] = rsd.

It follows that

[A : k][B : k] = [B ⊗k Aop : k] = [Mats(D) : k] = s2d.

Therefore, [B : k] = s2d/rsd = s/r, and so r | s. Hence,

[B : k][CA(B) : k] = [B : k][Matr(D) : k] =
s

r
· r2d = rsd = [A : k],

because we have already proved that CA(B) ∼= Matr(D).

Finally, we prove (iv). It is easy to see that B ⊆ CA(CA(B)): after all, if b ∈ B
and u ∈ CA(B), then bu = ub, and so b commutes with every such u. But CA(B)
is a simple subalgebra, by (i), and so the equation in (iii) holds if we replace B by
CA(B):

[CA(B) : k][CA(CA(B)) : k] = [A : k].

We conclude that [B : k] = [CA(CA(B)) : k]; together with B ⊆ CA(CA(B)), this
equality gives B = CA(CA(B)). •

Here is a minor variant of the theorem.

Corollary C-2.117. If B is a simple subalgebra of a central simple k-algebra A,
where k is a field, then there is a division algebra D1 with Bop ⊗k A ∼= Mats(D1).

Proof. By Theorem C-2.116(ii), we have B ⊗k Aop ∼= Mats(D) for some division
algebra D. Hence, (B ⊗k Aop)op ∼= (Mats(D))op. But (Mats(D))op ∼= Mats(D

op),
by Proposition B-1.25 in Part 1, while (B⊗kA

op)op ∼= Bop⊗kA, by Exercise C-2.52
on page 220. Setting D1 = Dop completes the proof. •

If D is a division algebra over a field k and δ ∈ D, then the subdivision algebra
generated by k and δ is a field, because elements in the center k commute with δ.
We are interested in maximal subfields of D.

Lemma C-2.118. If D is a division algebra over a field k, then a subfield E of D
is a maximal subfield if and only if CD(E) = E.

Proof. If E is a maximal subfield ofD, then E ⊆ Ck(E) because E is commutative.
For the reverse inclusion, it is easy to see that if δ ∈ Ck(E), then the division
algebra E′ generated by E and δ is a field. Hence, if δ /∈ E, then E � E′, and the
maximality of E is contradicted.

Conversely, suppose that E is a subfield with Ck(E) = E. If E is not a maximal
subfield of D, then there exists a subfield E′ with E � E′. Now E′ ⊆ Ck(E), so
that if there is some a′ ∈ E′ with a′ /∈ E, then E �= Ck(E). Therefore, E is a
maximal subfield. •

After proving an elementary lemma about tensor products, we will extend the
next result from division algebras to central simple algebras (Theorem C-2.128).
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Theorem C-2.119. If D is a division algebra over a field k and E is a maximal
subfield of D, then E is a splitting field for D; that is, E ⊗k D ∼= Mats(E), where
s = [D : E] = [E : k].

Proof. Let us specialize the algebras in Theorem C-2.116. Here, A = D, B = E,
and CA(E) = E, by Lemma C-2.118. Now the condition CA(B) ∼= Matr(k) becomes
E ∼= Matr(k); since E is commutative, r = 1 and k = E. Thus, Corollary C-2.117
says that E ⊗k D = Eop ⊗k D ∼= Mats(E).

The equality in Theorem C-2.116(iii) is now [D : k] = [E : k][E : k] = [E : k]2.
But [E ⊗k D : k] = [Mats(E) : k] = s2[E : k], so that s2 = [D : k] = [E : k]2 and
s = [E : k]. •

Corollary C-2.120. If D is a division algebra over a field k, then all maximal
subfields have the same degree over k.

Remark. It is not true that maximal subfields in arbitrary division algebras are
isomorphic; see Exercise C-2.64 on page 222. �

Proof. For every maximal subfield E, we have [E : k] = [D : E] =
√
[D : k]. •

This corollary can be illustrated by Example C-2.114. The quaternions H is a
four-dimensional R-algebra, so that a maximal subfield must have degree 2 over R;
this is so, for C is a maximal subfield.

We now prove a technical theorem that will yield wonderful results. Recall that
a unit in a noncommutative ring A is an element having a two-sided inverse in A.

Theorem C-2.121. Let k be a field, let B be a simple k-algebra, and let A be a
central simple k-algebra. If there are algebra maps f, g : B → A, then there exists a
unit u ∈ A with

g(b) = uf(b)u−1

for all b ∈ B.

Proof. The map f makes A into a left B-module if we define the action of b ∈ B
on an element a ∈ A as f(b)a. This action makes A into a (B,A)-bimodule, for
the associative law in A gives

(
f(b)x

)
a = f(b)(xa) for all x ∈ A. As usual, this

(B,A)-bimodule is a left (B ⊗k Aop)-module, where (b⊗ a′)a = baa′ for all a ∈ A;
denote it by fA. Similarly, g can be used to make A into a left (B ⊗k A

op)-module
we denote by gA. By Theorem C-2.113, B ⊗k Aop is a simple k-algebra. Now

[fA : k] = [A : k] = [gA : k],

so that fA ∼= gA as (B ⊗k Aop)-modules, by Corollary C-2.42. If ϕ : fA → gA is a
(B ⊗k Aop)-isomorphism, then

ϕ(f(b)aa′) = g(b)ϕ(a)a′(4)

for all b ∈ B and a, a′ ∈ A. Since ϕ is an automorphism of A as a right module over
itself, ϕ(a) = ϕ(1a) = ua, where u = ϕ(1) ∈ A. To see that u is a unit, note that
ϕ−1(a) = u′a for all a ∈ A. Now a = ϕϕ−1(a) = ϕ(u′a) = uu′a for all a ∈ A; in
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particular, when a = 1, we have 1 = uu′. The equation ϕ−1ϕ = 1A gives 1 = u′u,
as desired. Substituting into Eq. (4), we have

uf(b)a = ϕ(f(b)a) = g(b)ϕ(a) = g(b)ua

for all a ∈ A. In particular, if a = 1, then uf(b) = g(b)u and g(b) = uf(b)u−1. •

Corollary C-2.122 (Skolem–Noether). Let A be a central simple k-algebra over
a field k, and let B and B′ be isomorphic simple k-subalgebras of A. If ψ : B → B′

is an isomorphism, then there exists a unit u ∈ A with ψ(b) = ubu−1 for all b ∈ B.

Proof. In the theorem, take f : B → A to be the inclusion, define B′ = imψ, and
define g = iψ, where i : B′ → A is the inclusion. •

There is an analog of the Skolem–Noether Theorem in group theory. A theorem
of Higman, Neumann, and Neumann says that if B and B′ are isomorphic subgroups
of a group G, say, ϕ : B → B′ is an isomorphism, then there exists a group G∗

containing G and an element u ∈ G∗ with ϕ(b) = ubu−1 for every b ∈ B. There is
a proof in Rotman [188], p. 404.

Corollary C-2.123. Let k be a field. If ψ is an automorphism of Matn(k), then
there exists a nonsingular matrix P ∈ Matn(k) with

ψ(T ) = PTP−1

for every matrix T in Matn(k).

Proof. The ring A = Matn(k) is a central simple k-algebra. Set B = B′ = A in
the Skolem–Noether Theorem. •

Here is another proof of Wedderburn’s Theorem C-2.31 in the present spirit.

Theorem C-2.124 (Wedderburn). Every finite division ring D is a field.

Proof (van der Waerden). Let Z = Z(D), and let E be a maximal subfield ofD.
If d ∈ D, then Z(d) is a subfield of D, and hence there is a maximal subfield Ed

containing Z(d). By Corollary C-2.120, all maximal subfields have the same degree,
hence have the same order. By Corollary A-3.100 in Part 1, all maximal subfields
here are isomorphic (this is not generally true; see Exercise C-2.64 on page 222).
For every d ∈ D, the Skolem–Noether Theorem says that there is xd ∈ D with
Ed = xdEx−1

d . Therefore, D =
⋃

x xEx−1, and so

D× =
⋃
x

xE×x−1.

If E is a proper subfield ofD, then E× is a proper subgroup ofD×, and this equation
contradicts Exercise C-1.11 on page 14. Therefore, D = E is commutative. •

Theorem C-2.125 (Frobenius). If D is a noncommutative finite-dimensional
real division algebra, then D ∼= H.
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Proof. If E is a maximal subfield of D, then [D : E] = [E : R] ≤ 2. If [E : R] = 1,
then [D : R] = 12 = 1 and D = R. Hence, [E : R] = 2 and [D : R] = 4. Let
us identify E with C (we know they are isomorphic). Now complex conjugation
is an automorphism of E, so that the Skolem–Noether Theorem gives x ∈ D with
z = xzx−1 for all z ∈ E. In particular, −i = xix−1. Hence,

x2ix−2 = x(−i)x−1 = −xix−1 = i,

and so x2 commutes with i. Therefore, x2 ∈ CD(E) = E, by Lemma C-2.118, and
so x2 = a+ bi for a, b ∈ R. But

a+ bi = x2 = xx2x−1 = x(a+ bi)x−1 = a− bi,

so that b = 0 and x2 ∈ R. If x2 > 0, then there is t ∈ R with x2 = t2. Now
(x + t)(x − t) = 0 gives x = ±t ∈ R, contradicting −i = xix−1. Therefore,
x2 = −r2 for some real r. The element j, defined by j = x/r, satisfies j2 = −1 and
ji = −ij. The list 1, i, j, ij is linearly independent over R: if a+bi+cj+dij = 0, then
(−di−c)j = a+ib ∈ C. Since j /∈ C (lest x ∈ C), we must have −di−c = 0 = a+bi.
Hence, a = b = 0 = c = d. Since [D : R] = 4, the list 1, i, j, ij is a basis of D. It is
now routine to see that if we define k = ij, then ki = j = −ik, jk = i = −kj, and
k2 = −1, and so D ∼= H. •

In 1929, Brauer introduced the Brauer group in his study of division rings.
Since construction of division rings was notoriously difficult, he considered the
wider class of central simple algebras. Brauer introduced the following relation on
central simple k-algebras.

Definition. Two central simple k-algebras A and B are similar, denoted by

A ∼ B,

if there are integers n and m with A⊗k Matn(k) ∼= B ⊗k Matm(k).

If A is a (finite-dimensional) central simple k-algebra, then Corollary C-2.39
and Wedderburn–Artin Theorem II show that A ∼= Matn(D) for a unique k-division
algebra D. We shall see that A ∼ B if and only if they determine the same division
algebra.

Lemma C-2.126. Let A be a finite-dimensional algebra over a field k. If S and
T are k-subalgebras of A such that

(i) st = ts for all s ∈ S and t ∈ T,

(ii) A = ST,

(iii) [A : k] = [S : k][T : k],

then A ∼= S ⊗k T .

Proof. There is a k-linear transformation f : S⊗k T → A with s⊗ t �→ st, because
(s, t) �→ st is a k-bilinear function S × T → A. Condition (i) implies that f is an
algebra map, for

f
(
(s⊗ t)(s′ ⊗ t′)

)
= f(ss′ ⊗ tt′) = ss′tt′ = sts′t′ = f(s⊗ t)f(s′ ⊗ t′).
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Since A = ST , by condition (ii), the k-linear transformation f is a surjection; since
dimk(S ⊗k T ) = dimk(A), by condition (iii), f is a k-algebra isomorphism. •

Lemma C-2.127. Let k be a field.

(i) If A is a k-algebra, then

A⊗k Matn(k) ∼= Matn(A).

(ii) Matn(k)⊗k Matm(k) ∼= Matnm(k).

(iii) A ∼ B is an equivalence relation.

(iv) If A is a central simple algebra, then

A⊗k Aop ∼= Matn(k),

where n = [A : k].

Proof.

(i) Define k-subalgebras of Matn(A) by

S = Matn(k) and T = {aI : a ∈ A}.
If s ∈ S and t ∈ T , then st = ts (for the entries of matrices in S commute
with elements a ∈ A). Now S contains every matrix unit Eij (whose ij
entry is 1 and whose other entries are 0), so that ST contains all matrices of
the form aijEij for all i, j, where aij ∈ A; hence, ST = Matn(A). Finally,
[S : k][T : k] = n2[A : k] = [Matn(A) : k]. Therefore, Lemma C-2.126 gives
the desired isomorphism.

(ii) If V and W are vector spaces over k of dimensions n and m, respectively,
it suffices to prove that Endk(V ) ⊗k Endk(W ) ∼= Endk(V ⊗k W ). Define
S to be all f ⊗ 1W , where f ∈ Endk(V ), and define T to be all 1V ⊗ g,
where g ∈ Endk(W ). It is routine to check that the three conditions in
Lemma C-2.126 hold.

(iii) Since k = Mat1(k), we have A ∼= A ⊗k k ∼= A ⊗k Mat1(k), so that ∼ is
reflexive. Symmetry is obvious; for transitivity, suppose that A ∼ B and
B ∼ C; that is,

A⊗k Matn(k) ∼= B ⊗k Matm(k) and B ⊗k Matr(k) ∼= C ⊗k Mats(k).

Then A⊗k Matn(k)⊗k Matr(k) ∼= A⊗k Matnr(k), by part (ii). On the other
hand,

A⊗k Matn(k)⊗k Matr(k) ∼= B ⊗k Matm(k)⊗k Matr(k)

∼= C ⊗k Matm(k)⊗k Mats(k)

∼= C ⊗k Matms(k).

Therefore, A ∼ C, and so ∼ is an equivalence relation.

(iv) Define f : A × Aop → Endk(A) by f(a, c) = λa ◦ ρc, where λa : x �→ ax
and ρc : x �→ xc; it is routine to check that λa and ρc are k-maps (so their
composite is also a k-map) and that f is k-biadditive. Hence, there is a k-map

f̂ : A⊗k A
op → Endk(A) with f̂(a⊗ c) = λa ◦ρc. Associativity a(xc) = (ax)c
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in A says that λa ◦ ρc = ρc ◦ λa, from which it easily follows that f̂ is a k-

algebra map. As A⊗kA
op is a simple k-algebra and ker f̂ is a proper two-sided

ideal, we have f̂ injective. Now dimk(Endk(A)) = dimk(Homk(A,A)) = n2,

where n = [A : k]. Since dimk(im f̂) = dimk(A⊗k Aop) = n2, it follows that

f̂ is a k-algebra isomorphism: A⊗k Aop ∼= Endk(A). •

We now extend Theorem C-2.119 from division algebras to central simple al-
gebras.

Theorem C-2.128. Let A be a central simple k-algebra over a field k, so that
A ∼= Matr(D), where D is a division algebra over k. If E is a maximal subfield of
D, then E splits A; that is, there is an integer n and an isomorphism

E ⊗k A ∼= Matn(E).

More precisely, if [D : E] = s, then n = rs and [A : k] = (rs)2.

Proof. By Theorem C-2.119, D is split by a maximal subfield E (which is, of
course, a finite extension of k): E ⊗k D ∼= Mats(E), where s = [D : E] = [E : k].
Hence,

E ⊗k A ∼= E ⊗k Matr(D) ∼= E ⊗k (D ⊗k Matr(k))

∼= (E ⊗k D)⊗k Matr(k) ∼= Mats(E)⊗k Matr(k) ∼= Matrs(E).

Therefore, A ∼= Matr(D) gives [A : k] = r2[D : k] = r2s2. •

Definition. If [A] denotes the equivalence class of a central simple k-algebra A
under similarity, define the Brauer group Br(k) to be the set

Br(k) =
{
[A] : A is a central simple k-algebra

}
with binary operation

[A][B] = [A⊗k B].

Theorem C-2.129. Br(k) is an abelian group for every field k. Moreover, if
A ∼= Matn(D) for a division algebra D, then D is a central simple k-algebra and
[A] = [D] in Br(k).

Proof. We show that the operation is well-defined: if A,A′, B,B′ are k-algebras
with A ∼ A′ and B ∼ B′, then A⊗k B ∼ A′ ⊗k B′. The isomorphisms

A⊗k Matn(k) ∼= A′ ⊗k Matm(k) and B ⊗k Matr(k) ∼= B′ ⊗k Mats(k)

give A⊗kB⊗kMatn(k)⊗kMatr(k) ∼= A′⊗kB
′⊗kMatm(k)⊗kMats(k) (we are using

commutativity and associativity of tensor product), so that Lemma C-2.127(ii) gives
A⊗k B ⊗k Matnr(k) ∼= A′ ⊗k B′ ⊗k Matms(k). Therefore, A⊗k B ∼ A′ ⊗k B

′.

That [k] is the identity follows from k ⊗k A ∼= A, associativity and com-
mutativity follow from associativity and commutativity of tensor product, and
Lemma C-2.127(iv) shows that [A]−1 = [Aop]. Therefore, Br(k) is an abelian
group.
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If A is a central simple k-algebra, thenA ∼= Matr(D) for some finite-dimensional
division algebra D over k. Hence, k = Z(A) ∼= Z(Matr(D)) ∼= Z(D), by Theo-
rem C-2.113. Thus, D is a central simple k-algebra, [D] ∈ Br(k), and [D] = [A]
(because D ⊗k Matr(k) ∼= Matr(D) ∼= A ∼= A⊗k k ∼= A⊗k Mat1(k)). •

The next proposition shows the significance of the Brauer group.

Proposition C-2.130. If k is a field, then there is a bijection from Br(k) to the
family D of all isomorphism classes of finite-dimensional division algebras over k,
and so |Br(k)| = |D|. Therefore, there exists a noncommutative division ring,
finite-dimensional over its center k, if and only if Br(k) �= {0}.

Proof. Define a function ϕ : Br(k) → D by setting ϕ([A]) to be the isomorphism
class of k if A ∼= Matn(k). Note that Theorem C-2.129 shows that [A] = [k] in Br(k).
Let us see that ϕ is well-defined. If [k] = [k′], then k ∼ k′, so there are integers n
and m with k ⊗k Matn(k) ∼= k′ ⊗k Matm(k). Hence, Matn(k) ∼= Matm(k′). By the
uniqueness in the Wedderburn–Artin Theorems, k ∼= k′ (and n = m). Therefore,
ϕ([k]) = ϕ([k′]).

Clearly, ϕ is surjective, for if k is a finite-dimensional division algebra over k,
then the isomorphism class of k is equal to ϕ([k]). To see that ϕ is injective, suppose
that ϕ([k]) = ϕ([k′]). Then, k ∼= k′, which implies k ∼ k′. •

Example C-2.131.

(i) If k is an algebraically closed field, then Br(k) = {0}, by Theorem C-2.115.

(ii) If k is a finite field, then Wedderburn’s Theorem C-2.124 (= Theorem C-2.31)
shows that Br(k) = {0}.

(iii) If k = R, then Frobenius’s Theorem C-2.125 shows that Br(R) ∼= Z2.

(iv) It is proved, using class field theory, that Br(Qp) ∼= Q/Z, where Qp is the
field of p-adic numbers. Moreover, there is an exact sequence

0→ Br(Q)→ Br(R)⊕
⊕
p

Br(Qp)→ Q/Z→ 0. �

In a series of deep papers, Br(k) was computed for the most interesting fields k
arising in algebraic number theory (local fields, one of which is Qp, and global fields)
by Albert, Brauer, Hasse, and Noether.

Proposition C-2.132. If E/k is a field extension, then there is a homomorphism

fE/k : Br(k)→ Br(E)

given by [A] �→ [E ⊗k A].

Proof. If A and B are central simple k-algebras, then E ⊗k A and E ⊗k B are
central simple E-algebras, by Theorem C-2.113. If A ∼ B, then E ⊗k A ∼ E ⊗k B
as E-algebras, by Exercise C-2.61 on page 221. It follows that the function fE/k is
well-defined. Finally, fE/k is a homomorphism, because

(E ⊗k A)⊗E (E ⊗k B) ∼= (E ⊗E E)⊗k (A⊗k B) ∼= E ⊗k (A⊗k B),

by Proposition B-5.3 in Part 1, associativity of tensor product. •
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Definition. If E/k is a field extension, then the relative Brauer group, Br(E/k),
is the kernel of the homomorphism fE/k : Br(k)→ Br(E):

Br(E/k) = ker fE/k =
{
[A] ∈ Br(k) : A is split by E

}
.

Corollary C-2.133. For every field k, we have

Br(k) =
⋃

E/k finite Galois

Br(E/k).

Proof. This follows from Theorem C-2.128 after showing that we may assume that
E/k is Galois. •

In a word, the Brauer group arose as a way to study division rings. It is
an interesting object, but we have not really used it seriously. For example, we
have not yet seen any noncommutative division rings other than the real division
algebra H (and its variants for subfields k of R). We will remedy this when we
introduce crossed product algebras in Chapter C-3 on homology. For example, we
will see there that division rings exist whose center is a field of characteristic p > 0.
For further developments, we refer the reader to Jacobson [112] and Reiner [180].

We introduce homology groups in the next chapter, and we will see Theo-
rem C-3.140: if E/k is a finite Galois extension, then the relative Brauer group
B(E/k) ∼= H2(G,E×), where G = Gal(E/k) and E× is the multiplicative group
of nonzero elements of the field E. This will imply that Brauer groups Br(k) are
torsion groups.

Exercises

C-2.50. (i) If k is a subfield of a field K, prove that the ring K ⊗k k[x] is isomorphic
to K[x].

(ii) Suppose that k is a field, p(x) ∈ k[x] is irreducible, and K = k(α), where α is a root
of p(x). Prove that, as rings, K ⊗k K ∼= K[x]/(p(x)), where (p(x)) is the principal
ideal in K[x] generated by p(x).

(iii) The polynomial p(x), though irreducible in k[x], may factor in K[x]. Give an
example showing that the ring K ⊗k K need not be semisimple.

(iv) Prove that if K/k is a finite separable extension, then K ⊗k K is semisimple. (The
converse is also true.)

C-2.51. If A ∼= A′ and B ∼= B′ are k-algebras, where k is a commutative ring, prove that
A⊗k B ∼= A′ ⊗k B′ as k-algebras.

∗ C-2.52. If k is a commutative ring and A and B are k-algebras, prove that

(A⊗k B)op ∼= Aop ⊗k Bop.

C-2.53. If R is a commutative k-algebra, where k is a field and G is a group, prove that
R⊗k kG ∼= RG.
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∗ C-2.54. (i) If k is a subring of a commutative ring R, prove that R ⊗k k[x] ∼= R[x] as
R-algebras.

(ii) If f(x) ∈ k[x] and (f) is the principal ideal in k[x] generated by f(x), prove that
R ⊗k (f) is the principal ideal in R[x] generated by f(x). More precisely, there is
a commutative diagram

0 �� R⊗k (f) ��

��

R ⊗k k[x]

��
0 �� (f) �� R[x].

(iii) Let k be a field and E ∼= k[x]/(f), where f(x) ∈ k[x] is irreducible. Prove that
E ⊗k E ∼= E[x]/(f)E, where (f)E is the principal ideal in E[x] generated by f(x).

(iv) Give an example of a field extension E/k with E ⊗k E not a field.
Hint. If f(x) ∈ k[x] factors into g(x)h(x) in E[x], where (g, h) = 1, then the
Chinese Remainder Theorem applies.

C-2.55. Let k be a field and let f(x) ∈ k[x] be irreducible. If K/k is a field extension, then
f(x) = p1(x)

e1 · · · pn(x)en ∈ K[x], where the pi(x) are distinct irreducible polynomials in
K[x] and ei ≥ 1.

(i) Prove that f(x) is separable if and only if all ei = 1.

(ii) Prove that a finite field extension K/k is separable if and only if K ⊗k K is a
semisimple ring.
Hint. Observe that K/k is a simple extension, so there is an exact sequence
0 → (f) → k[x] → K → 0, and then use the Chinese Remainder Theorem.

C-2.56. Prove that H⊗R H ∼= Mat4(R) as R-algebras.

Hint. Use Corollary C-2.39 for the central simple R-algebra H⊗R H.

C-2.57. We have given one isomorphism C⊗RH ∼= Mat2(C) in Example C-2.114. Describe
all possible isomorphisms between these two algebras.

Hint. Use the Skolem–Noether Theorem.

C-2.58. Prove that C⊗R C ∼= C× C as R-algebras.

C-2.59. (i) Let C(x) and C(y) be function fields. Prove that R = C(x) ⊗C C(y) is
isomorphic to a subring of C(x, y). Conclude that R has no zero-divisors.

(ii) Prove that C(x)⊗C C(y) is not a field.
Hint. Show that R is isomorphic to the subring of C(x, y) consisting of polynomials
of the form f(x, y)/g(x)h(y).

(iii) Use Exercise B-1.29 on page 288 in Part 1 to prove that the tensor product of
artinian algebras need not be artinian.

∗ C-2.60. Let A be a central simple k-algebra. If A is split by a field E, prove that A is
split by any field extension E′ of E.

∗ C-2.61. Let E/k be a field extension. If A and B are central simple k-algebras with
A ∼ B, prove that E ⊗k A ∼ E ⊗k B as central simple E-algebras.

C-2.62. If D is a finite-dimensional division algebra over R, prove that D is isomorphic
to either R, C, or H.

C-2.63. Prove that Mat2(H) ∼= H⊗R Mat2(R) as R-algebras.
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∗ C-2.64. (i) Let A be a four-dimensional vector space over Q, and let 1, i, j, k be a basis.
Show that A is a division algebra if we define 1 to be the identity and

i2 = −1, j2 = −2, k2 = −2,

ij = k, jk = 2i, ki = j,

ji = −k, kj = −2i, ik = −j.

Prove that A is a division algebra over Q.

(ii) Prove that Q(i) and Q(j) are nonisomorphic maximal subfields of A.

C-2.65. Let D be the Q-subalgebra of H having basis 1, i, j, k.

(i) Prove that D is a division algebra over Q.
Hint. Compute the center Z(D).

(ii) For any pair of nonzero rationals p and q, prove that D has a maximal subfield

isomorphic to Q(
√

−p2 − q2).

Hint. Compute (pi+ qj)2.

C-2.66. (Dickson) If D is a division algebra over a field k, then each d ∈ D is algebraic
over k. Prove that d, d′ ∈ D are conjugate in D if and only if irr(d, k) = irr(d′, k).

Hint. Use the Skolem–Noether Theorem.

C-2.67. Prove that if A is a central simple k-algebra with A ∼ Matn(k), then A ∼=
Matm(k) for some integer m.

C-2.68. Prove that if A is a central simple k-algebra with [A] of finite order m in Br(k),
then there is an integer r with

A⊗k · · · ⊗k A ∼= Matr(k)

(there are m factors equal to A). In Chapter C-3, we shall see that every element in Br(k)
has finite order.



Chapter C-3

Homology

C-3.1. Introduction

1 When I was a graduate student, homological algebra was an unpopular subject.
The general attitude was that it was a grotesque formalism, boring to learn, and
not very useful once one had learned it. Perhaps an algebraic topologist was forced
to know this stuff, but surely no one else should waste time on it. The few true
believers were viewed as workers at the fringe of mathematics who kept tinkering
with their elaborate machine, smoothing out rough patches here and there.

This attitude changed dramatically when Serre characterized regular local rings
using homological algebra (they are the commutative noetherian local rings of “fi-
nite global dimension”), for this enabled him to prove that any localization of a
regular local ring is itself regular (until then, only special cases of this were known).
At the same time, M. Auslander and Buchsbaum completed work of Nagata by us-
ing global dimension to prove that every regular local ring is a UFD.

In spite of its newfound popularity, homological algebra still “got no respect”.
For example, the two theorems just mentioned used the notion of global dimension
of a ring which, in turn, is defined in terms of the homological dimension of a mod-
ule. At that time, in 1957, Kaplansky offered a course in homological algebra. One
of his students, Schanuel, noticed that there is an elegant relation between different
projective resolutions of the same module (see Proposition B-4.48 in Part 1). Ka-
plansky seized this result, nowadays called Schanuel’s Lemma, for it allowed him
to define the homological dimension of a module without having first to develop
the fundamental constructs Ext and Tor of homological algebra, and he was then
able to prove the theorems of Serre and of Auslander–Buchsbaum (Kaplansky’s ac-
count of this course can be found in his book [118]). However, as more applications

1This introduction is adapted from a review I wrote that appeared in Bulletin of the Amer-
ican Mathematical Society 33 (1996), 473–475; it is reproduced by permission of the American
Mathematical Society.
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were found and as more homology and cohomology theories were invented to solve
outstanding problems, resistance to homological algebra waned. Today, it is just
another standard tool in a mathematician’s kit.

The basic idea of homology comes from Green’s Theorem, where a double
integral over a region R with holes in it is equal to a line integral on the boundary
of R. Poincaré recognized that whether a topological space X has different kinds
of holes is a kind of connectivity. To illustrate, let us assume that X can be
“triangulated”; that is, X can be partitioned into finitely many n-simplexes, where
n ≥ 0: points are 0-simplexes, edges are 1-simplexes, triangles are 2-simplexes,
tetrahedra are 3-simplexes, and there are higher-dimensional analogs. The question
to ask is whether a union of n-simplexes in X that “ought” to be the boundary of
some (n + 1)-simplex actually is such a boundary. For example, when n = 0, two
points a and b in X ought to be the boundary (endpoints) of a path in X; if there is
a path in X joining all points a and b, then X is called path connected ; if there is no
such path, then X has a 0-dimensional hole. For an example of a one-dimensional
hole, let X be the punctured plane; that is, the plane with the origin deleted. The
perimeter of a triangle Δ ought to be the boundary of a 2-simplex, but this is not
so if Δ contains the origin in its interior; thus, X has a one-dimensional hole. If X
were missing a line segment containing the origin, or even a small disk containing
the origin, this hole would still be one-dimensional; we are not considering the size
of the hole, but the size of the possible boundary. We must keep our eye on the
doughnut and not upon the hole!

a

��
��

��
��

��
��

��
��

b

d c

For example, in the rectangle drawn above, consider the triangle [a, b, c] with
vertices a, b, c and edges [a, b], [b, c], [a, c]. Its boundary ∂[a, b, c] should be
[a, b] + [b, c] + [c, a]. But edges are oriented (think of [a, c] as a path from a to
c and [c, a] as the reverse path from c to a), so let us write [c, a] = −[a, c]. Thus,
the boundary is

∂[a, b, c] = [a, b]− [a, c] + [b, c].

Similarly, let us define the boundary of [a, b] to be its endpoints:

∂[a, b] = b− a.

We note that

∂(∂[a, b, c]) = ∂([a, b]− [a, c] + [b, c])

= b− a− (c− a) + c− b

= 0.

The rectangle with vertices a, b, c, d is the union of two triangles [a, b, c] + [a, c, d],
and we check that its boundary is ∂[a, b, c] + ∂[a, c, d] (note that the diagonal [a, c]
occurs twice, with different signs, and so it cancels, as it should). We see that
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the formalism suggests the use of signs to describe boundaries as certain linear
combinations u of edges or points for which ∂(u) = 0.

Such ideas lead to the following construction. For each n ≥ 0, consider all
formal linear combinations of n-simplexes; that is, form the free abelian group
Cn(X) with basis all n-simplexes, and call such linear combinations n-chains. Some
of these n-chains ought to be boundaries of some union of (n + 1)-simplexes; call
them n-cycles (for example, adding the three edges of a triangle, with appropriate
choice of signs, is a 1-cycle). Certain n-chains actually are boundaries, and these
are called n-boundaries (if Δ is a triangle in the punctured plane X, not having the
origin in its interior, then the alternating sum of the edges of Δ is a 1-boundary;
on the other hand, if the origin does lie in the interior of Δ, then the alternating
sum is a 1-cycle but not a 1-boundary). The family of all the n-cycles, Zn(X),
and the family of all the n-boundaries, Bn(X), are subgroups of Cn(X). A key
ingredient in the construction of homology groups is that the subgroups Zn and Bn

can be defined in terms of homomorphisms: there are boundary homomorphisms
∂n : Cn(X) → Cn−1(X) with Zn = ker ∂n and Bn = im ∂n+1, and so there is a
sequence of abelian groups and homomorphisms

· · · → C3(X)
∂3−→ C2(X)

∂2−→ C1(X)
∂1−→ C0(X).

It turns out, for all n ≥ 1, that ∂n∂n+1 = 0, from which it follows that

Bn(X) ⊆ Zn(X).

The interesting group is the quotient group Zn(X)/Bn(X), denoted by Hn(X) and
called the nth homology 2 group of X. What survives in this quotient group are the
n-dimensional holes; that is, those n-cycles that are not n-boundaries. For example,
H0(X) = 0 means that X is path connected: if there are two points a, b ∈ X that
are not connected by a path, then a−b is a cycle that is not a boundary, and so the
coset a−b+B0(X) is a nonzero element of H0(X). For n ≥ 1, these groups measure
more subtle kinds of connectivity. Topologists modify this construction in two ways.
They introduce homology with coefficients in an abelian group G by tensoring the
sequence of chain groups by G and then taking homology groups; they also consider
cohomology with coefficients in G by applying the contravariant functor Hom( , G)
to the sequence of chain groups and then taking homology groups. Homological
algebra arose in trying to compute and to find relations between homology groups
of spaces.

2I have not been able to discover the etymology of the mathematical term homology as used
in this context. The word “homology” comes from homo + logos, and it means “corresponding”.
Its first usage as a mathematical term occurred in projective geometry in the early nineteenth
century, as the name of a specific type of collineation. The earliest occurrence I have found for
its usage in the sense of cycles and boundaries is in an article of H. Poincaré: Analysis Situs,

Journal de l’École Polytechnique, Series II, first issue, 1895 (and Oeuvres, vol. 5), but he does not
explain why he chose the term. Emili Bifet has written, in a private communication, “Consider
the projective homology, between two distinct (hyper)planes, given by projection from an exterior
point. This homology suggests (and provides) a natural way of deforming the boundary of a
simplex contained in one plane into the boundary of the corresponding simplex on the other one.
Moreover, it suggests a natural way of deforming a boundary into a point. This could be what
Poincaré had in mind.”
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We have already seen, in Proposition B-2.25 in Part 1, that every left R-module
M , where R is a ring, has a description by generators and relations. There is an
exact sequence

0→ kerϕ
ι−→ F0

ϕ−→M → 0,

where F0 is a free left R-module and ι is the inclusion. If R is a PID, then kerϕ
is free, because every submodule of a free module is itself free; if R is not a PID,
then kerϕ may not be free. Now take generators and relations of kerϕ: There is a
free module F1 and an exact sequence

0→ kerψ
κ−→ F1

ψ−→ kerϕ→ 0.

If we define F1 → F0 to be the composite ιψ, then there is a second exact sequence

F1
ιψ−→ F0

ϕ−→M → 0,

and, iterating this construction, there is a long exact sequence

· · · → F3 → F2 → F1 → F0 →M → 0.

We can view the submodules ker(Fn → Fn−1) as “relations on relations” (nineteenth-
century algebraists called these higher relations syzygies). This long exact sequence
resembles the sequence of chain groups in topology. There are other contexts in
which such exact sequences exist; many algebraic structures give rise to a sequence
of homology groups, and these can be used to translate older theorems into the
language of homology. Examples of such theorems are Hilbert’s Theorem 90 about
algebras (see Corollary C-3.138), Whitehead’s lemmas about Lie algebras (see Ja-
cobson [113], pp. 77 and 89), and Theorem C-3.22, the Schur–Zassenhaus lemma,
about groups. There are methods to compute homology and cohomology groups,
and this is the most important contribution of homological algebra to this circle
of ideas. Although we can calculate many things without them, the most power-
ful method of computing homology groups uses spectral sequences. When I was a
graduate student, I always wanted to be able to say, nonchalantly, that such and
such is true “by the usual spectral sequence argument”, but I never had the nerve.
We will introduce spectral sequences at the end of this chapter.

C-3.2. Semidirect Products

We begin by investigating a basic problem in group theory. A group G having a
normal subgroup K can be “factored” into K and G/K; the study of extensions
involves the inverse question: how much of G can be recovered from a normal
subgroup K and the quotient Q = G/K? For example, we know that |G| = |K||Q|
if K and Q are finite.

Exactness of a sequence of nonabelian groups,

· · · → Gn+1
dn+1−→ Gn

dn−→ Gn−1 → · · · ,

is defined just as it is for abelian groups: im dn+1 = ker dn for all n. Of course,
each ker dn is a normal subgroup of Gn.
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Definition. If K and Q are groups, then an extension of K by Q is a short exact
sequence

1→ K
i→ G

p→ Q→ 1.

The notations K and Q remind us of kernel and quotient.

There is an alternative usage of the term extension, which calls the (middle)
groupG (not the short exact sequence) an extension if it contains a normal subgroup
K1 with K1

∼= K and G/K1
∼= Q. As do most people, we will use the term in both

senses.

Example C-3.1.

(i) The direct product K ×Q is an extension of K by Q; it is also an extension
of Q by K.

(ii) Both S3 and Z6 are extensions of Z3 by Z2. On the other hand, Z6 is an
extension of Z2 by Z3, but S3 is not, for S3 contains no normal subgroup of
order 2. �

We have just seen, for any given pair of groups K and Q, that an extension of
K by Q always exists (the direct product), but there may be nonisomorphic such
extensions. Hence, an extension of K by Q may be viewed as a “product” of K
and Q, but this product is not single-valued. The extension problem is to classify
all possible extensions of a given pair of groups K and Q.

Suppose that a group G has a normal series

G = K0 ⊇ K1 ⊇ · · · ⊇ Kn−1 ⊇ Kn = {1}

with factor groups Q1, . . . , Qn, where

Qi = Ki−1/Ki

for all i ≥ 1. Now Kn = {1}, so that Kn−1 = Qn, but something more interesting
occurs next: Kn−2/Kn−1 = Qn−1, so that Kn−2 is an extension of Kn−1 by Qn−1.
If we could solve the extension problem, then we could recapture Kn−2 from Kn−1

and Qn−1—that is, from Qn and Qn−1. Next, observe that Kn−3/Kn−2 = Qn−2,
so that Kn−3 is an extension of Kn−2 by Qn−2. If we could solve the extension
problem, then we could recapture Kn−3 from Kn−2 and Qn−2; that is, we could
recapture Kn−3 from Qn, Qn−1, and Qn−2. Climbing up the composition series
in this way, we could recapture G = K0 from Qn, Qn−1, . . . , Q1; that is, G is a
“product” of the factor groups. If the normal series is a composition series, then
the Jordan–Hölder Theorem is a unique factorization theorem: the factors in this
product, namely, the composition factors of G, are uniquely determined by G.
Therefore, we could survey all finite groups if we knew the finite simple groups
and if we could solve the extension problem. All the finite simple groups are now
known; the proof of the Classification Theorem of Finite Simple Groups was
completed in the first decade of the twenty-first century. This theorem, one of the
deepest theorems in mathematics (its proof needs several thousand pages!), gives
a complete list of all the finite simple groups, along with interesting properties of
them.
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Let us begin by recalling the partition of a group into the cosets of a subgroup.
We have already defined a transversal of a subgroup K of a group G as a subset T
of G consisting of exactly one element from each coset3 Kt of K.

Definition. If

1→ K → G
p−→ Q→ 1

is an extension, then a lifting is a function � : Q→ G, not necessarily a homomor-
phism, with p� = 1Q.

Given a transversal, we can construct a lifting. For each x ∈ Q, surjectivity
of p provides �(x) ∈ G with p�(x) = x; thus, the function x �→ �(x) is a lifting.
Conversely, given a lifting, we claim that im � is a transversal of K. If Kg is a
coset, then p(g) ∈ Q; say, p(g) = x. Then p(g�(x)−1) = 1, so that a = g�(x)−1 ∈ K
and Kg = K�(x). Thus, every coset has a representative in �(Q). Finally, we must
show that �(Q) does not contain two elements in the same coset. If K�(x) = K�(y),
then there is a ∈ K with a�(x) = �(y). Apply p to this equation; since p(a) = 1,
we have x = y and so �(x) = �(y).

Recall that an automorphism of a group K is an isomorphism K → K. The
automorphism group, denoted by Aut(K), is the group of all the automorphisms
of K with composition as operation.

Of course, extensions are defined for arbitrary groups K, but we are going to
restrict our attention to the special case when K is abelian. If G is an extension
of K by Q, it would be confusing to write G multiplicatively and its subgroup K
additively. Hence, we shall use the following notational convention: even though G
may not be abelian, additive notation will be used for the operation in G. Corol-
lary C-3.4 below gives the main reason for this decision.

Proposition C-3.2. Let

0→ K
i→ G

p→ Q→ 1

be an extension of an abelian group K by a group Q, and let � : Q→ G be a lifting.

(i) For every x ∈ Q, conjugation θx : K → K, defined by

θx : a �→ �(x) + a− �(x),

is independent of the choice of lifting �(x) of x. (For convenience, we have
assumed that i is an inclusion; this merely allows us to write a instead of
i(a).)

(ii) The function θ : Q→ Aut(K), defined by x �→ θx, is a homomorphism.

3We have been working with left cosets tK, but, in this chapter, the subgroup K will be a
normal subgroup, in which case tK = Kt for all t ∈ G. Thus, using right cosets or left cosets is
only a matter of convenience.
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Proof.

(i) Let us now show that θx is independent of the choice of lifting �(x) of x.
Suppose that �′(x) ∈ G and p�′(x) = x. There is b ∈ K with �′(x) = �(x) + b
(for −�(x) + �′(x) ∈ ker p = im i = K). Therefore,

�′(x) + a− �′(x) = �(x) + b+ a− b− �(x)

= �(x) + a− �(x),

because K is abelian.

(ii) Now θx(a) ∈ K because K � G, so that each θx : K → K; also, θx is an
automorphism of K, because conjugations are automorphisms.

It remains to prove that θ : Q→ Aut(K) is a homomorphism. If x, y ∈ Q
and a ∈ K, then

θx(θy(a)) = θx(�(y) + a− �(y)) = �(x) + �(y) + a− �(y)− �(x),

while

θxy(a) = �(xy) + a− �(xy).

But �(x) + �(y) and �(xy) are both liftings of xy, so that equality θxθy = θxy
follows from (i). •

Informally, the homomorphism θ tells “how” K is normal in G, for isomorphic
copies of a group can sit as normal subgroups of G in different ways. For example,
let K be a cyclic group of order 3 and let Q = 〈x〉 be cyclic of order 2. If G = K×Q,
then G is abelian and K lies in the center of G. In this case, �(x)+a− �(x) = a for
all a ∈ K and θx = 1K . On the other hand, if G = S3, then K = A3 which does
not lie in the center; if �(x) = (1 2), then (1 2)(1 2 3)(1 2) = (1 3 2) and θx is not
1K .

The existence of a homomorphism θ equips K with a scalar multiplication
making K a left ZQ-module, where ZQ is the group ring whose elements are all∑

x∈Q mxx for mx ∈ Z.

Proposition C-3.3. Let K and Q be groups with K abelian. Then a homomor-
phism θ : Q → Aut(K) makes K into a left ZQ-module if scalar multiplication is
defined by

xa = θx(a)

for all a ∈ K and x ∈ Q. Conversely, if K is a left ZQ-module, then x �→ θx
defines a homomorphism θ : Q→ Aut(K), where θx : a �→ xa.

Proof. Define scalar multiplication as follows. Each u ∈ ZQ has a unique expres-
sion of the form u =

∑
x∈Q mxx, where mx ∈ Z and mx = 0 for all but finitely

many x ∈ Q; define (∑
x

mxx
)
a =

∑
x

mxθx(a) =
∑
x

mx(xa).

We verify the module axioms. Since θ is a homomorphism, θ(1) = 1K , and so
1a = θ1(a) for all a ∈ K. That θx ∈ Aut(K) implies x(a + b) = xa + xb, from
which it follows that u(a+ b) = ua+ ub for all u ∈ ZQ. Similarly, we check easily
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that (u + v)a = ua + va for u, v ∈ ZQ. Finally, (uv)a = u(va) will follow from
(xy)a = x(ya) for all x, y ∈ Q; but

(xy)a = θxy(a) = θx(θy(a)) = θx(ya) = x(ya).

The proof of the converse is also routine. •

Corollary C-3.4. If

0→ K
i→ G

p→ Q→ 1

is an extension of an abelian group K by a group Q, then K is a left ZQ-module if
we define

xa = �(x) + a− �(x),

where � : Q→ G is a lifting, x ∈ Q, and a ∈ K; moreover, the scalar multiplication
is independent of the choice of lifting �.

Proof. Propositions C-3.2 and C-3.3. •

From now on, we will abbreviate the term

“left ZQ-module” as “Q-module”.

Recall that a short exact sequence of left R-modules

0→ A
i→ B

p→ C → 0

is split if there exists a homomorphism j : C → B with pj = 1C ; in this case,
the middle module is isomorphic to the direct sum A ⊕ C. Here is the analogous
definition for groups.

Definition. An extension of groups

0→ K
i→ G

p→ Q→ 1

is split if there is a homomorphism j : Q→ G with pj = 1Q. The middle group G
in a split extension is called a semidirect product of K by Q.

Thus, an extension is split if and only if there is a lifting, namely, j, that is also
a homomorphism. We shall use the following notation: the elements of K shall be
denoted by a, b, c, . . ., and the elements of Q shall be denoted by x, y, z, . . . .

Proposition C-3.5. Let G be an additive group having a normal subgroup K.

(i) If 0 → K
i→ G

p→ Q → 1 is a split extension, where j : Q → G satisfies
pj = 1Q, then i(K) ∩ j(Q) = {0} and i(K) + j(Q) = G.

(ii) Each g ∈ G has a unique expression g = i(a)+ j(x), where a ∈ K and x ∈ Q.

(iii) Let K and Q be subgroups of a group G with K �G. Then G is a semidirect
product of K by Q if and only if K ∩Q = {0}, K +Q = G, and each g ∈ G
has a unique expression g = a+ x, where a ∈ K and x ∈ Q.
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Proof.

(i) If g ∈ i(K)∩ j(Q), then g = i(a) = j(x) for a ∈ K and x ∈ Q. Now g = j(x)
implies p(g) = pj(x) = x, while g = i(a) implies p(g) = pi(a) = 0. Therefore,
x = 0 and g = j(x) = 0.

If g ∈ G, then p(g) = pjp(g) (because pj = 1Q), and so g − (jp(g)) ∈
ker p = im i; hence, there is a ∈ K with g − (jp(g)) = i(a), and so g =
i(a) + j(pg) ∈ i(K) + j(Q).

(ii) Every element g ∈ G has a factorization g = i(a) + j(pg) because G =
i(K) + j(Q). To prove uniqueness, suppose that i(a) + j(x) = i(b) + j(y),
where b ∈ K and y ∈ Q. Then −i(b)+i(a) = j(y)−j(x) ∈ i(K)∩j(Q) = {0},
so that i(a) = i(b) and j(x) = j(y).

(iii) Necessity is the special case of (ii) when both i and j are inclusions. Con-
versely, each g ∈ G has a unique factorization g = ax for a ∈ K and x ∈ Q;
define p : G → Q by p(ax) = x. It is easy to check that p is a surjective
homomorphism with ker p = K. •

Compare Proposition C-3.5 to Proposition A-4.83 in Part 1. A semidirect
product is so called because a direct product G of K and Q requires, in addition
to KQ = G and K ∩Q = {1}, that both subgroups K and Q be normal; here, only
one subgroup must be normal.

Definition. If K ≤ G and C ≤ G satisfies C ∩K = {1} and KC = G, then C is
called a complement of K.

In a semidirect product G, the subgroup K is normal; on the other hand, the
image j(Q), which Proposition C-3.5 shows to be a complement of K, may not be
normal. For example, if G = S3 and K = A3 = 〈(1 2 3)〉, we may take C = 〈τ 〉,
where τ is any transposition in S3; this example also shows that complements
need not be unique. However, any two complements of K are isomorphic, for any
complement of K is isomorphic to G/K.

The definition of semidirect product allows the kernel K to be nonabelian, and
such groups arise naturally. For example, the symmetric group Sn is a semidirect
product of the alternating group An by Z2. In order to keep hypotheses uniform,
however, let us assume in the text (except in some exercises) that K is abelian,
even though this assumption is not always needed.

Example C-3.6.

(i) A direct product K × Q is a semidirect product of K by Q (and also of Q
by K).

(ii) An abelian group G is a semidirect product if and only if it is a direct prod-
uct (usually called a direct sum), for every subgroup of an abelian group is
normal.

(iii) The dihedral group D2n is a semidirect product of Zn by Z2. If D2n = 〈a, b〉,
where an = 1, b2 = 1, and bab = a−1, then 〈a〉 is a normal subgroup having
〈b〉 as a complement.



232 Chapter C-3. Homology

(iv) Theorem C-2.111 says that every Frobenius group is a semidirect product of
its Frobenius kernel by its Frobenius complement.

(v) Let G = H×, the multiplicative group of nonzero quaternions. It is easy to
see that if R+ is the multiplicative group of positive reals, then the norm
N : G→ R+, given by

N(a+ bi+ cj + dk) = a2 + b2 + c2 + d2,

is a homomorphism and G is a semidirect product of kerN by R+. In Ex-
ercise C-3.4 below, we will see that kerN ∼= SU(2,C), the special unitary
group.

(vi) Cyclic groups of prime power order are not semidirect products, for they
cannot be a direct sum of two proper subgroups. �

Definition. Let K be a Q-module. An extension G of K by Q realizes the
operators if, for all x ∈ Q and a ∈ K, we have

xa = �(x) + a− �(x);

that is, the given scalar multiplication of ZQ on K coincides with the scalar mul-
tiplication of Corollary C-3.4 arising from conjugation.

Here is the construction.

Definition. Let Q be a group and let K be a Q-module. Define

G = K �Q

to be the set of all ordered pairs (a, x) ∈ K ×Q with the operation

(a, x) + (b, y) = (a+ xb, xy).

Notice that (a, 1) + (0, x) = (a, x) in K �Q.

Proposition C-3.7. Given a group Q and a Q-module K, then G = K � Q is a
semidirect product of K by Q that realizes the operators.

Proof. We begin by proving that G is a group. For associativity,

[(a, x) + (b, y)] + (c, z) = (a+ xb, xy) + (c, z)

= (a+ xb+ (xy)c, (xy)z).

On the other hand,

(a, x) + [(b, y) + (c, z)] = (a, x) + (b+ yc, yz)

= (a+ x(b+ yc), x(yz)).

Of course, (xy)z = x(yz), because of associativity in Q. The first coordinates are
also equal: since K is a Q-module, we have

x(b+ yc) = xb+ x(yc) = xb+ (xy)c.

Thus, the operation is associative. The identity element of G is (0, 1), for

(0, 1) + (a, x) = (0 + 1a, 1x) = (a, x),
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and the inverse of (a, x) is (−x−1a, x−1), for

(−x−1a, x−1) + (a, x) = (−x−1a+ x−1a, x−1x) = (0, 1).

Therefore, G is a group, by Exercise A-4.27 on page 138 in Part 1.

Define a function p : G→ Q by p : (a, x) �→ x. Since the only “twist” occurs in
the first coordinate, p is a surjective homomorphism with ker p = {(a, 1) : a ∈ K}.
If we define i : K → G by i : a �→ (a, 1), then

0→ K
i→ G

p→ Q→ 1

is an extension. Define j : Q → G by j : x �→ (0, x). It is easy to see that j is
a homomorphism, for (0, x) + (0, y) = (0, xy). Now pjx = p(0, x) = x, so that
pj = 1Q, and the extension splits; that is, G is a semidirect product of K by Q.
Finally, G realizes the operators: if x ∈ Q, then every lifting of x has the form
�(x) = (b, x) for some b ∈ K, and

(b, x) + (a, 1)− (b, x) = (b+ xa, x) + (−x−1b, x−1)

= (b+ xa+ x(−x−1b), xx−1)

= (b+ xa− b, 1)

= (xa, 1). •

We return to the multiplicative notation for a moment. In the next proof, the
reader will see that the operation in K �Q arises from the identity

(ax)(by) = a(xbx−1)xy.

Theorem C-3.8. Let K be an abelian group. If a group G is a semidirect product
of K by a group Q, then there is a Q-module structure on K so that G ∼= K �Q.

Proof. Regard G as a group with normal subgroup K that has Q as a complement.
We continue writing G additively (even though it may not be abelian), and so we
will now write its subgroup Q additively as well. If a ∈ K and x ∈ Q, define

xa = x+ a− x;

that is, xa is the conjugate of a by x. By Proposition C-3.5, each g ∈ G has a unique
expression as g = a + x, where a ∈ K and x ∈ Q. It follows that ϕ : G → K �Q,
defined by ϕ : a+x �→ (a, x), is a bijection. We now show that ϕ is an isomorphism.

ϕ((a+ x) + (b+ y)) = ϕ(a+ x+ b+ (−x+ x) + y)

= ϕ(a+ (x+ b− x) + x+ y)

= (a+ xb, x+ y).

The definition of addition in K �Q now gives

(a+ xb, x+ y) = (a, x) + (b, y)

= ϕ(a+ x) + ϕ(b+ y). •

We now use semidirect products to construct some groups.
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Example C-3.9. If K = 〈a〉 ∼= Z3, then an automorphism of K is completely
determined by the image of the generator a; either a �→ a and the automorphism is
1K , or a �→ 2a. Therefore, Aut(K) ∼= Z2; let us denote its generator by ϕ, so that
ϕ(a) = 2a and ϕ(2a) = a; that is, ϕ multiplies by 2. Let Q = 〈x〉 ∼= Z4, and define
θ : Q→ Aut(K) by θx = ϕ; hence

xa = 2a and x2a = a.

The group

T = Z3 � Z4

is a group of order 12. If we define s = (2a, x2) and t = (0, x), then the reader may
check that

6s = 0 and 2t = 3s = 2(s+ t).

There are four other groups of order 12. The Fundamental Theorem of Finite
Abelian Groups says there are two abelian groups of this order: Z12

∼= Z3 × Z4

and Z2 × Z6
∼= V × Z3. Two nonabelian groups of order 12 are A4 and S3 × Z2

(Exercise C-3.7 below says that A4 �∼= S3 × Z2). The group T just constructed is
a new example, and Exercise C-3.17 on page 255 says that every group of order
12 is isomorphic to one of these. (Note that Exercise C-1.7 on page 14 states that
D12

∼= S3 × Z2.) �

Example C-3.10. Let p be a prime and let K = Zp ⊕ Zp. Hence, K is a vector
space over Fp, and so Aut(K) ∼= GL(K). We choose a basis a, b of K, and this gives
an isomorphism Aut(K) ∼= GL(2, p). Let Q = 〈x〉 be a cyclic group of order p.

Define θ : Q→ GL(2, p) by

θ : xn �→
[
1 0
n 1

]
for all n ∈ Z. Thus,

xa = a+ b and xb = b.

It is easy to check that the commutator x+a−x−a = xa−a = b, and so G = K�Q
is a group of order p3 with G = 〈a, b, x〉; these generators satisfy relations

pa = pb = px = 0, b = [x, a], and [b, a] = 0 = [b, x].

If p is odd, then we have the nonabelian group of order p3 and exponent p in
Proposition C-1.44. If p = 2, then |G| = 8, and the reader is asked to prove, in
Exercise C-3.8 below, that G ∼= D8; that is, D8

∼= V � Z2. In Example C-3.6(iii),
we saw that D8 is a semidirect product of Z4 by Z2. Thus, V�Z2

∼= Z4 �Z2, and
so a group can have different factorizations as a semidirect product. �

Example C-3.11. Let k be a field and let k× be its multiplicative group. Now k×

acts on k by multiplication (if a ∈ k and a �= 0, then the additive homomorphism
x �→ ax is an automorphism whose inverse is x �→ a−1x). Therefore, the semidirect
product k � k× is defined. In particular, if (b, a), (d, c) ∈ k � k×, then

(b, a) + (d, c) = (ad+ b, ac).

Recall that an affine map is a function f : k → k of the form f : x �→ ax + b,
where a, b ∈ k and a �= 0, and the collection of all affine maps under composition
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is the group Aff(1, k) (see Exercise A-4.36 on page 139 in Part 1). Note that if
g(x) = cx+ d, then

(f ◦ g)(x) = f(g(x))

= f(cx+ d)

= a(cx+ d) + b

= (ac)x+ (ad+ b).

It is now easy to see that the function ϕ : (b, a) �→ f , where f(x) = ax + b, is
an isomomorphism k � k× → Aff(1, k). �

Exercises

In the first three exercises, the group K need not be abelian; however, in all
other exercises, it is assumed to be abelian.

C-3.1. (i) Prove that SL(2,F5) is an extension of Z2 by A5 which is not a semidirect
product.

(ii) If k is a field, prove that GL(n, k) is a semidirect product of SL(n, k) by k×.
Hint. A complement consists of all matrices diag{1, . . . , 1, a} with a ∈ k×.

∗ C-3.2. Let G be a group of order mn, where gcd(m,n) = 1. Prove that a normal
subgroup K of order m has a complement in G if and only if there exists a subgroup
C ≤ G of order n.

∗ C-3.3. (Baer) (i) Prove that a group G is injective4 in the category Groups if and only
if G = {1}.
Hint. Let A be free with basis {x, y}, and let B be the semidirect product B =
A� 〈z〉, where z is an element of order 2 that acts on A by zxz = y and zyz = x.

(ii) Use (i) and Exercise C-1.123 on page 123 to prove that Groups has no injective
objects other than {1}.

∗ C-3.4. Let SU(2) be the special unitary group consisting of all complex matrices [ a b
c d ]

of determinant 1 such that

ab+ cd = 0, aa+ bb = 1, cc+ dd = 1.

If S is the subgroup of H× in Example C-3.6(v), prove that S ∼= SU(2).

Hint. Use Exercise B-1.13 on page 281 in Part 1. There is a “polar decomposition”
h = rs, where r > 0 and s ∈ kerN , where N : G → R+ is the norm.

C-3.5. Give an example of a split extension of groups

1 → K
i→ G

p→ Q → 1

for which there does not exist a homomorphism q : G → K with qi = 1K . Compare with
Exercise B-1.55 on page 310 in Part 1.

4The term injective had not yet been coined when R. Baer, who introduced the notion of
injective module, proved this result. After recognizing that injective groups are duals of free
groups, he jokingly called such groups fascist, and he was pleased to note that they are trivial.
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C-3.6. Prove that Q, the group of quaternions, is not a semidirect product.

Hint. Recall that Q has a unique element of order 2.

∗ C-3.7. (i) Prove that A4 �∼= S3 × Z2.

Hint. Use Proposition A-4.67 in Part 1 saying that A4 has no subgroup of order 6.

(ii) Prove that no two of the nonabelian groups of order 12, A4, S3 × Z2, and T , are
isomorphic. (See Example C-3.9.)

(iii) The affine group Aff(1,F4) (see Example C-3.11) is a nonabelian group of order 12.
Is it isomorphic to A4, S3 × Z2, or T = Z3 � Z4?

∗ C-3.8. Prove that the group G of order 8 constructed in Example C-3.10 is isomorphic
to D8.

C-3.9. If K and Q are solvable groups, prove that a semidirect product of K by Q is also
solvable.

C-3.10. Let K be an abelian group, let Q be a group, and let θ : Q → Aut(K) be a
homomorphism. Prove that K �Q ∼= K ×Q if and only if θ is the trivial map (θx = 1K
for all x ∈ Q).

∗ C-3.11.

(i) If K is cyclic of prime order p, prove that Aut(K) is cyclic of order p− 1.

(ii) Let G be a group of order pq, where p > q are primes. If q � (p− 1), prove that G
is cyclic. Conclude, for example, that every group of order 15 is cyclic.

∗ C-3.12. Let G be an additive abelian p-group, where p is prime.

(i) If (m, p) = 1, prove that the function a 
→ ma is an automorphism of G.

(ii) If p is an odd prime and G = 〈g〉 is a cyclic group of order p2, prove that ϕ : G → G,
given by ϕ : a 
→ 2a, is the unique automorphism with ϕ(pg) = 2pg.

C-3.3. General Extensions and Cohomology

We now proceed to the general extension problem: given a group Q and an abelian
group K, find all (not necessarily split) extensions

1→ K → G→ Q→ 1.

In light of our discussion of semidirect products, that is, of split extensions, it is
reasonable to refine the problem by assuming that K is a Q-module and then to
seek all those extensions realizing the operators.

One way to describe a group G is to give a multiplication table for it, that
is, to list all its elements a1, a2, . . . and all products aiaj . Indeed, this is how
we constructed semidirect products: the elements are all ordered pairs (a, x) with
a ∈ K and x ∈ Q, and multiplication (really addition, because we have chosen to
write G additively) is

(a, x) + (b, y) = (a+ xb, xy).
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Schreier, in 1926, solved the extension problem in this way, and we present his solu-
tion in this section. The proof is not deep; rather, it merely involves manipulating
and organizing a long series of elementary calculations.

Remark. We must point out, however, that Schreier’s solution does not allow us
to determine the number of nonisomorphic middle groups G. Of course, this last
question has no easy answer. If a group G has order n, then there are n! different
lists of its elements and hence an enormous number of different multiplication tables
forG. Suppose now thatH is another group of order n. The problem of determining
whether or not G and H are isomorphic is essentially the problem of comparing the
families of multiplication tables of each to see if there is one for G and one for H
that coincide. Using their sophisticated programs, Besche–Eick–O’Brien [19] show
that there are exactly 49,487,365,422 nonisomorphic groups of order 1,024. �

Our strategy is to extract enough properties of a given extension G that will
suffice to reconstruct G. Thus, we may assume that K is a Q-module, that G is an
extension of K by Q that realizes the operators, and that a transversal � : Q → G
has been chosen. With this initial data, we see that each g ∈ G has a unique
expression of the form

g = a+ �(x), a ∈ K and x ∈ Q;

this follows from G being the disjoint union of the cosets K + �(x). Furthermore,
if x, y ∈ Q, then �(x) + �(y) and �(xy) are both representatives of the same coset
(we do not say these representatives are the same!), and so there is an element
f(x, y) ∈ K such that

�(x) + �(y) = f(x, y) + �(xy).

Definition. Given a lifting � : Q → G, with �(1) = 0, of an extension G of K by
Q, then a factor set5 (or cocycle) is a function f : Q×Q→ K such that

�(x) + �(y) = f(x, y) + �(xy)

for all x, y ∈ Q.

It is natural to choose liftings with �(1) = 0, and so we have incorporated this
condition into the definition of factor set; our factor sets are often called normal-
ized factor sets.

Of course, a factor set depends on the choice of lifting �. When G is a split
extension, then there exists a lifting that is a homomorphism; the corresponding
factor set is identically 0. Therefore, we can regard a factor set as the obstruction
to a lifting being a homomorphism; that is, factor sets describe how an extension
differs from being a split extension.

5 If we switch to multiplicative notation, we see that a factor set occurs in the factorization
�(x)�(y) = f(x, y)�(xy).
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Proposition C-3.12. Let Q be a group, K a Q-module, and 0→ K → G→ Q→ 1
an extension realizing the operators. If � : Q → G is a lifting with �(1) = 0 and
f : Q×Q→ K is the corresponding factor set, then

(i) for all x, y ∈ Q,

f(1, y) = 0 = f(x, 1);

(ii) the cocycle identity holds: for all x, y, z ∈ Q, we have

f(x, y) + f(xy, z) = xf(y, z) + f(x, yz).

Proof. Set x = 1 in the equation that defines f(x, y),

�(x) + �(y) = f(x, y) + �(xy),

to see that �(y) = f(1, y)+�(y) (since �(1) = 0, by our new assumption), and hence
f(1, y) = 0. Setting y = 1 gives the other equation of (i).

The cocycle identity follows from associativity in G. For all x, y, z ∈ Q, we
have

[�(x) + �(y)] + �(z) = f(x, y) + �(xy) + �(z)

= f(x, y) + f(xy, z) + �(xyz).

On the other hand,

�(x) + [�(y) + �(z)] = �(x) + f(y, z) + �(yz)

= xf(y, z) + �(x) + �(yz)

= xf(y, z) + f(x, yz) + �(xyz). •

It is more interesting that the converse is true. The next result generalizes the
construction of K �Q in Proposition C-3.7.

Theorem C-3.13. Given a group Q and a Q-module K, a function f : Q×Q→ K
is a factor set if and only if it satisfies the cocycle identity 6

xf(y, z)− f(xy, z) + f(x, yz)− f(x, y) = 0

and f(1, y) = 0 = f(x, 1) for all x, y, z ∈ Q.

More precisely, there is an extension G of K by Q realizing the operators, and
there is a transversal � : Q→ G whose corresponding factor set is f .

Proof. Necessity is Proposition C-3.12. For the converse, define G to be the set of
all ordered pairs (a, x) in K ×Q equipped with the operation

(a, x) + (b, y) = (a+ xb+ f(x, y), xy).

(Thus, if f is identically 0, then G = K�Q.) The proof that G is a group is similar
to the proof of Proposition C-3.7. To prove associativity, consider(

(a, x) + (b, y)
)
+ (c, z) = (a+ xb+ f(x, y), xy) + (c, z)

= (a+ xb+ f(x, y) + xyc+ f(xy, z), xyz)

6Written as an alternating sum, this identity is reminiscent of the formulas describing geo-
metric cycles as described in Section C-3.1.
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and

(a, x) +
(
(b, y) + (c, z)

)
= (a, x) + (b+ yc+ f(y, z), yz)

= (a+ xb+ xyc+ xf(y, z) + f(x, yz), xyz).

The cocycle identity shows that these elements are equal.

We let the reader prove that the identity is (0, 1) and the inverse of (a, x) is

−(a, x) = (−x−1a− x−1f(x, x−1), x−1).

Define p : G → Q by p : (a, x) �→ x. Because the only “twist” occurs in the first
coordinate, it is easy to see that p is a surjective homomorphism with ker p =
{(a, 1) : a ∈ K}. If we define i : K → G by i : a �→ (a, 1), then we have an extension

0→ K
i→ G

p→ Q→ 1.

To see that this extension realizes the operators, we must show, for every lifting
�, that xa = �(x) + a − �(x) for all a ∈ K and x ∈ Q. Now �(x) = (b, x) for some
b ∈ K and

�(x) + (a, 1)− �(x) = (b, x) + (a, 1)− (b, x)

= (b+ xa, x) + (−x−1b− x−1f(x, x−1), x−1)

= (b+ xa+ x[−x−1b− x−1f(x, x−1)] + f(x, x−1), 1)

= (xa, 1).

Finally, we must show that f is the factor set determined by �. Choose the
lifting �(x) = (0, x) for all x ∈ Q. The factor set F determined by � is defined by

F (x, y) = �(x) + �(y)− �(xy)

= (0, x) + (0, y)− (0, xy)

= (f(x, y), xy) + (−(xy)−1f(xy, (xy)−1), (xy)−1)

= (f(x, y) + xy[−(xy)−1f(xy, (xy)−1)] + f(xy, (xy)−1), xy(xy)−1)

= (f(x, y), 1). •

The next result shows that we have found all the extensions of a Q-module K
by a group Q.

Definition. Given a group Q, a Q-module K, and a factor set f , let G(K,Q, f)
denote the middle group of the extension ofK by Q constructed in Theorem C-3.13.

Theorem C-3.14. Let Q be a group, let K be a Q-module, and let G be an exten-
sion of K by Q realizing the operators. Then there exists a factor set f : Q×Q→ K
with

G ∼= G(K,Q, f).

Proof. Let � : Q → G be a lifting, and let f : Q × Q → K be the corresponding
factor set: that is, for all x, y ∈ Q, we have

�(x) + �(y) = f(x, y) + �(xy).
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Since G is the disjoint union of the cosets, G =
⋃

x∈Q K + �(x), each g ∈ G has a

unique expression g = a+ �(x) for a ∈ K and x ∈ Q. Uniqueness implies that the
function ϕ : G→ G(K,Q, f), given by

ϕ : g = a+ �(x) �→ (a, x),

is a well-defined bijection. We now show that ϕ is an isomorphism:

ϕ(a+ �(x) + b+ �(y)) = ϕ(a+ �(x) + b− �(x) + �(x) + �(y))

= ϕ(a+ xb+ �(x) + �(y))

= ϕ(a+ xb+ f(x, y) + �(xy))

= (a+ xb+ f(x, y), xy)

= (a, x) + (b, y)

= ϕ(a+ �(x)) + ϕ(b+ �(y)). •

Remark. For later use, note that if a ∈ K, then ϕ(a) = ϕ(a+ �(1)) = (a, 1) and,
if x ∈ Q, then ϕ(�(x)) = (0, x). This would not be so, had we chosen a lifting �
with �(1) �= 0. �

We have now described all extensions in terms of factor sets, but factor sets
are determined by liftings. Any extension has many different liftings, and so our
description, which depends on a choice of lifting, must have repetitions.

Lemma C-3.15. Given a group Q and a Q-module K, let G be an extension of
K by Q realizing the operators. Let � and �′ be liftings that give rise to factor sets
f and f ′, respectively. Then there exists a function h : Q → K with h(1) = 0 and,
for all x, y ∈ Q,

f ′(x, y)− f(x, y) = xh(y)− h(xy) + h(x).

Proof. For each x ∈ Q, both �(x) and �′(x) lie in the same coset of K in G, and
so there exists an element h(x) ∈ K with

�′(x) = h(x) + �(x).

Since �(1) = 0 = �′(1), we have h(1) = 0. The main formula is derived as follows:

�′(x) + �′(y) = [h(x) + �(x)] + [h(y) + �(y)]

= h(x) + xh(y) + �(x) + �(y),

because G realizes the operators. The equations continue,

�′(x) + �′(y) = h(x) + xh(y) + f(x, y) + �(xy)

= h(x) + xh(y) + f(x, y)− h(xy) + �′(xy).

By definition, f ′ satisfies �′(x) + �′(y) = f ′(x, y) + �′(xy). Therefore,

f ′(x, y) = h(x) + xh(y) + f(x, y)− h(xy),

and so

f ′(x, y)− f(x, y) = xh(y)− h(xy) + h(x). •
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Definition. Given a group Q and a Q-module K, a function g : Q × Q → K is
called a coboundary if there exists a function h : Q→ K with h(1) = 0 such that,
for all x, y ∈ Q,

g(x, y) = xh(y)− h(xy) + h(x).

The term coboundary arises because its formula is an alternating sum analogous
to the formula for geometric boundaries that we described in Section C-3.1.

We have just shown that if f and f ′ are factor sets of an extension G that arise
from different liftings, then f ′ − f is a coboundary.

Definition. Given a group Q and a Q-module K, define

Z2(Q,K) = {all factor sets f : Q×Q→ K}

and

B2(Q,K) = {all coboundaries g : Q×Q→ K}.

Proposition C-3.16. Given a group Q and a Q-module K, then Z2(Q,K) is an
abelian group with operation pointwise addition,

f + f ′ : (x, y) �→ f(x, y) + f ′(x, y),

and B2(Q,K) is a subgroup of Z2(Q,K).

Proof. To see that Z2 is a group, it suffices to prove that f − f ′ satisfies the two
identities in Proposition C-3.12. This is obvious: just subtract the equations for f
and f ′.

To see that B2 is a subgroup of Z2, we must first show that every coboundary
g is a factor set, that is, that g satisfies the two identities in Proposition C-3.12.
This, too, is routine and is left to the reader. Next, we must show that B2 is a
nonempty subset; but the zero function, g(x, y) = 0 for all x, y ∈ Q, is clearly a
coboundary. Finally, we show that B2 is closed under subtraction. If h, h′ : Q→ K
show that g and g′ are coboundaries, that is, g(x, y) = xh(y) − h(xy) + h(x) and
g′(x, y) = xh′(y)− h′(xy) + h′(x), then

(g − g′)(x, y) = x(h− h′)(y)− (h− h′)(xy) + (h− h′)(x). •

A given extension has many liftings and, hence, many factor sets, but the
difference of any two of these factor sets is a coboundary. Therefore, the following
quotient group suggests itself.

Definition. Given a group Q and a Q-module K, their second cohomology
group is defined by

H2(Q,K) = Z2(Q,K)/B2(Q,K).

Definition. Given a group Q and a Q-module K, two extensions G and G′ of K
by Q that realize the operators are called equivalent if there is a factor set f of G
and a factor set f ′ of G′ so that f ′ − f is a coboundary.
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Proposition C-3.17. Given a group Q and a Q-module K, two extensions G and
G′ of K by Q that realize the operators are equivalent if and only if there exists an
isomorphism γ : G→ G′ making the following diagram commute:

0 �� K
i ��

1K

��

G
p ��

γ

���
�
� Q

1Q

��

�� 1

0 �� K
i′ �� G′ p′

�� Q �� 1.

Remark. A diagram chase shows that any homomorphism γ making the diagram
commute is necessarily an isomorphism. �

Proof. Assume that the two extensions are equivalent. We begin by setting up no-
tation. Let � : Q→ G and �′ : Q→ G′ be liftings, and let f, f ′ be the corresponding
factor sets; that is, for all x, y ∈ Q, we have

�(x) + �(y) = f(x, y) + �(xy),

with a similar equation for f ′ and �′. Equivalence means that there is a function
h : Q→ K with h(1) = 0 and

f(x, y)− f ′(x, y) = xh(y)− h(xy) + h(x)

for all x, y ∈ Q. Since G =
⋃

x∈Q K + �(x) is a disjoint union, each g ∈ G has a

unique expression g = a+ �(x) for a ∈ K and x ∈ Q; similarly, each g′ ∈ G′ has a
unique expression g′ = a+ �′(x).

This part of the proof generalizes that of Theorem C-3.14. Define γ : G → G′

by

γ(a+ �(x)) = a+ h(x) + �′(x).

This function makes the diagram commute. If a ∈ K, then

γ(a) = γ(a+ �(1)) = a+ h(1) + �′(1) = a;

furthermore,

p′γ(a+ �(x)) = p′(a+ h(x) + �′(x)) = x = p(a+ �(x)).

Finally, γ is a homomorphism:

γ
(
(a+ �(x)) + (b+ �(y))

)
= γ(a+ xb+ f(x, y) + �(xy))

= a+ xb+ f(x, y) + h(xy) + �′(xy),

while

γ(a+ �(x)) + γ(b+ �(y)) =
(
a+ h(x) + �′(x)

)
+
(
b+ h(y) + �′(y)

)
= a+ h(x) + xb+ xh(y) + f ′(x, y) + �′(xy)

= a+ xb+
(
h(x) + xh(y) + f ′(x, y)

)
+ �′(xy)

= a+ xb+ f(x, y) + h(xy) + �′(xy).

We have used the given equation for f − f ′ (remember that the terms other than
�′(xy) all lie in the abelian group K, and so they may be rearranged).
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Conversely, assume that there exists an isomorphism γ making the diagram
commute, so that γ(a) = a for all a ∈ K and

x = p(�(x)) = p′γ(�(x))

for all x ∈ Q. It follows that γ� : Q → G′ is a lifting. Applying γ to the equation
�(x)+�(y) = f(x, y)+�(xy) that defines the factor set f , we see that γf is the factor
set determined by the lifting γ�. But γf(x, y) = f(x, y) for all x, y ∈ Q because
f(x, y) ∈ K. Therefore, f is also a factor set of the second extension. On the other
hand, if f ′ is any other factor set for the second extension, then Lemma C-3.15
shows that f − f ′ ∈ B2; that is, the extensions are equivalent. •

We say that the isomorphism γ in Proposition C-3.17 implements the equiv-
alence. The remark after Theorem C-3.14 shows that the isomorphism γ : G →
G(K,Q, f) implements an equivalence of extensions.

Example C-3.18. If two extensions of K by Q realizing the operators are equiv-
alent, then their middle groups are isomorphic. However, the converse is false: we
give an example of two inequivalent extensions with isomorphic middle groups. Let
p be an odd prime, and consider the following diagram:

0 �� K
i ��

1K

��

G
π ��

��

Q

1Q

��

�� 1

0 �� K
i′ �� G′ π′

�� Q �� 1.

Define K = 〈a〉, a cyclic group of order p, G = 〈g〉 = G′, a cyclic group of order p2,
and Q = 〈x〉, where x = g +K. In the top row, define i(a) = pg and π to be the
natural map; in the bottom row define i′(a) = 2pg and π′ to be the natural map.
Note that i′ is injective because p is odd.

Suppose there is an isomorphism γ : G → G′ making the diagram commute.
Commutativity of the first square implies γ(pa) = 2pa, and this forces γ(g) = 2g,
by Exercise C-3.12 on page 236; commutativity of the second square gives g+K =
2g + K; that is, g ∈ K. We conclude that the two extensions are not equivalent.

�

The next theorem summarizes the calculations in this section.

Theorem C-3.19 (Schreier). Let Q be a group, let K be a Q-module, and let
e(Q,K) denote the family of all the equivalence classes of extensions of K by Q
realizing the operators. There is a bijection

ϕ : H2(Q,K)→ e(Q,K)

that takes 0 to the class of the split extension.

Proof. Denote the equivalence class of an extension

0→ K → G→ Q→ 1

by [G]. Define ϕ : H2(Q,K)→ e(Q,K) by

ϕ : f +B2 �→ [G(K,Q, f)],
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where f is a factor set of the extension and the target extension is that constructed
in Theorem C-3.13.

First, ϕ is a well-defined injection: f and g are factor sets with f+B2 = g+B2

if and only if [G(K,Q, f)] = [G(K,Q, g)], by Proposition C-3.17. To see that ϕ is
a surjection, let [G] ∈ e(Q,K). By Theorem C-3.14 and the remark following it,
[G] = [G(K,Q, f)] for some factor set f , and so [G] = ϕ(f +B2). Finally, the zero
factor set corresponds to the semidirect product. •

IfH is a group and if there is a bijection ϕ : H → X, whereX is a set, then there
is a unique operation defined on X making X a group and ϕ an isomorphism: given
x, y ∈ X, there are g, h ∈ H with x = ϕ(g) and y = ϕ(h), and we define xy = ϕ(gh).
In particular, there is a way to add two equivalence classes of extensions; it is called
Baer sum (see Section C-3.8).

Corollary C-3.20. If Q is a group, K is a Q-module, and H2(Q,K) = {0}, then
every extension of K by Q realizing the operators is a semidirect product.

Proof. By the theorem, e(Q,K) has only one element; since the split extension
always exists, this one element must be the equivalence class of the split extension.
Therefore, every extension of K by Q realizing the operators is split, and so its
middle group is a semidirect product. •

We now apply Schreier’s Theorem.

Theorem C-3.21. Let G be a finite group of order mn, where gcd(m,n) = 1. If
K is an abelian normal subgroup of order m, then K has a complement and G is a
semidirect product.

Proof. Define Q = G/K. By Corollary C-3.20, it suffices to prove that every
factor set f : Q×Q→ K is a coboundary. Define σ : Q→ K by

σ(x) =
∑
y∈Q

f(x, y);

σ is well-defined because Q is finite and K is abelian. Now sum the cocycle identity

xf(y, z)− f(xy, z) + f(x, yz)− f(x, y) = 0

over all z ∈ Q to obtain

xσ(y)− σ(xy) + σ(x) = nf(x, y)

(as z varies over all of Q, so does yz). Since gcd(m,n) = 1, there are integers s
and t with sm+ tn = 1. Define h : Q→ K by

h(x) = tσ(x).

Note that h(1) = 0 and

xh(y)− h(xy) + h(x) = f(x, y)−msf(x, y).

But sf(x, y) ∈ K, and so msf(x, y) = 0. Therefore, f is a coboundary. •
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Remark. Recall P. Hall’s Theorem C-1.57: if G is a finite solvable group of or-
der ab, where gcd(a, b) = 1, then G has a subgroup of order a and any two such
subgroups are conjugate. In particular, in a solvable group, every (not necessar-
ily normal) Sylow subgroup has a complement. Because of this theorem, a (not
necessarily normal) subgroup H of a finite group G is called a Hall subgroup if
gcd(|H|, [G : H]) = 1. Thus, Theorem C-3.21 is often stated as every normal Hall
subgroup of an arbitrary finite group has a complement. �

We now remove the hypothesis that K be abelian.

Theorem C-3.22 (Schur–Zassenhaus7 Lemma). Let G be a finite group of
order mn, where gcd(m,n) = 1. If K is a normal subgroup of order m, then K has
a complement and G is a semidirect product.

Proof. By Exercise C-3.2 on page 235, it suffices to prove that G contains a sub-
group of order n; we prove the existence of such a subgroup by induction on m ≥ 1.
Of course, the base step m = 1 is true.

Suppose that there is a proper subgroup T of K with {1} ⊆ T � G. Then
K/T � G/T and (G/T )/(K/T ) ∼= G/K has order n. Since T ⊆ K, we have
|K/T | < |K| = m, and so the inductive hypothesis provides a subgroupN/T ⊆ G/T
with |N/T | = n. Now |N | = n|T |, where gcd(|T |, n) = 1 (because |T | is a divisor of
|K| = m), so that T is a normal subgroup of N whose order and index are relatively
prime. Since |T | < |K| = m, the inductive hypothesis provides a subgroup C of N
(which is obviously a subgroup of G) of order n.

We may now assume that K is a minimal normal subgroup of G; that is, there
is no normal subgroup T of G with {1} � T � K. Let p be a prime divisor of |K|
and let P be a Sylow p-subgroup of K. By the Frattini Argument (Lemma C-1.56),
we have G = KNG(P ). Therefore,

G/K = KNG(P )/K

∼= NG(P )/(K ∩NG(P ))

= NG(P )/NK(P ).

Hence, |NK(P )|n = |NK(P )||G/K| = |NG(P )|. If NG(P ) is a proper subgroup
of G, then |NK(P )| < m, and induction provides a subgroup of NG(P ) ⊆ G of
order n. Therefore, we may assume that NG(P ) = G; that is, P �G.

Since {1} � P ⊆ K and P is normal in G, we must have P = K, because
K is a minimal normal subgroup. But P is a p-group, and so its center, Z(P ), is
nontrivial. By Exercise C-1.36 on page 32, we have Z(P )� G, and so Z(P ) = P ,
again because P = K is a minimal normal subgroup of G. It follows that P is
abelian, and we have reduced the problem to Theorem C-3.21. •

Corollary C-3.23. If a finite group G has a normal Sylow p-subgroup P , for
some prime divisor p of |G|, then G is a semidirect product; more precisely, P has
a complement.

7Schur proved this theorem, in 1904, for the special case Q cyclic. Zassenhaus, in 1938,
proved the theorem for arbitrary finite Q.
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Proof. The order and index of a Sylow subgroup are relatively prime. •

There is another part of the Schur–Zassenhaus Lemma that we have not stated:
if K is a normal subgroup of G whose order and index are relatively prime, then
any two complements of K are conjugate subgroups. We are now going to see that
there is an analog of H2(K,Q) whose vanishing implies conjugacy of complements
when K is abelian. This group, H1(K,Q), arises, as did H2(K,Q), from a series
of elementary calculations.

We begin with a computational lemma. LetQ be a group, letK be a Q-module,
and let 0→ K → G→ Q→ 1 be a split extension. Choose a lifting � : Q→ G, so
that every element g ∈ G has a unique expression of the form

g = a+ �x,

where a ∈ K and x ∈ Q.

Definition. An automorphism ϕ of a group G stabilizes an extension 0→ K →
G→ Q→ 1 if the following diagram commutes:

0 �� K
i ��

1K

��

G
p ��

ϕ

��

Q

1Q

��

�� 1

0 �� K
i �� G

p �� Q �� 1.

The set of all stabilizing automorphisms of an extension of K by Q, where K is a
Q-module, forms a group under composition, denoted by

Stab(Q,K).

Note that a stabilizing automorphism is an isomorphism that implements an
equivalence of an extension with itself. We shall see, in Proposition C-3.26, that
Stab(Q,K) does not depend on the extension.

Proposition C-3.24. Let Q be a group, let K be a Q-module, and let

0→ K
i→ G

p→ Q→ 1

be a split extension, where i is the inclusion.

(i) If � : Q→ G is a lifting, then every stabilizing automorphism ϕ : G→ G has
the unique form

ϕ(a+ �x) = a+ d(x) + �x,(1)

where d(x) ∈ K is independent of the choice of lifting �.

(ii) Eq. (1) defines a stabilizing automorphism if and only if, for all x, y ∈ Q, the
function d : Q→ K satisfies

d(xy) = d(x) + xd(y).(2)
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Proof.

(i) Remember, since � is a lifting of Q, that im � is a transversal of K in G, and
so every g ∈ G has a unique expression g = a+ �x, where a ∈ K and x ∈ Q.
Now ϕ(a + �x) = ϕ(a) + ϕ(�x). As ϕ is stabilizing, ϕi = i and pϕ = p.
Since i : K → G is the inclusion (which is merely a convenience to allow us
to write a instead of i(a)), we have ϕ(a) = a for all a ∈ K. To use the second
constraint pϕ = p, suppose that ϕ(�x) = d(x)+ �y for some d(x) ∈ K = ker p
and y ∈ Q. Now

x = p(�x) = pϕ(�x) = p(d(x) + �y) = y,

because p(�y) = y, for this is the definition of lifting. Thus, x = y, �x = �y,
and Eq. (1) holds. Uniqueness of Eq. (1) follows from uniqueness of the
expression writing each element of G in the form a + �x (which merely says
that G is the disjoint union of the cosets of K).

We now show that d is independent of the choice of lifting. Suppose
that �′ : Q → G is another lifting and that ϕ(�′x) = d′(x) + �′x for some
d′(x) ∈ K. There is k ∈ K with �′x = k + �x, for p�′x = x = p�x. Therefore,
k + �x− �′x = 0, and

d′(x) = ϕ(�′x)− �′x

= ϕ(k + �x)− �′x

= k + d(x) + �x− �′x

= d(x).

(ii) We now show that Eq. (2) holds for d. Since d is independent of the choice
of lifting � and since the extension splits, we may assume that � is a homo-
morphism: �x+ �y = �(xy). We compute ϕ(�x+ �y) in two ways.

On the one hand,

ϕ(�x+ �y) = ϕ(�(xy)) = d(xy) + �(xy).

On the other hand, since the extension realizes the operators,

ϕ(�x+ �y) = ϕ(�x) + ϕ(�y)

= d(x) + �x+ d(y) + �y

= d(x) + xd(y) + �(xy).

Canceling �(xy) gives the result.
Conversely, we must show that the function ϕ : G→ G defined in Eq. (1)

is a stabilizing automorphism. As in Proposition C-3.7, we view the semi-
direct product G as all ordered pairs (a, x) ∈ K �Q with operation (a, x) +
(b, y) = (a+ xb, xy). With this notation,

ϕ((a, x)) = (a+ d(x), x), ia = (a, 1), and p(a, x) = x.

The Five Lemma shows, if ϕ is a homomorphism, that it is an automor-
phism. Now

ϕ((a, x) + (b, y)) = ϕ((a+ xb, xy))

= (a+ xb+ d(xy), xy).
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On the other hand, since elements in K commute,

ϕ((a, x)) + ϕ((b, y)) = (a+ d(x), x) + (b+ d(y), y)

= (a+ d(x) + x(b+ d(y)), xy)

= (a+ d(x) + xb+ xd(y), xy)

= (a+ xb+ d(x) + xd(y), xy).

It follows that Eq. (2) holds.
To see that ϕ is stabilizing, observe that ϕ((a, 1)) = (a+d(1), 1) = (a, 1),

because d(1) = 0 (for d(1) = d(1 · 1) = d(1) + 1d(1)). Also, pϕ((a, x)) =
p(a+ d(x), x) = x = p(a, x) •

We give a name to functions like d.

Definition. Let Q be a group and let K be a Q-module. A derivation8 (or
crossed homomorphism) is a function d : Q→ K such that

d(xy) = xd(y) + d(x).

The set of all derivations, Der(Q,K), is an abelian group under pointwise addition
(if K is a trivial Q-module, then Der(Q,K) = Hom(Q,K)).

We saw, in the proof of Proposition C-3.24(ii), that d(1) = 0.

Example C-3.25.

(i) If Q is a group and K is a Q-module, then a function u : Q→ K of the form
u(x) = xa0 − a0, where a0 ∈ K, is a derivation:

u(x) + xu(y) = xa0 − a0 + x(ya0 − a0)

= xa0 − a0 + xya0 − xa0

= xya0 − a0

= u(xy).

A derivation u of the form u(x) = xa0−a0 is called a principal derivation.
If the action of Q on K is conjugation, xa = x+ a− x, then

xa0 − a0 = x+ a0 − x− a0;

that is, xa0 − a0 is the commutator of x and a0.

(ii) It is easy to check that the set PDer(Q,K) of all the principal derivations is
a subgroup of Der(Q,K). �

Recall that Stab(Q,K) denotes the group of all the stabilizing automorphisms
of an extension of K by Q.

Proposition C-3.26. If Q is a group, K is a Q-module, and 0→ K → G→ Q→
1 is a split extension, then there is an isomorphism Stab(Q,K)→ Der(Q,K).

8In Section C-2.6 we defined a derivation of a (not-necessarily-associative) ring R as a function
d : R → R with d(xy) = d(x)y + xd(y). Derivations here are defined on modules, not on rings.
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Proof. Let ϕ be a stabilizing automorphism. If � : Q→ G is a lifting, then Propo-
sition C-3.24(ii) says that ϕ(a+ �x) = a+d(x)+ �x, where d is a unique derivation;
hence, the function Stab(Q,K)→ Der(Q,K), given by ϕ �→ d, is well-defined, and
it is easily seen to be a homomorphism.

To see that this map is an isomorphism, we construct its inverse. If d ∈
Der(Q,K), define ϕ : G → G by ϕ(a + �x) = a + d(x) + �x. Now ϕ is stabilizing,
by Proposition C-3.24, and d �→ ϕ is the desired inverse function. •

It is not obvious from its definition that Stab(Q,K) is abelian, for its binary
operation is composition. However, Stab(Q,K) is abelian, for Der(Q,K) is.

Recall that an automorphism ϕ of a group G is called an inner automorphism
if it is a conjugation; that is, there is c ∈ G with ϕ(g) = c+ g − c for all g ∈ G (if
G is written additively).

Lemma C-3.27. Let 0→ K → G→ Q→ 1 be a split extension, and let � : Q→ G
be a lifting. Then a function ϕ : G → G is an inner stabilizing automorphism by
some a0 ∈ K if and only if

ϕ(a+ �x) = a+ xa0 − a0 + �x.

Proof. If we write d(x) = xa0−a0, then ϕ(a+�x) = a+d(x)+�x. But d is a (prin-
cipal) derivation, and so ϕ is a stabilizing automorphism, by Proposition C-3.24.
Finally, ϕ is conjugation by −a0, for

−a0 + (a+ �x) + a0 = −a0 + a+ xa0 + �x = ϕ(a+ �x).

Conversely, assume that ϕ is a stabilizing conjugation. That ϕ is stabilizing
says that ϕ(a + �x) = a + d(x) + �x; that ϕ is conjugation by a0 ∈ K says that
ϕ(a + �x) = a0 + a + �x − a0. But a0 + a + �x − a0 = a0 + a − xa0 + �x, so that
d(x) = a0 − xa0, as desired. •

Definition. If Q is a group and K is a Q-module, define

H1(Q,K) = Der(Q,K)/PDer(Q,K),

where PDer(Q,K) is the subgroup of Der(Q,K) consisting of all the principal
derivations.

Proposition C-3.28. Let 0 → K → G → Q → 1 be a split extension, and let
C and C ′ be complements of K in G. If H1(Q,K) = {0}, then C and C ′ are
conjugate.

Proof. Since G is a semidirect product, there are liftings � : Q→ G, with image C,
and �′ : Q → G, with image C ′, which are homomorphisms. Thus, the factor sets
f and f ′ determined by each of these liftings is identically zero, and so f ′ − f = 0.
But Lemma C-3.15 says that there exists h : Q→ K, namely, h(x) = �′x− �x, with

0 = f ′(x, y)− f(x, y) = xh(y)− h(xy) + h(x);

thus, h is a derivation. Since H1(Q,K) = {0}, h is a principal derivation: there is
a0 ∈ K with

�′x− �x = h(x) = xa0 − a0
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for all x ∈ Q. Since addition in G satisfies �′x− a0 = −xa0 + �′x, we have

�x = a0 − xa0 + �′x = a0 + �′x− a0.

But im � = C and im �′ = C ′, and so C and C ′ are conjugate via a0. •

We can now supplement the Schur–Zassenhaus Theorem.

Theorem C-3.29. Let G be a finite group of order mn, where gcd(m,n) = 1. If
K is an abelian normal subgroup of order m, then G is a semidirect product of K
by G/K, and any two complements of K are conjugate.

Proof. By Proposition C-3.28, it suffices to prove that H1(Q,K) = {0}, where
Q = G/K. Note, first, that |Q| = |G|/|K| = mn/m = n.

Let d : Q→ K be a derivation: for all x, y ∈ Q, we have

d(xy) = xd(y) + d(x).

Sum this equation over all y ∈ Q to obtain

Δ = xΔ+ nd(x),

where Δ =
∑

y∈Q d(y) (as y varies over Q, so does xy). Since gcd(m,n) = 1, there
are integers s and t with sn+ tm = 1. Hence,

d(x) = snd(x) + tmd(x) = snd(x),

because d(x) ∈ K and so md(x) = 0. Therefore,

d(x) = sΔ− xsΔ.

Setting a0 = −sΔ, we see that d is a principal derivation. •

Removing the assumption in Theorem C-3.29 that K is abelian is much more
difficult than removing this assumption in Theorem C-3.21. One first proves that
complements are conjugate if either K or Q is a solvable group (see Robinson [181],
p. 255). Since |Q| and |K| are relatively prime, at least one of them has odd order.
The Feit–Thompson Theorem (which says that every group of odd order is solvable)
now completes the proof.

Let us contemplate the formulas that have arisen:

factor set : 0 = xf(y, z)− f(xy, z) + f(x, yz)− f(x, y),

coboundary : f(x, y) = xh(y)− h(xy) + h(x),

derivation : 0 = xd(y)− d(xy) + d(x),

principal derivation : d(x) = xa0 − a0.

All these formulas involve alternating sums; factor sets and derivations seem to be
in kernels, and coboundaries and principal derivations seem to be in images. Let
us make this more precise.

Denote the cartesian product of n copies of Q by Qn; it is customary to denote
an element of Qn by [x1 | · · · | xn], using bars, instead of by (x1, . . . , xn), using
commas. When n = 0, we denote Q0 by the one-point set {[ ]} whose only member
is denoted by [ ]. Factor sets and coboundaries are certain functions Q2 → K,
and derivations are certain functions Q1 → K. Let Bn be the free left ZQ-module
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with basis Qn; in particular, B0 is free with basis [ ] (so that B0
∼= ZQ). By the

definition of basis, every function f : Qn → K gives a unique Q-homomorphism

f̃ : Bn → K extending f , for K is a Q-module; that is, if

Fun(Qn,K)

denotes the family of all functions Qn → K in the category Sets, then f �→ f̃ gives
a bijection

Fun(Qn,K)→ HomZQ(Bn,K).

The inverse of this function is restriction

res : HomZQ(Bn,K)→ Fun(Qn,K),

defined by res : g �→ g|Qn.

We now define maps suggested by these various formulas:

d3 : B3 → B2 : d3[x | y | z] = x[ y | z]− [xy | z] + [x | yz]− [x | y],
d2 : B2 → B1 : d2[x | y] = x[ y]− [xy] + [x],

d1 : B1 → B0 : d1[x] = x[ ]− [ ].

We have defined each of d3, d2, and d1 on bases of free modules, and so each extends
by linearity to a Q-map.

Exercise C-2.12 on page 145 leads us to consider Z as a Q-module, and this
will help us organize these formulas.

Proposition C-3.30. For any group Q, there is an isomorphism ZQ/ ker ε′ ∼= Z,
where Z is regarded as a trivial Q-module and ε′ : ZQ→ Z is defined by

ε′ :
∑
x∈Q

mxx �→
∑
x∈Q

mx.

Proof. Now ε′ is a Q-map, for if x ∈ Q, then ε′(x) = 1; on the other hand,
ε′(x) = ε′(x · 1) = xε′(1) = 1, because Z is a trivial Q-module. •

Proposition C-3.31. If Z is a trivial Q-module, then the sequence

B3
d3−→ B2

d2−→ B1
d1−→ B0

ε−→ Z −→ 0(3)

is an exact sequence of Q-modules, where ε : B0 → Z is defined by

ε :
∑
x∈Q

mxx[ ] �→
∑
x∈Q

mx.

.

Sketch of Proof. It is clear that ε is surjective, for ε = ε′α, where α : u[ ] �→ u
for all u ∈ ZQ is an isomorphism B0 → ZQ. We will check only that εd1 = 0,
d1d2 = 0, and d2d3 = 0; that is, im d1 ⊆ ker ε, im d2 ⊆ ker d1, and im d3 ⊆ ker d2;
the (trickier) reverse inclusions will be proved in Theorem C-3.121 when we consider
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the bar resolution. We have

εd1[x] = ε(x[ ]− [ ]) = 1− 1 = 0,

d1d2[x | y] = d1(x[ y]− [xy] + [x])

= x(d1[ y]− d1[xy] + d1[x])

= x(y[ ]− [ ])− (xy[ ]− [ ]) + (x[ ]− [ ])

= xy[ ]− x[ ]− xy[ ] + [ ] + x[ ]− [ ]

= 0.

(the equation d1x[ y] = xd1[ y] holds because d1 is a Q-map). The reader should
note that this is the same calculation as in Proposition C-3.16,

d2d3[x | y | z] = d2(x[ y | z]− [xy | z] + [x | yz]− [x | y])
= xd2[ y | z]− d2[xy | z] + d2[x | yz]− d2[x | y]
= x( y[z]− [ yz] + [ y])− (xy[ z]− [xyz] + [xy])

+ (x[ yz]− [xyz] + [x])− (x[ y]− [xy] + [x])

= 0. •

The map ε : B0 → Z, usually written as a map ZQ → Z, is called the aug-
mentation. See Exercise C-2.12 on page 145.

If X is a set and K is a module, then functions X → K are the same
as homomorphisms B → K, where B is the free module having basis X: for-
mally, Fun(X, ) : ZQMod → Sets is a functor which is naturally equivalent to
HomZQ(B, ) (see Exercise C-3.18 on page 255 which says that there is an adjoint
pair of functors lurking). Applying the contravariant functor HomZQ( ,K) to the
sequence in Proposition C-3.31, we obtain a (not necessarily exact) sequence

Hom(B3,K)
d∗
3←− Hom(B2,K)

d∗
2←− Hom(B1,K)

d∗
1←− Hom(B0,K);

inserting the bijections res : g �→ g|Qn gives a commutative diagram of sets:

Fun(Q3,K) Fun(Q2,K)�� Fun(Q,K)�� Fun({1},K)��

Hom(B3,K)

res

��

Hom(B2,K)

res

��

d∗
3�� Hom(B1,K)

res

��

d∗
2�� Hom(B0,K).

res

��

d∗
1��

We regard a function f : Qn → K as the restriction of the Q-map f̃ : Bn → K
which extends it. Suppose that f : Q2 → K lies in ker d∗3. Then 0 = d∗3(f) = fd3.
Hence, for all x, y, z ∈ Q, we have

0 = fd3[x | y | z]
= f(x[ y | z]− [xy | z] + [x | yz]− [x | y])
= xf [ y | z]− f [xy | z] + f [x | yz]− f [x | y];

the equation f(x[ y | z]) = xf [ y | z] holds because f is the restriction of a Q-map.
Thus, f is a factor set.
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If f lies in im d∗2, then there is some h : Q→ K with f = d∗2(h) = hd2. Thus,

f [x | y] = hd2[x | y]
= h(x[y]− [xy] + [x])

= xh[y]− h[xy] + h[x];

the equation h(x[y]) = xh[y] holds because h is the restriction of a Q-map. Thus,
f is a coboundary.

If g : Q→ K, then

d∗2(g)[x | y] = gd2[x | y] = g(x[ y]− [ y] + [x]).

Hence, if g is in ker d∗2, then 0 = d∗2(g)[x | y], so that g(xy) = xg(y) + g(x) and g is
a derivation.

We now compute im d∗1. Let k : {[ ]} → K and k([ ]) = a0 (this is just a fancy
way of specifying an element of K). For all x ∈ Q,

d∗1(k)[x] = kd1[x] = k(x[ ]− [ ]) = xk([ ])− [ ] = xa0 − a0.

Thus, d∗1(k) is a principal derivation.

Observe that d2d3 = 0 implies d∗3d
∗
2 = 0, which is equivalent to im d∗2 ⊆ ker d∗3;

that is, every coboundary is a factor set, which is Proposition C-3.16. Similarly,
d1d2 = 0 implies im d∗1 ⊆ ker d∗2; that is, every principal derivation is a derivation,
which is Example C-3.25(ii).

As long as we are computing kernels and images, what is ker d∗1? When we
computed im d∗1, we saw, for all x ∈ Q, that kd1(x) = xa0 − a0, where k([ ]) = a0.
Hence, if kd1(x) = 0, then xa0 = a0 for all x ∈ Q. We have been led to the following
definition.

Definition. If Q is a group and K is a Q-module, define

H0(Q,K) = ker d∗1.

The submodule KQ of fixed points is defined by

KQ = {a ∈ K : xa = a for all x ∈ Q}.

The reader may show that H0(Q,K) = ker d∗1
∼= KQ. It is easy to see that KQ

is a trivial Q-module; indeed, it is the maximal trivial Q-submodule of K.

We have seen that the cohomology groups H2(Q,K), H1(Q,K), H0(Q,K)
are obtained after applying the contravariant functor HomZQ( ,K) to exact se-
quence (3),

H2(Q,K) = ker d∗3/ im d∗2,

H1(Q,K) = ker d∗2/ im d∗1,

H0(Q,K) = ker d∗1.

The functor − ⊗ZQ K can also be applied to exact sequence (3); the tensor
product is defined because we may view the free Q-modules Bn as right Q-modules,
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as in Example B-1.20(v) in Part 1. We obtain homology groups :

H2(Q,K) = ker(d2 ⊗ 1)/ im(d3 ⊗ 1),

H1(Q,K) = ker(d1 ⊗ 1)/ im(d2 ⊗ 1),

H0(Q,K) = ker(ε⊗ 1).

The notation for cohomology groups uses superscripts, while the notation for ho-
mology uses subscripts.

We will see that H0(Q,K) is the maximal trivial Q-quotient of K and, in the
special case K = Z viewed as a trivial Q-module, that H1(Q,Z) ∼= Q/Q′, where Q′

is the commutator subgroup of Q.

There are other applications of cohomology in group theory besides the Schur–
Zassenhaus Lemma. For example, if G is a group, a ∈ G, and γa : g �→ aga−1 is
conjugation by a, then (γa)

n : g �→ anga−n for all n. Hence, if a has prime order p
and a /∈ Z(G), then γa is an inner automorphism of order p. A theorem of Gaschütz
(see Rotman [187], p. 589) uses cohomology to prove that every finite nonabelian
p-group G has an outer automorphism α of order p.

In the next sections, we discuss homological algebra; cohomology of groups is
the proper context in which to understand the constructions in this section.

Exercises

∗ C-3.13. Let Q be a group and let K be a Q-module. Prove that any two split extensions
of K by Q realizing the operators are equivalent.

C-3.14. Let Q be a group and let K be a Q-module.

(i) If K and Q are finite groups, prove that H2(Q,K) is also finite.

(ii) Let τ(K,Q) denote the number of nonisomorphic middle groups G that occur in
extensions of K by Q realizing the operators. Prove that

τ(K,Q) ≤ |H2(Q,K)|.

(iii) Give an example showing that the inequality in (ii) can be strict.
Hint. Observe that τ(Zp,Zp) = 2 (note that the kernel is the trivial module
because every group of order p2 is abelian).

C-3.15. Recall that the generalized quaternion group Qn is a group of order 2n, where
n ≥ 3, which is generated by two elements a and b such that

a2n−1

= 1, bab−1 = a−1, and b2 = a2n−2

.

(i) Prove that Qn has a unique element z of order 2 and that Z(Qn) = 〈z〉. Conclude
that Qn is not a semidirect product.

(ii) Prove that Qn is a central extension (i.e., θ is trivial) of Z2 by D2n−1 .

(iii) Using factor sets, give another proof of the existence of Qn.

∗ C-3.16. If p is an odd prime, prove that every group G of order 2p is a semidirect
product of Zp by Z2, and conclude that either G is cyclic or G ∼= D2p.
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∗ C-3.17. Show that every group G of order 12 is isomorphic to one of the following five
groups:

Z12, V × Z3, A4, S3 × Z2, T,

where T is the group in Example C-3.9.

∗ C-3.18. Let U : ZQMod → Sets be the forgetful functor which assigns to each module
its set of elements. By Exercise B-4.23 on page 474 in Part 1, there exists a free functor
Φ: Fun → ZQMod which assigns to each set X the free Q-module Φ(X) with basis X.

(i) Prove that Fun(X, ), Hom(Φ, ) : ZQMod → Sets are naturally equivalent.

(ii) Prove that the ordered pair (Φ, U) is an adjoint pair of functors. (Compare this
exercise to Exercise C-1.96 on page 91.)

∗ C-3.19. Let Q be a group.

(i) Prove that FixQ : ZQMod → ZQMod is a covariant functor, where FixQ : K 
→ KQ

and, if ϕ : K → L, then ϕQ : KQ → LQ is the restriction ϕ|KQ.

(ii) Prove that the functors FixQ and HomZQ(Z, ) are naturally equivalent, where Z
is viewed as a trivial Q-module. Conclude that FixQ is left exact.

C-3.4. Complexes

In this section, the word module will always mean “left R-module”, where R is a
ring.

By Proposition B-2.25 in Part 1, for every module M , there is a free module P0

and a surjection ε : P0 →M ; that is, there is an exact sequence

0→ Ω1
i−→ P0

ε−→M → 0,

where Ω1 = ker ε and i : Ω1 → P0 is the inclusion. This is just another way of
describing M by generators and relations. If X is a basis of P0, then we say
that X (really, ε(X)) is a set of generators of M , that Ω1 are relations (usually
the submodule Ω1 is replaced by a generating subset of it), and that (X | Ω1) is a
presentation of M ∼= P0/ ker ε = P0/ im i.

The idea now is to take generators and relations of Ω1, getting “second-order”
relations Ω2, and then to keep iterating this construction giving a free resolution
of M , an infinitely long exact sequence of free modules, which should be regarded
as a glorified description of M by generators and relations. Thus, it makes sense
to replace M by such a long exact sequence, and this is the fundamental idea un-
derlying homological algebra. (A similar construction occurs in algebraic topology,
where a topological space X is replaced by a sequence of chain groups which yields
its homology groups Hn(X).)

Definition. A projective resolution of a module M is an exact sequence,

· · · → Pn → Pn−1 → · · · → P1 → P0 →M → 0,

in which each module Pn is projective. A free resolution is a projective resolution
in which each module Pn is free.
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Recall Proposition C-3.31, which states that Eq. (3),

B3
d3−→ B2

d2−→ B1
d1−→ B0

ε−→ Z→ 0,

is an exact sequence of free left ZQ-modules, where Bn is the free Q-module with
basis Qn. We have only proved part of this proposition (a complete proof will be
given when we treat the bar resolution), but we say now that this sequence can be
lengthened to be a free resolution of the trivial Q-module Z.

Proposition C-3.32. Every module M has a free resolution (and hence it has a
projective resolution).

Proof. By Proposition B-2.25 in Part 1, there is a free module F0 and an exact
sequence

0→ Ω1
i1−→ F0

ε−→M → 0.

Similarly, there is a free module F1, a surjection ε1 : F1 → Ω1, and an exact sequence

0→ Ω2
i2−→ F1

ε1−→ Ω1 → 0.

If we define d1 : F1 → F0 to be the composite i1ε1, then im d1 = Ω1 = ker ε and
ker d1 = Ω2. Therefore, there is an exact sequence

F1
d1 ��

ε1 ���
��

��
��

� F0
ε �� M �� 0.

0 �� Ω2

����������
Ω1

i1

����������

Thus, we have spliced the two short exact sequences to form a longer exact sequence.
Plainly, this construction can be iterated for all n ≥ 0 (so that the ultimate exact
sequence is infinitely long). •

There is a dual construction, giving “co-generators” and “co-relations”.

Definition. An injective resolution of a module M is an exact sequence,

0→M → E0 → E1 → · · · → En → En+1 → · · · ,

in which each module En is injective.

Proposition C-3.33. Every module M has an injective resolution.

Proof. We use Theorem B-4.64 in Part 1, which states that every module can
be imbedded as a submodule of an injective module. Thus, there is an injective
module E0, an injection η : M → E0, and an exact sequence

0→M
η−→ E0 p−→ Σ1 → 0,
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where Σ1 = coker η and p is the natural map. Now repeat: there is an injective
module E1, an imbedding η1 : Σ1 → E1, yielding an exact sequence

0 �� M
η �� E0 d0

��

p ���
��

��
��

� E1

���
��

��
��

�

Σ1

η1

����������
Σ2 �� 0,

where d0 is the composite d0 = η1p. This splicing can be iterated for all n ≥ 0. •

We now generalize both of these definitions.

Definition. A complex 9 (C•, d•) is a sequence of modules and maps, for every
n ∈ Z,

C• = · · · → Cn+1
dn+1−→ Cn

dn−→ Cn−1 → · · · ,
in which dndn+1 = 0 for all n. The maps dn are called differentiations.

Usually, we will shorten the notation (C•, d•) to C•.

Note that the equation dndn+1 = 0 is equivalent to

im dn+1 ⊆ ker dn.

Example C-3.34.

(i) Every exact sequence is a complex, for the required inclusions, im dn+1 ⊆
ker dn, are now equalities, im dn+1 = ker dn.

(ii) The sequence of chain groups of a triangulated space X,

· · · → C3(X)
∂3−→ C2(X)

∂2−→ C1(X)
∂1−→ C0(X),

is a complex.

(iii) In Exercise C-2.23 on page 168, we considered the de Rham complex of a
connected open subset X of Rn:

0→ Δ0(X)
d0

→ Δ1(X)
d1

→ Δ2(X)→ · · · → Δn−1(X)
dn−1

→ Δn(X)→ 0,

where the maps are the exterior derivatives.

(iv) The zero complex 0• is the complex (C•, d•) each of whose terms Cn = {0}
and, necessarily, each of whose differentiations dn = 0.

(v) Every homomorphism f : A→ B is a differentiation of some complex. Define
a complex (C•, d•) with C1 = A, C0 = B, d1 = f , and all other terms and
differentiations zero. In particular, if A = {0} = B, then f : A → B is the
zero map and (C•, d•) is the zero complex.

(vi) If {Mn : n ∈ Z} is any sequence of modules, then (M•, d•) is a complex with
nth term Mn if we define dn = 0 for all n.

9These are also called chain complexes in the literature.
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(vii) A complex must have a module for every n ∈ Z. We force projective reso-
lutions to be complexes by defining Cn = {0} for all negative n; there is no
problem defining differentiations dn : Cn → Cn−1 for n ≤ 0, for there is only
the zero map from any module into {0}. Thus, every projective resolution of
a module M ,

· · · → P1 → P0 →M → 0,

is a complex if we add {0}’s to the right.

(viii) Every injective resolution of a module M ,

0→M → E0 → E1 → · · · ,
is a complex if we add {0}’s to the left. We are using a convenient notation,
letting indices be superscripts instead of subscripts. According to the defini-
tion of complex, however, differentiations must lower indices: dn : Cn → Cn−1

for all n ∈ Z. The simplest way to satisfy the definition here is to use negative
indices: define C−n = En, so that

0→M → C0 → C−1 → C−2 → · · ·
is a complex.

(ix) If C• is a complex,

C• = · · · → Cn
dn−→ Cn−1 → · · · ,

and F is a covariant additive functor, say, F : RMod → Ab, then F (C•),
defined by

F (C•) = · · · → F (Cn)
Fdn−→ F (Cn−1)→ · · · ,

is also a complex. Since F is an additive functor, the equation 0 = F (0)
holds, so that

0 = F (0) = F (dndn+1) = F (dn)F (dn+1).

Note that even if the original complex is exact, the functored complex F (C•)
may not be exact.

(x) If F is a contravariant additive functor, it is also true that F (C•) is a complex,
but we have to arrange notation so that differentiations lower indices by 1.
In more detail, after applying F , we have

F (C•) = · · · ← F (Cn)
Fdn←− F (Cn−1)← · · · ;

the differentiations Fdn increase indices by 1. Introducing negative indices
almost solves the problem. If we define X−n = F (Cn), then the sequence is
rewritten as

F (C•) = · · · → X−n+1
Fdn−→ X−n → · · · .

However, the index on the map should be −n+ 1, and not n. Define

δ−n+1 = Fdn.

The relabeled sequence now reads properly:

F (C•) = · · · → X−n+1
δ−n+1−→ X−n → · · · .
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Negative indices are awkward, however, and the following notation is
customary: change the sign of the index by raising it to a superscript: write

δn = δ−n = Fdn+1.

The final version of the functored sequence now looks like this:

F (C•) = · · · → Xn−1 δn−1

−→ Xn → · · · . �

We now define morphisms of complexes.

Definition. If (C•, d•) and (C′
•, d

′
•) are complexes, then a chain map

f = f• : (C•, d•)→ (C′
•, d

′
•)

is a sequence of maps fn : Cn → C ′
n, for all n ∈ Z, making the following diagram

commute:

· · · �� Cn+1

dn+1 ��

fn+1

��

Cn
dn ��

fn

��

Cn−1

fn−1

��

�� · · ·

· · · �� C ′
n+1

d′
n+1 �� C ′

n

d′
n �� C ′

n−1
�� · · · .

It is easy to check that the composite gf of two chain maps

f• : (C•, d•)→ (C′
•, d

′
•) and g• : (C

′
•, d

′
•)→ (C′′

• , d
′′
•)

is itself a chain map, where (gf)n = gnfn. The identity chain map 1C• on
(C•, d•) is the sequence of identity maps 1Cn

: Cn → Cn.

Definition. If R is a ring, then all complexes of left R-modules and chain maps
form a category, denoted by RComp; if the ring R is understood from the context,
then we will omit the prescript R.

Just as we examined vector spaces before introducing linear transformations,
we now examine complexes before defining homology (and cohomology) which are
functors whose domain is RComp.

Many of the constructions in RMod can also be done in the category RComp.
We merely list the definitions and state certain properties whose verifications are
straightforward exercises for the reader.

(i) The category RComp is a pre-additive category (that is, the Hom’s are
abelian groups and the distributive laws hold whenever possible) if we define

(f + g)n = fn + gn for all n ∈ Z.

(ii) An isomorphism in RComp is an equivalence in this category. The reader
should check that a chain map f : C• → C′

• is an isomorphism if and only if
fn : Cn → C ′

n is an isomorphism in RMod for all n ∈ Z. (It is necessary to
check that the sequence of inverses f−1

n is, in fact, a chain map; that is, the
appropriate diagram commutes.)
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(iii) A complex (A•, δ•) is a subcomplex of a complex (C•, d•) if, for every n ∈ Z,
we have An a submodule of Cn and δn = dn|An.

If in : An → Cn is the inclusion, then it is easy to see that A• is a
subcomplex of C• if and only if i : A• → C• is a chain map.

(iv) If A• is a subcomplex of C•, then the quotient complex is

C•/A• = · · · → Cn/An
d′′
n−→ Cn−1/An−1 → · · · ,

where d′′n : cn+An �→ dncn+An−1 (it must be shown that d′′n is well-defined:
if cn+An = bn+An, then dncn+An−1 = dnbn+An−1). If πn : Cn → Cn/An

is the natural map, then π : C• → C•/A• is a chain map.

(v) If f• : (C•, d•)→ (C′
•, d

′
•) is a chain map, define

ker f = · · · → ker fn+1
δn+1−→ ker fn

δn−→ ker fn−1 → · · · ,
where δn = dn| ker fn, and define

im f = · · · → im fn+1
Δn+1−→ im fn

Δn−→ im fn−1 → · · · ,
where Δn = d′n| im fn. It is easy to see that ker f is a subcomplex of C•, that
im f is a subcomplex of C′

•, and that the First Isomorphism Theorem
holds:

C•/ker f ∼= im f.

(vi) A sequence of complexes and chain maps

· · · → C•
n+1 fn+1

−→ C•
n fn

−→ C•
n−1 → · · ·

is an exact sequence in RComp if, for all n ∈ Z,

im fn+1 = ker fn.

We may check that if A• is a subcomplex of C•, then there is an exact
sequence of complexes

0• → A•
i−→ C•,

where 0• is the zero complex and i is the chain map of inclusions. More
generally, if i : C• → C′

• is a chain map, then each in is injective if and only

if there is an exact sequence 0• → C•
i−→ C′

•. Similarly, if p : C• → C′′
• is a

chain map, then each pn is surjective if and only if there is an exact sequence

C•
p−→ C′′

• → 0•.

Thus, a sequence of complexes · · · → C•
n+1 fn+1

−→ C•
n fn

−→ C•
n−1 → · · · is

exact in RComp if and only if, for every m ∈ Z,

· · · → Cn+1
m → Cn

m → Cn−1
m → · · ·

is an exact sequence of modules in RMod.

(vii) The reader should realize that the notation for a short exact sequence of
complexes,

0•−→ C′
•

i−→ C•
p−→ C′′

•−→ 0•,
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is very compact. For example, if we write a complex as a column, then a
short exact sequence of complexes is really the infinite commutative diagram
with exact rows:

�� �� ��
0 �� C ′

n+1

in+1 ��

d′
n+1

��

Cn+1

pn+1 ��

dn+1

��

C ′′
n+1

d′′
n+1

��

�� 0

0 �� C ′
n

in ��

d′
n

��

Cn
pn ��

dn

��

C ′′
n

d′′
n

��

�� 0

0 �� C ′
n−1

in−1 ��

��

Cn−1

pn−1 ��

��

C ′′
n−1

��

�� 0

More generally, a long exact sequence of complexes is a commutative diagram
having a module at every lattice point in the plane.

(viii) If (Cα
• , d

α
• )α∈I is a family of complexes, then their direct sum is the complex∑

α

Cα
• = · · · →

∑
α

Cα
n+1

∑
α dα

n−→
∑
α

Cα
n

∑
α dα

n−1−→
∑
α

Cα
n−1 → · · · ,

where
∑

α dαn acts coordinatewise; that is,
∑

α dαn : (c
α
n) �→ (dαnc

α
n).

To summarize, we can view RComp as a category having virtually the same
properties as the category RMod of modules; indeed, we should view a complex as
a generalized module. (Categories such as RMod and RComp are called abelian
categories ; we shall discuss them in Chapter C-4.)

Exercises

C-3.20. Regard the map d : Z → Z, defined by d : m 
→ 2m, as a complex, as in Exam-
ple C-3.34(v). Prove that it is not a projective object in the category ZComp even though
each of its terms is a projective Z-module.

∗ C-3.21. View Z as the category PO(Z) whose objects are integers n and whose mor-
phisms are n → m whenever n ≤ m, but with no other morphisms. (If we view Z as a
partially ordered set, then this is the associated category defined in Example B-4.1(viii)
in Part 1.) Prove that a complex (C•, d•) is a contravariant functor PO(Z) → RMod
and that a chain map is a natural transformation.

∗ C-3.22. (i) Let 0 → Fn → Fn−1 → · · · → F0 → 0 be an exact sequence of finitely
generated free k-modules, where k is a commutative ring. Prove that

n∑
i=0

(−1)i rank(Fi) = 0.
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(ii) Let

0 → Fn → Fn−1 → · · · → F0 → M → 0

and

0 → F ′
m → F ′

m−1 → · · · → F ′
0 → M → 0

be free resolutions of a k-module M in which all Fi and F ′
j are finitely generated

free k-modules. Prove that

n∑
i=0

(−1)i rank(Fi) =

m∑
j=0

(−1)j rank(F ′
j).

Their common value is denoted by χ(M), and it is called the Euler–Poincaré
characteristic of M (see Exercise C-1.116(iii) on page 110).
Hint. Use Schanuel’s Lemma.

C-3.5. Homology Functors

The definition of homology is very simple, but we have delayed presenting it until
now because homology cannot be appreciated without seeing how it arose (the
extension problem, in the 1920s) as well as an example of what it is good for
(the Schur–Zassenhaus Theorem). Its first most prominent appearance occurred in
the 1930s, in the construction of homology groups of triangulated spaces that we
described in Section C-3.1.

Definition. If C• = · · · → Cn+1
dn+1−→ Cn

dn−→ Cn−1 → · · · is a complex, define its

n-cycles = Zn(C•) = ker dn,

n-boundaries = Bn(C•) = im dn+1.

Since the equation dndn+1 = 0 in a complex is equivalent to the condition

im dn+1 ⊆ ker dn,

we have Bn(C•) ⊆ Zn(C•) for every complex C•.

Definition. If C• is a complex and n ∈ Z, its nth homology is

Hn(C•) = Zn(C•)/Bn(C•).

Example C-3.35. A complex is an exact sequence if and only if all its homology
groups are {0}: that is, Hn(C•) = {0} for all n. Thus, homology measures the
deviation of a complex from being an exact sequence. For this reason, an exact
sequence is often called an acyclic complex ; acyclic means “no cycles”, that is,
no cycles that are not boundaries. �

Example C-3.36. In Example C-3.34(v), we saw that every homomorphism f : A
→ B can be viewed as a differentiation in a complex C•, where C1 = A, C0 = B,
d1 = f , and Cn = {0} to the left (n > 1) and to the right (n < 0). Now d2 : {0} → A
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being the zero map implies im d2 = 0, while d0 : B → {0} being the zero map implies
ker d0 = B; it follows that

Hn(C•) =

⎧⎪⎨⎪⎩
ker f if n = 1,

coker f if n = 0,

0 otherwise. �

Proposition C-3.37. Homology Hn : RComp → RMod is an additive functor
for each n ∈ Z.

Proof. We have just defined Hn on objects; it remains to define Hn on morphisms.
If f : (C•, d•)→ (C′

•, d
′
•) is a chain map, define Hn(f) : Hn(C•)→ Hn(C

′
•) by

Hn(f) : zn +Bn(C•) �→ fnzn +Bn(C
′
•).

We first show that fnzn is a cycle and that Hn(f) is independent of the choice of
cycle zn; both of these follow from f being a chain map, that is, from commutativity
of the following diagram:

Cn+1

dn+1 ��

fn+1

��

Cn
dn ��

fn

��

Cn−1

fn−1

��
C ′

n+1
d′
n+1

�� C ′
n

d′
n

�� C ′
n−1.

If z is an n-cycle in Zn(C•), so that dnz = 0, then commutativity of the diagram
gives

d′nfnz = fn−1dnz = 0.

Therefore, fnz is an n-cycle.

Next, assume that z +Bn(C•) = y +Bn(C•); hence, z − y ∈ Bn(C•); that is,

z − y = dn+1c

for some c ∈ Cn+1. Applying fn gives

fnz − fny = fndn+1c = d′n+1fn+1c ∈ Bn(C
′
•).

Thus, fnz +Bn(C
′
•) = fny +Bn(C

′
•); that is, Hn(f) is well-defined.

Let us see that Hn is a functor. It is obvious that Hn(1C•) is the identity. If f
and g are chain maps whose composite gf is defined, then for every n-cycle z, we
have

Hn(gf) : z +B �→ (gf)n(z +B)

= gnfn(z +B)

= Hn(g)(fnz +B)

= Hn(g)Hn(f)(z +B).
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Finally, Hn is additive: if g : (C•, d•)→ (C′
•, d

′
•) is another chain map, then

Hn(f + g) : z +Bn(C•) �→ (fn + gn)z +Bn(C
′
•)

= fnz + gnz +Bn(C
′
•)

=
(
Hn(f) +Hn(g)

)
(z +Bn(C

′
•)). •

Definition. We call Hn(f) the induced map, and we usually denote it by fn∗,
or even by f∗.

Proposition C-3.38. Let R and A be rings, and let T : RMod → AMod be an
exact additive functor. Then T commutes with homology; that is, for every complex
(C•, d•) ∈ RComp and for every n ∈ Z, there is an isomorphism

Hn(TC•, Td•) ∼= THn(C•, d•).

Proof. Consider the commutative diagram with exact bottom row,

Cn+1

d′
n+1

��

dn+1 �� Cn
dn �� Cn−1

0 �� im dn+1
j �� ker dn

k

��

�� Hn(C•) �� 0,

where j and k are inclusions and d′n+1 is just dn+1 with its target changed from
Cn to im dn+1. Applying the exact functor T gives the commutative diagram with
exact bottom row

TCn+1

Td′
n+1

��

Tdn+1 �� TCn
Tdn �� TCn−1

0 �� T (im dn+1)
Tj �� T (ker dn)

Tk

��

�� THn(C•) �� 0.

On the other hand, because T is exact, we have T (im dn+1) = imT (dn+1) and
T (ker dn) = ker(Tdn), so that the bottom row is

0→ im(Tdn+1)→ ker(Tdn)→ THn(C•)→ 0.

By definition, ker(Tdn)/ im(Tdn+1) = Hn(TC•), and so Hn(TC•) ∼= THn(C•), by
Proposition B-1.46 in Part 1. •

We now introduce an algebraic version of a notion that arises in topology.

Definition. A chain map f : (C•, d•) → (C′
•, d

′
•) is nullhomotopic if, for all n,

there are maps sn : An → A′
n+1 with

fn = d′n+1sn + sn−1dn,

· · · �� An+1

fn+1

��

dn+1 �� An

sn����
��
��
��

fn

��

dn �� An−1

fn−1

��

��

sn−1����
��
��
��

· · ·

· · · �� A′
n+1

d′
n+1

�� A′
n

d′
n

�� A′
n−1

�� · · · .
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If f, g : (C•, d•) → (C′
•, d

′
•) are chain maps, then f is homotopic10 to g, denoted

by f � g, if f − g is nullhomotopic.

Proposition C-3.39. Homotopic chain maps induce the same homomorphism be-
tween homology groups : if f, g : (C•, d•) → (C′

•, d
′
•) are chain maps and f � g,

then

f∗n = g∗n : Hn(C•)→ Hn(C
′
•).

Proof. If z is an n-cycle, then dnz = 0 and

fnz − gnz = d′n+1snz + sn−1dnz = d′n+1snz.

Therefore, fnz − gnz ∈ Bn(C
′
•), and so f∗n = g∗n. •

Definition. A complex (C•, d•) has a contracting homotopy11 if its identity
1C• is nullhomotopic.

Proposition C-3.40. A complex (C•, d•) having a contracting homotopy is acyclic;
that is, it is an exact sequence.

Proof. We use Example C-3.35. Now 1C• : Hn(C•)→ Hn(C•) is the identity map,
while 0∗ : Hn(C•)→ Hn(C•) is the zero map. Since 1C• � 0, however, these maps
are the same. It follows that Hn(C•) = {0} for all n; that is, ker dn = im dn+1 for
all n, and this is the definition of exactness. •

After completing the definition of the free resolution of the trivial Q-module Z
whose first few terms were given in Proposition C-3.31, we will prove exactness (in
Proposition C-3.30) by showing that it has a contracting homotopy.

The following elementary construction is fundamental; it gives a relation be-
tween different homology modules. The proof is a series of diagram chases. Ordi-
narily, we would just say that the proof is routine, but, because of the importance
of the result, we present (perhaps too many) details; as a sign that the proof is
routine, we drop subscripts.

Theorem C-3.41 (Connecting Homomorphism). If

0• → C′
•

i−→ C•
p−→ C′′

• → 0•

is an exact sequence of complexes, then, for each n ∈ Z, there is a homomorphism

∂n : Hn(C
′′
•)→ Hn−1(C

′
•)

defined by

∂n : z
′′
n +Bn(C

′′
•) �→ i−1

n−1dnp
−1
n z′′n +Bn−1(C

′
•).

10Recall (from page 87) that two continuous functions f, g : X → Y are homotopic if f can
be “deformed” into g; that is, there exists a continuous F : X × I → Y , where I = [0, 1] is the
closed unit interval, with F (x, 0) = f(x) and F (x, 1) = g(x) for all x ∈ X. In topology, one proves
that every continuous f : X → Y induces homomorphisms f∗ : Hn(X) → Hn(Y ), and if f and g
are homotopic, then f∗ = g∗. The algebraic definition of homotopy given here has been distilled
from the proof of this topological theorem.

11A topological space is called contractible if its identity map is homotopic to a constant
map.
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Proof. We will make many notational abbreviations in this proof. Consider the
commutative diagram having exact rows:

�� �� ��
0 �� C ′

n+1

in+1 ��

d′
n+1

��

Cn+1

pn+1 ��

dn+1

��

C ′′
n+1

d′′
n+1

��

�� 0

0 �� C ′
n

in ��

d′
n

��

Cn

��

pn ��

dn

��

C ′′
n

d′′
n

��

��
��

0

0 �� C ′
n−1

in−1 ��

��

Cn−1��

pn−1 ��

��

C ′′
n−1

��

�� 0

Suppose that z′′ ∈ C ′′
n and d′′z′′ = 0. Since pn is surjective, there is c ∈ Cn with

pc = z′′. Now push c down to dc ∈ Cn−1. By commutativity, pn−1dc = d′′pnc =
d′′z′′ = 0, so that dc ∈ ker pn−1 = im in−1. Therefore, there is a unique c′ ∈ C ′

n−1

with in−1c
′ = dc, for in−1 is an injection. Thus, i−1

n−1dp
−1
n z′′ makes sense; that is,

the claim is that

∂n(z
′′ +B′′

n) = c′ +B′
n−1

is a well-defined homomorphism.

First, let us show independence of the choice of lifting. Suppose that pnč = z′′,
where č ∈ Cn. Then c−č ∈ ker pn = im in, so that there is u′ ∈ C ′

n with inu
′ = c−č.

By commutativity of the first square, we have

in−1d
′u′ = dinu

′ = dc− dč.

Hence, i−1dc− i−1dč = d′u′ ∈ B′
n−1; that is, i

−1dc+B′
n−1 = i−1dč+B′

n−1. Thus,
the formula gives a well-defined function

Z ′′
n → C ′

n−1/B
′
n−1.

Second, the function Z ′′
n → C ′

n−1/B
′
n−1 is a homomorphism. If z′′, z′′1 ∈ Z ′′

n ,
let pc = z′′ and pc1 = z′′1 . Since the definition of ∂ is independent of the choice of
lifting, choose c+ c1 as a lifting of z′′ + z′′1 . This step may now be completed in a
routine way.

Third, we show that if in−1c
′ = dc, then c′ is a cycle: 0 = ddc = dic′ = idc′,

and so d′c′ = 0 because i is an injection. Hence, the formula gives a homomorphism

Z ′′ → Z ′/B′ = Hn−1.

Finally, the subgroup B′′
n goes into B′

n−1. Suppose that z′′ = d′′c′′, where
c′′ ∈ C ′′

n+1, and let pu = c′′, where u ∈ Cn+1. Commutativity gives pdu = d′′pu =
d′′c′′ = z′′. Since ∂(z′′) is independent of the choice of lifting, we choose du with
pdu = z′′, and so ∂(z′′ + B′′) = i−1d(du) + B′ = B′. Therefore, the formula does
give a homomorphism ∂n : Hn(C

′′
•)→ Hn−1(C

′
•). •
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The first question we ask is what homology functors do to a short exact sequence
of complexes. The next theorem is also proved by diagram chasing and, again, we
give too many details because of the importance of the result. The reader should
try to prove the theorem before looking at the proof we give.

Theorem C-3.42 (Long Exact Sequence). If

0• → C′
•

i−→ C•
p−→ C′′

• → 0•

is an exact sequence of complexes, then there is an exact sequence of modules

· · · → Hn+1(C
′′
•)

∂n+1−→ Hn(C
′
•)

i∗−→ Hn(C•)
p∗−→ Hn(C

′′
•)

∂n−→ Hn−1(C
′
•)→ · · · .

Proof. This proof is also routine. Our notation is abbreviated, and there are six
inclusions to verify.

(i) im i∗ ⊆ ker p∗.

p∗i∗ = (pi)∗ = 0∗ = 0.

(ii) ker p∗ ⊆ im i∗.
If p∗(z+B) = pz+B′′ = B′′, then pz = d′′c′′ for some c′′ ∈ C ′′

n+1. But p
surjective gives c′′ = pc for some c ∈ Cn+1, so that pz = d′′pc = pdc, because
p is a chain map, and so p(z − dc) = 0. By exactness, there is c′ ∈ C ′

n with
ic′ = z − dc. Now c′ is a cycle, for id′c′ = dic′ = dz − ddc = 0, because z is a
cycle; since i is injective, d′c′ = 0. Therefore,

i∗(c
′ +B′) = ic′ +B = z − dc+B = z +B.

(iii) im p∗ ⊆ ker ∂.
If p∗(c + B) = pc + B′′ ∈ im p∗, then ∂(pz + B′′) = z′ + B′, where

iz′ = dp−1pz. Since this formula is independent of the choice of lifing of pz,
let us choose p−1pz = z. Now dp−1pz = dz = 0, because z is a cycle. Thus,
iz′ = 0, and hence z′ = 0, because i is injective.

(iv) ker ∂ ⊆ im p∗.
If ∂(z′′+B′′) = B′, then z′ = i−1dp−1z′′ ∈ B′; that is, z′ = d′c′ for some

c′ ∈ C ′. But iz′ = id′c′ = dic′ = dp−1z′′, so that d(p−1z′′ − ic′) = 0; that
is, p−1z′′ − ic′ is a cycle. Moreover, since pi = 0 because of exactness of the
original sequence,

p∗(p
−1z′′ − ic′ +B) = pp−1z′′ − pic′ +B′′ = z′′ +B′′.

(v) im ∂ ⊆ ker i∗.
We have i∗∂(z

′′ + B′′) = iz′ + B′, where iz′ = dp−1z′′ ∈ B; that is,
i∗∂ = 0.

(vi) ker i∗ ⊆ im ∂.
If i∗(z

′ + B′) = iz′ + B = B, then iz′ = dc for some c ∈ C. Since p is a
chain map, d′′pc = pdc = piz′ = 0, by exactness of the original sequence, and
so pc is a cycle. But

∂(pc+B′′) = i−1dp−1pc+B′ = i−1dc+B′ = i−1iz′ +B′ = z′ +B′. •
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Theorem C-3.42 is often called the exact triangle because of the diagram

H•(C
′
•)

i∗ �� H•(C•)

p∗�����
���

���
�

H•(C
′′
•).

∂

������������

The following corollary received its name because of the curved path in the
diagram occurring in the proof of Theorem C-3.41.

Corollary C-3.43 (Snake Lemma). Given a commutative diagram of modules
with exact rows,

0 �� A′ ��

f

��

A ��

g

��

A′′ ��

h

��

0

0 �� B′ �� B �� B′′ �� 0,

there is an exact sequence

0→ ker f → ker g → kerh→ coker f → coker g → cokerh→ 0.

Proof. If we view each of the vertical maps f , g, and h as a complex (as in
Example C-3.34(v)), then the given commutative diagram can be viewed as a short
exact sequence of complexes. The homology groups of each of these complexes has
only two nonzero terms: for example, Example C-3.36 shows that the homology
groups of the first column are H1 = ker f , H0 = coker f , and all other Hn = {0}.
The Snake Lemma now follows at once from the long exact sequence. •

Theorem C-3.44 (Naturality of ∂). Given a commutative diagram of complexes
with exact rows,

0• �� C′
•

i ��

f

��

C•
p ��

g

��

C′′
• ��

h

��

0•

0• �� A′
•

j �� A•
q �� A′′

• �� 0•,

there is a commutative diagram of modules with exact rows,

· · · �� Hn(C
′
•)

i∗ ��

f∗

��

Hn(C•)
p∗ ��

g∗

��

Hn(C
′′
•)

∂ ��

h∗

��

Hn−1(C
′
•)

f∗

��

�� · · ·

· · · �� Hn(A
′
•)

j∗ �� Hn(A•)
q∗ �� Hn(A

′′
•)

∂′
�� Hn−1(A

′
•) �� · · · .

Proof. Exactness of the rows is Theorem C-3.42, while commutativity of the first
two squares follows from Hn being a functor. To prove commutativity of the square
involving the connecting homomorphism, let us first display the chain maps and
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differentiations in one (three-dimensional!) diagram:

0 �� C ′
n

f∗

��

i ��
d′

�����
Cn

d
����
� g∗

��

p �� C ′′
n

��

h∗

��

d′′

�����
0

0 �� C ′
n−1

f∗

��

i �� Cn−1

g∗

��

p �� C ′′
n−1

h∗

��

�� 0

0 �� A′
n j

��

δ′�����
An q

��

δ����
�

A′′
n

��

δ′′�����
0

0 �� A′
n−1 j

�� An−1 q
�� A′′

n−1
�� 0.

If z′′ +B(C′′
•) ∈ Hn(C

′′
•), we must show that

f∗∂(z
′′ +B(C′′

•)) = ∂′h∗(z
′′ +B(C′′

•)).

Let c ∈ Cn be a lifting of z′′; that is, pc = z′′. Now ∂(z′′ + B(C′′
•)) = z′ + B(C′

•),
where iz′ = dc. Hence, f∗∂(z

′′ + B(A′′
•)) = fz′ + B(A′

•). On the other hand,
since h is a chain map, we have qgc = hpc = hz′′. In computing ∂′(hz′′ + B(A′′

•)),
we choose gc as the lifting of hz′′. Hence, ∂′(hz′′ + B(A′′

•)) = u′ + B(A′
•), where

ju′ = δgc. But

jfz′ = giz′ = gdc = δgc = ju′,

and so fz′ = u′, because j is injective. •

We shall apply these general results in the next section.

Exercises

∗ C-3.23. If C• is a complex with Cn = {0} for some n, prove that Hn(C•) = {0}.

∗ C-3.24. Prove that isomorphic complexes have the same homology: if C• and D• are
isomorphic, then Hn(C•) ∼= Hn(D•) for all n.

∗ C-3.25. In this exercise, we prove that the Snake Lemma implies the Long Exact Sequence
(the converse is Corollary C-3.43). Consider a commutative diagram with exact rows (note
that two zeros are “missing” from this diagram):

A ��

α

��

B
p ��

β

��

C ��

γ

��

0

0 �� A′ i �� B′ �� C ′

(i) Prove that Δ: ker γ → cokerα, defined by

Δ: z 
→ i−1βp−1z + imα,

is a well-defined homomorphism.

(ii) Prove that there is an exact sequence

kerα → kerβ → ker γ
Δ−→ cokerα → cokerβ → coker γ.
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(iii) Given a commutative diagram with exact rows,

0 �� A′
n

��

d′n
��

An
��

d

��

A′′
n

��

d′′n
��

0

0 �� A′
n−1

�� An−1
�� A′′

n−1
�� 0,

prove that the following diagram is commutative and has exact rows:

A′
n/ im d′n+1

��

d′

��

An/ im dn+1
��

d

��

A′′
n/ im d′′n+1

��

d′′

��

0

0 �� ker d′n−1
�� ker dn−1

�� ker d′′n−1

(iv) Use (ii) and this last diagram to give another proof of the Long Exact Sequence.

∗ C-3.26. Let f, g : C• → C′
• be chain maps, and let F : C• → C′

• be an additive functor.
If f � g, prove that Ff � Fg; that is, if f and g are homotopic, then Ff and Fg are
homotopic.

C-3.27. Let 0• → C′
•

i−→ C•
p−→ C′′

• → 0• be an exact sequence of complexes in which
C′

• and C′′
• are acyclic; prove that C• is also acyclic.

C-3.28. Let (C•, d•) be a complex each of whose differentiations dn is the zero map.
Prove that Hn(C•) ∼= Cn for all n.

∗ C-3.29. Prove that homology commutes with direct sums: for all n, there are natural
isomorphisms

Hn

(∑
α

Cα
•

)
∼=
∑
α

Hn(C
α
• ).

∗ C-3.30. (i) Define a direct system of complexes {Ci
•, ϕ

i
j}, and prove that lim−→Ci

• exists.

(ii) If {Ci
•, ϕ

i
j} is a direct system of complexes over a directed index set, prove, for all

n ≥ 0, that

Hn(lim−→Ci
•) ∼= lim−→Hn(C

i
•).

∗ C-3.31. Suppose that a complex (C•, d•) of R-modules has a contracting homotopy in
which the maps sn : Cn → Cn+1 satisfying

1Cn = dn+1sn + sn−1dn

are only Z-maps. Prove that (C•, d•) is an exact sequence.

C-3.32. (i) Let C• : 0 → Cn → Cn−1 → · · · → C0 → 0 be a complex of finitely
generated free k-modules over a commutative ring k. Prove that

n∑
i=0

(−1)i rank(Ci) =
n∑

i=0

(−1)i rank(Hi(C•)).

Hint. See Exercise C-3.22 on page 261.

(ii) Let 0 → M ′ → M → M ′′ → 0 be an exact sequence of k-modules. If two of the
modules have an Euler–Poincaré characteristic, prove that the third module does,
too, and that

χ(M) = χ(M ′) + χ(M ′′).
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∗ C-3.33. (i) (Barratt–Whitehead). Consider the commutative diagram with exact
rows:

An
in ��

fn

��

Bn
pn ��

gn

��

Cn
∂n ��

hn

��

An−1
��

fn−1

��

Bn−1
��

gn−1

��

Cn−1

hn−1

��
A′

n jn

�� B′
n qn

�� C ′
n

�� A′
n−1

�� B′
n−1

�� C ′
n−1.

If each hn is an isomorphism, prove that there is an exact sequence

An
(fn,in)−→ A′

n ⊕Bn
jn−gn−→ B′

n

∂nh−1
n qn−→ An−1 → A′

n−1 ⊕Bn−1 → B′
n−1,

where (fn, in) : an 
→ (fnan, inan) and jn − gn : (a
′
n, bn) 
→ jna

′
n − gnbn.

(ii) (Mayer–Vietoris). Assume, in the second diagram of Theorem C-3.44, that every
third vertical map h∗ is an isomorphism. Prove that there is an exact sequence

· · · → Hn(C
′
•) → Hn(A

′
•)⊕Hn(C•) → Hn(A•) → Hn−1(C

′
•) → · · · .

Remark. If A is a subspace of a (triangulated)12 topological space X, then the chain
complex C•(A) is a subcomplex of C•(X), and one defines the nth relative homology
group Hn(X,A) as the nth homology of the quotient complex:

Hn(X,A) = Hn(C•(X)/C•(A)).

Note that if A = ∅, then Hn(X,∅) = Hn(X).

The Eilenberg–Steenrod axioms (see Spanier [210], pp. 199–205) characterize ho-
mology functors on the category Top2 having objects all pairs (X,A) of topological spaces
with A a subspace of X and morphisms f : (X,A) → (X ′, A′), where f : X → X ′ is a con-
tinuous function with f(A) ⊆ A′. Assume that hn : Top

2 → Ab is a sequence of functors,
for n ≥ 0, satisfying the long exact sequence, naturality of connecting homomorphisms,
hn(f) = hn(g) whenever f and g are homotopic, h0(X) = Z and hn(X) = {0} for
all n > 0 when X is a 1-point space, and excision : given a pair (X,A) in Top2 and
an open set U ⊆ X whose closure is contained in the interior of A, then the inclusion
(X − U,A − U) → (X,A) induces isomorphisms hn(X − U,A − U) → hn(X,A) for all
n ≥ 0. Then there are natural isomorphisms hn → Hn for all n. In the presence of the
other axioms, excision can be replaced by exactness of the Mayer–Vietoris sequence. �

C-3.6. Derived Functors

In order to apply the general results about homology, we need a source of short
exact sequences of complexes, as well as commutative diagrams in which they sit.
As we have said earlier, the idea is to replace a module by a resolution of it. We
then apply either Hom or ⊗, and the resulting homology modules are called Ext
or Tor. Given a short exact sequence of modules, we shall see that we may replace
each of its modules by a resolution and obtain a short exact sequence of complexes.

This section is fairly dry, but it is necessary to establish the existence of ho-
mology functors. The most useful theorems in this section are Theorem C-3.46
(Comparison Theorem), Proposition C-3.50 (the basic construction is well-defined),

12That X is triangulated is too strong a hypothesis. Using singular theory, homology groups
of arbitrary topological spaces can be defined.
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Corollary C-3.57 (Long Exact Sequence), and Proposition C-3.58 (Naturality of the
Connecting Homomorphism).

For those readers who are interested in using Ext (the right derived functors
of Hom) or Tor (the left derived functors of tensor) immediately and who are
willing to defer looking at mazes of arrows, the next theorem gives a set of axioms
characterizing the functors Extn.

Theorem C-3.45. Let ext
n : RMod→ Ab be a sequence of contravariant func-

tors, for n ≥ 0, such that

(i) for every short exact sequence 0 → A → B → C → 0, there is a long exact
sequence and natural connecting homomorphisms

· · · → ext
n(C)→ ext

n(B)→ ext
n(A)

Δn−→ ext
n+1(C)→ · · · ;

(ii) there is M ∈ objRMod with ext
0 and HomR( ,M) naturally equivalent;

(iii) ext
n(P ) = {0} for all projective modules P and all n ≥ 1.

If Extn( ,M) is another sequence of contravariant functors satisfying these
same axioms, then ext

n is naturally equivalent to Extn( ,M) for all n ≥ 0.

Remark. There are similar axiomatic descriptions of the covariant Ext functors
and of the Tor functors in Exercises C-3.43 and C-3.44 on page 308. �

Proof. We proceed by induction on n ≥ 0. The base step is axiom (ii).

For the inductive step, given a module A, choose a short exact sequence

0→ L→ P → A→ 0,

where P is projective. By axiom (i), there is a diagram with exact rows:

ext
0(P ) ��

τP

��

ext
0(L)

Δ0 ��

τL

��

ext
1(A) ��

���
�
�

ext
1(P )

Hom(P,M) �� Hom(L,M)
∂0 �� Ext1(A,M) �� Ext1(P,M),

where the maps τP and τL are the isomorphisms given by axiom (ii). This diagram
commutes because of the naturality of the equivalence ext

0 → Hom( ,M). By
axiom (iii), Ext1(P,M) = {0} and ext

1(P ) = {0}. It follows that the maps Δ0

and ∂0 are surjective. This is precisely the sort of diagram in Proposition B-1.46
in Part 1, and so there exists an isomorphism ext

1(A)→ Ext1(A,M) making the
augmented diagram commute.

We may now assume that n ≥ 1, and we look further out in the long exact
sequence. By axiom (i), there is a diagram with exact rows

ext
n(P ) �� extn(L)

Δn ��

σ

��

ext
n+1(A) ��

���
�
�

ext
n+1(P )

Extn(P,M) �� Extn(L,M)
∂n �� Extn+1(A,M) �� Extn+1(P,M),
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where σ : extn(L) → Extn(L,M) is an isomorphism given by the inductive hy-
pothesis. Since n ≥ 1, all four terms involving the projective P are {0}; it follows
from exactness of the rows that both Δn and ∂n are isomorphisms. Finally, the
composite ∂nσΔ

−1
n : extn+1(A)→ Extn+1(A,M) is an isomorphism.

It remains to prove that the isomorphisms ext
n(A)→ Extn(A,M) constitute

a natural transformation. It is here the assumed naturality in axiom (i) of the
connecting homomorphism is used, and this is left for the reader to do. •

Such slow starting induction proofs, proving results for n = 0 and n = 1
before proving the inductive step, arise frequently, and they are called dimension
shifting .

The rest of this section consists of constructing functors that satisfy axioms
(i), (ii), and (iii). We prove existence of Ext and Tor using derived functors (there
are other proofs as well). As these functors are characterized by a short list of
properties, we can usually work with Ext and Tor without being constantly aware
of the details of their construction.

We begin with a technical definition.

Definition. If · · · → P2 → P1
d1−→ P0 → A → 0 is a projective resolution of a

module A, then its deleted projective resolution is the complex

PA = · · · → P2 → P1 → P0 → 0.

Similarly, if 0→ A→ E0 d0

−→ E1 → E2 → · · · is an injective resolution of a module
A, then a deleted injective resolution is the complex

EA = 0→ E0 → E1 → E2 → · · · .

In either case, deleting A loses no information: A ∼= coker d1 in the first case,
and A ∼= ker d0 in the second case. Of course, a deleted resolution is no longer
exact:

H0(PA) = ker(P0 → {0})/ im d1 = P0/ im d1 ∼= A.

We know that a module has many presentations, and so the next result is
fundamental.

Theorem C-3.46 (Comparison Theorem). Given a map f : A→ A′, consider
the diagram

· · · �� P2
d2 ��

f̌2
���
�
� P1

d1 ��

f̌1
���
�
� P0

ε ��

f̌0
���
�
� A ��

f

��

0

· · · �� P ′
2

d′
2

�� P ′
1

d′
1

�� P ′
0

ε′
�� A′ �� 0,

where the rows are complexes. If each Pn in the top row is projective and if the
bottom row is exact, then there exists a chain map f̌ : PA → P′

A′ making the
completed diagram commute. Moreover, any two such chain maps are homotopic.
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Remark. The dual of the Comparison Theorem is also true. Now the complexes
go off to the right, the top row is assumed exact, and every term in the bottom row
other than A′ is injective. �

Proof.

(i) We prove the existence of f̌n by induction on n ≥ 0. For the base step n = 0,
consider the diagram

P0

fε

�����
�
�
�

P ′
0

ε′ �� A′ �� 0.

Since ε′ is surjective and P0 is projective, there exists a map f̌0 : P0 → P ′
0

with ε′f̌0 = fε.
For the inductive step, consider the diagram

Pn+1

dn+1 �� Pn
dn ��

f̌n
��

Pn−1

f̌n−1

��
P ′
n+1

d′
n+1

�� P ′
n

d′
n

�� P ′
n−1.

If we can show that im f̌ndn+1 ⊆ im d′n+1, then we will have the diagram

Pn+1

f̌ndn+1

����� �
�
�
�

P ′
n+1

d′
n+1 �� im d′n+1

�� 0

and projectivity of Pn+1 will provide a map f̌n+1 : Pn+1 → P ′
n+1 with

d′n+1f̌n+1 = f̌ndn+1. To check that the inclusion does hold, note that exact-
ness at P ′

n of the bottom row of the original diagram gives im d′n+1 = ker d′n,

and so it suffices to prove that d′nf̌ndn+1 = 0. But d′nf̌ndn+1 = f̌n−1dndn+1

= 0.

(ii) We now prove uniqueness of f̌ to homotopy. If h : P• → P′
• is a chain map

also satisfying ε′h0 = fε, then we construct the terms sn : Pn → P ′
n+1 of a

homotopy s by induction on n ≥ −1; that is, we want

hn − f̌n = d′n+1sn + sn−1dn.

Let us now begin the induction. First, define f̌−1 = f = h−1. If we define
s−1 = 0 = s−2, then

h−1 − f̌−1 = f − f = 0 = d′0s−1 + s−2d−1

for any choice of d′0 and d−1; define d′0 = ε′ and d−1 = 0.
For the inductive step, it suffices to prove, for all n ≥ −1, that

im(hn+1 − f̌n+1 − sndn+1) ⊆ im d′n+2,
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for we have a diagram with exact row

Pn+1

hn+1−f̌n+1−sndn+1

����� �
�
�
�

P ′
n+2

d′
n+2 �� im d′n+2

�� 0

and projectivity of Pn+1 will give a map sn+1 : Pn+1 → P ′
n+2 satisfying the

desired equation. As in part (i) of the proof, exactness of the bottom row of
the original diagram gives im d′n+2 = ker d′n+1, and so it suffices to prove

d′n+1(hn+1 − f̌n+1 − sndn+1) = 0.

But

d′n+1(hn+1 − f̌n+1 − sndn+1) = d′n+1(hn+1 − f̌n+1)− d′n+1sndn+1

= d′n+1(hn+1 − f̌n+1)− (hn − f̌n − sn−1dn)dn+1

= d′n+1(hn+1 − f̌n+1)− (hn − f̌n)dn+1,

and the last term is 0 because h and f̌ are chain maps. •

We introduce a term to describe the chain map f̌ just constructed.

Definition. If f : A → A′ is a map of modules and if PA and P′
A′ are deleted

projective resolutions of A and A′, respectively, then a chain map f̌ : PA → P′
A′

· · · �� P2
d2 ��

f̌2
��

P1
d1 ��

f̌1
��

P0
ε ��

f̌0
��

A ��

f

��

0

· · · �� P ′
2

d′
2

�� P ′
1

d′
1

�� P ′
0

ε′
�� A′ �� 0

is said to be over f if

fε = ε′f̌0.

Thus, the Comparison Theorem implies, given a homomorphism f : A → A′,
that a chain map over f always exists between deleted projective resolutions of A
and A′; moreover, such a chain map is unique to homotopy.

Given a pair of rings R and S and an additive covariant functor T : RMod→
SMod, we are now going to construct, for all n ∈ Z, its left derived functors
LnT : RMod→ SMod.

The definition will be in two parts: first on objects and then on morphisms.

Choose, once for all, a deleted projective resolution PA of every module A. As
in Example C-3.34(ix), form the complex TPA, and take homology:

LnT (A) = Hn(TPA).

This definition is suggested by two examples. First, in algebraic topology, we
tensor the complex of a triangulated space X to get homology groups Hn(X;G) of
X with coefficients in an abelian groupG; or, we apply Hom( , G) to get a complex
whose homology groups are called cohomology groups of X with coefficients in G
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(of course, this last functor is contravariant). Second, when we considered group
extensions, the formulas that arose suggested constructing a free resolution of the
trivial module Z and then applying Hom( ,K) or −⊗K to this resolution.

We now define LnT (f), where f : A → A′ is a homomorphism. By the Com-
parison Theorem, there is a chain map f̌ : PA → P′

A′ over f . It follows that

T f̌ : TPA → TP′
A′ is also a chain map, and we define LnT (f) : LnT (A)→ LnT (A

′)
by

LnT (f) = Hn(T f̌) = (T f̌)∗.

In more detail, if z ∈ kerTdn, then

(LnT )f : z + imTdn+1 �→ (T f̌n)z + imTd′n+1.

In pictures, look at the chosen projective resolutions:

· · · �� P1
�� P0

�� A ��

f

��

0

· · · �� P ′
1

�� P ′
0

�� A′ �� 0.

Fill in a chain map f̌ over f , delete A and A′, apply T to this diagram, and then
take the map induced by Tf̌ in homology.

Example C-3.47. If r ∈ Z(R) is a central element in a ring R and if A is a left
R-module, then μr : A → A, defined by μr : a �→ ra, is an R-map. We call μr

multiplication by r.

Definition. A functor T : RMod→ RMod, of either variance, preserves multi-
plications if T (μr) : TA→ TA is multiplication by r for all r ∈ Z(R).

Tensor product and Hom preserve multiplications. We claim that if T preserves
multiplications, then LnT also preserves multiplications; that is,

LnT (μr) = multiplication by r.

Given a projective resolution · · · → P1
d1−→ P0

ε−→ A → 0, it is easy to see that μ̌
is a chain map over μr,

· · · �� P2
d2 ��

μ̌2

��

P1
d1 ��

μ̌1

��

P0
ε ��

μ̌0

��

A ��

f

��

0

· · · �� P2
d2

�� P1
d1

�� P0 ε
�� A �� 0,

where μ̌n : Pn → Pn is multiplication by r for every n ≥ 0. Since T preserves
multiplications, the terms of the chain map T μ̌ are multiplication by r, and so the
induced maps in homology are also multiplication by r:

(T μ̌)∗ : zn + imTdn+1 �→ (T μ̌n)zn + imTdn+1 = rzn + imTdn+1,

where zn ∈ kerTdn. �
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Proposition C-3.48. Given a pair of rings R and S and an additive covariant
functor T : RMod→ SMod, then

LnT : RMod→ SMod

is an additive covariant functor for every n.

Proof. We will prove that LnT is well-defined on morphisms; it is then routine
to check that it is a covariant additive functor (remember that Hn is a covariant
additive functor from complexes to modules).

If h : PA → P′
A′ is another chain map over f , then the Comparison Theorem

says that h � f̌ ; therefore, Th � T f̌ , by Exercise C-3.26 on page 270, and so
Hn(Th) = Hn(T f̌), by Proposition C-3.39. •

Proposition C-3.49. If T : RMod→ SMod is a covariant additive functor, then
LnTA = {0} for all negative n and for all A.

Proof. By Exercise C-3.23 on page 269, we have LnTA = {0} because, when n is
negative, the nth term of PA is {0}. •

Definition. If B is a left R-module and T = −⊗R B, define

TorRn ( , B) = LnT.

Thus, if

PA = · · · → P2
d2−→ P1

d1−→ P0 → 0

is the chosen deleted projective resolution of a module A, then

TorRn (A,B) = Hn(PA ⊗R B) =
ker(dn ⊗ 1B)

im(dn+1 ⊗ 1B)
.

The domain of TorRn ( , B) is ModR, the category of right R-modules; its
target is Ab, the category of abelian groups. For example, if R is commutative,
then A⊗R B is an R-module, and so the values of TorRn ( , B) lie in RMod.

Definition. If A is a right R-module and T = A⊗R −, define torRn (A, ) = LnT .
Thus, if

QB = · · · → Q2
d2−→ Q1

d1−→ Q0 → 0

is the chosen deleted projective resolution of a module B, then

torRn (A,B) = Hn(A⊗R QB) =
ker(1A ⊗ dn)

im(1A ⊗ dn+1)
.

The domain of torRn (A, ) is RMod, the category of left R-modules; its target
is Ab, the category of abelian groups, but, as before, its target may be smaller (if
R = Q, for example) or larger (if R = ZG, for every Z-module can be viewed as a
(trivial) R-module).

One of the nice theorems of homological algebra is, for all A and B (and for all
R and n), that

TorRn (A,B) ∼= torRn (A,B).
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There is a proof using spectral sequences, but there is also an elementary proof due
to Zaks (see Rotman [187], p. 197).

There are now several points to discuss. The definition of LnT assumes that a
choice of deleted projection resolution of each module has been made. Does LnT
depend on this choice? And, once we dispose of this question (the answer is that
LnT does not depend on the choice), how can we use these functors?

Assume that new choices P̃A of deleted projective resolutions have been made,

and let us denote the left derived functors arising from these new choices by L̃nT .

Proposition C-3.50. Given a pair of rings R and S and an additive covariant

functor T : RMod → SMod, then, for each n, the functors LnT and L̃nT are
naturally equivalent. In particular, for all A,

(LnT )A ∼= (L̃nT )A,

and so these modules are independent of the choice of (deleted) projective resolution
of A.

Proof. Consider the diagram

· · · �� P2
�� P1

�� P0
�� A ��

1A

��

0

· · · �� P̃2
�� P̃1

�� P̃0
�� A �� 0,

where the top row is the chosen projective resolution of A used to define LnT and

the bottom row is that used to define L̃nT . By the Comparison Theorem, there is a

chain map ι : PA → P̃A over 1A. Applying T gives a chain map Tι : TPA → T P̃A

over T1A = 1TA. This last chain map induces homomorphisms, one for each n,

τA = (Tι)∗ : (LnT )A→ (L̃nT )A.

We now prove that each τA is an isomorphism (thereby proving the last state-
ment in the theorem) by constructing its inverse. Turn the preceding diagram
upside down, so that the chosen projective resolution PA → A→ 0 is now the bot-

tom row. Again, the Comparison Theorem gives a chain map, say, κ : P̃A → PA.
Now the composite κι is a chain map from PA to itself over 1PA

. By the uniqueness
statement in the Comparison Theorem, κι � 1PA

; similarly, ικ � 1P̃A
. It follows

that T (ικ) � 1T P̃A
and T (κι) � 1TPA

. Hence, 1 = (Tικ)∗ = (Tι)∗(Tκ)∗ and

1 = (Tκι)∗ = (Tκ)∗(Tι)∗. Therefore, τA = (Tι)∗ is an isomorphism.

We now prove that the isomorphisms τA constitute a natural equivalence: that
is, if f : A→ B is a homomorphism, then the following diagram commutes:

(LnT )A
τA ��

LnT (f)

��

(L̃nT )A

L̃nT (f)
��

(LnT )B
τB �� (L̃nT )B.
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To evaluate in the clockwise direction, consider

· · · �� P1
�� P0

�� A ��

1A

��

0

· · · �� P̃1
�� P̃0

�� A ��

f

��

0

· · · �� Q̃1
�� Q̃0

�� B �� 0,

where the bottom row is some projective resolution of B. The Comparison Theorem

gives a chain map PA → Q̃B over f1A = f . Going counterclockwise, the picture
will now have the chosen projective resolution of B as its middle row, and we

get a chain map PA → Q̃B over 1Bf = f . The uniqueness statement in the
Comparison Theorem tells us that these two chain maps are homotopic, so that
they give the same homomorphism in homology. Thus, the appropriate diagram

commutes, showing that τ : LnT → L̃nT is a natural equivalence. •

Corollary C-3.51. The module TorRn (A,B) is independent of the choices of pro-
jective resolutions of A and of B.

Proof. The proposition applies at once to the left derived functors of − ⊗R B,
namely, TorRn ( , B), and to the left derived functors of A⊗R−, namely torRn (A, ).

But we have already cited the fact that TorRn (A,B) ∼= torRn (A,B). •

Corollary C-3.52. Let T : RMod → SMod be an additive covariant functor. If
P is a projective module, then LnT (P ) = {0} for all n ≥ 1.

In particular, if A and P are right R-modules, with P projective, and if B and
Q are left R-modules, with Q projective, then

TorRn (P,B) = {0} and TorRn (A,Q) = {0}

for all n ≥ 1.

Proof. Since P is projective, a projective resolution of it is

C• = · · · → 0→ 0→ P
1P−→ P → 0,

and so the corresponding deleted projective resolution CP has only one nonzero
term, namely, C0 = P . It follows that TCP is a complex having nth term {0} for
all n ≥ 1, and so LnTP = Hn(TCP ) = {0} for all n ≥ 1, by Exercise C-3.23 on
page 269. •

We are now going to show that there is a long exact sequence of left derived
functors. We begin with a useful lemma; it says that if we are given an exact
sequence of modules as well as a projective resolution of its first and third terms,
then we can “fill in the horseshoe”; that is, there is a projective resolution of the
middle term that fits in between them.
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Lemma C-3.53 (Horseshoe Lemma). Given a diagram

�� ��
P ′
1

��

P ′′
1

��
P ′
0

ε′
��

P ′′
0

ε′′
��

0 �� A′ i �� A
p �� A′′ �� 0,

where the columns are projective resolutions and the row is exact, then there exists
a projective resolution of A and chain maps so that the three columns form an exact
sequence of complexes.

Remark. The dual theorem, in which projective resolutions are replaced by injec-
tive resolutions, is also true. �

Proof. We show first that there is a projective P0 and a commutative 3×3 diagram
with exact columns and rows:

0

��

0

��

0

��
0 �� K ′

0

��

�� K0

��

�� K ′′
0

��

�� 0

0 �� P ′
0

ε′
��

i0 �� P0
p0 ��

ε
��

P ′′
0

ε′′
��

�� 0

0 �� A′ i ��

��

A
p ��

��

A′′ ��

��

0

0 0 0.

Define P0 = P ′
0⊕P ′′

0 ; it is projective because both P ′
0 and P ′′

0 are projective. Define
i0 : P

′
0 → P ′

0 ⊕ P ′′
0 by x′ �→ (x′, 0), and define p0 : P

′
0 ⊕ P ′′

0 → P ′′
0 by (x′, x′′) �→ x′′.

It is clear that

0→ P ′
0

i0−→ P0
p0−→ P ′′

0 → 0

is exact. Since P ′′
0 is projective, there exists a map σ : P ′′

0 → A with pσ = ε′′. Now
define ε : P0 → A by ε : (x′, x′′) �→ iε′x′+σx′′. It is left as a routine exercise that if
K0 = ker ε, then there are maps K ′

0 → K0 and K0 → K ′′
0 (where K ′

0 = ker ε′ and
K ′′

0 = ker ε′′), so that the resulting 3× 3 diagram commutes. Exactness of the top
row is Exercise B-1.58 on page 310 in Part 1, and surjectivity of ε follows from the
Five Lemma (Proposition B-1.48 in Part 1).

We now prove, by induction on n ≥ 0, that the bottom n rows of the desired
diagram can be constructed. For the inductive step, assume that the first n steps
have been filled in, and let Kn = ker(Pn → Pn−1), etc. Now construct the 3 × 3
diagram whose bottom row is 0 → K ′

n → Kn → K ′′
n → 0, and splice it to the
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nth diagram, as illustrated next (note that the map Pn+1 → Pn is defined as the
composite Pn+1 → Kn → Pn):

0 �� K ′
n+1

��

��




Kn+1
��

��





K ′′
n+1

��

��




0

0 �� P ′
n+1

����
��

��

Pn+1

�����
��

��

P ′′
n+1

����
��

��

0

0 �� K ′
n

��





�� Kn

��





�� K ′′
n

��





�� 0

0 �� P ′
n

��

��
Pn

��

��

P ′′
n

��

��
0

0 �� P ′
n−1

�� Pn−1
�� P ′′

n−1
�� 0.

The columns of the new diagram are exact because, for example, im(Pn+1 → Pn) =
Kn = ker(Pn → Pn−1). •

Theorem C-3.54. If 0 → A′ i−→ A
p−→ A′′ → 0 is an exact sequence of modules

and if T : RMod → SMod is a covariant additive functor, then there is a long
exact sequence

· · · → LnTA
′ LnTi−→ LnTA

LnTp−→ LnTA
′′ ∂n−→

Ln−1TA
′ Ln−1Ti−→ Ln−1TA

Ln−1Tp−→ Ln−1TA
′′ ∂n−1−→ · · ·

that ends with

· · · → L0TA
′ → L0TA→ L0TA

′′ → 0.

Proof. Let P′
A′ and P′′

A′′ be the chosen deleted projective resolutions of A′ and

of A′′, respectively. By Lemma C-3.53, there is a deleted projective resolution P̃A

of A with

0• → P′
A′

j−→ P̃A
q−→ P′′

A′′ → 0•

(in the notation of the Comparison Theorem, j = ǐ is a chain map over i, and q = p̌
is a chain map over p). Applying T gives the sequence of complexes

0• → TP′
A′

Tj−→ T P̃A
Tq−→ TP′′

A′′ → 0•.

To see that this sequence is exact,13 note that each row 0→ P ′
n

jn−→ P̃n
qn−→ P ′′

n → 0
is a split exact sequence (because P ′′

n is projective) and additive functors preserve
split short exact sequences. There is thus a long exact sequence

· · · → Hn(TP
′
A′)

(Tj)∗−→ Hn(T P̃A)
(Tq)∗−→ Hn(TP

′′
A′′)

∂n−→ Hn−1(TP
′
A′)→ · · · ;

that is, there is an exact sequence

· · · → LnTA
′ (Tj)∗−→ L̃nTA

(Tq)∗−→ LnTA
′′ ∂n−→ Ln−1TA

′ → · · · .

13The exact sequence of complexes is not split because the sequence of splitting maps need

not constitute a chain map P′′
A′′ → P̃A.
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We do not know that the projective resolution of A given by the Horseshoe Lemma

is the resolution originally chosen, and this is why we have L̃nTA instead of LnTA.

But there is a natural equivalence τ : LnT → L̃nT , and so there is an exact sequence

· · · → LnTA
′ τ−1

A (Tj)∗−→ LnTA
(Tq)∗τA−→ LnTA

′′ ∂n−→ Ln−1TA
′ → · · · .

The sequence does terminate with {0}, for LnT = {0} for all negative n, by Propo-
sition C-3.49.

It remains to show that τ−1
A (Tj)∗ = LnT (i) = T (j)∗ (remember that j = ǐ, a

chain map over i) and (Tq)∗τA = LnT (p). Now τ−1
A = (Tκ)∗, where κ : P̃A → PA

is a chain map over 1A, and so

τ−1
A (Tj)∗ = (Tκ)∗(Tj)∗ = (TκTj)∗ =

(
T (κj)

)
∗.

Both κj and j are chain maps P̃A → PA over 1A, so they are homotopic, by the
Comparison Theorem. Hence, T (κj) and Tj are homotopic, and so they induce
the same map in homology: (T (κj))∗ = (Tj)∗ = LnT (i). Therefore, τ−1

A (Tj)∗ =
LnT (i). That (Tq)∗τA = LnT (p) is proved in the same way. •

Corollary C-3.55. If T : RMod → SMod is a covariant additive functor, then
the functor L0T is right exact.

Proof. If A→ B → C → 0 is exact, then L0A→ L0B → L0C → 0 is exact. •

Theorem C-3.56.

(i) If an additive covariant functor T : RMod → SMod is right exact, then T
is naturally equivalent to L0T .

(ii) The functor −⊗RB is naturally equivalent to TorR0 ( , B). Hence, for all right
R-modules A, there is an isomorphism

A⊗R B ∼= TorR0 (A,B).

Proof.

(i) Let PA be the chosen deleted projective resolution of A, and let

· · · → P1
d1−→ P0

ε−→ A→ 0

be the chosen projective resolution. By definition,

L0TA = cokerT (d1).

But right exactness of T gives an exact sequence

TP1
Td1−→ TP0

Tε−→ TA→ 0.

Now Tε induces an isomorphism σA : cokerT (d1) → TA, by the First Iso-
morphism Theorem; that is, σA : L0TA→ TA. It is left as a routine exercise
that σ : L0T → T is a natural equivalence.

(ii) Immediate from (i), for −⊗R B satisfies the hypotheses. •

We have shown that Tor repairs the loss of exactness that may occur after
tensoring a short exact sequence.
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Corollary C-3.57. If 0 → A′ → A → A′′ → 0 is a short exact sequence of
modules, then there is a long exact sequence

· · · → TorR2 (A
′, B)→ TorR2 (A,B)→ TorR2 (A

′′, B)

→ TorR1 (A
′, B)→ TorR1 (A,B)→ TorR1 (A

′′, B)

→ A′ ⊗R B → A⊗R B → A′′ ⊗R B → 0.

The next proposition shows that the functors Torn( , B) satisfy the covariant
version of Theorem C-3.45.

Proposition C-3.58. Given a commutative diagram of modules having exact rows,

0 �� A′

f

��

i �� A
p ��

g

��

A′′

h

��

�� 0

0 �� C ′ j �� C
q �� C ′′ �� 0,

there is, for all n, a commutative diagram with exact rows,

TorRn (A
′, B)

f∗
��

i∗ �� TorRn (A,B)
p∗ ��

g∗

��

TorRn (A
′′, B)

h∗
��

∂n �� TorRn−1(A
′, B)

f∗
��

TorRn (C
′, B)

j∗ �� TorRn (C,B)
q∗ �� TorRn (C

′′, B)
∂′
n �� TorRn−1(C

′, B).

There is a similar diagram if the first variable is fixed.

Proof. Given the diagram in the statement, erect the chosen deleted projective
resolutions on the corners P′

A′ , P′′
A′′ , Q′

C′ , and Q′′
C′′ . We claim that there are

deleted projective resolutions P̃A and Q̃C , together with chain maps, giving a
commutative diagram of complexes having exact rows:

0 �� P′
A′

f̌

��

ǐ �� P̃A
p̌ ��

ǧ

��

P′′
A′′

ȟ

��

�� 0

0 �� Q′
C′

ǰ �� Q̃C
q̌ �� Q′′

C′′ �� 0.

Once this is done, the result will follow from the naturality of the connecting ho-
momorphism. As in the inductive proof of Lemma C-3.53, it suffices to prove a
three-dimensional version of the Horseshoe Lemma. We complete the following
commutative diagram, whose columns are short exact sequences and in which P ′,
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P ′′, Q′, and Q′′ are projectives and N ′, N ′′, K ′, and K ′′ are kernels,

K ′

��

K ′′

��
N ′

��

N ′′

��
P ′

��

P ′′

��
Q′

��

Q′′

��
0 �� A′ i ��

f����
�

A
p ��

g�����
�

A′′ ��
h����

�
0

0 �� C ′
j

�� C
q

�� C ′′ �� 0

to the following commutative diagram, whose rows and columns are short exact
sequences and in which P and Q are projective:

0 �� K ′

��

��

��

K ��

��

��

K ′′

��

��

�� 0

0 ���� N ′ ��

��

N ��

��

N ′′ ��

��

0

0 �� P ′ ��
F ′

�� ε′

��

P
F
��

��
ε

��

P ′′ ��
F ′′

�� ε′′

��

0

0 �� Q′ ��
η′

��

Q ��
η

��

Q′′ ��
η′′

��

0

0 �� A′

f����
�

i �� A
g�����

�

p �� A′′ ��
h����

�
0

0 �� C ′
j

�� C
q

�� C ′′ �� 0.

Step 1. By the Comparison Theorem, there are chain maps f̌ : P′
A′ → Q′

C′ over f

and ȟ : P′′
A′′ → Q′′

C′′ over h. To simplify notation, we will write F ′ = f̌0 and

F ′′ = ȟ0.

Step 2. Define P = P ′ ⊕ P ′′, and insert the usual injection and projection maps
P ′ → P and P → P ′′, namely, x′ �→ (x′, 0) and (x′, x′′) �→ x′′. Similarly,
define Q = Q′ ⊕ Q′′, and insert the injection and projection maps Q′ → Q
and Q → Q′′. Of course, the sequences 0 → P ′ → P → P ′′ → 0 and
0→ Q′ → Q→ Q′′ → 0 are exact.

Step 3. As in the proof of the Horseshoe Lemma, define ε : P → A by ε : (x′, x′′) �→
iε′x′ + σx′′, where σ : P ′′ → A satisfies pσ = ε′′ (such a map σ was shown to
exist in the proof of the Horseshoe Lemma); indeed, the Horseshoe Lemma
shows that the rear face of the diagram commutes. Similarly, define η : Q→ C
by η : (y′, y′′) �→ jη′y′ + τy′′, where τ : Q′′ → C satisfies qτ = η′′; the front
face commutes as well.
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Step 4. Define F : P → Q by

F : (x′, x′′) �→ (F ′x′ + γx′′, F ′′x′′),

where γ : P ′′ → Q′ is to be constructed. It is easy to see that the plane
containing the P ’s and Q’s commutes, no matter how γ is defined.

Step 5. It remains to choose γ so that the square with vertices P,Q,C, and A
commutes; that is, we want gε = ηF . Evaluating each side leads to the
equation

giε′x′ + gσx′′ = jη′F ′x′ + jη′γx′′ + τF ′′x′′.

Now giε′ = jfε′ = jη′F ′ (because F ′ is the 0th term in the chain map f̌ over
f), and so it suffices to find γ so that

jη′γ = gσ − τF ′′.

Consider the diagram with exact row:

P ′′

gσ−τF ′′

��
Q′ jη′

�� C
q �� C ′′.

Now im(gσ − τF ′′) ⊆ im jη′ = ker q, for

qgσ − qτF ′′ = hpσ − η′′F ′′ = hε′′ − η′′F ′′ = 0.

Since P ′′ is projective, there exists a map γ : P ′′ → Q′ making the diagram
commute.

Step 6. By the 3 × 3 Lemma (Exercise B-1.58 on page 310 in Part 1), the rows
0 → K ′ → K → K ′′ → 0 and 0 → N ′ → N → N ′′ → 0 are exact, and we
let the reader show that there are maps on the top face making every square
commute. •

In the next section, we will show how Tor can be computed and used. But,
before leaving this section, let us give the same treatment to Hom that we have
just given to tensor product.

Left derived functors of a functor T are defined so that TPA is a complex
with all its nonzero terms on the left side; that is, all terms of negative degree are
{0}. One consequence of this is Corollary C-3.55: if T is right exact, then L0T is
naturally equivalent to T . As the Hom functors are left exact, we are now going
to define right derived functors RnT , in terms of deleted resolutions C• for which
TC• is on the right. We shall see that R0T is naturally equivalent to T when T is
left exact.

C-3.7. Right Derived Functors

Given an additive covariant functor T : RMod → SMod, where R and S are
rings, we are now going to construct, for all n ∈ Z, its right derived functors
RnT : RMod→ SMod.
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Choose, once for all, a deleted injective resolution EA of every module A, form
the complex TEA, and take homology:

RnT (A) = Hn(TEA) =
kerTdn

imTdn−1
.

The reader should reread Example C-3.34(x) to recall the index raising convention;
if the indices are lowered, then the definition would be

RnT (A) = H−n(TE
A) =

kerTd−n

imTd−n+1
.

Notice that we have raised the index on homology modules as well; we write Hn

instead of H−n.

The definition of RnT (f), where f : A → A′ is a homomorphism, is similar
to that for left derived functors. By the dual of the Comparison Theorem, there

is a chain map f̌ : EA → E′A′
over f , unique to homotopy, and so a unique map

RnT (f) : Hn(TEA)→ Hn(TEA′
), namely, (T f̌n)∗, is induced in homology.

In pictures, look at the chosen injective resolutions:

0 �� A′ �� E′0 �� E′1 �� · · ·

0 �� A

f

��

�� E0 �� E1 �� · · · .

Fill in a chain map f̌ over f , then apply T to this diagram, and then take the map
induced by T f̌ in homology.

Proposition C-3.59. Given a pair of rings R and S and an additive covariant
functor T : RMod→ SMod, then

RnT : RMod→ SMod

is an additive covariant functor for every n.

The proof of this proposition, as well as the proofs of other propositions about
right derived functors soon to be stated, are essentially duals of the proofs we have
already given, and so they will be omitted.

Example C-3.60. If T is a covariant additive functor that preserves multiplica-
tions and if μr : A→ A is multiplication by r, where r ∈ Z(R) is a central element,
then RnT also preserves multiplications (see Example C-3.47). �
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Proposition C-3.61. If T : RMod→ SMod is a covariant additive functor, then
RnTA = {0} for all negative n and for all A.

Definition. If T = HomR(B, ), define ExtnR(B, ) = RnT . Thus, if

EA = 0→ E0 d0

−→ E1 d1

−→ E2 → · · ·

is the chosen deleted injective resolution of a module A, then

ExtnR(B,A) = Hn(HomR(B,EA)) =
ker(dn)∗
im(dn−1)∗

,

where (dn)∗ : HomR(B,En)→ HomR(B,En+1) is defined, as usual, by

(dn)∗ : f �→ dnf.

The domain of RnT , in particular, the domain of ExtnR(B, ), is RMod, the
category of all left R-modules, and its target is Ab, the category of abelian groups.
The target may be larger; for example, it is RMod if R is commutative.

Assume that new choices ẼA of deleted injective resolutions have been made,

and let us denote the right derived functors arising from these new choices by R̃nT .

Proposition C-3.62. Given a pair of rings R and S and an additive covariant

functor T : RMod → SMod, then, for each n, the functors RnT and R̃nT are
naturally equivalent. In particular, for all A,

(RnT )A ∼= (R̃nT )A,

and so these modules are independent of the choice of (deleted) injective resolution
of A.

Corollary C-3.63. The module ExtnR(B,A) is independent of the choice of injec-
tive resolution of A.

Corollary C-3.64. Let T : RMod → SMod be an additive covariant functor. If
E is an injective module, then RnT (E) = {0} for all n ≥ 1.

In particular, if E is an injective R-module, then ExtnR(B,E) = {0} for all
n ≥ 1 and all modules B.

Theorem C-3.65. If 0 → A′ i−→ A
p−→ A′′ → 0 is an exact sequence of modules

and if T : RMod → SMod is a covariant additive functor, then there is a long
exact sequence

· · · → RnTA′ RnTi−→ RnTA
RnTp−→ RnTA′′ ∂n

−→

Rn+1TA′ Rn+1Ti−→ Rn+1TA
Rn+1Tp−→ Rn+1TA′′ ∂n+1

−→ · · ·

that begins with

0→ R0TA′ → R0TA→ R0TA′′ → · · ·.

Corollary C-3.66. If T : RMod → SMod is a covariant additive functor, then
the functor R0T is left exact.
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Theorem C-3.67.

(i) If an additive covariant functor T : RMod → SMod is left exact, then T is
naturally equivalent to R0T .

(ii) If B is a left R-module, the functor HomR(B, ) is naturally equivalent to
Ext0R(B, ). Hence, for all left R-modules A, there is an isomorphism

HomR(B,A) ∼= Ext0R(B,A).

We have shown that Ext repairs the loss of exactness that may occur after
applying Hom to a short exact sequence.

Corollary C-3.68. If 0 → A′ → A → A′′ → 0 is a short exact sequence of
modules, then there is a long exact sequence

0→ HomR(B,A′)→ HomR(B,A)→ HomR(B,A′′)

→ Ext1R(B,A′)→ Ext1R(B,A)→ Ext1R(B,A′′)

→ Ext2R(B,A′)→ Ext2R(B,A)→ Ext2R(B,A′′)→ · · · .

Proposition C-3.69. Given a commutative diagram of modules having exact rows,

0 �� A′

f

��

i �� A
p ��

g

��

A′′

h

��

�� 0

0 �� C ′ j �� C
q �� C ′′ �� 0,

there is, for all n, a commutative diagram with exact rows,

ExtnR(B,A′)

f∗

��

i∗ �� ExtnR(B,A)
p∗ ��

g∗

��

ExtnR(B,A′′)

h∗

��

∂n
�� Extn+1

R (B,A′)

f∗
��

ExtnR(B,C ′)
j∗ �� ExtnR(B,C)

q∗ �� ExtnR(B,C ′′)
∂′n

�� Extn+1
R (B,C ′).

Finally, we discuss derived functors of contravariant functors T . If we define
right derived functors RnT , in terms of deleted resolutions C• for which TC• is
on the right, then we start with a deleted projective resolution PA, for then the
contravariance of T puts TPA on the right.14

Given an additive contravariant functor T : RMod → SMod, where R and S
are rings, we are now going to construct, for all n ∈ Z, its right derived functors
RnT : RMod→ SMod.

Choose, once for all, a deleted projective resolution PA of every module A,
form the complex TPA, and take homology:

RnT (A) = Hn(TPA) =
kerTdn+1

imTdn
.

14If we were interested in left derived functors of a contravariant T , but we are not, then we
would use injective resolutions.
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If f : A → A′, define RnT (f) : RnT (A′) → RnT (A) as we did for left derived
functors. By the Comparison Theorem, there is a chain map f̌ : PA → P′

A′ over
f , unique to homotopy, which induces a map RnT (f) : Hn(TP′

A′) → Hn(TPA),

namely, (T f̌n)∗, in homology.

Example C-3.70. If T is an additive contravariant functor that preserves multi-
plications and if μr : A → A is multiplication by r, where r ∈ Z(R) is a central
element, then RnT also preserves multiplications (see Example C-3.47). �

Proposition C-3.71. Given a pair of rings R and S and an additive contravariant
functor T : RMod→ SMod, then

RnT : RMod→ SMod

is an additive contravariant functor for every n.

Proposition C-3.72. If T : RMod → SMod is a contravariant additive functor,
then RnTA = {0} for all negative n and for all A.

Definition. If T = HomR( , C), define extnR( , C) = RnT . Thus, if

· · · → P2
d2−→ P1

d1−→ P0 → 0

is the chosen deleted projective resolution of a module A, then

extnR(A,C) = Hn(HomR(PA, C)) =
ker(dn+1)

∗

im(dn)∗
,

where (dn)∗ : HomR(Pn−1, C)→ HomR(Pn, C) is defined, as usual, by

(dn)
∗ : f �→ fdn.

The same phenomenon that holds for Tor holds for Ext: for all A and C (and
for all R and n),

ExtnR(A,C) ∼= extnR(A,C).

The same proof that shows that Tor is independent of the variable resolved also
works for Ext (see Rotman [187], p. 197). In light of this theorem, we will dispense
with the two notations for Ext.

Assume that new choices P̃A of deleted projective resolutions have been made,

and let us denote the right derived functors arising from these new choices by R̃nT .

Proposition C-3.73. Given a pair of rings R and S and an additive contravariant

functor T : RMod → SMod, then, for each n, the functors RnT and R̃nT are
naturally equivalent. In particular, for all A,

(RnT )A ∼= (R̃nT )A,

and so these modules are independent of the choice of (deleted) projective resolution
of A.

Corollary C-3.74. The module ExtnR(A,C) is independent of the choice of pro-
jective resolution of A.
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Corollary C-3.75. Let T : RMod→ SMod be an additive contravariant functor.
If P is a projective module, then RnT (P ) = {0} for all n ≥ 1.

In particular, if P is a projective R-module, then ExtnR(P,B) = {0} for all
n ≥ 1 and all modules B.

Theorem C-3.76. If 0 → A′ i−→ A
p−→ A′′ → 0 is an exact sequence of modules

and if T : RMod→ SMod is a contravariant additive functor, then there is a long
exact sequence

· · · → RnTA′′ RnTp−→ RnTA
RnTi−→ RnTA′ ∂n

−→

Rn+1TA′′ Rn+1Tp−→ Rn+1TA
Rn+1Ti−→ Rn+1TA′ ∂n+1

−→ · · ·
that begins with

0→ R0TA′′ → R0TA→ R0TA′ → · · ·.

Corollary C-3.77. If T : RMod → SMod is a contravariant additive functor,
then the functor R0T is left exact.

Theorem C-3.78.

(i) If an additive contravariant functor T : RMod → SMod is left exact, then
T is naturally equivalent to R0T .

(ii) If C is a left R-module, the functor HomR( , C) is naturally equivalent to
Ext0R( , C). Hence, for all left R-modules A, there is an isomorphism

HomR(A,C) ∼= Ext0R(A,C).

We have shown that Ext repairs the loss of exactness that may occur after
applying Hom to a short exact sequence.

Corollary C-3.79. If 0 → A′ → A → A′′ → 0 is a short exact sequence of
modules, then there is a long exact sequence

0→ HomR(A
′′, C)→ HomR(A,C)→ HomR(A

′, C)

→ Ext1R(A
′′, C)→ Ext1R(A,C)→ Ext1R(A

′, C)

→ Ext2R(A
′′, C)→ Ext2R(A,C)→ Ext2R(A

′, C)→ · · · .

Proposition C-3.80. Given a commutative diagram of modules having exact rows,

0 �� A′

f

��

i �� A
p ��

g

��

A′′

h

��

�� 0

0 �� C ′ j �� C
q �� C ′′ �� 0,

there is, for all n, a commutative diagram with exact rows,

ExtnR(A
′′, B)

p∗
�� ExtnR(A,B)

i∗ �� ExtnR(A
′, B)

∂n
�� Extn+1

R (A′′, B)

ExtnR(C
′′, B)

h∗

��

q∗ �� ExtnR(C,B)

g∗

��

j∗ �� ExtnR(C
′, B)

f∗

��

∂n′
�� Extn+1

R (C ′′, B).

h∗

��
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Remark. When T is a covariant functor, then we call the ingredients of LnT chains,
cycles, boundaries, and homology. When T is contravariant, we often add the prefix
“co”, and the ingredients of RnT are usually called cochains, cocycles, coboundaries,
and cohomology. Unfortunately, this clear distinction is blurred because the Hom
functor is contravariant in one variable but covariant in the other. In spite of this,
we usually use the “co” prefix for the derived functors Extn of Hom. �

Derived functors are one way to construct functors like Ext and Tor. In the
next section, along with more properties of Ext and Tor, we shall describe an-
other construction of Ext, due to Yoneda, and another construction of Tor, due
to Mac Lane. Indeed, derived functors will rarely be mentioned in the rest of the
book.

Exercises

C-3.34. If τ : F → G is a natural transformation between additive functors, prove that τ
gives chain maps τC : FC → GC for every complex C. If τ is a natural equivalence, prove
that FC ∼= GC.

C-3.35. (i) Let T : RMod → SMod be an exact additive functor, where R and S are
rings, and suppose that P projective implies TP projective. If B is a left R-module
and PB is a deleted projective resolution of B, prove that TPTB is a deleted
projective resolution of TB.

(ii) Let A be an R-algebra, where R is a commutative ring, which is flat as an R-module.
Prove that if B is an A-module (and hence an R-module), then

A⊗R TorRn (B,C) ∼= TorAn (B,A⊗R C)

for all R-modules C and all n ≥ 0.

C-3.36. Let R be a semisimple ring.

(i) Prove, for all n ≥ 1, that TorRn (A,B) = {0} for all right R-modules A and all left
R-modules B.
Hint. If R is semisimple, then every (left or right) R-module is projective.

(ii) Prove, for all n ≥ 1, that ExtnR(A,B) = {0} for all left R-modules A and B.

∗ C-3.37. If R is a PID, prove, for all n ≥ 2, that TorRn (A,B) = {0} = ExtnR(A,B) for all
R-modules A and B.

Hint. Use Theorem B-2.28 in Part 1.

C-3.38. Let R be a domain and let A be an R-module.

(i) Prove that if the multiplication μr : A → A is an injection for all r �= 0, then A is
torsion-free.

(ii) Prove that if the multiplication μr : A → A is a surjection for all r �= 0, then A is
divisible.

(iii) Prove that if the multiplication μr : A → A is an isomorphism for all r �= 0, then
A is a vector space over Q, where Q = Frac(R).
Hint. A module A is a vector space over Q if and only if it is torsion-free and
divisible.
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(iv) If either C or A is a vector space over Q, prove that TorRn (C,A) and ExtnR(C,A)
are also vector spaces over Q.

∗ C-3.39. Let R be a domain and let Q = Frac(R).

(i) If r ∈ R is nonzero and A is an R-module for which rA = {0}, that is, ra = 0 for
all a ∈ A, prove that ExtnR(Q,A) = {0} = TorRn (Q,A) for all n ≥ 0.
Hint. If V is a vector space over Q for which rV = {0}, then V = {0}.

(ii) Prove that ExtnR(V,A) = {0} = TorRn (V,A) for all n ≥ 0 whenever V is a vector
space over Q and A is an R-module for which rA = {0} for some nonzero r ∈ R.

C-3.40. Let A and B be R-modules. For f : A′ → B, where A′ is a submodule of A, define
its obstruction to be ∂(f), where ∂ : HomR(A

′, B) → Ext1R(A/A′, B) is the connecting

homomorphism. Prove that f can be extended to a homomorphism f̃ : A → B if and only
if its obstruction is 0.

C-3.41. If T : Ab → Ab is a left exact functor, prove that L0T is an exact functor.
Conclude, for any abelian group B, that L0 Hom(B, ) is not naturally equivalent to
Hom(B, ).

∗ C-3.42. Let

D

β

��

α �� C

g

��
B

f
�� A

be a pullback diagram in Ab. If there are c ∈ C and b ∈ B with gc = fb, prove that there
exists d ∈ D with cα(d) and b = β(d),

Hint. Define p : Z → C by p(n) = nc, and define q : Z → B by q(n) = nb. There is a map
θ : Z → D making the diagram commute; define d = θ(1).

C-3.8. Ext and Tor

We now examine Ext and Tor more closely. As we said in the last section, all prop-
erties of these functors should follow from versions of Theorem C-3.45, the axioms
characterizing them (see Exercises C-3.43 and C-3.44 on page 308); in particular,
their construction as derived functors need not be used.

We begin by showing that Ext behaves like Hom with respect to sums and
products.

Proposition C-3.81. If {Ak : k ∈ K} is a family of modules, then there are
natural isomorphisms, for all n,

ExtnR

(∑
k∈K

Ak, B
)
∼=

∏
k∈K

ExtnR(Ak, B).

Proof. The proof is by dimension shifting, that is, by induction on n ≥ 0. The base
step is Theorem C-3.67, for Ext0( , B) is naturally equivalent to the contravariant
functor Hom( , B).
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For the inductive step, choose, for each k ∈ K, a short exact sequence

0→ Lk → Pk → Ak → 0,

where Pk is projective. There is an exact sequence

0→
∑
k

Lk →
∑
k

Pk →
∑
k

Ak → 0,

and
∑

k Pk is projective, for every sum of projectives is projective. There is a
commutative diagram with exact rows:

Hom(
∑

Pk, B) ��

τ

��

Hom(
∑

Lk, B)
∂ ��

σ

��

Ext1(
∑

Ak, B) ��

���
�
�

Ext1(
∑

Pk, B)

∏
Hom(Pk, B) �� ∏Hom(Lk, B)

d �� ∏Ext1(Ak, B) �� ∏Ext1(Pk, B),

where the maps in the bottom row are just the usual induced maps in each coordi-
nate and the maps τ and σ are the isomorphisms given by Proposition C-3.69.
Now Ext1(

∑
Pk, B) = {0} =

∏
Ext1(Pk, B), because

∑
Pk and each Pk are

projective, so that the maps ∂ and d are surjective. This is precisely the sort
of diagram in Proposition B-1.46 in Part 1, and so there exists an isomorphism
Ext1(

∑
Ak, B)→

∏
Ext1(Ak, B) making the augmented diagram commute.

We may now assume that n ≥ 1, and we look further out in the long exact
sequence. There is a commutative diagram

Extn
(∑

Pk, B
)

�� Extn
(∑

Lk, B
) ∂��

σ

��

Extn+1
(∑

Ak, B
)

��

���
�
�

Extn+1
(∑

Pk, B
)

∏
Extn(Pk, B) �� ∏Extn(Lk, B)

d �� ∏Extn+1(Ak, B) �� ∏Extn+1(Pk, B),

where σ : Extn(
∑

Lk, B) →
∏

Extn(Lk, B) is an isomorphism that exists by the
inductive hypothesis. Since n ≥ 1, all four Ext’s whose first variable is projective
are {0}; it follows from exactness of the rows that both ∂ and d are isomorphisms.
Finally, the composite dσ∂−1 : Extn+1(

∑
Ak, B)→

∏
Extn+1(Ak, B) is an isomor-

phism, as desired. •

There is a dual result in the second variable.

Proposition C-3.82. If {Bk : k ∈ K} is a family of modules, then there are
natural isomorphisms, for all n,

ExtnR

(
A,

∏
k∈K

Bk

)
∼=

∏
k∈K

ExtnR(A,Bk).

Proof. The proof is by dimension shifting. The base step is Theorem B-4.8 in
Part 1, for Ext0(A, ) is naturally equivalent to the covariant functor Hom(A, ).

For the inductive step, choose, for each k ∈ K, a short exact sequence

0→ Bk → Ek → Nk → 0,
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whereEk is injective. There is an exact sequence 0→
∏

k Bk →
∏

k Ek →
∏

k Nk →
0, and

∏
k Ek is injective, for every product of injectives is injective, by Proposi-

tion B-4.55 in Part 1. There is a commutative diagram with exact rows:

Hom(A,
∏

Ek) ��

τ

��

Hom(A,
∏

Nk)
∂ ��

σ

��

Ext1(A,
∏

Bk) ��

���
�
�

Ext1(A,
∏

Ek)

∏
Hom(A,Ek) �� ∏Hom(A,Nk)

d �� ∏Ext1(A,Bk) �� ∏Ext1(A,Ek),

where the maps in the bottom row are just the usual induced maps in each coordi-
nate and the maps τ and σ are the isomorphisms given by Theorem B-4.8 in Part 1.
The proof now finishes as that of Proposition C-3.81. •

It follows that Extn commutes with finite direct sums in either variable (actu-
ally, Proposition B-4.18 in Part 1 says that every additive functor commutes with
finite direct sums).

Remark. These last two propositions cannot be generalized by replacing sums by
direct limits or products by inverse limits; the reason is, in general, that direct
limits of projectives need not be projective and inverse limits of injectives need not
be injective. �

When the ring R is noncommutative, HomR(A,B) is an abelian group, but it
need not be an R-module.

Proposition C-3.83.

(i) ExtnR(A,B) is a Z(R)-module. In particular, if R is a commutative ring,
then ExtnR(A,B) is an R-module.

(ii) If A and B are left R-modules and r ∈ Z(R) is a central element, then the
induced map μ∗

r : ExtnR(A,B) → ExtnR(A,B), where μr : B → B is multipli-
cation by r, is also multiplication by r. A similar statement is true in the
other variable.

Proof.

(i) By Example C-3.47, μr is an R-map, and so it induces a homomorphism on
ExtnR(A,B). It is straightforward to check that x �→ μ∗

r(x) defines a scalar
multiplication Z(R)× ExtnR(A,B)→ ExtnR(A,B).

(ii) This follows from (i) if we define scalar multiplication by r to be μ∗
r . •

Example C-3.84.

(i) We show, for every abelian group B, that

Ext1Z(Zn, B) ∼= B/nB.

There is an exact sequence

0→ Z
μn−→ Z→ Zn → 0,
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where μn is multiplication by n. Applying Hom( , B) gives exactness of

Hom(Z, B)
μ∗
n−→ Hom(Z, B) → Ext1(Zn, B) → Ext1(Z, B). Now Ext1(Z, B)

= {0} because Z is projective. Moreover, μ∗
n is also multiplication by n,

while Hom(Z, B) = B. More precisely, Hom(Z, ) is naturally equivalent to
the identity functor on Ab, and so there is a commutative diagram with exact
rows

B

τB

��

μn �� B

τB

��

�� B/nB

���
�
�

�� 0

Hom(Z, B)
μ∗
n �� Hom(Z, B) �� Ext1(Zn, B) �� 0.

By Proposition B-1.46 in Part 1, there is an isomorphism B/nB∼=Ext1(Zn, B).

(ii) We can now compute Ext1Z(A,B) whenever A and B are finitely generated
abelian groups. By the Fundamental Theorem of Finite Abelian Groups, both
A and B are direct sums of cyclic groups. Since Ext commutes with finite
direct sums, Ext1Z(A,B) is the direct sum of groups Ext1Z(C,D), where C
and D are cyclic. We may assume that C is finite, otherwise, it is projective,
and Ext1(C,D) = {0}. This calculation can be completed using part (i) and
Exercise B-3.15 on page 377 in Part 1, which says that if D is a cyclic group of
finite order m, then D/nD is a cyclic group of order d, where d = gcd(m,n).

�

We now define extensions of modules in the obvious way.

Definition. Given R-modules C and A, an extension of A by C is a short exact
sequence

0→ A
i−→ B

p−→ C → 0.

An extension is split if there exists an R-map s : C → B with ps = 1C .

Of course, if 0→ A→ B → C → 0 is a split extension, then B ∼= A⊕ C.

Whenever meeting a homology group, we must ask what it means for it to be
zero, for its elements can then be construed as being obstructions. For example,
factor sets explain why a group extension may not be split. In this section, we
will show that Ext1R(C,A) = {0} if and only if every extension of A by C splits.
Thus, nonzero elements of any Ext1R(C

′, A′) describe nonsplit extensions (indeed,
this result is why Ext is so called).

We begin with a definition motivated by Proposition C-3.17.

Definition. Given modules C and A, two extensions ξ : 0 → A → B → C → 0
and ξ′ : 0 → A → B′ → C → 0 of A by C are equivalent if there exists a map
ϕ : B → B′ making the following diagram commute:

ξ : 0 �� A
i ��

1A

��

B
p ��

ϕ

��

C

1C

��

�� 0

ξ′ : 0 �� A
i′ �� B′ p′

�� C �� 0.
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We denote the equivalence class of an extension ξ by [ξ], and we define

e(C,A) =
{
[ξ] : ξ is an extension of A by C

}
.

If two extensions are equivalent, then the Five Lemma shows that the map
ϕ must be an isomorphism; it follows that equivalence is, indeed, an equivalence
relation (for we can now prove symmetry). However, the converse is false: there
can be inequivalent extensions having isomorphic middle terms, as we saw in Ex-
ample C-3.18 (all groups in this example are abelian, and so we may view it as an
example of Z-modules).

Proposition C-3.85. If Ext1R(C,A) = {0}, then every extension

0→ A
i−→ B

p−→ C → 0

is split.

Proof. Apply the functor Hom(C, ) to the extension to obtain an exact sequence

Hom(C,B)
p∗−→ Hom(C,C)

∂−→ Ext1(C,A).

By hypothesis, Ext1(C,A) = {0}, so that p∗ is surjective. Hence, there exists
s ∈ Hom(C,B) with 1C = p∗(s); that is, 1C = ps, and this says that the extension
splits. •

Corollary C-3.86. An R-module P is projective if and only if Ext1R(P,B) = {0}
for every R-module B.

Proof. If P is projective, then Ext1R(P,B) = {0} for all B, by Corollary C-3.75.
Conversely, if Ext1R(P,B) = {0} for all B, then every exact sequence 0→ B → X →
P → 0 splits, by Proposition C-3.85, and so P is projective, by Proposition B-4.41
in Part 1. •

We are going to prove the converse of Proposition C-3.85 by showing that there
is a bijection ψ : e(C,A)→ Ext1(C,A). Let us construct the function ψ.

Given an extension ξ : 0→ A→ B → C → 0 and a projective resolution of C,
form the diagram

P2
d2 ��

���
�
� P1

d1 ��

α

���
�
� P0

��

���
�
� C ��

1C
��

0

0 �� A �� B �� C �� 0.

By the Comparison Theorem (Theorem C-3.46), we may fill in dashed arrows to
obtain a commutative diagram. In particular, there is a map α : P1 → A with
αd2 = 0; that is, d∗2(α) = 0, so that α ∈ ker d∗2 is a cocycle. The Comparison
Theorem also says that any two fillings in of the diagram are homotopic; thus, if
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α′ : P1 → A is part of a second filling in, there are maps s0 and s1 with α′ − α =
0 · s1 + s0d1 = s0d1:

P2
d2 �� P1

d1 ��

α′

��
α

��

s1

����
��
��
��

P0

s0
����
��
��
��

0 �� A �� B.

Thus, α′ − α ∈ im d∗1, and so the homology class α + im d∗1 ∈ Ext1(C,A) is well-
defined. We leave as an exercise for the reader that equivalent extensions ξ and ξ′

determine the same element of Ext. Thus,

ψ : e(C,A)→ Ext1(C,A),

given by

ψ([ξ]) = α+ im d∗1,

is a well-defined function. Note that if ξ is a split extension, then ψ([ξ]) = 0. In
order to prove that ψ is a bijection, we first analyze the diagram containing the
map α.

Lemma C-3.87. Let X : 0→ X1
j−→ X0

ε−→ C → 0 be an extension of a module
X1 by a module C. Given a module A, consider the diagram

X : 0 �� X1
j ��

α

��

X0
ε �� C ��

1C
��

0

A C.

(i) There exists a commutative diagram with exact rows completing the given
diagram:

0 �� X1
j ��

α

��

X0
ε ��

β

��

C ��

1C
��

0.

0 �� A
i �� B

η �� C �� 0.

(ii) Any two bottom rows of completed diagrams are equivalent extensions.

Proof.

(i) We define B as the pushout of j and α. Thus, if

S =
{
(αx1,−jx1) ∈ A⊕X0 : x1 ∈ X1

}
,

then define B = (A⊕X0)/S,

i : a �→ (a, 0) + S, β : x0 �→ (0, x0) + S, and η : (a, x0) + S �→ εx0.

That η is well-defined, that the diagram commutes, and that the bottom row
is exact are left for the reader to check.
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(ii) Let

0 �� X1
j ��

α

��

X0
ε ��

β′

��

C ��

1C

��

0

0 �� A
i′ �� B′ η′

�� C �� 0

be a second completion of the diagram. Define f : A⊕X0 → B′ by

f : (a, x0) �→ i′a+ β′x0.

We claim that f is surjective. If b′ ∈ B′, then η′b′ ∈ C, and so there is
x0 ∈ X0 with εx0 = η′b′. Commutativity gives η′β′x0 = εx0 = η′b′. Hence,
b′−β′x0 ∈ ker η′ = im i′, and so there is a ∈ A with i′a = b′−β′x0. Therefore,
b′ = i′a+ β′x0 ∈ im f , as desired.

We now show that ker f = S. If (αx1,−jx1) ∈ S, then f(αx1,−jx1) =
i′αx1−β′jx1 = 0, by commutativity of the first square of the diagram, and so
S ⊆ ker f . For the reverse inclusion, let (a, x0) ∈ ker f , so that i′a+β′x0 = 0.
Commutativity of the second square gives εx0 = η′β′x0 = −η′i′a = 0. Hence,
x0 ∈ ker ε = im j, so there is x1 ∈ X1 with jx1 = x0. Thus, i′a = −β′x0 =
−β′jx1 = −i′αx1. Since i′ is injective, we have a = −αx1. Replacing x1 by
y1 = −x1, we have (a, x0) = (αy1,−jy1) ∈ S, as desired.

Finally, define ϕ : B → B′ by

ϕ : (a, x0) + S �→ f(a, x0) = i′a+ β′x0

(ϕ is well-defined because B = (A ⊕ X0)/S and S = ker f). To show com-
mutativity of the diagram

0 �� A

1A
��

i �� B
η ��

ϕ

��

C

1C
��

�� 0

0 �� A
i′ �� B′ η′

�� C �� 0

we use the definitions of the maps i and η in part (i). For the first square, if
a ∈ A, then ϕia = ϕ((a, 0) + S) = i′a. For the second square,

η′ϕ : (a, x0) + S �→ η′(i′a+ β′x0)

= η′β′x0

= εx0

= η((a, x0) + S).

Therefore, the two bottom rows are equivalent extensions. •

Notation. Denote the extension of A by C just constructed by

αX.

The dual result is true; it is related to the construction of Ext using injective
resolutions of the second variable A.
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Lemma C-3.88. Let A and Y0 be modules, and let X′ : 0→ A→ Y0 → Y1 → 0 be
an extension of A by Y1. Given a module C, consider the diagram

A

1A

��

C

γ

��
X′ : 0 �� A �� Y0

p �� Y1
�� 0.

(i) There exists a commutative diagram with exact rows completing the given
diagram:

X′γ : 0 �� A

1A

��

�� B ��

��

C

γ

��

�� 0

X′ : 0 �� A �� Y0
p �� Y1

�� 0.

(ii) Any two top rows of completed diagrams are equivalent extensions.

Proof. Dual to that of Lemma C-3.87; in particular, construct the top row using
the pullback of γ and p. •

Notation. Denote the extension of A by C just constructed by

X
′γ.

Theorem C-3.89. The function ψ : e(C,A)→ Ext1(C,A) is a bijection.

Proof. We construct an inverse θ : Ext1(C,A)→ e(C,A) for ψ. Choose a projec-
tive resolution of C, so there is an exact sequence

· · · → P2
d2−→ P1

d1−→ P0 → C → 0,

and choose a 1-cocycle α : P1 → A. Since α is a cocycle, we have 0 = d∗2(α) =
αd2, so that α induces a homomorphism α′ : P1/ im d2 → A (if x1 ∈ P1, then
α′ : x1 + im d2 �→ α(x1)). Let X denote the extension

X : 0→ P1/ im d2 → P0 → C → 0.

As in Lemma C-3.87(i), there is a commutative diagram with exact rows:

0 �� P1/ im d2 ��

α′

��

P0

β

��

�� C

1C

��

�� 0

0 �� A
i �� B �� C �� 0.

Define θ : Ext1(C,A)→ e(C,A) using the construction in the lemma:

θ(α+ im d∗1) = [α′
X].

We begin by showing that θ is independent of the choice of cocycle α. If ζ is
another representative of the coset α+ im d∗1, then there is a map s : P0 → A with
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ζ = α+ sd1. But it is easy to see that the following diagram commutes:

P2
d2 ��

��

P1
d1 ��

α+sd1

��

P0
��

β+is

��

C ��

1C
��

0

0 �� A
i �� B �� C �� 0.

As the bottom row has not changed, we have [α′X] = [ζ ′X].

It remains to show that the composites ψθ and θψ are identities. If α+im d∗1 ∈
Ext1(C,A), then θ(α+ im d∗1) is the bottom row of the diagram

0 �� P1/ im d2 ��

α′

��

P0

β

��

�� C

1C

��

�� 0

0 �� A
i �� B �� C �� 0

and ψθ(α+ im d∗1) is the homology class of a cocycle fitting this diagram. Clearly,
α is such a cocycle; and so ψθ is the identity. For the other composite, start with
an extension ξ, and then imbed it as the bottom row of a diagram

P2
d2 ��

��

P1
d1 ��

α

���
�
� P0

��

���
�
� C ��

1C
��

0

0 �� A
i �� B �� C �� 0.

Both ξ and α′X are bottom rows of such a diagram, and so Lemma C-3.87(ii) shows
that [ξ] = [α′X]. •

We can now prove the converse of Proposition C-3.85.

Corollary C-3.90. For any modules C and A, every extension of A by C is split
if and only if Ext1R(C,A) = {0}.

Proof. If every extension is split, then |e(C,A)| = 1, so that |Ext1R(C,A)| = 1, by
Theorem C-3.89; hence, Ext1R(C,A) = {0}. Conversely, if Ext1R(C,A) = {0}, then
Proposition C-3.85 says that every extension is split. •

Example C-3.91. If p is a prime, then Ext1Z(Zp,Zp) ∼= Zp, as we saw in Ex-
ample C-3.84. On the other hand, it follows from Theorem C-3.89 that there are
p equivalence classes of extensions 0 → Zp → B → Zp → 0. But |B| = p2, so
there are only two choices for middle groups B up to isomorphism: B ∼= Zp2 or
B ∼= Zp ⊕ Zp. Of course, this is consistent with Example C-3.18. �

The torsion subgroup of a group may not be a direct summand; the following
proof by homology is quite different from that of Exercise B-4.61 on page 507 in
Part 1.

Proposition C-3.92. There exists an abelian group G whose torsion subgroup is
not a direct summand of G; in fact, we may choose tG =

∑
p Zp, where the sum is

over all primes p.
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Proof. It suffices to prove that Ext1
(
Q,

∑
p Zp

)
�= 0, for this will give a nonsplit

extension 0 →
∑

p Zp → G → Q → 0; moreover, since Q is torsion-free, it follows

that
∑

p Zp = tG.

Consider the exact sequence 0 →
∑

p Zp →
∏

p Zp → D → 0. By Exer-

cise B-4.64 on page 507 in Part 1, we know that D is divisible.15 There is an exact
sequence

Hom
(
Q,

∏
p

Zp

)
→ Hom(Q, D)

∂−→ Ext1
(
Q,

∑
p

Zp

)
→ Ext1(Q,

∏
Zp).

But ∂ is an isomorphism: Ext1
(
Q,

∏
p Zp

) ∼= ∏
Ext1(Q,Zp) = {0}, by Proposi-

tions C-3.81 and C-3.93, while Hom(Q,
∏

p Zp) ∼=
∏

Hom(Q,Zp) = {0}, by The-

orem B-4.8 in Part 1. Since Hom(Q, D) �= {0}, we have Ext1(Q,
∑

p Zp) �= {0}.
•

Remark. We can prove that a torsion abelian group T has the property that it is
a direct summand of any group containing it as its torsion subgroup if and only if
T ∼= B ⊕D, where B has bounded order and D is divisible. �

Here is another application of Ext.

Proposition C-3.93.

(i) If F is a torsion-free abelian group and T is an abelian group of bounded
order (that is, nT = {0} for some positive integer n), then Ext1(F, T ) = {0}.

(ii) Let G be an abelian group. If the torsion subgroup tG of G is of bounded
order, then tG is a direct summand of G.

Proof.

(i) Since F is torsion-free, it is a flat Z-module, by Corollary B-4.105 in Part 1,
so that exactness of 0→ Z→ Q gives exactness of 0→ Z⊗F → Q⊗F . Thus,
F ∼= Z⊗F can be imbedded in a vector space V over Q; namely, V = Q⊗F .
Applying the contravariant functor Hom( , T ) to 0 → F → V → V/F → 0
gives an exact sequence

Ext1(V, T )→ Ext1(F, T )→ Ext2(V/F, T ).

The last term is {0}, by Exercise C-3.37 on page 291, and Ext1(V, T ) is
(torsion-free) divisible, by Example C-3.70, so that Ext1(F, T ) is divisible.
Since T has bounded order, Exercise C-3.39 on page 292 gives Ext1(F, T )
= {0}.

(ii) To prove that the extension 0 → tG → G → G/tG → 0 splits, it suffices
to prove that Ext1(G/tG, tG) = {0}. Since G/tG is torsion-free, this follows
from part (i) and Corollary C-3.90. •

15In truth, D ∼= R: it is a torsion-free divisible group, hence it is a vector space over Q, by
Proposition B-4.69 in Part 1, and we can check that dim(D) = continuum, which is the dimension
of R as a vector space over Q.
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If E is a set and ψ : E → G is a bijection to a group G, then there is a unique
group structure on E that makes it a group and ψ an isomorphism (if e, e′ ∈ E , then
e = ψ−1(g) and e′ = ψ−1(g′); define ee′ = ψ−1(gg′)). In particular, Theorem C-3.89
implies that there is a group structure on e(C,A); here are the necessary definitions.

Define the diagonal map ΔC : C → C ⊕ C by ΔC : c �→ (c, c), and define
the codiagonal map �A : A ⊕ A → A by �A : (a1, a2) �→ a1 + a2. Note that if
f, f ′ : C → A is a homomorphism, then the composite �A(f ⊕ f ′)Δ maps C →
C ⊕ C → A⊕A→ A. It is easy to check that �A(f ⊕ f ′)Δ = f + f ′, so that this
formula describes addition in Hom(C,A),

�A(f ⊕ f ′)Δ(c) = �A(f ⊕ f ′)(c, c)

= �A(fc, f
′c) = fc+ f ′c = (f + f ′)(c).

Now Ext is a generalized Hom, and so we mimic this definition to define addition
in e(C,A).

If ξ : 0 → A → B → C → 0 and ξ′ : 0 → A′ → B′ → C ′ → 0 are extensions,
then their direct sum is the extension

ξ ⊕ ξ′ : 0→ A⊕A′ → B ⊕B′ → C ⊕ C ′ → 0.

The Baer sum [ξ] + [ξ′] is defined to be the equivalence class [�A(ξ ⊕ ξ′)ΔC ]
(we have already defined αX and X′γ). To show that Baer sum is well-defined, we
first show that α(X′γ) is equivalent to (αX′)γ. One then shows that e(C,A) is a
group under this operation by showing that ψ([ξ] + [ξ′]) = ψ([�A(ξ⊕ ξ′)ΔC ]). The
identity element is the class of the split extension, and the inverse of [ξ] is [(−1A)ξ].

This description of Ext1 has been generalized by Yoneda to a description of
Extn for all n. Elements of Yoneda’s Extn(C,A) are certain equivalence classes of
exact sequences

0→ A→ B1 → · · · → Bn → C → 0,

and we add them by a generalized Baer sum (see Mac Lane [145], pp. 82–87).
Thus, there is a construction of Ext that does not use derived functors. Indeed, we
can construct Extn without using projectives or injectives.

In their investigation of finite-dimensional algebras, M. Auslander and Reiten
introduced the following notion.

Definition. An exact sequence of left R-modules, over any ring R,

X : 0→ N → X →M → 0

is almost split if it is not split, if both N and M are indecomposable modules, and
if for all R-modules C and every R-map ϕ : C → M that is not an isomorphism,
the exact sequence Xϕ is split.

Another way to say this is that [X] is a nonzero element of Ext1R(N,M), where
N and M are indecomposable, and [X] ∈ kerϕ∗ for every ϕ : C →M that is not an
isomorphism. Auslander and Reiten proved that for every indecomposable module
M that is not projective, there exists an almost split exact sequence ending with M .
Dually, they proved that for every indecomposable module N that is not injective,
there exists an almost split exact sequence beginning with N .
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It is now Tor’s turn. We begin with a result that has no analog for Ext.

Theorem C-3.94. If R is a ring, A is a right R-module, and B is a left R-module,
then

TorRn (A,B) ∼= TorR
op

n (B,A)

for all n ≥ 0, where Rop is the opposite ring of R.

Proof. Recall Proposition B-1.23 in Part 1: every left R-module is a right Rop-
module, and every right R-module is a left Rop-module. Choose a deleted projective
resolution PA of A. It is easy to see that t : PA⊗R B → B⊗Rop PA is a chain map
of Z-complexes, where

tn : Pn ⊗R B → B ⊗Rop Pn

is given by

tn : xn ⊗ b �→ b⊗ xn.

Since each tn is an isomorphism of abelian groups (its inverse is b⊗ xn �→ xn ⊗ b),
the chain map t is an isomorphism of complexes. By Exercise C-3.24 on page 269,

TorRn (A,B) = Hn(PA ⊗R B) ∼= Hn(B ⊗Rop PA)

for all n. But PA, viewed as a complex of left Rop-modules, is a deleted projective
resolution of A as a left Rop-module, and so Hn(B ⊗Rop PA) ∼= TorR

op

n (B,A). •

In light of this result, theorems about Tor(A, ) will yield results about Tor( , B);
we will not have to say “similarly in the other variable”.

Corollary C-3.95. If R is a commutative ring and A and B are R-modules, then
for all n ≥ 0,

TorRn (A,B) ∼= TorRn (B,A).

We know that Torn vanishes on projectives; we now show that it vanishes on
flat modules.

Proposition C-3.96. A right R-module F is flat if and only if TorRn (F,M) = {0}
for all n ≥ 1 and every left R-module M .

Proof. Let 0 → N
i−→ P → M → 0 be exact, where P is projective. There is an

exact sequence

Tor1(F, P )→ Tor1(F,M)→ F ⊗N
1⊗i−→ F ⊗ P.

Now Tor1(F, P ) = {0}, because P is projective, so that Tor1(F,M) = ker(1 ⊗ i).
Since F is flat, however, ker(1⊗ i) = {0}, and so Tor1(F,M) = {0}. The result for
all n ≥ 1 follows by dimension shifting.

For the converse, 0→ A
i−→ B exact implies exactness of

0 = Tor1(F,B/A)→ F ⊗A
1⊗i−→ F ⊗B.

Hence, 1 ⊗ i is an injection, and so F is flat. (Notice that we have only assumed
the vanishing of Tor1 in proving the converse.) •
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Proposition C-3.97. If {Bk : k ∈ K} is a family of left R-modules, then there
are natural isomorphisms, for all n,

TorRn

(
A,

∑
k∈K

Bk

)
∼=

∑
k∈K

TorRn (A,Bk).

There is also an isomorphism if the direct sum is in the first variable.

Proof. The proof is by dimension shifting. The base step is Theorem B-4.86 in
Part 1, for Tor0(A, ) is naturally equivalent to A⊗−.

For the inductive step, choose, for each k ∈ K, a short exact sequence

0→ Nk → Pk → Bk → 0,

where Pk is projective. There is an exact sequence

0→
∑
k

Nk →
∑
k

Pk →
∑
k

Bk → 0,

and
∑

k Pk is projective, for every sum of projectives is projective. There is a
commutative diagram with exact rows:

Tor1(A,
∑

Pk) �� Tor1(A,
∑

Bk)

���
�
�

∂ �� A⊗
∑

Nk
��

τ

��

A⊗
∑

Pk

σ

��∑
Tor1(A,Pk) �� ∑Tor1(A,Bk)

∂′
�� ∑A⊗Nk

�� ∑A⊗ Pk,

where the maps in the bottom row are just the usual induced maps in each coor-
dinate and the maps τ and σ are the isomorphisms given by Theorem B-4.86 in
Part 1. The proof is completed by dimension shifting. •

Example C-3.98.

(i) We show, for every abelian group B, that

TorZ1 (Zn, B) ∼= B[n] = {b ∈ B : nb = 0}.
There is an exact sequence

0→ Z
μn−→ Z→ Zn → 0,

where μn is multiplication by n. Applying −⊗B gives exactness of

Tor1(Z, B)→ Tor1(Zn, B)→ Z⊗B
1⊗μn−→ Z⊗B.

Now Tor1(Z, B) = {0}, because Z is projective. Moreover, 1 ⊗ μn is also
multiplication by n, while Z ⊗ B = B. More precisely, Z ⊗ − is naturally
equivalent to the identity functor on Ab, and so there is a commutative
diagram with exact rows

0 �� B[n]

���
�
�

�� B

τB

��

μn �� B

τB

��
0 �� Tor1(Zn, B) �� Z⊗B

1⊗μn �� Z⊗B.

By Proposition B-1.47 in Part 1, B[n] ∼= Tor1(Zn, B).
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(ii) We can now compute TorZ1 (A,B) whenever A and B are finitely generated
abelian groups. By the Fundamental Theorem of Finite Abelian Groups,
both A and B are direct sums of cyclic groups. Since Tor commutes with
direct sums, TorZ1 (A,B) is the direct sum of groups TorZ1(C,D), where C and
D are cyclic. We may assume that C and D are finite; otherwise, they are
projective and Tor1 = {0}. This calculation can be completed using part
(i) and Exercise B-3.16 on page 377 in Part 1, which says that if D is a
cyclic group of finite order m, then D[n] is a cyclic group of order d, where
d = gcd(m,n). �

In contrast to Ext, Proposition C-3.97 can be generalized by replacing sums by
direct limits.

Proposition C-3.99. If {Bi, ϕ
i
j} is a direct system of left R-modules over a di-

rected index set I, then there is an isomorphism, for all right R-modules A and for
all n ≥ 0,

TorRn
(
A, lim−→Bi

) ∼= lim−→TorRn (A,Bi).

Proof. The proof is by dimension shifting. The base step is Theorem B-7.15 in
Part 1, for Tor0(A, ) is naturally equivalent to A⊗−.

For the inductive step, choose, for each i ∈ I, a short exact sequence

0→ Ni → Pi → Bi → 0,

where Pi is projective. Since the index set is directed, Proposition B-7.14 in Part 1
says that there is an exact sequence

0→ lim−→Ni → lim−→Pi → lim−→Bi → 0.

Now lim−→Pi is flat, for every projective module is flat, and a direct limit of flat
modules is flat, by Corollary B-7.17 in Part 1. There is a commutative diagram
with exact rows:

Tor1(A, lim−→Pi) �� Tor1(A, lim−→Bi)

���
�
�

∂ �� A⊗ lim−→Ni
��

τ

��

A⊗ lim−→Pi

σ

��
lim−→Tor1(A,Pi) �� lim−→Tor1(A,Bi)

�∂ �� lim−→A⊗Ni
�� lim−→A⊗ Pi,

where the maps in the bottom row are just the usual induced maps between direct
limits and the maps τ and σ are the isomorphisms given by Theorem B-7.15 in
Part 1. The step n ≥ 2 is routine. •

This last proposition generalizes Lemma B-4.103 in Part 1, which says that
if every finitely generated submodule of a module M is flat, then M itself is flat.
After all, by Example B-7.13 in Part 1, M is a direct limit, over a directed index
set, of its finitely generated submodules.

When the ring R is noncommutative, A⊗R B is an abelian group, but it need
not be an R-module.
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Proposition C-3.100.

(i) Let r ∈ Z(R) be a central element, let A be a right R-module, and let B be a
left R-module. If μr : B → B is multiplication by r, then the induced map

μr∗ : TorRn (A,B)→ TorRn (A,B)

is also multiplication by r.

(ii) If R is a commutative ring, then TorRn (A,B) is an R-module.

Proof.

(i) This follows at once from Example C-3.47.

(ii) This follows from (i) if we define scalar multiplication by r to be μr∗. •

We are now going to assume that R is a domain, so that the notion of torsion
submodule is defined, and we shall see why Tor is so called.

Lemma C-3.101. Let R be a domain, let Q = Frac(R), and let K = Q/R.

(i) If A is a torsion R-module, then TorR1 (K,A) ∼= A.

(ii) For every R-module A, we have Torn(K,A) = {0} for all n ≥ 2.

(iii) If A is a torsion-free R-module, then Tor1(K,A) = {0}.

Proof.

(i) Exactness of 0→ R→ Q→ K → 0 gives exactness of

Tor1(Q,A)→ Tor1(K,A)→ R⊗ A→ Q⊗A.

Now Q is flat, by Corollary B-4.106 in Part 1, and so Tor1(Q,A) = {0}, by
Proposition C-3.96. The last term Q⊗A = {0} because Q is divisible and A
is torsion, by Exercise B-4.95 on page 542 in Part 1, and so the middle map
Tor1(K,A)→ R⊗A is an isomorphism.

(ii) There is an exact sequence

Torn(Q,A)→ Torn(K,A)→ Torn−1(R,A).

Since n ≥ 2, we have n− 1 ≥ 1, and so both the first and third Tor’s are {0},
because Q and R are flat. Exactness gives Torn(K,A) = {0}.

(iii) By Theorem B-4.64 in Part 1, there is an injective R-module E containing A
as a submodule. Since A is torsion-free, however, A ∩ tE = {0}, and so A
is imbedded in E/tE. By Lemma B-4.60 in Part 1, injective modules are
divisible, and so E is divisible, as is its quotient E/tE. Now E/tE is a vector
space over Q, for it is a torsion-free divisible R-module (Exercise B-4.58 on
page 507 in Part 1). Let us denote E/tE by V . Since every vector space has
a basis, V is a direct sum of copies of Q. Corollary B-4.106 in Part 1 says
that Q is flat, and Lemma B-4.101 in Part 1 says that a direct sum of flat
modules is flat. We conclude that V is flat.16

16Torsion-free Z-modules are flat, but there exist domains R having torsion-free modules that
are not flat. In fact, domains for which every torsion-free module is flat, called Prüfer rings, are
characterized as those domains in which every finitely generated ideal is a projective module.
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Exactness of 0→ A→ V → V/A→ 0 gives exactness of

Tor2(K,V/A)→ Tor1(K,A)→ Tor1(K,V ).

Now Tor2(K,V/A) = {0}, by (ii), and Tor1(K,V ) = {0}, because V is flat.
We conclude from exactness that Tor1(K,A) = {0}. •

The next result shows why Tor is so called.

Theorem C-3.102.

(i) If R is a domain, Q = Frac(R), and K = Q/R, then the functor TorR1 (K, )
is naturally equivalent to the torsion functor.

(ii) TorR1 (K,A) ∼= tA for all R-modules A.

Proof. Use the exactness of the sequence

Tor2(K,A/tA)→ Tor1(K, tA)
ιA−→ Tor1(K,A)→ Tor1(K,A/tA).

The first and last terms are {0}, by Lemma C-3.101(ii) and Lemma C-3.101(iii).
Therefore, the map ιA : Tor1(K, tA)→ Tor1(K,A) is an isomorphism.

Let f : A → B and let f ′ : tA → tB be its restriction. The following diagram
commutes, because Tor1(K, ) is a functor, and this says that the isomorphisms ιA
constitute a natural transformation:

Tor1(K, tA)
ιA ��

f ′
∗
��

Tor1(K,A)

f∗

��
Tor1(K, tB)

ιB �� Tor1(K,B). •

There is a construction of TorZ1(A,B) by generators and relations. Consider

all triples (a, n, b), where a ∈ A, b ∈ B, na = 0, and nb = 0. Then TorZ1(A,B)
is generated by all such triples subject to the relations (whenever both sides are
defined)

(a+ a′, n, b) = (a, n, b) + (a′, n, b),

(a, n, b+ b′) = (a, n, b) + (a, n, b′),

(ma, n, b) = (a,mn, b) = (a,m, nb).

For a proof of this result and its generalization to TorRn (A,B) for arbitrary rings
R, see Mac Lane [145], pp. 150–159.

The Tor functors are very useful in algebraic topology. The Universal Coeffi-
cients Theorem gives a formula for the homology groups Hn(X;G) with coefficients
in an abelian group G.

Theorem C-3.103 (Universal Coefficients). For every topological space X and
every abelian group G, there are isomorphisms for all n ≥ 0,

Hn(X;G) ∼= Hn(X)⊗Z G ⊕ TorZ1 (Hn−1(X), G).

Proof. See Rotman [191], p. 261. •
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If we know the homology groups of spaces X and Y , then the Künneth formula
gives a formula for the homology groups of X × Y , and this, too, involves Tor in
an essential way.

Theorem C-3.104 (Künneth Formula). For every pair of topological spaces X
and Y , there are isomorphisms for every n ≥ 0,

Hn(X × Y ) ∼=
∑
i

Hi(X)⊗Z Hn−i(Y ) ⊕
∑
p

TorZ1 (Hp(X), Hn−1−p(Y )).

Proof. See Rotman [191], p. 269. •

Exercises

∗ C-3.43. Prove the following analog of Theorem C-3.45. Let En : RMod → Ab be a
sequence of covariant functors, for n ≥ 0, such that

(i) for every short exact sequence 0 → A → B → C → 0, there is a long exact sequence
and natural connecting homomorphisms

· · · → En(A) → En(B) → En(C)
Δn−→ En+1(A) → · · · ;

(ii) there is a left R-module M such that E0 and HomR(M, ) are naturally equivalent;

(iii) En(E) = {0} for all injective modules E and all n ≥ 1.

Prove that En is naturally equivalent to Extn(M, ) for all n ≥ 0.

∗ C-3.44. Let tor
n : RMod → Ab be a sequence of covariant functors, for n ≥ 0, such

that

(i) for every short exact sequence 0 → A → B → C → 0, there is a long exact sequence
and natural connecting homomorphisms

· · · → torn(A) → torn(B) → torn(C)
Δn−→ torn−1(A) → · · · ;

(ii) there is a left R-module M such that tor0 and −⊗R M are naturally equivalent;

(iii) torn(P ) = {0} for all projective modules P and all n ≥ 1.

Prove that torn is naturally equivalent to Torn( ,M) for all n ≥ 0. (There is a
similar result if the first variable is fixed.)

C-3.45. Prove that any two split extensions of modules A by C are equivalent.

C-3.46. Prove that if A is an abelian group with nA = A for some positive integer n,
then every extension 0 → A → E → Zn → 0 splits.

C-3.47. If A is a torsion abelian group, prove that Ext1(A,Z) ∼= Hom(A,S1), where S1

is the circle group.

∗ C-3.48. Prove that a left R-module E is injective if and only if Ext1R(A,E) = {0} for
every left R-module A.

C-3.49. For a ring R, prove that a left R-module B is injective if and only if Ext1(R/I,B)
= {0} for every left ideal I.

Hint. Use the Baer criterion.

C-3.50. Prove that an abelian group G is injective if and only if Ext1(Q/Z,G) = {0}.
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C-3.51. Prove that an abelian group G is free abelian if and only if Ext1(G,F ) = {0} for
every free abelian group F .17

C-3.52. If 0 → A → B → C → 0 is an exact sequence of right R-modules with both A
and C flat, prove that B is flat.

C-3.53. If A and B are finite abelian groups, prove that TorZ1(A,B) ∼= A⊗Z B.

C-3.54. Let R be a domain, Q = Frac(R), and K = Q/R.

(i) Prove, for every R-module A, that there is an exact sequence

0 → tA → A → Q⊗A → K ⊗ A → 0.

(ii) Prove that a module A is torsion if and only if Q⊗ A = {0}.

C-3.55. Let R be a domain.

(i) If B is a torsion R-module, prove that Torn(A,B) is a torsion R-module for all
R-modules A and for all n ≥ 0.

(ii) For all R-modules A and B, prove that Torn(A,B) is a torsion R-module for all
n ≥ 1.

C-3.56. Let k be a field, let R = k[x, y], and let I be the ideal (x, y).

(i) Prove that x⊗ y − y ⊗ x ∈ I ⊗R I is nonzero.
Hint. Consider (I/I2)⊗ (I/I2).

(ii) Prove that x(x⊗ y − y ⊗ x) = 0, and conclude that I ⊗R I is not torsion-free.

C-3.9. Cohomology of Groups

We will see, in this section, that our earlier discussion of the extension problem for
groups fits nicely into homological algebra. Recall that Proposition C-3.31 says, for
any group G, that there is an exact sequence

B3
d3−→ B2

d2−→ B1
d1−→ B0

ε−→ Z→ 0,

where B0, B1, B2, and B3 are free G-modules and Z is viewed as a trivial G-module.
In light of the calculations in Section C-3.3, the following definition should now seem
reasonable.

Definition. Let G be a group, let A be a G-module (i.e., a left ZG-module), and
let Z be the integers viewed as a trivial G-module (i.e., gm = m for all g ∈ G and
m ∈ Z). The cohomology groups of G are

Hn(G,A) = ExtnZG(Z, A);

the homology groups of G are

Hn(G,A) = TorZGn (Z, A).

17The question whether Ext1(G,Z) = {0} implies G is free abelian is known as Whitehead’s
problem. It turns out that if G is countable, then it must be free abelian, but Shelah proved that
it is undecideable whether uncountable such G must be free abelian (see Eklof [61]).
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The history of cohomology of groups is quite interesting. The subject began
with the discovery, by the topologist Hurewicz in the 1930s, that if X is a connected
aspherical space (that is, if the higher homotopy groups of X are all trivial), then
all the homology and cohomology groups of X are determined by the fundamental
group π = π1(X). This led to the question of whether Hn(X) could be described
algebraically in terms of π. For example, Hurewicz proved that H1(X) ∼= π/π′,
where π′ is the commutator subgroup. In 1942, H. Hopf proved that if π has a
presentation F/R, where F is free, then H2(X) ∼= (R ∩ F ′)/[F,R], where [F,R] is
the subgroup generated by all commutators of the form frf−1r−1 for f ∈ F and
r ∈ R. These results led Eilenberg, Mac Lane, Hopf, Freudenthal, and Eckmann
to create cohomology of groups. In addition to its links with group theory and
algebraic topology, cohomology of groups is used extensively in algebraic number
theory (see [38] and [166]).

In what follows, we will write HomG instead of HomZG and −⊗G instead of
−⊗ZG. Because of the special role of the trivial G-module Z, the augmentation

ε : ZG→ Z,

defined by

ε :
∑
x∈G

mxx �→
∑
x∈G

mx,

is important. We have seen, in Exercise C-2.12 on page 145, that ε is a surjective
ring homomorphism, and so its kernel, G, is a two-sided ideal in ZG, called the
augmentation ideal. Thus, there is an exact sequence of rings

0→ G → ZG ε−→ Z→ 0.

Proposition C-3.105. Let G be a group with augmentation ideal G. As an abelian
group, G is free abelian with basis G− 1 = {x− 1 : x ∈ G, x �= 1}.

Proof. An element u =
∑

x mxx ∈ ZG lies in ker ε = G if and only if
∑

x mx = 0.
Therefore, if u ∈ G, then

u = u−
(∑

x

mx

)
1 =

∑
x

mx(x− 1).

Thus, G is generated by the nonzero x− 1 for x ∈ G.

Suppose that
∑

x�=1 nx(x− 1) = 0. Then
∑

x�=1 nxx−
(∑

x�=1 nx

)
1 = 0 in ZG,

which, as an abelian group, is free abelian with basis the elements of G. Hence,
nx = 0 for all x �= 1. Therefore, the nonzero x− 1 comprise a basis of G. •

We begin by examining homology groups.

Proposition C-3.106. If A is a G-module, then

H0(G,A) = Z⊗G A ∼= A/GA.

.
Proof. By definition, H0(G,A) = TorZG0 (Z, A) = Z⊗GA. Applying the right exact
functor −⊗G A to the exact sequence

0→ G → ZG→ Z→ 0
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gives exactness of the top row of the following commutative diagram:

G ⊗G A ��

��

ZG⊗G A ��

��

Z⊗G A ��

���
�
� 0

GA �� A �� A/GA �� 0.

The two solid vertical arrows are given by u ⊗ a �→ ua. By Proposition B-1.46 in
Part 1, there is an isomorphism Z⊗G A ∼= A/GA. •

It is easy to see that A/GA is G-trivial; indeed, it is the largest G-trivial
quotient of A.

Example C-3.107. Suppose that E is a semidirect product of an abelian group
A by a group G. Recall that [G,A] is the subgroup generated by all commutators
of the form [x, a] = xax−1a−1, where x ∈ G and a ∈ A. If we write commutators
additively, as we did at the beginning of this chapter, then

[x, a] = x+ a− x− a = xa− a = (x− 1)a

(recall that G acts on A by conjugation). Therefore, A/GA = A/[G,A] here. �

We are now going to use the independence of the choice of projective resolution
to compute the homology groups of a finite cyclic group G.

Lemma C-3.108. Let G = 〈x〉 be a cyclic group of finite order k. Define elements
D and N in ZG by

D = x− 1 and N = 1 + x+ x2 + · · ·+ xk−1.

Then the following sequence is a G-free resolution of Z:

· · · → ZG N−→ ZG D−→ ZG N−→ ZG D−→ ZG ε−→ Z→ 0,

where ε is the augmentation and the other maps are multiplication by N and D,
respectively.

Proof. Obviously, every term ZG is free; moreover, since ZG is commutative, the
maps are G-maps. Now DN = ND = xk − 1 = 0, while if u ∈ ZG, then

εD(u) = ε
(
(x− 1)u

)
= ε(x− 1)ε(u) = 0,

because ε is a ring map. Thus, we have a complex, and it only remains to prove
exactness.

We have already noted that ε is surjective. Now ker ε = G = imD, by Propo-
sition C-3.105, and so we have exactness at the 0th step.

Suppose u =
∑k−1

i=0 mix
i ∈ kerD; that is, (x− 1)u = 0. Expanding, and using

the fact that ZG has basis {1, x, x2, . . . , xk−1}, we have

m0 = m1 = · · · = mk−1,

so that u = m0N ∈ imN , as desired.
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Finally, if u =
∑k−1

i=0 mix
i ∈ kerN , then 0 = ε(Nu) = ε(N)ε(u) = kε(u), so

that ε(u) =
∑k−1

i=0 mi = 0. Therefore,

u = −D
(
m01 + (m0 +m1)x+ · · ·+ (m0 + · · ·+mk−1)x

k−1
)
∈ imD. •

Definition. If A is a G-module, define submodules

A[N ] =
{
a ∈ A : Na = 0

}
and

AG =
{
a ∈ A : ga = a for all g ∈ G

}
.

Theorem C-3.109. If G is a cyclic group of finite order k and A is a G-module,
then

H0(G,A) = A/GA,

H2n−1(G,A) = AG/NA for all n ≥ 1,

H2n(G,A) = A[N ]/GA for all n ≥ 1.

Proof. Apply −⊗GA to the resolution of Z in Lemma C-3.108. As ZG⊗ZG A ∼= A,
the calculation of ker/im is now simple; use imD = GA (which follows from Propo-
sition C-3.105) and the fact that (x− 1) | (xi − 1). •

Corollary C-3.110. If G is a finite cyclic group of order k and A is a trivial
G-module, then

H0(G,A) = A,

H2n−1(G,A) = A/kA for all n ≥ 1,

H2n(G,A) = A[k] for all n ≥ 1.

In particular,

H0(G,Z) = Z,

H2n−1(G,Z) = Z/kZ for all n ≥ 1,

H2n(G,Z) = {0} for all n ≥ 1.

Proof. Since A is G-trivial, we have AG = A and GA = {0} (for Da = (x−1)a = 0
because xa = a). •

We continue computing low-dimensional homology groups of not necessarily
cyclic groups; we have already computed H0(G,A) ∼= A/GA in Proposition C-3.106.

Lemma C-3.111. For any group G, we have

H1(G,Z) ∼= G/G2.

Proof. The long exact sequence arising from

0→ G → ZG ε−→ Z→ 0

ends with

H1(G,ZG)→ H1(G,Z) ∂−→ H0(G,G)→ H0(G,ZG)
ε∗−→ H0(G,Z)→ 0.
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Now H1(G,ZG) = {0}, because ZG is projective, so that ∂ is an injection. Also,

H0(G,ZG) ∼= Z,

by Proposition C-3.106. Since ε∗ is surjective, it must be injective as well (if
ker ε∗ �= {0}, then Z/ ker ε∗ is finite; on the other hand, Z/ ker ε∗ ∼= im ε∗ = Z,
which is torsion-free). Exactness of the sequence of homology groups (∂ is surjective
if and only if ε∗ is injective) now gives ∂ a surjection. We conclude that

∂ : H1(G,Z) ∼= H0(G,G) ∼= G/G2,

by Proposition C-3.106. •

Proposition C-3.112. For any group G, we have

H1(G,Z) ∼= G/G′,

where G′ is the commutator subgroup of G.

Proof. It suffices to prove that G/G′ ∼= G/G2. Define θ : G→ G/G2 by

θ : x �→ (x− 1) + G2.

To see that θ is a homomorphism, note that

xy − 1− (x− 1)− (y − 1) = (x− 1)(y − 1) ∈ G2,

so that

θ(xy) = xy − 1 + G2

= (x− 1) + (y − 1) + G2

= x− 1 + G2 + y − 1 + G2

= θ(x) + θ(y).

Since G/G2 is abelian, G′ ⊆ ker θ, and so θ induces a homomorphism θ′ : G/G′ →
G/G2; namely, xG′ �→ x− 1 + G2.

We now construct the inverse of θ′. By Proposition C-3.105, G is a free abelian
group with basis all x − 1, where x ∈ G and x �= 1. It follows that there is a
(well-defined) homomorphism ϕ : G → G/G′, given by

ϕ : x− 1 �→ xG′.

If G2 ⊆ kerϕ, then ϕ induces a homomorphism G/G2 → G/G′ that, obviously, is
the inverse of θ′, and this will complete the proof.

If u ∈ G2, then

u =
(∑
x�=1

mx(x− 1)
)(∑

y �=1

ny(y − 1)
)

=
∑
x,y

mxny(x− 1)(y − 1)

=
∑
x,y

mxny

(
(xy − 1)− (x− 1)− (y − 1)

)
.

Therefore, ϕ(u) =
∏

x,y(xyx
−1y−1)mxnyG′ = G′, and so u ∈ kerϕ, as desired. •
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SinceH1( ,Z) is a contravariant functor, every group homomorphism f : S → G
induces a map f∗ : H1(G,Z) → H1(S,Z); that is, f∗ : G/G′ → S/S′. If S ⊆ G is
a subgroup of finite index with inclusion i : S → G, there is a well-known homo-
morphism VG→S : G/G′ → S/S′, called the transfer, and Eckmann proved that
i∗ = VG→S (see Rotman [187], p. 578).

The group H2(G,Z) is useful; it is called the Schur multiplier of G. For
example, suppose that G = F/R, where F is a free group; that is, we have a
presentation of a group G. Then Hopf’s formula is

H2(G,Z) ∼= (R ∩ F )/[F,R]

(see Rotman [187], p. 274). It follows that the group (R ∩ F )/[F,R] depends only
on G and not upon the choice of presentation of G.

Definition. An exact sequence 0→ A→ E → G→ 1 is a central extension of a
group G if A ⊆ Z(E). A universal central extension of G is a central extension
0→M → U → G→ 1 for which there always exists a commutative diagram

0 �� A ��

���
�
� E ��

���
�
� G

1G
��

�� 1

0 �� M �� U �� G �� 1.

Theorem C-3.113. If G is a finite group, then G has a universal central extension
if and only if G = G′, in which case M ∼= H2(G,Z). In particular, every finite
simple group has a universal central extension.

Proof. See Milnor [156], pp. 43–46. •

This theorem is used to construct “covers” of simple groups.

If G is a finitely presented group, say, with presentation

G = (x1, . . . , xn | y1, . . . , yr),
then n− r ≤ rank(G/G′)+d(H2(G,Z)), where d(H2(G,Z)) is the minimal number
of generators of H2(G,Z) (Rotman [187], p. 551). This result implies that n ≤ r;
that is, a finitely presented group usually has more relations than generators.

There is an explicit upper bound on the order of the Schur multiplier of a finite
p-group.

Theorem C-3.114 (Green). If G is a finite p-group of order pm, then

|H2(G,Z)| ≤ pm(m−1)/2.

Proof. Rotman [187], p. 663. •

We now consider cohomology groups.

Proposition C-3.115. Let G be a group, let A be a G-module, and let Z be viewed
as a trivial G-module. Then

H0(G,A) = HomG(Z, A) ∼= AG.
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Proof. Recall that AG = {a ∈ A : ga = a for all g ∈ G}. By definition,

H0(G,A) = Ext0ZG(Z, A) = HomG(Z, A).

Define τA : HomG(Z, A)→ AG by f �→ f(1). Note that f(1) ∈ AG: if g ∈ G, then
gf(1) = f(g · 1) (because f is a G-map), and g · 1 = 1 (because Z is G-trivial);
therefore, gf(1) = f(1), and f(1) ∈ AG. That τA is an isomorphism is a routine
calculation. •

It follows that H0(G,A) is the largest G-trivial submodule of A.

Theorem C-3.116. Let G = 〈σ〉 be a cyclic group of finite order k, and let A be

a G-module. If N =
∑k−1

i=0 σi and D = σ − 1, then

H0(G,A) = AG,

H2n−1(G,A) = kerN/(σ − 1)A for all n ≥ 1,

H2n(G,A) = AG/NA for all n ≥ 1.

Proof. Apply the contravariant HomG( , A) to the resolution of Z in Lemma
C-3.108, noting that HomG(ZG,A) ∼= A. The calculation of ker/im is now as
given in the statement. •

Note that Proposition C-3.105 gives imD = GA.

Corollary C-3.117. If G is a cyclic group of finite order k and A is a trivial
G-module, then

H0(G,A) = A,

H2n−1(G,A) = A[k] for all n ≥ 1,

H2n(G,A) = A/kA for all n ≥ 1.

In particular,

H0(G,Z) = Z,

H2n−1(G,Z) = {0} for all n ≥ 1,

H2n(G,Z) = Z/kZ for all n ≥ 1.

Remark. A finite group G for which there exists a nonzero integer d such that

Hn(G,A) ∼= Hn+d(G,A),

for all n ≥ 1 and all G-modules A, is said to have periodic cohomology . Corol-
lary C-3.117 shows that all finite cyclic groups have periodic cohomology, and it
can be proved that a group G has periodic cohomology if and only if its Sylow
p-subgroups are cyclic, for all odd primes p, while its Sylow 2-subgroups are either
cyclic or generalized quaternion (see Adem–Milgram [1], p. 148). For example,
G = SL(2, 5) has periodic cohomology: it is a group of order 120 = 8 · 3 · 5, so its
Sylow 3-subgroups and its Sylow 5-subgroups are cyclic, having prime order, while
we saw, in Exercise C-1.39 on page 32, that its Sylow 2-subgroups are isomorphic
to the quaternions. �
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We can interpret H1(G,A) and H2(G,A), where G is any not necessarily cyclic
group, in terms of derivations and extensions if we can show that the formulas in
Section C-3.3 do, in fact, arise from a projective resolution of Z. Here is a technical
interlude.

Definition. If G is a group, define B0(G) to be the free G-module on the sin-
gle generator [ ] (hence, B0(G) ∼= ZG) and, for n ≥ 1, define Bn(G) to be the
free G-module with basis all symbols [x1 | x2 | · · · | xn], where xi ∈ G. Define
ε : B0(G)→ Z by ε([ ]) = 1 and, for n ≥ 1, define dn : Bn(G)→ Bn−1(G) by

dn : [x1 | · · · | xn] �→ x1[x2 | · · · | xn]

+
n−1∑
i=1

(−1)i[x1 | · · · | xixi+1 | · · · | xn]

+ (−1)n[x1 | · · · | xn−1].

The bar resolution is the sequence

B•(G) : · · · → B2(G)
d2−→ B1(G)

d1−→ B0(G)
ε−→ Z→ 0.

Let us look at the low-dimensional part of the bar resolution,

d1 : [x] �→ x[ ]− [ ],

d2 : [x | y] �→ x[y]− [xy] + [x],

d3 : [x | y | z] �→ x[y | z]− [xy | z] + [x | yz]− [x | y].

These are the formulas that arose in Section C-3.3 (see page 251), but without the
added conditions [x | 1] = 0 = [1 | y] and [1] = 0. In fact, there is another bar
resolution, the normalized bar resolution, which we will soon define.

The bar resolution is a free resolution of Z, although it is not a routine calcu-
lation to see this; calling it a resolution doesn’t make it so. We prove B•(G) is a
resolution by comparing it to a resolution familiar to algebraic topologists.

Definition. If G is a group, let Pn(G) be the free abelian group with basis all
(n+ 1)-tuples of elements of G. Make Pn(G) into a G-module by defining

x(x0, x1, . . . , xn) = (xx0, xx1, . . . , xxn).

Define ∂n : Pn(G)→ Pn−1(G), whenever n ≥ 1, by

∂n : (x0, x1, . . . , xn) �→
n∑

i=0

(−1)i(x0, . . . , x̂i, . . . , xn),

where x̂i means that xi has been deleted. P•(G) is called the homogenous reso-
lution of Z.

Note that P0(G) is the free abelian group with basis all (y), for y ∈ G, made
into a G-module by x(y) = (xy). In other words, P0(G) = ZG.

The proof that P•(G) is a projective resolution of Z will be broken into two
parts.
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Lemma C-3.118. The sequence

P•(G) : · · · → P2(G)
∂2−→ P1(G)

∂1−→ P0(G)
ε−→ Z→ 0,

where ε is the augmentation, is a complex.

Proof. It suffices to prove that ∂n−1∂n(x0, x1, . . . , xn) = 0. Now

∂n−1∂n(x0, x1, . . . , xn) =

n∑
i=0

(−1)i∂n−1(x0, . . . , x̂i, . . . , xn)

=

n∑
i=0

(−1)i
(∑
j<i

(−1)j(x0, . . . , x̂j , . . . , x̂i, . . . , xn)
)

+

n∑
i=0

(−1)i
(∑
j>i

(−1)j−1(x0, . . . , x̂i, . . . , x̂j , . . . , xn)
)
.

In the last equation, the first summation has inner sign (−1)j , because j < i, and
so xj is still in the jth position after the deletion of xi from the original n-tuple. In
the second summation, however, the inner sign is (−1)j−1, because i < j, and so xj

is in position j − 1 after deletion of the earlier xi. Thus, ∂n−1∂n(x0, x1, . . . , xn) is
a sum of (n− 2)-tuples (x0, . . . , x̂i, . . . , x̂j , . . . , xn) with i < j, each of which occurs
twice: once upon deleting xi by ∂n and then deleting xj by ∂n−1; a second time
upon deleting xj by ∂n and then deleting xi by ∂n−1. In the first case, the sign of
the (n − 2)-tuple is (−1)i+j−1; in the second case, its sign is (−1)i+j . Therefore,
the (n− 2)-tuples cancel in pairs, and ∂n−1∂n = 0. •

Proposition C-3.119. The complex

P•(G) : · · · → P2(G)
∂2−→ P1(G)

∂1−→ P0(G)
∂0−→ Z→ 0,

where ∂0 = ε is the augmentation, is a G-free resolution of Z.

Proof. We let the reader prove that Pn(G) is a freeG-module with basis all symbols
of the form (1, x1, . . . , xn).

To prove exactness of P•(G), it suffices, by Proposition C-3.40, to construct a
contracting homotopy, that is, maps

· · · ← P2(G)
s1←− P1(G)

s0←− P0(G)
s−1←− Z

with εs−1 = 1Z and

∂n+1sn + sn−1∂n = 1Pn(G), for all n ≥ 0.

Define s−1 : Z→ P0(G) by m �→ m(1), where the 1 in the parentheses is the identity
element of the group G, and define sn : Pn(G)→ Pn+1(G), for n ≥ 0, by

sn : (x0, x1, . . . , xn) �→ (1, x0, x1, . . . , xn).

These maps sn are only Z-maps, but Exercise C-3.31 on page 270 says that this
suffices to prove exactness. Here are the computations:

εs−1(1) = ε
(
(1)

)
= 1.
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If n ≥ 0, then

∂n+1sn(x0, . . . , xn) = ∂n+1(1, x0, . . . , xn)

= (x0, . . . , xn) +
n∑

i=0

(−1)i+1(1, x0, . . . , x̂i, . . . , xn)

(the range of summation has been rewritten because xi sits in the (i+1)st position
in (1, x0, . . . , xn)). On the other hand,

sn−1∂n(x0, . . . , xn) = sn−1

n∑
j=0

(−1)j(x0, . . . , x̂j , . . . , xn)

=
n∑

j=0

(−1)j(1, x0, . . . , x̂j , . . . , xn).

It follows that
(
∂n+1sn + sn−1∂n

)
(x0, . . . , xn) = (x0, . . . , xn). •

Proposition C-3.120. The bar resolution B•(G) is a G-free resolution of Z.

Proof. For each n ≥ 0, define τn : Pn(G)→ Bn(G) by

τn : (x0, . . . , xn) �→ x0[x
−1
0 x1 | x−1

1 x2 | · · · | x−1
n−1xn],

and define σn : Bn(G)→ Pn(G) by

σn : [x1 | · · · | xn] �→ (1, x1, x1x2, x1x2x3, . . . , x1x2 · · ·xn).

It is routine to check that τn and σn are inverse, and so each τn is an isomorphism.

The reader can also check that τ : P•(G)→ B•(G) is a chain map; that is, the
following diagram commutes:

Pn(G)
τn ��

∂n

��

Bn(G)

dn

��
Pn−1(G)

τn−1 �� Bn−1(G).

Finally, Exercise C-3.24 on page 269 shows that both complexes have the same
homology groups. By Proposition C-3.119, the complex P•(G) is an exact sequence,
so that all its homology groups are {0}. It follows that all the homology groups of
B•(G) are {0}, and so it, too, is an exact sequence. •

Definition. Define

[x1 | · · · | xn]
∗ =

{
[x1 | · · · | xn] if all xi �= 1,

0 if some xi = 1.

The normalized bar resolution, B∗
•(G), is the sequence

B∗
•(G) : · · · → B∗

2(G)
d2−→ B∗

1(G)
d1−→ B∗

0(G)
ε−→ Z→ 0,

where B∗
n(G) is the free G-module with basis all nonzero [x1 | · · · | xn]

∗, and the
maps dn have the same formula as the maps in the bar resolution except that all
symbols [x1| · · · |xn] now occur as [x1| · · · |xn]

∗; in particular, [x1| · · · |xn]
∗ = 0 if

some xi = 1.
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Since we are making some of the basis elements 0, it is not obvious that the
normalized bar resolution B∗

•(G) is a complex, let alone a resolution of Z.

Theorem C-3.121. The normalized bar resolution B∗
•(G) is a G-free resolution

of Z.

Proof. We begin by constructing a contracting homotopy

· · · ← B∗
2(G)

t1←− B∗
1(G)

t0←− B∗
0(G)

t−1←− Z,

where each tn is a Z-map. Define t−1 : Z → B∗
0(G) by t−1 : m �→ m[ ]. Note that

B∗
n(G) is a free G-module with basis all nonzero [x1 | · · · | xn]

∗; hence, it is a direct
sum of copies of ZG. Since ZG is a free abelian group, B∗

n(G) is also a free abelian
group; the reader may check that a basis of B∗

n(G), as a free abelian group, consists
of all nonzero x[x1 | · · · | xn]

∗. To define tn for n ≥ 0, we take advantage of the
fact that tn need only be a Z-map, by giving its values on these Z-basis elements
(and freeness allows us to choose these values without restriction). Thus, for n ≥ 0,
define tn : B

∗
n(G)→ B∗

n+1(G) by

tn : x[x1 | · · · | xn]
∗ �→ [x | x1 | · · · | xn]

∗.

That we have constructed a contracting homotopy is routine; the reader may check
that εt−1 = 1Z and, for n ≥ 0, that

dn+1tn + tn−1dn = 1B∗
n(G).

The proof will be complete once we show that B∗
•(G) is a complex. Since

B∗
n+1(G) is generated, as a G-module, by im tn, it suffices to show that dndn+1 = 0

on this subgroup. We now prove, by induction on n ≥ −1, that dndn+1tn = 0.
The base step is true, for ε = t−1 and 0 = εd1 = t−1d1. For the inductive step,
we use the identities in the definition of contracting homotopy and the inductive
hypothesis dn−1dn = 0:

dndn+1tn = dn(1− tn−1dn)

= dn − dntn−1dn

= dn − (1− tn−2dn−1)dn

= dn − dn − tn−2dn−1dn

= 0. •

We can now interpret H1(G,A) and H2(G,A).

Corollary C-3.122. For every group G and every G-module A, the groups H1(G,A)
and H2(G,A) constructed in Section C-3.3 coincide with the cohomology groups.

Proof. We have proved that factor sets, coboundaries, derivations, and principal
derivations do, in fact, arise from a projective resolution of Z. •

Proposition C-3.123. If G is a finite group of order m, then mHn(G,A) = {0}
for all n ≥ 1 and all G-modules A.
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Proof. For f ∈ HomG(Bn, A), define σf (x1| . . . |xn−1) =
∑

x∈G f(x1| . . . |xn−1|x).
As in the proof of Theorem C-3.21, sum the cocycle formula to obtain df = dσf +
m(−1)nf ; thus, if f is a cocycle, then mf is a coboundary. •

Corollary C-3.124. If G is a finite group and A is a finitely generated G-module,
then Hn(G,A) is finite for all n ≥ 0.

Proof. Hn(G,A) is a finitely generated abelian group (because A is finitely gen-
erated) of finite exponent. •

Both Proposition C-3.123 and its corollary are true for homology groups as
well.

There are several aspects of the cohomology of groups that we have not men-
tioned. Aside from being a useful tool within group theory itself, these groups also
form a link with algebraic topology. For every group G, there exists a topological
space K(G, 1), called an Eilenberg–Mac Lane space, whose fundamental group
is G and whose cohomology groups coincide with the algebraically defined coho-
mology groups.18 There is, in fact, a deep connection between group theory and
algebraic topology, of which this is a first sign.

An important property of the cohomology of groups is the relation between
the cohomology of a group and the cohomology of its subgroups and its quotient
groups. If ϕ : S → G is a homomorphism, every G-module A becomes an S-
module if we define sa = ϕ(s)a for all s ∈ S and a ∈ A. What is the connection
between Hn(S,A) and Hn(G,A)? What is the connection between Hn(S,A) and
Hn(G,A)? (There is also a connection between homology groups and cohomology
groups: Hn(G,A)∗ ∼= Hn(G,A∗), where A∗ = HomZ(A,Q/Z).)

There are three standard maps, which we will define in terms of the bar reso-
lution. The first is restriction . If S is a subgroup of a group G, every function
f : Bn(G)→ A is defined on all [x1 | · · · | xn] with xi ∈ G, and so it is obviously de-
fined on all n-tuples of the form [s1 | · · · | sn] with si ∈ S ⊆ G; thus, its restriction,
denoted by f |S, maps Bn(S) → A. If f is an n-cocycle, denote its cohomology
class by

cls f = f + im d∗n+1.

Define
Resn : Hn(G,A)→ Hn(S,A)

by Resn(cls f) = cls(f |S). One result is that if G is finite, Sp is a Sylow p-subgroup,
and n ≥ 1, then Resn : Hn(G,A) → Hn(Sp, A) is injective on the p-primary com-
ponent of Hn(G,A) (Rotman [187], Corollary 9.90). Thus, the cohomology of G
is strongly influenced by the cohomology of its Sylow subgroups.

If S ⊆ G, there is a map

Corn : Hn(S,A)→ Hn(G,A)

in the reverse direction, called corestriction , which is defined when S has finite
index in G. First, define Cor0 : AS → AG by a �→

∑
t∈T ta, where T is a left

18Because of this topological connection, many authors use the notation Hn(π,Z) to denote
cohomology groups, for π1 is the standard notation for the fundamental group.
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transversal of S in G (of course, we must check that Cor0 is a homomorphism that
is independent of the choice of transversal). There is a standard way of extend-
ing a map in dimension 0 to maps in higher dimensions (essentially by dimension
shifting), and if [G : S] = m, then

Corn ◦ Resn : Hn(G,A)→ Hn(G,A) = μm;

that is, the composite is multiplication by m. Similarly, in homology, the map

Cor0 : A/GA→ A/SA,

defined by a+GA �→
∑

t∈T t−1a+SA, extends to maps in higher dimensions. When
n = 1 and A = Z, we have Cor1 : H1(G,Z) → H1(S,Z); that is, Cor1 : G/G′ →
S/S′, which turns out to be the transfer: Cor1 = VG→S (see Rotman [187], p. 578).

The third standard map is called inflation . Suppose that N is a normal
subgroup of a group G. If A is a G-module, then AN is a G/N -module if we define
(gN)a = ga for a ∈ AN (if gN = hN , then h = gx for some x ∈ N , and so
ha = (gx)a = g(xa) = ga, because xa = a). Define

Infn : Hn(G/N,AN)→ Hn(G,A)

by cls f �→ cls(f#), where

f# : [g1 | · · · | gm] �→ f [g1N | · · · | gmN ].

These fit together in the Five Term Exact Sequence as follows:

Theorem C-3.125. Let S be a normal subgroup of a group G, and let A be a
G-module. There is an exact sequence

0→ H1(G/S,AS)
Inf1−→ H1(G,A)

Res1−→ H1(S,A).

Remark. Using spectral sequences, the exact sequence can be lengthened to a five
term sequence ending with

→ H1(S,A)G/S d−→ H2(G/S,AS)
Inf2−→ H2(G,A).

Using conjugation, the cohomology groups Hn(G,A) can be made into G/S-mod-
ules (Rotman [187], p. 567), so that H1(S,A)G/S makes sense and imRes1 ⊆
H1(S,A)G/S. The map d :H1(S,A)G → H2(G/S,AS) is called the transgression
(Mac Lane [145], pp. 332–335). �

Sketch of Proof. We use the interpretation of H1 as Der/PDer (formally, we are
using the normalized bar resolution).

(i) Inf1 is an injection. If ζ : G/S → AS is a derivation and ζ̇ : G → A is the

function obtained from ζ by making it constant on cosets of S, then Inf1 : cls(ζ) �→
cls(ζ̇). If cls(ζ) ∈ ker Inf1, then ζ̇ is a principal derivation; that is, there is a ∈ A

with ζ̇(x) = xa − a for all x ∈ G. Since ζ̇ is constant on cosets of S, we have
xsa− a = xa− a for all s ∈ S and x ∈ G; hence, xsa = xa. If x = 1, then sa = a;
that is, a ∈ AS . It follows that ζ is a principal derivation, and cls(ζ) = 0.
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(ii) im Inf1⊆ kerRes1. If Z : G→ A is a derivation, then Res1 cls(Z) = cls(Z|S).
In particular, if cls(Z) = cls(ζ̇) ∈ im Inf1, then Z is constant on the coset S. But
Z(1) = 0 (because every derivation sends 1 to 0), and so Z = 0.

(iii) kerRes1⊆ im Inf1. If cls(Z) ∈ kerRes1, then cls(Z|S) = 0; that is, Z|S
is a principal derivation. Thus, there is a ∈ A with Z(s) = sa − a for all s ∈ S.
Replacing Z by Z − δ, where δ is the principal derivation g �→ ga − a, we may
assume that Z(s) = 0 for all s ∈ S. But Z is constant on cosets of S, for the
definition of derivation gives Z(gs) = gZ(s) + Z(g) = Z(g). Now ζ : G/S → A,

defined by ζ(gS) = Z(g), is a well-defined derivation, and Z = ζ̇ ∈ im Inf1. •

There is a similar discussion for group homology.

We can force cohomology groups to be a graded ring by defining cup product
on H•(G,R) =

∑
n≥0 H

n(G,R), where R is any commutative ring (see Cassels–

Fröhlich [38], pp. 105–108, or Evens [62]), and this added structure has important
applications.

We now consider the cohomology of free groups.

Lemma C-3.126. If G is a free group with basis X, then its augmentation ideal
G is a free G-module with basis

X − 1 = {x− 1 : x ∈ X}.

Proof. We show first that G is generated by X − 1. The identities

xy − 1 = (x− 1) + x(y − 1)

and
x−1 − 1 = −x−1(x− 1)

show that if w is any word in X, then w−1 can be written as a G-linear combination
of X − 1.

To show that G is a free G-module with basis X − 1, it suffices, by Proposi-
tion B-4.36 in Part 1, to show that the following diagram can be completed:

G
Φ

���
�

�
�

�

X − 1

i

��

ϕ
�� A,

where A is any G-module, i : X − 1 → G is the inclusion, and ϕ is any function
(uniqueness of such a map Φ follows from X − 1 generating G). Thus, we are
seeking Φ ∈ HomG(G, A). By Exercise C-3.58 on page 325, we have HomG(G, A) ∼=
Der(G,A) via f : x �→ f(x− 1), where f ∈ G → A, and so we seek a derivation.

Consider the (necessarily split) extension 0 → A → E → G → 1, so that E
consists of all ordered pairs (a, g) ∈ A × G. The given function ϕ : X − 1 → A
defines a lifting � of the generating set X of G; namely,

�(x) = (ϕ(x− 1), x).

Since G is free with basis X, the function � : X → E extends to a homomorphism
L : G → E. We claim, for every g ∈ G, that L(g) = (d(g), g), where d : G → A.
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Each g ∈ G has a unique expression as a reduced word g = xe1
1 · · ·xen

n , where
xi ∈ X and ei = ±1. We prove the claim by induction on n ≥ 1. The base step is
clear, while

L(g) = L(xe1
1 · · ·xen

n )

= L(xe1
1 ) · · ·L(xen

n )

= (ϕ(x1 − 1), x1)
e1 · · · (ϕ(xn − 1), xn)

en

= (d(g), g),

and so the first coordinate d(g) lies in A. Finally, d is a derivation because L is a
homomorphism.

Exercise C-3.58 on page 325 now says that there is a homomorphism Φ: G → A
defined by Φ(g− 1) = d(g) for all g ∈ G. In particular, Φ(x− 1) = d(x) = ϕ(x− 1),
so that Φ does extend ϕ. •

Theorem C-3.127. If G is a free group, then Hn(G,A) = {0} for all n > 1 and
all G-modules A.

Proof. The sequence 0→ G → ZG→ Z→ 0 is a free resolution of Z because G is
now a free G-module. Thus, the only nonzero terms in the deleted resolution occur
in positions 0 and 1, and so all cohomology groups vanish for n > 1. •

We are now going to state an interesting result (the Stallings–Swan Theorem),
which was discovered using homological methods but which does not mention ho-
mology in its statement.

If G is a group and S ⊆ G is a subgroup, then every G-module A can be viewed
as an S-module, for ZS is a subring of ZG.

Definition. A group G has cohomological dimension ≤ n, denoted by

cd(G) ≤ n,

if Hn+1(S,A) = {0} for all G-modules A and every subgroup S of G. We write
cd(G) =∞ if no such integer n exists.

We say that cd(G) = n if cd(G) ≤ n but it is not true that cd(G) ≤ n− 1.

Example C-3.128.

(i) If G = {1}, then cd(G) = 0; this follows from Theorem C-3.116 because G is
a cyclic group of order 1.

(ii) If G is a finite cyclic group of order k > 1, then cd(G) = ∞, as we see from
Corollary C-3.117 with A = Z. Suppose that G is an infinite cyclic group.
Since every subgroup S ⊆ G is cyclic, Theorem C-3.127 gives cd(G) ≤ 1.
If cd(G) = 0, then H1(S,A) = {0} for all subgroups S and all modules A.
In particular, if S ∼= Z and A �= {0} is a trivial module, then H1(S,A) =
Der(S,A)/PDer(S,A) ∼= Hom(Z, A) �= {0}. Hence, cd(G) = 1.

(iii) If G �= {1} is a free group, then Theorem C-3.127 shows that cd(G) = 1, for
every subgroup of a free group is free.
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(iv) If cd(G) < ∞, then G must be torsion-free; otherwise, G has a subgroup S
that is cyclic of finite order k > 1, and Hn(S,Z) �= 0 for all even n.

(v) It is known that if G is a free abelian group of finite rank n, then cd(G) = n.
�

Proposition C-3.129 (Shapiro’s Lemma). Let G be a group and let S ⊆ G be
a subgroup. If A is a ZS-module, then for all n ≥ 0,

Hn(S,A) ∼= Hn(G,HomZS(ZG,A)).

Proof. Let P• = · · · → P1 → P0 → Z → 0 be a ZG-free resolution. If we denote
HomZS(ZG,A) by A∗, then

Hn(G,A∗) = Hn(HomZG(P•, A
∗)).

By the adjoint isomorphism,

HomZG(Pi, A
∗) = HomZG(Pi,HomZS(ZG,A))

∼= HomZS(Pi ⊗ZG ZG,A)

∼= HomZS(Pi, A).

But (the proof of) Lemma C-2.84(i) shows that ZG is a free ZS-module, and so
the free ZG-modules Pi are also free ZS-modules. It follows that we may regard
P• as a ZS-free resolution of Z, and there is an isomorphism of complexes:

HomZS(P•, A) ∼= HomZG(P•, A
∗).

Hence, their homology groups are isomorphic; that is, Hn(S,A) ∼= Hn(G,A∗). •

Corollary C-3.130. If G is a group and S ⊆ G is a subgroup, then cd(S) ≤ cd(G).

Proof. We may assume that cd(G) = n <∞. If m > n and there is a ZS-module
A with Hm(S,A) �= {0}, then Shapiro’s Lemma gives Hm(G,HomZS(ZG,A)) ∼=
Hm(S,A) �= {0}, and this contradicts cd(G) = n. •

Corollary C-3.131. A group G of finite cohomological dimension has no elements
(other than 1) of finite order.

Proof. Example C-3.128(ii) and the preceding corollary. •

Corollary C-3.132. A group G = {1} if and only if cd(G) = 0.

Proof. If G = {1}, then cd(G) = 0, by Example C-3.128(i). Conversely, if cd(G) =
0, then Corollary C-3.130 gives cd(S) = 0 for every cyclic subgroup S = 〈g〉 ⊆ G.
By Theorem C-3.116, we have 〈g〉 = {1} for all g ∈ G, and so G = {1}. •

Are there groups G with cd(G) = 1 that are not free? In 1968, Stallings [211]
proved the following nice theorem (F2G denotes the group algebra over F2).

Theorem C-3.133. If G is a finitely presented group for which H1(G,F2G) has
more than two elements, then G is a nontrivial free product: G = H ∗ K, where
H �= {1} and K �= {1} (free product is the coproduct in Groups).
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As a consequence, he proves the following results. We refer the reader to
Cohen [41] for proofs.

Corollary C-3.134. If G is a finitely generated group with cd(G) = 1, then G is
free.

Corollary C-3.135. If G is a torsion-free finitely generated group having a free
subgroup of finite index, then G is free.

Swan showed that both corollaries remain true if we remove the hypothesis that
G be finitely generated.

Theorem C-3.136 (Stallings–Swan). A torsion-free group having a free sub-
group of finite index must be free.

Exercises

C-3.57. (i) Prove that the isomorphisms in Proposition C-3.106 constitute a natural
equivalence Z⊗G − to T , where T : A 
→ A/GA.

(ii) Prove that the isomorphisms in Proposition C-3.115 constitute a natural equiva-
lence HomG(Z, ) to A 
→ AG.

∗ C-3.58. For a fixed group G, prove that the functors HomG(G, ) and Der(G, ) are
naturally equivalent.

Hint. If f : G → A is a homomorphism, then df : x 
→ f(x− 1) is a derivation.

C-3.59. (i) If G is a finite cyclic group and 0 → A → B → C → 0 is an exact sequence
of G-modules, prove that there is an exact hexagon ; that is, kernel = image at
each vertex of the diagram

H0(G,A) �� H0(G,B)

����
���

���
��

H1(G,C)

������������
H0(G,C)

�����
���

���
�

H1(G,B)

������������
H1(G,A)��

We remark that this exercise is a key lemma in class field theory.

(ii) If G is a finite cyclic group and A is a G-module, define the Herbrand quotient
by

h(A) = |H0(G,A)|/|H1(G,A)|
(h(A) is defined only when both H0(G,A) and H1(G,A) are finite).

Let 0 → A → B → C → 0 be an exact sequence of G-modules. Prove that if
the Herbrand quotient is defined for two of the modules A,B,C, then it is defined
for the third one, and

h(B) = h(A)h(C).
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C-3.60. If G is a group, prove that

Pn(G) ∼=
n+1⊗
1

ZG,

where Pn(G) is the nth term in the homogeneous resolution P•(G) and

n+1⊗
1

ZG = ZG⊗Z ZG⊗Z · · · ⊗Z ZG,

the tensor product over Z of ZG with itself n+ 1 times.

C-3.61. If G is a finite cyclic group, prove, for all G-modules A and for all n ≥ 1, that
Hn(G,A) ∼= Hn+1(G,A).

C-3.62. Let G be a group.

(i) Show, for any abelian group A, that A∗ = HomZ(ZG,A) is a left ZG-module. We
call A∗ a coinduced module.
Hint. If ϕ : ZG → A and g ∈ G, define gϕ by x 
→ gϕ(g−1x).

(ii) For any left ZG-module B, prove that HomZG(B,A∗) ∼= HomZ(B,A).
Hint. Use the adjoint isomorphism, Theorem B-4.98 in Part 1.

(iii) If A∗ is a coinduced module, prove that Hn(G,A∗) = {0} for all n ≥ 1.

C-3.63. If G is a group and A is an abelian group, call the ZG-module A∗ = ZG ⊗Z A
an induced module. Prove that Hn(G,A∗) = {0} for all n ≥ 1.

C-3.10. Crossed Products

Cohomology groups can also be used to study division rings, and this section may
be considered as a continuation of the Division Rings section in Chapter C-2, but
now with homology available to help. We begin with a return to Galois theory.

Theorem C-3.137. Let E/k be a Galois extension with Galois group G=Gal(E/k).
The multiplicative group E× of the field E is a kG-module, and

H1(G,E×) = {0}.

Proof. If c : G→ E× is a 1-cocycle, denote c(σ) by cσ. In multiplicative notation,
the cocycle condition is the identity σ(cτ )c

−1
στ cσ = 1 for all σ, τ ∈ G; that is,

σ(cτ ) = cστ c
−1
σ .(1)

For e ∈ E×, consider

b =
∑
τ∈G

cτ τ (e).
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By Independence of Characters, Proposition A-5.38 in Part 1, there is some e ∈ E×

with b �= 0. For such an element e, we have, using Eq. (1),

σ(b) =
∑
τ∈G

σ(cτ )στ (e)

=
∑
τ∈G

cστ c
−1
σ στ (e)

= c−1
σ

∑
τ∈G

cστστ (e)

= c−1
σ

∑
ω∈G

cωω(e)

= c−1
σ b.

Hence, cσ = bσ(b)−1, and c is a coboundary. Therefore, H1(G,E×) = {0}. •

Theorem C-3.137 implies Theorem A-5.59 in Part 1, which describes the ele-
ments of norm 1 in a cyclic extension. Recall that if E/k is a finite Galois extension,
then the norm is the function N : E× → E× with

N : e �→
∏

σ∈Gal(E/k)

σ(e).

Here is another proof of Theorem A-5.59 in Part 1, using homology.

Corollary C-3.138 (Hilbert’s Theorem 90). Let E/k be a Galois extension
whose Galois group G = Gal(E/k) is cyclic, say, with generator σ. If u ∈ E×, then
Nu = 1 if and only if there is v ∈ E× with

u = σ(v)v−1.

Proof. By Theorem C-3.116, we have H1(G,E×) = kerN/ imD, where N is the
norm (remember that E× is a multiplicative group) and Dv = σ(v)v−1. Theo-
rem C-3.137 gives H1(G,E×) = {0}, so that kerN = imD. Hence, if u ∈ E×, then
Nu = 1 if and only if there is v ∈ E× with u = σ(v)v−1. •

Theorem C-3.137 is one of the first results in what is called Galois cohomology.
Another early result is that Hn(G,E) = {0} for all n ≥ 1, where E (in contrast to
E×) is the additive group of the Galois extension. This result follows easily from
the Normal Basis Theorem (Theorem C-5.83), which says that if E/k is a finite
Galois extension, then E ∼= kG as k-algebras, where G = Gal(E/k).

We are now going to use H2(G,E×) to study division rings.

Only one example of a noncommutative division ring has been given in the
text: the quaternions H (this is an R-algebra) and its k-algebra analogs for every
subfield k ⊆ R (actually, another example is given in Exercise C-2.64 on page 222).
Hamilton discovered the quaternions in 1843, and Frobenius, in 1880, proved that
the only R-division algebras are R, C, and H (see Theorem C-2.125). No other
examples of noncommutative division rings were known until cyclic algebras were
found in the early 1900s, by Wedderburn and by Dickson. In 1932, Albert found
an example of a crossed product algebra that is not a cyclic algebra, and in 1972,
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Amitsur found an example of a noncommutative division ring that is not a crossed
product algebra.

Wedderburn proved that every finite division ring is a field (Theorem C-2.31).
Are there any division rings of prime characteristic?

We begin with an elementary calculation. Suppose that V is a vector space
over a field E having basis {uσ : σ ∈ G} for some set G, so that each v ∈ V has a
unique expression as a linear combination v =

∑
σ aσuσ for aσ ∈ E. For a function

μ : V × V → V , with μ(uσ, uτ ) denoted by uσuτ , define structure constants
gσ,τα ∈ E by

uσuτ =
∑
α∈G

gσ,τα uα.

To have the associative law, we must have uσ(uτuω) = (uσuτ )uω; expanding this
equation, the coefficient of each uβ is∑

α

gσ,τα gα,ωβ =
∑
γ

gτ,ωγ gσ,γβ .

Let us simplify these equations. Let G be a group and suppose that gσ,τα = 0
unless α = στ ; that is, uσuτ = f(σ, τ )uστ , where f(σ, τ ) = gσ,τστ . The function
f : G × G → E×, given by f(σ, τ ) = gσ,τστ , satisfies the following equation for all
σ, τ, ω ∈ G:

f(σ, τ )f(στ, ω) = f(τ, ω)f(σ, τω),

an equation reminiscent of the cocycle identity but here written in multiplicative
notation. This is why factor sets enter into the next definition.

Let E/k be a Galois extension with Gal(E/k) = G, and let f : G × G → E×

be a factor set: in multiplicative notation

f(σ, 1) = 1 = f(1, τ ) for all σ, τ ∈ G

and, if we denote the action of σ ∈ G on a ∈ E× by aσ, then

f(σ, τ )f(στ, ω) = f(τ, ω)σf(σ, τω).

Definition. Given a Galois extension E/k with Galois group G = Gal(E/k) and
a factor set f : G×G→ E×, define the crossed product algebra (E,G, f) to be
the vector space over E having basis all symbols {uσ : σ ∈ G} and multiplication

(auσ)(buτ ) = abσf(σ, τ )uστ

for all a, b ∈ E. If G is a cyclic group, then the crossed product algebra (E,G, f)
is called a cyclic algebra.

Since every element in (E,G, f) has a unique expression of the form
∑

aσuσ,
the definition of multiplication extends by linearity to all of (E,G, f). We note two
special cases:

uσb = bσuσ,

uσuτ = f(σ, τ )uστ .

Recall that if k is a field, then a k-algebra A is central simple if it is a simple
algebra (i.e., no two-sided ideals other than {0} and A itself) with center Z(A) = k.
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Proposition C-3.139. If E/k is a Galois extension with Galois group G =
Gal(E/k) and if f : G×G→ E× is a factor set, then (E,G, f) is a central simple
k-algebra that is split by E.

Proof. Denote (E,G, f) by A. First, we show that A is a k-algebra. To prove that
A is associative, it suffices to prove that

auσ(buτ cuω) = (auσbuτ )cuω,

where a, b, c ∈ E. Using the definition of multiplication,

auσ(buτcuω) = auσ(bc
τf(τ, ω)uτω)

= a
(
bcτf(τ, ω)

)σ
f(σ, τω)uστω

= abσcστf(τ, ω)σf(σ, τω)uστω.

We also have

(auσbuτ )cuω = abσf(σ, τ )uστcuω

= abσf(σ, τ )cστf(στ, ω)uστω

= abσcστf(σ, τ )f(στ, ω)uστω.

The cocycle identity shows that multiplication in A is associative.

That u1 is the unit in A follows from our assuming that factor sets are normal-
ized:

u1uτ = f(1, τ )u1τ = uτ and uσu1 = f(σ, 1)uσ1 = uσ.

We have shown that A is a ring. We claim that ku1 = {au1 : a ∈ k} is the center
Z(A). If a ∈ E, then uσau1 = aσuσ. If a ∈ k = EG, then aσ = a for all σ ∈ G,
and so k ⊆ Z(A). For the reverse inclusion, suppose that z =

∑
σ aσuσ ∈ Z(A).

For any b ∈ E, we have zbu1 = bu1z. But

zbu1 =
∑

aσuσbu1 =
∑

aσb
σuσ.

On the other hand,

bu1z =
∑

baσuσ.

For every σ ∈ G, we have aσb
σ = baσ, so that if aσ �= 0, then bσ = b. If σ �= 1 and

H = 〈σ〉, then EH �= E{1} = E, by Theorem A-5.41 in Part 1, and so there exists
b ∈ E with bσ �= b. We conclude that z = a1u1. For every σ ∈ G, the equation
(a1u1)uσ = uσ(a1u1) gives a

σ
1 = a1, and so a1 ∈ EG = k. Therefore, Z(A) = ku1.

We now show that A is simple. Observe first that each uσ is invertible, for
its inverse is f(σ−1, σ)−1uσ−1 (remember that im f ⊆ E×, so that its values are
nonzero). Let I be a nonzero two-sided ideal in A, and choose a nonzero y =∑

σ cσuσ ∈ I of shortest length; that is, y has the smallest number of nonzero
coefficients. Multiplying by (cσuσ)

−1 if necessary, we may assume that y = u1 +
cτuτ + · · · . Suppose that cτ �= 0. Since τ �= 1E , there is a ∈ E with aτ �= a. Now
I contains ay − ya = bτuτ + · · · , where bτ = cτ (a − aτ ) �= 0. Hence, I contains
y−cτ b

−1
τ (ay−ya), which is shorter than y (it involves u1 but not uτ ). We conclude

that y must have length 1; that is, y = cσuσ. But y is invertible, and so I = A and
A is simple.
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Finally, Theorem C-2.128 says that A is split by K, where K is any maximal
subfield of A. The reader may show, using Lemma C-2.118, that Eu1

∼= E is a
maximal subfield. •

In light of Proposition C-3.139, it is natural to expect a connection between
relative Brauer groups and cohomology.

Recall that two central simple k-algebras A and B are similar, denoted by

A ∼ B,

if there are integers n and m with A⊗kMatn(k) ∼= B⊗kMatm(k). If [A] denotes the
equivalence class of a central simple k-algebra A under similarity, then the Brauer
group Br(k) is the set

Br(k) =
{
[A] : A is a central simple k-algebra

}
with binary operation [A][B] = [A⊗k B].

Theorem C-3.140. Let E/k be a Galois extension with G = Gal(E/k). There is
an isomorphism H2(G,E×)→ Br(E/k) with cls f �→ [(E,G, f)].

Sketch of Proof. The usual proofs of this theorem are rather long. Each of the
items: the isomorphism is a well-defined function; it is a homomorphism; it is
injective; it is surjective, must be checked, and the proofs are computational. For
example, the proof in Herstein [98], pp. 110–116 is fairly long; there is a less
computational proof, but still long, in Serre [199], pp. 164–167, using the method
of descent. •

What is the advantage of this isomorphism? In Corollary C-2.133, we saw that

Br(k) =
⋃

E/k finite

Br(E/k).

Corollary C-3.141. Let k be a field.

(i) The Brauer group Br(k) is a torsion group.

(ii) If A is a central simple k-algebra, then there is an integer n so that the tensor
product of A with itself r times (where r is the order of [A] in Br(k)) is a
matrix algebra:

A⊗k A⊗k · · · ⊗k A ∼= Matn(k).

Sketch of Proof.

(i) By Corollary C-2.133, Br(k) is the union of the relative Brauer groups
Br(E/k), where E/k is a finite Galois extension. We may now invoke Propo-
sition C-3.123, which says that |G|H2(G,E×) = {0}.

(ii) Tensor product is the binary operation in the Brauer group. •

Recall Proposition C-2.130: there exists a noncommutative division k-algebra
over a field k if and only if Br(k) �= {0}.
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Corollary C-3.142. Let k be a field. If there is a cyclic Galois extension E/k such
that the norm N : E× → k× is not surjective, then there exists a noncommutative
k-division algebra.

Sketch of Proof. If G is a finite cyclic group, then Theorem C-3.116 gives

H2(G,E×) = (E×)G/ imN = k×/ imN.

Hence, Br(E/k) �= {0} if N is not surjective, and this implies that Br(k) �= {0}. •

If k is a finite field and E/k is a finite extension, then it follows from Wedder-
burn’s Theorem on finite division rings (Theorem C-2.31) that the norm N : E× →
k× is surjective.

Corollary C-3.143. If p is a prime, then there exists a noncommutative division
algebra of characteristic p.

Proof. If k is a field of characteristic p, it suffices to find a cyclic extension E/k for
which the norm N : E× → k× is not surjective; that is, we must find some z ∈ k×

which is not a norm.

If p is an odd prime, let k = Fp(x). Since p is odd, t2 − x is a separable
irreducible polynomial, and so E = k(

√
x) is a Galois extension of degree 2. If

u ∈ E, then there are polynomials a, b, c ∈ Fp[x] with u = (a+ b
√
x)/c. Moreover,

N(u) = (a2 − b2x)/c2.

We claim that x2 + x is not a norm. Otherwise,

a2 − b2x = c2(x2 + x).

Since c �= 0, the polynomial c2(x2 + x) �= 0, and it has even degree. On the other
hand, if b �= 0, then a2 − b2x has odd degree, and this is a contradiction. If b = 0,
then u = a/c; since a2 = c2(x2 + x), we have c2 | a2, hence c | a, and so u ∈ Fp[x]
is a polynomial. But it is easy to see that x2 + x is not the square of a polynomial.
We conclude that N : E× → k× is not surjective.

Here is an example in characteristic 2. Let k = F2(x), and let E = k(α), where
α is a root of f(t) = t2 + t + x + 1 (f(t) is irreducible and separable; its other
root is α + 1). As before, each u ∈ E can be written in the form u = (a + bα)/c,
where a, b, c ∈ F2[x]. Of course, we may assume that x is not a divisor of all three
polynomials a, b, and c. Moreover,

N(u) =
(
(a+ bα)(a+ bα+ b)

)
/c2 =

(
a2 + ab+ b2(x+ 1)

)
/c2.

We claim that x is not a norm. Otherwise,

a2 + ab+ b2(x+ 1) = c2x.(2)

Now a(0), the constant term of a, is either 0 or 1. Consider the four cases arising
from the constant terms of a and b; that is, evaluate Eq. (2) at x = 0. We see that
a(0) = 0 = b(0); that is, x | a and x | b. Hence, x2 | a2 and x2 | b2, so that Eq. (2)
has the form x2d = c2x, where d ∈ F2[x]. Dividing by x gives xd = c2, which forces
c(0) = 0; that is, x | c, and this is a contradiction. •
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For further discussion of the Brauer group, see the article by Serre in Cassels–
Fröhlich [38], Jacobson [111], pp. 471–481, Reiner [180], Chapters 5, 7, and 8, and
the article by Platonov–Yanchevskii in Kostrikin–Shafarevich [128]. In particular,
a global field is a field which is either an algebraic number field (i.e., a finite
extension of Q) or a function field (a finite extension of k(x), where k is a finite
field). To each global field, we assign a family of local fields. These fields are best
defined in terms of discrete valuations.

A discrete valuation on a field L is a function v : L× → N such that, for all
a, b ∈ L,

v(a) = 0 if and only if a = 0,

v(ab) = v(a)v(b),

v(a+ b) = max{v(a), v(b)}.

Now R = {a ∈ L : v(a) ≤ 1} is a domain and P = {a ∈ L : v(a) < 1} is a
maximal ideal in R. We call R/P the residue field of L with respect to the
discrete valuation v. A local field is a field which is complete with respect to
the metric arising from a discrete valuation on it and whose residue field is finite.
It turns out that every local field is either a finite extension of Qp, the p-adic
numbers (which is the fraction field of the p-adic integers Zp), or it is isomorphic
to Fq[[x]], the ring of formal power series in one variable over a finite field Fq. If
k is a local field, then Br(k) ∼= H2(ks, k

×), where ks/k is the maximal separable
extension of k in the algebraic closure k. If A is a central simple K-algebra, where
K is a global field and if Kv is a local field of K, then Kv ⊗K A is a central
simple Kv-algebra. The Hasse–Brauer–Noether–Albert Theorem states that
if A is a central simple algebra over a global field K, then A ∼ K if and only
if Kv ⊗K A ∼ Kv for all associated local fields Kv. We merely mention that
these results were used by Chevalley to develop class field theory (the branch of
algebraic number theory involving Galois extensions (of possibly infinite degree)
having abelian Galois groups). See Neukirch–Schmidt–Wingberg [166].

For generalizations of the Brauer group (e.g., Br(k), where k is a commutative
ring) and ties to Morita theory, see Orzech–Small [173] and Caenepeel [32].

Exercises

C-3.64. Show that the structure constants in the crossed product (E,G, f) are

gσ,τα =

{
f(σ, τ) if α = στ,

0 otherwise.

C-3.65. Prove that H⊗R H ∼= Mat4(R).
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C-3.11. Introduction to Spectral Sequences

The last topic we discuss is spectral sequences, whose major uses are in computing
homology groups and in comparing homology groups of composites of functors.
This brief section merely describes the setting for spectral sequences, in the hope
that it will ease the reader’s first serious encounter with them. For a more complete
account, we refer the reader to Mac Lane [145], Chapter XI, McCleary [152], or
Rotman [187], Chapter 11.

Call a series of submodules of a module K,

K = K0 ⊇ K1 ⊇ K2 ⊇ · · · ⊇ K� = {0},
a filtration (instead of a normal series), and call the quotients Ki/Ki+1 the factor
modules of the filtration. We know that a module K may not be determined by the
factor modules of a filtration; on the other hand, knowledge of the factor modules
does give some information about K. For example, if all the factor modules are
zero, then K = {0}; if all the factor modules are finite, then K is finite (and |K|
is the product of the orders of the factor modules); or, if all the factor modules are
finitely generated, then K is finitely generated.

Definition. If K is a module, then a subquotient of K is a module isomorphic
to S/T , where T ⊆ S ⊆ K are submodules.

Thus, a subquotient of K is a quotient of a submodule. It is also easy to see
that a subquotient of K is also a submodule of a quotient (S/T ⊆ K/T ).

Example C-3.144.

(i) The factor modules of a filtration of a module K are subquotients of K.

(ii) The nth homology group Hn(C•, d•) of a complex (C•, d•) is a subquotient
of Cn. �

A spectral sequence computes a homology group Hn in the sense that it com-
putes the factor modules of some filtration of Hn. In general, this gives only partial
information about Hn, but, if the factor modules are heavily constrained, then they
can give much more information and, indeed, might even determine Hn completely.
For example, suppose that only one of the factor modules of K is nonzero, say,
Ki/Ki+1

∼= A �= {0}; we claim that K ∼= A. The beginning of the filtration is

K = K0 ⊇ K1 ⊇ · · · ⊇ Ki.

Since K0/K1 = {0}, we have K = K0 = K1. Similarly, K1/K2 = {0} gives
K1 = K2; indeed, K = K0 = K1 = · · · = Ki. Similar reasoning computes the end
of the filtration. For example, since K�−1/K� = {0}, we have K�−1 = K� = {0}.
Thus, the filtration is

K = K0 = · · · = Ki � Ki+1 = · · · = K� = {0},
and so K ∼= K/{0} = Ki/Ki+1

∼= A.

In order to appreciate spectral sequences, we must recognize an obvious fact:
very general statements can become useful if extra simplifying hypotheses can be
imposed.
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Spectral sequences usually arise in the following context. A bigraded module
M = M•• is a doubly indexed family of modules Mp,q, where p, q ∈ Z; we picture a
bigraded module as a collection of modules, one sitting on each lattice point (p, q)
in the plane. Thus, there are first quadrant bigraded modules, for example, with
Mp,q = {0} if either p or q is negative; similarly, there are third quadrant bigraded
modules. A bicomplex is a bigraded module that has vertical arrows d′′p,q : Mp,q →
Mp,q−1 making the columns complexes, horizontal arrows d′p,q : Mp,q → Mp−1,q

making the rows complexes, and whose squares anticommute:

Mp−1,q

d′′
p−1,q

��

Mp,q

d′
p,q��

d′′
p,q

��
Mp−1,q−1 Mp,q−1;

d′
p,q−1

��

that is, d′d′′ + d′′d′ = 0. The reason for the anticommutativity is to allow us to
define the total complex, Tot(M), of a bicomplex M : its term in degree n is

Tot(M)n =
⊕

p+q=n

Mp,q;

its differentiation dn : Tot(M)n → Tot(M)n−1 is given by

dn =
∑

p+q=n

d′p,q + d′′p,q .

Anticommutativity forces dn−1dn = 0:

dd = (d′ + d′′)(d′ + d′′) = d′d′ + (d′d′′ + d′′d′) + d′′d′′ = 0;

thus, Tot(M) is a complex.

All bigraded modules form a category. Given an ordered pair of integers (a, b),
a family of maps fp,q : Mp,q → Lp+a,q+b is called a map f : M•• → L•• of bidegree
(a, b). For example, the maps d′ and d′′ above have respective bidegrees (0,−1) and
(−1, 0). It is easy to check that all bigraded modules and all maps having some
bidegree form a category. One nice feature of composition is that bidegrees add:
if f has bidegree (a, b) and f ′ has bidegree (a′, b′), then their composite f ′f has
bidegree (a+ a′, b+ b′). Maps of bigraded modules are used in establishing certain
exact sequences. For example, one proof of the Five Term Exact Sequence uses
these maps.

A spectral sequence is a sequence of bicomplexes, Er
p,q, for all r ≥ 2, where

each Er+1
p,q is a subquotient of Er

p,q (we must also specify that the homomorphisms

of the bicomplex Er+1
p,q arise from those of Er

p,q). Most spectral sequences arise
from a filtration of Tot(M), where M•• is a bicomplex. In particular, there are
two “usual” filtrations (if M•• is either first quadrant or third quadrant), and the
spectral sequences they determine are denoted by IEr

p,q and IIEr
p,q. In more detail,

the first filtration of Tot(M) is the subcomplex whose nth term is the direct sum
of those Mi,n−i lying to the left of the vertical line at p (see Figure C-3.1). The
second filtration of Tot(M) is the subcomplex whose nth term is the direct sum
of those Mi,n−i lying below the horizontal line at p (see Figure C-3.2).
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Figure C-3.1. First filtration. Figure C-3.2. Second filtration.

We say that a spectral sequence Er
p,q converges to a (singly graded) module

H•, denoted by

E2
p,q ⇒ Hn,

if each Hn has a filtration with factor modules

E0,n, E1,n−1, . . . , En,0,

and, for all p, q with p + q = n, the factor module Ep,q is a subquotient of E2
p,q.

There are two steps to establish before using spectral sequences.

Theorem I. If M•• is a first quadrant or third quadrant bicomplex, then

IE2
p,q ⇒ Hn(Tot(M)) and IIE2

p,q ⇒ Hn(Tot(M)).

Thus, for each n, there are two filtrations of Tot(M)n: one whose factor modules
are subquotients of IE2

p,q and another whose factor modules are subquotients of
IIE2

p,q (as usual, p+ q = n in this context); and both converge to the same thing.

Theorem II. If M•• is a first quadrant or third quadrant bicomplex, then there are
formulas for IE2

p,q and IIE2
p,q for every p, q. In more detail,

IE2
p,q = H ′

pH
′′
q (M) and IIE2

p,q = H ′′
pH

′
q(M).

The modules H ′
pH

′′
q (M) and H ′′

pH
′
q(M) are called iterated homology. Each

row and column of a double complex M is a complex. In particular, for fixed p,
the pth column Mp,• is a complex; its homology gives a (horizontal) complex whose
(p, q) term is Hq(Mp,•) and whose horizontal maps are induced from the differen-
tiations in the original bicomplex M•,•. (In fact, IE1

p,q = Hq(Mp,•).) Informally,
this iterated homology takes homology of the columns, then homology of the rows.
Similarly, the other iterated homology takes homology of rows and then homology
of columns.

We illustrate the technique by sketching a proof that Torn(A,B) does not
depend on the variable resolved; that is, the value of Torn(A,B), defined as
Hn(PA ⊗ B), where PA is a deleted projective resolution of A, coincides with
Torn(A,B), defined as Hn(A⊗QB), where QB is a deleted projective resolution of
B. The idea is to resolve both variables simultaneously, using resolutions of each.
Define a first quadrant bigraded module M = PA⊗QB whose p, q term is Pp⊗Qq;
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make this into a bicomplex by defining vertical arrows d′′p,q = (−1)p1⊗∂q : Pp⊗Qq →
Pp⊗Qq−1 and horizontal arrows d′p,q = Δp⊗1: Pp⊗Qq → Pp−1⊗Qq, where the ∂n
are the differentiations in QB and the Δn are the differentiations in PA (the signs
force anticommutativity). The formula whose existence is stated in Theorem II for
the first spectral sequence IE2

p,q gives, in this case,

IE2
p,q =

{
{0} if q > 0,

Hp(PA ⊗B) if q = 0.

Since a subquotient of {0} must be {0}, all but one of the factor modules of a
filtration of Hn(Tot(M)) are zero, and so

Hn(Tot(M)) ∼= Hn(PA ⊗B).

Similarly, the formula alluded to in Theorem II for the second spectral sequence
gives

IIE2
p,q =

{
{0} if p > 0,

Hq(A⊗QB) if p = 0.

Again, there is a filtration of Hn(Tot(M)) with only one possible nonzero factor
module, and so

Hn(Tot(M)) ∼= Hn(A⊗QB).

Therefore,

Hn(PA ⊗B) ∼= Hn(Tot(M)) ∼= Hn(A⊗QB).

We have shown that Tor is independent of the variable resolved.

Here is a cohomology result illustrating how spectral sequences can be used to
compute composite functors. The index raising convention extends here, so that
one denotes the modules in a third quadrant bicomplex by Mp,q instead of by
M−p,−q.

Theorem C-3.145 (Grothendieck). Let F : B → C and G : A → B be additive
functors, where A, B, and C are module categories. If F is left exact and if E
injective in A implies (RmF )(GE) = {0} for all m > 0 (where RmF are the right
derived functors of F ), then for every module A ∈ A, there is a third quadrant
spectral sequence

Ep,q
2 = (RpF )(RqG(A))⇒ Rn(FG)(A).

For a proof, see Rotman [187], p. 350.

The next result shows that if N is a normal subgroup of a group Π, then the
cohomology groups of N and of Π/N can be used to compute the cohomology
groups of Π.

Theorem C-3.146 (Lyndon–Hochschild–Serre). Let Π be a group with normal
subgroup N . For each Π-module A, there is a third quadrant spectral sequence with

Ep,q
2 = Hp(Π/N,Hq(N,A))⇒ Hn(Π, A).

Proof. Define functors G : ZΠMod → Z(Π/N)Mod and F : Z(Π/N )Mod → Ab by
G = HomN (Z, ) and F = HomΠ/N (Z, ). Of course, F is left exact, and it is easy
to see that FG = HomΠ(Z, ). A proof that Hm(Π/N,E) = {0} whenever E is an
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injective Π-module and m > 0 can be found in Rotman [187], p. 307. The result
now follows from Theorem C-3.145. •

This theorem was found by Lyndon in his dissertation in 1948, in order to
compute the cohomology groups of finitely generated abelian groups Π. Several
years later, Hochschild and Serre put the result into its present form.

Every convergent spectral sequence yields a five term exact sequence; the five-
term exact sequence in cohomology of groups (Theorem C-3.125) is a special case
(there is a similar theorem in homology).

Theorem C-3.147. If (Er, dr) is a third quadrant spectral sequence, so that Er
p,q ⇒

Hn(Tot(M)), then there is an exact sequence

En,0
2 → H1(Tot(M))→ E0,n

2

dn+1−→ En+1,0
2 → Hn+1(Tot(M)).

Proof. [187], p. 643. •

Exercises

∗ C-3.66. Regard a commutative diagram of modules

C

j

��

D
f��

g

��
A B

i
��

as a first quadrant double complex M = M•• by replacing g by −g and defining

Mp,q =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

A if (p, q) = (0, 0),

B if (p, q) = (1, 0),

C if (p, q) = (0, 1),

D if (p, q) = (1, 1),

{0} otherwise.

(i) Prove that Tot(M) = 0 → D
(f,−g)−→ C ⊕B

j+i−→ A → 0.

(ii) Prove that H2(Tot(M)) = {d ∈ D : fd = 0 = gd} = ker f ∩ ker g.

(iii) Prove that H0(Tot(M)) = A/ im(j + i) = A/(B + C).

(iv) Prove that H1(Tot(M)) = (im j ∩ im i)/ im(jf).
Hint. If we display the nonzero terms of the bigraded module Hq(Mp,•) as a matrix[

h01 h11

h00 h10

]
,

show that

IE1
p,q = [Hq(Mp,•)] =

[
coker f coker g
ker f ker g

]
.

See Rotman [187], pp. 632–633, for further details.
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C-3.67. Let R be a ring with a right ideal I and left ideal J . Use Exercise C-3.66 to
prove that

TorR1 (R/I,R/J) ∼= (I ∩ J)/IJ.

Hint. See Rotman [187], Proposition 10.20.

C-3.68. (i) If R is a ring having a unique maximal left ideal m, prove that m is a
two-sided ideal.

(ii) If k = R/m, prove that TorR1 (k, k) ∼= m/m2.



Chapter C-4

More Categories

When we introduced category theory in Part 1, we pointed out how it organizes
thought: it imposes the viewpoint that it is valuable to think, not only in terms
of elements, sets, and functions, but also in terms of arrows, commutative dia-
grams, and universal mapping problems. We have seen various constructions and
their duals: products and coproducts; pullbacks and pushouts; inverse limits and
direct limits. And we can compare these constructions using functors and natural
transformations.

In this chapter, we will consider the following questions, all of whose answers
involve abelian categories. (1) We will introduce sheaves, and they form a cate-
gory. Do sheaves behave like abelian groups? (2) What is the proper context for
doing homological algebra? In particular, when can we define sheaf cohomology?
(3) When is a category (naturally) equivalent to some category of modules? If R
and S are rings, when are RMod and SMod equivalent? Are RMod and ModR

equivalent?

Another circle of ideas asks when a functor preserves inverse or direct limits.
This discussion involves the Adjoint Functor Theorem (which we will prove in
the special case of module categories).

Finally, we will introduce algebraic K-theory, which is to homological algebra
what homotopy theory is to homology of topological spaces.

C-4.1. Additive Categories

Representations of a group G are just another way of considering kG-modules, so
that contemplating all the representations of G is the same as contemplating the
category kG Mod. It is natural to ask, more generally, to what extent a category

R Mod determines a ring R. We now prepare the answer to this question; the
answer itself is given later in this chapter.

339



340 Chapter C-4. More Categories

Recall that an object A in a category C is an initial object if there is a unique
morphism A→ X for every X ∈ obj(C); an object Ω in C is a terminal object if
there is a unique morphism X → Ω for every X ∈ obj(C); and an object is a zero
object if it is both initial and terminal. We now introduce additive categories,
which generalize pre-additive categories defined on page 446 in Part 1.

Definition. A category A is additive if it is pre-additive; that is,

(i) HomA(A,B) is an (additive) abelian group for every A,B ∈ obj(A);
(ii) the distributive laws hold: given morphisms

X
k−→ A

f

⇒
g
B

h−→ Y,

where X and Y ∈ obj(A), then

h(f + g) = hf + hg and (f + g)k = fk + gk;

and also

(a) A has a zero object;

(b) A has finite products and finite coproducts: for all objects A,B in A, both
A �B and A �B exist in obj(A).

Let A and C be additive categories. A functor T : A → C (of either variance)
is additive if, for all A,B ∈ obj(A) and all f, g ∈ HomA(A,B), we have

T (f + g) = Tf + Tg;

that is, the function HomA(A,B)→ HomC(TA, TB), given by f �→ Tf , is a homo-
morphism of abelian groups.

Exercise C-4.6 on page 344 says that neither Groups nor ComRings (see
Example B-4.1 in Part 1) is a pre-additive category; hence, neither is additive.

It is easy to see, when A is an additive category, that both Hom functors
HomA(X, ) : A → Ab and HomA( , Y ) : A → Ab are additive. Both RMod
and ModR are additive categories, and Theorem B-4.80 in Part 1 shows that
X ⊗R − : R Mod→ Ab and −⊗R Y : ModR → Ab are additive functors.

That finite coproducts and products coincide for modules is a special case of
a more general fact: finite products and finite coproducts coincide in all additive
categories. Note that Exercise C-4.1 on page 344 below says that if T is an additive
functor, then T (0) = 0, where 0 is either a zero morphism or a zero object.

Lemma C-4.1. Let C be an additive category, and let M,A,B ∈ obj(C). Then
M ∼= A�B (their product) if and only if there are morphisms i : A→M , j : B →M ,
p : M → A, and q : M → B such that

pi = 1A, qj = 1B, pj = 0, qi = 0, and ip+ jq = 1M .

Moreover, A �B is also a coproduct with injections i and j, and so

A �B ∼= A �B.
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Proof. The proof of the first statement is a variation of the proof of Proposi-
tion B-2.17 in Part 1, and the proof of the second statement is a variation of the
proof of Proposition B-4.6 in Part 1; both proofs here are left to the reader. The
last statement holds because two coproducts of A and B (here A � B and A � B)
must be isomorphic. •

If A and B are objects in an additive category, then A � B ∼= A � B; their
common value, denoted by

A⊕B,

is called their direct sum (or biproduct).

Addition of homomorphisms in Ab can be described without elements, as we
saw on page 302. In RMod, define the diagonal Δ: A→ A⊕A by Δ: a �→ (a, a);
dually, the codiagonal ∇ : B ⊕ B → B is defined by ∇ : (b, b′) �→ b + b′. If
f, g : A→ B, then we saw, on page 302 that

∇(f ⊕ g)Δ = f + g.

As usual, the advantage of definitions given in terms of maps (rather than in terms
of elements) is that they can be recognized by functors. Diagonals and codiagonals
can be defined and exist in additive categories.

Definition. Let A be an additive category. If A ∈ obj(A), then the diagonal
ΔA : A → A ⊕ A is the unique morphism with pΔA = 1A and qΔA = 1A, where
p, q are projections of the direct product:

A

A⊕A

p

����������

q
���

��
��

��
��

A

1A

��








ΔA��	 	 	 	 	 	 	

1A����
��
��
��

A

If B ∈ obj(A), then the codiagonal ∇B : B⊕B → B is the unique morphism with
∇Bi

′ = 1B and ∇Bj
′ = 1B , where i′, j′ are injections of the direct sum:

B

i′

�����
��
��
�� 1B

���
��

��
��

�

B ⊕B
∇B ��							 B

B
j′

  ��������� 1B

����������

The reader should check that these definitions, when specialized to RMod, give
the original diagonal and codiagonal homomorphisms.

Lemma C-4.2. If A is an additive category and f, g ∈ HomA(A,B), then

∇B(f ⊕ g)ΔA = f + g.
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Proof. Let p, q : A⊕A→ A be projections, and let i, j : A→ A⊕A and i′, j′ : B →
B ⊕B be injections. We compute

∇B(f ⊕ g)ΔA = ∇B(f ⊕ g)(ip+ jq)ΔA

= ∇B(f ⊕ g)(ipΔA + jqΔA)

= ∇B(f ⊕ g)(i+ j) (because pΔA = 1A = qΔA)

= ∇B(f ⊕ g)i+∇B(f ⊕ g)j

= ∇Bi
′f +∇Bj

′g (Exercise B-4.86 on page 522 in Part 1)

= f + g (because ∇Bi
′ = 1B = ∇Bj

′). •

Definition. A functor T : A → B between additive categories preserves finite
direct sums if, for all A,B ∈ obj(A), whenever A ⊕ B is a direct sum with
projections p, q and injections i, j, then TA⊕ TB is a direct sum with projections
Tp, Tq and injections Ti, T j.

Recall Exercise B-4.86 on page 522 in Part 1: if i, j : A→ A⊕A and i′, j′ : B →
B ⊕ B are injections and f, g : A → B, then f ⊕ g : A⊕ A → B ⊕ B is the unique
map completing the coproduct diagram

A

i

����
��
��
�� i′f

!!�
��

��
��

��

A⊕A
f⊕g �� B ⊕B.

A

j

		��������� j′g

""���������

It follows that if T preserves finite direct sums, then T (f ⊕ g) = Tf ⊕ Tg.

Proposition C-4.3. A functor T : A → B between additive categories is additive
if and only if T preserves finite direct sums.

Proof. If T is additive, then T preserves finite direct sums, by Lemma C-4.1.

Conversely, let T preserve finite direct sums. If f, g : A→ B, then

T (f + g) = T
(
∇B(f ⊕ g)ΔA

)
(by Lemma C-4.2)

= (T∇B)T (f ⊕ g)(TΔA)

= ∇TBT (f ⊕ g)ΔTA

= ∇TB(Tf ⊕ Tg)ΔTA (Exercise B-4.86 on page 522 in Part 1)

= Tf + Tg. •

We can describe kernels and cokernels categorically. We have seen, in Exam-
ples B-4.9 and B-4.12 in Part 1, that kernels in Ab are pullbacks and cokernels
in Ab are pushouts. Thus, kernel and cokernel in Ab are solutions to universal
mapping problems, and we now consider them in additive categories (where zero
morphisms exist).
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Let A be an additive category, let f : A→ B in A, and consider the universal
mapping problem illustrated below on the left: if fr = 0, then there exists a unique
θ : X → K with iθ = r:

X

θ
���
�
�

r
���

��
��

��
�

0

##��
���

���
���

���

K
i

�� A
f

�� B

and B

0
##��

���
���

���
���
g �� C

π ��

s

���
��

��
��

� Q

ψ

���
�
�

Y.

Denote a solution by (K, i). Dually, if g : B → C, consider the universal map-
ping problem illustrated above on the right: if sg = 0, then there exists a unique
ψ : Q→ Y with ψπ = s. Denote a solution by (Q, π).

As usual, solutions to universal mapping problems, when they exist, are only
unique to isomorphism. For example, suppose that (K ′, i′) is another solution posed
by the kernel of f : A→ B. The morphisms θ′ and θ satisfy θθ′ = 1K′ and θ′θ = 1K

K

θ
�� i ���

��
��

��
�

0

##��
���

���
���

���

K ′
i′

��

θ′

��

A
f

�� B

Figure C-4.1. Uniqueness of kernel.

(for example, use uniqueness in a similar diagram in which K ′ = K and i′ = i),
and hence are isomorphisms. Thus, i′ = iθ, which defines an equivalence relation
on the family of all such morphisms.

Definition. Let A be an additive category. If f : A→ B in A, then its kernel is
the equivalence class

ker f = [i]

of the equivalence relation illustrated in Figure C-4.1: i ∼ i′ if i′ = iθ, where
θ : domain(i′) ∼= domain(i) is an isomorphism.

Similarly, if g : B → C, then its cokernel is the equivalence class coker g = [π],
where if π′ ∈ [π], then π = ψπ′.

We have just described kernels and cokernels as equivalence classes of mor-
phisms, but this is not as strange as it appears. We have written a solution to
the universal problem posed by kernels as (K, i), but K = domain(i) is redundant;
Hom sets in a category are pairwise disjoint, and so the morphisms i have unique
domains. Similarly, the equivalence class [π] determines its target Q.

Let us compare the categorical definitions of kernel and cokernel with the fa-
miliar definitions in Ab. If f : A → B is a homomorphism, then ker f is usually
defined as the subgroup K = {a ∈ A : f(a) = 0} of A; if i : K → A is the inclusion,
then [i] = ker f in Ab (see Exercise B-4.10 on page 458 in Part 1). Similarly, if
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g : B → C, then the quotient C/ im g = target(π) and [π] = coker g is the coker-
nel in Ab, where π : C → C/ im g is the natural map (we will soon define image
in A). Choosing a favorite representative of an equivalence class is quite natural.
For example, we defined a gcd of two elements in a PID R as a common divisor
d ∈ R such that c | d for every common divisor c. When R = Z, we chose d to
be nonnegative; when R = k[x] for a field k, we chose d to be monic. To sum up,
kernels and cokernels in additive categories A are equivalence classes of morphisms.
However, a particular additive category (e.g., A = Ab) may equip its objects with
more data, and this extra information may enable us to select a special morphism
(e.g., an inclusion or a natural map) to represent a kernel or cokernel. In Groups,
kernels are certain subgroups, and categorical kernels are defined as (equivalence
classes) of inclusions of such subgroups.

Exercises

∗ C-4.1. Let A and C be additive categories. If T : A → C is an additive functor, prove
that T (0) = 0, where 0 is either a zero morphism or a zero object.

Hint. If Z is a zero object, then its identity 1Z is a zero morphism.

C-4.2. If C is an additive category with zero object 0, prove that the unique morphism
A → 0 (where A ∈ obj(C)) and the unique morphism 0 → A are the identity elements of
the abelian groups HomC(A, 0) and HomC(0, A).

∗ C-4.3. If A is an additive category and A ∈ obj(A), prove that EndA(A) = HomA(A,A)
is a ring with composition as product.

∗ C-4.4. In any category having a zero object, prove that every kernel is a monomorphism
and, dually, every cokernel is an epimorphism.

∗ C-4.5. Let C be an additive category and let S be a subcategory. Prove that S is an
additive category if S is full, contains a zero object of C, and, for all A,B ∈ obj(S), the
coproduct A �B and the product A �B in C lie in S.

∗ C-4.6. Prove that neither Groups nor ComRings is an additive category.

Hint. Use Lemma C-4.1.

C-4.2. Abelian Categories

Abelian categories, which generalize the categories RMod and ModR of modules,
are the proper setting for doing homological algebra.

We have been reluctant to discuss injections and surjections in categories; after
all, morphisms in a category need not be functions. On the other hand, it is often
convenient to have them.

Definition. A morphism f : A→ B in a (not necessarily additive) category C is a
monomorphism1 (or is monic) if f can be canceled from the left; that is, for all

1A useful notation for a monomorphism A → B is A
B, while a notation for an epimor-
phism B → C is B�C.
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objects X and all morphisms h, k : X → A, we have fh = fk implies h = k,

X
h

⇒
k
A

f−→ B.

It is clear that f : A → B is monic if and only if, for all objects X in C, the
induced map f∗ : Hom(X,A)→ Hom(X,B) is an injection in Sets. In an additive
category, Hom(X,A) and Hom(X,B) are abelian groups, and so f is monic if and
only if fh = 0 implies h = 0. Exercise C-4.7 on page 357 shows that monomor-
phisms and injections coincide in Sets, R Mod, and Groups. Even in a category
whose morphisms are actually functions, however, monomorphisms need not be
injections (see Exercise C-4.16 on page 358).

Here is the dual definition.

Definition. A morphism g : B → C in a (not necessarily additive) category C is
an epimorphism (or is epic) if g can be canceled from the right; that is, for all
objects Y and all morphisms u, v : C → Y , we have ug = vg implies u = v,

B
g−→ C

u

⇒
v
Y.

It is clear that g : B → C is epic if and only if, for all objects Y in C, the induced
map g∗ : Hom(C, Y )→ Hom(B, Y ) is an injection in Sets. In an additive category,
Hom sets are abelian groups, and so g is epic if and only if ug = 0 implies u = 0.
Exercise C-4.7 on page 357 shows that epimorphisms and surjections coincide in
Sets and in R Mod. Every surjective homomorphism in Groups is epic, but we
must be clever to show this (Exercise C-4.11 on page 358). Even in a category
whose morphisms are actually functions, epimorphisms need not be surjections.
For example, if R is a domain, then the ring homomorphism g : R → Frac(R),
given by g : r �→ r/1, is an epimorphism in ComRings: if A is a commutative ring
and u, v : Frac(R) → A are ring homomorphisms agreeing on R, then u = v. In
particular, the inclusion Z→ Q is epic in ComRings.

Proposition C-4.4. Let f : A → B and g : B → C be morphisms in an additive
category A.

(i) If ker f exists, then f is monic if and only if ker f = [0].

(ii) Dually, if coker g exists, then g is epic if and only if coker g = [0].

Proof.

(i) We refer to the diagrams in the definitions of kernel and cokernel.
Let ker f = [i] = [0], where i : K → A. If h : X → A satisfies fh = 0,

then the universal property of kernel provides a morphism θ : X → K with
h = iθ = 0 (because i = 0). Hence, f is monic.

Conversely, if f is monic, consider

K
i
⇒
0
A

f−→ B.

Since fi = 0 = f0, we have i = 0. Therefore, ker f = [0].

(ii) The proof for epimorphism and coker is dual. •
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The converse of Proposition C-4.5 is true in abelian categories, which are ad-
ditive categories in which a reasonable notion of exactness can be defined. They
are so called because of their resemblance to Ab. These are the most interesting
categories for homological algebra, for exactness and homology can be defined in
them.

Definition. A category A is an abelian category if it is an additive category
such that

(i) every morphism has a kernel and a cokernel;

(ii) every monomorphism is a kernel and every epimorphism is a cokernel.

In more detail, axiom (i) says that if f is a morphism in A, then ker f and
coker f exist in A. Axiom (ii) says that if f is monic, then there is a morphism i
in A with [i] = ker f ; similarly, if g is epic, then there is a morphism π in A with
[π] = coker g.

Proposition C-4.5. Let A be an abelian category.

(i) A morphism f is a monomorphism if and only if ker f = [0], and a morphism
g is an epimorphism if and only if coker f = [0].

(ii) If [i] = ker f , then i is a monomorphism, and if [π] = coker g, then π is an
epimorphism.

Proof.

(i) Immediate from Proposition C-4.4, for kernels and cokernels always exist in
abelian categories.

(ii) Suppose that X
h−→ K

i−→ A and ih = 0. Since ih = 0, there is a unique
θ : X → K with iθ = ih = 0. Obviously θ = 0 satisfies this equation, and so
uniqueness gives h = θ = 0. Therefore, (i) gives i monic.

A dual argument shows that cokernels are comprised of epimorphisms.
•

Once we define im f in an abelian categoryA, we will be able to define exactness
and homology in A. We look first at a homomorphism f : A → B in Ab; now
I = im f ⊆ B makes sense in Ab. Indeed, if B/I = Q, then the natural map π is a
homomorphism B → Q whose kernel is I. In categorical language, coker f = [π] (if
π′ ∈ [π], then π = ψπ′). Thus, kerπ = I in Ab; that is, I = im f = ker(coker f).
Figure C-4.2 is the picture with Q = B/I.

Definition. Let f : A→ B be a morphism in an abelian category. Then the image
of f is

im f = [j] = ker(coker f),

where I = domain(j) ∈ ker(coker f) and j : I → B.
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A

θ

��

f

��















I
j

�� B
π ��

s
��













 Q

ψ

��
Y

Figure C-4.2. Image diagram.

We can now define exactness in an abelian category.

Definition. A sequence A
f−→ B

g−→ C in an abelian category A is exact if

ker g = im f.

In terms of morphisms, if ker g = [i] and im f = [j], then we are saying [i] = [j].
We can picture this. Note that both j and iθ are morphisms I → B. Note also
that ker g = [i], where i : K → B.

A

η

��

f

���
��

��
��

�

I
j ��

θ

��

B
π ��

g
��













 Q

ψ

��
K

i

����������
C

Figure C-4.3. Exactness diagram.

Viewing this diagram in Ab, we have im θη ⊆ K = ker g, so that ker g/ im f
can be regarded as coker(ker θη).

And now homology can be defined in any abelian category.

Definition. If A
f−→ B

g−→ C are morphisms in an abelian category A with
gf = 0, then homology at B is

H = coker(ker θη),

where η : A→ I and θ : I → K (see Figure C-4.3).

Remark. There is another (equivalent) way to view exactness. If f : A → B is a
morphism in an abelian category, then f = me, where m = ker(coker f) is monic
and e = coker(ker f) is epic. In down-to-earth language, f is the composite of its
image e (epic) followed by its inclusion m (monic). Actually, this is the diagram
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that usually accompanies the statement of the First Isomorphism Theorem,

A
f ��

e 

�
��

��
��

� B

im f

m

$$��������

Moreover, this factorization is unique in the following sense. If f = m′e′, where
m′ is monic and e′ is epic, then there is equality [m] = [m′] and [e] = [e′] (see
Mac Lane [144], Chapter VIII, Sections 1 and 3). In light of this, we may redefine
exactness of a sequence in an abelian category. If f = me and g = m′e′, where

m,m′ are monic and e, e′ are epic, then A
f−→ B

g−→ C is exact if and only if
[e] = [m′]. �

Projectives and injectives can be defined in any category, but the definitions
involve epimorphisms and monomorphisms. Of course, even in abelian categories,
projective or injective objects may not exist. But, if there exist enough projective
or injective objects in an abelian category, then we can use them to define derived
functors. In fact, we will see that the category of sheaves is an abelian category,
every sheaf has an injective resolution, and this will allow us to introduce sheaf
cohomology.

Definition. An object P in a category C is projective if, for every epic g : B → C
and every f : P → C, there exists h : P → B with f = gh:

P
h

�� 
 
 

f��
B

g
�� C

An object E in a category C is injective if, for every monic g : A→ B and every
f : A→ E, there exists h : B → E with f = hg:

E

A

f

��

g
�� B

h
  !
!
!

Recognizing which morphisms in general categories are monic or epic is too
difficult, and so we usually consider projective and injective objects only in abelian
categories where Proposition C-4.5 is available to help.

Remark. Abelian categories are self-dual in the sense that the dual of every
axiom in its definition is itself an axiom; it follows that if A is an abelian category,
then so is its opposite Aop. A theorem using only these axioms in its proof is true
in every abelian category; moreover, its dual is also a theorem in every abelian
category, and its proof is dual to the original proof. The categories R Mod and
ModR are abelian categories having extra properties; for example, R is a special
type of object. Module categories are not self-dual, and this explains why a theorem
and its dual, both of which are true in every module category, may have very
different proofs. For example, the statements “every module is a quotient of a
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projective module” and “every module can be imbedded in an injective module”
are dual and are always true. The proofs are not dual because these statements are
not true in every abelian category. Exercise C-4.15 below shows that the abelian
category of all torsion abelian groups has no nonzero projectives and the abelian
category of all finitely generated abelian groups has no nonzero injectives. �

Recall that a category S is a subcategory of a category C if

(i) obj(S) ⊆ obj(C);

(ii) HomS(A,B) ⊆ HomC(A,B) for all A,B ∈ obj(S);

(iii) if f ∈ HomS(A,B) and g ∈ HomS(B,C), the composite gf ∈ HomS(A,C) is
equal to the composite gf ∈ HomC(A,C);

(iv) if A ∈ obj(S), then 1A ∈ HomS(A,A) is equal to 1A ∈ HomC(A,A).

A subcategory S of a category C is full if HomS(A,B) = HomC(A,B) for all
A,B ∈ obj(S).

It is easy to see that the inclusion of a subcategory is a functor. The subcategory
Ab is a full subcategory of Groups, but if we regard Top as a subcategory of Sets,
then it is not a full subcategory, for there are functions between spaces that are not
continuous.

Example C-4.6.

(i) For every ring R, both RMod and ModR are abelian categories. In partic-
ular, ZMod = Ab is abelian. If S is a ring, then the category of bimodules

RModS is abelian.

(ii) The full subcategory G of Ab of all finitely generated abelian groups is an
abelian category, as is the full subcategory of all torsion abelian groups.

(iii) The full subcategory of Ab of all torsion-free abelian groups is not an abelian
category, for there are morphisms having no cokernel; for example, the inclu-
sion 2Z→ Z has cokernel Z2, which is not torsion-free.

(iv) Quillen introduced a more general notion that is adequate for algebraic K-
theory.

Definition. A category E is an exact category if E is a full subcategory
of some abelian category A and if E is closed under extensions ; that is, if
0 → E′ → A → E′′ → 0 is an exact sequence in A and if E′, E′′ ∈ obj(E),
then A ∈ obj(E).

Every abelian category is an exact category. The full subcategory of Ab
consisting of all torsion-free abelian groups is an exact category, but it is not
an abelian category. There is another, similar definition of exact category due
to Buchsbaum (see Cartan–Eilenberg [36], Appendix).

(v) The category Groups is not abelian (it is not even additive). If S ⊆ G is
a nonnormal subgroup of a group G, then the inclusion i : S → G has no
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cokernel. However, if K is a normal subgroup of G with inclusion j : K → G,
then coker j does exist. Thus, axiom (ii) in the definition of abelian category
essentially says that every “subobject” in an abelian category is normal. �

The coming discussion will give several more examples of abelian categories.

Proposition C-4.7. Let S be a full subcategory of an abelian category A. If

(i) a zero object in A lies in S,
(ii) for all A,B ∈ obj(S), the direct sum A⊕B in A lies in S,
(iii) for all A,B ∈ obj(S) and all f : A→ B, both ker f and coker f lie in S,

then S is an abelian category.

Remark. When we say that a morphism i : K → A in A lies in a subcategory S,
we assume that its domain K and target A lie in obj(S). �

Proof. That S is a full subcategory of A satisfying (i) and (ii) gives S additive,
by Exercise C-4.5 on page 344.

If f : A → B is a morphism in S ⊆ A, then ker f and coker f lie in A, and
hence they lie in S, by (iii). Thus, axiom (i) in the definition of abelian category
holds; it remains to verify axiom (ii).

Let u be a monomorphism in S; we have just seen that keru lies in S. Since
u is monic, Proposition C-4.4 gives keru = 0 in S. By hypothesis, keru is the
same in A as in S, so that keru = 0 in A; hence, Proposition C-4.5 says that u is
a monomorphism in A. As A is abelian, we have u = ker v for some v : A → B.
By hypothesis, ker v lies in S; that is, u = ker v. The dual argument shows that
epimorphisms in S are cokernels. Therefore, S is abelian. •

We defined functor categories in Example B-4.97 in Part 1. If C is a cate-
gory and S is a small category (i.e., obj(S) is a set), then CS is the category whose
objects are the (covariant) functors S → C and whose morphisms are natural trans-
formations.

Hom sets in a functor category are often denoted by Nat( , ). The next
result shows that Nat(F,G) is a set when C is an arbitrary category, G : C → Sets,
A is an object in C, and F = HomC(A, ).

Theorem C-4.8 (Yoneda Lemma). Let C be a category, let A ∈ obj(C), and let
G : C → Sets be a covariant functor. There is a bijection

y : Nat(HomC(A, ), G)→ GA

given by y : τ �→ τA(1A). Therefore, Nat(HomC(A, ), G) is a set.

Proof. If τ : HomC(A, ) → G is a natural transformation, then y(τ ) = τA(1A)
lies in the set GA, for τA : HomC(A,A)→ G(A). Thus, y is a well-defined function.
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For each B ∈ obj(C) and ϕ ∈ HomC(A,B), there is a commutative diagram

HomC(A,A)
τA ��

ϕ∗

��

GA

Gϕ

��
HomC(A,B)

τB
�� GB,

so that

(Gϕ)τA(1A) = τBϕ∗(1A) = τB(ϕ1A) = τB(ϕ).

To see that y is an injection, suppose that σ : HomC(A, )→ G is another natural
transformation. Then σB(ϕ) = (Gϕ)σA(1A). Hence, if σA(1A) = τA(1A), then
σB = τB for all B ∈ obj(C), and hence σ = τ .

To see that y is a surjection, take x ∈ GA. For B ∈ obj(C) and ψ ∈
HomC(A,B), define

τB(ψ) = (Gψ)(x)

(note that Gψ : GA → GB, so that (Gψ)(x) ∈ GB). We claim that τ is a natural
transformation; that is, if θ : B → C is a morphism in C, then the following diagram
commutes:

HomC(A,B)
τB ��

θ∗

��

GB

Gθ

��
HomC(A,C)

τC
�� GC.

Going clockwise, we have (Gθ)τB(ψ) = GθGψ(x); going counterclockwise, we have
τCθ∗(ψ) = τC(θψ) = G(θψ)(x). Since G is a functor, however, G(θψ) = GθGψ;
thus, τ is a natural transformation. Now y(τ ) = τA(1A) = G(1A)(x) = x, and so
y is a bijection. The last statement follows from GA ∈ obj(Sets); that is, GA is a
set. •

Certainly the Hom functor is one of the most important functors. We are going
to apply the Yoneda Lemma when G = HomC(B, ).

Definition. If C is a category, then a covariant functor F : C → Sets is repre-
sentable if F is naturally isomorphic to HomC(A, ) for some object A ∈ obj(C).

The next theorem says that if a functor is representable, then the object A
is essentially unique. Note first that if τ : HomC(A, ) → HomC(B, ) is a
natural transformation, then τA : HomC(A,A) → HomC(B,A), so that τA(1A) ∈
HomC(B,A) and τA(1A) : B → A.

Lemma C-4.9. Let C be a category with objects A and B, let τ : HomC(A, )→
HomC(B, ) be a natural transformation, and write

ψ = τA(1A) : B → A.

(i) For every C ∈ obj(C), we have τC = ψ∗ : HomC(A,C) → HomC(B,C); that
is, ψ∗ : ϕ �→ ϕψ.

(ii) The morphism ψ is unique: if τC = θ∗, then θ = ψ.
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(iii) If HomC(A, )
τ−→ HomC(B, )

σ−→ HomC(B
′, ) are natural transforma-

tions, τC = ψ∗, and σC = η∗, then for all C ∈ obj(C) we have

(στ )C = (ψη)∗.

Proof.

(i) The Yoneda Lemma says, for all C ∈ obj(C) and all ϕ ∈ HomC(A,C), that
τC(ϕ) = ϕ∗(ψ). But ϕ∗(ψ) = ϕψ = ψ∗(ϕ).

(ii) Uniqueness follows from the Yoneda function y being an injection.

(iii) For every C ∈ obj(C), there are, by (ii), unique morphisms ψ ∈ HomC(B,A)
and η ∈ HomC(B

′, B) with

τC(ϕ) = ψ∗(ϕ) and σC(ϕ
′) = η∗(ϕ′)

for all ϕ ∈ HomC(A,C) and ϕ′ ∈ HomC(B,C). By definiton, (στ )C = σCτC ,
and so

(στ )C(ϕ) = σC(ψ
∗(ϕ)) = η∗ψ∗(ϕ) = (ψη)∗(ϕ). •

Theorem C-4.10. Let C be a category with objects A and B. If τ : HomC(A, )→
HomC(B, ) is a natural isomorphism, then A ∼= B.

Proof. Since τ is a natural isomorphism, there exists a natural transformation
σ : HomC(B, ) → HomC(A, ) with στ and τσ the identity natural transforma-
tions of HomC(B, ) and HomC(B, ), respectively. By Lemma C-4.9, there are
morphisms ψ : B → A and η : A→ B with τC = ψ∗ and σC = η∗ for all C ∈ obj(C).
Moreover, part (iii) of the lemma gives

τσ = (ηψ)∗ = 1∗B and στ = (ψη)∗ = 1∗A.

Part (ii) of Lemma C-4.9, uniqueness, gives ηψ = 1B and ψη = 1A, so that η : A→
B is an isomorphism. •

Here are more examples of abelian categories.

Proposition C-4.11. If A is an abelian category and S is a small category, then
the functor category AS is an abelian category.

Proof. We assume that S is small to guarantee that AS is a category (Exam-
ple B-4.97 in Part 1).

It is straightforward to check that AS , with the following definitions, is an
additive category. The zero object in AS is the constant functor with value 0, where
0 is a zero object in A. If τ, σ ∈ Hom(F,G) = Nat(F,G), where F,G : S → A are
functors, define τ +σ : F → G by (τ+σ)S = τS+σS : FS → GS for all S ∈ obj(S).
Finally, define F ⊕G by (F ⊕G)S = FS ⊕GS.

Let τ : F → G be a natural transformation. For each object S in S, there is a
morphism τS : F → GS in A. Since A is abelian, ker(τS) = [ιS ] exists; there is an
object KS and a morphism ιS : KS → FS solving the universal mapping problem
for kernel, part of which says there is a commutative diagram involving τS and ιS .
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In the following commutative diagram with exact rows, where f : S → S′ in S,
there is a unique Kf : KS → KS′ making the augmented diagram commute:

0 �� KS
ιS ��

Kf

���
�
� FS

τS ��

Ff

��

GS

Gf

��
0 �� KS′

ιS′
�� FS′

τS′
�� GS′.

It follows that [i] = (iS)S∈obj(A) determines a functor K ∈ obj(AS) with [i] =
ker(τ ). The dual construction displays coker(τ ). The reader may check that K is
a functor, ι : K → F is a natural transformation, and ker τ = [ι]; dually, cokernels
exist in AS . Verification of the various details is routine. •

Corollary C-4.12. If A is an abelian category and U is a small category, then a
sequence

0→ F ′ τ−→ F
σ−→ F ′′ → 0

is exact in AU if and only if

0→ F ′(U)
τU−→ F (U)

σU−→ F ′′(U)→ 0

is exact in A for every U ∈ obj(U).

Proof. The proof of Proposition C-4.11 describes kerσ and im τ . •

Here is a special case of Corollary C-4.12. Recall that the topology U on a
space X, being a poset under inclusion, can be viewed as a category. Following
Mac Lane, we denote U by

Open(X).

Definition. A presheaf over X in Ab is a contravariant functor Open(X) →
Ab. The category of presheaves of abelian groups over a space X is denoted by

pSh(X,Ab) = AbOpen(X)op .

Let P and P ′ be presheaves (of abelian groups) over a space X, with restriction
maps ρVU : P(V ) → P(U) and τVU : P ′(V ) → P ′(U) whenever U ⊆ V are open. A
presheaf map ϕ : P → P ′ is a natural transformation; that is, ϕ is a one-parameter
family of morphisms ϕU : P(U) → P ′(U), indexed by U ∈ Open(X), such that
there is a commutative diagram whenever U ⊆ V :

P(V )
ϕV ��

ρV
U ��

P ′(V )

τ V
U��

P(U)
ϕU

�� P ′(U).

Corollary C-4.13. For every topological space X, the category

pSh(X,Ab)

of all presheaves over X is an abelian category.

Proof. This is a special case of Proposition C-4.11. •
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Corollary C-4.14. A sequence of presheaves over X in Ab

0→ P ′ τ−→ P σ−→ P ′′ → 0

is exact if and only if

0→ P ′(U)
τU−→ P(U)

σU−→ P ′′(U)→ 0

is exact in Ab for every U ∈ obj(Open(X)).

Proof. Corollary C-4.12 applies, for contravariant functors become covariant when
we exchange Open(X) with its opposite category. •

For any ring R, we have defined the category RComp having objects all com-
plexes, that is, sequences of left R-modules

· · · → An+1
dn+1−→ An

dn−→ An−1 → · · ·
for which the composite of adjacent morphisms is 0,

dndn+1 = 0 for all n ∈ Z,

and whose morphisms are chain maps.

We generalize this definition by replacing RMod by any abelian category A.
Define the category of complexes over A,

Comp(A),
to be the category whose objects are complexes (whose terms An and differentia-
tions dn lie in A) and whose morphisms are chain maps.

We can realize Comp(A) as a full subcategory of the functor category AS

(where S = PO(Z)op is the opposite category of PO(Z), the partially ordered set
Z with the usual order).2 We saw, in Exercise C-3.21 on page 261, that the objects of

APO(Z)op are contravariant functors, namely, sequences A = · · ·An+1
dn+1−→ An

dn−→
An−1 · · · in A, and morphisms A→ B, where B = · · ·Bn+1

δn+1−→ Bn
δn−→ Bn−1 · · · ,

are natural transformations, namely, sequences (fn : An → Bn)n∈Z giving commu-
tative diagrams, i.e., chain maps. Thus, every complex is an object in AS , every
chain map is a morphism, and Comp(A) is the full subcategory of AS generated
by the complexes over A.

Theorem C-4.15. If A is an abelian category, then Comp(A) is also an abelian
category.

Proof. Since PO(Z)op is a small category (i.e., obj(PO(Z)op) is a set), Proposi-
tion C-4.11 says that the functor category APO(Z)op is abelian. Proposition C-4.7
now says that the full subcategory Comp(A) is abelian if it satisfies several condi-
tions.

(i) The zero complex is the complex each of whose terms is 0.

(ii) The direct sum (C, d) ⊕ (C′, d′) is the complex whose nth term is Cn ⊕ C ′
n

and whose nth differential is dn ⊕ d′n.

2A contravariant functor C → D is the same thing as a covariant functor Cop → D. Of course,
n− 1 ≤ n in Z, so that a contravariant functor d• : Z → A has dn : An → An−1 for all n ∈ Z.
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(iii) If f = (fn) : (C, d)→ (C′, d′) is a chain map, define

ker f =→ ker fn+1
δn+1−→ ker fn

δn−→ ker fn−1 →,

where δn = dn| ker fn, and

im f =→ im fn+1
kn+1−→ im fn

kn−→ im fn−1 →,

where kn = d′n| im fn.

Since these complexes lie in the full subcategory Comp(A), Proposition C-4.7
applies to prove the theorem. •

Sheaves will be introduced in the next sections, and we shall prove that they,
too, form an abelian category.

We end this section by describing the Full Imbedding Theorem, which says, for
all intents and purposes, that working in abelian categories is the same as working
in Ab. The thrust of the next theorem is that it allows us to do diagram chasing
in abelian categories.

Definition. Let C,D be categories, and let F : C → D be a functor. Then F is
faithful if, for all A,B ∈ obj(C), the functions HomC(A,B) → HomD(FA,FB),
given by f �→ Ff , are injections; F is full if these functions are surjective.

IfA is an abelian category, then a functor F : A → Ab is exact ifA′ → A→ A′′

exact in A implies FA′ → FA→ FA′′ exact in Ab.

Theorem C-4.16 (Freyd–Haron3–Lubkin).

If A is a small abelian category, then there is a covariant faithful exact functor
F : A → Ab.

Proof. See Freyd [69], Chapter 7, or Mitchell [157], p. 101. •

This imbedding theorem can be improved so that its image is a full subcategory
of Ab.

Theorem C-4.17 (Mitchell’s Full Imbedding Theorem). If A is a small
abelian category, then there is a covariant full faithful exact functor F : A → Ab.

Proof. Mitchell [157], p. 151. •

In [157], Mitchell writes, “Let us say that a statement about a diagram in an
abelian category is categorical if it states that certain parts of the diagram are or
are not commutative, that certain sequences in the diagram are or are not exact,
and that certain parts of the diagram are or are not (inverse) limits or (direct)
limits. Then we have the following metatheorem.”

3Katie Guest, Karen Langdon, and Sophie Quantrell, librarians at the University of Oxford,
were able to locate the (unpublished) 1960 Oxford thesis of Haron, Problems in Homological
Algebra.
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Metatheorem. Let A be a (not necessarily small) abelian category.

(i) Let Σ be a statement of the form p implies q, where p and q are categorical
statements about a diagram in A. If Σ is true in Ab, then Σ is true in A.

(ii) Let Σ′ be a statement of the form p implies q, where p is a categorical state-
ment concerning a diagram in A, while q states that additional morphisms
exist between certain objects in the diagram and that some categorical state-
ment is true of the extended diagram. If the statement can be proved in Ab
by constructing the additional morphisms through diagram chasing, then the
statement is true in A.

Proof. See Mitchell [157], p. 97. •

Part (i) follows from the Freyd–Haron–Lubkin Imbedding Theorem. To illus-
trate, the Five Lemma is true in Ab, as is the 3 × 3 Lemma (Exercise B-1.58 on
page 310 in Part 1), and so they are true in every abelian category.

Part (ii) follows from Mitchell’s Full Imbedding Theorem. To illustrate, recall
Proposition B-1.46 in Part 1: given a commutative diagram of abelian groups with
exact rows,

A′ i ��

f

��

A
p ��

g

��

A′′ ��

h

���
�
� 0

B′
j

�� B
q

�� B′′ �� 0,

there exists a unique map h : A′′ → B′′ making the augmented diagram commute.
Suppose now that the diagram lies in an abelian category A. Applying the imbed-
ding functor F : A → Ab of the Full Imbedding Theorem, we have a diagram in
Ab as above, and so there is a homomorphism in Ab, say, h : FA′′ → FB′′, mak-
ing the diagram commute: F (q)F (g) = hF (p). Since F is a full imbedding, there
exists η ∈ HomA(A

′′, B′′) with h = F (η); hence, F (qg) = F (q)F (g) = hF (p) =
F (η)F (p) = F (ηp). But F is faithful, so that qg = ηp.

The following definition allows us to say when two categories are the same; it
will be discussed more thoroughly in Section C-4.6.

Definition. A functor F : C → D is an equivalence if there is a functor G : D → C,
called its inverse, such that GF and FG are naturally isomorphic to the identity
functors 1C and 1D, respectively. When C and D are additive categories, we will
further assume that an equivalence F : C → D is an additive functor.

Proposition C-4.18. A functor F : C → D is an equivalence if and only if

(i) F is full and faithful: i.e., the function HomC(C,C
′) → HomD(FC, FC ′),

given by f �→ Ff , is a bijection for all C,C ′ ∈ obj(C);
(ii) every D ∈ obj(D) is isomorphic to FC for some C ∈ obj(C).
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Proof. Assume that F is an equivalence. Given a morphism f : C → C ′ in C, there
is a commutative diagram

GFC
τC ��

GFf

��

C

f

��
GFC ′

τC′
�� C ′.

Since τ is a natural isomorphism, each τC is an isomorphism; hence,

f = τC′(GFf)τ−1
C .(1)

F is faithful: if f, f ′ ∈ HomC(C,C
′) and Ff ′ = Ff in HomD(FC, FC ′), then

f ′ = τC′(GFf ′)τ−1
C = τC′(GFf)τ−1

C = f.

Similarly, FG ∼= 1D implies that G is faithful. We have proved (i).

We claim that F is full. If g : FC → FC ′, define a morphism f = τC′(Gg)τ−1
C .

Now f = τC′(GFf)τ−1
C , by Eq. (1), so that GFf = Gg. Since G is faithful, we have

Ff = g. If F is an equivalence, then there exists a functor G : D → C with GF ∼= 1C
and FG ∼= 1D; let τ : GF → 1C and σ : FG → 1D be natural isomorphisms. For
each D ∈ obj(D), there is an isomorphism σD : FGD → D. Thus, if we define
C = GD, then FC ∼= D, which proves (ii).

Conversely, assume that F : C → D satisfies (i) and (ii). For each D ∈ obj(D),
part (ii) gives a unique C = CD ∈ obj(C) with D ∼= FCD; choose an isomorphism
hD : D → FCD. Define a functor G : D → C on objects by GD = CD. If g : D → D′

is a morphism in D, (i) gives a unique morphism f : CD → CD′ with Ff = hD′gh−1
D .

It is routine to check that G is a functor, GF ∼= 1C , and FG ∼= 1D. Therefore, F is
an equivalence. •

Note Exercise C-4.19 below. If A and B are equivalent categories, then A
abelian implies B abelian.

Exercises

∗ C-4.7. (i) Prove that a function is epic in Sets if and only if it is surjective and that a
function is monic in Sets if and only if it is injective.

(ii) Prove that an R-map is epic in RMod if and only if it is surjective and that an
R-map is monic in RMod if and only if it is injective.

(iii) Prove that every object in Sets is projective and injective.

∗ C-4.8. Let C be the category of all divisible abelian groups.

(i) Prove that the natural map Q → Q/Z is monic in C.

(ii) Conclude that C is a category in which monomorphisms and injections do not
coincide.

∗ C-4.9. Prove, in every abelian category, that the injections of a coproduct are monic and
the projections of a product are epic.
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∗ C-4.10. (i) Prove that every isomorphism in an additive category is both monic and
epic.

(ii) Let R be a domain that is not a field, and let ϕ : R → Frac(R) be given by
r 
→ r/1. In ComRings, prove that ϕ is both monic and epic but that ϕ is not an
isomorphism.

(iii) Prove that a morphism in an abelian category is an isomorphism if and only if it
is both monic and epic.

∗ C-4.11. (Eilenberg–Moore) Let G be a (possibly nonabelian) group.

(i) If H is a proper subgroup of a group G, prove that there exist a group L and
distinct homomorphisms f, g : G → L with f |H = g|H.
Hint. Define L = SX , where X denotes the family of all the left cosets of H in G
together with an additional element, denoted ∞. If a ∈ G, define f(a) = fa ∈ SX

by fa(∞) = ∞ and fa(bH) = abH. Define g : G → SX by g = γf , where γ ∈ SX

is conjugation by the transposition (H,∞).

(ii) Prove that a homomorphism ϕ : A → G, where A and G are groups, is surjective if
and only if it is an epimorphism in Groups.

C-4.12. Prove that every abelian category is an exact category in the sense of Quillen
(see Example C-4.6(iv)).

C-4.13. State and prove the First Isomorphism Theorem in an abelian category A.

∗ C-4.14. If A is an abelian category, prove that a morphism f = (fn) in Comp(A) (i.e., a
chain map) is monic (or epic) if and only if each fn is monic (or epic) in A.

∗ C-4.15. Let T be the full subcategory of Ab consisting of all torsion abelian groups.

(i) Prove that T is an abelian category having no nonzero projective objects, and
conclude that it is not equivalent to a category of modules.

(ii) If (Ti)i∈I is a (possibly infinite) family of torsion abelian groups, prove that their
categorical product ⊔i∈ITi exists in T .
Hint. Try the torsion subgroup of the product in Ab.

(iii) Prove that T ′, the abelian category of all finitely generated abelian groups, is an
abelian category that has no nonzero injectives.

∗ C-4.16. (i) Let C be the category of all divisible abelian groups. Prove that the natural
map Q → Q/Z is monic in C. Conclude that C is a category whose morphisms are
functions and in which monomorphisms and injections do not coincide.

(ii) Let Top2 be the category of all Hausdorff spaces. If D � X is a dense subspace of
a space X, prove that the inclusion i : D → X is an epimorphism. Conclude that
Top2 is a category whose morphisms are functions and in which epimorphisms and
surjections do not coincide.
Hint. Two continuous functions agreeing on a dense subspace of a Hausdorff space
must be equal.

C-4.17. Let S be a full subcategory of an abelian category A which satisfies the hypothe-

ses of Proposition C-4.7. Prove that if A
f−→ B

g−→ C is an exact sequence in S, then it
is an exact sequence in A.
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C-4.18. If F : A → B is an equivalence of abelian categories, prove that if 0 → A′ →
A → A′′ → 0 is an exact sequence in A, then 0 → FA′ → FA → FA′′ → 0 is an exact
sequence in B.

∗ C-4.19. Let A and B be additive categories, and let F : A → B be an additive functor.
Prove that if F is an equivalence and A is abelian, then B is abelian.

C-4.3. g-Sheaves

One of the main aims of this book is to prepare the reader to do more sophisticated
work in algebra, and sheaves are a fundamental tool in algebraic geometry. For
example, schemes are the modern generalization of varieties, and sheaves are an
essential ingredient in the very definition of scheme: just as topological manifolds
are constructed by gluing together coordinate patches, schemes are constructed by
gluing together sheaves.

At the beginning of his book [217], The Theory of Sheaves, Swan writes, “What
are sheaves good for? The obvious answer is that sheaves are very useful in proving
theorems.” He then lists interesting applications of sheaves to algebraic topology,
complex variables, and algebraic geometry, and concludes, “the importance of the
theory of sheaves is simply that it gives relations (quite strong relations, in fact)
between the local and global properties of a space.”

Covering spaces are geometric constructs in topology (we used an algebraic
version of them in Chapter C-1 to prove some nice theorems in group theory).
Recall that a covering space is a triple (E, p,X), where p : E → X is a continuous
surjection between topological spaces E and X, in which each x ∈ X has an open
neighborhood U such that p−1(U) =

⋃
i Σi, a disjoint union of open subsets Σi

of E with p|Σi : Σi → U a homeomorphism for each i. For example, (R, p, S1),
where S1 is the unit circle, is a covering space, where p : R → S1 is defined by
x �→ e2πix. Sheaves, which generalize covering spaces, share the same picture (see
Figure C-4.4).

Figure C-4.4. g-Sheaf.

Definition. A continuous surjective map p : E → X between topological spaces
E and X is called a local homeomorphism if, for each e ∈ E, there is an open
neighborhood Σ of e, called a sheet, with p(Σ) open in X and p|Σ: Σ → p(Σ) a
homeomorphism.
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A triple

G = (E, p,X),

where p : E → X is a local homeomorphism, is called a g-sheaf 4 of abelian
groups over X if

(i) the fiber p−1(x), denoted by Ex and called the stalk over x, is an abelian
group for each x ∈ X;

(ii) inversion ι : E → E, given by e �→ −e, and addition α : E +E → E, given by
(e, e′) �→ e+ e′, are continuous, where e, e′ lie in the same stalk Ex; that is,

(e, e′) ∈ E + E = {(e, e′) ∈ E × E : p(e) = p(e′)} =
⋃
x∈X

(Ex × Ex) ⊆ E × E.

Each of the ingredients of a g-sheaf has a name. The space E is called the
sheaf space (or étale space), X is called the base space, and the map p : E → X
is called the projection.

The meaning of continuity of inversion e �→ −e is clear, but we elaborate on
the definition of continuity of addition. Let (e, e′) ∈ E + E; if W ⊆ E is an open
set containing e + e′, then there exists an open set O ⊆ E × E containing (e, e′),
with α(O ∩ (E + E)) ⊆W .

The definition of g-sheaf can be modified so that its stalks lie in algebraic
categories other than Ab, such as RMod or ComRings. Of course, axiom (ii)
is modified so that all the algebraic operations are continuous. Even though most
results in this section hold in more generality, we assume throughout that stalks
are merely abelian groups.

Remark. A g-sheaf is reminiscent of a manifold. For example, the 2-sphere S2

can be viewed as a union of “patches”, each homeomorphic to R2. More formally,
there is a continuous map p : S2 → R2 with each patch homeomorphic to an open
disk in R2; that is, we may think of patches as sheets. The main difference between
manifolds and g-sheaves is that the fibers p−1(x) of a manifold need not have any
algebraic structure; in particular, they need not be abelian groups. �

Here are some examples of g-sheaves.

Example C-4.19.

(i) IfX is a topological space and G is a discrete topological abelian group, define
E = X ×G, and define p : E → X by p : (x, y) �→ x. If e = (x, y) ∈ E and V
is an open neighborhood of x, then Σ = V × {y} is an open neighborhood of
e (because {y} is open in G) and p|Σ: Σ → V = p(Σ) is a homeomorphism.
The triple G = (E, p,X) is called the constant g-sheaf at G. We denote

4In my homological algebra book [187], I used the term etale-sheaf, which is confusing, for
etale-sheaf (or sheaf space) is a standard term in algebraic geometry having a different definition.
I now use the term g-sheaf, where the letter g is to remind the reader of the adjective geometric.
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the constant g-sheaf at G by

G = Gg.

In particular, if G = {0}, then the constant g-sheaf {0}g is called the zero
g-sheaf.

(ii) If G is an abelian topological group and H is a discrete subgroup of G, then
(G, p,G/H) is a covering space, where p is the natural map.

(iii) Every covering space is a g-sheaf if its fibers are abelian groups.

(iv) The covering space (R, exp, S1) gives rise to an example of a g-sheaf which
is not a covering space, for its fibers are not abelian groups; for example,
(exp)−1( 12 ) is not a group because it does not contain the identity element 0

of R.5

(v) A vector bundle is a g-sheaf (E, p,X) with extra properties: there is a
field k and every stalk Ex is a finite-dimensional vector space over k; for each
sheet ΣU over an open set U , there is a commutative diagram

U × Ex

π ����
���

���
ϕU �� p−1(U)

p�����
���

�

U

where ϕU : U × Ex → p−1(U) is a homeomorphism and π is the projection
onto the first factor. It follows that all the stalks are isomorphic vector spaces;
their common dimension is call the rank of the vector bundle. A line bundle
is a vector bundle of rank 1.

(vi) If R is a commutative ring, its structure sheaf is (E, p, Spec(R)) whose
stalk Ep for a prime ideal p is the localization Rp, and p : E → Spec(R)
sends Rp �→ p ∈ Spec(R) (we discuss this example, along with localization, in
Chapter C-5 on commutative rings). In contrast to vector bundles, the stalks
are not isomorphic. The structure sheaf of R has base space Spec(R) with
the Zariski topology, sheaf space E =

⋃
p∈Spec(R)Rp suitably topologized,

and projection p : E → Spec(R) defined by p(e) = p for all e ∈ Rp. �

Here are some properties of g-sheaves.

Proposition C-4.20. Let G = (E, p,X) be a g-sheaf.

(i) The sheets form a base of open sets for E.

(ii) p is an open map.

(iii) Each stalk Ex is discrete.

(iv) (Gluing) Let (Ui)i∈I be a family of open subsets of X and, for (i, j) ∈ I × I,
define U(i,j) = Ui ∩ Uj. If (si : Ui → E)i∈I are continuous maps satisfying
si|U(i,j) = sj |U(i,j) for all (i, j) ∈ I× I, then there exists a unique continuous
s : U → E with s|Ui = fi for all i ∈ I.

5Every nonempty set is the underlying set of an abelian group, but the natural candidate
here would be a subgroup of R.
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(v) (Uniqueness) Let (Ui)i∈I be a family of open subsets of X, and let U =⋃
i∈I Ui. If s, s′ : U → E and s|Ui = s′|Ui for all i ∈ I, then s = s′.

Proof.

(i) Since, for each e ∈ E, there is a sheet Σ containing e, the sheaf space E is
the union of all the sheets: E =

⋃
Σ Σ. If U ⊆ E is open, then U ∩Σ is open

for every sheet Σ, and so U =
⋃

Σ(U ∩ Σ). But every open subset of a sheet
is also a sheet, and so U is a union of sheets; that is, the sheets comprise a
base for the topology of E.

(ii) If U ⊆ E is open, then p(U) =
⋃

Σ p(U ∩ Σ). But p(U ∩ Σ) is open in X,
because p is a local homeomorphism; thus, p(U) is open, for it is a union of
open sets.

(iii) Let e ∈ Ex, and let Σ be a sheet containing e. If e′ ∈ Ex and e′ �= e, then
e′ /∈ Σ, for p|Σ is injective and p(e′) = x = p(e). Therefore, Σ ∩ Ex = {e},
and so Ex is discrete.

(iv) If x ∈ U , then x ∈ Ui for some i; define s : U → E by s(x) = si(x). The con-
dition on overlaps U(i,j) shows that s is a well-defined function; it is obviously
the unique function U → E satisfying s|Ui = si for all i ∈ I.

We prove continuity of s. If V is an open subset of E, then s−1(V ) =
U ∩ s−1(V ) = (

⋃
i Ui)∩ s−1(V ) =

⋃
i(Ui ∩ s−1(V )) =

⋃
i f

−1
i (V ). Continuity

of si says that s
−1
i (V ) is open in Ui for all i, hence is open in U ; thus, s−1(V )

is open in U , and s is continuous.

(v) If x ∈ U , then x ∈ Ui for some i, and s(x) = (s|Ui)x = (s′|Ui)x = s′(x).
Hence, s = s′. •

The last two parts of Proposition C-4.20 suggest the following definition.

Definition. If G = (E, p,X) is a g-sheaf of abelian groups and U ⊆ X is a
nonempty open set, then a section over U is a continuous map s : U → E such
that ps = 1U ; call s a global section if U = X.

Since p is a local homeomorphism and Σ is a sheet over U , the function s =
(p|Σ)−1 is a section over U . Exercise C-4.21 on page 368 shows that z : X → E,
given by z(x) = 0x (the identity of the abelian group Ex), is a global section; z is
called the zero section.

Notation. Given a g-sheaf G = (E, p,X) and a nonempty open set U in X, the
set of all sections over U is denoted by

Γ(U,G) = {sections s : U → E}.
We define Γ(∅,G) = {0}, the trivial group.

Sections Γ(U,G) may be viewed as describing local properties of a base space X
(they remind us of patches in a manifold), while Γ(X,G) describes the corresponding
global properties.

If U and C are any categories, then a presheaf over U in C is a contravariant
functor P : U → C. In particular, if U is a poset (for example, if U = Open(X)
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is the topology of a space X viewed as a poset under inclusion (Example B-4.1 in
Part 1)), then Open(X) is a (small) category.

Proposition C-4.21. Let G = (E, p,X) be a g-sheaf of abelian groups.

(i) Γ(U,G) is an abelian group for each open U ⊆ X.

(ii) Γ( ,G) is a presheaf of abelian groups on X (called the (pre)sheaf of sec-
tions of G); that is, Γ is a contravariant functor Open(X)→ Ab.

Proof.

(i) Let us show that Γ(U,G) �= ∅ for every open set U ⊆ X. If U = ∅, then
Γ(∅,G) is the trivial group {0}. If U �= ∅, take x ∈ U , and choose e ∈ Ex

and a sheet Σ containing e. Since p is an open map, p(Σ) ∩ U is an open
neighborhood of x. Now (p|Σ)−1 : p(Σ)→ Σ ⊆ E is a section; define σΣ to be
its restriction to p(Σ) ∩ U . The family of all such p(Σ) ∩ U is an open cover
of U ; since the maps σΣ agree on overlaps, Proposition C-4.20(v) shows that
they may be glued together to give a section in Γ(U,G).

If s, s′ ∈ Γ(U,G), then (s, s′) : x �→ (sx, s′x) is a continuous map U →
E + E; composing with the continuous map (sx, s′x) �→ sx+ s′x shows that
s + s′ : x �→ sx + s′x is a section over U . That Γ(U,G) is an abelian group
now follows from inversion E → E being continuous, for s ∈ Γ(U,G) implies
−s ∈ Γ(U,G).

(ii) Recall that posets may be viewed as categories (Example B-4.1(viii) in Part 1).
We have defined Γ( ,G) on objects U in Open(X). To see that it is a
presheaf, we define it on morphisms: that is, on the inclusions λU

V : U ⊆ V of
open sets. Define Γ(λU

V ) : Γ(V,G)→ Γ(U,G) to be the restriction ρVU : s �→ s|U
(we will usually use this simpler notation):

ρVU = Γ(λU
V ) and ρVU (s) = Γ(λU

V )(s) = s|U.

It is clear that ρVUρ
W
V = ρWU when U ⊆ V ⊆W . •

We can recapture stalks from sections, but let us first review direct limits (see
Proposition B-7.7 in Part 1). Let I be a poset and let {Mi, ϕ

i
j} be a direct system

of abelian groups. For each i ∈ I, let λi be the injection Mi →
⊕

i Mi, and define
N to be the subgroup of the direct sum generated by all λjϕ

i
jmi − λimi, where

mi ∈Mi and i ≤ j. Then

L =
(⊕

i

Mi

)
/N,

together with maps αi : Mi → L defined by

αi : mi �→ λimi +N,

is the direct limit: L ∼= lim−→Mi. Thus, every element of L has the form
∑

i λimi+N .
In the special case when I is directed, then all elements of L have the simpler form
λimi + N for some i (Proposition B-7.12 in Part 1). Here is the diagram for the
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universal mapping problem:

L = lim−→Mi
θ ��							 X

Mi
ϕi

j

��

αi
����������

fi
""�������

Mj

αj

��














fj

%%""""""""""""

Example C-4.22. Let G = (E, p,X) be a g-sheaf. For each x ∈ X, consider the
family I = (U)U�x of all open sets in X containing x (we have written U � x
instead of x ∈ U). Define an equivalence relation on

⋃
U�x Γ(U,G) by

s ∼ s′ if there exists W � x with s|W = s′|W.

We call the equivalence class of s, denoted by

[s, x],

a germ of x. �

Theorem C-4.23. Let G = (E, p,X) be a g-sheaf over a topological space X.

(i) The family I = (U)U�x, viewed as a poset under reverse inclusion, is directed.

(ii) For each x ∈ X, {Γ(U,G), ρVU} is a direct system, where ρVU : Γ(V,G) →
Γ(U,G) is the restriction s �→ s|U when U ⊆ V .

(iii) Each stalk Ex is a direct limit in Ab :

Ex = lim−→
U�x

Γ(U,G).

Proof.

(i) If U and V are open sets containing x, then U ∩ V is also an open set
containing x.

(ii) This follows from ρVUρ
W
V = ρWU whenever U ⊆ V ⊆W .

(iii) If L = lim−→U�x
Γ(U,G), first define αU : Γ(U,G) → L by sU �→ [sU , x], and

then define γ : L → Ex by [sU , x] �→ sU (x); γ is the desired isomorphism
L ∼= Ex. If θ : L → X is the map completing the direct limit diagram, then
θ′ = θγ−1 : Ex → X is the desired map here,

Ex
θ′

��											 X

Γ(V,G)

ρV
U

��

γV αV

��##########
fV

&&$$$$$$$$$$

Γ(U,G). •

γUαU

''�����������������

fU

((%%%%%%%%%%%%%%%%%
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Not only can we construct the stalks of a g-sheaf G from its presheaf of sections
Γ( ,G), we can almost recapture G itself. We now construct a g-sheaf Pg from
any presheaf P, not necessarily the sheaf of sections of some g-sheaf.

Proposition C-4.24. Every presheaf P of abelian groups over a space X deter-
mines a g-sheaf Pg (called its sheafification)

Pg = (Eg, pg, X)

whose stalks Eg
x = lim−→U�x

P(U).

Proof. For each x ∈ X, define Eg
x = lim−→U�x

P(U), define Eg =
⋃

x∈X Eg
x, and

define a surjection pg : Eg → X by egx �→ x (we denote the elements of Eg
x by egx).

If U ⊆ X is a nonempty open set and s ∈ P(U), define

〈s, U〉 = {[ρUx (s)] : x ∈ U}.
We claim that 〈s, U〉 ∩ 〈s′, U ′〉 either is empty or contains a subset of the same

form. If e ∈ 〈s, U〉 ∩ 〈s′, U ′〉, then e = [ρUx (s)] = [ρU
′

y (s′)], where x ∈ U , s ∈ P(U),

and y ∈ U ′, s′ ∈ P(U ′). But x = pg [ρUx (s)] = pg [ρU
′

y (s′)] = y, so that x ∈ U ∩ U ′.
By Lemma B-7.12 in Part 1, there is an open W ⊆ U ∩ U ′ with W � x and
[ρUW ρWx (s)] = [ρU

′

W ρWx (s′)]; call this element [t]; note that 〈t,W 〉 ⊆ 〈s, U〉 ∩ 〈s′, U ′〉,
as desired. Equip Eg with the topology6 generated by all 〈s, U〉; it follows that
these sets form a base for the topology; that is, every open set is a union of 〈s, U〉’s.

To see that (Eg , pg , X) is a g-sheaf, we must show that the surjection pg is
a local homeomorphism. If e ∈ Eg , then e = [ρUx (s)] for some x ∈ X, where U
is an open neighborhood of x and s ∈ P(U). If Σ = 〈s, U〉, then Σ is an open
neighborhood of e, and it is routine to see that pg |Σ: Σ→ U is a homeomorphism.

Now each stalk Eg
x is an abelian group. To see that addition is continuous,

take (e, e′) ∈ Eg + Eg ; that is, e = [ρUx (s)] and e′ = [ρU
′

x (s′)]. We may assume
the representatives have been chosen so that s, s′ ∈ P(U) for some U , so that
e + e′ = [ρUx (s + s′)]. Let V g = 〈s + s′, V 〉 be a basic open neighborhood of
e + e′. If α : Eg + Eg → Eg is addition, then it is easy to see that if U g =
[〈t,W 〉 × 〈t′,W 〉] ∩ (Eg + Eg), then α(U g) ⊆ V g . Thus, α is continuous. As
inversion Eg → Eg is also continuous, Pg = (Eg , pG , X) is a g-sheaf. •

There are morphisms of g-sheaves.

Definition. Let G = (E, p,X) and G′ = (E′, p′, X) be g-sheaves over a space X.
A g-map ϕ : G → G′ is a continuous map ϕ : E → E′ such that p′ϕ = p (so that
ϕ|Ex : Ex → E′

x for all x ∈ X), and each ϕ|Ex is a homomorphism. We write

Homg(G,G′)

for the set of all g-maps.

It is easy to check that all g-sheaves of abelian groups over a topological spaceX
and all g-maps form a category, which we denote by

Shg(X,Ab).

6This is the coarsest topology on E that makes all sections continuous.
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Proposition C-4.25. Let G = (E, p,X) be a g-sheaf, and let Gg = (Eg, pg, X) be
its sheafification. If ϕ : G → Gg is a g-map which is an isomorphism on each stalk
(i.e., ϕx : Ex → Eg

x is an isomorphism for all x ∈ X), then ϕ : Γ( ,G)→ Γ( ,Gg)
is an isomorphism of presheaves.

Proof. We must show that ϕU : Γ(U,G) → Γ(U,Gg) is an isomorphism for every
open U in X. This suffices, for then (ϕU )

−1 : Γ(U,Gg) → Γ(U,G) determines its
inverse.

We show ϕU is injective. If ϕU (s) = 0 for some s ∈ Γ(U,G), then ϕ(s)x = 0
for each x ∈ X. Since ϕx is injective, it follows that ϕx(s) = 0 for all x. As ϕx(s)
is a direct limit, there is some open neighborhood Vx of x with Vx ⊆ U and the
restriction s|Vx = 0. But U is covered by all the Vx, so that the gluing condition
gives s = 0. Hence, ϕU is injective.

We now show ϕU is surjective. Take t ∈ Γ(U,Gg) and, for each x ∈ X, let t(x)
lie in the stalk of x in Gg. Since ϕx is surjective, there is some sx ∈ Γ(U,G) with
ϕxsx(x) = t(x). Now sx(x) = [Wx, x] for some open neighborhood Wx ⊆ U ; as ϕ
is continuous, there is some open Vx ⊂ U with ϕ−1(Vx) ⊆ Wx and t(x) = [Vx, x];
note that U is covered by all Wx. Suppose that x, x

′ ∈ X satisfy [Wx, x] = [W ′
x′ , x′]

and both are sent by ϕ to t(x). Then both [Wx ∩ W ′
x′ , x] = [Wx ∩ W ′

x′ , x′] are
sent by ϕ to t(x) = [Wx ∩W ′

x′ , x] = [W,x]. As ϕ is injective on stalks, as we just
proved above, sx = sx′ for all x, x′ ∈ U . By gluing, there is s ∈ Γ(U,G) with
s|(Wx) = s|(W ′

x′) for all x, x′ ∈ X. Thus, ϕ(s) = ϕx(s) = t for all x ∈ U . Now ϕ(s)
and t satisfy (ϕs)(x) = [Wx, x] = t(x). Gluing all (ϕs)W − tW , we have ϕs = t, as
desired. •

Exercise C-4.22 on page 368 illustrates a difference between arbitrary presheaves
and the special presheaves which arise from sections of a g-sheaf: Proposition C-4.25
says that a presheaf arising from a g-sheaf and its sheafification have the same stalks,
while Example C-4.35 on page 372 shows that these two presheaves can be distinct.

The hypotheses of Proposition C-4.25 can be weakened.

Corollary C-4.26. Let P and P ′ be presheaves over a space X satisfying the gluing
and uniqueness conditions in Proposition C-4.20. If ϕ : P → P ′ is a presheaf map
with ϕx an isomorphism of stalks for every x ∈ X, then ϕ is an isomorphism of
presheaves.

Proof. The proof of Proposition C-4.25 used only the stated properties. •

We are going to prove that Shg(X,Ab) is an abelian category, and the notion
of sub-g-sheaf will be used to describe kernels. Since we are working in a specific
category, we do not need the abstract version of subobject (namely, the equivalence
class [i] of a monic morphism i) required in general additive categories.

Definition. A g-sheaf G′ = (E′, p′, X) is a sub-g-sheaf of a g-sheaf G = (E, p,X)
if E′ is a subspace of E, p′ = p|E′, and the inclusion ι : G′ → G is a g-map.

The stalks E′
x of a sub-g-sheaf are subgroups of Ex for all x ∈ X.
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Proposition C-4.27. Shg(X,Ab) is an abelian category.

Sketch of Proof. One first proves that Shg(X,Ab) is an additive category. If
G = (E, p,X) and G′ = (E′, p′, X) are g-sheaves and ϕ, ψ : E → E′ are g-maps,
then Homg(G,G′) is an additive abelian group if we define ϕ + ψ : E → E′ by
ϕ + ψ : e �→ ϕ(e) + ψ(e). Verification that the distributive laws hold and that
the zero g-sheaf 0 = {0}g (see Example C-4.19(i)) is a g-sheaf are routine. Given
g-sheaves G = (E, p,X) and G′ = (E′, p′, X), define

G ⊕ G′ = (E + E′, p+, X),

where E + E′ is the subspace of E × E′:

E + E′ =
⋃
x∈X

(Ex × E′
x),

and p+ : E + E′ → X is given by p+ : (ex, e
′
x) �→ x. It is straightforward to prove

that G ⊕ G′ is a g-sheaf that is both a product and coproduct of G and G′.

It remains to display kernels and cokernels of g-maps ϕ : G′ → G and to prove
the remaining axioms in the definition of abelian category. Since ϕ : E′ → E is a
g-map, its restriction ϕ|E′

x : E
′
x → Ex is a homomorphism. Define ϕx = ϕ|E′

x, and
let e′x ∈ kerϕx ⊆ E′

x. For every open Ux in X containing x, let Σ′
x be the sheet over

Ux containing e′x, and define K ′ =
⋃

x∈X Σ′
x ⊆ E′. Finally, define K′ = (K ′, q′, X),

where q′ = p′|K ′. Then K′ = (K ′, q′, X) is a g-sheaf and the inclusion ι : K ′ → E′

is a g-map K′ → G′.

Similarly, if ϕ : G′ → G, defineQ = (E∗, p∗, X), where the stalk E∗
x = Ex/ imϕx

for all x ∈ X and p∗ : E∗ → X maps each coset E∗
x = Ex/ imϕx �→ x; define

coker(ϕ) = Q. Again, the straightforward details are left to the reader. •

A sequence of g-sheaves is exact if and only if the sequence of stalks is exact.

Corollary C-4.28. A sequence of g-sheaves over a space X

0→ G′ ϕ−→ G ψ−→ G′′ → 0

is exact if and only if the sequence of stalks

0→ E′
x

ϕ|E′
x−→ Ex

ψ|Ex−→ E′′
x → 0

is exact in Ab for every x ∈ X.

Proof. Exercise C-4.22 below says that imϕ is the sub-g-sheaf of G whose stalks
are Ex = imϕ|E′

x for all x ∈ X. The result follows from Shg(X) being an abelian
category. •

Exactness of presheaves over a space X can be contrasted with exactness of
g-sheaves. Corollary C-4.14 says that a sequence of presheaves over X

P ′ σ−→ P τ−→ P ′′

is exact if and only if

P ′(U)
σ|U−→ P(U)

τ |U−→ P ′′(U)

is exact in Ab for every open set U in X.
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Exercises

∗ C-4.20. (i) Prove that every local homeomorphism p : E → X is an open map; that is,
if V is an open set in E, then p(V ) is an open set in X.

(ii) Prove that if G = (E, p,X) and G′ = (E′, p′, X) are g-sheaves over a topological
space X, then every g-map ϕ : G → G′ is an open map E → E′.
Hint. This follows from Proposition C-4.20(i), which says that the sheets form a
base of open sets for E.

∗ C-4.21. Let G = (E, p,X) be a g-sheaf. Prove that z : X → E, defined by z : x 
→ 0x, the
identity element of the abelian group Ex, is continuous. Conclude that the zero section
z is a global section.

∗ C-4.22. (i) Prove that two g-sheaves over a space X, say, G = (E, p,X) and G′ =
(E′, p′, X), are equal if and only if the stalks Ex = E′

x for all x ∈ X.

(ii) Prove that a g-sheaf is the zero sheaf 0 = {0}g if and only if all its stalks are {0}.

∗ C-4.23. Let ϕ : G′ → G be a g-map, where G = (E, p,X) and G′ = (E′, p′, X) are
g-sheaves over a space X. Prove that imϕ is the sub-g-sheaf of G having stalks imϕx.

C-4.24. Prove that there are equivalences of categories pSh(X,Ab) ∼= Shg(X,Ab) ∼=
Ab if X is a one-point space.

C-4.25. Prove that sub-g-sheaves (E, p,X) and (E′, p′, X) of a g-sheaf are equal if and
only if they have the same stalks; that is, Ex = E′

x for all x ∈ X.

∗ C-4.26. (i) Prove that P 
→ Pg is an additive functor Σ: pSh(X,Ab) → Shg(X,Ab).

(ii) Use Proposition C-4.25 to prove that if P = Γ( ,G), where G is a g-sheaf, then
P ∼= Σ(P) = Pg.

C-4.4. Sheaves

There are two equivalent versions of sheaf : the first, more visual, is a g-sheaf; the
second, more algebraic, arises from a special kind of presheaf, and it is the version
serious users accept. We now begin discussing this second viewpoint.

Recall that if X is a topological space, then Open(X) is the topology of X
viewed as a poset under inclusion (for later use, we note thatOpen(X) is a directed
set, for the union of open sets is open).

In particular, if G is a g-sheaf over X, then its presheaf of sections Γ( ,G) (see
Proposition C-4.21) satisfies a special property not shared by arbitrary presheaves.

Proposition C-4.29. Let G = (E, p,X) be a g-sheaf with presheaf of sections
Γ( ,G), let U be an open set in X, and let (Ui)i∈I be an open cover of U : U =⋃

i∈I Ui.
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(i) If a family (si ∈ Γ(Ui,G))i∈I satisfies si|(Ui ∩ Uj) = sj |(Ui ∩ Uj) for all
(i, j) ∈ I × I, then there exists a unique s ∈ Γ(U,G) with s|Ui = si for all
i ∈ I.

(ii) If s, s′ ∈ Γ(U,G) and s|Ui = s′|Ui for all i ∈ I, then s = s′.

Proof. Proposition C-4.20(iv) and (v). •

Definition. A presheaf P of abelian groups on a space X satisfies the equalizer
condition if the following two conditions hold for every open cover (Ui)i∈I of open
sets U ⊆ X.

(i) (Gluing) If si|(Ui ∩ Uj) = sj |(Ui ∩ Uj) for all si ∈ P(Ui) and sj ∈ P(Uj),
then there exists s ∈ P(U) with s|Ui = si for all i ∈ I.

(ii) (Uniqueness) If s, s′ ∈ P(U) satisfy s|Ui = s′|Ui for all i ∈ I, then s = s′.

The equalizer condition can be restated in a more categorical way.

Corollary C-4.30. Let P be a presheaf of abelian groups over a topological space X.

(i) P satisfies the equalizer condition if and only if, for every open cover (Ui)i∈I

of an open set U in X, there is an exact sequence of abelian groups

0→ P(U)
α−→

∏
i∈I

P(Ui)
β−→

∏
(i,j)∈I×I

P(U(i,j)),

where U(i,j) = Ui ∩ Uj for i, j ∈ I and α and β are defined as follows. If
s ∈ P(U), then the ith coordinate of α(s) is s|Ui; if (si) ∈

∏
i∈I P(Ui), then

the (i, j)th coordinate of β((si)) is si|U(i,j) − sj |U(i,j).

(ii) If P satisfies the equalizer condition and s = (si) ∈
∏

i∈I P(Ui) satisfies
si|(Ui ∩ Uj) = sj |(Ui ∩ Uj), then s corresponds to a unique global section in
P(X).

Proof.

(i) Proposition C-4.29(i) shows that α is an injection. Now imα ⊆ kerβ, for
βα(s) has (i, j) coordinate s|U(i,j)−s|(i, j) = 0. The reverse inclusion follows
from Proposition C-4.29(ii).

(ii) Such an element s lies in kerβ, where β = β′ − β′′, where β, β′ are the maps
in the equalizer diagram above. •

Here is an example of a presheaf which does not satisfy the equalizer condition.

Example C-4.31. Let G be an abelian group and let X be a topological space.
The constant presheaf at G over X is defined on a nonempty open set U ⊆ X
by

G(U) = {f : U → G : f is constant};
define G(∅) = {0} and, if U ⊆ V , define ρVU : G(V ) → G(U) by f �→ f |U . If
U = U1 ∪ U2, where U1, U2 are disjoint nonempty open sets, define s1 ∈ P(U1) by
s1(u1) = 0 for all u1 ∈ U1, and define s2 ∈ P(U2) by s2(u2) = 5 for all u2 ∈ U2. The
overlap condition here is vacuous, because U1 ∩ U2 = ∅, but there is no constant
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function s ∈ P(U) with s|Ui = si for i = 1, 2. Hence, G is not a sheaf, for it does
not satisfy the equalizer condition. �

The following definition is the one preferred by every serious user of sheaves.

Definition. A sheaf of abelian groups over a space X is a presheaf 7

F : Open(X)op → Ab

that satisfies the equalizer condition. We shall always assume that F(∅) = {0}.

Note that sheaves, defined as contravariant functors, are much simpler than
g-sheaves, for they avoid fussy point-set topology. As with g-sheaves, sheaves can
be defined with values in categories other than Ab. A function f : X → Y of
topological spaces is locally constant if each x ∈ X has an open neighorhood U
with f |U constant.

Example C-4.32.

(i) Let G be a (discrete) abelian group. Define the constant sheaf at G over
X to be the sheaf ΓG where, for all U ∈ Open(X),

ΓG(U) = {all locally constant U → G}.
Compare this definition with that of the constant g-sheaf Gg in Example
C-4.19(i); also see Example C-4.31.

(ii) Let G be an abelian group, X a topological space, and x ∈ X. Define a
presheaf by

x∗G(U) =

{
G if x ∈ U ,

{0} otherwise.

If U ⊆ V , then the restriction map ρVU is either 1G or 0. It is easy to check
that x∗G is a sheaf, called a skyscraper sheaf ; it is so called because if x is
a closed point,8 then all the stalks of x∗G are {0} except (x∗G)x, which is G.

(iii) Let X be the unit circle, which we view as {z ∈ C : |z| = 1}, and let
p : X → X be defined by p : z �→ z2. If we set E = X, then we have defined
a g-sheaf S = (E, p,X), which we call the double cover. See Figure C-4.5.

Figure C-4.5. Double cover.

7We denote a sheaf by F because F is the initial letter of the French term faisceau.
8If X = Spec(R) for some commutative ring R, then the closure of a point p ∈ X consists

of all the prime ideals in R that contain p. Thus, p is a closed point in X if and only if it is a
maximal ideal in R.
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All the stalks of S are isomorphic to Z⊕Z. An interesting feature of the
sheaf of sections Γ( ,S) is that it has the same stalks as the constant sheaf
at Z ⊕ Z, yet the two sheaves are not isomorphic. This merely reflects the
obvious fact that different spaces can be the same locally.

(iv)

Definition. Let G′ and G be presheaves of abelian groups on a topological
space X such that G′(U) ⊆ G(U) for every open set U in X; that is, there
are inclusions ιU : G′(U) → G(U). Then G′ is a subpresheaf of G if the
inclusion ι : G′ → G is a presheaf map.

If F is a sheaf, then G′ is a subsheaf of F if G′ is a subpresheaf that is
also a sheaf.

(v) The zero sheaf (see Example C-4.32) is a subsheaf of every sheaf.

(vi) Let F be the sheaf of germs of continuous functions on a space X. Define G
by setting G(U) = F(U) for all open sets U and by setting restrictions ψV

U to
be identically 0. Then G is a presheaf, but G is not a subpresheaf of F (for
the inclusion is not a presheaf map).

It is clear that subpresheaves F and F ′ of a presheaf G are equal if and
only if F(U) = F ′(U) for all open U . This simplifies for sheaves. �

Proposition C-4.33. If G = (E, p,X) is a g-sheaf, then its presheaf of sections
Γ( ,G) is a sheaf of abelian groups over X.

Proof. Proposition C-4.29 says that Γ( ,G) satisfies the equalizer condition. •

From now on, we shall call Γ( ,Pg) the sheaf of sections instead of the
presheaf of sections

Example C-4.34. For each open set U of a topological space X, define

P(U) = {continuous f : U → R};

P(U) is an abelian group under pointwise addition: f + g : x �→ f(x) + g(x) and P
is a presheaf over X. For each x ∈ X, define an equivalence relation on

⋃
U�x F(U)

by f ∼ g if there is some open setW containing x with f |W = g|W . The equivalence
class of f , denoted by [x, f ], is called a germ at x (see Example C-4.22). Define
Ex to be the family of all germs at x, define E =

⋃
x∈X Ex, and define p : E → X

by p : [x, f ] �→ x. Proposition C-4.24 shows that the sheafification Pg = (Eg, p,X)
is a g-sheaf, and so Proposition C-4.33 says that Γ( ,Pg) is a sheaf (it is called
the sheaf of germs of continuous functions over X). �

Definition. Let F and G be sheaves (of abelian groups) over a space X, with
restriction maps ρVU : F(V ) → F(U) and τVU : G(V ) → G(U) whenever U ⊆ V are
open. A sheaf map ϕ : F → G is a natural transformation; that is, ϕ is a one-
parameter family of morphisms ϕU : F(U) → G(U), indexed by U ∈ Open(X),
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such that there is a commutative diagram whenever U ⊆ V :

F(V )
ϕV ��

ρV
U ��

G(V )

τ V
U��

F(U)
ϕU

�� G(U).

In the previous section, we defined the sheafification of a presheaf P to be the
g-sheaf Pg; we now modify the definition so that the sheafification of P is a sheaf.

Definition. If P is a presheaf of abelian groups, then its sheafification is the
sheaf Γ( ,Pg), where Γ is the sheaf of sections of Pg (see Proposition C-4.24 and
Corollary C-4.37). Henceforth, we shall also denote the sheafification of P by Pg.

Remark. There is a construction of the sheafification Pg of a presheaf P that does
not use g-sheaves. We quote from Hartshorne [95], p. 64.

For any open set U , let Pg(U) be the set of functions s from U to the
union

⋃
x∈U Px of the stalks of P over points of U , such that

(i) for each x ∈ U , s(x) ∈ Px and
(ii) for each x ∈ U , there is a neighborhood V of x, contained in U ,

and an element t ∈ P(V ), such that for all y ∈ V , the germ ty of
t at y is equal to s(y). �

Recall Corollary C-4.13: all presheaves over a topological space X form an
abelian category pSh(X,Ab), whose morphisms, presheaf maps, are natural trans-
formations: Homg(P,P ′) = Nat(P,P ′). It follows that if F and G are sheaves,
then every presheaf map F → G is a sheaf map.

Notation. Define Sh(X,Ab) to be the full subcategory of pSh(X,Ab) generated
by all sheaves over a space X.

It is easy to see that Sh(X,Ab) is an additive category.

In Example C-4.31, we saw that there exist presheaves that do not arise from
g-sheaves, which explains why we invoked Proposition C-4.24 in Example C-4.34.
But if we focus on sheaves, there is a more natural example: the cokernel of a sheaf
map, though always a presheaf, may not be a sheaf.

Example C-4.35. There exists an exact sequence of presheaves,

0→ F ′ ϕ−→ F ψ−→ G → 0,

where both F ′ and F are sheaves but G = cokerϕ is not a sheaf.

Let F = O be the sheaf of germs of complex holomorphic functions on the
punctured plane X = C− {0}; thus,

O(U) = {holomorphic f : U → C}

is an additive abelian group for all open U . Let G = O× be the sheaf on X
defined by O×(U) = {holomorphic f : U → C×}; that is, f(z) �= 0 for all z ∈ U .
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If ϕ : O → O× is the sheaf map defined by ϕU : f �→ e2πif , then kerϕ ∼= Z, the
constant sheaf at Z on X, and, for each U , there is an exact sequence of presheaves

0→ Z→ O ϕ−→ O× → 0.

We claim that imϕ is not a sheaf. Let (Ui)i∈I be an open cover of X by disks.
Define fi ∈ O×(Ui) by fi(z) = z for all z ∈ Ui. Of course, this family agrees
on overlaps, and the unique global section they determine is f = 1X . Now each
fi ∈ ϕ(Ui), for there is a logarithm �i(z) defined on Ui with e�i(z) = z (because the
disk Ui is simply connected). However, it is well known from a complex analysis
course that logarithm cannot be defined as a holomorphic function on all of X, and
so 1X is not a global section of imϕ. Therefore, imϕ is not a sheaf. �

Sheaves arise naturally when encoding local information, and we have just seen
an example for which local data cannot be globalized. This phenomenon will be
“measured” by sheaf cohomology.

The next result shows that there is no essential difference between sheaves and
g-sheaves.

Theorem C-4.36. Let X be a topological space.

(i) There is an equivalence of categories:

Φ: Shg(X,Ab)→ Sh(X,Ab).

(ii) Sh(X,Ab) is an abelian category.

(iii) A sequence of sheaves

0→ F ′ τ−→ F σ−→ F ′′ → 0

is exact if and only if the sequence of stalks is exact in Ab :

0→ F ′
x

τU−→ Fx
σU−→ F ′′

x → 0.

Sketch of Proof.

(i) Define Φ on objects by ΦG = Γ( ,G). If G = (E, p,X) and G′ = (E′, p′, X),
then a g-map G → G′ is a continuous map τ : E → E′ such that p′τ = p.
Hence, if s ∈ Γ(U,G), then τs ∈ Γ(U,G′), and we define Φτ to be the natural
transformation (Φτ )U : Γ(U,G) → Γ(U,G′) sending s �→ τs. It is routine to
check that Φ is an additive functor.

By Exercise C-4.26 on page 368, there is a functor Σ: pSh(X,Ab) →
Shg(X,Ab); namely, P �→ Pg, in the reverse direction. If Σ′ is the restriction
of Σ to Sh(X,Ab), then the reader may use Exercise C-4.26(ii) (essentially
Proposition C-4.25, which says that a presheaf G and its sheafification G∗ have
the same stalks) to show that both composites ΦΣ′ and Σ′Φ are naturally
equivalent to identity functors.

(ii) As Shg(X,Ab) is abelian, Exercise C-4.19 on page 359 says that Sh(X,Ab)
is abelian.

(iii) Corollary C-4.26. •
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Corollary C-4.37. Let P be a presheaf of abelian groups over a space X, let
Pg = (Eg, pg, X) be its associated g-sheaf, and let Pg = Γ( ,Pg) be the sheaf of
sections of Pg. There exists a presheaf map ν : P → Pg that solves the following
universal mapping problem:

P ν ��

ϕ ))!
!!

!!
! Pg

ϕ̃��$
$

$

F .
For every presheaf map ϕ : P → F , where F is a sheaf over X, there exists a unique
sheaf map ϕ̃ : Pg → F with ϕ̃ν = ϕ.

Proof. The functor Φ: Shg(X,Ab) → Sh(X,Ab) in Theorem C-4.36 gives a
sheaf map Φ(ϕ) : Γ( ,P)→ Γ( ,F) making the diagram commute. By Proposi-
tion C-4.25, it suffices to see that ϕ̃x = ψx for all x ∈ X. But Pg

x = lim−→U�x
P(U),

P(U)
νx ��

ϕx **&&
&&&

&&&
&&

Pg
x = lim−→P(U)

ϕ̃x++' ' ' ' '

Fx = lim−→F(U),

and the universal property of direct limit gives a unique map making the diagram
commute. •

Both g-sheaf and presheaf views of a sheaf are useful. Here are two important
constructions, called change of base, arising from a continuous map f : X → Y .
Proofs in the rest of this section will be less detailed, for they tend to be lengthy.
Of course, you know that a long proof need not be difficult (writing out all the
details of a diagram chase is tedious). The reader may either look at the references
cited in the proofs or regard such proofs as exercises.

Definition. Given a continuous f : X → Y and a presheaf F over X, define the
direct image f∗F to be the presheaf over Y with

f∗F(V ) = F(f−1V )

for every open V ⊆ Y .

Note that f−1V is open in X because f is continuous. It is easy to see that if
F is a sheaf, then f∗F is a sheaf as well. (We note that there is a map of stalks
Fx → (f∗F)f(x), but it may not be an isomorphism because the direct system

indexed by {f−1V � f(x)} may not be cofinal in the poset {V � f(x)}.)
Even more is true: f∗ : pSh(Y ;Ab) → pSh(X,Ab) is an additive functor

whose restriction to the subcategory of sheaves

f∗ : Sh(X,Ab)→ Sh(Y,Ab)

is also an additive functor (some authors denote f∗ by f!).

As an example, let i : X → Y be the inclusion of a closed subspace, and let F
be a constant sheaf at G over X. Then the stalks of i∗F are G, while the stalks
over y /∈ X are {0}(see Tennison [219], p. 54).
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Definition. Let F be a sheaf over a space Y . If i : X → Y is the inclusion of a
subspace, then the restriction F|X is i∗F . The sheaf F is called an extension
of F|X.

The restriction F|X is a sheaf over X.

Definition. Let X be a subspace of a space Y , and let F ′ be a sheaf over X. We
say that a sheaf F over Y is the extension of F by zero if F|X = F ′ and the
stalk Fy = {0} for all y ∈ Y with y /∈ X.

Proposition C-4.38. If X is a locally closed subspace9 of a space Y , then every
sheaf over X has an extension by zero over Y .

Proof. Tennison [219], pp. 63–64. •

There is a second change of base construction, called inverse image, that con-
structs a sheaf over X from a sheaf over Y . It is simplest to define inverse image
in terms of g-sheaves. Afterward, we will give the sheaf construction.

Definition. Let G be a presheaf over Y , and let Gg = (E, p, Y ) be its sheafification.
Construct the pullback (in Top)

E′ ��			

p′

���
�
� E

p

��
X

f
�� Y.

Then Gg = (E′, p′, X) is a g-sheaf over X. Then f∗G = Γ( ,Gg) is called the
inverse image of G.

In more detail, the pullback E′ = {(e, x) ∈ E ×X : p(e) = f(x)}; its topology
is that of a subspace of E ×X. It is easy to see that if G is a sheaf over Y , then
f∗G is a sheaf over X, and its stalks are

(f∗G)x = Gf(x)
(see Tennison [219], p. 58).

Example C-4.39.

(i) If f : U → X is the inclusion of an open subset, then f∗F is the restriction
sheaf F|U .

(ii) If G is a presheaf over a space X, then (1X)∗G is the sheafification of G (see
the remark on p. 61 of [219]).

(iii) Let G be an abelian group and, if x ∈ X, let i : {x} → X be the inclusion. If
G(x) is the sheaf over {x} with stalk G (this is just a fancy way of viewing G),
then i∗G = x∗G, the skyscraper sheaf (Example C-4.32). Moreover, if F is a
sheaf over X, then i∗F = G(x). �

9A subspace X of a space Y is locally closed if there are an open U and a closed V in Y
such that X = U ∩ V . Of course, every closed set is locally closed, as is every open set.
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Remark. Here is a second construction of an inverse image sheaf. Let f : X → Y
be continuous, and let F be a sheaf over Y . To define a presheaf F+ over X, we
must define F+(U) for every open U in X. Since f(U) need not be open in Y , we
define

F+(U) = lim−→
W⊇f(U)

F(W ),

where W is open in Y . Then f∗F is equal to the sheafification of F+. Note that
the remark on page 372 constructs the sheafification without g-sheaves. �

Inverse image gives an additive functor f∗ : pSh(Y,Ab)→ pSh(X,Ab), whose
restriction gives an additive functor

f∗ : Sh(Y,Ab)→ Sh(X,Ab)

(some authors denote f∗ by f !).

Theorem C-4.40. If f : X → Y is continuous, then (f∗, f∗) is an adjoint pair of
functors between Sh(X,Ab) and Sh(Y,Ab).

Proof. For details, see Tennison [219], pp. 57–61. •

Exercises

∗ C-4.27.

(i) Prove that the zero sheaf is a zero object in Sh(X,Ab) and in pSh(X,Ab).

(ii) Prove that Hom(P,P ′) is an additive abelian group when P,P ′ are presheaves or
when P,P ′ are sheaves.

(iii) The distributive laws hold: given presheaf maps

X α−→ P
ϕ

⇒
ψ

Q β−→ Y,

where X and Y are presheaves over a space X, prove that

β(ϕ+ ψ) = βϕ+ βψ and (ϕ+ ψ)α = ϕα+ ψα.

∗ C-4.28. Let (E, p,X) be a g-sheaf, and let F be its sheaf of sections.

(i) Prove that a subset G ⊆ E is a sheet if and only if G = σ(U) for some open U ⊆ X
and σ ∈ F(U).

(ii) Prove that G ⊆ E is a sheet if and only if G is an open subset of E and p|G is a
homeomorphism.

(iii) If G = σ(U) and H = τ(V ) are sheets, where σ ∈ F(U) and τ ∈ F(V ), prove that
G ∩H is a sheet.

(iv) If σ ∈ F(U), prove that

Supp(σ) = {x ∈ X : σ(x) �= 0x ∈ Ex}
is a closed subset of X.
Hint. Consider σ(U) ∩ z(U), where z ∈ F(U) is the zero section.
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C-4.29. Prove that a g-map ϕ : (E, p,X) → (E′, p′, X) is an isomorphism in Shg(X,Ab)
if and only if ϕ : E → E′ is a homeomorphism.

∗ C-4.30. Let ϕ : P → P ′ be a presheaf map. Prove that the following statements are
equivalent:

(i) ϕ is an isomorphism;

(ii) ϕ|P(U) : P(U) → P ′(U) is an isomorphism for every open set U ;

(iii) ϕ|P(U) : P(U) → P ′(U) is a bijection for every open set U .

C-4.31. Prove that every presheaf of abelian groups P over a discrete space X is a sheaf.

∗ C-4.32. Prove that Sh(X,Ab) has (infinite) products.

∗ C-4.33. Let x∗G be a skyscraper sheaf (see Example C-4.32), where G is an abelian
group.

(i) Prove, for every sheaf G, that there is a natural (in G) isomorphism

ι : HomSh(X,Ab)(G, x∗G) → HomZ(Gx, G).

Hint. Use Theorem C-4.40, adjointness of the pair (f∗, f∗).

(ii) Prove, for every abelian group G, that HomZ( , G) and HomSh(X,A)( , x∗G) are
naturally equivalent functors.

∗ C-4.34. Let F be a sheaf over a space X. Let x ∈ X, let {x} be its closure, let G = Fx

be the stalk over x, and let i : {x} → X be the inclusion.

(i) Prove that the direct image i∗F is isomorphic to the skyscraper sheaf x∗G.

(ii) Prove that there is a sheaf map μ : F → x∗G with μx : Fx → (x∗G)x ∼= G a
monomorphism of abelian groups.

∗ C-4.35. Let ν : P → Γ( ,Pg) be the natural map in Theorem C-4.36: in the notation
of this theorem, if U is an open set in X, then νU : P(U) → Γ(U,Pg) is given by σ 
→ σg.
If x ∈ X, prove that νx : σ(x) 
→ σg(x) = σ(x).

∗ C-4.36. Let F be a sheaf over a space X, and let f : X → Y be continuous. Prove, for
all x ∈ X, that

(f∗F)x ∼= Ff(x).

Is the analogous isomorphism true for direct image f∗?

∗ C-4.37. Let X be a topological space and let B be a base for the topology U on X.
Viewing B as a partially ordered set, we may define a presheaf on B to be a contravariant

functor Q : B → Ab. Prove that Q can be extended to a presheaf Q̃ : U → Ab by defining

Q̃(U) = lim←−
V ∈B, V ⊆U

Q(V ).

If U ∈ B, prove that Q̃(U) is canonically isomorphic to Q(U).

C-4.38. Let S = (E, p,X) be a g-sheaf and let G = (G, p|G,X), where G ⊆ E. Prove
that Γ( ,G) is a sub-g-sheaf of Γ( ,S) if and only if G is open in E and Gx = G ∩ Ex

is a subgroup for all x ∈ X.

C-4.39. Denote the sheafification functor pSh(X,Ab) → Sh(X,Ab) by P 
→ Pg. Prove
that g is left adjoint to the inclusion functor Sh(X,Ab) → pSh(X,Ab).
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C-4.5. Sheaf Cohomology

In a word, sheaf cohomology arises as the right derived functors of global sections.
We restrict our discussion to sheaves of abelian groups, but the reader should have
no problem extending it to sheaves having values in other abelian categories.

If X is a space, global sections defines functors Γ′ : pSh(X,Ab)→ Ab and its
restriction Γ: Sh(X,Ab) → Ab. In either case, the functor is defined on objects
by

Γ(F) = Γ(X,F) = F(X)

and on (pre)sheaf maps ϕ = {ϕU} : F → G by

Γ(ϕ) : s �→ ϕX(s),

where s ∈ Γ(X,F) is a global section. It is clear that each Γ is a (covariant) additive
functor.

Lemma C-4.41. The functors Γ′ : pSh(X,Ab)→ Ab and Γ: Sh(X,Ab)→ Ab
are left exact.

Proof. Exactness of presheaves 0→ P ′ ϕ−→ P ψ−→ P ′′ → 0 is defined as exactness

of the abelian groups 0→ P ′(U)
ϕU−→ P(U)

ψU−→ P ′′(U)→ 0 for every open U ⊆ X.
In particular, the sequence is exact when U = X, and so Γ is even an exact functor
on presheaves.

Exactness of sheaves means exactness of stalks, which is usually different than

exactness of presheaves. However, if 0 → F ′ → F ψ−→ F ′′ is an exact sequence of
sheaves, then ψ is a presheaf map, and it follows from Theorem C-4.36 that kerψ
computed in Sh(X,Ab) is the same as kerψ computed in pSh(X,Ab). Hence,
0→ F ′ → F → F ′′ is exact in pSh(X,Ab), and the first paragraph applies. •

The next example shows that the global section functor Γ: Sh(X,Ab)→ Ab
need not be exact.

Example C-4.42. In Example C-4.35, we saw that there is an exact sequence of
sheaves over the punctured plane X = C− {0},

0→ Z→ O ϕ−→ O× → 0,

where Z is the constant sheaf, O is the sheaf of germs of analytic functions, O× is the
sheaf of nonzero analytic functions, and ϕU : O(U)→ O×(U) is given by f �→ e2πif .
For every open set U , we have O(U) the additive group of all analytic f : U → C
and O×(U) the multiplicative group of all never zero analytic f : U → C×. If the
function s(z) = z in Γ(X, C×) is in imϕ∗ (where ϕ∗ : Γ(O)→ Γ(O×) is the induced
map), then z = e2πif(z); that is, f(z) = 1

2πi log(z). This is a contradiction, for no
branch of log(z) on the punctured plane is single-valued. Therefore, Γ is not an
exact functor. �

Definition. An abelian category A has enough injectives if, for every A ∈
obj(A), there exist an injective E and a monic A → E. Dually, A has enough
projectives if, for every A ∈ obj(A), there exist a projective P and an epic P → A.
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We have seen, in Theorem B-4.64 in Part 1, that for every ring R, the mod-
ule categories RMod and ModR have enough injectives (that every module is a
quotient of a free module shows that these categories also have enough projectives).

Proposition C-4.43. If G is an injective (i.e., divisible) abelian group and X is
a space, then for every x ∈ X, the skyscraper sheaf x∗G is injective in Sh(X,Ab).

Proof. Recall (Example C-4.32(ii)) that a skyscraper sheaf x∗G is defined by

(x∗G)(U) =

{
G if x ∈ U ,

{0} if x /∈ U .

By part (ii) of Exercise C-4.33 on page 377, for every abelian group G, the functors
HomZ( , G) and HomSh( , x∗G) are naturally equivalent. Hence, if G is injective,
then HomZ( , G) is an exact functor. It follows that HomSh(X,Ab)( , x∗G) is also
an exact functor; that is, x∗G is an injective sheaf. •

Theorem C-4.44. For every space X, Sh(X,Ab) has enough injectives.10

Proof. Let F be a sheaf over X. Since Ab has enough injectives, there is an
injective abelian group G(x) and a monic homomorphism λ(x) : Fx → G(x) for
each x ∈ X. Now each homomorphism λ(x) gives a sheaf map Λ(x) : F → x∗G(x)
which, when restricted to the stalk over x, has Λ(x) = λ(x), by Exercise C-4.34
on page 377. By the universal property of products, the sheaf maps Λ(x) can be
assembled into a sheaf map Λ: F →

∏
x∈X x∗G(x) with Λx = Λ(x). But Λ is monic,

for it is monic on stalks. This completes the proof, for any product of injectives is
injective. •

We now define sheaf cohomology as right derived functors of global sections Γ;
this is possible because Sh(X) has enough injectives, by Theorem C-4.44. Note
that taking derived functors of Γ: pSh(X) → Ab is uninteresting, for the higher
derived functors of an exact functor are trivial.

Definition. If X is a topological space, then sheaf cohomology is defined, for
every sheaf F over X and every q ≥ 0, by

Hq(F) = (RqΓ)(F).

In short, take an injective resolution E• of F , delete F to obtain E•F , apply Γ
to the complex E•F , and take homology:

Hq(F) = Hq(ΓE•F ).

As usual, H0(F) can be computed.

10 In The Theory of Sheaves [217], 1964, Swan wrote “... if the base space X is not discrete, I
know of no examples of projective sheaves except the zero sheaf.” Later, the following was noticed.
A generalization of discrete space is an Alexandrov space: every possibly infinite intersection
of open sets is open. If X is a locally connected space (each x ∈ X has a connected open
neighborhood), then Sh(X,Ab) has enough projectives if and only if X is an Alexandrov space.
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Proposition C-4.45. If X is a topological space, then

H0(F) ∼= Γ(F)
for every sheaf F over X.

Proof. Since Γ is a left exact functor, the result follows from Theorem C-3.67. •

Thus, H1(F) repairs the loss of exactness arising from Γ: Sh(X) → Ab not
being exact; in other words, we may interpret H1 as obstructions, and Exam-
ple C-4.42 shows that this is interesting. Indeed, sheaf cohomology globalizes the
local information in the data of a sheaf.

Remark. The global section functor Γ = Γ(X, ) is often modified. A family of
supports Φ is a family of closed subsets of X such that

(i) whenever A ∈ Φ and B ⊆ A is closed, then B ∈ Φ;

(ii) whenever A,A′ ∈ Φ, then A ∪ A′ ∈ Φ.

Define ΓΦ(F) = {s ∈ Γ(X,F) : {x ∈ X : s(x) �= 0x ∈ Ex} ∈ Φ}, where F has g-
sheaf (E, p,X) and Φ is a family of supports. It is easy to see that ΓΦ : Sh(X)→ Ab
is a covariant left exact additive functor. One defines sheaf cohomology Hq

Φ with
supports Φ as the right derived functors of ΓΦ. If Φ is the family of all closed
subsets, it is a family of supports, and so Hq

Φ generalizes sheaf cohomology. �

Sheaf cohomology can be computed in the usual ways: one can use various
long exact sequences; there is a spectral sequence, due to Leray: if f : X → Y is
continuous, then for each sheaf F over X,

Epq
2 = Hp(Rqf•F)⇒ Hp+q(F),

where f• abbreviates iterated application of direct image f∗.

There is another construction of cohomology of sheaves, called Čech cohomol-
ogy (see Rotman [187], §6.3.1). Although its definition is complicated, Čech co-
homology is more amenable to computation than is sheaf cohomology. Let F be a
sheaf over a space X. One first defines, for every open cover U , cohomology groups
Ȟ•(U ,F); second, the family of all open covers of X can be partially ordered (by
refinement); third, the family of all Ȟ•(U ,F) can be made into a direct system.
Finally,

Ȟq(F) = lim−→
U

Ȟq(U ,F).

It is true that Ȟ0(F) = Γ(F) for every sheaf F , and so Ȟ0(F) ∼= H0(F); that
is, Čech cohomology and sheaf cohomology agree in degree 0. It is also true that
they agree in degree 1: Ȟ1(F) ∼= H1(F) (Tennison [219], p. 147); however, they
can disagree for q ≥ 2.

Here are some instances when Čech cohomology coincides with sheaf cohomol-
ogy over an arbitrary (not necessarily Hausdorff) space.

Theorem C-4.46 (Cartan). Let F be a sheaf over a space X. Assume that U is
an open cover of X which contains arbitrarily small open sets and which is closed
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under finite intersections. If Ȟq(U ,F) = {0} for all U ∈ U and all q ≥ 1, then
there are isomorphisms for all q ≥ 0

Ȟq(F) ∼= Hq(F).

Proof. Godement [80], p. 227. •

There are theorems which say that Ȟq(F) ∼= Ȟq(U ,F) for some open cover U ,
so that one can avoid direct limits.

Recall the definition of the restriction sheaf: if F is a sheaf over a space X and
if Y ⊆ X is an open subset, then F|Y is the sheaf over Y defined on open sets V
in Y by

(F|Y )(V ) = F(V ).

Theorem C-4.47 (Leray). Let F be a sheaf over a space X, and let U be an
open cover of X. If, for every intersection Y of finitely many terms of U , we have
Ȟq(F|Y ) = {0} for all q ≥ 1, then there are isomorphisms for all q ≥ 0 :

Ȟq(U ,F) ∼= Hq(F).

Proof. Godement [80], p. 209. •

Definition. A sheaf L over a space X is acyclic if Hq(L) = {0} for all q ≥ 1.

We know that injective sheaves are acyclic, but there are other examples.
Acyclic sheaves become especially interesting when there are enough of them; that
is, when every sheaf F can be imbedded in an acyclic sheaf L. The most popular
acyclic sheaves are flabby sheaves.

Definition. A sheaf L over a space X is flabby (or flasque) if, for each open
U ⊆ X, every section s ∈ L(U) can be extended to a global section.

A flabby resolution of a sheaf F is an exact sequence

0→ F → L0 → L1 → · · ·
in which Lq is flabby for all q ≥ 0.

A sheaf L is flabby if and only if the restriction maps Γ(X,L) → Γ(U,L) are
all epic; it follows that the restriction maps ρVU : Γ(V,L)→ Γ(U,L) are epic for all
open sets U ⊆ V , because ρXV ρVU = ρXU . Hence, if U ⊆ X is open, then L flabby
implies L|U is also flabby.

Proposition C-4.48. The functor L0F : U �→
∏

x∈U Fx is a flabby sheaf.

Proof. If U ⊆ V , define L0 : L0(V ) → L0(U) by s �→ s|U (if s ∈ L0(V ) =∏
x∈V Fx, then s : V →

⋃
x∈V Fx is a function with s(x) ∈ Fx). It is obvious that

L0F is a presheaf satisfying the equalizer condition. Moreover, L0F is flabby: since
global sections here are merely functions X →

∏
x∈X Fx, every section s over U

extends to a global section s′; for example, define s′|U = s and, if x /∈ U , define
s′(x) = 0. •
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Proposition C-4.49 (Godement). Let F be a sheaf over a space X.

(i) There is an imbedding 0→ F → L0F .
(ii) There is a flabby resolution

L•F = 0→ F → L0F → L1F → · · · .

Proof.

(i) If U ⊆ X is open, define F(U)→ (L0F)(U) by

s �→ (s(x)) ∈
∏
x∈U

Fx = (L0F)(U).

It is routine to check that this is a sheaf monomorphism.

(ii) We prove, by induction on q, that there are flabby sheaves LiF for all i ≤ q
and sheaf maps di : LiF → Li+1F for i ≤ q − 1 such that

0→ F → L0F d0

−→ L1F → · · · → Lq−1F dq−1

−→ LqF

is exact. We have already defined L0F . Define

Lq+1F = L0(coker dq−1),

and define dq : LqF → Lq+1F as the composite

LqF → coker dq−1 → L0(coker dq−1) = Lq+1F .
Now Lq+1F is flabby because it is L0 of some sheaf, and the sequence is exact
because coker dq−1 → Lq+1F is monic. •

Corollary C-4.50. Every injective sheaf E over a space X is flabby.

Proof. It is easy to see that every direct summand of a flabby sheaf is flabby. By
Proposition C-4.49(i), there is an exact sequence 0 → E → L → L/E → 0, where
L is flabby. But this sequence splits, because E is injective; thus, E is a direct
summand of L and, hence, it is flabby. •

Flabby sheaves give yet another construction of sheaf cohomology.

Definition. The flabby resolution L•F in Proposition C-4.49(ii) is called the
Godement resolution of F .

Proposition C-4.51. Let F be a sheaf over a space X.

(i) If 0→ F ′ ι−→ F ϕ−→ F ′′ → 0 is an exact sequence of sheaves with F ′ flabby,
then 0 → Γ(F ′) → Γ(F) → Γ(F ′′) → 0 is an exact sequence of abelian
groups.

(ii) Let 0 → L′ → L → Q → 0 be an exact sequence of sheaves. If L′ and L are
flabby, then Q is flabby.

(iii) Flabby sheaves L are acyclic.

(iv) Hq(Γ(L•F)F ) ∼= Hq(F) for all q ≥ 0, where (L•F)F is the complex obtained
from L•F by deleting F .
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Proof.

(i) It suffices to prove that ϕX : Γ(F) → Γ(F ′′), given by ϕX : s �→ ϕs, is epic.
Let s′′ ∈ F ′′(X) = Γ(F ′′). Define

X =
{
(U, s) : U ⊆ X is open, s ∈ F(U), ϕs = s′′|U

}
.

Partially order X by (U, s)  (U1, s1) if U ⊆ U1 and s1|U = s. It is routine
to see that chains in X have upper bounds, and so Zorn’s Lemma provides
a maximal element (U0, s0). If U0 = X, then s0 is a global section and ϕX

is epic. Otherwise, choose x ∈ X with x /∈ U0. Since ϕ : F → F ′′ is an epic
sheaf map, it is epic on stalks, and so there are an open V ⊆ X with V � x
and a section t ∈ F(V ) with ϕt = s′′|V . Now s − t ∈ F ′(U ∩ V ) (we regard
ι : F ′ → F as the inclusion), so that F ′ flabby provides r ∈ F ′(X) extending
s− t. Hence, s = (t+ r)|(U ∩V ) in F(U ∩ V ). Therefore, these sections may
be glued: there is s̃ ∈ F(U ∪V ) with s̃|U = s and s̃|V = (t+ r)|(U ∩V ). But
ϕ(s̃) = s′′, and this contradicts the maximality of (U0, s0).

(ii) Let U ⊆ X be open, and consider the commutative diagram

F(X)
ϕX ��

ρ

��

F ′′(X)

ρ′′

��
F(U)

ϕU

�� F ′′(U)

where ρ, ρ′′ are restriction maps. Since F is flabby, ρ is epic. We have
exactness of 0 → F ′|U → F|U → F ′′|U → 0, for exactness of sheaves
is stalkwise. As mentioned earlier, F ′ flabby implies F ′|U flabby, so that
part (i) gives ϕU epic. Therefore, the composite ϕUρ = ρ′′ϕX is epic, and
hence ρ′′ is epic; that is, F ′′ is flabby.

(iii) Let L be flabby. Since there are enough injective sheaves, there is an exact
sequence 0 → L → E → Q → 0 with E injective. Now E is flabby, by
Corollary C-4.50, and so Q is flabby, by part (ii). We prove that Hq(L) = {0}
by induction on q ≥ 1. If q = 1, the long exact cohomology sequence contains
the fragment

H0(E)→ H0(Q)→ H1(L)→ H1(E).

Since H1(E) = {0}, we have H1(L) = coker(Γ(E))→ Γ(Q). But this cokernel
is {0}, by part (i), and so H1(L) = {0}. For the inductive step, consider the
fragment

Hq(Q)→ Hq+1(L)→ Hq+1(E).
Now Hq+1(E) = {0}, because E is injective, while Hq(Q) = {0}, by the in-
ductive hypothesis (which applies because Q is flabby). Therefore, exactness
gives Hq+1(L) = {0}.

(iv) Since the homology functors Hq(F) defined from flabby resolutions are 0 for
q ≥ 1, by part (iii), the result follows from uniqueness (adapt the proof of
Theorem C-3.45, replacing ext

n by Hn). •
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There are other interesting classes of acyclic sheaves: for example, fine sheaves,
defined in terms of locally finite open covers and partitions of unity, are acyclic (see
Godement [80], Chapter II, §3, or Gunning [87], p. 36).

The article of Serre [198] developed the theory of sheaves over spaces X which
need not be Hausdorff. This enabled him to apply sheaves in algebraic geometry; for
example, the structure sheaf of a commutative ring R is a sheaf over X = Spec(R),
and Spec(R) is rarely Hausdorff. Because of the importance of this paper, it has
acquired a nickname; it is usually referred to as FAC. We shall say a bit more about
structure sheaves in the next chapter.

C-4.6. Module Categories

When is a category isomorphic to a module category ModR?

Definition. A functor F : C → D is an isomorphism if there exists a functor
G : D → C with both composites GF = 1C and FG = 1D being identity functors.

Every category is isomorphic to itself; Exercise C-4.43 on page 391 shows that
if R is a ring with opposite ring Rop, then ModR is isomorphic to Rop Mod.

Empirically, isomorphism of functors turns out to be uninteresting. Consider
the category V of all finite-dimensional vector spaces over a field k and its full
subcategoryW generated by all vector spaces equal to kn for n ∈ N. Since functors
take identity morphisms to identity morphisms, an isomorphism F : V → W would
give a bijection obj(V)→ obj(W). ButW is a small category (| obj(W)| = ℵ0) while
V is not small, and so these categories are not isomorphic. Carefully distinguishing
between two such categories does not seem to be a worthy enterprise.

Recall the following weaker but more useful definition.

Definition. A functor F : C → D is an equivalence if there is a functor G : D → C,
called its inverse, such that GF and FG are naturally isomorphic to the identity
functors 1C and 1D, respectively. When C and D are abelian categories, we will
further assume that an equivalence F : C → D is an additive functor.

Recall Proposition C-4.18:

A functor F : C → D is an equivalence if and only if

(i) F is full and faithful: i.e., the function HomC(C,C
′) → HomD(FC, FC ′),

given by f �→ Ff , is a bijection for all C,C ′ ∈ obj(C);
(ii) every D ∈ obj(D) is isomorphic to FC for some C ∈ obj(C).

Example C-4.52.

(i) If C is a category, let S ⊆ obj(C) consist of one object from each isomorphism
class of objects. The full subcategory generated by S (also denoted by S)
is called a skeletal subcategory of C. The inclusion functor S → C is an
equivalence, by Proposition C-4.18; thus, every category C is equivalent to a
skeletal subcategory. For example, if V is the category of all finite-dimensional
vector spaces over a field k, then the full category W of V generated by all
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kn for n ∈ N is a skeletal subcategory. Hence, V and W are equivalent, but
they are not isomorphic.

(ii) If R is a ring with opposite ring Rop, then ModR is equivalent to Rop Mod,
for we have already observed that these categories are isomorphic.

(iii) If R is a ring, thenModR and R Mod need not be equivalent (Exercise C-4.45
on page 391).

(iv) If V is the category of all finite-dimensional vector spaces over a field k,
then double dual F : V → V , sending V �→ V ∗∗, is an equivalence (V ∗ =
Homk(V, k) is the dual space), for F satisfies the conditions in Proposi-
tion C-4.18. �

Let us rephrase our original question. When is a category equivalent to a
module category ModR? We shall see that the Wedderburn–Artin Theorems can
be better understood in the context of determining those abstract categories that
are isomorphic to module categories.

We know that ModR, for any ring R, is an abelian category; it also has arbi-
trary direct sums (coproducts).

Definition. An abelian category A is cocomplete if it contains the coproduct⊕
i∈I Ai for every set (Ai)i∈I of objects, where the index set I may be infinite.

We now generalize some categorical properties of the object R in ModR.

Definition. An object P in an abelian category A is small if the covariant Hom
functor HomA(P, ) preserves (possibly infinite) coproducts.

In more detail, if P is small and B =
⊕

i∈I Bi has injections λi : Bi → B, then

Hom
(
P,

⊕
i∈I Bi

)
=

⊕
i∈I Hom(P,Bi) has as injections the induced morphisms

(λi)∗ : Hom(P,Bi)→ Hom(P,B).

Example C-4.53.

(i) Any finite coproduct of small objects is small, and any direct summand of a
small object is small.

(ii) Since every ring R is a small R-module, by Corollary B-4.27 in Part 1, it
follows from (i) that every finitely generated projective R-module is small.

�

Definition. An object P in an abelian category A is a generator of A if every
M ∈ obj(A) is a quotient of a (possibly infinite) coproduct of copies of P .

It is clear that R is a generator of ModR, as is any free right R-module.
However, a projective right R-module might not be a generator. For example, if
R = Z6, then R = P ⊕Q, where P ∼= Z3 and Q ∼= Z2. The projective module P is
not a generator, for Q ∼= Z2 is not a quotient of a direct sum of copies of P .

Recall that a functor F : A → B is faithful if, for all A,A′ ∈ obj(A), the function
HomA(A,A′)→ HomB(FA,FA′), given by ϕ �→ Fϕ, is injective.
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Proposition C-4.54. An object P in an abelian category A is a generator of A if
and only if HomA(P, ) is a faithful functor.

In particular, a right R-module P is a generator of ModR if and only if
HomR(P, ) is a faithful functor.

Proof. We give the proof for R-modules, leaving that for abelian categories as a
routine exercise.

Assume that HomR(P, ) is faithful. Given a right R-module A and a map
f : P → A, let Pf be an isomorphic copy of P , and let Y =

⊕
f∈HomR(P,A) Pf .

Define ϕ : Y → A by (gf ) �→
∑

f f(gf ). If ϕ is not surjective, then the natural map

ν : A → A/ imϕ is nonzero. Since HomR(P, ) is faithful, ν∗ : HomR(P,A) →
HomR(P,A/ imϕ) is also nonzero. Thus, there is f ∈ HomR(P,A) such that
ν∗(f) = νf �= 0. But f(A) ⊆ imϕ so that νf(A) = {0}; that is, ν∗f = νf = 0, a
contradiction. Therefore, P is a generator.

Conversely, assume that every module A is a quotient of a direct sum Y =⊕
i∈I Pi, where Pi

∼= P for all i; say, there is a surjective ϕ : Y → A. Now ϕ =∑
i ϕλi, where (λi : Pi → Y )i∈I are the injections. If α : A → A′ is nonzero,

then αϕ = α
∑

i ϕλi =
∑

i(αϕλi). Now αϕ �= 0, because ϕ is surjective. Hence,
αϕλi �= 0 for some i. But Pi

∼= P , so that 0 �= αϕλi = α∗(ϕλi); that is, α∗ �= 0,
and so HomR(P, ) is faithful. •

Here is the characterization of module categories.

Theorem C-4.55 (Gabriel–Mitchell). A category A is equivalent to a module
category ModR if and only if A is a cocomplete abelian category having a small
projective generator11 P . Moreover, R ∼= EndA(P ) in this case.

Proof. The proof of necessity is easy: ModR is a cocomplete abelian category and
R is a small projective generator.

For the converse, define F = HomA(P, ) : A → Ab. Note that F is additive
and that R = EndA(P ) is a ring, by Exercise C-4.43 on page 391. For each
A ∈ obj(A), we claim that FA is a right R-module. If f ∈ FA = HomA(P,A) and
ϕ : P → P lies in R = End(P ), define scalar multiplication fϕ to be the composite

P
ϕ→ P

f→ A. It is routine to check that F actually takes values in ModR.

Let us prove that F is an equivalence. Now F = HomA(P, ) : A → ModR

(where R = End(P )) is faithful, by Proposition C-4.54. It remains to prove, by
Proposition C-4.18, that F is full (i.e., the maps HomA(Y,X)→ HomR(FY, FX),
given by ϕ �→ Fϕ, are all surjective) and that every M ∈ obj(ModR) is isomorphic
to FA for some A ∈ obj(A).

For fixed Y ∈ obj(A), define the class

C = CY = {X ∈ obj(A) : HomA(X,Y )→ HomR(FX,FY ) is surjective}.

11A small projective generator is often called a progenerator.
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We will prove three properties of the class C:

(i) P ∈ C.
(ii) If (Xi)i∈I is a family of objects in C, then

⊕
i∈I Xi ∈ C.

(iii) If X,Z ∈ C and f : X → Z is any morphism, then coker f ∈ C.

These properties imply C = obj(A): by (i) and (ii), every coproduct of copies
of P lies in C; since P is a generator of A, every Z ∈ obj(A) is a cokernel of⊕

i∈I Pi →
⊕

j∈J Pj , where all Pi, Pj are isomorphic to P . Thus, Z ∈ C, which
says that HomA(Z, Y )→ HomFP (FZ, FY ) is surjective; that is, F is full.

We now verify these three properties.

To see that P ∈ C, we must show that HomA(P, Y ) → HomR(FP, FY ) is
surjective. Since P is a generator of A, there is an exact sequence⊕

i∈I

Pi →
⊕
j∈J

Pj → Y → 0(1)

which gives the commutative diagram (details below)

F (
⊕

i∈I Pi) ��

=

��

F (
⊕

j∈J Pj) ��

=

��

FY ��

=

��

0

HomA(P,
⊕

i∈I Pi) ��

α

��

HomA(P,
⊕

j∈J Pj) ��

β

��

HomA(P, Y ) ��

γ

��

0

HomR(FP, F (
⊕

i∈I Pi)) ��

��

HomR(FP, F (
⊕

j∈J Pj)) ��

��

HomR(FP, FY ) ��

��

0

⊕
i∈I FPi

�� ⊕
j∈J FPj

�� FY �� 0.

Now F = HomA(P, ) is an exact functor (because P is projective), and so the
top two rows arise by applying F to Eq. (1); the vertical maps between these rows
are identities. The third row arises from applying HomR(FP, ) to the top row;
the vertical maps are the maps Hom(X,Y ) → Hom(FX,FY ) given by ϕ �→ Fϕ.
The bottom row arises from the third row, for F preserves direct sums (because P
is small), and HomR(FP, FY ) = HomR(R,FY ) = FY . Finally, since α and β are
surjections, so is γ (use the Five Lemma, by adding → 0 at the ends of the middle
two rows).

For (ii), let (Xi)i∈I be a family for which all Hom(Xi, Y ) → Hom(FXi, FY )
are surjections. To see that Hom(

⊕
Xi, Y ) → Hom(F (

⊕
Xi), FY ) is surjective,

use the facts that Hom(
⊕

Xi, Y ) ∼=
∏

Hom(Xi, Y ) and Hom(F (
⊕

Xi), FY ) ∼=
Hom(

⊕
FXi, FY ) ∼=

∏
Hom(FXi, FY ) (because F preserves direct sums).

For (iii), use the Five Lemma on a variant of the commutative diagram above.
We conclude that F is full.

Lastly, for every right R-module M , we show that there is A ∈ obj(A) with

M ∼= FA. There is an exact sequence
⊕

i∈I Ri
f→
⊕

j∈J Rj → M → 0 in ModR,
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where Ri, Rj are isomorphic to R. If we view each Ri, Rj as FPi, FPj , where all
Pi, Pj are isomorphic to P , then

f ∈ Hom
(⊕

i∈I

Ri,
⊕
j∈J

Rj

)
= Hom

(⊕
i∈I

FPi,
⊕
j∈J

FPj

)
= Hom

(
F
(⊕

i∈I

Pi

)
, F

(⊕
j∈J

Pj

))
.

Since F is full, there is ϕ ∈ Hom(
⊕

i∈I Pi,
⊕

j∈J Pj) with Fϕ = f . Using the Five

Lemma again, the reader may show that M ∼= F (cokerϕ). •

Corollary C-4.56. If R is a ring and n ≥ 1, there is an equivalence of categories

ModR
∼= ModMatn(R).

Proof. For any integer n ≥ 1, the free module P =
⊕n

i=1 Ri, where Ri
∼= R,

is a small projective generator of ModR. Theorem C-4.55 gives an equivalence
ModR

∼= ModS , where S = EndR(P ) ∼= Matn(R). •

We can now understand why matrix rings arise in the study of semisimple
rings. Proposition C-2.27 says that Matn(k) is semisimple when k is a division
ring. By Proposition C-2.23, a ring R is semisimple if and only if every R-module
is projective; that is, every object in ModR is projective. But every k-module is
projective (even free), so that equivalence of the categories shows that every object
in ModMatn(k) is also projective. Therefore, Matn(k) is semisimple.

Given rings R and S, Corollary C-4.56 raises the question of when ModR and
ModS are equivalent. The answer is given in Morita [159], which arose by analyz-
ing the proof of Theorem C-4.55. We merely report the main results; for details,
see Jacobson [111], pp. 177–184, Lam [135], Chapters 18 and 19, McConnell–
Robson [153], Chapter 3, §5, Reiner [180], Chapter 4, or Rowen [194], Chapter 4.

Definition. Call rings R and S Morita equivalent if their module categories
ModR and ModS are equivalent.

For example, Corollary C-4.56 says that every ring R is Morita equivalent to
the matrix ring Matn(R), where n ≥ 1.

Given a ring R, every right R-module P determines a Morita context

(P,R,Q, S, α, β).

Here, Q = HomR(P,R) and S = EndR(P ). Both P andQ turn out to be bimodules:
P = SPR and Q = RQS , and there is an (R,R)-map α : Q ⊗S P → R, given by
q ⊗ p �→ qp, and an (R,R)-map β : P ⊗R Q → S, given by p ⊗ q �→ pq. When PR

is a small projective generator, both α and β are isomorphisms; in this case, QS is
also a small projective generator.
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A Morita context enables us to construct an equivalence F and its inverse G.

Theorem C-4.57 (Morita I). Let PR be a small projective generator with Morita
context (P,R,Q, S, α, β).

(i) HomR(P, ) : ModR → ModS is an equivalence, and its inverse is
HomS(Q, ) : ModS →ModR.

(ii) HomR(Q, ) : R Mod → S Mod is an equivalence and its inverse is
HomS(P, ) : S Mod→ R Mod.

Proof. Lam [135] states and proves this using HomR(P, ) ∼= − ⊗R Q and
HomS(Q, ) ∼= −⊗SP in part (i) and HomS(P, ) ∼= Q⊗S− and HomR(Q, ) ∼=
P ⊗R − in part (ii). •

Equivalences F and G essentially arise as in Morita I.

Theorem C-4.58 (Morita II). Let R and S be rings, and let F : ModR →
ModS be an equivalence with inverse G : ModS →ModR. Then F ∼=HomR(P, )
and G ∼= HomS(Q, ), where P = G(S) and Q = F (R).

Let’s apply Morita II to the categories of left and right R-modules.

Corollary C-4.59. ModR and ModS are equivalent if and only if R Mod and

S Mod are equivalent.

Exercise C-4.43 on page 391 shows that ModR and Rop Mod are equivalent,
but Exercise C-4.45 shows that ModR and R Mod may not be equivalent.

Corollary C-4.60. Two rings R and S are Morita equivalent if and only if S ∼=
EndR(P ) for some small projective generator P of ModR.

If A is a category, then an endomorphism of the identity functor 1A is a
natural transformation τ : 1A → 1A; that is, for every pair of objects A and B and
every morphism f : A→ B, there is a commutative diagram

A
τA ��

f

��

A

f

��
B

τB
�� B.

It is easy to see, if A is an abelian category, that the pointwise sum of two endo-
morphisms defined as the family (τA + σA)A∈A is also an endomorphism.

Definition. If A is an abelian category, define

End(A) = {endomorphisms τ : 1A → 1A}.

In particular, if R is a ring, define

End(ModR) = {endomorphisms τ : 1ModR
→ 1ModR

}.
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It should be easy to see that End(ModR) is a ring with composition as multi-
plication, but it is not obvious whether End(ModR) is a set.

Proposition C-4.61. For any ring R, there is a ring isomorphism

Z(R) ∼= End(ModR).

Proof. If c ∈ Z(R) and A is a right R-module, define τ cA : A → A to be multipli-
cation by c:

τ cA : a �→ ac.

Since c ∈ Z(R), the function τ cA is an R-map. It is easily checked that τ c =
(τ cA)A∈ModR

is an endomorphism of 1ModR . Define ϕ : Z(R)→ End(ModR) by

ϕ : c �→ τ c = (τ cA)A∈ModR
.

We claim that ϕ is a bijection (so that End(ModR) is a set) and a ring isomor-
phism. The only point which is not obvious is whether ϕ is surjective. Let σ be an
endomorphism of 1A and let A be a right R-module. If a ∈ A, define f : R→ A by
f(1) = a. There is a commutative diagram

R
σR ��

f

��

R

f

��
A

σA

�� A.

Define c = σR(1). Now fσR(1) = f(c) = f(1 · c) = f(1)c = ac. On the other hand,
σAf(1) = σA(a). Commutativity gives σA(a) = ac; that is, σA = τ cA. •

Corollary C-4.62. Let R and S be rings.

(i) If R and S are Morita equivalent, then Z(R) ∼= Z(S).

(ii) If R and S are commutative, then ModR and ModS are equivalent if and
only if R ∼= S.

Proof.

(i) If A and B are equivalent abelian categories, then End(1A) ∼= End(1B). If
A = ModR and B = ModS , then Z(R) ∼= Z(S), by Proposition C-4.61.

(ii) Sufficiency is obvious. For necessity, part (i) gives Z(R) ∼= Z(S). Since R
and S are commutative, R = Z(R) ∼= Z(S) = S. •

This last result indicates why the Brauer group Br(k) is involved in investigating
central simple algebras instead of only division rings: as we survey the categories

ΔMod, where Δ is a division ring, then the center k of each Δ is a categorical
invariant.
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Exercises

C-4.40. Let F : C → D be an isomorphism of categories with inverse G : D → C; that is,
GF = 1C and FG = 1D. Prove that both (F,G) and (G,F ) are adjoint pairs.

C-4.41. If F : A → B is an equivalence of abelian categories, prove the following state-
ments:

(i) If f is monic in A, then Ff is monic in B.
(ii) If f is epic in A, then Ff is epic in B.
(iii) If A ∈ obj(A), then f 
→ Ff is a ring isomorphism End(A) → End(FA).

(iv) If 0 → A′ → A → A′′ → 0 is exact in A, then 0 → FA′ → FA → FA′′ → 0 is
exact in B. Moreover, the first sequence is split if and only if the second sequence
is split.

(v) If (Ai)i∈I is a family of objects in A, then

F
(⊕

i∈I

Ai

)
∼=
⊕
i∈I

FAi and F
(∏
i∈I

Ai

)
∼=
∏
i∈I

FAi.

(vi) If P is projective in A, then FP is projective in B.
(vii) If P is injective in A, then FP is injective in B.

C-4.42. Let F : ModR → ModS be an equivalence. Prove that a right R-module A has
any of the following properties if and only if FA does: simple, semisimple, ACC, DCC,
indecomposable. Moreover, A has a composition series if and only if FA does; both have
the same length, and S1, . . . , Sn are composition factors of A if and only if FS1, . . . , FSn

are composition factors of FA.

∗ C-4.43. If R is a ring with opposite ring Rop, prove that ModR is equivalent to Rop Mod.

Hint. For each right R-module M , show that there is an isomorphism τ with τ(M) = M ′,
where M ′ is M made into a left R-module as in Proposition B-1.23 in Part 1.

∗ C-4.44. Prove that every small projective generator P of ModR is finitely generated.

∗ C-4.45. (i) Let R and S be rings, and let F : ModR → ModS (or F : ModR → S Mod)
be an equivalence. Prove that a right R-module M is finitely generated if and only
if FM is a finitely generated right (or left) S-module.

Hint. Use Exercise B-1.44 on page 300 in Part 1.

(ii) Call a category ModR (or R Mod) noetherian if every submodule of a finitely
generated right (or left) R-module M is finitely generated. Let A and B be equiv-
alent categories of modules; that is, A is equivalent to ModR or R Mod for some
ring R, and B is equivalent to ModS or S Mod for some ring S. Prove that A is
noetherian if and only if B is noetherian.

(iii) Prove that ModR is a noetherian category if and only if R is a right noetherian
ring and that R Mod is a noetherian category if and only if R is a left noetherian
ring.

(iv) Give an example of a ring R such that R Mod and ModR are not equivalent.
Hint. Let R be the ring in Exercise B-1.28 on page 288 in Part 1 which is left
noetherian but not right noetherian.
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C-4.7. Adjoint Functor Theorem for Modules

Recall the Adjoint Isomorphism, Theorem B-4.98 in Part 1: given modules AR,

RBS , and CS , there is a natural isomorphism

τA,B,C : HomS(A⊗R B,C)→ HomR(A,HomS(B,C)).

Write F = −⊗R B and G = HomS(B, ), so that the isomorphism reads

HomS(FA,C) ∼= HomR(A,GC).

If we pretend that HomS( , ) and HomR( , ) are inner products on vec-
tor spaces V,W , then this reminds us of the adjoint of a linear transformation
T : V →W , the linear transformation T ∗ : W → V such that

(Tv, w) = (v, T ∗w)

for all v ∈ V and w ∈ W . This analogy explains why the isomorphism τ is called
the adjoint isomorphism.

Definition. Let F : C → D and G : D → C be covariant functors. The ordered
pair (F,G) is an adjoint pair if, for each C ∈ obj(C) and D ∈ obj(D), there are
bijections

τC,D : HomD(FC,D)→ HomC(C,GD)

that are natural transformations in C and in D.

In more detail, naturality says that the following two diagrams commute for all
f : C ′ → C in C and g : D → D′ in D:

HomD(FC,D)
(Ff)∗ ��

τC,D
��

HomD(FC ′, D)

τC′,D
��

HomC(C,GD)
f∗

�� HomC(C
′, GD),

HomD(FC,D)
g∗ ��

τC,D
��

HomD(FC,D′)

τC,D′
��

HomC(C,GD)
(Gg)∗

�� HomC(C,GD′).

Example C-4.63.

(i) If B = RBS is a bimodule, then
(
− ⊗R B,HomS(B, )

)
is an adjoint pair,

by Theorem B-4.98 in Part 1. Similarly, if B = SBR is a bimodule, then(
B ⊗R −,HomS(B, )

)
is an adjoint pair, by Theorem B-4.99 in Part 1.

(ii) Let U : Groups → Sets be the forgetful functor which assigns to each
group G its underlying set and views each homomorphism as a mere function.
Let F : Sets → Groups be the free functor defined in Exercise B-4.23 on
page 474 in Part 1, which assigns to each set X the free group FX having
basis X. The function

τX,H : HomGroups(FX,H)→ HomSets(X,UH),



C-4.7. Adjoint Functor Theorem for Modules 393

given by f �→ f |X, is a bijection (its inverse is ϕ �→ ϕ̃, where X, being a
basis of FX, says that every function ϕ : X → H corresponds to a unique
homomorphism ϕ̃ : FX → H). Indeed, τX,H is a natural bijection, showing
that (F,U) is an adjoint pair of functors. This example can be generalized
by replacing Groups by other categories having free objects, e.g., RMod or
ModR.

(iii) If U : ComRings → Sets is the forgetful functor, then (F,U) is an adjoint
pair where, for any set X, we have F (X) = Z[X], the ring of all polynomials
in commuting variables X. More generally, if k is a commutative ring and
ComAlgk is the category of all commutative k-algebras, then F (X) = k[X],
the polynomial ring over k. This is essentially the same example as in (ii),
for k[X] is the free k-algebra on X. �

For many examples of adjoint pairs of functors, see Herrlich–Strecker [96],
p. 197, and Mac Lane [144], Chapter 4, especially pp. 85–86.

Example C-4.64. Adjointness is a property of an ordered pair of functors; if
(F,G) is an adjoint pair of functors, it does not follow that (G,F ) is also an adjoint
pair. For example, if F = − ⊗ B and G = Hom(B, ), then the adjoint isomor-
phism says that Hom(A,B ⊗ C) ∼= Hom(A,Hom(B,C)) for all A and C; that is,
Hom(FA,C) ∼= Hom(A,GC). It does not say that there is an isomorphism (natural
or not) Hom(Hom(B,A), C) ∼= Hom(A,B ⊗ C). Indeed, if A = Q, B = Q/Z, and
C = Z, then Hom(GQ,Z) �∼= Hom(Q, FZ); that is,

Hom
(
Hom(Q/Z,Q),Z

)
�∼= Hom

(
Q, (Q/Z)⊗ Z

)
,

for the left side is {0}, while the right side is isomorphic to Hom(Q,Q/Z), which is
not zero because it contains the natural map Q→ Q/Z. �

Definition. Let C
F
�
G
D be functors. If (F,G) is an adjoint pair, then we say that

F has a right adjoint G and that G has a left adjoint F .

Let (F,G) be an adjoint pair, where F : C → D and G : D → C. If C ∈ obj(C),
then setting D = FC gives a bijection τ : HomD(FC, FC) → HomC(C,GFC), so
that ηC , defined by

ηC = τ (1FC),

is a morphism C → GFC. Exercise C-4.47 on page 402 says that η : 1C → GF is a
natural transformation; it is called the unit of the adjoint pair.

Theorem C-4.65. Let (F,G) be an adjoint pair of functors, where F : C → D and
G : D → C. Then F preserves direct limits and G preserves inverse limits.

Remark. There is no restriction on the index sets of the limits; in particular, they
need not be directed. �

Proof. Let I be a partially ordered set, and let {Ci, ϕ
i
j} be a direct system in C

over I. By Exercise B-7.2 on page 670 in Part 1, {FCi, Fϕi
j} is a direct system in
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D over I. Consider the following diagram in D:

F (lim−→Ci)
γ ��								 D

FCi

Fϕi
j ��

Fαi
���������

fi
&&�������

FCj ,

Fαj

,,

fj

--

where αi : Ci → lim−→Ci are the maps in the definition of direct limit. We must

show that there exists a unique morphism γ : F (lim−→Ci) → D making the diagram
commute. The idea is to apply G to this diagram and use the unit η : 1C → GF
to replace GF (lim−→Ci) and GFCi by lim−→Ci and Ci, respectively. In more detail,
Exercise C-4.47 on page 402 gives morphisms η and ηi making the following diagram
commute:

lim−→Ci
η �� GF (lim−→Ci)

Ci

αi

��

ηi

�� GFCi.

GFαi

��

Apply G to the original diagram and adjoin this diagram to its left:

lim−→Ci

β

..η �� GF (lim−→Ci) GD

Ci
ηi ��

ϕi
j��

αi
������������

GF (Ci)

GFαi
//&&&&&&&&

GFϕi
j ��

Gfi
��((((((((

Cj ηj

��

αj

��������������
GF (Cj).

Gfj

00))))))))))))))

This diagram commutes: we know that (GFϕi
j)ηi = ηjϕ

i
j , since η is natural,

and Gfi = Gfj(GFϕi
j), since G is a functor; therefore, Gfiηi = Gfj(GFϕi

j)ηi =

Gfjηjϕ
i
j . By the definition of direct limit, there exists a unique β : lim−→Ci → GD

(that is, β ∈ HomC(lim−→Ci, GD)) making the diagram commute. Since (F,G) is an
adjoint pair, there exists a natural bijection

τ : HomD(F (lim−→Ci), D)→ HomC(lim−→Ci, GD).

Define

γ = τ−1(β) ∈ HomD(F (lim−→Ci), D).

We claim that γ : F (lim−→Ci) → D makes the first diagram commute. The first
commutative square in the definition of adjointness, which involves the morphism
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αi : Ci → lim−→Ci, gives commutativity of

HomD(F (lim−→Ci), D)
(Fαi)

∗
��

τ

��

HomD(FCi, D)

τ

��
HomC(lim−→Ci, GD)

α∗
i

�� HomC(Ci, GD).

Thus, τ (Fαi)
∗ = α∗

i τ , and so τ−1α∗
i = (Fαi)

∗τ−1. Evaluating on β, we have

(Fαi)
∗τ−1(β) = (Fαi)

∗γ = γFαi.

On the other hand, since βαi = (Gfi)ηi, we have

τ−1α∗
i (β) = τ−1(βαi) = τ−1((Gfi)ηi).

Therefore,

γFαi = τ−1((Gfi)ηi).

The second commutative square in the definition of adjointness commutes, for the
morphism fi : FCi → D gives commutativity of

HomD(FCi, FCi)
(fi)∗ ��

τ

��

HomD(FCi, D)

τ

��
HomC(Ci, GFCi)

(Gfi)∗

�� HomC(Ci, GD);

that is, τ (fi)∗ = (Gfi)∗τ . Evaluating at 1FCi
, the definition of ηi gives τ (fi)∗(1) =

(Gfi)∗τ (1), and so τfi = (Gfi)∗ηi. Therefore,

γFαi = τ−1((Gfi)ηi) = τ−1τfi = fi,

so that γ makes the original diagram commute. We leave the proof of the uniqueness
of γ as an exercise for the reader, with the hint to use the uniqueness of β.

The dual proof shows that G preserves inverse limits. •

We are now going to characterize the Hom and tensor functors on module cate-
gories, yielding a necessary and sufficient condition for a functor on such categories
to be half of an adjoint pair (Theorems C-4.73 and C-4.74).

Lemma C-4.66.

(i) If M is a right R-module and m ∈M , then ϕm : R→M , defined by r �→ mr,
is a map of right R-modules. In particular, if M = R and u ∈ R, then
ϕu : R→ R is a map of right R-modules.

(ii) If M is a right R-module, m ∈M , and u ∈ R, then

ϕmu = ϕmϕu.

(iii) Let f : M → N be an R-map between right R-modules. If m ∈M , then

ϕfm = fϕm.
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Proof.

(i) ϕm is additive becausem(r+s) = mr+ms; ϕm preserves scalar multiplication
on the right because ϕm(rs) = m(rs) = (mr)s = ϕm(r)s.

(ii) Now ϕmr : u �→ (mr)u, while ϕmϕr : u �→ ϕm(ru) = m(ru). These values
agree because M is a right R-module.

(iii) Now ϕfm : u �→ (fm)u, while fϕm : u �→ f(mu). These values agree because
f is an R-map. •

Theorem C-4.67 (Watts). If F : ModR → Ab is a right exact additive functor
that preserves direct sums, then F is naturally isomorphic to − ⊗R B, where B is
F (R) made into a left R-module.

Proof. We begin by making the abelian group FR (our abbreviation for F (R)) into
a left R-module. If M is a right R-module and m ∈M , then ϕm : R→M , defined
by r �→ mr, is an R-map, by Lemma C-4.66(i), and so the Z-map Fϕm : FR→ FM
is defined. In particular, if M = R and u ∈ R, then ϕu : R→ R and, for all x ∈ FR,
we define ux by

ux = (Fϕu)x.

Let us show that this scalar multiplication makes FR into a left R-module. If
M = R and u, v ∈ R, then Fϕu, Fϕv : FR → FR, and Lemma C-4.66(ii) gives
ϕuv = ϕuϕv. Hence,

(uv)x = (Fϕuv)x = F (ϕuϕv)x = (Fϕu)(Fϕv)x = u(vx).

Denote the left R-module FR by B, so that −⊗RB : ModR → Ab. We claim
that τM : M × FR → FM , defined by (m,x) �→ (Fϕm)x, is R-biadditive; that is,
τM (mu, x) = τM (m,ux) for all u ∈ R. Now

τM (mu, x) = (Fϕmu)x = F (ϕmϕu)x,

by Lemma C-4.66(ii). On the other hand,

τM (m,ux) = (Fϕm)ux = (Fϕm)(Fϕu)x = (Fϕmu)x.

Thus, τM induces a homomorphism σM : M ⊗R B → FM . We claim that the
family σ = (σM )M∈ModR

is a natural transformation σ : −⊗RB → F ; that is, the
following diagram commutes for R-maps f : M → N :

M ⊗R B
σM ��

f⊗1
��

FM

Ff
��

N ⊗R B
σN

�� FN.

Going clockwise, m⊗ x �→ (Fϕm)x �→ (Ff)(Fϕm)x; going counterclockwise,

m⊗ x �→ f(m)⊗ x �→ (Fϕfm)x = F (fϕm)x = (Ff)(Fϕm)x,

by Lemma C-4.66(iii).

Now σR : R⊗RB → FR is an isomorphism (because B = FR); moreover, since
both − ⊗R B and F preserve direct sums, σA : A ⊗R B → FA is an isomorphism
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for every free right R-module A. Let M be any right R-module. There are a free
right R-module A and a short exact sequence

0→ K
i−→ A→M → 0;

there is also a surjection f : C → K for some free right R-module C. Splicing these
together, there is an exact sequence

C
if−→ A→M → 0.

Now the following commutative diagram has exact rows, for both − ⊗R B and F
are right exact:

C ⊗R B ��

σC ��

A⊗R B ��

σA��

M ⊗R B

σM��

�� 0

FC �� FA �� FM �� 0.

Since σC and σA are isomorphisms, the Five Lemma shows that σM is an isomor-
phism. Therefore, σ is a natural isomorphism. •

Remark. If, in Theorem C-4.67, F takes values in ModS instead of in Ab, then
the first paragraph of the proof can be modified to prove that the right S-module
FR may be construed as an (R,S)-bimodule; thus, the theorem remains true if Ab
is replaced by ModS . �

Example C-4.68. If R is a commutative ring and r ∈ R, then there is a functor
F : RMod → RMod that takes an R-module M to M/rM (if ϕ : M → N is an
R-map, define Fϕ : M/rM → N/rN by m+ rM �→ ϕ(m) + rN). The reader may
check that F is a right exact functor preserving direct sums, and so it follows from
Watts’ Theorem that F is naturally isomorphic to −⊗R (R/rR), for FR = R/rR.
This generalizes Proposition B-4.91 in Part 1. �

Corollary C-4.69. Let R be a right noetherian ring, and let FR be the category of
all finitely generated right R-modules. If F : FR →ModS is a right exact additive
functor, then F is naturally isomorphic to −⊗R B, where B is F (R) made into a
left R-module.

Proof. The proof is almost the same as that of Theorem C-4.67 coupled with
the remark after it. Given a finitely generated right R-module M , we can choose
a finitely generated free right R-module A mapping onto M . Moreover, since R
is right noetherian, Proposition B-1.34 in Part 1 shows that the kernel K of the
surjection A → M is also finitely generated (if K were not finitely generated,
then there would be no free right R-module in the category FR mapping onto K).
Finally, we need not assume that F preserves finite direct sums, for Lemma C-4.1
shows that this follows from the additivity of F . •

We now characterize contravariant Hom functors.

Theorem C-4.70 (Watts). If H : RMod → Ab is a contravariant left exact
additive functor that converts direct sums to direct products, then H is naturally
isomorphic to HomR( , B), where B is H(R) made into a right R-module.



398 Chapter C-4. More Categories

Proof. We begin by making the abelian group HR into a right R-module. As
in the beginning of the proof of Theorem C-4.67, if M is a right R-module and
m ∈ M , then the function ϕm : R → M , defined by r �→ mr, is an R-map. In
particular, if M = R and u ∈ R, then Hϕu : HR → HR, and Lemma C-4.66(ii)
gives ϕuv = ϕuϕv for all u, v ∈ R. If x ∈ HR, define

ux = (Hϕu)x.

Here, HR is a right R-module, for the contravariance of H gives

(uv)x = (Hϕuv)x = H(ϕuϕv)x = (Hϕv)(Hϕu)x = v(ux).

Define σM : HM → HomR(M,B) by σM (x) : m �→ (Hϕm)x, where x ∈ HM .
It is easy to check that σ : H → HomR( , B) is a natural transformation and that
σR is an isomorphism. The remainder of the proof proceeds, mutatis mutandis, as
that of Theorem C-4.67. •

We can characterize covariant Hom functors, but the proof is a bit more com-
plicated.

Definition. A left R-module C is called a cogenerator of RMod if, for every left
R-module M and every nonzero m ∈ M , there exists an R-map g : M → C with
g(m) �= 0.

Exercise B-4.57 on page 501 in Part 1 can be restated to say that Q/Z is an
injective cogenerator of Ab.

Lemma C-4.71. There exists an injective cogenerator of RMod.

Proof. Define C to be an injective left R-module containing
⊕

I R/I, where I
varies over all the left ideals in R (the module C exists, by Theorem B-4.64 in
Part 1). If M is a left R-module and m ∈M is nonzero, then 〈m〉 ∼= R/J for some
left ideal J . Consider the diagram

C

0 �� 〈m〉
f

��

i
�� M,

g
11#
#
#
#

where i is the inclusion and f is an isomorphism of 〈m〉 to some submodule of C
isomorphic to R/J . Since C is injective, there is an R-map g : M → C extending
f , and so g(m) �= 0. •

An analysis of the proof of Proposition B-7.4 in Part 1 shows that it can be
generalized by replacing Hom(A, ) by any left exact functor that preserves direct
products. However, this added generality is only illusory, in light of the following
theorem of Watts characterizing representable functors on module categories.

Theorem C-4.72 (Watts). If G : RMod → Ab is a covariant additive functor
preserving inverse limits, then G is naturally isomorphic to HomR(B, ) for some
left R-module B.
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Proof. For a module M and a set X, let MX denote the direct product of copies
of M indexed by X; more precisely, MX is the set of all functions X → M . In
particular, 1M ∈MM , and we write e = 1M ∈MM . If m ∈M and πm : MM →M
is the mth projection, then the mth coordinate of e is πm(e) = m.

Choose an injective cogenerator C of RMod. Let Π = CGC , and let its pro-
jection maps be px : Π → C for all x ∈ GC. Since G preserves inverse limits,
it preserves direct products, and so GΠ is a direct product with projection maps
Gpx. More precisely, if πx : (GC)GC → GC are the projection maps, then there is
a unique isomorphism θ making the following diagrams commute for all x ∈ GC:

GΠ

Gpx ��##
###

##
(GC)GCθ��

πx22***
***

*

GC.

Thus, (Gpx)θ = πx for all x ∈ GC. Write

e = 1GC ∈ (GC)GC .

Define τ : HomR(Π, C)→ GC by

τ : f �→ (Gf)(θe).

If f : Π→ C, then Gf : GΠ→ GC; since θe ∈ GΠ, τ (f) = (Gf)(θe) makes sense.

The map τ is surjective, for if x ∈ GC, then τ (px) = (Gpx)(θe) = πx(e) = x.
We now describe ker τ . If S ⊆ Π, denote the inclusion S → Π by iS . Define

B =
⋂
S∈S

S, where S = {submodules S ⊆ Π : θe ∈ imG(iS)}.

We show that S is closed under finite intersections. All the maps in the first
diagram below are inclusions, so that iSλ = iS∩T . Since G preserves inverse limits,
it preserves pullbacks; since the first diagram is a pullback, the second diagram is
also a pullback:

S ∩ T
μ
��

λ �� S
iS��

T
iT

�� Π

and G(S ∩ T )

Gμ
��

Gλ �� GS

G(iS)
��

GT
G(iT )

�� GΠ.

By the definition of S, there are u ∈ GS with (GiS)u = θe and v ∈ GT with
(GiT )v = θe. By Exercise C-3.42 on page 292, there is d ∈ G(S ∩ T ) with
(GiS)(Gλ)d = θe. But (GiS)(Gλ) = GiS∩T , so that θe ∈ imG(iS∩T ) and S∩T ∈ S.
It now follows from Example B-7.3(iii) on page 654 in Part 1 that B =

⋂
S ∼= lim←−S,

so that B ∈ S.
Now G is left exact, so that exactness of 0→ ker f

ν−→ Π
f−→ C gives exactness

of 0→ G(ker f)
Gν−→ GΠ

Gf−→ GC. Thus, imGν = ker(Gf). If

j : B → Π

is the inclusion, then ker τ = ker j∗, where j∗ : f �→ fj is the induced map
j∗ : HomR(Π, C)→ HomR(B,C): if f ∈ ker τ , then (Gf)θe = 0, and θe ∈ kerGf =
imGν; thus, ker f ∈ S. Hence, B ⊆ ker f , fj = 0, f ∈ ker j∗, and ker τ ⊆ ker j∗.
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For the reverse inclusion, assume that f ∈ ker j∗, so that B ⊆ ker f . Then
imGj ⊆ imGν = kerGf . But θe ∈ kerGf ; that is, (Gf)θe = 0, and f ∈ ker τ .
Therefore, ker j∗ = ker τ .

In the diagram

0 �� HomR(Π/B,C)

=

��

�� HomR(Π, C)

=

��

j∗ �� HomR(B,C) ��

σC

���
�
�

0

0 �� HomR(Π/B,C) �� HomR(Π, C)
τ

�� GC �� 0,

the first two vertical arrows are identities, so that the diagram commutes. Exactness

of 0 → B
j−→ Π → Π/B → 0 and injectivity of C give exactness of the top row,

while the bottom row is exact because τ is surjective and ker τ = ker j∗. It follows
that the two cokernels are isomorphic: there is an isomorphism

σC : HomR(B,C)→ GC,

given by σC : f �→ (Gf)θe (for the fussy reader, this is Proposition B-1.46 in Part 1).

For any module M , there is a map M → CHomR(M,C) given by m �→ (fm),
that “vector” whose fth coordinate is fm; this map is an injection because C is
a cogenerator. Similarly, if N = coker(M → CHomR(M,C)), there is an injection
N → CY for some set Y ; splicing these together gives an exact sequence

0 �� M �� CHomR(M,C) ��			

**&&
&&&

&&&
&& CY

N.

��

Since both G and HomR(B, ) are left exact, there is a commutative diagram with
exact rows

0 �� HomR(B,M) ��

σM

���
�
�

HomR(B,CHomR(M,C)) ��

σ
CHomR(M,C)

��

HomR(B,CY )

σCY

��
0 �� GM �� GCHomR(M,C) �� GCY .

The vertical maps σCHomR(M,C) and σCY are isomorphisms, so that Proposition
B-1.47 in Part 1 gives a unique isomorphism σM : HomR(B,M)→ GM . It remains
to prove that the isomorphisms σM constitute a natural transformation. Recall,
for any set X, that HomR(B,CX) ∼= HomR(B,C)X via f �→ (pxf), where px
is the xth projection. The map σCX : HomR(B,CX) → GCX is given by f �→(
(Gpxf)θe

)
=

(
(Gpxf)

)
θe = (Gf)θe. Therefore, σM : HomR(B,M) → GM is

given by f �→ (Gf)θe, and Theorem C-4.8, Yoneda’s Lemma, shows that σ is a
natural isomorphism. •

Remark. No easy description of the module B is known. However, we know that
B is not G(R). For example, if G = HomZ(Q, ), then Watts’s Theorem applies
to give HomZ(B, ) ∼= HomZ(Q, ). Now Theorem C-4.10 says that B ∼= Q, but
B �∼= G(Z) = HomZ(Q,Z) = {0}. �
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Theorem C-4.73 (Adjoint Functor Theorem for Modules). If F : ModR →
Ab is an additive functor, then the following statements are equivalent:

(i) F preserves direct limits.

(ii) F is right exact and preserves direct sums.

(iii) F ∼= −⊗R B for some left R-module B.

(iv) F has a right adjoint; there is a functor G : Ab → ModR so that (F,G) is
an adjoint pair.

Proof.

(i) ⇒ (ii). Cokernels and direct sums are direct limits.

(ii) ⇒ (iii). Theorem C-4.67.

(iii) ⇒ (iv). Take G = HomR(B, ) in the Adjoint Isomorphism Theorem.

(iv) ⇒ (i). Theorem C-4.65. •

Theorem C-4.74. If G : RMod → Ab is an additive functor, then the following
statements are equivalent:

(i) G preserves inverse limits.

(ii) G is left exact and preserves direct products.

(iii) G is representable; i.e., G ∼= HomR(B, ) for some left R-module B.

(iv) G has a left adjoint; there is a functor F : Ab→ RMod so that (F,G) is an
adjoint pair.

Proof.

(i) ⇒ (ii). Kernels and direct products are inverse limits.

(ii) ⇒ (iii). Theorem C-4.72.

(iii) ⇒ (iv). Take F = −⊗R B in the Adjoint Isomorphism Theorem.

(iv) ⇒ (i). A left exact additive functor that preserves products must preserve
inverse limits (Exercise B-7.10 on page 671 in Part 1). •

The general Adjoint Functor Theorem says that a functor G on an arbitrary
category has a left adjoint (that is, there exists a functor F so that (F,G) is an
adjoint pair) if and only if G preserves inverse limits and G satisfies a “solution set
condition” (Mac Lane [144], pp. 116–127 and 230). One consequence is a proof of
the existence of free objects when a forgetful functor has a left adjoint; see Barr [16].
The Adjoint Functor Theorem also says that F has a right adjoint if and only if F
preserves all direct limits and satisfies a solution set condition. Theorems C-4.73
and C-4.74 are special cases of the Adjoint Functor Theorem.

It can be proved that adjoints are unique if they exist: if (F,G) and (F,G′)
are adjoint pairs, where F : A → B and G,G′ : B → A, then G ∼= G′; similarly, if
(F,G) and (F ′, G) are adjoint pairs, then F ∼= F ′ (Mac Lane [144], p. 83). Here is
the special case for module categories.



402 Chapter C-4. More Categories

Proposition C-4.75. Let F : RMod→ Ab and G,G′ : Ab→ RMod be functors.
If (F,G) and (F,G′) are adjoint pairs, then G ∼= G′.

Proof. For every left R-module C, there are natural isomorphisms

HomR(C,G ) ∼= HomZ(FC, ) ∼= HomR(C,G
′ ).

Thus, HomR(C, )◦G ∼= HomR(C, )◦G′ for every left R-module C. In particular,
if C = R, then HomR(R, ) ∼= 1, the identity functor on RMod, and so G ∼= G′.

•

Remark. In functional analysis, one works with topological vector spaces; more-
over, there are many different topologies imposed on vector spaces, depending on
the sort of problem being considered. We know that if A,B,C are modules, then
the Adjoint Isomorphism Theorem, Theorem B-4.98 in Part 1, gives a natural iso-
morphism

Hom(A⊗B,C) ∼= Hom(A,Hom(B,C)).

Thus, − ⊗ B is the left adjoint of Hom(B, ). In the category of topological
vector spaces, Grothendieck defined topological tensor products as left adjoints
of Hom(B, ). Since the Hom sets consist of continuous linear transformations,
they depend on the topology, and so topological tensor products also depend on
the topology. �

Exercises

C-4.46. Give an example of an additive functor H : Ab → Ab that has neither a left
nor a right adjoint.

∗ C-4.47. Let (F,G) be an adjoint pair, where F : C → D and G : D → C, and let the
natural bijection be τC,D : Hom(FC,D) → Hom(C,GC).

(i) If D = FC, there is a natural bijection

τC,FC : Hom(FC, FC) → Hom(C,GFC)

with τ(1FC) = ηC : C → GFC. Prove that η : 1C → GF is a natural transforma-
tion, where η is the unit of the adjoint pair.

(ii) If C = GD, there is a natural bijection

τ−1
GD,D : Hom(GD,GD) → Hom(FGD,D)

with τ−1(1D) = εD : FGD → D. Prove that ε : FG → 1D is a natural transforma-
tion. (We call ε the counit of the adjoint pair.)

C-4.48. Let (F,G) be an adjoint pair of functors between module categories. Prove that
if G is exact, then F preserves projectives; that is, if P is a projective module, then FP
is projective. Dually, prove that if F is exact, then G preserves injectives.

C-4.49. (i) Let F : Groups → Ab be the functor with F (G) = G/G′, where G′ is the
commutator subgroup of a group G, and let U : Ab → Groups be the functor
taking every abelian group A into itself (that is, UA regards A as a not necessarily
abelian group). Prove that (F, U) is an adjoint pair of functors.

(ii) Prove that the unit of the adjoint pair (F,U) is the natural map G → G/G′.
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∗ C-4.50. (i) If I is a partially ordered set, let Dir(RMod/I) denote the class of all direct
systems of left R-modules over I, together with their morphisms.

(ii) Prove that Dir(RMod/I) is a category and that lim−→ : Dir(RMod/I) → RMod is
a functor.

(iii) Let C,D be categories. Prove that the constant functors C → D (see Exam-
ple B-4.15 in Part 1) define a functor | | : C → CD: to each object C in C assign
the constant functor |C|, and to each morphism ϕ : C → C ′ in C, assign the natural
transformation |ϕ| : |C| → |C ′| defined by |ϕ|D = ϕ.

(iv) If C is cocomplete, prove that (lim−→, | |) is an adjoint pair, and conclude that lim−→
preserves direct limits.

(v) Let I be a partially ordered set and let Inv(RMod/I) denote the class of all inverse
systems, together with their morphisms, of left R-modules over I. Prove that
Inv(RMod/I) is a category and that lim←− : Inv(RMod/I) → RMod is a functor.

(vi) Prove that if C is complete, then (| |, lim←−) is an adjoint pair and lim←− preserves
inverse limits.

C-4.51. (i) If A1 ⊆ A2 ⊆ A3 ⊆ · · · is an ascending sequence of submodules of a module
A, prove that A/

⋃
Ai

∼=
⋃

A/Ai; that is, coker(lim−→Ai ⊆ A) ∼= lim−→ coker(Ai → A).

(ii) Generalize (i): prove that any two direct limits (perhaps with distinct index sets)
commute.

(iii) Prove that any two inverse limits (perhaps with distinct index sets) commute.

(iv) Give an example in which direct limit and inverse limit do not commute.

C-4.52. (i) Define ACC in RMod, and prove that if SMod ∼= RMod, then SMod has
ACC. Conclude that if R is left noetherian, then S is left noetherian.

(ii) Give an example showing that RMod and ModR are not isomorphic.

C-4.53. (i) A generator of a category C is an object G such that Hom(G, ) : C → Sets
is a faithful functor; that is, if f, g : A → B are distinct morphisms in C, then there
exists a morphism h : G → A with fh �= gh. Prove, when C = RMod, that this
definition coincides with the definition of generator on page 385.

(ii) Recall that a cogenerator of a category C is an object C such that Hom( , C) : C →
Sets is a faithful functor; that is, if f, g : A → B are distinct morphisms in C, then
there exists a morphism h : B → C with hf �= hg. Prove, when C = RMod, that
this definition coincides with the definition of cogenerator on page 398.

C-4.8. Algebraic K-Theory

This section may be regarded as an introduction to algebraic K-theory. In contrast
to homological algebra, this topic is often called homotopical algebra, for there are
topological interpretations involving homotopy groups as well as homology groups.
There are two different constructions of Grothendieck groups : K0 and G0. Although
we will define K0(C) and G0(C) for various types of C (semigroups, categories,
rings), the most important versions have C a ring. We shall see thatK0(R) ∼= G0(R)
for every ring R.
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Exercise C-4.54 on page 417 shows that K0(R) ∼= K0(R
op) for every ring R, so

that “R-module” in this section will always mean “left R-module”.

The Functor K0

We begin by generalizing the construction of the additive group of the integers
Z from the additive semigroup of the natural numbers N.

Definition. If S is a commutative semigroup, then K0(S) is an abelian group
solving the following universal problem in the category

CS

of commutative semigroups: there is a semigroup map ν : S → K0(S) such that, for
every abelian group G and every semigroup map ϕ : S → G, there exists a unique
group homomorphism Φ: K0(S)→ G with Φν = ϕ,

S
ν ��

ϕ
��+

++
++

++
++

K0(S)

Φ

���
�
�

G.

We call K0(S) the Grothendieck group of the semigroup S.

In generalizing the Riemann–Roch Theorem, Grothendieck recognized (see
Proposition C-4.90 below) that if C is the category of all finitely generated R-
modules and a filtration of a module

M = M0 ⊇M1 ⊇M2 ⊇ · · · ⊇Mn = {0}
has factor modules Qi = Mi−1/Mi, then M is a telescoping sum

[M ] = [Q1] + · · ·+ [Qn] in G0(C)
in the Grothendieck group.

Proposition C-4.76. For every commutative semigroup S, the group K0(S) exists.

Proof. Let F (S) be the free abelian group with basis S, and let

H =
〈
x+ y − z : x+ y = z in S

〉
.

Define K0(S) = F (S)/H, and define ν : S → K0(S) by ν : x �→ x+H. A semigroup
map ϕ : S → G, being a function defined on a basis, has a unique extension to a
group homomorphism ϕ̃ : F (S) → G; note that H ⊆ ker ϕ̃, because ϕ(x + y) =
ϕ(x) + ϕ(y). Define Φ: K0(S)→ G by x+H �→ ϕ̃(x). •

If x ∈ S, we will denote

ν(x) = x+H by [x].

As always, solutions to a universal mapping problem are unique to isomorphism.

Corollary C-4.77. If N is viewed as an additive commutative semigroup, then

K0(N) = Z.
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Proof. In the diagram below, let ν : N→ Z be the inclusion. Define Φ(n) = ϕ(n)
if n ≥ 0, and define Φ(n) = −ϕ(−n) if n < 0:

N ν ��

ϕ )),
,,

,,
,,

,, Z

Φ
���
�
�

G. •

Example C-4.78. The last corollary is not really a construction of Z from N, be-
cause the construction of K0(N) in Proposition C-4.76 uses free abelian groups. We
now sketch a second construction of K0(S), where S is a commutative semigroup,
which remedies this.

Define a relation on S × S by

(x, y) ∼ (a, b) if there exists s ∈ S with x+ b+ s = a+ y + s.

It is easily verified that this is an equivalence relation (if R is a domain, then R−{0}
is a multiplicative semigroup, and this relation is essentially the cross product
relation arising in the usual construction of Frac(R)). Denote the equivalence class
of (x, y) by [x, y], and note that [x, x] = [y, y] for all x, y ∈ S. Define

[x, y] + [x′, y′] = [x+ x′, y + y′].

A routine check shows that the orbit space (S × S)/∼ is an abelian group: addition
is well-defined and associative; the identity element is [x, x]; the inverse of [x, y] is
[y, x]. Finally, define ν : S → (S × S)/∼ by x �→ [x + x, x]. The group K0(S) =
(S × S)/∼ is a solution of the universal problem.

For example, if S = N, then (2, 5) ∼ (5, 8) because 2 + 8 + 0 = 5 + 5 + 0.
We usually write −3 = [2, 5]; that is, we view [x, y] as “x − y” (this explains the
definition of ν(x) = [x + x, x]). The definition of ∼ for N is simpler than that
for an arbitrary commutative semigroup because N is a monoid which satisfies the
cancellation law (u+ s = v + s implies u = v). �

Proposition C-4.79. The Grothendieck group defines a functor K0 : CS → Ab,
where CS is the category of all commutative semigroups.

Proof. If f : S → T is a semigroup map, define K0(f) : K0(S)→ K0(T ) by [s] �→
[f(s)]. The proof that K0 is a functor is straightforward. •

Semigroups arising from categories provide interesting examples of Grothen-
dieck groups. Since most categories are not small, we first deal with a set-theoretic
problem this might cause. If C is a category, let

Iso(C)

denote the family of all isomorphism classes of objects in C. We will abuse notation
by allowing an object A to denote its own isomorphism class.

Definition. A category C is virtually small if its family Iso(C) of isomorphism
classes is a set ; that is, Iso(C) has a cardinal number.
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Example C-4.80.

(i) The category C of all countable abelian groups is not a small category (indeed,
its (full) subcategory of all groups of order 1 is not small). However, C is
virtually small.

(ii) Any full subcategory U of a virtually small category C is virtually small. (We
must assume that U is full; otherwise, objects in U which are isomorphic in C
might not be isomorphic in U . For example, the discrete subcategory (having
the same objects but whose only morphisms are identities) of the category of
all countable abelian groups is not virtually small.)

(iii) For any ring R, the full subcategory of R Mod consisting of all finitely gen-
erated left R-modules is virtually small. Using part (ii), we see that the full
subcategory

R-Proj

generated by all finitely generated projective left R-modules is virtually small.
�

Lemma C-4.81. Let C be a full additive subcategory of R Mod for some ring R.
If C is virtually small, then the family Iso(C) of all its isomorphism classes is a
semigroup in which

A+A′ = A⊕A′, where A,A′ ∈ Iso(C).

Proof. First, Iso(C) is a set, for C is virtually small. Since C is additive, A,A′ ∈
Iso(C) implies A⊕A′ ∈ Iso(C) (we are using our notational convention of allowing an
object to denote its own isomorphism class). Thus, direct sum gives a well-defined
binary operation on Iso(C). This operation is associative, for A ⊕ (A′ ⊕ A′′) ∼=
(A⊕A′)⊕A′′ gives A⊕ (A′ ⊕A′′) = (A⊕A′)⊕A′′ in Iso(C). •

Definition. If R is a ring, the Grothendieck group K0(R) is defined by

K0(R) = K0(Iso(R-Proj)),

where R-Proj is the full subcategory of all finitely generated projective left R-
modules.

We have defined K0(Z) in two different ways. On the one hand, it was defined
by viewing Z as a semigroup (and K0(Z) ∼= Z). On the other hand, we have just de-
fined K0(Z) as K0(Iso(Z-Proj)). But Z-Proj is just the semigroup of isomorphism
classes of finitely generated projective Z-modules (that is, of finitely generated free
abelian groups). We shall see, in Proposition C-4.83 below, that this second K0(Z)
is also isomorphic to Z.

Remark.

(i) It is not interesting to remove the finitely generated hypothesis in the defini-
tion of K0(R). If C is closed under countable direct sums, then A ∈ obj(C)
implies A′ ∈ obj(C), where A′ is the direct sum of countably many copies
of A. But the isomorphism A⊕A′ ∼= A′ gives the equation [A]+[A′] = [A′] in
the group K0, which forces [A] = 0. Thus, this Grothendieck group is trivial.
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(ii) If R is commutative, then tensor product makes K0(R) into a commutative
ring. If A,B ∈ R-Proj, then A⊗RB ∈ R-Proj (Exercise B-4.81 on page 520
in Part 1). Moreover, if A ∼= A′ and B ∼= B′, then A ⊗R B ∼= A′ ⊗R B′, so
that (A,B) �→ A ⊗R B gives a well-defined multiplication on K0(R). The
reader may check that K0(R) is a commutative ring with unit [R].

(iii) Forming a Grothendieck group on R-Proj when R is commutative, with
binary operation tensor product instead of direct sum, leads to the notion of
Picard group in algebraic geometry. �

We have seen that the Grothendieck group defines a functor on the category
of commutative semigroups; we now show that it also defines a functor on Rings,
the category of rings.

Proposition C-4.82. There is a functor K0 : Rings → Ab with R �→ K0(R).
Moreover, if ϕ : R → S is a ring homomorphism, then K0(ϕ) takes free left R-
modules to free left S-modules; that is, K0(ϕ) : [R

n] �→ [Sn] for all n ≥ 0.

Proof. If ϕ : R → S is a ring homomorphism, then we may view S as an (S,R)-
bimodule by defining sr = sϕ(r) for all r ∈ R and s ∈ S. For any left R-module P ,
the tensor product S ⊗R P now makes sense, and it is a left S-module, by Corol-
lary B-4.83 in Part 1. The restriction of the functor S⊗R− : R Mod→ S Mod takes
R-Proj→ S-Proj, for if P is a finitely generated projective R-module, then S⊗RP
is a finitely generated projective S-module (Exercise B-4.81 on page 520 in Part 1).
Now define K0(ϕ) : K0(R)→ K0(S) by [P ] �→ [S⊗R P ]. In particular, if P = Rn is
a finitely generated free left R-module, then K0(ϕ) : [R

n] �→ [S ⊗R Rn] = [Sn]. •

For every ring R, there is a ring homomorphism ι : Z → R which takes the
integer 1 to the unit element of R. Since K0 is a functor on the category of rings,
there is a homomorphism K0(ι) : K0(Z)→ K0(R). By Proposition C-4.82, imK0(ι)
is the subgroup of K0(R) generated by all finitely generated free R-modules. If V
is an infinite-dimensional vector space over a field k, then R = Endk(V ) has the
property that R ∼= R ⊕ R as R-modules (Rotman [187], p. 58). It follows that
imK0(ι) = {0} for this ring. In fact, K0(R) = {0} (Rosenberg [183], p. 10).

Definition. For any ring R, the reduced Grothendieck group is defined by

K̃0(R) = cokerK0(ι) = K0(R)/ imK0(ι).

In the next chapter, we will show that K̃0(R) is the class group of the ring of
integers R in an algebraic number field.

Since imK0(ι) is the subgroup of K0(R) generated by all finitely generated free
R-modules, the reduced Grothendieck group is the important part of K0(R), for
it describes nonfree projective R-modules. For example, if R is a ring for which
every finitely generated projective R-module is free, then K0(R) = imK0(ι) and

K̃0(R) = {0}. We shall see, on page 412, that the converse of this is false.
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Let us compute K0(R) for some nice rings R.

Proposition C-4.83. Let R be a ring all of whose finitely generated projective
left R-modules are free and which has a rank function; that is, Rm ∼= Rn implies
m = n. Then K0(R) ∼= Z.12 In particular, K0(R) ∼= Z if R is a division ring, a
PID, or k[x1, . . . , xn] when k is a field.

Proof. The function ρ : Iso(R-Proj) → N induced by rank, namely, ρ(Rn) = n,
is well-defined; it is a semigroup map, for ρ(V ⊕ W ) = ρ(V ) + ρ(W ), and it is
an isomorphism because we are assuming that two free modules P and Q are
isomorphic if and only if ρ(P ) = ρ(Q). Since K0 : CS→ Ab is a functor, K0(ρ) is
an isomorphism K0(R)→ K0(N) = Z.

Each of the stated rings satisfies the hypotheses: see Proposition B-1.40 in
Part 1 for division rings, Theorem B-2.28 in Part 1 for PIDs, and the Quillen–
Suslin Theorem (Rotman [187], p. 209) for polynomial rings in several variables
over a field. •

The Functor G0

As we said earlier, we are now going to define a new Grothendieck group, G0(C),
which coincides with K0(R) when C = R-Proj.

Definition. A G-category C is a virtually small full subcategory of R Mod for
some ring R.

Example C-4.84.

(i) R-Proj is a G-category.

(ii) All finitely generated R-modules form a G-category.

(iii) The category of all countable torsion-free abelian groups is a G-category. �

We continue to denote the family of all isomorphism classes of objects in C by
Iso(C), and we continue letting an object A denote its own isomorphism class.

Definition. If C is a G-category, let F(C) be the free abelian group with basis
Iso(C),13 and let E be the subgroup of F(C) generated by all elements of the form

A+ C −B if 0→ A→ B → C → 0 is exact.

The Grothendieck group G0(C) is the abelian group

G0(C) = F(C)/E .
For any object A in C, we denote the coset A+ E in G0(C) by

[A].

In particular, if R is a ring, define

G0(R) = G0(R-Proj).

12The ring R = Endk(V ) mentioned on page 407 does not have a rank function.
13Since a basis of a free abelian group must be a set and not a proper class, we are using the

hypothesis that C is virtually small.
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Proposition C-4.85. For every ring R, we have G0(R) ∼= K0(R).

Proof. Recall Proposition C-4.76; if S is a commutative semigroup, then K0(S) =
F (S)/H, where H =

〈
x + y − z : x + y = z in S

〉
. By definition, K0(R) = K0(S),

where S is the semigroup Iso(R-Proj) with operation A + B = A ⊕ B; hence,
K0(R) = F (Iso(R-Proj))/H, where H is generated by all A + B − A ⊕ B. Now
G0(R) = F (R-Proj)/E , where E is generated by all A + B − X with 0 → A →
X → B → 0 exact. But every exact sequence 0→ A→ X → B → 0 splits, because
every object in R-Proj is projective, and so X ∼= A⊕B. •

When are two elements in G0(C) equal?

Proposition C-4.86. Let C be a G-category.

(i) If x ∈ G0(C), then x = [A]− [B] for A,B ∈ obj(C).
(ii) Let A,B ∈ obj(C). Then [A] = [B] in G0(C) if and only if there are C,U, V ∈

obj(C) and exact sequences

0→ U → A⊕ C → V → 0 and 0→ U → B ⊕ C → V → 0.

Proof.

(i) Since G0(C) is generated by Iso(C), each element x ∈ G0(C) is a Z-linear
combination of objects: x =

∑
i miCi (we allow Ci to be repeated; that is,

we assume each mi = ±1). If we denote those C with positive coefficient mi

by A1, . . . , Ar and those with negative mi by B1, . . . , Bt, then

x =
r∑

i=1

[Ai]−
s∑

j=1

[Bj ].

Define A = A1 ⊕ · · · ⊕Ar. That [A] = [A1 ⊕ · · · ⊕Ar] is proved by induction
on r ≥ 2. If r = 2, then exactness of 0 → A1 → A1 ⊕ A2 → A2 → 0
gives [A1] + [A2] = [A1 ⊕ A2]; the inductive step is also easy. Similarly, if
B = B1 ⊕ · · · ⊕Bs, then [B] = [B1 ⊕ · · · ⊕Bs]. Therefore, x = [A]− [B].

(ii) If there exist modules C,U, and V as in the statement, then

[A⊕ C] = [U ] + [V ] = [B ⊕ C].

But exactness of 0 → A → A ⊕ C → C → 0 gives [A ⊕ C] = [A] + [C].
Similarly, [B ⊕ C] = [B] + [C], so that [A] + [C] = [B] + [C] and [A] = [B].

Conversely, if [A] = [B] in G0(C), then A − B ∈ E , and there is an
equation in F (C) (as in part (i), we allow repetitions, so that all coefficients
are ±1),

A−B =
∑
i

(X ′
i +X ′′

i −Xi)−
∑
j

(Y ′
j + Y ′′

j − Yj),

where there are exact sequences 0 → X ′
i → Xi → X ′′

i → 0 and 0 → Y ′
j →

Yj → Y ′′
j → 0. Transposing to eliminate negative coefficients,

A+
∑
i

(X ′
i +X ′′

i ) +
∑
j

Yj = B +
∑
i

Xi +
∑
j

(Y ′
j + Y ′′

j ).
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This is an equation in a free abelian group, so that expressions as linear
combinations of a basis are unique. Therefore, the set {A,X ′

i, X
′′
i , Yj} of

objects on the left-hand side, with multiplicities, coincides with the set of
objects {B,Xi, Y

′
i , Y

′′
j } on the right-hand side, with multiplicities. Therefore,

the direct sum of the objects on the left is isomorphic to the direct sum of
the objects on the right:

A⊕X ′ ⊕X ′′ ⊕ Y ∼= B ⊕X ⊕ Y ′ ⊕ Y ′′,

where X ′ =
⊕

i X
′
i, X =

⊕
i Xi, and so forth. Let C denote their common

value:

A⊕X ′ ⊕X ′′ ⊕ Y = C = B ⊕X ⊕ Y ′ ⊕ Y ′′.

By Exercise B-1.48 on page 309 in Part 1, there are exact sequences

0→ X ′ ⊕ Y ′′ → X ⊕ Y ′′ → X ′′ → 0,

0→ X ′ ⊕ Y ′′ → (X ⊕ Y ′′)⊕ Y ′ → X ′′ ⊕ Y ′ → 0,

and

0→ X ′ ⊕ Y ′′ → A⊕ (X ⊕ Y ′ ⊕ Y ′′)→ A⊕ (X ′′ ⊕ Y ′)→ 0.

The middle object is C. Applying Exercise B-1.48 in Part 1 once again, there
is an exact sequence

0→ X ′ ⊕ Y ′ → B ⊕ C → B ⊕ (A⊕X ′′ ⊕ Y ′′)→ 0.

Define U = X ′ ⊕ Y ′ and V = B ⊕A⊕X ′′ ⊕ Y ′′; with this notation, the last
exact sequence is

0→ U → B ⊕ C → V → 0.

Similar manipulation yields an exact sequence 0→ U → A⊕C → V → 0. •

Corollary C-4.87. Let R be a ring.

(i) If x ∈ G0(R), then there are projective R-modules P and Q with

x = [P ]− [Q].

(ii) If A and B are projective R-modules, then [A] = [B] in G0(R) if and only if
there is a projective R-module C with

A⊕ C ∼= B ⊕ C.

Proof. Recall thatG0(R) = G0(R-Proj), so that objects are projectiveR-modules.
Thus, (i) follows at once from Proposition C-4.86. The second statement in the
proposition says that there are projectives C,U, V (for every object in R-Proj is
projective) and exact sequences 0→ U → A⊕C → V → 0 and 0→ U → B⊕C →
V → 0. These sequences split, because V is projective; that is, A⊕C ∼= U ⊕V and
B ⊕ C ∼= U ⊕ V . Hence, A⊕ C ∼= B ⊕ C. •

Corollary C-4.88. Let A and B be projective R-modules. Then [A] = [B] in
K0(R) if and only if there is a projective R-module P with

A⊕ P ∼= B ⊕ P.

Proof. This follows from Corollary C-4.87 because K0(R) ∼= G0(R). •
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Definition. Let R be a commutative ring, and let C be a subcategory of RMod.
Two R-modules A and B are called stably isomorphic in C if there exists a
module C ∈ obj(C) with A⊕ C ∼= B ⊕ C.

With this terminology, Corollary C-4.88 in Part 1 says that two modules de-
termine the same element of K0(R) if and only if they are stably isomorphic. It is
clear that isomorphic modules are stably isomorphic; the next example shows that
the converse need not hold.

Example C-4.89.

(i) If F is the category of all finite abelian groups, then Exercise B-3.18 on
page 377 in Part 1 shows that two finite abelian groups are stably isomorphic
in F if and only if they are isomorphic.

(ii) Stably isomorphic finitely generated projective modules need not be isomor-
phic; here is an example of Kaplansky as described in [137]:

Let A be the coordinate ring of the real 2-sphere; i.e., A = R[x, y, z]
with the relation x2 + y2 + z2 = 1. Let ε : A3 → A be the A-linear
functional given by ε(α, β, γ) = αx+ βy + γz. Since ε(x, y, z) = 1,
we have a splitting A3 ∼= ker ε ⊕ A, so P = ker ε is stably free.
Assume, for the moment, that P is actually free, so (necessarily)
P ∼= A2. Then, A3 will have a new basis consisting of (x, y, z) and
two other triples (f, g, h), (f ′, g′, h′). The matrix⎡⎣x f f ′

y g g′

z h h′

⎤⎦
is therefore invertible over A, and has determinant equal to a unit
e ∈ A. We think of f, g, h, e, e−1, · · · as functions on S2 (they
are polynomial expressions in the ‘coordinate functions’ x, y, z).
Consider the continuous vector field on S2 given by v ∈ S2 �→
(f(v), g(v), h(v)) ∈ R3. Since e = f ′ · (yh− zg)− g′ · (xh− zf)+h′ ·
(xg−yf) is clearly nowhere zero on S2, the vector (f(v), g(v), h(v))
is nowhere collinear with the vector v. Taking the orthogonal pro-
jections onto the tangent planes of S2, we obtain a continuous vector
field of nowhere vanishing tangents. This is well-known to be im-
possible by elementary topology. It follows that P cannot be free
over A.

Here is the heart of this construction.

Theorem (Swan). Let X be a compact Hausdorff space and let R be the

ring of continuous real-valued functions on X. If E
p→ X is a vector bundle

with global sections

Γ(X) = {continuous s : X → E | ps = 1X},
then Γ(X) is a finitely generated projective R-module, and every such R-
module arises in this way.

See Swan [218], Bass [17], p. 735, or Rosenberg [183], pp. 32–36. �
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Grothendieck proved that if R is left noetherian, then K0(R) ∼= K0(R[x])
(Rosenberg [183], p. 141). It follows, for k a field, that K0(k[x1, . . . , xn]) ∼=
K0(k) = Z, and so the reduced Grothendieck group K̃0(R) = {0} (recall that

K̃0(R) = K0(R)/ imK0(ι), where imK0(ι) is the subgroup generated by free R-
modules). Serre wondered whether the converse holds for R = k[x1, . . . , xn]: are
finitely generated projective k[x1, . . . , xn]-modules free? The Quillen–Suslin Theo-
rem (Rotman [187], p. 209) proves that this is so.

A finitely generated projective R-module P is stably free if it is stably isomor-
phic to a free module. Free modules are, obviously, stably free, but the coordinate
ring of the 2-sphere in Example C-4.89(ii) shows there are stably free modules
which are not free. A ring R is called a Hermite ring if every finitely generated
projective R-module is stably free. In light of Corollary C-4.88, a ring R is Her-

mite if and only if K̃0(R) = {0}. If R is a ring for which every finitely generated
projective R-module is free, then R is a Hermite ring. The converse is not true.
Ojanguren–Sridharan [170] showed that if Δ is a noncommutative division ring,
then R = Δ[x, y] (where coefficients commute with indeterminates) is a Hermite
ring having projectives which are not free.

We now present computations of G0(C) for some familiar G-categories C. The
next result shows that filtrations of modules give rise to alternating sums in G0.

Proposition C-4.90. Let R be a commutative ring and let C be the category of all
finitely generated R-modules. If M ∈ obj(C) and

M = M0 ⊇M1 ⊇M2 ⊇ · · · ⊇Mn = {0}
has factor modules Qi = Mi−1/Mi, then

[M ] = [Q1] + · · ·+ [Qn] in G0(C).

Proof. Since Qi = Mi−1/Mi, there is a short exact sequence

0→Mi →Mi−1 → Qi → 0,

so that [Qi] = [Mi−1]− [Mi] in G0(C). We now have a telescoping sum:

n∑
i=1

[Qi] =
n∑

i=1

(
[Mi−1]− [Mi]

)
= [M0]− [Mn] = [M ]. •

Definition. Let C be a G-category. Call an object S simple in C if, for every
object X and every monic u : X → S in C, either u = 0 or u is an isomorphism. A
filtration

M = M0 ⊇M1 ⊇M2 ⊇ · · · ⊇Mn = {0}
in a category C of modules is called a composition series of M if each of its
factors Qi = Mi−1/Mi is simple in C.

A Jordan–Hölder category is a G-category C such that

(i) each object M has a composition series;

(ii) for every two composition series

M = M0 ⊇M1 ⊇M2 ⊇ · · · ⊇Mn = {0}
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and

M = M ′
0 ⊇M ′

1 ⊇M ′
2 ⊇ · · · ⊇M ′

m = {0},
we have m = n and a permutation σ ∈ Sn such that Q′

j
∼= Qσj for all j,

where Qi = Mi−1/Mi and Q′
j = M ′

j−1/M
′
j .

Define the length �(M) of a module M in a Jordan–Hölder category to be the
number n of terms in a composition series. If the simple factors of a composition
series are Q1, . . . , Qn, we define

jh(M) = Q1 ⊕ · · · ⊕Qn.

A composition series may have several isomorphic factors, and jh(M) records their
multiplicity. Since Q1 ⊕ Q2

∼= Q2 ⊕ Q1, jh(M) does not depend on the ordering
Q1, . . . , Qn.

Lemma C-4.91. Let C be a Jordan–Hölder category, and let Q1, . . . , Qn, Q
′
1, . . . ,

Q′
m be simple objects in C.
(i) If Q1 ⊕ · · · ⊕ Qn

∼= Q′
1 ⊕ · · · ⊕ Q′

m, then m = n and there is a permutation
σ ∈ Sn such that Q′

j
∼= Qσj for all j, where Qi = Mi−1/Mi and Q′

j =
M ′

j−1/M
′
j.

(ii) If M and M ′ are modules in obj(C) and there is a simple object S in C with

S ⊕ jh(M) ∼= S ⊕ jh(M ′),

then jh(M) ∼= jh(M ′).

Proof.

(i) Since Q1, . . . , Qn are simple, the filtration

Q1 ⊕ · · · ⊕Qn ⊇ Q2 ⊕ · · · ⊕Qn ⊇ Q3 ⊕ · · · ⊕Qn ⊇ · · ·
is a composition series of Q1 ⊕ · · · ⊕ Qn with factors Q1, . . . , Qn; similarly,
Q′

1 ⊕ · · · ⊕Q′
m has a composition series with factors Q′

1, . . . , Q
′
m. The result

follows from C being a Jordan–Hölder category.

(ii) This result follows from part (i) because S is simple. •

Lemma C-4.92. If 0→ A→ B → C → 0 is an exact sequence in a Jordan–Hölder
category, then

jh(B) ∼= jh(A)⊕ jh(C).

Proof. The proof is by induction on the length �(C). Let A = A0 ⊇ A1 ⊇ · · · ⊇
An = {0} be a composition series for A with factors Q1, . . . , Qn. If �(C) = 1, then
C is simple, and so

B ⊇ A ⊇ A1 ⊇ · · · ⊇ An = {0}
is a composition series for B with factors C,Q1, . . . , Qn. Therefore,

jh(B) = C ⊕Q1 ⊕ · · · ⊕Qn = jh(C)⊕ jh(A).

For the inductive step, let �(C) > 1. Choose a maximal submodule C1 of C
(which exists because C has a composition series). If ν : B → C is the given
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surjection, define B1 = ν−1(C1). There is a commutative diagram (with vertical
arrows inclusions)

0 �� A �� B
ν �� C �� 0

0 �� A

��

�� B1

��

�� C1

��

�� 0.

Since C1 is a maximal submodule of C, the quotient module

C ′′ = C/C1

is simple. Note that B/B1
∼= (B/A)/(B1/A) ∼= C/C1 = C ′′. By the base step, we

have

jh(C) = C ′′ ⊕ jh(C1) and jh(B) = C ′′ ⊕ jh(B1).

By the inductive hypothesis,

jh(B1) = jh(A)⊕ jh(C1).

Therefore,

jh(B) = C ′′ ⊕ jh(B1)

∼= C ′′ ⊕ jh(A)⊕ jh(C1)

∼= jh(A)⊕ C ′′ ⊕ jh(C1)

∼= jh(A)⊕ jh(C). •

Theorem C-4.93. Let C be a G-category in which every M in C has a composition
series. Then C is a Jordan–Hölder category if and only if G0(C) is a free abelian
group with basis the set B of all nonisomorphic simple S in C.

Proof. Assume that G0(C) is free abelian with basis B. Since [0] is not a member
of a basis, we have [S] �= [0] for every simple object S; moreover, if S �∼= S′, then
[S] �= [S′], for a basis repeats no elements. Let M ∈ obj(C), and let Q1, . . . , Qn and
Q′

1, . . . , Q
′
m be simple quotients arising, respectively, as factors of two composition

series of M . By Proposition C-4.90, we have

[Q1] + · · ·+ [Qn] = [M ] = [Q′
1] + · · ·+ [Q′

m].

Uniqueness of expression in terms of the basis B says, for each Q′
j , that there exists

Qi with [Qi] = [Q′
j ]; in fact, the number of any [Qi] on the left-hand side is equal to

the number of copies of [Q′
j ] on the right-hand side. Therefore, C is a Jordan–Hölder

category.

Conversely, assume that the Jordan–Hölder Theorem holds for C. Since every
M ∈ obj(C) has a composition series, Proposition C-4.90 shows that B generates
G0(C). Let S in obj(C) be simple. If [S] = [T ], then Proposition C-4.86 says
there are C,U, V ∈ obj(C) and exact sequences 0 → U → S ⊕ C → V → 0 and
0→ U → T ⊕ C → V → 0. Lemma C-4.92 gives

jh(S)⊕ jh(C) ∼= jh(U)⊕ jh(V ) ∼= jh(T )⊕ jh(C).

By Lemma C-4.91, we may cancel the simple summands one by one until we are
left with S ∼= T . A similar argument shows that if S is simple, then [S] �= [0].
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Finally, let us show that every element in G0(C) has a unique expression as a linear
combination of elements in B. Suppose there are positive integers mi and nj so
that ∑

i

mi[Si]−
∑
j

nj [Tj ] = [0],(1)

where the Si and Tj are simple and Si �∼= Tj for all i, j. If we denote the direct sum
of mi copies of Si by miSi, then Eq. (1) gives[⊕

i

miSi

]
=
[⊕

j

njTj

]
.

By Proposition C-4.86, there are modules C,U, V and exact sequences

0→ U → C ⊕
⊕
i

miSi → V → 0 and 0→ U → C ⊕
⊕
j

njTj → V → 0,

and Lemma C-4.92 gives

jh
(⊕

i

miSi

)
∼= jh

(⊕
j

njTj

)
.

By Lemma C-4.91, some Si occurs on the right-hand side, contradicting Si �∼= Tj

for all i, j. Therefore, Eq. (1) cannot occur. •

The reader is probably curious why the Grothendieck group K0(R) has a sub-
script (he or she may also be curious about why the letter K is used). Grothendieck
constructed K0(R) to generalize the Riemann–Roch Theorem in algebraic geome-
try; he used the letter K to abbreviate the German Klasse. Atiyah–Hirzebruch [13]
applied this idea to the category of vector bundles over compact Hausdorff spaces X
obtaining topological K-theory : a sequence of functors K−n(X) for n ≥ 0. This se-
quence satisfies all the Eilenberg–Steenrod Axioms characterizing the cohomology
groups of topological spaces (actually, of pairs (X,Y ), where X is a compact Haus-
dorff space and Y ⊆ X is a closed subspace) except for the Dimension Axiom.14 In
particular, there is a long exact sequence

→ K−1(X,Y )→ K−1(X)→ K−1(Y )→ K0(X,Y )→ K0(X)→ K0(Y ).

At that time, the Grothendieck group K0(R) had no need for a subscript, for there
was no analog of the higher groups K−i. This was remedied by Bass–Schanuel who
defined K1 as well as relative groups K0(R, I) and K1(R, I), where I is a two-sided
ideal in R. Moreover, they exhibited a six-term exact sequence involving three K0

(now subscripted) and three K1. In his review (MR0249491(40#2736)) of Bass’s
book [17], Alex Heller wrote,

Algebraic K-theory flows from two sources. The (J. H. C.) White-
head torsion, introduced in order to study the topological notion of
simple homotopy type, leads to the groups K1. The Grothendieck
group of projective modules over a ring leads to K0. The latter

14The Dimension Axiom says that if X is a one-point space and G is an abelian group, then
H0(X,G) ∼= G and Hi(X,G) ∼= {0} for all i > 0.
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notion was applied by Atiyah and Hirzebruch in order to construct
a new cohomology theory which has been enormously fruitful in
topology.

The observation that these two ideas could be unified in a
beautiful and powerful theory with widespread applications in al-
gebra is due to Bass, who is also responsible for a major portion
of those applications.

We have seen that K0 can be regarded as a functor on the category of rings,
so that a ring homomorphism ϕ : R → S gives a homomorphism K0(R)→ K0(S);
studying its kernel leads to relativeK0. Milnor [156] defined a functorK2 extending
the exact sequence of lower K’s, which has applications to field theory and group
theory. Quillen then constructed an infinite sequence (Kn(C))n≥0 of abelian groups
by associating a topological space X(C) to certain categories C. He then defined
Kn(C) = πn(X(C)) for all n ≥ 0, the homotopy groups of this space, and proved
that his Kn coincide with those for n = 0, 1, 2 (Rosenberg [183]).

Here are two interesting applications. The Merkurjev–Suslin Theorem relates
K-theory to Brauer groups. Let n be a positive integer and let F be a field con-
taining a primitive nth root of unity. If the characteristic of F is either 0 or does
not divide n, then K2(F ) ⊗Z Zn

∼= Br(F )[n], the subgroup of the Brauer group
Br(F ) consisting of all elements whose order divides n. The second application in-
volves what are called the Lichtenbaum Conjectures, which relate the orders of
certain K-groups with values of zeta functions. A generalization of this conjecture
was solved by Voevodsky in 2011; here is a portion of its review in Math Reviews
(MR2811603 (2012j:14030)):

This landmark paper completes the publication of Voevodsky’s cele-
brated proof of the Bloch-Kato conjecture—it is now a theorem that
the norm residue homomorphism

KM
n (k)/l→ Hn

ét(k, μ
⊗n
l )

is an isomorphism for all fields k, all primes l with (l, char k) = 1
and all n. The norm residue homomorphism is a special case of a
comparison morphism between (Beilinson) motivic cohomology and
(Lichtenbaum) étale motivic cohomology, and indeed the more general
Beilinson-Lichtenbaum conjecture is also a consequence of the results of
the paper. The proof of these conjectures is one of the fundamental re-
sults in algebraic K-theory and motivic cohomology, and has involved a
lot of time as well as a lot of work by a lot of people. The result itself is
a great piece of mathematics that allows a much better understanding
of the relation between motivic cohomology or algebraic K-theory with
their étale counterparts, but even more importantly, the methods de-
veloped to prove it (derived categories of motives, motivic cohomology
and homotopy) have already had a large impact on mathematics and
will continue to do so in the years to come. Needless to say, Voevodsky
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was awarded the Fields Medal in 2002 for developing these methods
leading to a proof of the case l = 2, which had been known as Milnor’s
conjecture. . . .

Exercises

∗ C-4.54. For any ring R, prove that K0(R) ∼= K0(R
op).

Hint. Prove that HomR( , R) : R-Proj → Rop-Proj is an equivalence of categories.

C-4.55. Prove that K0(R) ∼= K0(Matn(R)) for every ring R.

Hint. The functor HomR(R
n, ) preserves finitely generated projectives.

C-4.56. If a ring R is a direct product, R = R1 ×R2, prove that

K0(R) ∼= K0(R1)⊕K0(R2).

C-4.57. If a commutative semigroup S is an abelian group, prove that K0(S) ∼= S.

C-4.58. Let R be a domain, and let a ∈ R be neither 0 nor a unit. If C is the category
of all finitely generated R-modules, prove that [R/Ra] = 0 in G0(C).
Hint. Use the exact sequence 0 → R

μa−→ R → R/Ra → 0, where μa : r 
→ ar.

C-4.59. If C and A are G-categories, prove that every exact functor F : C → A defines a
homomorphism K0(C) → K0(A) with [C] 
→ [FC] for all C ∈ obj(C).
C-4.60. Let C be the category of all finitely generated abelian groups.

(i) Prove that K0(C) is free abelian of countably infinite rank.

(ii) Prove that G0(C) ∼= Z.

(iii) When are two finitely generated abelian groups stably isomorphic?

C-4.61. If C is the category of all finitely generated R-modules over a PID R, compute
K0(C) and G0(C).
C-4.62. If C is the category of all finitely generated Z6-modules, prove thatK0(C) ∼= Z⊕Z.

C-4.63. If R = k[x1, . . . , xn], where k is a field, use Hilbert’s Syzygy Theorem (Corol-
lary C-5.150) to prove that G0(R) ∼= Z. (Of course, this also follows from the Quillen–
Suslin Theorem that finitely generated projective R-modules are free.)

∗ C-4.64. (Eilenberg) Prove that if P is a projective R-module (over some commutative
ring R), then there exists a free R-module Q with P ⊕Q a free R-module. Conclude that
K0(C) = {0} for C the category of countably generated projective R-modules.

Hint. Q need not be finitely generated.





Chapter C-5

Commutative Rings III

C-5.1. Local and Global

It is often easier to examine algebraic structures “one prime at a time”. For ex-
ample, let G and H be finite groups. If G ∼= H, then their Sylow p-subgroups
are isomorphic for all primes p; studying G and H locally means studying their
p-subgroups. This local information is not enough to determine whether G ∼= H;
for example, the symmetric group S3 and the cyclic group Z6 are nonisomorphic
groups having isomorphic Sylow 2-subgroups and isomorphic Sylow 3-subgroups.
The global problem assumes that the Sylow p-subgroups of groups G and H are iso-
morphic, for all primes p, and asks what else is necessary to conclude that G ∼= H.
For general groups, this global problem is intractible (although there are partial
results). However, this strategy does succeed for finite abelian groups. The local
problem involves primary components (Sylow subgroups), which are direct sums of
cyclic groups, and the global problem is solved by Primary Decomposition: every
finite abelian group is the direct sum of its primary components. In this case, the
local information is sufficient to solve the global problem. In general, local problems
are simpler than global ones, and their solutions can give very useful information.

Subgroups of Q

We begin with another group-theoretic illustration of local and global investi-
gation, after which we will consider localization of commutative rings.

Definition. Let R be a domain with Q = Frac(R). If M is an R-module, define

rank(M) = dimQ(Q⊗R M).

For example, the rank of an abelian group G is defined as dimQ(Q⊗ZG). Recall,
when R is a domain, that an R-module M is torsion-free if it has no nonzero
elements of finite order; that is, if r ∈ R and m ∈ M are nonzero, then rm is
nonzero.

419
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Lemma C-5.1. Let R be a domain with Q = Frac(R), and let M be an R-module.

(i) If 0→M ′ →M →M ′′ → 0 is a short exact sequence of R-modules, then

rank(M) = rank(M ′) + rank(M ′′).

(ii) An R-module M is torsion if and only if rank(M) = 0.

(iii) Let M be torsion-free. Then M has rank 1 if and only if it is isomorphic to
a nonzero R-submodule of Q.

Proof.

(i) By Corollary B-4.106 in Part 1, the fraction field Q is a flat R-module. There-
fore, 0 → Q ⊗R M ′ → Q ⊗R M → Q ⊗R M ′′ → 0 is a short exact sequence
of vector spaces over Q, and the result is a standard result of linear algebra,
Exercise A-7.9 on page 259 in Part 1.

(ii) If M is torsion, then Q⊗R M = {0}, by a routine generalization of Proposi-
tion B-4.92 in Part 1 (divisible ⊗ torsion = {0}). Hence, rank(M) = 0.

If M is not torsion, then there is an exact sequence 0 → R → M (if
m ∈ M has infinite order, then r �→ rm is an injection R → M). Since Q is
flat, the sequence 0→ Q⊗RR→ Q⊗RM is exact. By Proposition B-4.84 in
Part 1, Q⊗R R ∼= Q �= {0}, so that Q⊗RM �= {0}. Therefore, rank(M) > 0.

(iii) If rank(M) = 1, then M �= {0}, and exactness of 0 → R → Q gives ex-

actness of TorR1 (Q/R,M) → R ⊗R M → Q ⊗R M . Since M is torsion-free,

Lemma C-3.101 gives TorR1 (Q/R,M) = {0}. As always, R⊗RM ∼= M , while
Q ⊗R M ∼= Q because M has rank 1. Therefore, M is isomorphic to an
R-submodule of Q.

Conversely, if M is isomorphic to an R-submodule of Q, there is an exact
sequence 0 → M → Q. Since Q is flat, by Corollary B-4.106 in Part 1, we
have exactness of 0→ Q⊗RM → Q⊗RQ. Now this last sequence is an exact
sequence of vector spaces over Q. Since Q⊗R Q ∼= Q is one-dimensional, its
nonzero subspace Q⊗R M is also one-dimensional; that is, rank(M) = 1. •

Example C-5.2. The following abelian groups are torsion-free of rank 1.

(i) The group Z of integers.

(ii) The additive group Q.

(iii) The 2-adic fractions Z(2) = {a/b ∈ Q : b is odd}.
(iv) The set of all rationals having a finite decimal expansion.

(v) The set of all rationals having squarefree denominator. �

Proposition C-5.3. Let R be a domain with Q = Frac(R). Two submodules A
and B of Q are isomorphic if and only if there is c ∈ Q with B = cA.

Proof. If B = cA, then A ∼= B via a �→ ca. Conversely, suppose that f : A → B
is an isomorphism. Regard f as an R-injection A → Q by composing it with the
inclusion B → Q. Since Q is an injective R-module, by Proposition B-4.58 in Part 1,
there is an R-map g : Q → Q extending f . But Proposition B-4.58 in Part 1 says
that there is c ∈ Q with g(x) = cx for all x ∈ Q. Thus, B = f(A) = g(A) = cA. •
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Recall, for each prime p, that the ring of p-adic fractions is the subring of Q:

Z(p) = {a/b ∈ Q : (b, p) = 1}.

For example, if p = 2, then Z(2) is the group of 2-adic fractions.

Proposition C-5.4.

(i) For each prime p, the ring Z(p) has a unique maximal ideal; that is, it is a

local 1 PID.

(ii) If G is a torsion-free abelian group of rank 1, then Z(p)⊗ZG is a torsion-free
Z(p)-module of rank 1.

(iii) If M is a torsion-free Z(p)-module of rank 1, then M ∼= Z(p) or M ∼= Q.

Proof.

(i) We show that the only nonzero ideals I in Z(p) are (pn), for n ≥ 0; it will
then follow that Z(p) is a PID and that (p) is its unique maximal ideal. Each
nonzero x ∈ Z(p) has the form a/b for integers a and b, where (b, p) = 1.
But a = pna′, where n ≥ 0 and (a′, p) = 1; that is, there is a unit u ∈ Z(p),
namely, u = a′/b, with x = upn. Let I �= (0) be an ideal. Of all the nonzero
elements in I, choose x = upn ∈ I, where u is a unit, with n minimal. Then
I = (x) = (pn), for if y ∈ I, then y = vpm, where v is a unit and n ≤ m.
Hence, pn | y and y ∈ (pn).

(ii) Since Z(p) ⊆ Q, it is an additive torsion-free abelian group of rank 1, and so
it is flat (Corollary B-4.105 in Part 1). Hence, exactness of 0→ G→ Q gives
exactness of

0→ Z(p) ⊗Z G→ Z(p) ⊗Z Q.

By Exercise C-5.4 on page 426, Z(p)⊗ZQ ∼= Q = Frac(Z(p)), so that Z(p)⊗ZG
is a torsion-free Z(p)-module of rank 1.

(iii) There is no loss in generality in assuming that M ⊆ Q and that 1 ∈ M .
Consider the equations pnyn = 1 for n ≥ 0. We claim that if all these
equations are solvable for yn ∈ M , then M = Q. If a/b ∈ Q, then a/b =
a/pnb′, where (b′, p) = 1, and so a/b = (a/b′)yn; as a/b′ ∈ Z(p), we have
a/b ∈ M . We may now assume that there is a largest n ≥ 0 for which the
equation pnyn = 1 is solvable for yn ∈M . We claim thatM =

〈
yn
〉
, the cyclic

submodule generated by yn, which will show that M ∼= Z(p). If m ∈M , then

m = c/d = prc′/psd′ = (c′/d′)(1/ps−r), where (c′, p) = 1 = (d′, p). Since
c′/d′ is a unit in Z(p), we have 1/ps−r ∈ M , and so s − r ≤ n; that is,

s− r = n − � for some � ≥ 0. Hence, 1/ps−r = 1/pn−� = p�/pn = p�yn, and
so m = (c′p�/d′)yn ∈

〈
yn
〉
. •

Definition. A discrete valuation ring , abbreviated DVR, is a local PID that is
not a field.

1In this section, local rings are commutative rings having a unique maximal ideal. Often,
local rings are also assumed to be noetherian. On the other hand, the term sometimes means a
noncommutative ring having a unique maximal left or right ideal.
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Some examples of DVRs are Z(p), the p-adic integers Zp, and formal power
series k[[x]], where k is a field.

Definition. Two abelian groups G and H are locally isomorphic if Z(p)⊗Z G ∼=
Z(p) ⊗Z H for all primes p.

We have solved the local problem for torsion-free abelian groups G of rank 1;
associate to G the family Z(p) ⊗Z G of Z(p)-modules, one for each prime p.

Example C-5.5. Let G be the subgroup of Q consisting of those rationals having
squarefree denominator. Then G and Z are locally isomorphic, but they are not
isomorphic, because Z is finitely generated and G is not. �

We are now going to solve the global problem for torsion-free abelian groups of
rank 1.

Definition. Let G be an abelian group, let x ∈ G, and let p be a prime. Then x
is divisible by pn in G if there exists yn ∈ G with pnyn = x. Define the p-height
of x, denoted by hp(x), by

hp(x) =

{
∞ if x is divisible by pn in G for all n ≥ 0,

k if x is divisible by pk in G but not by pk+1.

The height sequence (or characteristic) of x in G, where x is nonzero, is the
sequence

χ(x) = χG(x) = (h2(x), h3(x), h5(x), . . . , hp(x), . . . ).

Thus, χ(x) is a sequence (hp), where hp = ∞ or hp ∈ N. Let G ⊆ Q and let

x ∈ G be nonzero. If χ(x) = (hp) and a = pf11 · · · p
fn
n , then 1

ax ∈ G if and only if
fpi
≤ hpi

for i = 1, . . . , n.

Example C-5.6. Each of the groups in Example C-5.2 contains x = 1.

(i) In Z,
χZ(1) = (0, 0, 0, . . . ).

(ii) In Q,

χQ(1) = (∞,∞,∞, . . . ).

(iii) In Z(2),

χZ(2)
(1) = (0,∞,∞, . . . ).

(iv) If G is the group of all rationals having a finite decimal expansion, then

χG(1) = (∞, 0,∞, 0, 0, . . . ).

(v) If H is the group of all rationals having squarefree denominator, then

χH(1) = (1, 1, 1, . . . ). �

Lemma C-5.7. Let (k2, k3, . . . , kp, . . . ) be a sequence, where kp ∈ N ∪ {∞} for
all p. There exists a unique subgroup G ⊆ Q containing 1 such that

χG(1) = (k2, k3, . . . , kp, . . . ).
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Proof. Define

G = {a/c ∈ Q : c = pe11 · · · penn and ep ≤ kp whenever kp <∞}.

That G is a subgroup follows from the elementary fact that if c = pe11 · · · penn and d =

pf11 · · · p
fn
n , then 1/c−1/d = m/p�11 · · · p�nn , where m ∈ Z and �p ≤ max{ep, fp} ≤ kp

for all p. It is clear that χG(1) = (k2, k3, . . . , kp, . . . ). To prove uniqueness of G,
let H be another such subgroup. Suppose kp < ∞, and let u/v ∈ Q, where u/v
is in lowest terms. If v = pr11 · · · prnn and rp > kp, then u/v /∈ G. But if u/v ∈ H,
then hp(1) ≥ rp > kp, contradicting χH(1) = (k2, k3, . . . , kp, . . . ). Hence, u/v /∈ H
if and only if u/v /∈ G; that is, G = H. •

Different elements in a torsion-free abelian group of rank 1 may have different
height sequences. For example, if G is the group of rationals having finite decimal
expansions, then 1 and 63

8 lie in G, and

χ(1) = (∞, 0,∞, 0, 0, 0, . . . ) and χ( 638 ) = (∞, 2,∞, 1, 0, 0, . . . ).

Thus, these height sequences agree when hp =∞, but they disagree for some finite
p-heights: h3(1) �= h3(

63
8 ) and h7(1) �= h7(

63
8 ).

Definition. Two height sequences (h2, h3, . . . , hp, . . . ) and (k2, k3, . . . , kp, . . . ) are
equivalent, denoted by

(h2, h3, . . . , hp, . . . ) ∼ (k2, k3, . . . , kp, . . . ),

if there are only finitely many p for which hp �= kp and, for such primes p, neither
hp nor kp is ∞.

It is easy to see that equivalence just defined is, in fact, an equivalence relation.

Lemma C-5.8. If G is a torsion-free abelian group of rank 1 and x, y ∈ G are
nonzero, then their height sequences χ(x) and χ(y) are equivalent.

Proof. By Lemma C-5.1(iii), we may assume that G ⊆ Q. If b = pe11 · · · penn , then
it is easy to see that hp(bx) = hp(x) for all p /∈ {p1, . . . , pn}, while

hpi
(bx) = ei + hpi

(x)

for i = 1, . . . , n (we agree that ei +∞ = ∞). Hence, χ(x) ∼ χ(bx). Since x, y ∈
G ⊆ Q, we have x/y = a/b for integers a, b, so that bx = ay. Therefore, χ(x) ∼
χ(bx) = χ(ay) ∼ χ(y). •

Definition. The equivalence class of a height sequence is called a type. If G is a
torsion-free abelian group of rank 1, then its type, denoted by τ (G), is the type of
a height sequence χ(x), where x is a nonzero element of G.

Lemma C-5.8 shows that τ (G) depends only on G and not on the choice of
nonzero element x ∈ G. We now solve the global problem for subgroups of Q.

Theorem C-5.9. If G and H are torsion-free abelian groups of rank 1, then G ∼= H
if and only if τ (G) = τ (H).
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Proof. Let ϕ : G → H be an isomorphism. If x ∈ G is nonzero, it is easy to see
that χ(x) = χ(ϕ(x)), and so τ (G) = τ (H).

For the converse, choose nonzero x ∈ G and y ∈ H. By the definition of
equivalence, there are primes p1, . . . , pn, q1, . . . , qm with hpi

(x) < hpi
(y) <∞, with

∞ > hqj (x) > hqj (y), and with hp(x) = hp(y) for all other primes p. If we define

b =
∏

p
hpi

(y)−hpi
(x)

i , then bx ∈ G and hpi
(bx) =

(
hpi

(y)−hpi
(x)

)
+hpi

(x) = hpi
(y).

A similar construction, using a =
∏

q
hqj

(x)−hqj
(y)

j , gives χG(bx) = χH(ay). We

have found elements x′ = bx ∈ G and y′ = ay ∈ H having the same height
sequence.

Since G has rank 1, there is an injection f : G → Q; write A = im f , so that
A ∼= G. If u = f(x′), then χA(u) = χG(x

′). If g : Q→ Q is defined by q �→ q/u, then
g(A) is a subgroup of Q containing 1 with χg(A)(1) = χA(u). Of course, G ∼= g(A).
Similarly, there is a subgroup C ⊆ Q containing 1 with χC(1) = χH(y′) = χG(x

′).
By Lemma C-5.7, G ∼= g(A) = C ∼= H. •

We can also solve the global problem for subrings of Q.

Corollary C-5.10. The following are equivalent for subrings R and S of Q:

(i) R = S.

(ii) R ∼= S.

(iii) R and S are locally isomorphic: R(p)
∼= S(p) for all primes p.

Proof.

(i) ⇒ (ii). This is obvious.

(ii) ⇒ (iii). This, too, is obvious.

(iii) ⇒ (i). If 1/b ∈ R, where b ∈ Z, then its prime factorization is b = ±pe11 · · · pett ,
where ei > 0. Thus, hpi

(1) > 0, and so hpi
(1) = ∞. Every ring contains 1;

here, its height is a sequence of 0’s and ∞’s. Since R(p)
∼= S(p), the height

of 1 in R is the same as its height in S: χR(1) = χS(1). Therefore R = S, by
the uniqueness in Lemma C-5.7. •

The uniqueness theorems for groups and rings just proved are complemented
by existence theorems.

Corollary C-5.11. Given any type τ , there exists a torsion-free abelian group G
of rank 1, unique up to isomorphism, with τ (G) = τ . Hence, there are uncountably
many nonisomorphic subgroups of Q.

Proof. The existence of G follows at once from Lemma C-5.7, while uniqueness
up to isomorphism follows from Theorem C-5.9. But there are uncountably many
types; for example, two height sequences of 0’s and ∞’s are equivalent if and only
if they are equal. •
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Corollary C-5.12.

(i) If R is a subring of Q, then the height sequence of 1 consists of 0’s and ∞’s.

(ii) There are uncountably many nonisomorphic subrings of Q. In fact, the ad-
ditive groups of distinct subrings of Q are not isomorphic.

Proof.

(i) If hp(1) > 0, then 1
p ∈ R. Since R is a ring,

(
1
p

)n
= 1

pn ∈ R for all n ≥ 1, and

so hp(1) =∞.

(ii) If R and S are distinct subrings of Q, then the height sequences of 1 are
distinct, by part (i). Both statements follow from the observation that two
height sequences whose only terms are 0 and ∞ are equivalent if and only if
they are equal. •

Kurosh classified torsion-free Z(p)-modules G of finite rank with invariants
rank(G) = n, p-rank(G) = dimFp

(Fp ⊗ G), and an equivalence class of n × n
nonsingular matrices Mp over the p-adic numbers Qp (Fuchs [73], pp. 154–158).
This theorem was globalized by Derry; the invariants are rank, p-ranks for all
primes p, and an equivalence class of matrix sequences (Mp), where Mp is an n×n
nonsingular matrix over Qp. Alas, there is no normal form for the matrix sequences
(nor for the matrices in the local case), and so this theorem does not have many
applications. However, Arnold [6] used this result to set up an interesting duality.

An abelian group is decomposable if it is a direct sum of two proper subgroups;
otherwise, it is indecomposable. For example, every torsion-free abelian group of
rank 1 is indecomposable. A torsion-free abelian group G is called completely de-
composable if it is a direct sum of (possibly infinitely many) groups of rank 1. Baer
proved (Fuchs [73], p. 114) that every direct summand of a completely decompos-
able group is itself completely decomposable. Moreover, ifG =

⊕
i∈I Ai =

⊕
i∈I Bi,

where all Ai and Bi have rank 1, then, for each type τ , the number of Ai of type τ
is equal to the number of Bi of type τ (Fuchs [73], p. 112). This nice behavior of
decompositions does not hold more generally. Every torsion-free abelian group G
of finite rank is a direct sum of indecomposable groups (this is not true for infinite
rank), but there is virtually no uniqueness for such a decomposition. For example,
there exists a group G of rank 6 with

G = A1 ⊕A2 = B1 ⊕B2 ⊕B3,

with all the direct summands indecomposable, with rank(A1) = 1, rank(A2) =
5, and rank(Bj) = 2 for j = 1, 2, 3 (Fuchs [73], p. 135). Thus, the number of
indecomposable direct summands in a decomposition is not uniquely determined
by G, nor is the isomorphism class of any of its indecomposable direct summands.
Here is an interesting theorem of Corner that can be used to produce bad examples
of torsion-free groups such as the group G of rank 6 just mentioned. Let R be a
ring whose additive group is countable, torsion-free, and reduced (it has no nonzero
divisible subgroups). Then there exists an abelian group G, also countable, torsion-
free, and reduced, with End(G) ∼= R. Moreover, if the additive group of R has
finite rank n, then G can be chosen to have rank 2n (Fuchs [73], p. 231). Jónsson
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introduced the notion of quasi-isomorphism: two torsion-free abelian groups G and
H of finite rank are quasi-isomorphic, denoted by

G
.
= H,

if each is isomorphic to a subgroup of finite index in the other, and he defined a
group to be strongly indecomposable if it is not quasi-isomorphic to a decompos-
able group. He then proved that every torsion-free abelian group G of finite rank is
quasi-isomorphic to a direct sum of strongly indecomposable groups, and this de-
composition is unique in the following sense: if G

.
= A1⊕· · ·⊕An

.
= B1⊕· · ·⊕Bm,

then n = m and, after possible reindexing, Ai
.
= Bi for all i (Fuchs [73], p. 150).

Torsion-free abelian groups still hide many secrets.

Exercises

C-5.1. Prove that Z(p) �∼= Q as Z(p)-modules.

C-5.2. Prove that the following statements are equivalent for a torsion-free abelian group
G of rank 1:

(i) G is finitely generated.

(ii) G is cyclic.

(iii) If x ∈ G is nonzero, then hp(x) �= ∞ for all primes p and hp(x) = 0 for almost all p.

(iv) τ(G) = τ(Z).

C-5.3. (i) If G is a torsion-free abelian group of rank 1, prove that the additive group
of End(G) is torsion-free of rank 1.

Hint. Use Proposition B-4.58 in Part 1.

(ii) Let x ∈ G be nonzero with χ(x) = (h2(x), h3(x), . . . , hp(x), . . . ), and let R be the
subring of Q in which χ(1) = (k2, k3, . . . , kp, . . . ), where

kp =

{
∞ if hp(x) = ∞,

0 if hp(x) is finite.

Prove that End(G) ∼= R. Prove that there are infinitely many G with Aut(G) ∼= Z2.

(iii) Prove that G and End(G) are locally isomorphic abelian groups.

∗ C-5.4. (i) Prove that if G and H are torsion-free abelian groups of finite rank, then

rank(G⊗Z H) = rank(G) rank(H).

(ii) If G and H are torsion-free abelian groups of rank 1, then G ⊗Z H is torsion-free
of rank 1, by part (i). If (hp) is the height sequence of a nonzero element x ∈ G
and (kp) is the height sequence of a nonzero element y ∈ H, prove that the height
sequence of x⊗ y is (mp), where mp = hp + kp (we agree that ∞+ kp = ∞).

C-5.5. Let G and G′ be nonzero subgroups of Q, and let χG(g) = (kp) and χG′(g′) = (k′
p)

for g ∈ G and g′ ∈ G′.

(i) Let T be the set of all types. Define τ ≤ τ ′, where τ, τ ′ ∈ T , if there are height
sequences (kp) ∈ τ and (k′

p) ∈ τ ′ with kp ≤ k′
p for all primes p. Prove that ≤ is a

well-defined relation which makes T a partially ordered set.
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(ii) Prove that G is isomorphic to a subgroup of G′ if and only if τ(G) ≤ τ(G′).

(iii) Note that G ∩ G′ and G + G′ are subgroups of Q. Prove that there are elements
x ∈ G ∩ G′ and y ∈ G + G′ with χG∩G′(x) = (min{kp, k′

p}) and χG+G′(y) =
(max{kp, k′

p}). Define τ(G)∧τ(G′) to be the type of (min{kp, k′
p}) and τ(G)∨τ(G′)

to be the type of (max{kp, k′
p}). Prove that these are well-defined operations which

make T a lattice.

(iv) Prove that there is an exact sequence 0 → A → G⊕G′ → B → 0 with A ∼= G∩G′

and B ∼= G+G′.

(v) Prove that H = Hom(G,G′) is a torsion-free abelian group with rank(H) ≤ 1 and
that H �= {0} if and only if τ(G) ≤ τ(G′). Prove that End(G) = Hom(G,G) has
height sequence (hp), where hp = ∞ if kp = ∞ and hp = 0 otherwise.

(vi) Prove that G⊗Z G′ has rank 1 and that χG⊗ZG
′(g ⊗ g′) = (kp + k′

p).

C-5.6. Let A be a torsion-free abelian group. If a ∈ A is nonzero, define τ(a) = τ(χA(a)),
and define

A(τ) = {a ∈ A : τ(a) ≥ τ} ∪ {0}.
Prove that A(τ) is a fully invariant subgroup of A and that A/A(τ) is torsion-free.

C-5.7. If G is a p-primary abelian group, prove that G is a Z(p)-module.

C-5.8. Let C be the category of all torsion-free abelian groups of finite rank.

(i) Prove that the Grothendieck group G0(C) is generated by all [A] with rank(A) = 1.

(ii) Prove that the Grothendieck group G0(C) is a commutative ring if we define mul-
tiplication by

[A][B] = [A⊗Z B],

and prove that rank induces a ring homomorphism G0(C) → Z.
Hint. See the remark on page 406.

Remark. Rotman [189] showed that G0(C) is a commutative ring isomorphic to the
subring of ZN consisting of all functions having finite image.

Consider the Grothendieck group G′
0(C) = F(C)/E ′, where F(C) is the free abelian

group with basis Iso(C) and E ′ is the subgroup of F(C) generated by all split short exact
sequences (thus, the relations are [A ⊕ C] = [A] + [C]). This Grothendieck group was
studied by Lady [131]: G′

0(C)/tG′
0(C) is a free abelian group of uncountable rank. He also

characterized tG′
0(C) as all [A]− [B] with A and B nearly isomorphic: for each n > 0,

B contains a subgroup An with An
∼= A and finite index [B : An] relatively prime to n.

�

C-5.2. Localization

All rings in this section are commutative.

The ring Z has infinitely many prime ideals, but Z(2) has only one nonzero prime
ideal, namely, (2) (all odd primes in Z are invertible in Z(2)). Now Z(2)-modules
are much simpler than Z-modules. For example, Proposition C-5.4(iii) says that
there are only two Z(2)-submodules of Q (up to isomorphism): Z(2) and Q. On the
other hand, Corollary C-5.11 says that there are uncountably many nonisomorphic
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Z-submodules (= subgroups) of Q. Similar observations lead to a localization-
globalization strategy to attack algebraic and number-theoretic problems. The
fundamental assumption underlying this strategy is that the local case is simpler
than the global. Given a prime ideal p in a commutative ring R, we will construct
local rings Rp; localization looks at problems involving the rings Rp, while glob-
alization uses all such local information to answer questions about R. We confess
that this section is rather dry and formal.

Definition. Every ring R is a monoid under multiplication. A subset S ⊆ R of a
commutative ring R is multiplicative if S is a submonoid not containing 0; that
is, 0 /∈ S, 1 ∈ S, and s, s′ ∈ S implies ss′ ∈ S.

Example C-5.13.

(i) If p is a prime ideal in R, then its set-theoretic complement S = R − p is
multiplicative (if a /∈ p and b /∈ p, then ab /∈ p).

(ii) If R is a domain, then the set S = R× of all its nonzero elements is mul-
tiplicative (this is a special case of part (i), for (0) is a prime ideal in a
domain).

(iii) If a ∈ R is not nilpotent, then the set of its powers S = {an : n ≥ 0} is
multiplicative. �

Definition. If S ⊆ R is multiplicative, a localization of R is an ordered pair
(S−1R, h) which is a solution to the following universal mapping problem: given a
commutative R-algebra A and an R-algebra map ϕ : R → A with ϕ(s) invertible
in A for all s ∈ S, there exists a unique R-algebra map ϕ̃ : S−1R→ A with ϕ̃h = ϕ:

R
h ��

ϕ !!!
!!

!!
! S−1R

ϕ̃��� � � �

A.

The map h : R→ S−1R is called the localization map.

As is any solution to a universal mapping problem, a localization S−1R is
unique up to isomorphism if it exists, and so we call S−1R the localization at S.
The reason for excluding 0 from a multiplicative set is now apparent, for 0 is
invertible only in the zero ring.

Given a multiplicative subset S ⊆ R, most authors construct the localization
S−1R by generalizing the (tedious) construction of the fraction field of a domain R.
They define a relation on R × S by (r, s) ≡ (r′, s′) if there exists s′′ ∈ S with
s′′(rs′ − r′s) = 0 (when R is a domain and S = R× is the subset of its nonzero
elements, this definition reduces to the usual definition of equality of fractions
involving cross multiplication). After proving that ≡ is an equivalence relation,
S−1R is defined to be the set of all equivalence classes, addition and multiplication
are defined and proved to be well-defined, all the R-algebra axioms are verified, and
the elements of S are shown to be invertible. We prefer to develop the existence and
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first properties of S−1R in another manner,2 which is less tedious and which will
show that the equivalence relation generalizing cross multiplication arises naturally.

Theorem C-5.14. If S ⊆ R is multiplicative, then the localization (S−1R, h)
exists.

Proof. Let X = (xs)s∈S be an indexed set with xs �→ s a bijection X → S, and
let R[X] be the polynomial ring over R with indeterminates X. Define

S−1R = R[X]/J,

where J is the ideal generated by {sxs − 1 : s ∈ S}, and define h : R → S−1R
by h : r �→ r + J , where r is a constant polynomial. It is clear that S−1R is an
R-algebra, that h is an R-algebra map, and that each h(s) is invertible. Assume
now that A is an R-algebra and that ϕ : R → A is an R-algebra map with ϕ(s)
invertible for all s ∈ S. Consider the diagram in which the top arrow ι : R→ R[X]
sends each r ∈ R to the constant polynomial r and ν : R[X]→ R[X]/J = S−1R is
the natural map:

R
ι ��

ϕ

33-
--

--
--

--
--

--
--

h

��





 R[X]

ν

��  
  
  
  

ϕ0

44"
"
"
"
"
"
"
"

S−1R

ϕ̃

���
�
�

A.

The top triangle commutes because both h and νι send r ∈ R to r+J . Define an R-
algebra map ϕ0 : R[X]→ A by ϕ0(xs) = ϕ(s)−1 for all xs ∈ X. Clearly, J ⊆ kerϕ0,
for ϕ0(sxs − 1) = 0, and so there is an R-algebra map ϕ̃ : S−1R = R[X]/J → A
making the diagram commute. The map ϕ̃ is the unique such map because S−1R
is generated by imh ∪ {h(s)−1 : s ∈ S} as an R-algebra. •

We now describe the elements in S−1R.

Proposition C-5.15. If S ⊆ R is multiplicative, then each y ∈ S−1R has a
(not necessarily unique) factorization y = h(r)h(s)−1, where h : R → S−1R is the
localization map, r ∈ R, and s ∈ S.

Proof. Define A = {y ∈ S−1R : y = h(r)h(s)−1, r ∈ R, s ∈ S}. It is easy to check
that A is an R-subalgebra of S−1R containing imh. Since imh ⊆ A, there is an
R-algebra map h′ : R→ A that is obtained from h by changing its target. Consider
the diagram

R
h′

55...
....

....
...

h ��

h

!!�
��

��
��

��
��

��
��

S−1R

h̃′
��

1S−1R

��

A

j��
S−1R

2I first saw this expounded in MIT lecture notes of M. Artin.
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where j : A→ S−1R is the inclusion and h̃′ : S−1R→ A is given by universality (so
the top triangle commutes). The lower triangle commutes, because h(r) = h′(r) for

all r ∈ R, and so the large triangle commutes: (jh̃′)h = h. But 1S−1R also makes

this diagram commute, so that uniqueness gives jh̃′ = 1S−1R. By set theory, j is
surjective; that is, S−1R = A. •

In light of this proposition, the elements of S−1R can be regarded as “fractions”
h(r)h(s)−1, where r ∈ R and s ∈ S.

Notation. Let h : R→ S−1R be the localization map. If r ∈ R and s ∈ S, define

r/s = h(r)h(s)−1.

In particular, r/1 = h(r).

Is the localization map h : r �→ r/1 an injection?

Proposition C-5.16. If S ⊆ R is multiplicative and h : R → S−1R is the local-
ization map, then

kerh = {r ∈ R : sr = 0 for some s ∈ S}.

Proof. If sr = 0, then 0 = h(s)h(r) in S−1R, so that 0 = h(s)−1h(s)h(r) = h(r)
(h(s) is a unit). Hence, r ∈ kerh, and {r ∈ R : sr = 0 for some s ∈ S} ⊆ kerh.

For the reverse inclusion, suppose that h(r) = 0 in S−1R. Since S−1R =
R[X]/J , where J = (sxs−1 : s ∈ S), there is an equation r =

∑n
i=1 fi(X)(sixsi−1)

in R[X] which involves only finitely many elements {s1, . . . , sn} ⊆ S; let S0 be the
submonoid of S they generate (so S0 is multiplicative). If h0 : R → S−1

0 R is the

localization map, then r ∈ kerh0. In fact, if s = s1 · · · sn and h′ : R →
〈
s
〉−1

R is

the localization map (where
〈
s
〉
is the multiplicative set {sn : n ≥ 0}), then every

h′(si) is invertible, for s
−1
i = s−1s1 · · · ŝi · · · sn (omit the factor si). Now

〈
s
〉−1

R =

R[x]/(sx− 1), so that r ∈ kerh′ says that there is f(x) =
∑m

i=0 aix
i ∈ R[x] with

r = f(x)(sx− 1) =
( m∑
i=0

aix
i
)
(sx− 1) =

m∑
i=0

(
saix

i+1 − aix
i
)
in R[x].

Expanding and equating coefficients of like powers of x gives

r = −a0, sa0 = a1, . . . , sam−1 = am, sam = 0.

Hence, sr = −sa0 = −a1, and, by induction, sir = −ai for all i. In particular,
smr = −am, and so sm+1r = −sam = 0, as desired. •

When are two “fractions” r/s and r′/s′ equal? The next corollary shows why
the equivalence relation in the usual account of localization arises.

Corollary C-5.17. Let S ⊆ R be multiplicative. If both r/s, r′/s′ ∈ S−1R, where
s, s′ ∈ S, then r/s = r′/s′ if and only if there exists s′′ ∈ S with s′′(rs′ − r′s) = 0
in R.

Remark. If S contains no zero-divisors, then s′′(rs′ − r′s) = 0 if and only if
rs′ − r′s = 0, because s′′ is a unit, and so rs′ = r′s. �
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Proof. If r/s = r′/s′, then multiplying by ss′ gives (rs′ − r′s)/1 = 0 in S−1R.
Hence, rs′− r′s ∈ kerh, and Proposition C-5.16 gives s′′ ∈ S with s′′(rs′− r′s) = 0
in R.

Conversely, if s′′(rs′−r′s) = 0 in R for some s′′ ∈ S, then h(s′′)h(rs′−r′s) = 0
in S−1R. As h(s′′) is a unit, we have h(r)h(s′) = h(r′)h(s); as h(s) and h(s′) are
units, h(r)h(s)−1 = h(r′)h(s′)−1; that is, r/s = r′/s′. •

Corollary C-5.18. Let S ⊆ R be multiplicative.

(i) If S contains no zero-divisors, then the localization map h : R→ S−1R is an
injection.

(ii) If R is a domain with Q = Frac(R), then S−1R ⊆ Q. Moreover, if S = R×,
then S−1R = Q.

Proof.

(i) This follows easily from Proposition C-5.16.

(ii) The localization map h : R → S−1R is an injection, by Proposition C-5.16.
The result now follows from Proposition C-5.15. •

If R is a domain and S ⊆ R is multiplicative, then Corollary C-5.18 says that
S−1R consists of all elements a/s ∈ Frac(R) with a ∈ R and s ∈ S.

Let us now investigate the ideals in S−1R.

Definition. If S ⊆ R is multiplicative and I is an ideal in R, then we denote the
ideal in S−1R generated by h(I) by S−1I.

Example C-5.19.

(i) If S ⊆ R is multiplicative and I is an ideal in R containing an element s ∈ S
(that is, I ∩ S �= ∅), then S−1I contains s/s = 1, and so S−1I = S−1R.

(ii) Let S consist of all the odd integers (that is, S is the complement of the
prime ideal (2)), let I = (3), and let I ′ = (5). Then S−1I = S−1Z = S−1I ′.
Therefore, the function from the ideals in Z to the ideals in S−1Z = Z(2) =

{a/b ∈ Q : b is odd}, given by I �→ S−1I, is not injective. �

Corollary C-5.20. Let S ⊆ R be multiplicative.

(i) Every ideal J in S−1R is of the form S−1I for some ideal I in R. In fact,
if R is a domain and I = J ∩ R, then J = S−1I; in the general case, if
I = h−1(h(R) ∩ J), then J = S−1I.

(ii) Let I be an ideal in R. Then S−1I = S−1R if and only if I ∩ S �= ∅.

(iii) If q is a prime ideal in R with q ∩ S = ∅, then S−1q is a prime ideal in
S−1R.

(iv) The function f : q �→ S−1q is a bijection from the family of all prime ideals
in R disjoint from S to the family of all prime ideals in S−1R.

(v) If R is noetherian, then S−1R is also noetherian.
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Proof.

(i) Let J = (jλ : λ ∈ Λ). By Proposition C-5.15, we have jλ = h(rλ)h(sλ)
−1,

where rλ ∈ R and sλ ∈ S. Define I to be the ideal in R generated by
{rλ : λ ∈ Λ}; that is, I = h−1(h(R) ∩ J). It is clear that S−1I = J ; in fact,
since all sλ are units in S−1R, we have J = (h(rλ) : λ ∈ Λ).

(ii) If s ∈ I ∩ S, then s/1 ∈ S−1I. But s/1 is a unit in S−1R, and so S−1I =
S−1R. Conversely, if S−1I = S−1R, then h(a)h(s)−1 = 1 for some a ∈ I and
s ∈ S. Therefore, s − a ∈ kerh, and so there is s′′ ∈ S with s′′(s − a) = 0.
Therefore, s′′s = s′′a ∈ I. Since S is multiplicative, s′′s ∈ I ∩ S.

(iii) Suppose that q is a prime ideal in R. First, S−1q is a proper ideal, for
q ∩ S = ∅. If (a/s)(b/t) = c/u, where a, b ∈ R, c ∈ q, and s, t, u ∈ S, then
there is s′′ ∈ S with s′′(uab − stc) = 0. Hence, s′′uab ∈ q. Now s′′u /∈ q

(because s′′u ∈ S and S ∩ q = ∅); hence, ab ∈ q (because q is prime). Thus,
either a or b lies in q, and either a/s or b/t lies in S−1q. Therefore, S−1q is
a prime ideal.

(iv) Suppose that p and q are prime ideals in R with f(p) = S−1p = S−1q = f(q);
we may assume that p ∩ S = ∅ = q ∩ S. If a ∈ p, then there is b ∈ q and
s ∈ S with a/1 = b/s. Hence, sa− b ∈ kerh, where h is the localization map,
and so there is s′ ∈ S with s′sa = s′b ∈ q. But s′s ∈ S, so that s′s /∈ q. Since
q is prime, we have a ∈ q; that is, p ⊆ q. The reverse inclusion is proved
similarly. Thus, f is injective.

Let P be a prime ideal in S−1R. By (i), there is some ideal I in R with
P = S−1I. We must show that I can be chosen to be a prime ideal in R.
Now h(R)∩P is a prime ideal in h(R), and so p = h−1(h(R)∩P) is a prime
ideal in R. By (i), P = S−1p, and so f is surjective.

(v) If J is an ideal in S−1R, then (i) shows that J = S−1I for some ideal I in R.
Since R is noetherian, we have I = (r1, . . . , rn), and so J = (r1/1, . . . , rn/1).
Hence, every ideal in S−1R is finitely generated, and so S−1R is noetherian.

•

Notation. If p is a prime ideal in a commutative ring R and S = R−p, then S−1R
is denoted by

Rp.

Example C-5.21. If p is a nonzero prime in Z, then p = (p) is a prime ideal, and
Zp = Z(p). �

Proposition C-5.22. If R is a domain, then
⋂

m
Rm = R, where the intersection

is over all the maximal ideals m in R.

Proof. Since R is a domain, Rm ⊆ Frac(R) for all m, and so the intersection in
the statement is defined. Moreover, it is plain that R ⊆ Rm for all m, so that
R ⊆

⋂
mRm. For the reverse inclusion, let a ∈

⋂
Rm. Consider the colon ideal

I = (R : a) = {r ∈ R : ra ∈ R}.
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If I = R, then 1 ∈ I, and a = 1a ∈ R, as desired. If I is a proper ideal, then there
exists a maximal ideal m with I ⊆ m. Now a/1 ∈ Rm, so there is r ∈ R and σ /∈ m

with a/1 = r/σ; that is, σa = r ∈ R. Hence, σ ∈ I ⊆ m, contradicting σ /∈ m.
Therefore, R =

⋂
m
Rm. •

The next proposition explains why S−1R is called localization.

Theorem C-5.23. If p is a prime ideal in a commutative ring R, then Rp is a
local ring with unique maximal ideal pRp = {r/s : r ∈ p and s /∈ p}.

Proof. If x ∈ Rp, then x = r/s, where r ∈ R and s /∈ p. If r /∈ p, then r/s is a unit
in Rp; that is, all nonunits lie in pRp. Hence, if I is any ideal in Rp that contains
an element r/s with r /∈ p, then I = Rp. It follows that every proper ideal in Rp is
contained in pRp, and so Rp is a local ring with unique maximal ideal pRp. •

Here is an application of localization. Recall that a prime ideal p in a commuta-
tive ring R is a minimal prime ideal if there is no prime ideal strictly contained
in it. In a domain, (0) is the unique minimal prime ideal.

Proposition C-5.24. If p is a minimal prime ideal in a commutative ring R, then
every x ∈ p is nilpotent; that is, xn = 0 for some n = n(x) ≥ 1.

Proof. Let x ∈ p be nonzero. By Corollary C-5.20(iv), there is only one prime
ideal in Rp, namely, pRp, and x/1 is a nonzero element in it. Indeed, x is nilpotent
if and only if x/1 is nilpotent, by Proposition C-5.16. Thus, we have normalized the
problem; we may now assume that x ∈ p and that p is the only prime ideal in R.
If x is not nilpotent, then S = {1, x, x2, . . . } is multiplicative. By Zorn’s Lemma,
there exists an ideal I maximal with I ∩ S = ∅. Now we show that I is a prime
ideal; that is, p = I. Suppose a, b ∈ R, a /∈ I, b /∈ I, and ab ∈ I. Then Ra+ I and
Rb + I are both larger than I so each contains an element S. If xj = ra + z and
xt = r′b+z′ with z, z′ ∈ I, then xj+t ∈ rr′ab+I = I, since ab ∈ I—a contradiction.
So I is prime and I = p. But x ∈ S ∩ p = S ∩ I = ∅, a contradiction. Therefore, x
is nilpotent. •

The structure of projective modules over a general ring can be quite compli-
cated, but the next proposition shows that projective modules over local rings are
free.

Lemma C-5.25. Let R be a local ring with maximal ideal m. An element r ∈ R
is a unit if and only if r /∈ m.

Proof. It is clear that if r is a unit, then r /∈ m, for m is a proper ideal. Con-
versely, assume that r is not a unit. By Zorn’s Lemma, there is a maximal ideal
m′ containing the principal ideal (r). Since R is local, m is the only maximal ideal;
hence, m′ = m and r ∈ m. •
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Proposition C-5.26. If R is a local ring, then every finitely generated 3 projective
R-module B is free.

Proof. Let R be a local ring with maximal ideal m, and let {b1, . . . , bn} be a
smallest set of generators of B in the sense that B cannot be generated by fewer
than n elements. Let F be the free R-module with basis x1, . . . , xn, and define
ϕ : F → B by ϕ(xi) = bi for all i. Thus, there is an exact sequence

0→ K → F
ϕ−→ B → 0,(1)

where K = kerϕ.

We claim that K ⊆ mF . If, on the contrary, K � mF , there is an element
y =

∑n
i=1 rixi ∈ K which is not in mF , that is, some coefficient, say, r1 /∈ m.

Lemma C-5.25 says that r1 is a unit. Now y ∈ K = kerϕ gives
∑

ribi = 0.
Hence, b1 = −r−1

1

(∑n
i=2 ribi

)
, which implies that B =

〈
b2, . . . , bn

〉
, contradicting

the original generating set being smallest.

Returning to the exact sequence (1), projectivity of B gives F = K ⊕ B′,
where B′ is a submodule of F with B′ ∼= B. Hence, mF = mK ⊕ mB′. Since
mK ⊆ K ⊆ mF , Corollary B-2.16 in Part 1 gives

K = mK ⊕ (K ∩mB′).

But K ∩ mB′ ⊆ K ∩ B′ = {0}, so that K = mK. The submodule K is finitely
generated, being a direct summand (and hence a homomorphic image) of the finitely
generated module F , so that Nakayama’s Lemma (Corollary C-2.8) gives K = {0}.
Therefore, ϕ is an isomorphism and B is free. •

Having localized a commutative ring, we now localize its modules. Recall a
general construction we introduced in Exercise B-4.25 on page 475 in Part 1. Given
a ring homomorphism ϕ : R → R∗, every R∗-module A∗ can be viewed as an R-
module: if a∗ ∈ A∗ and r ∈ R, define

ra∗ = ϕ(r)a∗

and denote A∗ viewed as an R-module in this way by ϕA
∗. Indeed, ϕ induces a

change of rings functor ; namely, ϕ� : R∗ Mod → R Mod, which is additive and
exact. In particular, the localization map h : R → S−1R allows us to view an
S−1R-module M as an induced R-module

hM,

where rm = h(r)m = (r/1)m for all r ∈ R and m ∈M .

If M is an R-module and s ∈ R, let μs denote the multiplication map M →M
defined by m �→ sm. Given a subset S ⊆ R, note that the map μs : M → M is
invertible for every s ∈ S (that is, every μs is an automorphism) if and only if M
is an S−1R-module.

3It is a theorem of Kaplansky [123] that the finiteness hypothesis can be omitted: every
projective module over a local ring is free. He even proves freeness when R is a noncommutative
local ring.
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Definition. Let M be an R-module and let S ⊆ R be multiplicative. A localiza-
tion of M is an ordered pair (S−1M,hM ), where S−1M is an S−1R-module and
hM : M → S−1M is an R-map (called the localization map), which is a solution
to the universal mapping problem: if M ′ is an S−1R-module and ϕ : M → M ′ is
an R-map, then there exists a unique S−1R-map ϕ̃ : S−1M →M ′ with ϕ̃hM = ϕ,

M
hM ��

ϕ ))##
##

##
S−1M

ϕ̃��( ( ( (

M ′.

The obvious candidate for (S−1M,hM ), namely, (S−1R⊗R M,h⊗ 1M ), where
h : R→ S−1R is the localization map, actually is the localization.

Proposition C-5.27. Let R be a commutative ring, and let S ⊆ R be multiplica-
tive.

(i) If M is an S−1R-module, then M is naturally isomorphic to S−1R ⊗R hM
via m �→ 1⊗m, where hM is the R-module induced from M .

(ii) If M is an R-module, then (S−1R ⊗R M,hM ) is a localization of M , where
hM : M → S−1R⊗R M is given by m �→ 1⊗m.

Proof.

(i) As above, there is an R-module hM with rm = (r/1)m for r ∈ R and m ∈M .
Define g : M → S−1R ⊗R hM by m �→ 1 ⊗ m. Now g is an S−1R-map: if
s ∈ S and m ∈M , then

g(s−1m) = 1⊗ s−1m = s−1s⊗ s−1m = s−1 ⊗m = s−1g(m).

To see that g is an isomorphism, we construct its inverse. SinceM is an S−1R-
module, the function S−1R× hM →M , defined by (rs−1,m) �→ (rs−1)m, is
an R-bilinear function, and it induces an R-map S−1R⊗R (hM)→M , which
is obviously inverse to g. Proof of naturality of g is left to the reader.

(ii) Consider the diagram

M
hM ��

ϕ )),
,,

,,
, S−1R⊗R hM

ϕ̃66/ / / / /

M ′

where M is an R-module, hM : m �→ 1 ⊗ m, M ′ is an S−1R-module, and
ϕ : M →M ′ is an R-map. Since ϕ is merely an R-map, we may regard it as a
map ϕ : M → hM

′. By (i), there is an isomorphism g : M ′ → S−1R⊗R hM
′.

Define an R-map ϕ̃ : S−1R⊗R M →M ′ by g−1(1⊗ ϕ). •

One of the most important properties of S−1R is that it is flat as an R-module.
To prove this, we first generalize the argument in Proposition C-5.16.

Proposition C-5.28. Let S ⊆ R be multiplicative. If M is an R-module and
hM : M → S−1M is the localization map, then

kerhM = {m ∈M : sm = 0 for some s ∈ S}.
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Proof. Denote {m ∈ M : sm = 0 for some s ∈ S} by K. If sm = 0, for m ∈ M
and s ∈ S, then hM (m) = (1/s)hM (sm) = 0, and so K ⊆ kerhM . For the
reverse inclusion, proceed as in Proposition C-5.16: if m ∈ K, there is s ∈ S with
sm = 0. Reduce to S =

〈
s
〉
for some s ∈ S, where

〈
s
〉
= {sn : n ≥ 0}, so that

S−1R = R[x]/(sx− 1). Now R[x]⊗R M ∼=
⊕

i Rxi ⊗R M , because R[x] is the free
R-module with basis {1, x, x2, . . . }. Thus, each element in R[x]⊗RM has a unique
expression of the form

∑
i x

i ⊗mi, where mi ∈M . Hence,

kerhM =
{
m ∈M : 1⊗m = (sx− 1)

n∑
i=0

xi ⊗mi

}
.

The proof now finishes as the proof of Proposition C-5.16. Expanding and equating
coefficients gives equations

1⊗m = −1⊗m0, x⊗ sm0 = x⊗m1, . . . ,

xn ⊗ smn−1 = xn ⊗mn, xn+1 ⊗ smn = 0.

It follows that

m = −m0, sm0 = m1, . . . , smn−1 = mn, smn = 0.

Hence, sm = −sm0 = −m1, and, by induction, sim = −mi for all i. In particular,
snm = −mn and so sn+1m = −smn = 0 in M . Therefore, kerhM ⊆ K. •

We now generalize Proposition C-5.16 from rings to modules.

Corollary C-5.29. Let S ⊆ R be multiplicative and let M be an R-module.

(i) Every element u ∈ S−1M = S−1 ⊗R M has the form u = s−1 ⊗m for some
s ∈ S and some m ∈M .

(ii) s−1
1 ⊗m1 = s−1

2 ⊗m2 in S−1 ⊗R M if and only if s(s2m1 − s1m2) = 0 in M
for some s ∈ S.

Proof.

(i) If u ∈ S−1R ⊗R M , then u =
∑

i(ri/si) ⊗ mi, where ri ∈ R, si ∈ S, and
mi ∈M . If we define s =

∏
si and ŝi =

∏
j �=i sj , then

u =
∑

(1/si)ri ⊗mi =
∑

(ŝi/s)ri ⊗mi

= (1/s)
∑

ŝiri ⊗mi = (1/s)⊗
∑

ŝirimi = (1/s)⊗m,

where m =
∑

ŝirimi ∈M .

(ii) If s ∈ S with s(s2m1 − s1m2) = 0 in M , then (s/1)(s2 ⊗m1 − s1 ⊗m2) = 0
in S−1R⊗R M . As s/1 is a unit, s2 ⊗m1 − s1 ⊗m2 = 0, and so s−1

1 ⊗m1 =
s−1
2 ⊗m2.

Conversely, suppose that s−1
1 ⊗m1 = s−1

2 ⊗m2 in S−1 ⊗R M ; then we
have (1/s1s2)(s2 ⊗ m1 − s1 ⊗ m2) = 0. Since 1/s1s2 is a unit, we have
(s2 ⊗m1 − s1 ⊗m2) = 0 and s2m1 − s1m2 ∈ kerhM . By Proposition C-5.28,
there exists s ∈ S with s(s2m1 − s1m2) = 0 in M . •

Theorem C-5.30. If S ⊆ R is multiplicative, then S−1R is a flat R-module.
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Proof. We must show that if 0→ A
f−→ B is exact, then so is

0→ S−1R ⊗R A
1⊗f−→ S−1R⊗R B.

By Corollary C-5.29, every u ∈ S−1A has the form u = s−1⊗ a for some s ∈ S and
a ∈ A. In particular, if u ∈ ker(1⊗f), then (1⊗f)(u) = s−1⊗f(a) = 0. Multiplying
by s gives 1 ⊗ f(a) = 0 in S−1B; that is, f(a) ∈ kerhB. By Proposition C-5.28,
there is t ∈ S with 0 = tf(a) = f(ta). Since f is an injection, ta ∈ ker f = {0}.
Hence, 0 = 1⊗ ta = t(1⊗ a). But t is a unit in S−1R, so that 1⊗ a = 0 in S−1A.
Therefore, 1⊗ f is an injection, and S−1R is a flat R-module. •

Corollary C-5.31. If S ⊆ R is multiplicative, then localization M �→ S−1M =
S−1R⊗R M defines an exact functor RMod→ S−1RMod.

Proof. Localization is the functor S−1R ⊗R �, and it is exact because S−1R is a
flat R-module. •

Since tensor product commutes with direct sum, it is clear that if M is a free
(or projective) R-module, then S−1M is a free (or projective) S−1R-module.

Proposition C-5.32. Let S ⊆ R be multiplicative. If A and B are R-modules,
then there is a natural isomorphism

ϕ : S−1(B ⊗R A)→ S−1B ⊗S−1R S−1A.

Proof. Every element u ∈ S−1(B ⊗R A) has the form u = s−1m for s ∈ S and
m ∈ B ⊗R A, by Corollary C-5.29; hence, u = s−1

∑
ai ⊗ bi:

A×B ��

55...
....

...
A⊗R B

��

�� S−1(A⊗R B)

++0 0 0 0 0 0

S−1B ⊗S−1R S−1A.

The idea is to define ϕ(u) =
∑

s−1ai ⊗ bi but, as usual with tensor product, the
problem is whether obvious maps are well-defined. We suggest that the reader use
the universal property of localization to complete the proof. •

Proposition C-5.33. Let S ⊆ R be multiplicative. If B is a flat R-module, then
S−1B is a flat S−1R-module.

Proof. Recall Proposition C-5.27(i): if A is an S−1R-module, then A is naturally
isomorphic to S−1R⊗R hA . The isomorphism of Proposition C-5.32,

S−1B ⊗S−1R A = (S−1R⊗R B)⊗S−1R A→ S−1R⊗R (B ⊗R A),

can now be used to give a natural isomorphism

S−1B ⊗S−1R �→ (S−1B ⊗R �)(B ⊗R �)h�,

where h� : S−1R Mod→ R Mod is the change of rings functor induced by the local-
ization map h : R→ S−1R. As each factor is an exact functor, by Exercise B-4.25
on page 475 in Part 1, so is the composite S−1B⊗S−1R �; that is, S−1B is flat. •
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We now investigate localization of injective modules. Preserving injectivity is
more subtle than preserving projectives and flats. We will need an analog for Hom
of Proposition C-5.32, but the next example shows that the obvious analog is not
true without some extra hypothesis.

Example C-5.34. If the analog of Proposition C-5.32 for Hom were true, then we
would have S−1 HomR(B,A) ∼= HomS−1R(S

−1B,S−1A), but such an isomorphism
may not exist. If R = Z and S−1R = Q, then

Q⊗Z HomZ(Q,Z) �∼= HomQ(Q⊗Z Q,Q⊗Z Z).

The left-hand side is {0}, because HomZ(Q,Z) = {0}. On the other hand, the
right-hand side is HomQ(Q,Q) ∼= Q. �

Lemma C-5.35. Let S ⊆ R be multiplicative, and let M and A be R-modules with
A finitely presented. Then there is a natural isomorphism

τA : S−1 HomR(A,M)→ HomS−1R(S
−1A,S−1M).

Proof. It suffices to construct natural isomorphisms

ϕA : S−1HomR(A,M)→ HomR(A,S−1M)

and

θA : HomR(A,S−1M)→ HomS−1R(S
−1A,S−1M),

for then we can define τA = θAϕA.

If, now, A is a finitely presented R-module, then there is an exact sequence

Rt → Rn → A→ 0.(2)

Applying the contravariant functors HomR( ,M ′) and HomS−1R( ,M ′), where
M ′ = S−1M is first viewed as an R-module, gives a commutative diagram with
exact rows

0 �� HomR(A,M ′) ��

θA
���
�
�

HomR(R
n,M ′) ��

θRn

��

HomR(R
t,M ′)

θRt

��
0 �� HomS−1R(S

−1A,M ′) �� HomS−1R((S
−1R)n,M ′) �� HomS−1R((S

−1R)t,M ′).

Since the vertical maps θRn and θRt are isomorphisms, there is a dotted arrow
θA which must be an isomorphism, by Proposition B-1.47 in Part 1. If β ∈
HomR(A,M), then the reader may check that

θA(β) = β̃ : a/s �→ β(a)/s,

from which it follows that the isomorphisms θA are natural.

Construct ϕA : S−1HomR(A,M) → HomR(A,S−1M) by defining ϕA : g/s �→
gs, where gs(a) = g(a)/s. Note that ϕA is well-defined, for it arises from the R-
bilinear function S−1R×HomR(A,M)→ HomR(A,S−1M) given by (r/s, g) �→ rgs
(remember that S−1HomR(A,M)=S−1R⊗RHomR(A,M), by Proposition C-5.27).
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Observe that ϕA is an isomorphism when the module A is finitely generated free,
and consider the commutative diagram

0 �� S−1 HomR(A,M) ��

ϕA

��

S−1 HomR(R
n,M) ��

ϕRn

��

S−1HomR(R
t,M)

ϕRt

��
0 �� HomR(A,S−1M) �� HomR(R

n, S−1M) �� HomR(R
t, S−1M)

The top row is exact, for it arises from Eq. (2) by first applying the left exact
contravariant functor HomR(�,M), and then applying the exact localization func-
tor. The bottom row is exact, for it arises from Eq. (2) by applying the left exact
contravariant functor HomR(�, S−1M). The Five Lemma shows that ϕA is an
isomorphism.

Assume first that A = Rn is a finitely generated free R-module. If a1, . . . , an
is a basis of A, then a1/1, . . . , an/1 is a basis of S−1A = S−1R⊗R Rn. The map

θRn : HomR(A,S−1M)→ HomS−1R(S
−1A,S−1M),

given by f �→ f̃ , where f̃(ai/s) = f(ai)/s, is easily seen to be a well-defined R-
isomorphism. •

Theorem C-5.36. Let R be noetherian and let S ⊆ R be multiplicative. If E is
an injective R-module, then S−1E is an injective S−1R-module.

Proof. By Baer’s criterion, it suffices to extend any map I → S−1E to a map
S−1R → S−1E, where I is an ideal in S−1R; that is, if i : I → S−1R is the
inclusion, then the induced map

i∗ : HomS−1R(S
−1R,S−1E)→ HomS−1R(I, S

−1E)

is a surjection. Now S−1R is noetherian because R is, and so I is finitely gener-
ated; say, I = (r1/s1, . . . , rn/sn), where ri ∈ R and si ∈ S. There is an ideal J
in R; namely, J = (r1, . . . , rn), with I = S−1J . Naturality of the isomorphism in
Lemma C-5.35 gives a commutative diagram

S−1HomR(R,E) ��

��

S−1HomR(J,E)

��
HomS−1R(S

−1R,S−1E) �� HomS−1R(S
−1J, S−1E).

Now HomR(R,E) → HomR(J,E) is a surjection, because E is an injective R-
module, and so S−1 = S−1R ⊗R � being right exact implies that the top arrow
is also a surjection. But the vertical maps are isomorphisms, and so the bottom
arrow is a surjection; that is, S−1E is an injective S−1R-module. •

Remark. Theorem C-5.36 may be false if R is not noetherian. Dade [49] showed,
for every commutative ring k, that if R = k[X], where X is an uncountable set of
indeterminates, then there is a multiplicative S ⊆ R and an injective R-module E
such that S−1E is not an injective S−1R-module. If, however, R = k[X], where k
is noetherian and X is countable, then S−1E is an injective S−1R-module for every
injective R-module E and every multiplicative S ⊆ R. �
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Here are some globalization tools.

Notation. In the special case S = R− p, where p is a prime ideal in R, we write

S−1M = S−1R⊗R M = Rp ⊗R M = Mp.

If f : M → N is an R-map, write fp : Mp → Np, where fp = 1Rp
⊗ f .

We restate Corollary C-5.20(iv) in this notation. The function f : q �→ qp is
a bijection from the family of all prime ideals in R that are contained in p to the
family of prime ideals in Rp.

Proposition C-5.37. Let I and J be ideals in a domain R. If Im = Jm for every
maximal ideal m, then I = J .

Proof. Take b ∈ J , and define

(I : b) = {r ∈ R : rb ∈ I}.

Let m be a maximal ideal in R. Since Im = Jm, there are a ∈ I and s /∈ m with
b/1 = a/s. As R is a domain, sb = a ∈ I, so that s ∈ (I : b); but s /∈ m, so that
(I : b) � m. Thus, (I : b) cannot be a proper ideal, for it is not contained in any
maximal ideal. Therefore, (I : b) = R; hence, 1 ∈ (I : b) and b = 1b ∈ I. We have
proved that J ⊆ I, and the reverse inclusion is proved similarly. •

Proposition C-5.38. Let R be a commutative ring, and let M,N be R-modules.

(i) If Mm = {0} for every maximal ideal m, then M = {0}.
(ii) If f : M → N is an R-map and fm : Mm → Nm is an injection for every

maximal ideal m, then f is an injection.

(iii) If f : M → N is an R-map and fm : Mm → Nm is a surjection for every
maximal ideal m, then f is a surjection.

(iv) If f : M → N is an R-map and fm : Mm → Nm is an isomorphism for every
maximal ideal m, then f is an isomorphism.

Proof.

(i) If M �= {0}, then there is m ∈M with m �= 0. It follows that the annihilator
I = {r ∈ R : rm = 0} is a proper ideal in R, for 1 /∈ I, and so there is some
maximal ideal m containing I. Now 1 ⊗m = 0 in Mm, so that m ∈ kerhM .
Proposition C-5.28 gives s /∈ m with sm = 0 in M . Hence, s ∈ I ⊆ m, and
this is a contradiction. Therefore, M = {0}.

(ii) There is an exact sequence 0 → K → M
f−→ N , where K = ker f . Since

localization is an exact functor, there is an exact sequence

0→ Km →Mm

fm−→ Nm

for every maximal ideal m. By hypothesis, each fm is an injection, so that
Km = {0} for all maximal ideals m. Part (i) now shows that K = {0}, and
so f is an injection.
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(iii) There is an exact sequence M
f−→ N → C → 0, where C = coker f =

N/ im f . Since tensor product is right exact, Cm = {0} for all maximal ideals
m, and so C = {0}. But f is surjective if and only if C = coker f = {0}.

(iv) This follows at once from parts (ii) and (iii). •

We cannot weaken the hypothesis of Proposition C-5.38(iv) to Mm
∼= Nm for

all maximal ideals m; we must assume that all the local isomorphisms arise from
a given map f : M → N . If G is the subgroup of Q consisting of all a/b with b
squarefree, then we saw, in Example C-5.5, that G(p)

∼= Z(p) for all primes p, but
G �∼= Z.

Localization commutes with Tor, essentially because S−1R is a flat R-module.

Proposition C-5.39. If S is a multiplicative subset of a commutative ring R, then
there are isomorphisms

S−1 TorRn (A,B) ∼= TorS
−1R

n (S−1A,S−1B)

for all n ≥ 0 and for all R-modules A and B.

Proof. First consider the case n = 0. For any R-module A, there is a natural
isomorphism

τB : S−1(A⊗R B)→ S−1A⊗S−1R S−1B,

for either side is a solution U of the universal mapping problem

S−1A× S−1B ��

f
��11

111
111

111
U

f̃���
�
�
�

M

where M is an (S−1R)-module, f is (S−1R)-bilinear, and f̃ is an (S−1R)-map.

Let PB be a deleted projective resolution of B. Since the localization functor
is exact and preserves projectives, S−1(PB) is a deleted projective resolution of
S−1B. Naturality of the isomorphisms τA gives an isomorphism of complexes

S−1(A⊗R PB) ∼= S−1A⊗S−1R S−1(PB),

so that their homology groups are isomorphic. Since localization is an exact functor,

Hn(S
−1(A⊗R PB)) ∼= S−1Hn(A⊗R PB) ∼= S−1TorRn (A,B).

On the other hand, since S−1(PB) is a deleted projective resolution of S−1B, the
definition of Tor gives

Hn(S
−1A⊗S−1R S−1(PB)) ∼= TorS

−1R
n (S−1A,S−1B). •

Corollary C-5.40. Let A be an R-module over a commutative ring R. If Am is a
flat Rm-module for every maximal ideal m, then A is a flat R-module.

Proof. The hypothesis, together with Proposition C-3.96, gives TorRm

n (Am, Bm) =
{0} for all n ≥ 1, for every R-module B, and for every maximal ideal m. But

Proposition C-5.39 gives TorRn (A,B)m = {0} for all maximal ideals m and all n ≥ 1.
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Finally, Proposition C-5.38 shows that TorRn (A,B) = {0} for all n ≥ 1. Since this
is true for all R-modules B, we have A flat. •

We must add some hypotheses to get a similar result for Ext (Exercise C-5.24
on page 445).

Lemma C-5.41. If R is a left noetherian ring and A is a finitely generated left
R-module, then there is a projective resolution P of A in which each Pn is finitely
generated.

Proof. Since A is finitely generated, there exists a finitely generated free left R-
module P0 and a surjective R-map ε : P0 → A. Since R is left noetherian, ker ε
is finitely generated, and so there exists a finitely generated free left R-module P1

and a surjective R-map d1 : P1 → ker ε. If we define D1 : P1 → P0 as the composite
id1, where i : ker ε→ P0 is the inclusion, then there is an exact sequence

0→ kerD1 → P1
D1−→ P0

ε−→ A→ 0.

This construction can be iterated, for kerD1 is finitely generated, and the proof
can be completed by induction. (We remark that we have, in fact, constructed a
free resolution of A.) •

Proposition C-5.42. Let S ⊆ R be a multiplicative subset of a commutative noe-
therian ring R. If A is a finitely generated R-module, then there are isomorphisms

S−1 ExtnR(A,B) ∼= ExtnS−1R(S
−1A,S−1B)

for all n ≥ 0 and for all R-modules B.

Proof. Since R is noetherian and A is finitely generated, Lemma C-5.41 says there
is a projective resolution P of A each of whose terms is finitely generated. By
Lemma C-5.35, there is a natural isomorphism

τA : S−1 HomR(A,B)→ HomS−1R(S
−1A,S−1B)

for every R-module B (a finitely generated module over a noetherian ring must be
finitely presented). Now τA gives an isomorphism of complexes

S−1(HomR(PA, B)) ∼= HomS−1R(S
−1(PA), S

−1B).

Taking homology of the left-hand side gives

Hn(S
−1(HomR(PA, B))) ∼= S−1Hn(HomR(PA, B)) ∼= S−1 ExtnR(A,B),

because localization is an exact functor. On the other hand, homology of the right-
hand side is

Hn(HomS−1R(S
−1(PA), S

−1B)) = ExtnS−1R(S
−1A,S−1B),

because S−1(PA) is an (S−1R)-projective resolution of S−1A. •

Remark. An alternative proof of Proposition C-5.42 can be given using a deleted
injective resolution EB in the second variable. We must still assume that A is
finitely generated, in order to use Lemma C-5.35, but we can now use the fact that
localization preserves injectives when R is noetherian. �
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Corollary C-5.43. Let A be a finitely generated R-module over a commutative
noetherian ring R. Then Am is a projective Rm-module for every maximal ideal m
if and only if A is a projective R-module.

Proof. Sufficiency follows from localization preserving direct sum, and necessity
follows from Proposition C-5.42: for every R-module B and maximal ideal m, we
have

Ext1R(A,B)m ∼= Ext1Rm
(Am, Bm) = {0},

because Am is projective. By Proposition C-5.38, Ext1R(A,B) = {0}, which says
that A is projective. •

Example C-5.44. Let R be a Dedekind ring which is not a PID (Dedekind rings
are defined in the next section), and let p be a nonzero prime ideal in R. Then we
shall see, in Proposition C-5.86, that Rp is a local PID. Hence, if P is a projective R-
module, then Pp is a projective Rp-module, and so it is free, by Proposition C-5.26.
In particular, if b is a nonprincipal ideal in R, then b is not free even though all its
localizations are free. �

Exercises

C-5.9. If R is a domain with Q = Frac(R), determine whether every R-subalgebra A of
Q is a localization of R. If true, prove it; if false, give a counterexample.

C-5.10. Prove that every localization of a PID is a PID. Conclude that if p is a nonzero
prime ideal in a PID R, then Rp is a DVR.

C-5.11. If R is a Boolean ring and m is a maximal ideal in R, prove that Rm is a field.

C-5.12. Let A be an R-algebra, and let N be a finitely presented R-module. For every
A-module M , prove that

θ : HomR(N,M) → HomA(N ⊗R A,M),

given by θ : f 
→ f̃ , is a natural isomorphism, where f̃(n⊗ 1) = f(n) for all n ∈ N .

C-5.13. Let B be a flat R-module, and let N be a finitely presented R-module. For every
R-module M , prove that

ψ : B ⊗R HomR(N,M) → HomR(N,M ⊗R B),

given by b⊗ g 
→ gb, is a natural isomorphism, where gb(n) = g(n)⊗ b for all n ∈ N .

∗ C-5.14. Let S ⊆ R be multiplicative, and let I and J be ideals in R.

(i) Prove that S−1(IJ) = (S−1I)(S−1J).

(ii) Prove that S−1(I : J) = (S−1I : S−1J).

C-5.15. Recall that if k is a commutative ring, then the ring of Laurent polynomials
over k is the subring of rational functions

k[x, x−1] =
{ n∑

i=m

aix
i ∈ k(x) : m ≤ n and m,n ∈ Z

}
.

Prove that if k is noetherian, then k[x, x−1] is noetherian.

Hint. See Exercise B-1.7 on page 281 in Part 1, and use Corollary C-5.20.
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C-5.16. A valuation ring is a domain R such that, for all a, b ∈ R, either a | b or b | a.

(i) Prove that every DVR is a valuation ring.

(ii) Let R be a domain with F = Frac(R). Prove that R is a valuation ring if and only
if a ∈ R or a−1 ∈ R for each nonzero a ∈ F .

C-5.17. (i) Prove that every finitely generated ideal in a valuation ring is principal.

(ii) Prove that every finitely generated ideal in a valuation ring is projective.

∗ C-5.18. An abelian group Γ is ordered if it is a partially ordered set in which a+b ≤ a′+b′

whenever a ≤ a′ and b ≤ b′; call Γ a totally ordered abelian group if the partial order
is a chain. A valuation on a field k is a function v : k× → Γ, where Γ is a totally ordered
abelian group, such that

v(ab) = v(a) + v(b),

v(a+ b) ≥ min{v(a), v(b)}.

(i) If a/b ∈ Q is nonzero, write a = pma′ and b = pnb′, where m,n ≥ 0 and (a′, p) =
1 = (b′, p). Prove that v : Q× → Z, defined by v(a/b) = m− n, is a valuation.

(ii) If v : k× → Γ is a valuation on a field k, define R = {0} ∪ {a ∈ k× : v(a) ≥ 0}.
Prove that R is a valuation ring. (Every valuation ring arises in this way from
a suitable valuation on its fraction field. Moreover, the valuation ring is discrete
when the totally ordered abelian group Γ is isomorphic to Z.)

(iii) Prove that a ∈ R is a unit if and only if v(a) = 0.

(iv) Prove that every valuation ring is a (not necessarily noetherian) local ring.
Hint. Show that m = {a ∈ R : v(a) > 0} is the unique maximal ideal in R.

C-5.19. Let Γ be a totally ordered abelian group and let k be a field. Define k[Γ] to be
the group ring (consisting of all functions f : Γ → k almost all of whose values are 0). As
usual, if f(γ) = rγ , we denote f by

∑
γ∈Γ rγγ.

(i) Define the degree of f =
∑

γ∈Γ rγγ to be α if α is the largest index γ with rγ �= 0.

Prove that k[Γ] is a valuation ring, where v(f) is the degree of f .

(ii) Give an example of a nonnoetherian valuation ring.

∗ C-5.20. A multiplicative subset S of a commutative ring R is saturated if ab ∈ S implies
a ∈ S and b ∈ S.

(i) Prove that U(R), the set of all units in R, is a saturated subset of R.

(ii) An element r ∈ R is a zero-divisor on an R-module A if there is some nonzero
a ∈ A with ra = 0. Prove that Zer(A), the set of all zero-divisors on an R-module A,
is a saturated subset of R.

(iii) If S ⊆ R is multiplicative, prove that there exists a unique smallest saturated
subset S′ containing S (called the saturation of S) and that (S′)−1R ∼= S−1R.

(iv) Prove that a multiplicative subset S is saturated if and only if its complement R−S
is a union of prime ideals.

C-5.21. Let S be a multiplicative subset of a commutative ring R, and let M be a finitely
generated R-module. Prove that S−1M = {0} if and only if there is s ∈ S with sM = {0}.
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C-5.22. Let S be a multiplicative subset of a commutative ring R, and let A be an
R-module.

(i) If A is finitely generated, prove that S−1A is a finitely generated (S−1R)-module.

(ii) If A is finitely presented, prove that S−1A is a finitely presented (S−1R)-module.

C-5.23. If p is a nonzero prime ideal in a commutative ring R and A is a projective
R-module, prove that Ap is a free Rp-module.

∗ C-5.24. (i) Give an example of an abelian group B for which Ext1Z(Q, B) �= {0}.

(ii) Prove that Q⊗Z Ext1Z(Q, B) �= {0} for the abelian group B in part (i).

(iii) Prove that Proposition C-5.42 may be false if R is noetherian but A is not finitely
generated.

∗ C-5.25. Let R be a commutative k-algebra, where k is a commutative ring, and let M
be a k-module. Prove, for all n ≥ 0, that

R ⊗k

∧n
(M) ∼=

∧n
(R ⊗k M)

(of course,
∧n(R⊗kM) means the nth exterior power of the R-module R⊗kM). Conclude,

for all maximal ideals m in k, that(∧n
(M)

)
m

∼=
∧n

(Mm).

Hint. Show that R ⊗k

∧n(M) is a solution to the universal mapping problem for alter-
nating n-multilinear R-functions.

C-5.26. Let R be a commutative noetherian ring. If A and B are finitely generated
R-modules, prove that TorRn (A,B) and ExtnR(A,B) are finitely generated R-modules for
all n ≥ 0.

C-5.3. Dedekind Rings

APythagorean triple is a triple (a, b, c) of positive integers such that a2 + b2 = c2;
examples are (3, 4, 5), (5, 12, 13), and (7, 24, 25). All Pythagorean triples were clas-
sified by Diophantus, ca. 250 ad. Fermat proved that there do not exist positive
integers (a, b, c) with a4 + b4 = c4 and, in 1637, he wrote in the margin of his copy
of a book by Diophantus that he had a wonderful proof that there are no positive
integers (a, b, c) with an + bn = cn for any n > 2. Fermat’s proof was never found,
and his remark (that was merely a note to himself) became known only several
years after his death, when Fermat’s son published a new edition of Diophantus
in 1670 containing his father’s notes. There were other notes of Fermat, many
of them true, some of them false, and this statement, the only one unresolved by
1800, was called Fermat’s Last Theorem, perhaps in jest. It remained one of the
outstanding challenges in number theory until 1995, when Wiles proved Fermat’s
Last Theorem.

Every positive integer n > 2 is a multiple of 4 or of some odd prime p. Thus,
if there do not exist positive integers (a, b, c) with ap + bp = cp for every odd
prime p, then Fermat’s Last Theorem is true (if n = pm, then an + bn = cn implies
(am)p + (bm)p = (cm)p). Over the centuries, there were many attempts to prove
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it. For example, Euler published a proof (with gaps, later corrected) for the case
n = 3, Dirichlet published a proof (with gaps, later corrected) for the case n = 5,
and Lamé published a correct proof for the case n = 7.

The first major progress (not dealing only with particular primes p) was due
to Kummer, in the middle of the nineteenth century. If ap + bp = cp, where p is an
odd prime, then a natural starting point of investigation is the identity

cp = ap + bp = (a+ b)(a+ ζb)(a+ ζ2b) · · · (a+ ζp−1b),

where ζ = ζp is a primitive pth root of unity (perhaps this idea occurred to Fermat).
Kummer proved that if Z[ζp] is a UFD, where Z[ζp] = {f(ζp) : f(x) ∈ Z[x]}, then
there do not exist positive integers a, b, c with ap + bp = cp. On the other hand,
he also showed that there do exist primes p for which Z[ζp] is not a UFD. To
restore unique factorization, he invented “ideal numbers” that he adjoined to Z[ζp].
Later, Dedekind recast Kummer’s ideal numbers into our present notion of ideal.
Thus, Fermat’s Last Theorem has served as a catalyst in the development of both
modern algebra and algebraic number theory. Dedekind rings are the appropriate
generalization of rings like Z[ζp], and we will study them in this section.

Integrality

The notion of algebraic integer is a special case of the notion of integral element.

Definition. A ring extension4 R∗/R is a commutative ring R∗ containing R as
a subring. Let R∗/R be a ring extension. Then an element a ∈ R∗ is integral
over R if it is a root of a monic polynomial in R[x]. A ring extension R∗/R is an
integral extension if every a ∈ R∗ is integral over R.

Example C-5.45. TheNoether Normalization Theorem is often used to prove
the Nullstellensatz (see (Matsumura [150], p. 262)). It says that if A is a finitely
generated k-algebra over a field k, then there exist algebraically independent ele-
ments a1, . . . , an in A so that A is integral over k[a1, . . . , an]. �

Recall that a complex number is an algebraic integer if it is a root of a monic
polynomial in Z[x], so that algebraic integers are integral over Z. The reader should
compare the next lemma with Proposition C-2.93.

Lemma C-5.46. If R∗/R is a ring extension, then the following conditions on a
nonzero element u ∈ R∗ are equivalent:

(i) u is integral over R.

(ii) There is a finitely generated R-submodule B of R∗ with uB ⊆ B.

(iii) There is a finitely generated faithful R-submodule B of R∗ with uB ⊆ B; that
is, if dB = {0} for some d ∈ R, then d = 0.

4We use the same notation for ring extensions as we do for field extensions.
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Proof.

(i) ⇒ (ii). If u is integral over R, there is a monic polynomial f(x) ∈ R[x]

with f(u) = 0; that is, there are ri ∈ R with un =
∑n−1

i=0 riu
i. Define

B =
〈
1, u, u2, . . . , un−1

〉
. It is clear that uB ⊆ B.

(ii) ⇒ (iii). If B =
〈
b1, . . . , bm

〉
is a finitely generated R-submodule of R∗ with

uB ⊆ B, define B′ =
〈
1, b1, . . . , bm

〉
. Now B′ is finitely generated, faithful

(because 1 ∈ B′), and uB′ ⊆ B′.

(iii) ⇒ (i). Suppose there is a faithful R-submodule of R∗ with uB ⊆ B, say,
B =

〈
bi, . . . , bn

〉
. There is a system of n equations ubi =

∑n
j=1 pijbj with

pij ∈ R. If P = [pij ] and if X = (b1, . . . , bn)
� is an n × 1 column vector,

then the n × n system can be rewritten in matrix notation: (uI − P )X =
0. Now 0 =

(
adj(uI − P )

)
(uI − P )X = dX, where d = det(uI − P ), by

Corollary B-5.53 in Part 1. Since dX = 0, we have dbi = 0 for all i, and
so dB = {0}. Therefore, d = 0, because B is faithful. On the other hand,
Corollary B-5.47 in Part 1 gives d = f(u), where f(x) ∈ R[x] is a monic
polynomial of degree n; hence, u is integral over R. •

Being an integral extension is transitive.

Proposition C-5.47. If T ⊆ S ⊆ R are commutative rings with S integral over T
and R integral over S, then R is integral over T .

Proof. If r ∈ R, there is an equation rn + sn−1r
n−1 + · · · + r0 = 0, where si ∈ S

for all i. By Lemma C-5.46, the subring S′ = T [sn−1, . . . , s0] is a finitely generated
T -module. But r is integral over S′, so that the ring S′[r] is a finitely generated
S′-module. Therefore, S′[r] is a finitely generated T -module, and so r is integral
over T . •

Proposition C-5.48. Let E/R be a ring extension.

(i) If u, v ∈ E are integral over R, then both uv and u+ v are integral over R.

(ii) The commutative ring OE/R, defined by

OE/R = {u ∈ E : u is integral over R},
is an R-subalgebra of E.

Proof.

(i) If u and v are integral over R, then Lemma C-5.46(ii) says that there are
R-submodules B =

〈
b1, . . . , bn

〉
and C =

〈
c1, . . . , cm

〉
of E with uB ⊆ B and

vC ⊆ C; that is, ubi ∈ B for all i and vcj ∈ C for all j. Define BC to be the
R-submodule of E generated by all bicj ; of course, BC is finitely generated.
Now uvBC ⊆ BC, for uvbicj = (ubi)(vcj) is an R-linear combination of
bkc�’s, and so uv is integral over R. Similarly, u + v is integral over R, for
(u+ v)bicj = (ubi)cj + (vcj)bi ∈ BC.

(ii) Part (i) shows that OE/R is closed under multiplication and addition. Now
R ⊆ OE , for if r ∈ R, then r is a root of x− r. It follows that 1 ∈ OE/R and
that OE/R is an R-subalgebra of E. •
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Here is a second proof of Proposition C-5.48(i) for a domain E using tensor
products and linear algebra. Let f(x) ∈ R[x] be the minimal polynomial of u, let
A be the companion matrix of f(x), and let y be an eigenvector (over the algebraic
closure of Frac(E)): Ay = uy. Let g(x) be the minimal polynomial of v, let B be
the companion matrix of g(x), and let Bz = vz. Now

(A⊗B)(y ⊗ z) = Ay ⊗Bz = uy ⊗ vz = uv(y ⊗ z).

Therefore, uv is an eigenvalue of A⊗B; that is, uv is a root of the monic polynomial
det(xI − A ⊗ B), which lies in R[x] because both A and B have all their entries
in R. Therefore, uv is integral over R. Similarly, the equation

(A⊗ I + I ⊗B)(y ⊗ z) = Ay ⊗ z + y ⊗Bz = (u+ v)y ⊗ z

shows that u+ v is integral over R.

Definition. Let E/R be a ring extension. The R-subalgebra OE/R of E, consisting
of all those elements integral over R, is called the integral closure of R in E. If
OE/R = R, then R is called integrally closed in E. If R is a domain and R is
integrally closed in F = Frac(R), that is, OF/R = R, then R is called integrally
closed.

Thus, R is integrally closed if, whenever α ∈ Frac(R) is integral over R, we
have α ∈ R.

Example C-5.49. The ring OQ/Z = Z, for if a rational number a is a root of
a monic polynomial in Z[x], then Theorem A-3.101 in Part 1 shows that a ∈ Z.
Hence, Z is integrally closed. �

Proposition C-5.50. Every UFD R is integrally closed. In particular, every PID
is integrally closed.

Proof. Let F = Frac(R), and suppose that u ∈ F is integral over R. Thus, there
is an equation

un + rn−1u
n−1 + · · ·+ r1u+ r0 = 0,

where ri ∈ R. We may write u = b/c, where b, c ∈ R and (b, c) = 1 (gcd’s exist
because R is a UFD, and so every fraction can be put in lowest terms). Substituting
and clearing denominators, we obtain

bn + rn−1b
n−1c+ · · ·+ r1bc

n−1 + r0c
n = 0.

Hence, bn = −c
(
rn−1b

n−1 + · · · + r1bc
n−2 + r0c

n−1
)
, so that c | bn in R. But

(b, c) = 1 implies (bn, c) = 1, so that c must be a unit in R; that is, c−1 ∈ R.
Therefore, u = b/c = bc−1 ∈ R, and so R is integrally closed. •

We now understand Example A-3.129 in Part 1. If k is a field, the subring R of
k[x], consisting of all polynomials f(x) ∈ k[x] having no linear term, is not integrally
closed. It is easy to check that Frac(R) = k(x), since x = x3/x2 ∈ Frac(R). But
x ∈ k(x) is a root of the monic polynomial t2 − x2 ∈ R[t], and x /∈ R. Hence, R is
not a UFD.
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Definition. An algebraic number field is a finite field extension of Q. If E is
an algebraic number field, then OE/Z is usually denoted by OE instead of by OE/Z,
and it is called the ring of integers in E.

Because of this new use of the word integers, algebraic number theorists often
speak of the ring of rational integers when referring to Z.

Proposition C-5.51. Let E be an algebraic number field and let OE be its ring of
integers.

(i) If α ∈ E, then there is a nonzero integer m with mα ∈ OE .

(ii) Frac(OE) = E.

(iii) OE is integrally closed.

Proof.

(i) If α ∈ E, then there is a monic polynomial f(x) ∈ Q[x] with f(α) = 0.
Clearing denominators gives an integer m with

mαn + cn−1α
n−1 + cn−2α

n−2 + · · ·+ c1α+ c0 = 0,

where all ci ∈ Z. Multiplying by mn−1 gives

(mα)n + cn−1(mα)n−1 +mcn−2(mα)n−2 + · · ·+ c1m
n−2(mα) +mn−1c0 = 0.

Thus, mα ∈ OE .

(ii) It suffices to show that if α ∈ E, then there are a, b ∈ OE with α = a/b. But
mα ∈ OE (by part (i)), m ∈ Z ⊆ OE , and α = (mα)/m.

(iii) Suppose that α ∈ Frac(OE) = E is integral over OE . By transitivity of
integral extensions, Proposition C-5.47, we have α integral over Z. But this
means that α ∈ OE , which is, by definition, the set of all those elements in
E that are integral over Z. Therefore, OE is integrally closed. •

Example C-5.52. We shall see, in Proposition C-5.65, that if E = Q(i), then
OE = Z[i], the Gaussian integers. Now Z[i] is a PID, because it is a Euclidean ring,
and hence it is a UFD. The generalization of this example which replaces Q(i) by an
algebraic number field E is more subtle. It is true that OE is integrally closed, but
it may not be true that the elements of OE are Z-linear combinations of powers of
α. Moreover, the rings OE may not be UFDs. We will investigate rings of integers
at the end of this section. �

Given a ring extension R∗/R, what is the relation between ideals in R∗ and
ideals in R?

Definition. Let R∗/R be a ring extension. If I is an ideal in R, define its exten-
sion Ie to be R∗I, the ideal in R∗ generated by I. If I∗ is an ideal in R∗, define
its contraction I∗ c = R ∩ I∗.

Remark. The definition can be generalized. Let h : R → R∗ be a ring homomor-
phism, where R and R∗ are any two commutative rings. Define the extension of an
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ideal I in R to be the ideal in R∗ generated by h(I); define the contraction of an
ideal I∗ in R∗ to be h−1(I∗). If R∗/R is a ring extension, then taking h : R → R∗

to be the inclusion gives the definition above. Another interesting instance is the
localization map h : R→ S−1R. �

Example C-5.53.

(i) It is easy to see that if R∗/R is a ring extension and p∗ is a prime ideal in R∗,
then its contraction p∗∩R is also a prime ideal: if a, b ∈ R and ab ∈ p∗∩R ⊆
p∗, then p∗ prime gives a ∈ p∗ or b ∈ p∗; as a, b ∈ R, either a ∈ p∗ ∩ R or
b ∈ p∗ ∩R. Thus, contraction defines a function c : Spec(R∗)→ Spec(R).

(ii) By (i), contraction p∗ �→ p∗ ∩ R induces a function c : Spec(R∗)→ Spec(R);
in general, this contraction function is neither an injection nor a surjection.
For example, c : Spec(Q)→ Spec(Z) is not surjective, while c : Spec(Q[x])→
Spec(Q) is not injective.

(iii) The contraction of a maximal ideal, though necessarily prime, need not be
maximal. For example, if R∗ is a field, then (0)∗ is a maximal ideal in R∗, but
if R is not a field, then the contraction of (0)∗, namely, (0), is not a maximal
ideal in R. �

Example C-5.54.

(i) Let I(R) denote the family of all the ideals in a commutative ring R. Ex-
tension defines a function e : I(R)→ I(R∗); in general, it is neither injective
nor surjective. If R∗ is a field and R is not a field, then e : I(R) → I(R∗) is
not injective. If R is a field and R∗ is not a field, then e : I(R) → I(R∗) is
not surjective.

(ii) If R∗/R is a ring extension and p is a prime ideal in R, then its extension
R∗p need not be a prime ideal. Observe first that if (a) = Ra is a principal
ideal in R, then its extension is the principal ideal R∗a in R∗ generated by a.
Now let R = R[x] and R∗ = C[x]. The ideal (x2+1) is prime, because x2+1
is irreducible in R[x], but its extension is not a prime ideal because x2 + 1
factors in C[x]. �

There are various elementary properties of extension and contraction, such as
I∗ ce ⊆ I∗ and Iec ⊇ I; they are collected in Exercise C-5.29 on page 454.

Is there a reasonable condition on a ring extension R∗/R that will give a good
relationship between prime ideals in R and prime ideals in R∗? This question was
posed and answered by Cohen and Seidenberg. We say that a ring extension R∗/R
satisfies Lying Over if, for every prime ideal p in R, there exists a prime ideal
p∗ in R∗ which contracts to p; that is, p∗ ∩ R = p. We say that a ring extension
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R∗/R satisfies Going Up if whenever p ⊆ q are prime ideals in R and p∗ lies over
p, there exists a prime ideal q∗ ⊇ p∗ which lies over q; that is, q∗ ∩R = q.

•

p

�
�
�
�
�

Lying Over.

•

p∗

2222222222

q

3
3
3
3

p

4
4

4
2222222222

Going Up.

We are going to see that extension and contraction are well-behaved in the
presence of integral extensions.

Lemma C-5.55. Let R∗ be an integral extension of R.

(i) If p is a prime ideal in R and p∗ lies over p, then R∗/p∗ is integral over R/p.

(ii) If S is a multiplicative subset of R, then S−1R∗ is integral over S−1R.

Proof.

(i) We view R/p as a subring of R∗/p∗, by the Second Isomorphism Theorem:

R/p = R/(p∗ ∩R) ∼= (R+ p∗)/p∗ ⊆ R∗/p∗.

Each element in R∗/p∗ has the form α + p∗, where α ∈ R∗. Since R∗ is
integral over R, there is an equation

αn + rn−1α
n−1 + · · ·+ r0 = 0,

where ri ∈ R. Now view this equation mod p∗ to see that α + p∗ is integral
over R/p.

(ii) If α∗ ∈ S−1R∗, then α∗ = α/s, where α ∈ R∗ and s ∈ S. Since R∗ is integral
over R, there is an equation αn + rn−1α

n−1 + · · · + r0 = 0 with ri ∈ R.
Multiplying by 1/sn in S−1R∗ gives

(α/s)n + (rn−1/s)(α/s)
n−1 + · · ·+ r0/s

n = 0,

which shows that α/s is integral over S−1R. •

When R∗/R is a ring extension and R is a field, every proper ideal in R∗

contracts to (0) in R. The following proposition eliminates this collapse when R∗

is an integral extension of R.

Proposition C-5.56. Let R∗/R be a ring extension of domains with R∗ integral
over R. Then R∗ is a field if and only if R is a field.

Proof. Assume that R∗ is a field. If u ∈ R is nonzero, then u−1 ∈ R∗, and so u−1 is
integral over R. Therefore, there is an equation (u−1)n+rn−1(u

−1)n−1+· · ·+r0 = 0,
where the ri ∈ R. Multiplying by un−1 gives u−1 = −(rn−1 + · · · + r0u

n−1).
Therefore, u−1 ∈ R and R is a field.
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Conversely, assume that R is a field. If α ∈ R∗ is nonzero, then there is a monic
f(x) ∈ R[x] with f(α) = 0. Thus, α is algebraic over R, and so we may assume
that f(x) = irr(α,R); that is, f(x) is irreducible. If f(x) =

∑n
i=0 rix

i, then

α(αn−1 + rn−1α
n−1 + · · ·+ r1) = −r0.

Irreducibility of f(x) gives r0 �= 0, so that α−1 lies in R∗. Thus, R∗ is a field. •

Corollary C-5.57. Let R∗/R be an integral extension. If p is a prime ideal in R
and p∗ is a prime ideal lying over p, then p is a maximal ideal if and only if p∗ is
a maximal ideal.

Proof. By Lemma C-5.55(i), the domain R∗/p∗ is integral over the domain R/p.
But now Proposition C-5.56 says that R∗/p∗ is a field if and only if R/p is a field;
that is, p∗ is a maximal ideal in R∗ if and only if p is a maximal ideal in R. •

The next corollary gives an important property of rings of integers OE .

Corollary C-5.58. If E is an algebraic number field, then every nonzero prime
ideal in OE is a maximal ideal.

Proof. Let p be a nonzero prime ideal in OE . If p∩Z �= (0), then there is a prime
p with p ∩ Z = (p), by Example C-5.53(i). But (p) is a maximal ideal in Z, so that
p is a maximal ideal, by Corollary C-5.57. It remains to show that p∩Z �= (0). Let
α ∈ p be nonzero. Since α is integral over Z, there is an equation

αn + cn−1α
n−1 + · · ·+ c1α+ c0 = 0,

where ci ∈ Z for all i. If we choose such an equation with n minimal, then c0 �= 0.
Since α ∈ p, we have c0 = −α(αn−1 + cn−1α

n−2 + · · ·+ c1) ∈ p ∩ Z, so that p ∩ Z
is nonzero. •

Corollary C-5.59. Let R∗ be integral over R, let p be a prime ideal in R, and let
p∗ and q∗ be prime ideals in R∗ lying over p. If p∗ ⊆ q∗, then p∗ = q∗.

Proof. Lemma C-5.55(ii) and Corollary C-5.20(iii) show that the hypotheses are
preserved by localizing at p; that is, R∗

p is integral over Rp and p∗R∗
p ⊆ q∗R∗

p are
prime ideals. Hence, replacing R∗ and R by their localizations, we may assume that
R∗ and R are local rings and that p is a maximal ideal in R (by Theorem C-5.23).
But Corollary C-5.57 says that maximality of p forces maximality of p∗. Since
p∗ ⊆ q∗, we have p∗ = q∗. •

Here are the Cohen–Seidenberg Theorems.

Theorem C-5.60 (Lying Over). Let R∗/R be a ring extension with R∗ integral
over R. If p is a prime ideal in R, then there is a prime ideal p∗ in R∗ lying over p;
that is, p∗ ∩R = p.
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Proof. There is a commutative diagram

R

h

��

i �� R∗

h∗

��
Rp

j
�� S−1R∗

where h and h∗ are localization maps and i and j are inclusions. Let S = R−p; then
S−1R∗ is an extension of Rp (since localization is an exact functor, R contained in
R∗ implies that Rp is contained in S−1R∗); by Lemma C-5.55, S−1R∗ is integral
over Rp. Choose a maximal ideal m∗ in S−1R∗. By Corollary C-5.57, m∗ ∩ Rp is
a maximal ideal in Rp. But Rp is a local ring with unique maximal ideal pRp, so
that m∗∩Rp = pRp. Since the inverse image of a prime ideal (under any ring map)
is always prime, the ideal p∗ = (h∗)−1(m∗) is a prime ideal in R∗. Now

(h∗i)−1(m∗) = i−1(h∗)−1(m∗) = i−1(p∗) = p∗ ∩R,

while

(jh)−1(m∗) = h−1j−1(m∗) = h−1(m∗ ∩Rp) = h−1(pRp) = p.

Therefore, p∗ is a prime ideal lying over p. •

Theorem C-5.61 (Going Up). Let R∗/R be a ring extension with R∗ integral
over R. If p ⊆ q are prime ideals in R and p∗ is a prime ideal in R∗ lying over p,
then there exists a prime ideal q∗ lying over q with p∗ ⊆ q∗.

Proof. Lemma C-5.55 says that (R∗/p∗)/(R/p) is an integral ring extension, where
R/p is imbedded in R∗/p∗ as (R + p∗)/p∗. Replacing R∗ and R by these quotient
rings, we may assume that both p∗ and p are (0). The theorem now follows at once
from the Lying Over Theorem. •

There is also a Going Down Theorem, but it requires an additional hypothesis.

Theorem C-5.62 (Going Down). Let R∗/R be an integral extension and assume
that R is integrally closed. If p1 ⊇ p2 ⊇ · · · ⊇ pn is a chain of prime ideals in R
and, for m < n, p∗1 ⊇ p∗2 ⊇ · · · ⊇ p∗m is a chain of prime ideals in R∗ with each p∗i
lying over pi, then the chain in R∗ can be extended to p∗1 ⊇ p∗2 ⊇ · · · ⊇ p∗n with p∗i
lying over pi for all i ≤ n.

Proof. Atiyah–Macdonald [12], p. 64. •

Exercises

∗ C-5.27. If R is an integrally closed domain and S ⊆ R is multiplicative, prove that
S−1R is also integrally closed.

C-5.28. Prove that every valuation ring is integrally closed.
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∗ C-5.29. Let R∗/R be a ring extension. If I is an ideal in R, denote its extension by Ie; if
I∗ is an ideal in R∗, denote its contraction by I∗ c. Prove each of the following assertions:

(i) Both e and c preserve inclusion: if I ⊆ J , then Ie ⊆ Je; if I∗ ⊆ J∗, then I∗ c ⊆ J∗ c.

(ii) I∗ ce ⊆ I∗ and Iec ⊇ I.

(iii) I∗ cec = I∗ c and Iece = Ie.

(iv) (I∗ + J∗)c ⊇ I∗ c + J∗ c and (I + J)e = Ie + Je.

(v) (I∗ ∩ J∗)c = I∗ c ∩ J∗ c and (I ∩ J)e ⊆ Ie ∩ Je.

(vi) (I∗J∗)c ⊇ I∗ cJ∗ c and (IJ)e = IeJe.

(vii)
(√

I∗
)c

=
√
I∗ c and

(√
I
)e ⊆

√
Ie.

(viii) (J∗ : I∗)c ⊆ (J∗ c : I∗ c) and (I : J)e ⊆ (Ie : Je).

C-5.30. If A is the field of all algebraic numbers, denote the ring of all algebraic integers
by OA. Prove that

OA ∩Q = Z.

Conclude, for every algebraic number field E, that OE ∩Q = Z.

C-5.31. Let R∗/R be an integral ring extension.

(i) If a ∈ R is a unit in R∗, prove that a is a unit in R.

(ii) Prove that J(R) = R ∩ J(R∗), where J(R) is the Jacobson radical.

C-5.32. Generalize Theorem C-5.61 as follows. Let R be integrally closed and let R∗/R
be an integral extension. If p1 ⊆ p2 ⊆ · · · ⊆ pn is a chain of prime ideals in R and, for
m < n, p∗1 ⊆ p

∗
2 ⊆ · · · ⊆ p

∗
m is a chain of prime ideals in R∗ with each p

∗
i lying over pi,

prove that the chain in R∗ can be extended to p
∗
1 ⊆ p

∗
2 ⊆ · · · ⊆ p

∗
n with p

∗
i lying over pi

for all i ≤ n.

∗ C-5.33. Let R∗/R be an integral extension. If every nonzero prime ideal in R is a maximal
ideal, prove that every nonzero prime ideal in R∗ is also a maximal ideal.

Hint. See the proof of Corollary C-5.58.

∗ C-5.34. Let α be algebraic over Q, let E/Q be a splitting field, and let G = Gal(E/Q)
be its Galois group.

(i) Prove that if α is integral over Z, then, for all σ ∈ G, σ(α) is also integral over Z.

(ii) Prove that α is an algebraic integer if and only if irr(α,Q) ∈ Z[x]. Compare this
proof with that of Corollary C-2.96.

(iii) Let E be an algebraic number field and let R ⊆ E be integrally closed. If α ∈ R,
prove that irr(α,Frac(R)) ∈ R[x].

Hint. If Ê is a Galois extension of Frac(R) containing α, thenG = Gal(Ê/Frac(R))
acts transitively on the roots of irr(α,Frac(R)).
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Algebraic Integers

We have mentioned that Kummer investigated the ring Z[ζp], where p is an
odd prime and ζp is a primitive pth root of unity. We now study rings of integers
in algebraic number fields E further. Recall the definition:

OE = {α ∈ E : α is integral over Z}.

We begin with a consequence of Gauss’s Lemma. See page 111 of Part 1.

Lemma C-5.63. Let E be an algebraic number field with [E : Q] = n, and let
α ∈ E be an algebraic integer. Then irr(α,Q) ∈ Z[x] and deg(irr(α,Q)) | n.

Proof. By Corollary C-2.96, irr(α,Q) ∈ Z[x], and so the result follows from Propo-
sition A-3.84 in Part 1. •

Definition. A quadratic field is an algebraic number field E with [E : Q] = 2.

Proposition C-5.64. Every quadratic field E has the form E = Q(
√
d), where d

is a squarefree integer.

Proof. We know that E = Q(α), where α is a root of a quadratic polynomial;
say, α2 + bα + c = 0, where b, c ∈ Q. If D = b2 − 4c, then the quadratic formula
gives α = − 1

2b ±
1
2

√
D, and so E = Q(α) = Q(

√
D). Write D in lowest terms:

D = U/V , where U, V ∈ Z and (U, V ) = 1. Now U = ur2 and V = vs2, where u, v

are squarefree; hence, uv is squarefree, because (u, v) = 1. Therefore, Q(
√
D) =

Q(
√
u/v) = Q(

√
uv), for

√
u/v =

√
uv/v2 =

√
uv/v. •

We now describe the integers in quadratic fields.

Proposition C-5.65. Let E = Q(
√
d), where d is a squarefree integer (which

implies that d �≡ 0 mod 4).

(i) If d ≡ 2 mod 4 or d ≡ 3 mod 4, then OE = Z[
√
d].

(ii) If d ≡ 1 mod 4, then OE consists of all 1
2

(
u + v

√
d
)
with u and v rational

integers having the same parity.

Proof. If α ∈ E = Q(
√
d), then there are a, b ∈ Q with α = a + b

√
d. We first

show that α ∈ OE if and only if

2a ∈ Z and a2 − db2 ∈ Z.(1)

If α ∈ OE , then Lemma C-5.63 says that p(x) = irr(α,Q) ∈ Z[x] is quadratic. Now

Gal(E/Q) =
〈
σ
〉
, where σ : E → E carries

√
d �→ −

√
d; that is,

σ(α) = a− b
√
d.

Since σ permutes the roots of p(x), the other root of p(x) is σ(α); that is,

p(x) = (x− α)(x− σ(α)) = x2 − 2ax+ (a2 − db2).

Hence, the formulas in (1) hold, because p(x) ∈ Z[x].

Conversely, if (1) holds, then α ∈ OE , because α is a root of a monic polynomial
in Z[x], namely, x2 − 2ax+ (a2 − db2).
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We now show that 2b ∈ Z. Multiplying the second formula in (1) by 4 gives
(2a)2 − d(2b)2 ∈ Z. Since 2a ∈ Z, we have d(2b)2 ∈ Z. Write 2b in lowest terms:
2b = m/n, where (m,n) = 1. Now dm2/n2 ∈ Z, so that n2 | dm2. But (n2,m2) = 1
forces n2 | d; as d is squarefree, n = 1 and 2b = m/n ∈ Z.

We have shown that a = 1
2u and b = 1

2v, where u, v ∈ Z. Substituting these
values into the second formula in (1) gives

u2 ≡ dv2 mod 4.(2)

Note that squares are congruent mod 4, either to 0 or to 1. If d ≡ 2 mod 4, then
the only way to satisfy (2) is u2 ≡ 0 mod 4 and v2 ≡ 0 mod 4. Thus, both u and

v must be even, and so α = 1
2u + 1

2v
√
d ∈ Z[

√
d]. Therefore, OE = Z[

√
d] in this

case, for Z[
√
d] ⊆ OE is easily seen to be true. A similar argument works when

d ≡ 3 mod 4. However, if d ≡ 1 mod 4, then u2 ≡ v2 mod 4. Hence, v is even if
and only if u is even; that is, u and v have the same parity. If u and v are both
even, then a, b ∈ Z and α ∈ OE . If u and v are both odd, then u2 ≡ 1 ≡ v2 mod 4,
and so u2 ≡ dv2 mod 4, because d ≡ 1 mod 4. Therefore, (1) holds, and so α lies
in OE . •

If E = Q(
√
d), where d ∈ Z, then Z[

√
d] ⊆ OE , but we now see that this

inclusion may be strict. For example, 1
2

(
1+

√
5
)
is an algebraic integer (it is a root

of x2 − x− 1). Therefore, Z[
√
5] � OE , where E = Q(

√
5).

The coming brief digression into linear algebra will enable us to prove that
rings of integers OE are noetherian.

Definition. Let E/k be a field extension in which E is finite-dimensional. If u ∈ E,
then multiplication Γu : E → E, given by Γu : y �→ uy, is a k-map. If e1, . . . , en is a
basis of E, then Γu is represented by a matrix A = [aij ] with entries in k; that is,

Γu(ei) = uei =
∑

aijej .

Define the trace and norm :

tr(u) = tr(Γu) and N(u) = det(Γu).

The characteristic polynomial of a linear transformation and, hence, any of its
coefficients is independent of any choice of basis of E/k, and so the definitions of
trace and norm do not depend on the choice of basis. It is easy to see that tr : E → k
is a linear functional and that N : E× → k× is a (multiplicative) homomorphism.

If u ∈ k, then the matrix of Γu, with respect to any basis of E/k, is the scalar
matrix uI. Hence, if u ∈ k, then

tr(u) = [E : k]u and N(u) = u[E:k].

Definition. The trace form is the function t : E × E → k given by

t(u, v) = tr(uv) = tr(Γuv).

It is a routine exercise, left to the reader, to check that the trace form is a
symmetric bilinear form.
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Example C-5.66. If E = Q(
√
d) is a quadratic field, then a basis for E/Q is 1,

√
d.

If u = a+ b
√
d, then the matrix of Γu is[

a bd
b a

]
,

so that

tr(u) = 2a and N(u) = a2 − db2 = uu.

Thus, trace and norm arose in the description of the integers in quadratic fields, in
relations (1).

We now show that u = a+b
√
d is a unit in OE if and only if N(u) = ±1. If u is

a unit, then there is v ∈ OE with 1 = uv. Hence, 1 = N(1) = N(uv) = N(u)N(v),
so that N(u) is a unit in Z; that is, N(u) = ±1. Conversely, if N(u) = ±1, then
N(u) = N(u) = ±1, where u = a − b

√
d. Therefore, N(uu) = 1. But uu ∈ Q, so

that 1 = N(uu) = (uu)2. Therefore, uu = ±1, and so u is a unit. �

Lemma C-5.67. Let E/k be a field extension of finite degree n, and let u ∈ E. If
u = u1, . . . , us are the roots (with multiplicity) of irr(u, k) in some extension field
of E, that is, irr(u, k) =

∏s
i=1(x− ui), then

tr(u) = [E : k(u)]
s∑

i=1

ui and N(u) =
( s∏
i=1

ui

)[E:k(u)]

.

Remark. Of course, if u is separable over k, then irr(u, k) has no repeated roots
and each ui occurs exactly once in the formulas. �

Proof. We sketch the proof. A basis of k(u) over k is 1, u, u2, . . . , us−1, and the
matrix C1 of Γu| k(u) with respect to this basis is the companion matrix of irr(u, k).
If 1, v2, . . . , vr is a basis of E over k(u), then the list

1, u, . . . , us−1, v1, v1u, . . . , v1u
s−1, . . . , vr, vru, . . . , vru

s−1

is a basis of E over k. Each of the subspaces k(u) and
〈
vj , vju, . . . , vju

s−1
〉
for

j ≥ 2 is Γu-invariant, and so the matrix of Γu relative to the displayed basis of E
over k is a direct sum of blocks C1 ⊕ · · · ⊕ Cr. In fact, the reader may check that
each Cj is the companion matrix of irr(u, k). The trace and norm formulas now
follow from tr(C1⊕ · · ·⊕Cr) =

∑
j tr(Cj) and det(C1⊕ · · ·⊕Cr) =

∏
j det(Cj). •

If E/k is a field extension and u ∈ E, then a more precise notation for the trace
and norm is

trE/k(u) and NE/k(u).

Indeed, the formulas in Lemma C-5.67 display the dependence on the larger field E.

Proposition C-5.68. Let R be a domain with Q = Frac(R), let E/Q be a field
extension of finite degree [E : Q] = n, and let u ∈ E be integral over R. If R is
integrally closed, then

tr(u) ∈ R and N(u) ∈ R.
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Proof. The formulas for tr(u) and N(u) in Lemma C-5.67 express each as an
elementary symmetric function of the roots u = u1, . . . , us of irr(u,Q). Since u is
integral over R, Exercise C-5.34 on page 454 says that irr(u,Q) ∈ R[x]. Therefore,∑

i ui and
∏

i ui lie in R, and hence tr(u) and N(u) lie in R. •

In Example A-5.43 in Part 1, we saw that if E/k is a finite separable extension,

then its normal closure Ê is a Galois extension of k. Recall from the Fundamental
Theorem of Galois Theory, Theorem A-5.51 in Part 1, that if G = Gal(Ê/k) and

H = Gal(Ê/E) ⊆ G, then [G : H] = [E : k].

Lemma C-5.69. Let E/k be a separable field extension of finite degree n = [E : k]

and let Ê be a normal closure of E. Write G = Gal(Ê/k) and H = Gal(Ê/E), and
let T be a transversal of H in G; that is, G is the disjoint union G =

⋃
σ∈T σH.

(i) For all u ∈ E, ∏
σ∈T

(x− σ(u)) = irr(u, k)[E:k(u)].

(ii) For all u ∈ E,

tr(u) =
∑
σ∈T

σ(u) and N(u) =
∏
σ∈T

σ(u).

Proof.

(i) Denote
∏

σ∈T (x− σ(u)) by h(x); of course, h(x) ∈ Ê[x].

We claim that the set X, defined by X = {σ(u) : σ ∈ T}, satisfies
τ (X) = X for every τ ∈ G. If σ ∈ T , then τσ ∈ σ′H for some σ′ ∈ T ,
because T is a left transversal; hence, τσ = σ′η for some η ∈ H. But
τσ(u) = σ′η(u) = σ′(u), because η ∈ H, and every element of H fixes E.
Therefore, τσ(u) = σ′(u) ∈ X. Thus, the function ϕτ , defined by σ(u) �→
τσ(u), is a function X → X. In fact, ϕτ is a permutation, because τ is an
isomorphism, hence ϕτ is an injection, and hence it is a bijection, by the
Pigeonhole Principle. It follows that every elementary symmetric function

on X = {σ(u) : σ ∈ T} is fixed by every τ ∈ G. Since Ê/k is a Galois
extension, each value of these elementary symmetric functions lies in k. We
have shown that all the coefficients of h(x) lie in k, and so h(x) ∈ k[x]. Now
compare h(x) and irr(u, k). If σ ∈ G, then σ permutes the roots of irr(u, k),
so that every root σ(u) of h(x) is also a root of irr(u, k). By Exercise A-3.75
in Part 1, we have

h(x) = irr(u, k)m

for some m ≥ 1, and so it only remains to compute m. Now

deg(h) = m deg(irr(u, k)) = m[k(u) : k].

But deg(h) = [G : H] = [E : k], and so m = [E : k]/[k(u) : k] = [E : k(u)].

(ii) Recall our earlier notation: irr(u, k) =
∏s

i=1(x− ui). Since∏
σ∈T

(x− σ(u)) = irr(u, k)[E:k(u)] =
( s∏
i=1

(x− ui)
)[E:k(u)]

,
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their constant terms are the same,

±
∏
σ∈T

σ(u) = ±
( s∏
i=1

ui

)[E:k(u)]

,

and their penultimate coefficients are the same,

−
∑
σ∈T

σ(u) = −[E : k(u)]
s∑

i=1

ui.

By Lemma C-5.67, tr(u) = [E : k(u)]
∑s

i=1 ui and N(u) =
(∏s

i=1 ui

)[E:k(u)]
.

It follows that

tr(u) = [E : k(u)]
s∑

i=1

ui =
∑
σ∈T

σ(u)

and

N(u) =
( s∏
i=1

ui

)[E:k(u)]

=
∏
σ∈T

σ(u). •

Definition. Let E/k be a finite field extension, let Ê be a normal closure of E, and

let T be a left transversal of Gal(Ê/E) in Gal(Ê/k). If u ∈ E, then the elements
σ(u), where σ ∈ T , are called the conjugates of u.

If E = Q(i), then Gal(E/Q) =
〈
σ
〉
, where σ is complex conjugation. If u =

a+ ib ∈ E, then σ(u) = a− ib, so that we have just generalized the usual notion of
conjugate.

If E/k is a separable extension, then the conjugates of u are the roots of irr(u, k);
in the inseparable case, the conjugates may occur with multiplicities.

Corollary C-5.70. If E/k is a finite Galois extension with G = Gal(E/k), then

tr(u) =
∑
σ∈G

σ(u) and N(u) =
∏
σ∈G

σ(u).

Moreover, tr is nonzero.

Proof. Since E/k is a Galois extension, E is its own normal closure, and so a
transversal T of G in itself is just G. If tr = 0, then

tr(u) =
∑
σ∈G

σ(u) = 0

for all u ∈ E, contradicting Independence of Characters, Proposition A-5.38 in
Part 1. •

This last corollary shows that the norm here coincides with the norm occurring
in Chapter C-3 in the proof of Hilbert’s Theorem 90.

Let V be a vector space over a field k, and let f : V ×V → k be a bilinear form.
If e1, . . . , en is a basis of V , recall that the discriminant is defined by

D(e1, . . . , en) = det([f(ei, ej)])
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and that f is nondegenerate if there is a basis whose discriminant is nonzero (it
then follows that the discriminant of f with respect to any other basis of V is also
nonzero).

Lemma C-5.71. If E/k is a finite separable field extension, then the trace form
is nondegenerate.5

Proof. We compute the discriminant using Lemma C-5.69 (which uses separabil-

ity). Let T = {σ1, . . . , σn} be a transversal of Gal(Ê/E) in Gal(Ê/k), where Ê is
a normal closure of E. We have

D(e1, . . . , en) = det([t(ei, ej)])

= det([tr(eiej)])

= det
[∑

�

σ�(eiej)
]

(Lemma C-5.69)

= det
([∑

�

σ�(ei)σ�(ej)
])

= det
([
σ�(ei)

]
det

([
σ�(ej)

]))
= det([σ�(ei)])

2.

Suppose that det([σ�(ei)]) = 0. If [σ�(ei)] is singular, there is a column matrix

C = [c1, . . . , cn]
� ∈ Ên with [σ�(ei)]C = 0. Hence,

c1σ1(ej) + · · ·+ cnσn(ej) = 0

for j = 1, . . . , n. It follows that

c1σ1(v) + · · ·+ cnσn(v) = 0

for every linear combination v of the ei. But this contradicts Independence of
Characters. •

Proposition C-5.72. Let R be integrally closed, and let Q = Frac(R). If E/Q is
a finite separable field extension of degree n and O = OE/R is the integral closure
of R in E, then O can be imbedded as a submodule of a free R-module of rank n.

Proof. Let e1, . . . , en be a basis of E/Q. By Proposition C-5.51, for each i there
is ri ∈ R with riei ∈ O; changing notation if necessary, we may assume that each
ei ∈ O. Now Corollary B-3.97 in Part 1 (which assumes nondegeneracy of bilinear
forms) says that there is a basis f1, . . . , fn of E with t(ei, fj) = tr(eifj) = δij .

Let α ∈ O. Since f1, . . . , fn is a basis, there are cj ∈ Q with α =
∑

cjfj . For
each i, where 1 ≤ i ≤ n, we have eiα ∈ O (because ei ∈ O). Therefore, tr(eiα) ∈ R,
by Proposition C-5.68. But

tr(eiα) = tr
(∑

j

cjeifj

)
=
∑
j

cj tr(eifj) = cjδij = ci.

Therefore, ci ∈ R for all i, and so α =
∑

i cifi lies in the free R-module with basis
f1, . . . , fn. •

5If E/k is inseparable, then the trace form is identically 0. See Zariski–Samuel [233], p. 95.
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Definition. If E is an algebraic number field, then an integral basis for OE is a
list β1, . . . , βn in OE such that every α ∈ OE has a unique expression

α = c1β1 + · · ·+ cnβn,

where ci ∈ Z for all i.

If B = β1, . . . , βn is an integral basis of OE , then OE is a free abelian group
with basis B. We now prove that integral bases always exist.

Proposition C-5.73. Let E be an algebraic number field.

(i) The ring of integers OE has an integral basis, and hence it is a free abelian
group of finite rank under addition.

(ii) OE is a noetherian domain.

Proof.

(i) Since Q has characteristic 0, the field extension E/Q is separable. Hence,
Proposition C-5.72 applies to show that OE is a submodule of a free Z-
module of finite rank; that is, OE is a subgroup of a finitely generated free
abelian group. Thus, OE is itself a free abelian group (subgroups of free
abelian groups are free abelian). But a basis of OE as a free abelian group is
an integral basis.

(ii) Any ideal I in OE is a subgroup of a finitely generated free abelian group,
and hence I is itself a finitely generated abelian group (subgroups of finitely
generated abelian groups are finitely generated). A fortiori, I is a finitely
generated OE-module; that is, I is a finitely generated ideal. •

Example C-5.74. We show that OE need not be a UFD and, hence, it need
not be a PID. Let E = Q

(√
−5

)
. Since −5 ≡ 3 mod 4, Proposition C-5.65 gives

OE = Z
[√
−5

]
. By Example C-5.66, the only units in OE are elements u with

N(u) = ±1. If a2 + 5b2 = ±1, where a, b ∈ Z, then b = 0 and a = ±1, and so the
only units in OE are ±1. Consider the factorizations in OE :

2 · 3 = 6 =
(
1 +

√
−5

)(
1−

√
−5

)
.

Note that no two of these factors are associates (the only units are ±1), and we now
show that each of them is irreducible. If v ∈ OE divides any of these four factors
(but is not an associate of it), then N(v) is a proper divisor in Z of 4, 9, or 6, for
these are the norms of the four factors (N

(
1 +

√
−5

)
= 6 = N

(
1 −

√
−5

)
). It is

quickly checked, however, that there are no such divisors in Z of the form a2 + 5b2

other than ±1. Therefore, OE = Z
[√
−5

]
is not a UFD. �

Trace and norm can be used to find other rings of integers.

Definition. If n ≥ 2, then a cyclotomic field is E = Q(ζn), where ζn is a
primitive nth root of unity.



462 Chapter C-5. Commutative Rings III

Recall that if p is prime, then the cyclotomic polynomial

Φp(x) = xp−1 + xp−2 + · · ·+ x+ 1 ∈ Z[x]

is irreducible, so that irr(ζp,Q) = Φp(x) and [Q(ζp) : Q] = p− 1 (recall that Φd(x)
is irreducible for all, not necessarily prime, natural numbers d). Moreover,

Gal(Q(ζp)/Q) = {σ1, . . . , σp−1},

where σi : ζp �→ ζip for i = 1, . . . , p− 1.

We do some elementary calculations in E = Q(ζp) to enable us to describe OE .

Lemma C-5.75. Let p be an odd prime, and let E = Q(ζ), where ζ = ζp is a
primitive pth root of unity.

(i) tr(ζi) = −1 for 1 ≤ i ≤ p− 1.

(ii) tr(1− ζi) = p for 1 ≤ i ≤ p− 1.

(iii) p =
∏p−1

i=1 (1− ζi) = N(1− ζ).

(iv) OE(1− ζ) ∩ Z = pZ.

(v) tr(u(1− ζ)) ∈ pZ for every u ∈ OE.

Proof.

(i) We have tr(ζ) =
∑p−1

i=1 ζi = Φp(ζ)− 1, which is also true for every primitive
pth root of unity ζi. The result follows from Φp(ζ) = 0.

(ii) Since tr(1) = [E : Q] = p− 1 and tr is a linear functional,

tr(1− ζi) = tr(1)− tr(ζi) = (p− 1)− (−1) = p.

(iii) Since Φ(x) = xp−1 + xp−2 + · · · + x + 1, we have Φp(1) = p. On the other
hand, the primitive pth roots of unity are the roots of Φp(x), so that

Φp(x) =

p−1∏
i=1

(x− ζi).

Evaluating at x = 1 gives the first equation. The second equation holds
because the 1− ζi are the conjugates of 1− ζ.

(iv) The first equation in (iii) shows that p ∈ OE(1−ζ)∩Z, so that OE(1−ζ)∩Z ⊇
pZ. If this inclusion is strict, then OE(1−ζ)∩Z = Z, because pZ is a maximal
ideal in Z. In this case, OE(1 − ζ) ∩ Z = Z, hence Z ⊆ OE(1 − ζ), and so
1 ∈ OE(1 − ζ). Thus, there is v ∈ OE with v(1 − ζ) = 1; that is, 1 − ζ is
a unit in OE . But if 1 − ζ is a unit, then N(1 − ζ) = ±1, contradicting the
second equation in (iii).
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(v) Each conjugate σi(u(1− ζ)) = σi(u)(1− ζi) is, obviously, divisible by 1− ζi

in OE . But 1− ζi is divisible by 1− ζ in OE , because

1− ζi = (1− ζ)(1 + ζ + ζ2 + · · ·+ ζi−1).

Hence, σi(1 − ζi) ∈ OE(1 − ζ) for all i, and so
∑

i(u(1 − ζi)) ∈ OE(1 − ζ).
By Corollary C-5.70,

∑
i(u(1− ζ)) = tr(u(1− ζ)). Therefore, tr(u(1− ζ)) ∈

OE(1− ζ) ∩ Z = pZ, by (iv), for tr(u(1− ζ)) ∈ Z, by Proposition C-5.68. •

Proposition C-5.76. If p is an odd prime and E = Q(ζp) is a cyclotomic field,
then

OE = Z[ζp].

Proof. Let us abbreviate ζp as ζ. It is always true that Z[ζ] ⊆ OE , and we
now prove the reverse inclusion. By Lemma C-5.63, each element u ∈ OE has an
expression

u = c0 + c1ζ + c2ζ
2 + · · ·+ cp−2ζ

p−2,

where ci ∈ Q (remember that [E : Q] = p− 1). We must show that ci ∈ Z for all i.
Multiplying by 1− ζ gives

u(1− ζ) = c0(1− ζ) + c1(ζ − ζ2) + · · ·+ cp−2(ζ
p−2 − ζp−1).

By Lemma C-5.75(i), tr(ζi − ζi+1) = tr(ζi) − tr(ζi+1) = 0 for 1 ≤ i ≤ p − 2, so
that tr(u(1 − ζ)) = c0 tr(1 − ζ); hence, tr(u(1 − ζ)) = pc0, because tr(1 − ζ) = p,
by Lemma C-5.75(ii). On the other hand, tr(u(1− ζ)) ∈ pZ, by Lemma C-5.75(iv).
Hence, pc0 = mp for some m ∈ Z, and so c0 ∈ Z. Now ζ−1 = ζp−1 ∈ OE , so that

(u− c0)ζ
−1 = c1 + c2ζ + · · ·+ cp−2ζ

p−3 ∈ OE .

The argument just given shows that c1 ∈ Z. Indeed, repetition of this argument
shows that all ci ∈ Z, and so u ∈ Z[ζ]. •

There are other interesting bases of finite Galois extensions.

Definition. Let E/k be a finite Galois extension with Gal(E/k) = {σ1, . . . , σn}.
A normal basis of E/k is a vector space basis e1, . . . , en of E for which there
exists u ∈ E with ei = σi(u) for all i.

If E/k is an extension with Gal(E/k) = G, then E is a kG-module, where
σe = σ(e) for all e ∈ E and σ ∈ G.

Proposition C-5.77. Let E/k be a finite Galois extension with Gal(E/k) = G.
Then E ∼= kG as kG-modules if and only if E/k has a normal basis.
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Proof. Suppose ϕ : kG → E is a kG-isomorphism, where G = {1 = σ1, . . . , σn}.
Now kG is a vector space over k with basis 1 = σ1, . . . , σn. If u = ϕ(1), then
ϕ(σi) = σiϕ(1) = σiu = σi(u). As ϕ is a k-linear isomorphism, {σi(u) : 1 ≤ i ≤ n}
is a basis of E; that is, E/k has a normal basis.

Conversely, assume that there is u ∈ E with {σi(u) : 1 ≤ i ≤ n} a basis of E/k.
It is easily checked that ϕ : kG → E, given by σi �→ σi(u), is a kG-map; ϕ is an
isomorphism because it carries a basis of kG onto a basis of E. •

Proposition C-5.78. Let E/k be a Galois extension with Gal(E/k)={σ1, . . . , σn},
and let e1, . . . , en ∈ E. Then e1, . . . , en is a basis of E over k if and only if the
matrix [σi(ej)] is nonsingular.

Proof. Assume that M = [σi(ej)] is nonsingular. Since dimk(E) = n, it suffices
to prove that e1, . . . , en is linearly independent. Otherwise, there are ai ∈ k with

a1e1 + · · ·+ anen = 0.

For each i, we have

a1σi(e1) + · · ·+ anσi(en) = 0.

Thus, MA = 0, where A is the column vector [a1, . . . , an]
� in kn ⊆ En. Since M

is nonsingular over E, we have A = 0, and so e1, . . . , en is a basis.

Conversely, if M = [σi(ej)], a matrix with entries in E, is singular, there is
a nontrivial solution X = [α1, . . . , αn]

� of MX = 0; that is, for all i, there are
α1, . . . , αn ∈ E with

α1σi(e1) + α2σi(e2) + · · ·+ αnσi(en) = 0.

For notational convenience, we may assume that α1 �= 0. By Corollary C-5.70,

there is u ∈ E with tr(u) �= 0. Multiply each equation above by uα−1
1 to obtain

equations, for all i,

uσi(e1) + β2σi(e2) + · · ·+ βnσi(en) = 0,

where βj = uα−1
1 αj for j ≥ 2. For each i, apply σ−1

i to the ith equation:

σ−1
1 (u)e1 + σ−1

1 (β2)e2 + · · ·+ σ−1
1 (βn)en = 0,

σ−1
2 (u)e1 + σ−1

2 (β2)e2 + · · ·+ σ−1
2 (βn)en = 0,

...
...

σ−1
n (u)e1 + σ−1

n (β2)e2 + · · ·+ σ−1
n (βn)en = 0.

Note that as σi varies over all of G, so does σ−1
i . Adding these equations gives

tr(u)e1 + tr(β2)e2 + · · ·+ tr(βn)en = 0.

This is a nontrivial linear combination of e1, . . . , en, because tr(u) �= 0, and this
contradicts linear independence. •

Corollary C-5.79. Let E/k be a Galois extension with Gal(E/k) = {σ1, . . . , σn},
and let u ∈ E. Then σ1(u), . . . , σn(u) is a normal basis of E over k if and only if
the matrix [σiσj(u)] is nonsingular.
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Proof. Let e1 = σ1(u), . . . , en = σn(u) in Proposition C-5.78. •

Remark. There is another way to view the matrix [σiσj ]. If α1, . . . , αn ∈ E, define

M(α1, . . . , αn) = [σj(αi)].

If β1, . . . , βn ∈ E, then M(α1, . . . , αn)M(β1, . . . , βn)
� = [tr(αiβj)]. In particular,

M(α1, . . . , αn)M(α1, . . . , αn)
� = [tr(αiαj)].(3)

The latter matrix is just the inner product matrix of the trace form defined on
page 456. In fact, in light of (3), Lemma C-5.71 (which says that [tr(α1, . . . , αn)]
is nonsingular) gives another proof of the nonsingularity of [M(α1, . . . , αn)]. �

Proposition C-5.80.

(i) If E/k is a finite Galois extension with cyclic Galois group G, then E has a
normal basis.

(ii) If E is a finite field and k is a subfield, then E/k has a normal basis.

Proof.

(i) Let G =
〈
σ
〉
, where σ has order n = [E : k], and view σ : E → E as a

k-linear transformation. Now σn − 1 = 0; on the other hand, Independence
of Characters says that whenever c1, . . . , cn ∈ k and

∑
i ciσ

i(e) = 0 for all

e ∈ E, all the ci = 0; thus, if 0 �= f(x) =
∑n−1

i=0 cix
i ∈ k[x], then f(σ) �= 0.

It follows that the characteristic and minimal polynomials of σ coincide, and
so Corollary B-3.62 in Part 1 applies: E is a cyclic k[x]-module, say, with
generator u ∈ E. Thus, every element of E is a k-linear combination of
u, σ(u), . . . , σn−1(u) (for if m ≥ n, then σm(u) = σi(u), where m ≡ i mod n).
Therefore, E/k has a normal basis.

(ii) Exercise A-5.12 on page 200 in Part 1 says that Gal(E/k) is cyclic. •

Lemma C-5.81. If k is an infinite field and E/k is a finite Galois extension with
G = Gal(E/k), then the elements {σ1, . . . , σn} of G are algebraically independent
over E: if f(σ1(v), . . . , σn(v)) = 0 for all v ∈ E, then f is the zero polynomial.

Proof. Suppose that f(x1, . . . , xn) ∈ E[x1, . . . , xn] and f(σ1(v), . . . , σn(v)) = 0 for
all v ∈ E. If e1, . . . , en is a basis of E/k, then v =

∑
q aqeq for aq ∈ k, and so

0 = f
(
σ1

(∑
q

aqeq

)
, . . . , σn

(∑
q

aqeq

))
= f

(∑
q

aqσ1(eq), . . . ,
∑
q

aqσn(eq)
)
.

Define

g(x1, . . . , xn) = f
(∑

q

σ1(eq)xq, . . . ,
∑
q

σn(eq)xq

)
.

Thus, g(a1, . . . , an) = 0 for all a1, . . . , an ∈ k, and so Proposition A-3.58 in Part 1
(whose hypothesis has k infinite) gives g(x1, . . . , xn) = 0. Since e1, . . . , en is a basis
of E/k, Proposition C-5.78 says that the matrix [σp(eq)] over E is nonsingular. Let
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[wiq] be its inverse, so that
∑

p wipσp(eq)xq = δiq (Kronecker delta). For every i,
we have ∑

p,q

wipσp(eq)xq =
∑
q

(∑
p

wipσp(eq)
)
xq =

∑
q

δiqxq = xi.

Thus, 0 = g(
∑

p,q w1pσp(eq)xq, . . . ,
∑

p,q wnpσp(eq)xq) = f(x1, . . . , xn), and so
σ1, . . . , σn are algebraically independent over E. •

If X is a set with n elements, then a Latin square based on X is an n × n
matrix L whose rows and columns are permutations of X.

Lemma C-5.82. Let E be a field. If {x1, . . . , xn} ⊆ E[x1, . . . , xn] and L is a Latin
square based on {x1, . . . , xn}, then det(L) is a nonzero polynomial in E[x1, . . . , xn].

Proof. If R = E[x1, . . . , xn], then a ring map μ : R → E induces a ring map
μ∗ : Matn(R) → Matn(E); moreover, det(μ∗(L)) = μ(det(L)). In particular, if
μ is given by x1 �→ 1 and xi �→ 0 for i ≥ 2, then μ∗(L) = P , where P is the
(permutation) matrix obtained from L by setting x1 = 1 and all other xi = 0.
Since det(P ) = ±1 �= 0, we have det(L) �= 0. Proposition B-5.46 in Part 1, the
complete expansion of det(L), shows that det(L) ∈ E[x1, . . . , xn]. •

Theorem C-5.83 (Normal Basis Theorem). Every finite Galois extension E/k
has a normal basis.

Proof. By Proposition C-5.80, we may assume that k is an infinite field.

The matrix L = [xixj ] over the polynomial ring E[x1, . . . , xn] is a Latin
square based on {x1, . . . , xn}, and so f(x1, . . . , xn) = det([xi(j)]) is a nonzero
polynomial, by Lemma C-5.82. Since G = Gal(E/k) = {σ1, . . . , σn} is a group,
we have σiσj = σi(j) ∈ G. Thus, for each v ∈ E, the entries in the n-tuple
(σi(1)(v), . . . , σi(n)(v)) form a permutation of the entries in (σ1(v), . . . , σn(v)), and
so f(σi(1)(v), . . . , σi(n)(v)) = det([σi(σj(v))]). Lemma C-5.81 gives u ∈ E with
f(σi(1)(u), . . . , σi(n)(u)) �= 0. Hence, f(σi(1)(u), . . . , σi(n)(u)) = det[σi(j)(u)] =
det[σiσj(u)] �= 0. Corollary C-5.79 now applies: σ1(u), . . . , σn(u) is a normal basis
of E/k. •

Before we leave this discussion of algebraic number fields, we must mention a
beautiful theorem of Dirichlet. In order to state the theorem, we cite two results
whose proofs can be found in Samuel [196], Chapter 4. An algebraic number field E
of degree n has exactly n imbeddings into C. If r1 is the number of such imbeddings
with image in R, then n− r1 is even; say, n− r1 = 2r2.

Theorem (Dirichlet Unit Theorem). Let E be an algebraic number field of
degree n. Then n = r1 + 2r2 (where r1 is the number of imbeddings of E into R),
and the multiplicative group U(OE) of units in OE is a finitely generated abelian
group. More precisely,

U(OE) ∼= Zr1+r2−1 × T,

where T is a finite cyclic group consisting of the roots of unity in E.

Proof. Borevich–Shafarevich [23], p. 112. •
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Exercises

C-5.35. (i) If E = Q
(√

−3
)
, prove that the only units in OE are

±1, 1
2

(
1±

√
−3
)
, 1

2

(
−1±

√
−3
)
.

(ii) Let d be a negative squarefree integer with d �= −1 and d �= −3. If E = Q
(√

d
)
,

prove that the only units in OE are ±1.

C-5.36. (i) Prove that if E = Q
(√

2
)

⊆ R, then there are no units u ∈ OE with

1 < u < 1 +
√
2.

(ii) If E = Q
(√

2
)
, prove that OE has infinitely many units.

Hint. Use (i) to prove that all powers of 1 +
√
2 are distinct.

Definition. If OE is the ring of integers in an algebraic number field E, then a discrim-
inant of OE is

Δ(OE) = det[tr(αiαj)],

where α1, . . . , αn is an integral basis of OE .

C-5.37. Let d be a squarefree integer, and let E = Q
(√

d
)
.

(i) If d ≡ 2 mod 4 or d ≡ 3 mod 4, prove that 1,
√
d is an integral basis of OE , and

prove that a discriminant of OE is 4d.

(ii) If d ≡ 1 mod 4, prove that 1, 1
2

(
1 +

√
d
)
is an integral basis of OE , and prove that

a discriminant of OE is d.

C-5.38. Let p be an odd prime, and let E = Q
(
ζp
)
be the cyclotomic field.

(i) Show that 1, 1− ζp, (1− ζp)
2, . . . , (1− ζp)

p−2 is an integral basis for OE .

(ii) Prove that a discriminant of OE is (−1)
1
2
(p−1)pp−2.

Hint. See Pollard [175], p. 67.

∗ C-5.39. (i) If A is the field of all algebraic numbers, prove that OA is not noetherian.

(ii) Prove that every nonzero prime ideal in OA is a maximal ideal.
Hint. Use the proof of Corollary C-5.58.

Characterizations of Dedekind Rings

The following definition involves some of the ring-theoretic properties enjoyed
by the ring of integers OE in an algebraic number field E.

Definition. A domain R is a Dedekind ring if it is integrally closed, noetherian,
and all its nonzero prime ideals are maximal ideals.

Example C-5.84.

(i) The ring OE in an algebraic number field E is a Dedekind ring, by Proposi-
tion C-5.51, Proposition C-5.73, and CorollaryC-5.58.

(ii) Every PID R is a Dedekind ring (Proposition C-5.50 says that R is integrally
closed). �
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It is shown, in Example C-5.74, that R = Z
[√
−5

]
is a Dedekind ring that

is not a UFD and, hence, it is not a PID. We now characterize discrete valuation
rings, and then show that localizations of Dedekind rings are well-behaved.

Lemma C-5.85. A domain R is a DVR if and only if it is noetherian, integrally
closed, and has a unique nonzero prime ideal.

Proof. If R is a DVR, then it does have the required properties (recall that R is
a PID; hence it is integrally closed).

The converse, which requires us to show that R is a PID, is not as simple as
we might expect. Let p be the nonzero prime ideal, and choose a nonzero a ∈ p.
Define M = R/Ra, and consider the family A of all the annihilators ann(m) as
m varies over all the nonzero elements of M . Since R is noetherian, it satisfies
the maximum condition, and so there is a nonzero element b + Ra ∈ M whose
annihilator q = ann(b + Ra) is maximal in A. We claim that q is a prime ideal.
Suppose that x, y ∈ R, xy ∈ q, and x, y /∈ q. Then y(b + Ra) = yb + Ra is a
nonzero element of M , because y /∈ q. But ann(yb + Ra) � ann(b + Ra), because
x /∈ ann(b + Ra), contradicting the maximality property of q. Therefore, q is a
prime ideal. Since R has a unique nonzero prime ideal p, we have

q = ann(b+Ra) = p.

Note that

b/a /∈ R;

otherwise, b + Ra = 0 + Ra, contradicting b + Ra being a nonzero element of
M = R/Ra.

We now show that p is principal, with generator a/b (we do not yet know
whether a/b ∈ Frac(R) lies in R). First, we have pb = qb ⊆ Ra, so that p(b/a) ⊆ R;
that is, p(b/a) is an ideal in R. If p(b/a) ⊆ p, then b/a is integral over R, for p is
a finitely generated R-submodule of Frac(R), as required in Lemma C-5.46. As R
is integrally closed, this puts b/a ∈ R, contradicting what we noted at the end of
the previous paragraph. Therefore, p(b/a) is not a proper ideal, so that p(b/a) = R
and p = R(a/b). It follows that a/b ∈ R and p is a principal ideal.

Denote a/b by t. The proof is completed by showing that the only nonzero
ideals in R are the principal ideals generated by tn, for n ≥ 0. Let I be a nonzero
ideal in R, and consider the chain of submodules of Frac(R):

I ⊆ It−1 ⊆ It−2 ⊆ · · · .

We claim that this chain is strictly increasing. If It−n = It−n−1, then the finitely
generated R-module It−1 satisfies t−1(It−n) ⊆ It−n, so that t−1 = b/a is integral
over R. As above, R integrally closed forces b/a ∈ R, a contradiction. Since R
is noetherian, this chain can contain only finitely many ideals in R. Thus, there
is n with It−n ⊆ R and It−n−1 �⊆ R. If It−n ⊆ p = Rt, then It−n−1 ⊆ R, a
contradiction. Therefore, It−n = R and I = Rtn, as desired. •

Proposition C-5.86. Let R be a noetherian domain. Then R is a Dedekind ring
if and only if the localizations Rp are DVRs for every nonzero prime ideal p.
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Remark. Exercise C-5.39 on page 467 shows that it is necessary to assume that
R is noetherian. �

Proof. If R is a Dedekind ring and p is a maximal ideal, Corollary C-5.20(iv)
shows that Rp has a unique nonzero prime ideal. Moreover, Rp is noetherian
(Corollary C-5.20(v)), a domain (Corollary C-5.18), and integrally closed (Exer-
cise C-5.27 on page 453). By Lemma C-5.85, Rp is a DVR.

For the converse, we must show that R is integrally closed and that its nonzero
prime ideals are maximal. Let u/v ∈ Frac(R) be integral over R. For every nonzero
prime ideal p, the element u/v is integral over Rp (note that Frac(Rp) = Frac(R)).
But Rp is a PID, hence integrally closed, and so u/v ∈ Rp. We conclude that
u/v ∈

⋂
p
Rp = R, by Proposition C-5.22. Therefore, R is integrally closed.

Suppose there are nonzero prime ideals p � q in R. By Corollary C-5.20(iv),
pq � qq in Rq, contradicting the fact that DVRs have unique nonzero prime ideals.
Therefore, nonzero prime ideals are maximal, and R is a Dedekind ring. •

Let R be a domain with Q = Frac(R), and let I = Ra be a nonzero principal
ideal in R. If we define J = Ra−1 ⊆ Q, the cyclic R-submodule generated by a−1,
then it is easy to see that

IJ = {uv : u ∈ I and v ∈ J} = R.

Definition. If R is a domain with Q = Frac(R), then a fractional ideal is a
finitely generated nonzero R-submodule I of Q. If I is a fractional ideal, define

I−1 = {v ∈ Q : vI ⊆ R}.
It is always true that I−1I ⊆ R; a fractional ideal I is invertible if I−1I = R.

Every nonzero finitely generated ideal in R is also a fractional ideal. In this
context, we often call such ideals (which are the usual ideals!) integral ideals
when we want to contrast them with more general fractional ideals.

We claim that if I = Ra is a nonzero principal ideal in R, then I−1 = Ra−1.
Clearly, (ra−1)(r′a) = rr′ ∈ R for all r′ ∈ R, so that Ra−1 ⊆ I−1. For the
reverse inclusion, suppose that (u/v)a ∈ R, where u, v ∈ R. Then v | ua in R,
so there is r ∈ R with rv = ua. Hence, in Q, we have u = rva−1, so that
u/v = (rva−1)/v = ra−1. Therefore, every nonzero principal ideal in R is invertible.

Lemma C-5.87. Let R be a domain with Q = Frac(R). Then a fractional ideal I
is invertible if and only if there exist a1, . . . , an ∈ I and q1, . . . , qn ∈ Q with

(i) qiI ⊆ R for i = 1, . . . , n;

(ii) 1 =
∑n

i=1 qiai.

Proof. If I is invertible, then I−1I = R. Since 1 ∈ I−1I, there are a1, . . . , an ∈ R
and q1, . . . , qn ∈ I−1 with 1 =

∑
i qiai. Since qi ∈ I−1, we have qiI ⊆ R.

To prove the converse, note that theR-submodule J ofQ generated by q1, . . . , qn
is a fractional ideal. Since 1 =

∑n
i=1 qiai ∈ JI, JI is an R-submodule of R contain-

ing 1; that is, JI = R. To see that I is invertible, it remains to prove that J = I−1.
Clearly, each qi ∈ I−1, so that J ⊆ I−1. For the reverse inclusion, assume that
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u ∈ Q and uI ⊆ R. Since 1 =
∑

i qiai, we have u =
∑

i(uai)qi ∈ J because uai ∈ R
for all i. •

Remark. This lemma leads to a homological charactierization of Dedekind rings;
see Theorem C-5.94(ii). �

Corollary C-5.88. Every invertible ideal I in a domain R is finitely generated.

Proof. Since I is invertible, there exist a1, . . . , an ∈ I and q1, . . . , qn ∈ Q as in the
lemma. If b ∈ I, then b = b1 =

∑
i bqiai ∈ I, because bqi ∈ R. Therefore, I is

generated by a1, . . . , an ∈ I. •

Proposition C-5.89. The following conditions are equivalent for a domain R:

(i) R is a Dedekind ring.

(ii) Every fractional ideal is invertible.

(iii) The set of all the fractional ideals F(R) forms an abelian group under mul-
tiplication of ideals.

Proof. The structure of the proof is unusual, for we will need the equivalence of
(ii) and (iii) in order to prove (iii) ⇒ (i).

(i) ⇒ (ii). Let J be a fractional ideal in R. Since R is a Dedekind ring, its
localization Rp is a PID, and so Jp, as every nonzero principal ideal, is in-
vertible (in the course of proving that finitely generated torsion-free abelian
groups are free abelian, we really proved that fractional ideals of PIDs are
cyclic modules). Now Exercise C-5.44 on page 477 gives

(J−1J)p = (J−1)pJp = (Jp)
−1Jp = Rp.

Proposition C-5.37 gives J−1J = R, and so J is invertible.

(ii) ⇔ (iii). If I, J ∈ F(R), then they are finitely generated, by Corollary C-5.88,
and

IJ =
{∑

a�b� : a� ∈ I and b� ∈ J
}

is a finitely generated R-submodule of Frac(R). If I = (a1, . . . , an) and
J = (b1, . . . , bm), then IJ is generated by all aibj . Hence, IJ is finitely
generated and IJ ∈ F(R). Associativity does hold, the identity is R, and the
inverse of a fractional ideal J is J−1, because J is invertible. It follows that
F(R) is an abelian group.

Conversely, if F(R) is an abelian group and I ∈ F(R), then there is
J ∈ F(R) with JI = R. We must show that J = I−1. But

R = JI ⊆ I−1I ⊆ R,

so that JI = I−1I. Canceling I in the group F(R) gives J = I−1, as desired.

(iii) ⇒ (i). First, R is noetherian, for (iii) ⇒ (ii) shows that every nonzero ideal
I is invertible, and Corollary C-5.88 shows that I is finitely generated.

Second, we show that every nonzero prime ideal p is a maximal ideal. Let
I be an ideal with p � I (we allow I = R). Then pI−1 ⊆ II−1 = R, so that
pI−1 is an (integral) ideal in R. Now (pI−1)I = p, because multiplication is
associative in F(R). Since p is a prime ideal, Proposition A-3.82 in Part 1
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says that either pI−1 ⊆ p or I ⊆ p. The second option does not hold, so that
pI−1 ⊆ p. Multiplying by p−1I gives R ⊆ I. Therefore, I = R, and so p is a
maximal ideal.

Third, if a ∈ Frac(R) is integral over R, then Lemma C-5.46 gives a
finitely generated R-submodule J of Frac(R), i.e., a fractional ideal, with
aJ ⊆ J . Since J is invertible, there are q1, . . . , qn ∈ Frac(R) and a1, . . . , an ∈
J with qiJ ⊆ R for all i and 1 =

∑
qiai. Hence, a =

∑
i qiaia. But aia ∈ J

and qiJ ⊆ R gives a =
∑

i qi(aia) ∈ R. Therefore, R is integrally closed, and
hence it is a Dedekind ring. •

Proposition C-5.90.

(i) If R is a UFD, then a nonzero ideal I in R is invertible if and only if it is
principal.

(ii) A Dedekind ring R is a UFD if and only if it is a PID.

Proof.

(i) We have already seen that every nonzero principal ideal is invertible. Con-
versely, if I is invertible, there are elements a1, . . . , an ∈ I and q1, . . . , qn ∈
Frac(R) with 1 =

∑
i qiai and qiI ⊆ R for all i. Let qi = bi/ci, where

bi, ci ∈ R. Since R is a UFD, we may assume that qi is in lowest terms;
that is, (bi, ci) = 1. But (bi/ci)aj ∈ R says that ci | biaj , so that ci | aj
for all i, j, by Exercise A-3.101 in Part 1. We claim that I = Rc, where
c = lcm{c1, . . . , cn}. First, c ∈ I, for cbi/ci ∈ R and c = c1 =

∑
i(cbi/ci)ai.

Hence, Rc ⊆ I. For the reverse inclusion, Exercise A-3.101 in Part 1 shows
that c | aj for all j, so that aj ∈ Rc, for all j, and so I ⊆ Rc.

(ii) Since every nonzero ideal in a Dedekind ring is invertible, it follows from (i)
that if R is a UFD, then every ideal in R is principal. •

Definition. If R is a Dedekind ring, then its class group C(R) is defined by

C(R) = F(R)/P(R),

where P(R) is the subgroup of all nonzero principal ideals.

Dirichlet proved, for every algebraic number field E, that the class group of
C(OE) is finite; the order |C(R)| is called the class number of OE . The usual
proof of finiteness of the class number uses a geometric theorem of Minkowski which
says that sufficiently large parallelepipeds in Euclidean space must contain lattice
points (see Samuel [196], pp. 57–58).

Claborn [40] proved, for every (not necessarily finite) abelian group G, that
there is a Dedekind ring R with C(R) ∼= G.

We can now prove the result linking Kummer and Dedekind.

Theorem C-5.91. If R is a Dedekind ring, then every proper nonzero ideal has a
unique factorization as a product of prime ideals.

Remark. Zariski and Samuel [233] define a Dedekind ring to be a domain in which
every nonzero ideal is a product of prime ideals (and they then prove that such a
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factorization must be unique). They prove the converse of this theorem on page
275 of their book. �

Proof. Let S be the family of all proper nonzero ideals in R that are not products
of prime ideals. If S = ∅, then every nonzero ideal in R is a product of prime ideals.
If S �= ∅, then S has a maximal element I, because noetherian rings satisfy the
maximum condition (Proposition B-1.10 in Part 1). Now I cannot be a maximal
ideal in R, for a “product of prime ideals” is allowed to have only one factor. Let
m be a maximal ideal containing I. Since I � m, we have m−1I � m−1m = R; that
is, m−1I is a proper ideal properly containing I. Neither m nor m−1I lies in S, for
each is strictly larger than a maximal element, namely, I, and so each of them is a
product of prime ideals. Therefore, I = m(m−1I) (equality holding because R is a
Dedekind ring) is a product of prime ideals, contradicting I being in S. Therefore,
S = ∅, and every proper nonzero ideal in R is a product of prime ideals.

Suppose that p1 · · · pr = q1 · · · qs, where the pi and qj are prime ideals. We
prove unique factorization by induction on max{r, s}. The base step r = 1 = s is
obviously true. For the inductive step, note that p1 ⊇ q1 · · · qs, so that Proposi-
tion A-3.82 in Part 1 gives qj with p1 ⊇ qj . Hence, p1 = qj , because prime ideals

are maximal. Now multiply the original equation by p
−1
1 and use the inductive

hypothesis. •

Corollary C-5.92. If R is a Dedekind ring, then F(R) is a free abelian group with
basis all the nonzero prime ideals.

Proof. Of course, F(R) is written multiplicatively. That every fractional ideal is
a product of primes shows that the set of primes generates F(R); uniqueness of the
factorization says the set of primes is a basis. •

In light of Theorem C-5.91, many of the usual formulas of arithmetic extend
to ideals in Dedekind rings. Observe that in Z, the ideal (3) contains (9). In fact,
Zm ⊇ Zn if and only if m | n. We will now see that the relation “contains” for
ideals is the same as “divides”, and that the usual formulas for gcd’s and lcm’s
generalize to Dedekind rings.

Proposition C-5.93. Let I and J be nonzero ideals in a Dedekind ring R, and let
their prime factorizations be

I = p
e1
1 · · · penn and J = p

f1
1 · · · p

fn
n ,

where ei ≥ 0 and fi ≥ 0 for all i.

(i) J ⊇ I if and only if I = JL for some ideal L.

(ii) J ⊇ I if and only if fi ≤ ei for all i.

(iii) If mi = min{ei, fi} and Mi = max{ei, fi}, then

I ∩ J = p
M1
1 · · · pMn

n and I + J = p
m1
1 · · · pmn

n .

In particular, I + J = R if and only if min{ei, fi} = 0 for all i.



C-5.3. Dedekind Rings 473

(iv) Let R be a Dedekind ring, and let I = p
e1
1 · · · penn be a nonzero ideal in R.

Then
R/I = R/pe11 · · · penn ∼=

(
R/pe11

)
× · · · ×

(
R/penn

)
.

Proof.

(i) If I ⊆ J , then J−1I ⊆ R, and

J(J−1I) = I.

Conversely, if I = JL, then I ⊆ J because JL ⊆ JR = J .

(ii) This follows from (i) and the unique factorization of nonzero ideals as prod-
ucts of prime ideals.

(iii) We prove the formula for I+J . Let I+J = p
r1
1 · · · prnn and let A = p

m1
1 · · · pmn

n .
Since I ⊆ I + J and J ⊆ I + J , we have ri ≤ ei and ri ≤ fi, so that
ri ≤ min{ei, fi} = mi. Hence, A ⊆ I + J . For the reverse inclusion, A ⊆ I
and A ⊆ J , so that A = II ′ and A = JJ ′ for ideals I ′ and J ′, by (i).
Therefore, I + J = AI ′ +AJ ′ = A(I ′ + J ′), and so I + J ⊆ A. The proof of
the formula for IJ is left to the reader.

(iv) This is just the Chinese Remainder Theorem, so that it suffices to verify the
hypothesis that p

ei
i and p

ej
j are coprime when i �= j; that is, peii + p

ej
j = R.

But this follows from (iii). •

Recall Proposition B-4.46 in Part 1: an R-module A is projective if and only
if it has a projective basis : there exist elements {aj : j ∈ J} ⊆ A and R-maps
{ϕj : A→ R : j ∈ J} such that

(i) for each x ∈ A, almost all ϕj(x) = 0;

(ii) for each x ∈ A, we have x =
∑

j∈J (ϕjx)aj .

The coming characterizations of Dedekind rings, Theorems C-5.94, C-5.97, and
C-5.106, are useful in homological algebra.

Theorem C-5.94.

(i) A nonzero ideal I in a domain R is invertible if and only if I is a projective
R-module.

(ii) A domain R is a Dedekind ring if and only if every ideal in R is projective.

Proof.

(i) If I is invertible, there are elements a1, . . . , an ∈ I and q1, . . . , qn ∈ Frac(R)
with 1 =

∑
i qiai and qiI ⊂ R for all i. Define ϕi : I → R by ϕi : a �→ qia

(note that imϕi ⊆ I because qiI ⊆ R). If a ∈ I, then∑
i

ϕi(a)ai =
∑
i

qiaai = a
∑
i

qiai = a.

Therefore, I has a projective basis, and so I is a projective R-module.
Conversely, if an ideal I is a projective R-module, it has a projective

basis {ϕj : j ∈ J}, {aj : j ∈ J}. If b ∈ I is nonzero, define qj ∈ Frac(R) by

qj = ϕj(b)/b.
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This element does not depend on the choice of nonzero b: if b′ ∈ I is nonzero,
then b′ϕj(b) = ϕj(b

′b) = bϕj(b
′), so that ϕj(b)/b = ϕj(b

′)/b′. To see that
qjI ⊆ R, note that if b ∈ I is nonzero, then qjb =

(
ϕj(b)/b

)
b = ϕj(b) ∈ R.

By item (i) in the definition of projective basis, almost all ϕj(b) = 0, and so
there are only finitely many nonzero qj = ϕj(b)/b (remember that qj does
not depend on the choice of nonzero b ∈ I). Item (ii) in the definition of
projective basis gives, for b ∈ I,

b =
∑
j

ϕj(b)aj =
∑
j

(qjb)aj = b
(∑

j

qjaj

)
.

Canceling b gives 1 =
∑

j qjaj . Finally, the set of those aj with indices j for
which qj �= 0 completes the data necessary to show that I is an invertible
ideal.

(ii) This follows at once from (i) and Proposition C-5.89. •

Example C-5.95. We have seen that R = Z
[√
−5

]
is a Dedekind ring that is not

a PID. Any nonprincipal ideal gives an example of a projective R-module that is
not free. �

Remark. Noncommutative analogs of Dedekind rings are called left hereditary .
A ring R is left hereditary if every left ideal is a projective R-module. (Small’s
example of a right noetherian ring that is not left noetherian (Exercise B-1.28
on page 288 in Part 1) is right hereditary but not left hereditary.) Aside from
Dedekind rings, some examples of left hereditary rings are semisimple rings, non-
commutative principal ideal rings, and FIRs (free ideal rings—all left ideals are
free R-modules). Cohn proved (see [42]) that if k is a field, then free k-algebras
k
〈
X
〉
(polynomials in noncommuting variables X) are FIRs, and so there exist left

hereditary rings that are not left noetherian. �

Projective and injective modules over a Dedekind ring are well-behaved.

Lemma C-5.96. A left R-module P (over any ring R) is projective if and only if
every diagram below with E injective can be completed to a commutative diagram.
The dual characterization of injective modules is also true,

P

���
�
�
�

��
E �� E′′ �� 0.

Proof. If P is projective, then the diagram can be completed for every not neces-
sarily injective module E. Conversely, we must show that the diagram

P

���
�
�
�

f

��
A

g
�� A′′ �� 0

can be completed for any module A and any surjection g : A → A′′. By Theo-
rem B-4.64 in Part 1, there is an injective R-module E and an injection σ : A→ E.
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Define E′′ = cokerσi = E/ imσi, and consider the commutative diagram with
exact rows

P
π

77

f

��
0 �� A′ i ��

1A′
��

A
g ��

σ

��

A′′ ��

h
���
�
� 0

0 �� A′
σi

�� E
ν

�� E′′ �� 0

where ν : E → E′′ = cokerσi is the natural map and h : A′′ → E′′ exists, by
Proposition B-1.46 in Part 1. By hypothesis, there exists a map π : P → E with
νπ = hf . We claim that imπ ⊆ imσ. For x ∈ P , surjectivity of g gives a ∈ A with
ga = fx. Then νπx = hfx = hga = νσa, and so πx − σa ∈ ker ν = imσi; hence,
πx−σa = σia′ for some a′ ∈ A′, and so πx = σ(a+ia′) ∈ imσ. Therefore, if x ∈ P ,
there is a unique a ∈ A with σa = πx (a is unique because σ is an injection). Thus,
there is a well-defined function π′ : P → A, given by π′x = a, where σa = πx. The
reader may check that π′ is an R-map and that gπ′ = f . •

Theorem C-5.97 (Cartan–Eilenberg). The following conditions are equivalent
for a domain R:

(i) R is a Dedekind ring.

(ii) Every submodule of a projective R-module is projective.

(iii) Every quotient of an injective R-module is injective.

Proof.

(i) ⇔ (ii). If R is Dedekind, then we can adapt the proof of Theorem B-2.28
in Part 1 (which proves that every subgroup of a free abelian group is free
abelian) to prove that every submodule of a free R-module is projective (Ex-
ercise C-5.41 on page 476); in particular, every submodule of a projective
R-module is projective. Conversely, since R itself is a projective R-module,
its submodules are also projective, by hypothesis; that is, the ideals of R are
projective. Theorem C-5.94 now shows that R is a Dedekind ring.

(ii) ⇔ (iii). Assume (iii), and consider the diagram with exact rows

P

���
�

�
�

���
�
� P ′

f

��

�� 0��

E �� E′′ �� 0

where P is projective and E is injective; note that the hypothesis gives E′′

injective. To prove projectivity of P ′, it suffices, by Lemma C-5.96, to find
a map P ′ → E making the diagram commute. Since E′′ is injective, there
exists a map P → E′′ giving commutativity. Since P is projective, there is a
map P → E also giving commutativity. The composite P ′ → P → E is the
desired map.

The converse is the dual of this, using the dual of Lemma C-5.96. •
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The next result generalizes Exercise C-3.37 on page 291 from PIDs to Dedekind
rings.

Corollary C-5.98. Let R be a Dedekind ring.

(i) For all R-modules C and A and all n ≥ 2,

ExtnR(C,A) = {0} and TorRn (C,A) = {0}.

(ii) Let 0 → A′ → A → A′′ → 0 be a short exact sequence. For every module C,
there are exact sequences

0→ Hom(C,A′)→ Hom(C,A)→ Hom(C,A′′)

→ Ext1(C,A′)→ Ext1(C,A)→ Ext1(C,A′′)→ 0

and

0→ TorR1 (C,A
′)→ TorRi (C,A)→ TorR1 (C,A

′′)

→ C ⊗R A′ → C ⊗R A→ C ⊗R A′′ → 0.

Proof.

(i) By definition, if · · · → P2
d2−→ P1

d1−→ P0 → C → 0 is a projective resolution
of C, then Extn(C,A) = ker d∗n+1/ im d∗n; moreover, Extn(C,A) does not
depend on the choice of projective resolution, by Corollary C-3.74. Now C is
a quotient of a free module F , and so there is an exact sequence

0→ K → F
ε−→ C → 0,(4)

whereK = ker ε. Since R is Dedekind, the submodule K of the free R-module
F is projective, so that (3) defines a projective resolution of C with P0 = F ,
P1 = K, and Pn = {0} for all n ≥ 2. Hence, ker d∗n+1 ⊆ Hom(Pn, A) = {0}
for all n ≥ 2, and so ExtnR(C,A) = {0} for all A and for all n ≥ 2. A similar
argument works for Tor.

(ii) This follows from Corollary C-3.68 and Corollary C-3.57, the long exact se-
quence for Ext and for Tor, respectively. •

We will use this result in the next subsection to generalize Proposition C-3.93.

Exercises

∗ C-5.40. Let R be a commutative ring and let M be a finitely generated R-module. Prove
that if IM = M for some ideal I of R, then there exists a ∈ I with (1− a)M = {0}.
Hint. If M =

〈
m1 . . . ,mn

〉
, then each mi =

∑
j aijmj , where aij ∈ I. Use the adjoint

matrix (the matrix of cofactors) as in the proof of Lemma C-5.46.

∗ C-5.41. Generalize the proof of Theorem B-2.28 in Part 1 to prove that if R is a left
hereditary ring, then every submodule of a free left R-module F is isomorphic to a direct
sum of ideals and hence is projective.



C-5.3. Dedekind Rings 477

∗ C-5.42. Let R be a Dedekind ring, and let p be a nonzero prime ideal in R.

(i) If a ∈ p, prove that p occurs in the prime factorization of Ra.

(ii) If a ∈ p
e and a /∈ p

e+1, prove that p
e occurs in the prime factorization of Ra, but

that pe+1 does not occur in the prime factorization of Ra.

C-5.43. Let I be a nonzero ideal in a Dedekind ring R. Prove that if p is a prime ideal,
then I ⊆ p if and only if p occurs in the prime factorization of I.

∗ C-5.44. If J is a fractional ideal of a Dedekind ring R, prove that (J−1)p = (Jp)
−1 for

every maximal ideal p.

∗ C-5.45. Let I1, . . . , In be ideals in a Dedekind ring R. If there is no nonzero prime ideal
p with Ii = pLi for all i for ideals Li, then

I1 + · · ·+ In = R.

C-5.46. Give an example of a projective Z
[√

−5
]
-module that is not free.

Hint. See Example C-5.95.

∗ C-5.47. (i) A commutative ring R is called a principal ideal ring if every ideal in R
is a principal ideal (R would be a PID if it were a domain). For example, In is a
principal ideal ring. Prove that Z× Z is a principal ideal ring.

(ii) Let I1, . . . , In be pairwise coprime ideals in a commutative ring R. If R/Ii is a
principal ideal ring for each i, prove that R/(I1 · · · In) is a principal ideal ring.
Hint. Use the Chinese Remainder Theorem.

C-5.48. Let a be a nonzero element in a Dedekind ring R. Prove that there are only
finitely many ideals I in R containing a.

Hint. If a ∈ I, then Ra = IL for some ideal L ⊆ R.

Finitely Generated Modules over Dedekind Rings

We saw in Part 1 that theorems about abelian groups generalize to theorems
about modules over PIDs. We are now going to see that such theorems can be
further generalized to modules over Dedekind rings.

Proposition C-5.99. Let R be a Dedekind ring.

(i) If I ⊆ R is a nonzero ideal, then every ideal in R/I is principal.

(ii) Every fractional ideal J can be generated by two elements. More precisely,
for any nonzero a ∈ J , there exists b ∈ J with J = (a, b).

Proof.

(i) Let I = p
e1
1 · · · penn be the prime factorization of I. Since the ideals p

ei
i

are pairwise coprime, it suffices, by Exercise C-5.47, to prove that R/peii is
a principal ideal ring for each i. Now right exactness of Rpi

⊗R � shows
that (R/peii )pi

∼= Rpi
/(peii )pi

. Since Rpi
is a PID (it is even a DVR, by

Proposition C-5.86), any quotient ring of it is a principal ideal ring.
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(ii) Assume first that J is an integral ideal. Choose a nonzero a ∈ J . By (i), the
ideal J/Ra in R/Ra is principal; say, J/Ra is generated by b + Ra, where
b ∈ J . It follows that J = (a, b).

For the general case, there is a nonzero c ∈ R with cJ ⊆ R (if J is
generated by u1/v1, . . . , um/vm, take c =

∏
J vj). Since cJ is an integral

ideal, given any nonzero a ∈ J , there is cb ∈ cJ with cJ = (ca, cb). It follows
that J = (a, b). •

The next corollary says that we can force nonzero ideals to be coprime.

Corollary C-5.100. If I and J are fractional ideals over a Dedekind ring R, then
there are a, b ∈ Frac(R) with

aI + bJ = R.

Proof. Choose a nonzero a ∈ I−1. Now aI ⊆ I−1I = R, so that aIJ−1 ⊆ J−1.
By Proposition C-5.99(ii), there is b ∈ J−1 with

J−1 = aIJ−1 +Rb.

Since b ∈ J−1, we have bJ ⊆ R, and so

R = JJ−1 = J(aIJ−1 +Rb) = aI +RbJ = aI + bJ. •

Let us now investigate the structure of R-modules. Recall that if R is a domain
and M is an R-module, then rank(M) = dimQ(Q⊗R M), where Q = Frac(R). We
can restate Lemma C-5.1(iii) in our present language. If R is a domain and M is a
nonzero finitely generated torsion-free R-module, then rank(M) = 1 if and only if
M is isomorphic to a nonzero integral ideal.

Proposition C-5.101. If R is a Dedekind ring and M is a finitely generated
torsion-free R-module, then

M ∼= I1 ⊕ · · · ⊕ In,

where Ii is an ideal in R.

Proof. The proof is by induction on rank(M) ≥ 0. If rank(M) = 0, then M is
torsion, by Lemma C-5.1(ii). Since M is torsion-free, M = {0}. Assume now that
rank(M) = n+1. Choose a nonzero m ∈M , so that rank(Rm) = 1. The sequence

0→ Rm→M
ν−→M ′′ → 0

is exact, where M ′′ = R/Rm and ν is the natural map. Note that rank(M ′′) = n,
by Lemma C-5.1(i). Now M finitely generated implies that M ′′ is also finitely gen-
erated. If T = t(M ′′) is the torsion submodule of M ′′, then M ′′/T is a finitely
generated torsion-free R-module with rank(M ′′/T ) = rank(M ′′) = n, because
rank(T ) = 0. By induction, M ′′/T is a direct sum of ideals, hence is projective, by
Theorem C-5.94. Define

M ′ = ν−1(T ) = {m ∈M : rm ∈ Rm for some r �= 0} ⊆M.



C-5.3. Dedekind Rings 479

There is an exact sequence 0 → M ′ → M → M ′′/T → 0; this sequence splits, by
Corollary B-2.26 in Part 1, becauseM ′′/T is projective; that is, M ∼= M ′⊕(M ′′/T ).
Hence

rank(M ′) = rank(M)− rank(M ′′/T ) = 1.

Since R is noetherian, every submodule of a finitely generated R-module is itself
finitely generated; hence, M ′ is finitely generated. Therefore, M ′ is isomorphic to
an ideal, by Lemma C-5.1(ii), and this completes the proof. •

Corollary C-5.102. If R is a Dedekind ring and M is a finitely generated torsion-
free R-module, then M is projective.

Proof. By Theorem C-5.94, every ideal in a Dedekind ring is projective. It now
follows from Proposition C-5.101 that M is a direct sum of ideals, and hence it is
projective. •

Corollary C-5.102 can also be proved by localization. For every maximal
ideal m, the Rm-module Mm is finitely generated torsion-free. Since Rm is a PID
(even a DVR), Mm is a free module, and hence it is projective. The result now
follows from Corollary C-5.43.

Corollary C-5.103. If M is a finitely generated R-module, where R is a Dedekind
ring, then the torsion submodule tM is a direct summand of M .

Proof. The quotient module M/tM is a finitely generated torsion-free R-module,
so that it is projective, by Corollary C-5.102. Therefore, tM is a direct summand
of M , by Corollary B-2.26 in Part 1. •

Corollary C-5.104. Let R be a Dedekind ring. Then an R-module A is flat if and
only if it is torsion-free.

Proof. By Lemma B-4.103 in Part 1, it suffices to prove that every finitely gener-
ated submodule of A is flat. But such submodules are torsion-free, hence projective,
and projective modules are always flat, by Lemma B-4.101 in Part 1. The converse
is Corollary B-4.104 in Part 1: every flat R-module over a domain R is torsion-free.

•

Corollary C-5.105. Let R be a Dedekind ring with Q = Frac(R).

(i) If C is a torsion-free R-module and T is a torsion module with ann(T ) �= (0)
(that is, there is a nonzero r ∈ R with rT = {0}), then Ext1R(C, T ) = {0}.

(ii) Let M be an R-module. If ann(tM) �= (0), where tM is the torsion submodule
of M , then tM is a direct summand of M .

Proof.

(i) We generalize the proof of Proposition C-3.93. Since C is torsion-free, it is a
flat R-module, by Corollary C-5.104, so that exactness of 0 → R → Q gives
exactness of 0→ R⊗RC → Q⊗RC. Thus, C ∼= R⊗RC can be imbedded in
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a vector space V over Q; namely, V = Q ⊗R C. Applying the contravariant
functor HomR(�, T ) to 0→ C → V → V/C → 0 gives an exact sequence

Ext1R(V, T )→ Ext1R(C, T )→ Ext2(V/C, T ).

Now the last term is {0}, by Corollary C-5.98, and Ext1R(V, T ) is (torsion-free)
divisible, by (a straightforward generalization of) Example C-3.70; hence,
Ext1R(C, T ) is divisible. Since ann(T ) �= (0), Exercise C-3.39 on page 292
gives Ext1R(C, T ) = {0}.

(ii) To prove that the extension 0→ tM →M →M/tM → 0 splits, it suffices to
prove that Ext1R(M/tM, tM) = {0}. Since M/tM is torsion-free, this follows
from part (i) and Corollary C-3.90. •

The next result generalizes Proposition B-4.61 in Part 1.

Theorem C-5.106. Let R be a domain. Then R is Dedekind if and only if divisible
R-modules are injective.

Proof. Let R be a Dedekind ring and let E be a divisible R-module. By the Baer
criterion, Theorem B-4.57 in Part 1, it suffices to complete the diagram

E

0 �� I

f

��

i
�� R

g
���
�
�
�

where I is an ideal and i : I → R is the inclusion. Of course, we may assume
that I is nonzero, and so I is invertible: there are elements a1, . . . , an ∈ I and
elements q1, . . . , qn ∈ Q with qiI ⊆ R and 1 =

∑
i qiai. Since E is divisible, there

are elements ei ∈ E with f(ai) = aiei. Note, for every b ∈ I, that

f(b) = f
(∑

i

qiaib
)
=
∑
i

(qib)f(ai) =
∑
i

(qib)aiei = b
∑
i

(qiai)ei.

Hence, if we define e =
∑

i(qiai)ei, then e ∈ E and f(b) = be for all b ∈ I. Defining
g : R → E by g(r) = re shows that the diagram can be completed, and so E is
injective.

Conversely, if E is an injective R-module, then E is divisible (that every injec-
tive R-module is divisible was proved (for arbitrary domains R) in Lemma B-4.60
in Part 1). If E′ is a quotient of E, then E′ is divisible and, hence, is injective, by
hypothesis. Therefore, every quotient of an injective module is injective, and so R
is Dedekind, by Theorem C-5.97. •

Having examined torsion-free modules, let us now look at torsion modules.

Proposition C-5.107. Let p be a nonzero prime ideal in a Dedekind ring R. If
M is an R-module with ann(M) = pe for some e > 0, then the localization map
M →Mp is an isomorphism (and hence M may be regarded as an Rp-module).

Proof. It suffices to prove that M ∼= Rp ⊗R M . If m ∈ M is nonzero and s ∈ R
with s /∈ p, then

p
e +Rs = R,
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by Proposition C-5.93. Hence, there exist u ∈ pe and r ∈ R with 1 = u + rs, and
so

m = um+ rsm = rsm.

If 1 = u′ + r′s, where u′ ∈ p and r′ ∈ R, then s(r − r′)m = 0, so that

s(r − r′) ∈ ann(m) = pe.

Since s /∈ pe, it follows that r− r′ ∈ pe (see Exercise C-5.42 on page 477; the prime
factorization of Rs does not contain pe; if the prime factorization of R(r− r′) does
not contain pe, then neither does the prime factorization of Rs(r − r′)). Hence,
rm = r′m. Define s−1m = rm, and define f : Rp × M → M by f(r/s,m) =
s−1(rm). It is straightforward to check that f is R-bilinear, and so there is an

R-map f̃ : Rp⊗M →M with f̃ : (r/s⊗m) = s−1rm. In particular, f̃(1⊗m) = m,

so that f̃ is surjective. On the other hand, the localization map hM : M → Rp⊗RM ,

defined by hM (m) = 1⊗m, is easily seen to be the inverse of f̃ . •

Definition. Let p be a nonzero prime ideal in a Dedekind ring R. An R-module
M is called p-primary if, for each m ∈M , there is e > 0 with ann(m) = pe.

Theorem C-5.108 (Primary Decomposition). Let R be a Dedekind ring, and
let T be a finitely generated torsion R-module. If I = ann(T ) = p

e1
1 · · · penn , then

T = T [p1]⊕ · · · ⊕ T [pn],

where

T [pi] = {m ∈ T : ann(m) is a power of pi}.
T [pi] is called the pi-primary component of T .

Proof. It is easy to see that the p-primary components T [p] are submodules of T .
By Proposition C-5.93(iv), there is an isomorphism of rings

f :
R

I
∼=

R

p
e1
1

⊕ · · · ⊕ R

p
en
n

.

Let ai ∈ R be an element such that f(ai+I) has 1 in the ith coordinate and 0 in all
other coordinates. Then aiaj ∈ I for all j �= i and there is ri ∈ I with ai = 1 + ri.
We will show that ai T = T [pi]. Since ai ∈ p

ej
j for j �= i it follows that p

ei
i ai ⊆ I

and so p
ei
i annihilates aiT . Thus, aiT ⊆ T [pi].

To prove the reverse inclusion, let x ∈ T [pi]. We may write 1 ∈ R as

1 =

n∑
1

ai + r with r ∈ I.

It follows that x = 1x =
∑

aix since r ∈ I. But for i �= j, ajx ∈ T [pj ] ∩ T [pi] since
x ∈ T [pi] and ajT ⊆ T [pj ]. The intersection is (0) as pi and pj are coprime. Thus,
x = aix so x ∈ aiT and T [pi] = aiT .

The direct sum decomposition of R/I gives rise to the direct sum

T = a1T ⊕ · · · ⊕ anT = T [p1]⊕ · · · ⊕ T [pn]. •
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Theorem C-5.109. Let R be a Dedekind ring.

(i) Two finitely generated torsion R-modules T and T ′ are isomorphic if and
only if T [p] ∼= T ′[p] for all primes p.

(ii) Every finitely generated p-primary R-module T is a direct sum of cyclic R-
modules, and the number of summands of each type is an invariant of T .

Proof.

(i) The result follows easily from the observation that if f : T → T ′ is an isomor-
phism, then ann(t) = ann(f(t)) for all t ∈ T .

(ii) The Primary Decomposition Theorem shows that T is the direct sum of its
primary components T [pi]. By Proposition C-5.107, T [pi] is an Rpi

-module.
But Rpi

is a PID, and so the Basis Theorem and the Fundamental Theorem
hold: each T [pi] is a direct sum of cyclic modules, and the numbers and
isomorphism types of the cyclic summands are uniquely determined. •

We now know, when R is Dedekind, that every finitely generated R-module M
is a direct sum of cyclic modules and ideals. What uniqueness is there in such a
decomposition? Since the torsion submodule is a fully invariant direct summand,
we may focus on torsion-free modules.

Recall Proposition C-5.3: two ideals J and J ′ in a domain R are isomorphic if
and only if there is a ∈ Frac(R) with J ′ = aJ .

Lemma C-5.110. Let M be a finitely generated torsion-free R-module, where R
is a Dedekind ring, so that M ∼= I1 ⊕ · · · ⊕ In, where the Ii are ideals. Then

M ∼= Rn−1 ⊕ J,

where J = I1 · · · In.

Remark. We call Rn−1 ⊕ J a Steinitz normal form for M . We will prove, in
Theorem C-5.112, that J is unique up to isomorphism. �

Proof. It suffices to prove that I⊕J ∼= R⊕IJ , for the result then follows easily by
induction on n ≥ 2. By Corollary C-5.100, there are nonzero a, b ∈ Frac(R) with
aI + bJ = R. Since aI ∼= I and bJ ∼= J , we may assume that I and J are coprime
integral ideals. There is an exact sequence

0→ I ∩ J
δ−→ I ⊕ J

α−→ I + J → 0,

where δ : x �→ (x, x) and α : (u, v) �→ u − v. Since I and J are coprime, however,
we have I ∩ J = IJ and I + J = R, by Proposition C-5.93. As R is projective, this
sequence splits; that is, I ⊕ J ∼= R⊕ IJ . •

The following cancellation lemma, while true for Dedekind rings, can be false
for some other rings. In Example C-4.89(ii), we described an example of Kaplansky
showing that if R = R[x, y, z]/(x2 + y2 + z2 − 1) is the real coordinate ring of the
2-sphere, then there is a finitely generated stably free R-module M that is not free.
Hence, there are free R-modules F and F ′ with M ⊕ F ∼= F ′ ⊕ F but M �∼= F ′.
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Lemma C-5.111. Let R be a Dedekind ring. If R⊕G ∼= R⊕H, where G and H
are R-modules, then G ∼= H.

Proof. We may assume that there is a module E = A ⊕ G = B ⊕ H, where
A ∼= R ∼= B. Let p : E → B be the projection p : (b, h) �→ b, and let p′ = p|G. Now

ker p′ = G ∩H and im p′ ⊆ B ∼= R.

Thus, im p′ ∼= L, where L is an ideal in R.

If im p′ = {0}, then G ⊆ ker p = H. Since E = A⊕G, Corollary B-2.16 in Part
1 gives H = G⊕ (H ∩ A). On the one hand, E/G = (A⊕G)/G ∼= A ∼= R; on the
other hand, E/G = (B⊕H)/G ∼= B⊕(H/G) ∼= R⊕(H/G). Thus, R ∼= R⊕(H/G).
Since R is a domain, this forces H/G = {0}: if R = X ⊕ Y , then X and Y are
ideals; if x ∈ X and y ∈ Y are both nonzero, then xy ∈ X ∩ Y = (0), giving
zero-divisors in R. It follows that H/G = {0} and G = H.

We may now assume that L = im p′ is a nonzero ideal. The First Isomorphism
Theorem gives G/(G ∩ H) ∼= L. Since R is a Dedekind ring, L is a projective
module, and so

G = I ⊕ (G ∩H),

where I ∼= L. Similarly,

H = J ⊕ (G ∩H),

where J is isomorphic to an ideal. Therefore,

E = A⊕G = A⊕ I ⊕ (G ∩H),

E = B ⊕H = B ⊕ J ⊕ (G ∩H).

It follows that

A⊕ I ∼= E/(G ∩H) ∼= B ⊕ J.

If we can prove that I ∼= J , then

G = I ⊕ (G ∩H) ∼= J ⊕ (G ∩H) = H.

Therefore, we have reduced the theorem to the special case where G and H are
nonzero ideals.

We will prove that if α : R ⊕ I → R ⊕ J is an isomorphism, then I ∼= J . As in
our discussion of generalized matrices on page 142, α determines a 2× 2 matrix

A =

[
a11 a12
a21 a22

]
,

where a11 : R → R, a21 : R → J , a12 : I → R, and a22 : I → J . Indeed, as maps
between ideals are just multiplications by elements of Q = Frac(R), we may regard
A as a matrix in GL(2, Q). Now a21 ∈ J and a22I ⊆ J , so that if d = det(A), then

dI = (a11a22 − a12a12)I ⊆ J.

Similarly, β = α−1 determines a 2× 2 matrix B = A−1. But

d−1J = det(B)J ⊆ I,

so that J ⊆ dI. We conclude that J = dI, and so J ∼= I. •
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Let us sketch another proof of Lemma C-5.111 using exterior algebra. Let R be
a Dedekind ring, and let I and J be fractional ideals; we show that R⊕ I ∼= R⊕ J
implies I ∼= J . The fact that 2 × 2 determinants are used in the original proof
suggests that second exterior powers may be useful. By Theorem B-5.35 in Part 1,∧2

(R⊕ I) ∼=
(
R⊗

∧2
I
)
⊕
(∧1

R⊗R

∧1
I
)
⊕
(∧2

R⊗R I
)
.

Now
∧2R = {0}, by Corollary B-5.30 in Part 1, and

∧1R ⊗R

∧1I ∼= R ⊗R I ∼= I.

We now show, for every maximal ideal m, that
(∧2

I
)
m
= {0}. By Exercise C-5.25

on page 445, (∧n
I
)
m

∼=
∧n

Im.

But Rm is a PID, so that Im is a principal ideal, and hence
∧2

Im = {0}, by

Corollary B-5.30 in Part 1. It now follows from Proposition C-5.38(i) that
∧2I =

{0}. Therefore,
∧2

(R⊕ I) ∼= I. Similarly,
∧2

(R⊕ J) ∼= J , and so I ∼= J .

Theorem C-5.112 (Steinitz). Let R be a Dedekind ring, and let M ∼= I1⊕· · ·⊕In
and M ′ ∼= I ′1⊕ · · · ⊕ I ′� be finitely generated torsion-free R-modules. Then M ∼= M ′

if and only if n = � and I1 · · · In ∼= I ′1 · · · I ′n.

Proof. Lemma C-5.1(iii) shows that rank(Ii) = 1 for all i, and Lemma C-5.1(i)
shows that rank(M) = n; similarly, rank(M ′) = �. Since M ∼= M ′, we have
Q⊗RM ∼= Q⊗RM ′, so that rank(M) = rank(M ′) and n = �. By Lemma C-5.110,
it suffices to prove that if Rn ⊕ I ∼= Rn ⊕ J , then I ∼= J . But this follows at once
from repeated use of Lemma C-5.111. •

Recall that two R-modules A and B over a commutative ring R are stably
isomorphic if there exists an R-module C with A⊕ C ∼= B ⊕ C.

Corollary C-5.113. Let R be a Dedekind ring, and let M and M ′ be finitely
generated torsion-free R-modules. Then M and M ′ are stably isomorphic if and
only if they are isomorphic.

Proof. Isomorphic modules are always stably isomorphic. To prove the converse,
assume that there is a finitely generated torsion-free R-module X with

M ⊕X ∼= M ′ ⊕X.

By Lemma C-5.110, there are ideals I, J, L with M ∼= Rn−1 ⊕ I, M ′ ∼= Rn−1 ⊕ J ,
and X ∼= Rm−1 ⊕ L, where n = rank(M) = rank(M ′). Hence,

M ⊕X ∼= Rn−1 ⊕ I ⊕Rm−1 ⊕ L ∼= Rn+m−1 ⊕ IL.

Similarly,

M ′ ⊕X ∼= Rn+m−1 ⊕ JL.

By Theorem C-5.112, IL ∼= JL, and so there is a nonzero a ∈ Frac(R) with
aIL = JL. Multiplying by L−1 gives aI = J , and so I ∼= J . Therefore,

M ∼= Rn−1 ⊕ I ∼= Rn−1 ⊕ J ∼= M ′. •
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If R is a ring, then R-Proj is the full subcategory of R Mod generated by all
finitely generated projective left R-modules. Recall that the Grothendieck group
K0(R) has generators all [P ] and relations [P ] + [P ′] = [P ⊕ P ′], where [P ] is the
isomorphism class of P . There is a relation between the class group C(R) of a
Dedekind ring R and its Grothendieck group K0(R). If I is a nonzero ideal in
a Dedekind ring R, denote the corresponding element in C(R) by cls(I). Corol-
lary C-4.88 says that two R-modules determine the same element of K0(R) if and
only if they are stably isomorphic. Thus, if R is Dedekind, then Corollary C-5.113
says that two finitely generated projective R-modules are isomorphic if and only if
they determine the same element of K0(R).

Theorem C-5.114. If R is a Dedekind ring, then

K0(R) ∼= C(R)⊕ Z,

where C(R) is the class group of R.

Proof. If P is a nonzero finitely generated projective R-module, then P has a
Steinitz normal form: by Lemma C-5.110, P ∼= Rn−1 ⊕ J , where rank(P ) = n
and J is a nonzero finitely generated ideal. Moreover, the isomorphism class of
J is uniquely determined by [P ], by Theorem C-5.112. Therefore, the function
ϕ : K0(R) → C(R) ⊕ Z, given by ϕ : [P ] �→ (cls(J), n), is a well-defined homomor-
phism. Clearly, ϕ is surjective, and it is injective by Corollary C-5.113. •

Corollary C-5.115. If R is a Dedekind ring, then K̃0(R) ∼= C(R).

Proof. By definition, the reduced Grothendieck group K̃0(R) = ker ρ, where
ρ : K0(R)→ Z is defined by [P ] �→ rank(P ). Here, ker ρ = C(R). •

Exercises

C-5.49. Let R be a Dedekind ring, and let I ⊆ R be a nonzero ideal. Prove that there
exists an ideal J ⊆ R with I + J = R and IJ principal.

Hint. Let I = p
e1
1 · · · penn , and choose ri ∈ p

ei
i − p

ei+1
i . Use the Chinese Remainder

Theorem to find an element a ∈ R with a ∈ p
ei
i and a /∈ p

ei+1
i , and consider the prime

factorization of Ra.

C-5.50. (i) If R is a nonzero commutative ring, prove that Rn ∼= Rm implies n = m.
Conclude that the rank of a free R-module is well-defined.

Hint. Corollary B-4.38 in Part 1.

(ii) If R is any commutative ring, prove that Z is a direct summand of K0(R).

C-5.51. If I is a fractional ideal in a Dedekind ring R, prove that I ⊗R I−1 ∼= R.

Hint. Use invertibility of I.
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C-5.4. Homological Dimensions

Rings in this section need not be commutative.

Semisimple and Dedekind rings can be characterized in terms of their projective
modules: Proposition C-2.23 says that a ring R is semisimple if and only if every
R-module is projective; Theorem C-5.94(ii) says that a domain R is Dedekind if
and only if every ideal is projective. The notion of global dimension allows us to
classify arbitrary rings in this spirit.

Definition. Let R be a ring and let A be a left R-module. If there is a finite
projective resolution

0→ Pn → · · · → P1 → P0 → A→ 0,

then we write pd(A) ≤ n.6 If n ≥ 0 is the smallest integer such that pd(A) ≤ n,
then we say that A has projective dimension n; if there is no finite projective
resolution of A, then pd(A) =∞.

Example C-5.116.

(i) A module A is projective if and only if pd(A) = 0. We may thus regard
pd(A) as a measure of how far away A is from being projective.

(ii) If R is a Dedekind ring, we claim that pd(A) ≤ 1 for every R-module A. By
Theorem C-5.97, every submodule of a free R-module is projective. Hence, if
F is a free R-module and ε : F → A is a surjection, then ker ε is projective,
and

0→ ker ε→ F
ε−→ A→ 0

is a projective resolution of A. �

Definition. Let P =→ P2
d2−→ P1

d1−→ P0
ε−→ A→ 0 be a projective resolution of

a module A. If n ≥ 0, then the nth syzygy7 is

Ωn(A,P) =

{
ker ε if n = 0,

ker dn if n ≥ 1.

Proposition C-5.117. For every n ≥ 1, for all left R-modules A and B, and for
every projective resolution P of B, there is an isomorphism

Extn+1
R (A,B) ∼= Ext1R(Ωn−1(A,P), B).

Proof. The proof is by induction on n ≥ 1. Exactness of the projective resolution

P =→ P2
d2−→ P1

d1−→ P0
ε−→ A→ 0

gives exactness of

→ P2
d2−→ P1 → Ω0(A,P)→ 0,

which is a projective resolution P+ of Ω0(A,P). In more detail, define

P+
n = Pn+1 and d+n = dn+1.

6Sometimes it is convenient to display the ring R, and we will write pdR(M) in this case.
7The term syzygy was introduced into mathematics by Sylvester in 1850. It is a Greek word

meaning yoke, and it was used in astronomy to mean an alignment of three celestial figures.



C-5.4. Homological Dimensions 487

Since Ext1 is independent of the choice of projective resolution of the first variable,

Ext1R(Ω0(A,P), B) =
ker(d+2 )

∗

im(d+1 )
∗ =

ker(d3)
∗

im(d2)∗
= Ext2R(A,B).

The inductive step is proved in the same way, noting that

→ Pn+2
dn+2−→ Pn+1 → Ωn(A,P)→ 0

is a projective resolution of Ωn(A,P). •

Corollary C-5.118. For all left R-modules A and B, for all n ≥ 0, and for any
projective resolutions P and P′ of A, there is an isomorphism

Ext1R(Ωn(A,P), B) ∼= Ext1R(Ωn(A,P′), B).

Proof. By Proposition C-5.117, both sides are isomorphic to Extn+1
R (A,B). •

Two left R-modules Ω and Ω′ are called projectively equivalent if there exist
projective left R-modules P and P ′ with Ω ⊕ P ∼= Ω′ ⊕ P ′. Exercise C-5.52 on
page 495 shows that any two nth syzygies of a left R-module A are projectively
equivalent. We often abuse notation and speak of the nth syzygy of a module,
writing Ωn(A) instead of Ωn(A,P).

Syzygies help compute projective dimension.

Lemma C-5.119. The following conditions are equivalent for a left R-module A:

(i) pd(A) ≤ n.

(ii) ExtkR(A,B) = {0} for all left R-modules B and all k ≥ n+ 1.

(iii) Extn+1
R (A,B) = {0} for all left R-modules B.

(iv) For every projective resolution P of A, the (n − 1)st syzygy Ωn−1(A,P) is
projective.

(v) There exists a projective resolution P of A with Ωn−1(A,P) projective.

Proof.

(i) ⇒ (ii). By hypothesis, there is a projective resolution P of A with Pk = {0}
for all k ≥ n + 1. Necessarily, all the maps dk : Pk → Pk−1 are zero for
k ≥ n+ 1, and so

ExtkR(A,B) =
ker(dk+1)

∗

im(dk)∗
= {0}.

(ii) ⇒ (iii). Obvious.

(iii) ⇒ (iv). If P =→ Pn → Pn−1 → · · · → P1 → P0 → A → 0 is a projec-
tive resolution of A, then Extn+1

R (A,B) ∼= Ext1R(Ωn−1(A,P), B), by Propo-
sition C-5.117. But the last group is {0}, by hypothesis, so that Ωn−1(A) is
projective, by Corollary C-3.86.

(iv) ⇒ (v). Obvious.
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(v) ⇒ (i). If

→ Pn → Pn−1 → · · · → P1 → P0 → A→ 0

is a projective resolution of A, then

0→ Ωn−1(A)→ Pn−1 → · · · → P1 → P0 → A→ 0

is an exact sequence. Since Ωn−1(A) is projective, the last sequence is a
projective resolution of A, and so pd(A) ≤ n. •

Example C-5.120. Let G be a finite cyclic group with |G| > 1. If Z is viewed as a
trivial ZG-module, then pd(Z) = ∞, because Corollary C-3.110 gives Hn(G,Z) =
ExtnZG(Z,Z) �= {0} for all odd n. �

The following definition will soon be simplified.

Definition. If R is a ring, then its left projective global dimension is defined
by

�pD(R) = sup{pd(A) : A ∈ obj(RMod)}.

Of course, if R is commutative, we write pD(R) instead of �pD(R).

Proposition C-5.121. For any ring R,

�pD(R) ≤ n if and only if Extn+1
R (A,B) = {0}

for all left R-modules A and B.

Proof. This follows from the equivalence of (i) and (iii) in Lemma C-5.119. •

A ring R is semisimple if and only if �pD(R) = 0. Thus, global dimension is a
measure of how far a ring is from being semisimple.

A similar discussion can be given using injective resolutions.

Definition. Let R be a ring and let B be a left R-module. If there is an injective
resolution

0→ B → E0 → E1 → · · · → En → 0,

then we write id(B) ≤ n. If n ≥ 0 is the smallest integer such that id(B) ≤ n, then
we say that B has injective dimension n; if there is no finite injective resolution
of B, then id(B) =∞.

Example C-5.122.

(i) A left R-module B is injective if and only if id(B) = 0. We may thus regard
id(B) as a measure of how far away B is from being injective.

(ii) The injective and projective dimensions of a left R-module A can be distinct.
For example, the abelian group A = Z has pd(A) = 0 and id(A) = 1.

(iii) If R is a Dedekind ring, then Theorem C-5.97 says that every quotient module
of an injective R-module is injective. Hence, if η : B → E is an imbedding of
an R-module B into an injective R-module E, then coker η is injective, and

0→ B
η−→ E → coker η → 0

is an injective resolution of B. It follows that id(B) ≤ 1. �
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Definition. Let E = 0 → B
η−→ E0 d0

−→ E1 d1

−→ E2 → · · · be an injective
resolution of a left R-module B. If n ≥ 0, then the nth cosyzygy is

�n(B,E) =

{
coker η if n = 0,

coker dn−1 if n ≥ 1.

Proposition C-5.123. For every n ≥ 1, for all left R-modules A and B, and for
every injective resolution E of A, there is an isomorphism

Extn+1
R (A,B) ∼= Ext1R(A,�n−1(B,E)).

Proof. Dual to the proof of Proposition C-5.117. •

Corollary C-5.124. For all left R-modules A and B, for all n ≥ 0, and for any
injective resolutions E and E′ of B, there is an isomorphism

Ext1R(A,�n(B,E)) ∼= Ext1R(A,�n(B,E′)).

Proof. Dual to the proof of Corollary C-5.118. •

Two left R-modules � and �′ are called injectively equivalent if there exist
injective left R-modules E and E′ with � ⊕ E ∼= �′ ⊕ E′. Exercise C-5.53 on
page 495 shows that any two nth cosyzygies of a left R-module B are injectively
equivalent. We often abuse notation and speak of the nth cosyzygy of a module,
writing �n(B) instead of �n(B,E).

Cosyzygies help compute injective dimension.

Lemma C-5.125. The following conditions are equivalent for a left R-module B:

(i) id(B) ≤ n.

(ii) ExtkR(A,B) = {0} for all left R-modules A and all k ≥ n+ 1.

(iii) Extn+1
R (A,B) = {0} for all left R-modules A.

(iv) For every injective resolution E of B, the (n − 1)st cosyzygy �n−1(B,E) is
injective.

(v) There exists an injective resolution E of B with �n−1(B,E) injective.

Proof. Dual to that of Lemma C-5.119, using Exercise C-3.48 on page 308 •

Definition. If R is a ring, then its left injective global dimension is defined by

�iD(R) = sup{id(B) : B ∈ obj(RMod)}.

Proposition C-5.126. For any ring R,

�iD(R) ≤ n if and only if Extn+1
R (A,B) = {0}

for all left R-modules A and B.

Proof. This follows from the equivalence of (i) and (iii) in Lemma C-5.125. •

Theorem C-5.127. For every ring R,

�pD(R) = �iD(R).
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Proof. This follows at once from Propositions C-5.121 and C-5.126, for each num-
ber is equal to the smallest n for which Extn+1

R (A,B) = {0} for all left R-modules
A and B. •

Definition. The left global dimension of a ring R is the common value of the
left projective global dimension and the left injective global dimension:

�D(R) = �pD(R) = �iD(R).

If R is commutative, then we denote its global dimension by D(R).

There is also a right global dimension rD(R) = �D(Rop) of a ring R; thus,
we consider projective and injective dimensions of right R-modules. If R is com-
mutative, then �D(R) = rD(R) and we write D(R). Since left semisimple rings
are also right semisimple, by Corollary C-2.36, we have �D(R) = 0 if and only if
rD(R) = 0. On the other hand, these two dimensions can differ. Jategaonkar [115]
proved that if 1 ≤ m ≤ n ≤ ∞, then there exists a ring R with �D(R) = m and
rD(R) = n.

Theorem C-5.128. A domain R is a Dedekind ring if and only if D(R) ≤ 1.

Proof. Let R be a Dedekind ring. If A is an R-module, there is a free R-module F
and an exact sequence 0 → K → F → A → 0. But K is projective, by Theo-
rem C-5.97 (which says that a domain R is Dedekind if and only if every submodule
of a projective R-module is projective). Thus, pd(A) ≤ 1 and D(R) ≤ 1.

Conversely, assume that D(R) ≤ 1. If S is a submodule of a projective R-
module F , then there is an exact sequence 0 → S → F → F/S → 0. But
pd(F/S) ≤ 1, so that S is projective, by the equivalence of parts (i) and (iv)
of Lemma C-5.119. Theorem C-5.97 shows that R is Dedekind. •

The next theorem says that �D(R) can be computed from pd(M) for finitely
generated R-modules M ; in fact, �D(R) can even be computed from pd(M) for M
cyclic.

Lemma C-5.129. A left R-module B is injective if and only if Ext1R(R/I,B) = {0}
for every left ideal I.

Proof. If B is injective, then Ext1R(A,B) vanishes for every right R-module A.
Conversely, suppose that Ext1R(R/I,B) = {0} for every left ideal I. Applying
HomR(�, B) to the exact sequence 0→ I → R→ R/I → 0 gives exactness of

HomR(R,B)→ HomR(I, B)→ Ext1R(R/I,B) = 0.

That is, every R-map f : I → B can be extended to an R-map R → B (Proposi-
tion B-4.51 in Part 1). But this is precisely the Baer criterion, Theorem B-4.57 in
Part 1, and so B is injective. •

Theorem C-5.130 (Auslander). For any ring R,

�D(R) = sup{pd(R/I) : I is a left ideal}.
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Proof (Matlis). If sup{pd(R/I)} = ∞, we are done. Therefore, we may as-
sume there is an integer n ≥ 0 with pd(R/I) ≤ n for every left ideal I. By
Lemma C-5.125, Extn+1

R (R/I,B) = {0} for every left R-module B. But �pD(R) =
�iD(R), by Theorem C-5.127, so that it suffices to prove that id(B) ≤ n for every B.
Let E be an injective resolution of B, with (n−1)st cosyzygy �n−1(B). By Proposi-
tion C-5.123, {0} = Extn+1

R (R/I,B) ∼= Ext1R(R/I,�n−1(B)). Now Lemma C-5.129
gives �n−1(B) injective, and so Lemma C-5.125 gives id(B) ≤ n, as desired. •

This theorem explains why every ideal in a Dedekind ring being projective is
such a strong condition.

Just as Ext defines the global dimension of a ring R, we can use Tor to define
the weak dimension (or Tor-dimension) of a ring R.

Definition. Let R be a ring and let A be a right R-module. A flat resolution of
A is an exact sequence

→ Fn → · · · → F1 → F0 → A→ 0

in which each Fn is a flat right R-module.

If there is a finite flat resolution

0→ Fn → · · · → F1 → F0 → A→ 0,

then we write fd(A) ≤ n. If n ≥ 0 is the smallest integer such that fd(A) ≤ n, then
we say that A has flat dimension n; if there is no finite flat resolution of A, then
fd(A) =∞.

Example C-5.131.

(i) A right R-module A is flat if and only if fd(A) = 0. We may thus regard
fd(A) as a measure of how far away A is from being flat.

(ii) Since projective right R-modules are flat, every projective resolution of A is a
flat resolution. It follows that if R is any ring, then fd(A) ≤ pd(A) for every
right R-module A. The same argument applies to left R-modules.

(iii) If R is a Dedekind ring and A is an R-module, then fd(A) ≤ pd(A) ≤ 1,
by (ii). Corollary C-5.104 says that A is flat if and only if A is torsion-free.
Hence, fd(A) = 1 if and only if A is not torsion-free.

(iv) Schanuel’s Lemma (Proposition B-4.48 in Part 1) does not hold for flat reso-
lutions. Recall that a Z-module is flat if and only if it is torsion-free. Consider
the flat resolutions

0→ Z→ Q→ Q/Z→ 0,

0→ K → F → Q/Z→ 0,

where F (and its subgroup K) is a free abelian group. There is no isomor-
phism K ⊕Q ∼= Z⊕ F , for Q is not projective. �
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Definition. Let F =→ F2
d2−→ F1

d1−→ F0
ε−→ B → 0 be a flat resolution of a left

R-module B. If n ≥ 0, then the nth yoke is

Yn(B,F) =

{
ker ε if n = 0,

ker dn if n ≥ 1.

The term yoke is not standard; it is a translation of the Greek word syzygy.

Proposition C-5.132. For every n ≥ 1, for all right R-modules A and left R-
modules B, and for every flat resolution F of B, there is an isomorphism

TorRn+1(A,B) ∼= TorR1 (A, Yn−1(B,F)).

Proof. The same as the proof of Proposition C-5.117. •

Corollary C-5.133. For every right R-module A and left R-module B, for all
n ≥ 0, and for any flat resolutions F and F′ of B, there is an isomorphism

TorR1 (A, Yn(B,F)) ∼= TorR1 (A, Yn(B,F)).

Proof. The same as the proof of Corollary C-5.118. •

Lemma C-5.134. The following conditions are equivalent for a left R-module B:

(i) fd(B) ≤ n.

(ii) TorRk (A,B) = {0} for all k ≥ n+ 1 and all right R-modules A.

(iii) TorRn+1(A,B) = {0} for all right R-modules A.

(iv) For every flat resolution F of B, the (n− 1)st yoke Yn−1(B,F) is flat.

(v) There exists a flat resolution F of B with flat (n− 1)st yoke Yn−1(B,F).

Proof. The same as the proof of Lemma C-5.119. •

Definition. The right weak dimension of a ring R is defined by

rwD(R) = sup{fd(A) : A ∈ obj(ModR)}.

Proposition C-5.135. For any ring R, rwD(R) ≤ n if and only if TorRn+1(A,B) =
{0} for every left R-module B.

Proof. This follows at once from Lemma C-5.134. •

We define the flat dimension of left R-modules in the obvious way, in terms of
its flat resolutions, and taking the supremum over all left R-modules gives the left
weak dimension.

Definition. The left weak dimension of a ring R is

�wD(R) = sup{fd(B) : B ∈ obj(RMod)}.

Theorem C-5.136. For any ring R,

rwD(R) = �wD(R).
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Proof. If either dimension is finite, then the left or right weak dimension is the
smallest n ≥ 0 with TorRn+1(A,B) = {0} for all right R-modules A and all left
R-modules B. •

Definition. The weak dimension of a ring R, denoted by wD(R), is the common
value of rwD(R) and �wD(R).

As we have remarked earlier, there are (noncommutative) rings whose left global
dimension and right global dimension can be distinct. In contrast, weak dimension
has no left/right distinction, because tensor and Tor involve both left and right
modules simultaneously.

Example C-5.137. A ring R has wD(R) = 0 if and only if every left or right
module is flat. These rings turn out to be von Neumann regular : for each
a ∈ R, there exists a′ ∈ R with aa′a = a. Examples of such rings are Boolean
rings (rings R in which r2 = r for all r ∈ R) and Endk(V ), where V is a (possibly
infinite-dimensional) vector space over a field k (Rotman [187], pp. 159–160). For
these rings R, we have wD(R) = 0 < �D(R). �

The next proposition explains why weak dimension is so called.

Proposition C-5.138. For any ring R,

wD(R) ≤ min{�D(R), rD(R)}.

Proof. It suffices to prove that fd(A) ≤ pd(A) for any right or left R-module A;
but we saw this in Example C-5.131(ii). •

Corollary C-5.139. Suppose that ExtnR(A,B) = {0} for all left R-modules A

and B. Then TorRn (C,D) = {0} for all right R-modules C and all left R-modules
D.

Proof. If ExtnR(A,B) = {0} for all A, B, then �D(R) ≤ n−1; if TorRn (C,D) �= {0}
for some C, D, then n ≤ wD(DR). Hence,

�D(R) ≤ n− 1 < n ≤ wD(R),

contradicting Proposition C-5.138. •

Lemma C-5.140. A left R-module B is flat if and only if TorR1 (R/I,B) = {0} for
every right ideal I.

Proof. Exactness of 0→ I
i−→ R→ R/I → 0 gives exactness of

0 = TorR1 (R,B)→ TorR1 (R/I,B)→ I ⊗R B
i⊗1−→ R⊗R B.

Therefore, i⊗ 1 is an injection if and only if TorR1 (R/I,B) = {0}.
On the other hand, B is flat if and only if i ⊗ 1 is an injection for every right

ideal I, by Corollary B-4.109 in Part 1. •

As global dimension, weak dimension can be computed from cyclic modules.
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Corollary C-5.141. For any ring R,

wD(R) = sup{fd(R/I) : I is a right ideal of R}
= sup{fd(R/J) : J is a left ideal of R}.

Proof. This proof is similar to the proof of Theorem C-5.130, using Lemma C-5.140
instead of Lemma C-5.129. •

Proposition C-5.142. If R is a commutative ring and S ⊆ R is multiplicative,
then

wD(S−1R) ≤ wD(R).

Proof. We may assume that wD(R) = n <∞. If A is an S−1R-module, we must
prove that fd(A) ≤ n. By Proposition C-5.27(i), A ∼= S−1M for some R-module M
(indeed, M = hA, the S−1R-module A viewed as an R-module). By hypothesis,
there is an R-flat resolution

0→ Fn → · · · → F0 →M → 0.

But localization is an exact functor, so that

0→ S−1Fn → · · · → S−1F0 → S−1M → 0

is an exact sequence of S−1R-modules. Finally, each S−1Fi is flat, by Exer-
cise B-4.93 on page 542 in Part 1, so that fd(S−1M) = fd(A) ≤ n. •

Theorem C-5.143. Let R be a left noetherian ring.

(i) If A is a finitely generated left R-module, then

pd(A) = fd(A).

(ii) wD(R) = �D(R).

(iii) If R is a commutative noetherian ring, then

wD(R) = D(R).

Proof.

(i) It is always true that fd(A) ≤ pd(A), since every projective resolution is a
flat resolution (Example C-5.131(ii)). For the reverse inequality, it is enough
to prove that if fd(A) ≤ n, then pd(A) ≤ n. By Lemma C-5.41, there is a
projective resolution of A,

→ Pn → · · · → P0 → A→ 0,

in which every Pi is finitely generated. Now this is also a flat resolution, so
that, by Lemma C-5.134, fd(A) ≤ n implies that Yn = ker(Pn−1 → Pn−2) is
flat. But every finitely generated flat left R-module is projective, by Corol-
lary B-4.112 in Part 1 (because R is left noetherian), and so

0→ Yn−1 → Pn−1 → · · · → P0 → A→ 0

is a projective resolution. Therefore, pd(A) ≤ n.
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(ii) By Theorem C-5.130, we have that �D(R) is the supremum of projective
dimensions of cyclic left R-modules, and by Corollary C-5.141, we have that
wd(R) is the supremum of flat dimensions of cyclic left R-modules. But
part (i) gives fd(A) = pd(A) for every finitely generated right R-module A,
and this suffices to prove the result.

(iii) This is a special case of (ii). •

Exercises

∗ C-5.52. (i) If A → B
f−→ C → D is an exact sequence and X is any module, prove that

there is an exact sequence

A → B ⊕X
f⊕1X−→ C ⊕X → D.

(ii) Let

P =→ P2
d2−→ P1

d1−→ P0
ε−→ A → 0

and

P′ =→ P ′
2

d′2−→ P ′
1

d′1−→ P ′
0

ε′−→ A → 0

be projective resolutions of a left R-module A. For all n ≥ 0, prove that there are
projective modules Qn and Q′

n with

Ωn(A,P)⊕Qn
∼= Ωn(A,P′)⊕Q′

n.

Hint. Proceed by induction on n ≥ 0, using Schanuel’s Lemma, Proposition B-4.48
in Part 1.

∗ C-5.53. Let

0 → B → E0 → E1 → E2 →
and

0 → B → E′0 → E′1 → E′2 →
be injective resolutions of a left R-module B. For all n ≥ 0, prove that there are injective
modules In and I ′n with

�n(B,E)⊕ In ∼= �n(B,E′)⊕ I ′n.

Hint. The proof is dual to that of Exercise C-5.52.

∗ C-5.54. Let 0 → M ′ → M → M ′′ → 0 be an exact sequence of left R-modules (over
some ring R). Use the long exact Ext sequence to prove the following statements:

(i) If pd(M ′) < pd(M), prove that pd(M ′′) = pd(M).

(ii) If pd(M ′) > pd(M), prove that pd(M ′′) = pd(M ′) + 1.

(iii) If pd(M ′) = pd(M), prove that pd(M ′′) ≤ pd(M ′) + 1.

C-5.55. (i) If 0 → A′ → A → A′′ → 0 is an exact sequence, prove that

pd(A) ≤ max{pd(A′),pd(A′′)}.

(ii) If the sequence in part (i) is not split and pd(A′) = pd(A′′) + 1, prove that

pd(A) = max{pd(A′),pd(A′′)}.
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∗ C-5.56. If A is an R-module with pd(A) = n, prove that there exists a free R-module F
with ExtnR(A,F ) �= {0}.
Hint. Every module is a quotient of a free module.

C-5.57. If G is a finite cyclic group of order not 1, prove that

�D(ZG) = ∞ = rD(ZG).

Hint. Use Theorem C-3.109.

C-5.58. (Auslander) If R is both left noetherian and right noetherian, prove that

�D(R) = rD(R).

Hint. Use weak dimension.

C-5.59. Prove that a noetherian von Neumann regular ring is semisimple.

Hint. See Example C-5.137.

∗ C-5.60. If (Mα)α∈A is a family of left R-modules, prove that

pd
(⊕
α∈A

Mα

)
= sup

α∈A

{
pd(Mα)

}
.

∗ C-5.61. Let R be a commutative ring, let c ∈ R, let R∗ = R/cR, and let ν : R → R∗ be
the natural map.

(i) If M is an R-module, define M∗ = M/cM . Prove that M∗ ∼= R∗ ⊗R M .

(ii) If A∗ is an R∗-module, define νA
∗ to be A∗ viewed as an R-module, as on page 434.

Prove that νA
∗ ∼= HomR(R

∗, A∗). Conclude that M 
→ M∗ and A∗ 
→ νA
∗ form

an adjoint pair of functors.

∗ C-5.62. If ν : R → R∗ is a ring homomorphism and A∗ and B∗ are R∗-modules, prove
that there is a natural isomorphism

HomR∗(A∗, B∗) → HomR(νA
∗, νB

∗),

where νA
∗ is A∗ viewed as an R-module via change of rings.

∗ C-5.63. (i) If I is a left ideal in a ring R, prove that either R/I is projective or pd(R/I) =
1 + pd(I) (we agree that 1 +∞ = ∞).

(ii) If 0 → M ′ → M → M ′′ → 0 is exact and two of the modules have finite projec-
tive (or injective) dimension, prove that the third module has finite projective (or
injective) dimension as well.

C-5.5. Hilbert’s Theorem on Syzygies

We are going to compute the global dimension D(k[x1, . . . , xn]) of polynomial rings.
The key result is that D(R[x]) = D(R)+1 for any, possibly noncommutative, ring R
(where R[x] is the polynomial ring in which the indeterminate x commutes with all
the constants in R). However, we will assume that R is commutative for clarity of
exposition.

Henceforth, all rings are assumed commutative unless we say otherwise.
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Lemma C-5.144. If 0→ A′ → A→ A′′ → 0 is a short exact sequence, then

pd(A′′) ≤ 1 + max{pd(A), pd(A′)}.

Proof. We may assume that the right side is finite, or there is nothing to prove;
let pd(A) ≤ n and pd(A′) ≤ n. Applying Hom(�, B), where B is any module, to
the short exact sequence gives the long exact sequence

→ Extn+1(A′, B)→ Extn+2(A′′, B)→ Extn+2(A,B)→ .

The two outside terms are {0}, by Lemma C-5.119(ii), so that exactness forces
Extn+2(A′′, B) = {0} for all B. The same lemma gives pd(A′′) ≤ n+ 1. •

We wish to compare global dimension of R and R[x], and so we consider the
R[x]-module R[x]⊗R M arising from an R-module M .

Definition. If M is an R-module over a commutative ring R, define

M [x] =
⊕
i≥0

Mi,

where Mi
∼= M for all i. The R-module M [x] is an R[x]-module if we define

x
(∑

i

ximi

)
=
∑
i

xi+1mi.

Note that M [x] ∼= R[x] ⊗R M via (xnmn) �→ 1 ⊗ (
∑

mn). Thus, if M is a
free R-module over a commutative ring R, then M [x] is a free R[x]-module, for
tensor product commutes with direct sum. The next result generalizes this from
pdR(M) = 0 to higher dimensions.

Lemma C-5.145. For every R-module M , where R is a commutative ring,

pdR(M) = pdR[x](M [x]).

Proof. It suffices to prove that if one of the dimensions is finite and at most n,
then so is the other.

If pdR(M) ≤ n, then there is an R-projective resolution

0→ Pn → · · · → P0 →M → 0.

Since R[x] is a free R-module, it is flat, and there is an exact sequence of R[x]-
modules

0→ R[x]⊗R Pn → · · · → R[x]⊗R P0 → R[x]⊗R M → 0.

But R[x]⊗RM ∼= M [x] and R[x]⊗RPn is a projective R[x]-module (for a projective
is a direct summand of a free module). Therefore, pdR[x](M [x]) ≤ n.

If pdR[x](M [x]) ≤ n, then there is an R[x]-projective resolution

0→ Qn → · · · → Q0 →M [x]→ 0.

As an R-module, M [x] ∼=
⊕

n≥1 Mn, where Mn
∼= M for all n. By Exercise C-5.60

on page 496, pdR(M [x]) = pdR(M). Each projective R[x]-module Qi is an R[x]-
summand of a free R[x]-module Fi; a fortiori, Qi is an R-direct summand of Fi.
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But R[x] is a free R-module, so that Fi is also a free R-module. Therefore, Qi is
projective as an R-module, and so pdR(M) ≤ n = pdR[x](M [x]). •

Corollary C-5.146. If R is a commutative ring and D(R) = ∞, then D(R[x]) =
∞.

Proof. If D(R) = ∞, then for every integer n, there exists an R-module Mn

with n < pd(Mn). By Lemma C-5.145, n < pdR[x](Mn[x]) for all n. Therefore,

D(R[x]) =∞. •

Proposition C-5.147. For every commutative ring R,

D(R[x]) ≤ D(R) + 1.

Proof. Recall the characteristic sequence, Theorem B-3.77 in Part 1: if M is an
R-module and S : M → M is an R-map, then there is an exact sequence of R[x]-
modules

0→M [x]→M [x]→MS → 0,

where MS is the R[x]-module M with scalar multiplication given by axim =
aSi(m). If M is already an R[x]-module and S : M → M is the R-map m �→ xm,
then MS = M . By Lemma C-5.144,

pdR[x](M) ≤ 1 + pdR[x](M [x]) = 1 + pdR(M) ≤ 1 +D(R). •

We now work toward the reverse inequality.

Definition. If M is an R-module, where R is a commutative ring, then a nonzero
element c ∈ R is regular on M (or is M -regular) if the R-map M →M , given by
m �→ cm, is injective. Otherwise, c is a zero-divisor on M ; that is, there is some
nonzero m ∈M with cm = 0.

Before stating the next theorem, let us explain the notation. Suppose that
R is a commutative ring, c ∈ R, and R∗ = R/Rc. If M is an R-module, then
M/cM is an (R/Rc)-module; that is, M/cM is an R∗-module. On the other hand,
there is the notion of change of rings in Exercise B-4.25 on page 475 in Part 1. If
ν : R→ R/Rc is the natural map, r ∈ R, and a∗ ∈ A∗, define

ra∗ = ν(r)a∗.

This makes A∗ into an R-module, denoted by νA
∗. Exercise C-5.61 on page 496

asks you to prove that νA
∗ ∼= HomR(R/cR,A∗), so that these constructions involve

an adjoint pair of functors, namely, (�∗, ν�).

Proposition C-5.148 (Rees Lemma). Let R be a commutative ring, let c ∈ R
be neither a unit nor a zero-divisor, and let R∗ = R/Rc. If c is regular on an
R-module M , then there are natural isomorphisms, for every R∗-module A∗ and all
n ≥ 0,

ExtnR∗(A∗,M/cM) ∼= Extn+1
R (νA

∗,M),

where νA
∗ is the R∗-module A∗ viewed as an R-module.
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Proof. Recall Theorem C-3.45, the axioms characterizing Ext functors. Given a
sequence of contravariant functors Gn : R∗Mod→ Ab, for n ≥ 0, such that

(i) for every short exact sequence 0 → A∗ → B∗ → C∗ → 0 of R∗-modules,
there is a long exact sequence with natural connecting homomorphisms

→ Gn(C∗)→ Gn(B∗)→ Gn(A∗)→ Gn+1(C∗)→,

(ii) G0 and HomR∗(�, L∗) are naturally equivalent, for some R∗-module L∗,

(iii) Gn(P ∗) = 0 for all projective R∗-modules P ∗ and all n ≥ 1,

then Gn is naturally equivalent to ExtnR∗(�, L∗) for all n ≥ 0.

Define contravariant functors Gn : R∗Mod → Ab by Gn = Extn+1
R (ν�,M);

that is, for all R∗-modules A∗,

Gn(A∗) = Extn+1
R (νA

∗,M).

Since axiom (i) holds for the functors Extn, it also holds for the functors Gn. Let
us prove axiom (ii). The map μc : M → M , defined by m �→ cm, is an injection,

because c is M -regular, and so the sequence 0→M
μc−→M →M/cM → 0 is exact.

Consider the portion of the long exact sequence, where A∗ is an R∗-module:

HomR(νA
∗,M)→ HomR(νA

∗,M/cM)
∂−→ Ext1R(νA

∗,M)
μc∗−→ Ext1R(νA

∗,M).

We claim that ∂ is an isomorphism. If a ∈ νA
∗, then ca = 0, because A∗ is an

R∗-module (remember that R∗ = R/cR). Hence, if f ∈ HomR(νA
∗,M), then

cf(a) = f(ca) = f(0) = 0. Since μc : M → M is an injection, f(a) = 0 for all
a ∈ A∗. Thus, f = 0, ker ∂ = HomR(νA

∗,M) = {0}, and ∂ is an injection. The map
μc∗ : Ext1R(νA

∗,M) → Ext1R(νA
∗,M) is multiplication by c, by Example C-3.60.

On the other hand, Example C-3.70 shows that if μ′
c : νA

∗ → νA
∗ is multiplication

by c, then the induced map μ′
c
∗
on Ext is also multiplication by c. But μ′

c = 0,
because A∗ is an (R/cR)-module, and so μ′

c
∗
= 0. Hence, μc∗ = μ′

c
∗
= 0. Therefore,

im ∂ = ker(μc∗) = Ext1R(νA
∗,M), and so ∂ is a surjection. It follows that

∂ : HomR(νA
∗,M/cM)→ Ext1R(νA

∗,M)

is an isomorphism, natural because it is the connecting homomorphism. By Exer-
cise C-5.62 on page 496, there is a natural isomorphism

HomR∗(A∗,M/cM)→ HomR(νA
∗,M/cM).

The composite

HomR∗(A∗,M/cM)→ HomR(νA
∗,M/cM)→ Ext1R(νA

∗,M) = G0(A∗)

is a natural isomorphism; hence, its inverse defines a natural isomorphism

G0 → HomR∗(�,M/cM).

Setting L∗ = M/cM completes the verification of axiom (ii).

It remains to verify axiom (iii): Gn(P ∗) = {0} whenever P ∗ is a projective
R∗-module and n ≥ 1. In fact, since Gn is an additive functor and every projective
is a direct summand of a free module, we may assume that P ∗ is a free R∗-module



500 Chapter C-5. Commutative Rings III

with basis, say, E. If Q =
⊕

e∈E Re is the free R-module with basis E, then there
is an exact sequence of R-modules, where λc is multiplication by c,

0→ Q
λc−→ Q→ P ∗ → 0.(1)

The first arrow is an injection because c is not a zero-divisor on R; the last arrow
is a surjection because

Q/cQ =
(⊕
e∈E

Re
)
/
(⊕
e∈E

Rce
)
∼=
⊕
e∈E

(R/Rc)e =
⊕
e∈E

R∗e = P ∗.

The long exact sequence arising from (1) contains

→ ExtnR(Q,M)→ Extn+1
R (νP

∗,M)→ Extn+1
R (Q,M)→ .

Since Q is R-free and n ≥ 1, the outside terms are {0}, and exactness gives
Gn(P ∗) = Extn+1

R (νP
∗,M) = {0}. Therefore,

Extn+1
R (νA

∗,M) = Gn(A∗) ∼= ExtnR∗(A∗,M/cM). •

Theorem C-5.149. For every commutative ring k,

D(k[x]) = D(k) + 1.

Proof. We have proved that D(k[x]) ≤ D(k) + 1 in Proposition C-5.147, and so it
suffices to prove the reverse inequality. We may assume that D(k) = n < ∞, by
Corollary C-5.146.

In the notation of the Rees Lemma, Proposition C-5.148, let us write R = k[x],
c = x, and R∗ = k. Let A be a k-module with pdk(A) = n. By Exercise C-5.56 on
page 496, there is a free k-module F with Extnk (A,F ) �= {0}; of course, multiplica-
tion by x is an injection F → F . As in the proof of the Rees Lemma, there is a
free k[x]-module Q = k[x]⊗k F with Q/xQ ∼= F . The Rees Lemma gives

Extn+1
k[x] (A,Q) ∼= Extnk (νA,Q/xQ) ∼= Extnk (νA,F ) �= {0}

(A is viewed as a k[x]-module νA via k[x]→ k). Therefore, pdk[x](A) ≥ n+1, and

so D(k[x]) ≥ n+ 1 = D(k) + 1. •

Corollary C-5.150 (Hilbert’s Theorem on Syzygies). If k is a field, then

D(k[x1, . . . , xn]) = n.

Proof. Since D(k) = 0 and D(k[x]) = 1 for every field k, the result follows from
Theorem C-5.149 by induction on n ≥ 0. •

Hilbert’s Theorem on Syzygies implies that if R = k[x1, . . . , xn], where k is a
field, then every finitely generated R-module M has a resolution

0→ Pn → Pn−1 → · · · → P0 →M → 0,

where Pi is free for all i < n and Pn is projective.

Definition. We say that a (necessarily finitely generated) R-module M , over an
arbitrary commutative ring R, has FFR (finite free resolution) if it has a reso-
lution in which every Pi, including the last Pn, is a finitely generated free module.
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Hilbert’s Theorem on Syzygies can be improved to the theorem that if k is a
field, then every finitely generated k[x1, . . . , xn]-module has FFR (Rotman [187],
p. 480). (Of course, this result also follows from the more difficult Quillen–Suslin
Theorem, which says that every projective k[x1, . . . , xn]-module, where k is a field,
is free ([187], p. 209).)

The next corollary is another application of the Rees Lemma.

Corollary C-5.151. Let R be a commutative ring, let x ∈ R not be a zero-divisor,
and let x be regular on an R-module M . If pdR(M) = n <∞, then

pdR/xR(M/xM) ≤ n− 1.

Proof. Since pdR(M) = n < ∞, we have Extn+1
R (L,M) = {0} for all left R-

modules L; in particular, Extn+1
R (L∗,M) = {0} for all left R∗-modules L∗ (by

Exercise C-5.61 on page 496, L∗ can be viewed as a left R-module). By the Rees
Lemma with R∗ = R/xR, we have ExtnR∗(L∗,M/xM) ∼= Extn+1

R (L∗,M). There-
fore, ExtnR∗(L∗,M/xM) = {0} for all R∗-modules L∗, and so pdR∗(M/xM) ≤ n−1;
that is, pdR/xR(M/xM) ≤ n− 1. •

Here is a change of rings theorem, simpler than the Rees Lemma, which gives
another proof of the inequality D(k[x]) ≥ D(k)+1 in the proof of Theorem C-5.149:
let R = k[x], so that R∗ = R/(x) = k[x]/(x) = k.

Proposition C-5.152 (Kaplansky). Let R be a (not necessarily commutative)
ring, let x ∈ Z(R) be neither a unit nor a zero-divisor, let R∗ = R/(x), and let M∗

be a left R∗-module. If pdR∗(M∗) = n <∞, then pdR(M
∗) = n+ 1.

Proof. We note that a left R∗-module is merely a left R-moduleM with xM = {0}.
The proof is by induction on n ≥ 0. If n = 0, then M∗ is a projective left R∗-

module. Since x is not a zero-divisor, there is an exact sequence of left R-modules

0→ R
x−→ R→ R∗ → 0,

so that pdR(R
∗) ≤ 1. Now M∗, being a projective left R∗-module, is a direct

summand of a free left R∗-module F ∗. But pdR(F
∗) ≤ 1, for it is a direct sum of

copies of R∗, and so pdR(M
∗) ≤ 1. Finally, if pdR(M

∗) = 0, then M∗ would be a
projective left R-module; but this contradicts Exercise B-4.36 on page 490 in Part
1, for xM = {0}. Therefore, pdR(M∗) = 1.

If n ≥ 1, then there is an exact sequence of left R∗-modules

0→ K∗ → F ∗ →M∗ → 0(2)

with F ∗ free. Now pdR∗(K∗) = n− 1, so induction gives pdR(K
∗) = n.

If n = 1, then pdR(K
∗) = 1 and pdR(K

∗) ≤ 2, by Exercise C-5.54 on page 495.
There is an exact sequence of left R-modules

0→ L→ F →M∗ → 0(3)

with F free. Since xM∗ = {0}, we have xF ⊆ ker(F → M∗) = L, and this gives
an exact sequence of R∗-modules (each term is annihilated by x)

0→ L/xF → F/xF →M∗ → 0.
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Thus, pdR∗(L/xF ) = pdR∗(M∗) − 1 = 0, because F/xF is a free R∗-module, so
the exact sequence of R∗-modules

0→ xF/xL→ L/xL→ L/xF → 0

splits. Since M∗ ∼= F/L ∼= xF/xL, we see that M∗ is a direct summand of L/xL.
Were L a projective left R-module, then L/xL and, hence, M∗ would be projective
left R∗-modules, contradicting pdR∗(M∗) = 1. Exact sequence (3) shows that
pdR(M

∗) = 1 + pdR(L) ≥ 2, and so pdR(M
∗) = 2.

Finally, assume that n ≥ 2. Exact sequence (2) gives pdR∗(K∗) = n− 1 > 1 ≥
pdR(F

∗); hence, Exercise C-5.54 gives

pdR(M
∗) = pdR(K

∗) + 1 = n+ 1. •

C-5.6. Commutative Noetherian Rings

We now investigate relations between ideals and prime ideals. These results will be
used in the next section to prove the theorems of Auslander–Buchsbaum and Serre
about regular local rings. Unless we say otherwise,

all rings in this section are commutative and noetherian.

Recall that a prime ideal p is minimal if there is no prime ideal q with q � p.
In a domain, (0) is the only minimal prime ideal.

Definition. A prime chain of length n in a commutative ring R is a strictly
decreasing chain of prime ideals

p0 � p1 � · · · � pn.

The height ht(p) of a prime ideal p is the length of the longest prime chain with
p = p0. Thus, ht(p) ≤ ∞.

Example C-5.153.

(i) If p is a prime ideal, then ht(p) = 0 if and only if p is a minimal prime ideal.
If R is a domain, then ht(p) = 0 if and only if p = (0).

(ii) If R is a Dedekind ring and p is a nonzero prime ideal in R, then ht(p) = 1.

(iii) Let k be a field and let R = k[X] be the polynomial ring in infinitely many
variables X = {x1, x2, . . . }. If pi = (xi, xi+1, . . . ), then pi is a prime ideal
(because R/pi ∼= k[x1, . . . , xi−1] is a domain) and, for every n ≥ 1,

p1 � p2 � · · · � pn+1

is a prime chain of length n. It follows that ht(p1) =∞. �

Definition. The Krull dimension of a ring R is

dim(R) = sup{ht(p) : p ∈ Spec(R)};
that is, dim(R) is the length of a longest prime chain in R.

Before proceeding further, we present a corollary of Theorem B-6.51 in Part 1;
this corollary might well have appeared in Part 1.
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Corollary C-5.154. Let I be an ideal in a noetherian ring R.

(i) Any two normal primary decompositions of I have the same set of isolated
prime ideals, and so the isolated prime ideals are uniquely determined by I.

(ii) I has only finitely many minimal prime ideals.

(iii) A noetherian ring has only finitely many minimal prime ideals.

Proof.

(i) Let I = Q1 ∩ · · · ∩Qn be a normal primary decomposition. If P is any prime
ideal containing I, then

P ⊇ I = Q1 ∩ · · · ∩Qn ⊇ Q1 · · ·Qn.

Now P ⊇ Qi for some i, by Proposition A-3.82 in Part 1, and so P ⊇
√
Qi =

Pi. In other words, any prime ideal containing I must contain an isolated
associated prime ideal. Hence, the isolated primes are the minimal elements
in the set of associated primes of I; by Theorem B-6.51 in Part 1, they are
uniquely determined by I.

(ii) As in part (i), any prime ideal P containing I must contain an isolated prime
of I. Hence, if P is minimal over I, then P must equal an isolated prime ideal
of I. The result follows, for I has only finitely many isolated prime ideals.

(iii) This follows from part (ii) taking I = (0). •

If R is a Dedekind ring, then dim(R) = 1, for every nonzero prime is a maximal
ideal; if R is a domain, then dim(R) = 0 if and only if R is a field. If R = k[X]
is a polynomial ring in infinitely many variables, then dim(R) = ∞. The next
proposition characterizes the noetherian rings of Krull dimension 0.

Proposition C-5.155. Let R be a commutative ring. Then R is noetherian with
dim(R) = 0 if and only if every finitely generated R-module M has a composition
series.

Proof. Assume that R is noetherian with Krull dimension 0. Since R is noetherian,
Corollary C-5.154(iii) says that there are only finitely many minimal prime ideals.
Since dim(R) = 0, every prime ideal is a minimal prime ideal (as well as a maximal
ideal). We conclude that R has only finitely many prime ideals, say, p1, . . . , pn.
Now nil(R) =

⋂n
i=1 pi is nilpotent, by Exercise B-6.10 on page 614 in Part 1; say,

nil(R)m = (0). Define

N = p1 · · · pn ⊆ p1 ∩ · · · ∩ pn = nil(R),

so that

Nm = (p1 · · · pn)m ⊆ nil(R)m = (0).

Let M be a finitely generated R-module, and consider the chain

M ⊇ p1M ⊇ p1p2M ⊇ · · · ⊇ NM.

The factor module p1 · · · pi−1M/p1 · · · piM is an (R/pi)-module; that is, it is a
vector space over the field R/pi (for pi is a maximal ideal). Since M is finitely
generated, the factor module is finite-dimensional, and so the chain can be refined
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so that all the factor modules be simple. Finally, repeat this argument for the
chains

N jM ⊇ p1N
jM ⊇ p1p2N

jM ⊇ · · · ⊇ N j+1M.

Since Nm = {0}, we have constructed a composition series for M .

Conversely, if every finitely generated R-module has a composition series, then
the cyclic R-module R has a composition series, say, of length �. It follows that any
ascending chain of ideals has length at most �, and so R is noetherian. To prove
that dim(R) = 0, we must show that R does not contain any pair of prime ideals
with p � q. Passing to the quotient ring R/q, we may restate the hypotheses: R
is a domain having a nonzero prime ideal as well as a composition series R ⊇ I1 ⊇
· · · ⊇ Id �= (0). The last ideal Id is a minimal ideal; choose a nonzero element
x ∈ Id. Of course, xId ⊆ Id; since R is a domain, xId �= (0), so that minimality
of Id gives xId = Id. Hence, there is y ∈ Id with xy = x; that is, 1 = y ∈ Id, and
so Id = R. We conclude that R is a field, contradicting its having a nonzero prime
ideal. •

Low-dimensional cases become more interesting once we recognize that they
can be used in tandem with formation of quotient rings and localization, for these
methods often reduce a more general case to these cases. We shall see this in the
proof of the next theorem.

We are going to prove a theorem of Krull, the Principal Ideal Theorem, which
implies that every prime ideal (in a noetherian ring) has finite height. Our proof is
Kaplansky’s adaptation of a proof of Rees.

Lemma C-5.156. Let a and b be nonzero elements in a domain R. If there exists
c ∈ R such that ca2 ∈ (b) implies ca ∈ (b), then the series (a, b) ⊇ (a) ⊇ (a2) and
(a2, b) ⊇ (a2, ab) ⊇ (a2) have isomorphic factor modules.8

Proof. Now (a, b)/(a) ∼= (a2, ab)/(a2), for multiplication by a sends (a, b) onto
(a2, ab) and (a) onto (a2).

The module (a)/(a2) is cyclic with annihilator (a); that is, (a)/(a2) ∼= R/(a).
The module (a2, b)/(a2, ab) is also cyclic, for the generator a2 lies in (a2, ab). Now
A = ann

(
(a2, b)/(a2, ab)

)
contains (a), and so it suffices to prove that A = (a);

that is, if cb = ua2 + vab, then c ∈ (a). This equation gives ua2 ∈ (b), and so
the hypothesis gives ua = rb for some r ∈ R. Substituting, cb = rab + vab, and
canceling b gives c = ra+ va ∈ (a). Therefore, (a)/(a2) ∼= (a2, b)/(a2, ab). •

Definition. A prime ideal p is minimal over an ideal I if I ⊆ p and there is no
prime ideal q with I ⊆ q � p; equivalently, p/I is a minimal prime ideal in R/I.

Theorem C-5.157 (Principal Ideal Theorem). Let (r) be a principal ideal in
a commutative noetherian ring R. If (r) is proper (that is, if r is not a unit) and
p is a prime ideal minimal over (r), then ht(p) ≤ 1.

8Our notation for ideals is not consistent. The principal ideal generated by an element a ∈ R
is sometimes denoted by (a) and sometimes denoted by Ra.
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Proof. If, on the contrary, ht(p) ≥ 2, then there is a prime chain

p � p1 � p2.

We normalize the problem in two ways. First, replace R by R/p2; second, localize
at p/p2. The hypotheses are modified accordingly: R is now a local domain whose
maximal ideal m is minimal over a proper principal ideal (x), and there is a prime
ideal q with

R � m � q � (0).

Choose a nonzero element b ∈ q, and define

Ii = ((b) : xi) = {c ∈ R : cxi ∈ (b)}.

The ascending chain I1 ⊆ I2 ⊆ · · · must stop, because R is noetherian: say,
In = In+1 = · · · . It follows that if c ∈ I2n, then c ∈ In; that is, if cx

2n ∈ (b), then
cxn ∈ (b). If we set a = xn, then ca2 ∈ (b) implies ca ∈ (b).

If R∗ = R/(a2), then dim(R∗) = 0, for it has exactly one prime ideal. By Propo-
sition C-5.155, the R∗-module (a, b)/(a2) (as every finitely generated R∗-module)
has finite length � (the length of its composition series). But Lemma C-5.156 im-
plies that both (a, b) and its submodule (a2, b) have length �. The Jordan–Hölder
Theorem says that this can happen only if (a2, b) = (a, b), which forces a ∈ (a2, b):
thus, there are s, t ∈ R with a = sa2+ tb. Since sa ∈ m, the element 1−sa is a unit
(for R is a local ring with maximal ideal m). Hence, −a(1 − sa) = tb ∈ (b) gives
a ∈ (b) ⊆ q. But a = xn gives x ∈ q, contradicting m being a prime ideal minimal
over (x). •

We now generalize the Principal Ideal Theorem to finitely generated ideals.

Theorem C-5.158 (Generalized Principal Ideal Theorem). If I=(a1, . . . , an)
is a proper ideal in a ring R and p is a prime ideal minimal over I, then ht(p) ≤ n.

Proof. The hypotheses still hold after localizing at p, so we may now assume that
R is a local ring with p as its maximal ideal.

The proof is by induction on n ≥ 1, the base step being the Principal Ideal
Theorem. Let I = (a1, . . . , an+1), and assume, by way of contradiction, that ht(p) >
n+ 1; thus, there is a prime chain

p = p0 � p1 � · · · � pn+1.

We may assume that there are no prime ideals strictly between p and p1 (if there
were such a prime ideal, insert it, thereby lengthening the chain; such insertions can
be done only finitely many times, for the module p/p1 has ACC). Now I �⊆ p1, be-
cause p is a prime ideal minimal over I. Reindexing the generators of I if necessary,
a1 /∈ p1. Hence, (a1, p1) � p1. We claim that p is the only prime ideal containing
(a1, p1); there can be no prime ideal p′ with (a1, p1) ⊆ p′ ⊆ p (the second inclusion
holds because p is the only maximal ideal in R) because there are no prime ideals
strictly between p and p1. Therefore, in the ring R/(a1, p1), the image of p is the
unique nonzero prime ideal. As such, it must be the nilradical, and hence it is
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nilpotent, by Exercise B-6.10 on page 614 in Part 1. There is an integer m with
pm ⊆ (a1, p1), and so there are equations

ami = ria1 + bi, ri ∈ R, bi ∈ p1, and i ≥ 2.(1)

Define J = (b2, . . . , bn+1). Now J ⊆ p1, while ht(p1) > n. By induction, p1 cannot
be a prime ideal minimal over J , and so there exists a prime ideal q minimal over J :

J ⊆ q � p1.

Now ami ∈ (a1, q) for all i, by (1). Thus, any prime ideal p′ containing (a1, q)
must contain all ami , hence all ai, and hence I. As p is the unique maximal ideal,
I ⊆ p′ ⊆ p. But p is a prime ideal minimal over I, and so p′ = p. Therefore, p is
the unique prime ideal containing (a1, q). If R∗ = R/q, then p∗ = p/q is a prime
ideal minimal over the principal ideal (a1 + q). On the other hand, ht(p∗) ≥ 2,
for p∗ � p∗1 � (0) is a prime chain, where p∗1 = p1/q. This contradiction to the
Principal Ideal Theorem completes the proof. •

Corollary C-5.159. Every prime ideal in a (noetherian) ring R has finite height,
and so Spec(R) has DCC.

Proof. Every prime ideal p is finitely generated, because R is noetherian; say,
p = (a1, . . . , an). But p is a minimal prime ideal over itself, so that Theorem C-5.158
gives ht(p) ≤ n. •

A noetherian ring may have infinite Krull dimension, for there may be no
uniform bound on the length of prime chains. We will see that this cannot happen
for local rings.

The Generalized Principal Ideal Theorem bounds the height of a prime ideal
that is minimal over an ideal; more generally, the next result bounds the height of
a prime ideal that merely contains an ideal, but which may not be minimal over it.

Corollary C-5.160. Let I = (a1, . . . , an) be an ideal in R, and let p be a prime
ideal in R with p ⊇ I. If ht(p/I) denotes the height of p/I in R/I, then

ht(p) ≤ n+ ht(p/I).

Proof. The proof is by induction on h = ht(p/I) ≥ 0. If h = 0, then Exer-
cise C-5.68 on page 510 says that p is minimal over I, and so the base step is the
Generalized Principal Ideal Theorem. For the inductive step h > 0, p is not mini-
mal over I. By Corollary C-5.154(iii), there are only finitely many minimal primes
in R/I, and so Exercise C-5.68 on page 510 says that there are only finitely many
prime ideals minimal over I, say, q1, . . . , qs. Since p is not minimal over I, p �⊆ qi

for any i; hence, Proposition A-3.82 in Part 1 says that p �⊆ q1 ∪ · · · ∪ qs, and so
there is y ∈ p with y /∈ qi for any i. Define J = (I, y).

We now show, in R/J , that ht(p/J) ≤ h− 1. Let

p/J � p1/J � · · · � pr/J

be a prime chain in R/J . Since I � J , there is a surjective ring map R/I → R/J .
The prime chain lifts to a prime chain in R/I:

p/I � p1/I � · · · � pr/I.
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Now pr ⊇ J � I, and J = (I, y) does not contain any qi. But the ideals qi/I are
the minimal prime ideals in R/I, by Exercise C-5.68 on page 510, so that pr is not
a minimal prime ideal in R. Therefore, there is a prime chain starting at p of length
r + 1. We conclude that r + 1 ≤ h, and so ht(p/J) ≤ h− 1.

Since J = (I, y) = (a1, . . . , an, y) is generated by n+ 1 elements, the inductive
hypothesis gives

ht(p) ≤ n+ 1 + ht(p/J) = (n+ 1) + (h− 1) = n+ h = n+ ht(p/I). •

Recall that a nonzero element c ∈ R is regular on R if the multiplication map
μc : R→ R, given by r �→ cr, is an injection; that is, c is not a zero-divisor.

Definition. A sequence x1, . . . , xn in a ring R is an R-sequence if x1 is regular
on R, x2 is regular on R/(x1), x3 is regular on R/(x1, x2), . . . , xn is regular on
R/(x1, . . . , xn−1).

For example, if R = k[x1, . . . , xn] is a polynomial ring over a field k, then it is
easy to see that x1, . . . , xn is an R-sequence. Exercise C-5.67 on page 510 gives an
example of a permutation of an R-sequence that is not an R-sequence. However, if R
is local, then every permutation of an R-sequence is also an R-sequence (Kaplansky
[118], p. 86).

The Generalized Principal Ideal Theorem gives an upper bound on the height
of a prime ideal; the next lemma gives a lower bound.

Lemma C-5.161.

(i) If x is not a zero-divisor in a ring R, then x lies in no minimal prime ideal.

(ii) If p is a prime ideal in R and x ∈ p is not a zero-divisor, then

1 + ht(p/(x)) ≤ ht(p).

(iii) If a prime ideal p in R contains an R-sequence x1, . . . , xd, then

d ≤ ht(p).

Proof.

(i) Suppose, on the contrary, that p is a nonzero minimal prime ideal contain-
ing x. Now Rp is a ring with only one nonzero prime ideal, namely, pp, which
must be the nilradical. Thus, x/1, as every element in pp, is nilpotent. If
xm/1 = 0 in Rp, then there is s /∈ p (so that s �= 0) with sx = 0, contradicting
x not being a zero-divisor.

(ii) If h = ht(p/(x)), then there is a prime chain in R/(x):

p/(x) � p1/(x) � · · · � ph/(x).

Lifting back to R, there is a prime chain p � p1 � · · · � ph with ph ⊇ (x).
Since x is not a zero-divisor, part (i) says that ph is not a minimal prime.
Therefore, there exists a prime ideal ph+1 properly contained in ph, which
shows that ht(p) ≥ 1 + h.
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(iii) The proof is by induction on d ≥ 1. For the base step d = 1, suppose,
on the contrary, that ht(p) = 0; then p is a minimal prime ideal, and this
contradicts part (i). For the inductive step, part (ii) gives ht(p/(x1)) + 1 ≤
ht(p). Now p/(x1) contains an (R/(x1))-sequence x2 + (x1), . . . , xd + (x1),
by Exercise C-5.72(ii) on page 524, so that the inductive hypothesis gives
d− 1 ≤ ht(p/(x1)). Therefore, part (ii) gives d ≤ ht(p). •

Definition. A subset X of an R-module M is scalar-closed if x ∈ X implies that
rx ∈ X for all r ∈ R.

Every submodule of a module M is scalar-closed. An example of a scalar-closed
subset (of R) that is not a submodule is

Zer(R) = {r ∈ R : r = 0 or r is a zero-divisor}.

Definition. Let X ⊆M be a scalar-closed subset. The annihilator of x ∈ X is

ann(x) = {r ∈ R : rx = 0},
the annihilator of X is

ann(X) = {r ∈ R : rx = 0 for all x ∈ X},
and

A(X) = {ann(x) : x ∈ X and x �= 0}.

Note that ann(x) and ann(X) are ideals (ann(0) = R, and so A(X) is a family
of proper ideals if M �= {0}).

Lemma C-5.162. Let X be a nonempty scalar-closed subset of a nonzero finitely
generated R-module M .

(i) An ideal I maximal among the ideals in A(X) is a prime ideal.

(ii) There is a descending chain

M = M0 ⊇M1 ⊇M2 ⊇ · · · ⊇Mn = {0}
whose factor modules Mi/Mi+1

∼= R/pi for prime ideals pi.

Proof.

(i) Since R is noetherian, the nonempty family A(X) contains a maximal ele-
ment, by Proposition B-1.10 in Part 1; call it I = ann(x). Suppose that a, b
are elements in R with ab ∈ I and b /∈ I; that is, abx = 0 but bx �= 0. Thus,
ann(bx) ⊇ I + Ra ⊇ I. If a /∈ I, then ann(bx) ⊇ I + Ra � I. But bx ∈ X
because X is scalar-closed, so that ann(bx) ∈ A(X), which contradicts the
maximality of I = ann(x). Therefore, a ∈ I and I is a prime ideal.

(ii) Since R is noetherian and M is finitely generated, M has the maximum
condition on ideals. Thus, the nonempty family A(M) has a maximal ele-
ment, say, p1 = ann(x1), which is prime, by part (i). Define M1 =

〈
x1

〉
,

and note that M1
∼= R/ann(x1) = R/p1. Now repeat this procedure. Let

p2 = ann(x2 +M1) be a maximal element of A(M/M1), so that p2 is prime,
and define M2 =

〈
x2, x1

〉
. Note that {0} ⊆ M1 ⊆ M2 and that M2/M1

∼=
R/ann(x2 + M1) = R/p2. The module M has ACC, and so this process
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terminates, say, with M∗ ⊆ M . We must have M∗ = M , however, lest the
process continue for another step. Now reindex the subscripts to get the
desired statement. •

Lemma C-5.163 (Prime Avoidance). Let p1, . . . , pn be prime ideals in a ring
R. If J is an ideal with J ⊆ p1 ∪ · · · ∪ pn, then J is contained in some pi.

Proof. The proof is by induction on n ≥ 1, and the base step is trivially true. For
the inductive step, let J ⊆ p1 ∪ · · · ∪ pn+1, and define

Di = p1 ∪ · · · ∪ p̂i ∪ · · · ∪ pn+1.

We may assume that J � Di for all i, since otherwise the inductive hypothesis
can be invoked to complete the proof. Hence, for each i, there exists ai ∈ J with
ai /∈ Di; since J ⊆ Di ∪ pi, we must have ai ∈ pi. Consider the element

b = a1 + a2 · · · an+1.

Now b ∈ J because all the ai are. We claim that b /∈ p1. Otherwise, a2 · · · an+1 =
b − a1 ∈ p1; but p1 is a prime ideal, and so ai ∈ p1 for some i ≥ 2. This is
a contradiction, for ai ∈ p1 ⊆ Di and ai /∈ Di. Therefore, b /∈ pi for any i,
contradicting J ⊆ p1 ∪ · · · ∪ pn. •

Proposition C-5.164. There are finitely many prime ideals p1, . . . , pn with

Zer(R) = {r ∈ R : r = 0 or r is a zero-divisor} ⊆ p1 ∪ · · · ∪ pn.

Proof. Since Zer(R) is scalar-closed, Lemma C-5.162(i) shows that any ideal I that
is a maximal member of the family A(X) = (ann(x))x∈Zer(R) is prime (maximal
members exist because R is noetherian). Let (pα)α∈A be the family of all such
maximal members. If x is a zero-divisor, then there is a nonzero r ∈ R with
rx = 0; that is, x ∈ ann(r) (of course, r ∈ Zer(R)). It follows that every zero-
divisor x lies in some pα, and so Zer(R) ⊆

⋃
α∈A pα. It remains to prove that we

may choose the index set A to be finite.

Each pα = ann(xα) for some xα ∈ X; let S be the submodule of M generated
by all the xα. Since R is noetherian and M is finitely generated, the submodule
S is generated by finitely many of the xα; say, S =

〈
x1, . . . , xn

〉
. We claim that

ann(X) ⊆ p1 ∪ · · · ∪ pn, and it suffices to prove that pα ⊆ p1 ∪ · · · ∪ pn for all α.
Now pα = ann(xα), and xα ∈ S; hence,

xα = r1x1 + · · ·+ rnxn

for ri ∈ R. If a ∈ p1 ∩ · · · ∩ pn = ann(x1)∩ · · · ∩ ann(xn), then axi = 0 for all i and
so axα = 0. Therefore,

p1 ∩ · · · ∩ pn ⊆ ann(xα) = pα.

But pα is prime, so that pi ⊆ pα for some i,9 and this contradicts the maximality
of pi. •

9Assume that I1 ∩ · · · ∩ In ⊆ p, where p is prime. If Ii �⊆ p for all i, then there are ui ∈ Ii
with ui /∈ p. But u1 · · ·un ∈ I1 ∩ · · · ∩ In ⊆ p; since p is prime, some ui ∈ p, a contradiction.
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Exercises

C-5.64. If R = k[x1, . . . , xn], where k is a field, and p = (x1, . . . , xn), prove that ht(p)
= n.

C-5.65. Let R be a commutative ring with FFR. Prove that every finitely generated pro-
jective R-module P has a finitely generated free complement; that is, there is a finitely
generated free R-module F such that P ⊕ F is a free R-module. Compare with Exer-
cise C-4.64 on page 417.

C-5.66. If x1, x2, . . . , xn is an R-sequence on an R-module M , prove that (x1) ⊆ (x1, x2)
⊆ · · · ⊆ (x1, x2, . . . , xn) is a strictly ascending chain.

∗ C-5.67. Let R = k[x, y, z], where k is a field.

(i) Prove that x, y(1− x), z(1− x) is an R-sequence.

(ii) Prove that y(1− x), z(1− x), x is not an R-sequence.

∗ C-5.68. Let R be a commutative ring. Prove that a prime ideal p in R is minimal over
an ideal I if and only if ht(p/I) = 0 in R/I.

∗ C-5.69. If k is a field, prove that k[[x1, . . . , xn]] is noetherian.

Hint. Define the order o(f) of a nonzero formal power series f = (f0, f1, f2, . . . ) to be
the smallest n with fn �= 0. Find a proof similar to that of the Hilbert Basis Theorem
(Zariski–Samuel [234], p. 138).

C-5.7. Regular Local Rings

We are going to prove that local rings have finite global dimension if and only if
they are regular local rings (such rings arise quite naturally in algebraic geometry),
in which case they are UFDs. Let us begin with a localization result.

All rings in this section are commutative and noetherian.

Proposition C-5.165.

(i) If A is a finitely generated R-module, then

pd(A) = sup
m

pd(Am),

where m ranges over all the maximal ideals of R.

(ii) For every commutative ring R, we have

D(R) = sup
m

D(Rm),

where m ranges over all the maximal ideals of R.
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Proof.

(i) We first prove that pd(A) ≥ pd(Am) for every maximal ideal m. There is
nothing to prove if pd(A) =∞, and so we may assume that pd(A) = n <∞.
Thus, there is a projective resolution

0→ Pn → Pn−1 → · · · → P0 → A→ 0.

Since Rm is a flat R-module, by Theorem C-5.30,

0→ Rm ⊗ Pn → Rm ⊗ Pn−1 → · · · → Rm ⊗ P0 → Am → 0

is exact; it is a projective resolution of Am because all Rm⊗Pi are projective
Rm-modules. Therefore, pd(Am) ≤ n. (Neither hypothesis R noetherian nor
A finitely generated is needed for this implication.)

For the reverse inequality, we may assume that supm pd(Am) = n <∞.
Since R is noetherian, Theorem C-5.143(i) says that pd(A) = fd(A). Now

pd(Am) ≤ n if and only if TorRm

n+1(Am, Bm) = {0} for all Rm-modules Bm,

by Lemma C-5.134. However, Proposition C-5.39 gives TorRm

n+1(Am, Bm) ∼=(
TorRn+1(A,B)

)
m
. Therefore, TorRn+1(A,B) = {0}, by Proposition C-5.38(i).

We conclude that n ≥ pd(A).

(ii) This follows at once from part (i), for D(R) = supA{pd(A)}, where A ranges
over all finitely generated (even cyclic) R-modules (Theorem C-5.130). •

Definition. If R is a local ring with maximal ideal m, then k = R/m is called its
residue field. We shall say that

(R,m, k)

is a local ring.

Theorem C-5.130 allows us to compute global dimension as the supremum of
projective dimensions of cyclic modules. When (R,m, k) is a local ring, there is a
dramatic improvement: global dimension is determined by the projective dimension
of one cyclic module—its residue field k.

Lemma C-5.166. Let (R,m, k) be a local ring. If A is a finitely generated R-
module, then

pd(A) ≤ n if and only if TorRn+1(A, k) = {0}.

Proof. Suppose pd(A) ≤ n. By Example C-5.131, we have fd(A) ≤ pd(A), so that

TorRn+1(A,B) = {0} for every R-module B. In particular, TorRn+1(A, k) = {0}.
We prove the converse by induction on n ≥ 0. For the base step n = 0, we

must prove that TorR1 (A, k) = {0} implies pd(A) = 0; that is, A is projective (hence
free, since R is local, by Proposition C-5.26). Let {a1, . . . , ar} be a minimal set
of generators of A (that is, no proper subset generates A),10 let F be the free
R-module with basis {e1, . . . , er}, and let ϕ : F → A be the R-map with ϕ(ei) = ai.

There is an exact sequence 0→ N
i−→ F

ϕ−→ A→ 0, where N = kerϕ and i is the

10A minimal generating set for A = (2) in Z is {4, 6}; of course, there is a generating set of
smaller cardinality.
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inclusion. Since R is noetherian, the submodule N is finitely generated. For later
use, we observe, as in the proof of Proposition C-5.26, that

N ⊆ mF.

Now the sequence 0 → N ⊗R k
i⊗1−→ F ⊗R k

ϕ⊗1−→ A ⊗R k → 0 is exact, because
TorR1 (A, k) = {0}. Hence, i⊗ 1: N ⊗R k → F ⊗R k is an injection.

Since �⊗RN is right exact, exactness of 0→ m
j−→ R→ k → 0 gives exactness

of m⊗RN
j⊗1−→ R⊗RN → k⊗RN → 0, so that k⊗RN ∼= R⊗RN/ im(j⊗1). Under

the isomorphism λ : R⊗RN → N , given by r⊗n �→ rn, we have λ(im(j⊗1)) = mN .
Indeed, the map τN : N ⊗R k → N/mN , given by n⊗ b �→ n + mN (where n ∈ N
and b ∈ k), is a natural isomorphism. Thus, there is a commutative diagram

0 �� N ⊗R k

τN

��

i⊗1 �� F ⊗R k

τF

��
N/mN

i

�� F/mF

where i : n + mN �→ n + mF . Since i ⊗ 1 is an injection, so is i. But N ⊆
mF implies that the map i is the zero map. Therefore, N/mN = {0} and N =
mN . By Corollary C-2.8, Nakayama’s Lemma, N = {0}, and so ϕ : F → A is an
isomorphism; that is, A is free.

For the inductive step, we must prove that if TorRn+2(A, k) = {0}, then pd(A) ≤
n + 1. Take a projective resolution P of A, and let Ωn(A,P) be its nth syzygy.
Since P is also a flat resolution of A, we have Yn(A,P) = Ωn(A,P). By Proposi-

tion C-5.132, TorRn+2(A, k) ∼= TorR1 (Yn(A,P), k). The base step shows that Yn(A,P)
= Ωn(A,P) is free, and this gives pd(A) ≤ n+ 1, by Lemma C-5.119. •

Corollary C-5.167. Let (R,m, k) be a local ring. If A is a finitely generated
R-module, then

pd(A) = sup
{
i : TorRi (A, k) �= {0}

}
.

Proof. If n = sup
{
i : TorRi (A, k) �= {0}

}
, then pd(A) ≤ n. But pd(A) �< n; that

is, pd(A) = n. •

Theorem C-5.168. Let (R,m, k) be a local ring.

(i) D(R) ≤ n if and only if TorRn+1(k, k) = {0}.
(ii) D(R) = pd(k).

Proof.

(i) If D(R) ≤ n, then Lemma C-5.166 gives TorRn+1(k, k) = {0}.
Conversely, if TorRn+1(k, k) = {0}, the same lemma gives pd(k) ≤ n.

By Lemma C-5.134, we have TorRn+1(A, k) = {0} for every R-module A. In
particular, if A is finitely generated, then Lemma C-5.166 gives pd(A) ≤ n.
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Finally, Theorem C-5.130 shows that D(R) = supA{pd(A)}, where A ranges
over all finitely generated (even cyclic) R-modules. Therefore, D(R) ≤ n.

(ii) Immediate from part (i). •

If (R,m, k) is a local ring, then m/m2 is an (R/m)-module; that is, it is a vector
space over k. Recall that a generating set X of a module M (over any ring) is
minimal if no proper subset of X generates M .

Proposition C-5.169. Let (R,m, k) be a local ring.

(i) Elements x1, . . . , xd form a minimal generating set for m if and only if the
cosets x∗

i = xi +m2 form a basis of m/m2.

(ii) Any two minimal generating sets of m have the same number of elements.

Proof.

(i) If x1, . . . , xd is a minimal generating set for m, then X∗ = x∗
1, . . . , x

∗
d spans

the vector space m/m2. If X∗ is linearly dependent, then there is some
x∗
i =

∑
j �=i r

′
jx

∗
J , where r′j ∈ k. Lifting this equation to m, we have xi ∈∑

j �=i rjxj +m2. Thus, if B =
〈
xj : j �= i

〉
, then B +m2 = m. Hence,

m (m/B) = (B +m2)/B = m/B.

By Nakayama’s Lemma, m/B = {0}, and so m = B. This contradicts
x1, . . . , xd being a minimal generating set. Therefore, X∗ is linearly inde-
pendent, and hence it is a basis of m/m2.

Conversely, assume that x∗
1, . . . , x

∗
d is a basis of m/m2, where x∗

i = xi+m2.
If we define A =

〈
x1, . . . , xd

〉
, then A ⊆ m. If y ∈ m, then y∗ =

∑
r′ix

∗
i , where

r′i ∈ k, so that y ∈ A + m2. Hence, m = A + m2, and, as in the previous
paragraph, Nakayama’s Lemma gives m = A; that is, x1, . . . , xd generate m.
If a proper subset of x1, . . . , xd generates m, then the vector space m/m2 could
be generated by fewer than d elements, contradicting dimk(m/m2) = d.

(ii) The number of elements in any minimal generating set is dimk(m/m2). •

Definition. If (R,m, k) is a local ring, then m/m2 is a finite-dimensional vector
space over k. Write

V (R) = dimk(m/m2).

Proposition C-5.169 shows that all minimal generating sets of m have the same
number of elements, namely, V (R).

Proposition C-5.170. Let (R,m, k) be a local ring. If x ∈ m − m2, define R∗ =
R/(x) and m∗ = m/(x). Then (R∗,m∗, k) is a local ring, and

V (R) = V (R∗) + 1.

Proof. The reader may show that m∗ is the unique maximal ideal in R∗. Note
that R∗/m∗ = [R/(x)]/[m/(x)] ∼= R/m = k.

Let {y∗1 , . . . , y∗t } be a minimal generating set of m∗, and let y∗i = yi + m. It
is clear that {x, y1, . . . , yt} generates m, and we now show that it is a minimal
generating set; that is, their cosets mod m form a basis of m/m2.
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If rx+
∑

i riyi ∈ m2, where r, ri ∈ R, then we must show that each term lies in
m2; that is, all r, ri ∈ m. Passing to R∗, we have

∑
i r

∗
i y

∗
i ∈ m2, because r∗x∗ = 0

(where ∗ denotes coset mod (x)). But {y∗1 , . . . , y∗t } is a basis of m∗/(m∗)2, so that
r∗i ∈ m∗ and ri ∈ m for all i. Therefore, rx ∈ m2. But x /∈ m2, and so r ∈ m, as
desired. •

Corollary C-5.171. If (R,m, k) is a local ring, then ht(m) ≤ V (R), and

dim(R) ≤ V (R).

Proof. If V (R) = d, then m = (x1, . . . , xd). Since m is obviously a minimal
prime over itself, Theorem C-5.158, the Generalized Principal Ideal Theorem, gives
ht(m) ≤ d = V (R).

If p �= m is a prime ideal in R, then any prime chain, p = p0 � p1 � · · · � ph,
can be lengthened to a prime chain m � p0 � p1 � · · · � ph of length h + 1.
Therefore, h < V (R), and so dim(R) = ht(m) ≤ V (R). •

Definition. A regular local ring is a local ring (R,m, k) such that

dim(R) = V (R).

It is clear that every field is a regular local ring of dimension 0, and every DVR
is a regular local ring of dimension 1.

Example C-5.172. Regular local rings arise in algebraic geometry: varieties are
viewed as algebraic analogs of differentiable manifolds, and geometric definitions
are adapted to an algebraic setting. Recall some definitions from Section C-5.5.
Let I be an ideal in k[X] = k[x1, . . . , xn], where k is an algebraically closed field;
we regard each f(X) ∈ k[X] as a k-valued function. Define the affine variety of
I by

V = Var(I) = {a ∈ kn : f(a) = 0 for all f ∈ I},
and define its coordinate ring k[V ] by

k[V ] = {f |V : f(X) ∈ k[X]}.

Now k[V ] ∼= k[X]/Id(V ), where Id(V ) = {f(X) ∈ k[X] : f(v) = 0 for all v ∈ V }
is an ideal in k[X]. Affine varieties V are usually assumed to be irreducible; that
is, Id(V ) is a prime ideal (see Proposition B-6.42 in Part 1), so that the coordinate
ring k[V ] is a domain.

If a is a point in an affine variety V , then ma = {f + Id(V ) ∈ k[V ] : f(a) = 0}
is a maximal ideal in k[V ]. Define Oa to be the localization

Oa = k[V ]ma
.

Identify the maximal ideal ma with its localization in k[V ]ma
, and call (Oa,ma, k)

the local ring of V at a. Now V = Var(I), where I =
(
f1(X), . . . , ft(X)

)
. Each

fi(X) has partial derivatives ∂fi/∂xj (which are defined formally, as derivatives of
polynomials of a single variable are defined). The tangent space Ta of V at a can
be defined, and there is an isomorphism of the dual space T ∗

a
∼= ma/m

2
a (as vector
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spaces over k); thus, dimk(ma/m
2
a) = dimk(Ta). The Jacobian of f1(X), . . . , ft(X)

is the t× n matrix over k[X],

Jac(f1, . . . , ft) =
[
∂fi/∂xj

]
.

If a ∈ V , evaluating each entry in Jac(f1, . . . , ft) at a gives a matrix Jac(f1, . . . , ft)a
over k. We say that a is nonsingular if rank

(
Jac(f1, . . . , fn)a

)
= n − dim(V ).

There are several equivalent ways of expressing nonsingularity of a, and all of
them say that a is nonsingular if and only if (Oa,ma, k) is a regular local ring
(Hartshorne [95], §1.5). (There is a notion of projective variety, which is essentially
a compactification of an affine variety, and this discussion can be adapted to them
as well.) �

Proposition C-5.173. Let (R,m, k) be a local ring. If m can be generated by an
R-sequence x1, . . . , xd, then R is a regular local ring and

d = dim(R) = V (R).

Remark. We will soon prove the converse: in a regular local ring, the maximal
ideal can be generated by an R-sequence. �

Proof. Consider the inequalities

d ≤ ht(m) ≤ V (R) ≤ d.

The first inequality holds by Lemma C-5.161, the second by Corollary C-5.171, and
the third by Proposition C-5.169. It follows that all the inequalities are, in fact,
equalities, and the proposition follows because dim(R) = ht(m). •

Example C-5.174. Let k be a field, and let R = k[[x1, . . . , xr]] be the ring of
formal power series in r variables x1, . . . , xr. Recall that an element f ∈ R is a
sequence

f = (f0, f1, f2, . . . , fn, . . . ),

where fn is a homogeneous polynomial of total degree n in k[x1, . . . , xr], and that
multiplication is defined by

(f0, f1, f2, . . . )(g0, g1, g2, . . . ) = (h0, h1, h2, . . . ),

where hn =
∑

i+j=n figj . We claim that R is a local ring with maximal ideal

m = (x1, . . . , xr) and residue field k. First, R/m ∼= k, so that m is a maximal ideal.
To see that m is the unique maximal ideal, it suffices to prove that if f ∈ R and
f /∈ m, then f is a unit. Now f /∈ m if and only if f0 �= 0, and we now show that
f is a unit if and only if f0 �= 0. If fg = 1, then f0g0 = 1, and f0 �= 0; conversely,
if f0 �= 0, we can solve (f0, f1, f2, . . . )(g0, g1, g2, . . . ) = 1 recursively for gn, and
fg = 1, where g = (g0, g1, g2, . . . ).

Exercise C-5.69 on page 510 shows that the ring R is noetherian. But the quo-
tient ring R/(x1, . . . , xi−1) is a domain, because it is isomorphic to k[[xi, . . . , xr]],
and so xi is a regular element on it. Hence, Proposition C-5.173 shows that
R = k[[x1, . . . , xr]] is a regular local ring, for x1, . . . , xr is an R-sequence. �
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The next lemma prepares us for induction.

Lemma C-5.175. Let (R,m, k) be a regular local ring. If x ∈ m−m2, then R/(x)
is regular and dim(R/(x)) = dim(R)− 1.

Proof. Since R is regular, we have dim(R) = V (R). Let us note at the outset that
dim(R) = ht(m). We must show that ht(m∗) = V (R/(x)) = dimk(m

∗/m∗2), where
m∗ = m/(x). By Corollary C-5.160, ht(m) ≤ ht(m∗) + 1. Hence,

ht(m)− 1 ≤ ht(m∗) ≤ V (R/(x)) = V (R)− 1 = ht(m)− 1.

The next to last equation is Proposition C-5.170; the last equation holds because
R is regular. Therefore, dim(R/(x)) = ht(m∗) = V (m∗), and so R/(x) is regular
with dim(R/(x)) = dim(R)− 1. •

We are now going to prove that regular local rings are domains, and we will
then use this to prove the converse of Proposition C-5.173.

Proposition C-5.176. Every regular local ring (R,m, k) is a domain.

Proof. The proof is by induction on d = dim(R). If d = 0, then R is a field, by
Exercise C-5.71 on page 524. If d > 0, let p1, . . . , ps be the minimal prime ideals in
R (there are only finitely many, by Corollary C-5.154). If m−m2 ⊆ p1∪· · ·∪ps, then
Lemma C-5.163 would give m ⊆ pi, which cannot occur because d = ht(m) > 0.
Therefore, there is x ∈ m− m2 with x /∈ pi for all i. By Lemma C-5.175, R/(x) is
regular of dimension d − 1. Now R/(x) is a domain, by the inductive hypothesis,
and so (x) is a prime ideal. It follows that (x) contains a minimal prime ideal; say,
pi ⊆ (x).

If pi = (0), then (0) is a prime ideal and R is a domain. Hence, we may assume
that pi �= (0). For each nonzero y ∈ pi, there exists r ∈ R with y = rx. Since
x /∈ pi, we have r ∈ pi, so that y ∈ xpi. Thus, pi ⊆ xpi ⊆ mpi. As the reverse
inclusion mpi ⊆ pi is always true, we have pi = mpi. Nakayama’s Lemma now
applies, giving pi = (0), a contradiction. •

Proposition C-5.177. A local ring (R,m, k) is regular if and only if m is generated
by an R-sequence x1, . . . , xd. Moreover, in this case,

d = V (R).

Proof. We have already proved sufficiency, in Proposition C-5.173. If R is regular,
we prove the result by induction on d ≥ 1, where d = dim(R). The base step
holds, for R is a domain and so x is a regular element; that is, x is not a zero-
divisor. For the inductive step, the ring R/(x) is regular of dimension d − 1, by
Lemma C-5.175. Therefore, its maximal ideal is generated by an (R/(x))-sequence
x∗
1, . . . , x

∗
d−1. In view of Proposition C-5.170, a minimal generating set for m is

x, x1, . . . , xd−1. Finally, this is an R-sequence, by Exercise C-5.72(i) on page 524,
because x is not a zero-divisor. •
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We are now going to characterize regular local rings by their global dimension.

Lemma C-5.178. Let (R,m, k) be a local ring, and let A be an R-module with
pd(A) = n. If x ∈ m and multiplication μx : A→ A, given by a �→ xa, is injective,
then pd(A/xA) = n+ 1.

Proof. By hypothesis, there is an exact sequence

0→ A
μx−→ A→ A/xA→ 0,

where μx : a �→ xa. By Lemma C-5.144, we have pd(A/xA) ≤ n+ 1.

Consider the portion of the long exact sequence arising from tensoring by k:

0 = TorRn+1(A, k)→ TorRn+1(A/xA, k)
∂−→ TorRn (A, k)

(μx)∗−→ TorRn (A, k).

The first term is {0}, for pd(A) ≤ n if and only if TorRn+1(A, k) = {0}, by
Lemma C-5.166. The induced map (μx)∗ is multiplication by x. But if μ′

x : k → k
is multiplication by x, then x ∈ m implies μ′

x = 0; therefore, (μx)∗ = (μ′
x)∗ = 0.

Exactness now implies that ∂ : TorRn+1(A/xA, k)→ TorRn (A, k) is an isomorphism.

Since pd(A) = n, we have TorRn (A, k) �= {0}, so that TorRn+1(A/xA, k) �= {0}.
Therefore, pd(A/xA) ≥ n+ 1, as desired. •

Proposition C-5.179. If (R,m, k) is a regular local ring, then

D(R) = V (R) = dim(R).

Proof. Since R is regular, Proposition C-5.177 says that m can be generated by
an R-sequence x1, . . . , xd. Applying Lemma C-5.178 to the modules

R, R/(x1), R/(x1, x2), . . . , R/(x1, . . . , xd) = R/m = k,

we see that pd(k) = d. By Proposition C-5.173, d = V (R) = dim(R). On the other
hand, Theorem C-5.168(ii) gives d = pd(k) = D(R). •

The converse of Proposition C-5.179: a noetherian local ring of finite global
dimension is regular, is more difficult to prove. The following proof is essentially
that in Lam, [135], Chapter 2, §5F.

Lemma C-5.180. Let (R,m, k) be a local ring of finite global dimension. If V (R) ≤
D(R) and D(R) ≤ d, where d is the length of a longest R-sequence in m, then R is
a regular local ring.

Proof. By Corollary C-5.171, dim(R) ≤ V (R). By hypothesis, V (R) ≤ D(R) ≤ d,
while Lemma C-5.161 gives d ≤ ht(m) = dim(R). Therefore, dim(R) = V (R), and
so R is a regular local ring. •

In proving that D(R) finite implies R regular, we cannot assume that R is
a domain (though this will turn out to be true); hence, we must deal with zero-
divisors. Recall that Zer(R) is the set of all zero-divisors in R.
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Proposition C-5.181. Let (R,m, k) be a local ring.

(i) If m − m2 consists of zero-divisors, then there is a nonzero a ∈ R with
am = (0).

(ii) If 0 < D(R) = n <∞, then there exists a nonzero-divisor x ∈ m−m2.

Proof.

(i) By Proposition C-5.164, there are prime ideals p1, . . . , pn with

m−m
2 ⊆ Zer(R) ⊆ p1 ∪ · · · ∪ pn.

If we can show that

m ⊆ p1 ∪ · · · ∪ pn,(1)

then Prime Avoidance, Lemma C-5.163, gives m ⊆ pi for some i. But pi =
ann(a) for some a ∈ m, so that am = (0), as desired.

To verify (1), it suffices to prove m2 ⊆ p1 ∪ · · · ∪ pn. Now m �= m2, by
Nakayama’s Lemma (we may assume that m �= (0), for the result is trivially
true otherwise), and so there exists x ∈ m−m2 ⊆ p1 ∪ · · · ∪ pn. Let y ∈ m2.
For every integer s ≥ 1, we have x + ys ∈ m − m2 ⊆ p1 ∪ · · · ∪ pn; that is,
x+ys ∈ pj for some j = j(s). By the Pigeonhole Principle, there is an integer
j and integers s < t with x+ ys, x+ yt ∈ pj . Subtracting, y

s(1− yt−s) ∈ pj .
But 1− yt−s is a unit (if u ∈ m, then 1− u is a unit; otherwise, (1− u) is a
proper ideal, (1− u) ⊆ m, 1− u ∈ m, and 1 ∈ m). Since pj is a prime ideal,
y ∈ pj .

(ii) (Griffith) In light of (i), it suffices to show that there is no nonzero a ∈ m

with am = (0). If, on the contrary, such an a exists and μ : R→ R is given by
μ : r �→ ar, then m ⊆ kerμ. This inclusion cannot be strict; if b ∈ kerμ, then
ab = 0, but if b /∈ m, then b is a unit (for Rb is not contained in the maximal
ideal), and so ab �= 0. Hence, m = kerμ. Thus, k = R/m = R/ kerμ ∼=
imμ = Ra; that is, k ∼= Ra. Consider the exact sequence 0 → Ra → R →
R/Ra → 0; by Exercise C-5.63 on page 496, either pd(R/Ra) pd(Ra) + 1 =
pd(k)+1 or pd(R/Ra) = 0. In the first case, pd(R/Ra) = pd(k)+1 > pd(k),
contradicting Theorem C-5.168(ii) (which says that pd(k) = D(R)). In the
second case, 0 = pd(Ra) = pd(k), contradicting pd(k) = D(R) > 0. •

Theorem C-5.182 (Serre–Auslander–Buchsbaum). A local ring (R,m, k) is
regular if and only if D(R) is finite; in fact,

D(R) = V (R) = dim(R).

Proof. Necessity is Proposition C-5.179. We prove the converse by induction on
D(R) = n ≥ 0. If n = 0, then R is semisimple. Since R is commutative, it is the
direct product of finitely many fields; since R is local, it is a field, and hence it is
regular.

If n ≥ 1, then Proposition C-5.181(ii) says that m − m2 contains a nonzero-
divisor x. Now (R∗,m∗, k) is a local ring, where R∗ = R/(x) and m∗ = m/(x). Since
x is not a zero-divisor, it is regular on m; since pdR(m) < ∞, Corollary C-5.151
gives pdR∗(m/xm) <∞.
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Consider a short exact sequence of R-modules

0→ k
α−→ B → C → 0(2)

in which α(1) = e, where e ∈ B−mB. Now the coset e+mB is part of a basis of the
k-vector space B/mB, and so there is a k-map β : B/mB → k with β(e+mB) = 1.

We can use the composite π : B
nat−→ B/mB

β−→ k to show that the exact sequence
(2) splits, for πα = 1k. In particular, this applies when B = m/xm and k is the
cyclic submodule generated by e + xm. Thus, k is a direct summand of m/xm. It
follows that pdR∗(k) <∞, so that Proposition C-5.152 gives pdR∗(k) = pdR(k)−1.
Theorem C-5.168 now gives

D(R∗) = pdR∗(k) = n− 1.

By induction, R∗ is a regular local ring and dim(R∗) = n − 1. Hence, there is a
prime chain of length n− 1 in R∗,

p
∗
0 � p

∗
1 � · · · � p

∗
n−1 = (0)

(we have p∗n−1 = (0) because R∗ is a domain (being regular) so that (0) is a prime
ideal). Taking inverse images gives a prime chain in R:

p0 � p1 � · · · � pn−1 = (x).

Were (x) a minimal prime ideal, then every element in it would be nilpotent, by
Proposition C-5.24. Since x is not a zero-divisor, it is not nilpotent, and so there
is a prime ideal q � (x). Hence, dim(R) ≥ n.

Since x ∈ m − m2, Proposition C-5.170 says that V (R) = 1 + V (R∗) = 1 +
dim(R∗) = n. Therefore,

n = V (R) ≥ dim(R) ≥ n

(the inequality V (R) ≥ dim(R) always being true), and dim(R) = V (R); that is,
R is a regular local ring of dimension n. •

Corollary C-5.183. If S ⊆ R is multiplicative, where (R,m, k) is a regular local
ring, then S−1R is also a regular local ring. In particular, if p is a prime ideal in
R, then Rp is regular.

Proof. Theorem C-5.143(ii) says that D(R) = wD(R) in this case. But Proposi-
tion C-5.142 says that wD(S−1R) ≤ wD(R). Therefore,

D(S−1R) = wD(S−1R) ≤ wD(R) = D(R) <∞.

It follows from Corollary C-5.20 that S−1R is a local ring; therefore, S−1R is
regular, by Theorem C-5.182. The second statement follows: if S = R − p, then
Rp is a local ring, and so the Serre–Auslander–Buchsbaum Theorem says that Rp

is regular. •

There are several proofs that regular local rings are unique factorization do-
mains; most use the notion of depth that was used in the original proof of Auslander
and Buchsbaum. If M is a finitely generated R-module, we generalize the notion
of R-sequence: the depth of M is the maximal length of a sequence r1, . . . , rn
in R such that x1 is regular on M , x2 is regular on M/(x1)M , . . . , xn is regular on
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M/(x1, . . . , xn−1)M . The depth of M was originally called its codimension because
of the following result of Auslander and Buchsbaum.

Theorem C-5.184 (Codimension Theorem). Let (R,m, k) be a local ring, and
let M be a finitely generated R-module with pd(M) <∞. Then

pd(M) + depth(M) = depth(R).

In particular, if R is regular, then depth(R) = D(R) and

pd(M) + depth(M) = D(R).

Proof. Eisenbud [60], p. 479. •

Nagata [164] proved, using the Serre–Auslander–Buchsbaum Theorem, that if
one knew that every regular local ring R with D(R) = 3 is a UFD, then it would
follow that every regular local ring is a UFD.

Here is a sketch of the original proof of Auslander–Buchsbaum that every reg-
ular local ring R is a unique factorization domain. They began with a standard
result of commutative algebra.

Lemma C-5.185. If R is a noetherian domain, then R is a UFD if and only if
every prime ideal of height 1 is principal.

Proof. Let R be a UFD, and let p be a prime ideal of height 1. If a ∈ p is nonzero,
then a = πe1

1 · · ·πen
n , where the πi are irreducible and ei ≥ 1. Since p is prime,

one of the factors, say, πj ∈ p. Of course, Rπj ⊆ p. But Rπj is a prime ideal, by
Proposition A-3.124 in Part 1, so that Rπj = p, because ht(p) = 1.

Conversely, since R is noetherian, Lemma A-3.125 in Part 1 shows that every
nonzero nonunit in R is a product of irreducibles, and so Proposition A-3.124 in
Part 1 says that it suffices to prove, for every irreducible π ∈ R, that Rπ is a prime
ideal. Choose a prime ideal p that is minimal over Rπ. By the Principal Ideal
Theorem, Theorem C-5.157, we have ht(p) = 1, and so the hypothesis gives p = Ra
for some a ∈ R. Therefore, π = ua for some u ∈ R. Since π is irreducible, we must
have u a unit, and so Rπ = Ra = p, as desired. •

In light of Nagata’s result, Auslander and Buchsbaum could focus on the three-
dimensional case.

Lemma C-5.186. If (R,m, k) is a local ring with D(R) = 3 and p �= m is a prime
ideal in R, then

pd(p) ≤ 1.

Proof. By hypothesis, there exists x ∈ m−p. Now x is regular on R/p: if x(r+p) =
p, then xr ∈ p and r ∈ p, for x /∈ p and p is prime. Therefore, depth(R/p) ≥ 1
and so pd(R/p) ≤ 2, by the Codimension Theorem. But there is an exact sequence
0→ p→ R→ R/p→ 0, which shows that pd(p) ≤ 1. •

Auslander and Buchsbaum showed that pd(p) = 1 gives a contradiction, so
that pd(p) = 0; that is, p is a projective, hence free, R-module. But any ideal in a
domain R that is free as an R-module must be principal. This completed the proof.
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A second proof, not using Nagata’s difficult proof, is based on the following
criterion.

Proposition C-5.187. If R is a noetherian domain for which every finitely gen-
erated R-module has FFR, then R is a unique factorization domain.

Proof. This is Theorem 184 in Kaplansky [118]. The proof uses a criterion for
a domain to be a unique factorization domain (his Theorem 179), which involves
showing that if a commutative ring R has the property that every finitely generated
R-module has FFR, then so does R[x]. •

Unique factorization for regular local rings follows easily. If D(R) = n, then
every finitely generated R-module M has a projective resolution 0 → Pn → · · · →
P0 →M → 0 in which every Pi is finitely generated (Lemma C-5.41). But (finitely
generated) projective R-modules are free (Proposition C-5.26), and so every finitely
generated R-module has FFR.

We now give a complete (third) proof that every regular local ring is a UFD;
we begin with two elementary lemmas.

Lemma C-5.188. Let R be a noetherian domain, let x ∈ R be a nonzero element
with Rx a prime ideal, and denote S−1R by Rx, where S = {xn : n ≥ 0}. Then R
is a UFD if and only if Rx is a UFD for all such x.

Proof. We leave necessity as a routine exercise for the reader. For sufficiency,
assume that Rx is a UFD. Let p be a prime ideal in R of height 1. If x ∈ p, then
Rx ⊆ p and, since ht(p) = 1, we have Rx = p (for Rx is prime), and so p is principal
in this case. We may now assume that x /∈ p; that is, S∩p = ∅. It follows that pRx

is a prime ideal in Rx of height 1, and so it is principal, by hypothesis. There is
some a ∈ p and n ≥ 0 with pRx = Rx(a/x

n) = Rxa, for x is a unit in Rx. We may
assume that a /∈ Rx. If a = a1x and a1 /∈ Rx, then replace a by a1, for Rxa = Rxa1.
If a1 = a2x and a2 /∈ Rx, then replace a1 by a2, for Rxa1 = Rxa2. If this process
does not stop, there are equations am = am+1x for all m ≥ 1, which give rise to
an ascending sequence Ra1 ⊆ Ra2 ⊆ · · · . Since R is noetherian, Ram = Ram+1

for some m. Hence, am+1 = ram for some r ∈ R, and am = am+1x = ramx. Since
R is a domain, 1 = rx; thus, x is a unit, contradicting Rx being a prime (hence,
proper) ideal. Clearly, Ra ⊆ p; we claim that Ra = p. If b ∈ p, then b = (r/xm)a
in Rx, where r ∈ R and m ≥ 0. Hence, xmb = ra in R. Choose m minimal. If
m > 0, then ra = xmb ∈ Rx; since Rx is prime, either r ∈ Rx or a ∈ Rx. But
a /∈ Rx since S ∩ p = ∅, so that r = xr′. As R is a domain, this gives r′a = xm−1b,
contradicting the minimality of m. We conclude that m = 0, and so p = Ra is
principal. Lemma C-5.185 now shows that R is a UFD. •

The following lemma is true when the localizing ideal is prime; however, we
will use it only in the case the ideal is maximal.

Lemma C-5.189. Let R be a domain, and let I be a nonzero projective ideal in
R. If m is a maximal ideal in R, then

Im ∼= Rm.
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Proof. Since I is a projective R-module, Im is a projective Rm-module. As Rm is
a local ring, however, Im is a free Rm-module. But Im is an ideal in a domain Rm,
and so it must be principal; that is, Im ∼= Rm. •

Theorem C-5.190 (Auslander–Buchsbaum). Every regular local ring (R,m, k)
is a unique factorization domain.

Proof (Kaplansky). The proof is by induction on the Krull dimension dim(R),
the cases n = 0 (R is a field) and n = 1 (R is a DVR) being obvious (Exercise C-5.71
on page 524). For the inductive step, choose x ∈ m−m2. By Lemma C-5.175, R/Rx
is a regular local ring with dim(R/Rx) < dim(R); by Proposition C-5.176, R/Rx is
a domain, and so Rx is a prime ideal. It suffices, by Lemma C-5.188, to prove that
Rx is a UFD (where Rx = S−1R for S = {xn : n ≥ 0}). Let P be a prime ideal of
height 1 in Rx; we must show that P is principal. Define p = P ∩ R (since R is a
domain, Rx ⊆ Frac(R), so that the intersection makes sense). Since R is a regular
local ring, D(R) <∞, and so the R-module p has a free resolution of finite length:

0→ Fn → Fn−1 → · · · → F0 → p→ 0.

Tensoring by Rx, which is a flat R-module (Theorem C-5.30), gives a free Rx-
resolution of P (for P = Rxp):

0→ F ′
n → F ′

n−1 → · · · → F ′
0 → P→ 0,(3)

where F ′
i = Rx ⊗R Fi.

We claim that P is projective. By Proposition C-5.165, it suffices to show
that every localization PM is projective, where M is a maximal ideal in Rx. Now
(Rx)M is a localization of R, and so it is a regular local ring, by Corollary C-5.186;
its dimension is smaller than D(R), and so it is a UFD, by induction. Now PM,
being a height 1 prime ideal in the UFD (Rx)M, is principal. But principal ideals
in a domain are free, hence projective, and so PM is projective. Therefore, P is
projective.

The exact sequence (3) “factors” into split short exact sequences. Since P is
projective, we have F ′

0
∼= P⊕Ω0, where Ω0 = ker(F ′

0 → P). Thus, Ω0 is projective,
being a summand of a free module, and so F ′

1
∼= Ω1⊕Ω0, where Ω1 = ker(F ′

1 → F ′
0).

More generally, F ′
i
∼= Ωi ⊕ Ωi−1 for all i ≥ 1. Hence,

F ′
0 ⊕ F ′

1 ⊕ · · · ⊕ F ′
n
∼= (P⊕ Ω0)⊕ (Ω1 ⊕ Ω0)⊕ · · · .

Since projective modules over a local ring are free, we see that there are finitely
generated free Rx-modules Q and Q′ with

Q ∼= P⊕Q′.

Recall that rank(Q) = dimK(K ⊗Rx
Q), where K = Frac(Rx); now rank(P) = 1

and rank(Q′) = r, say, so that rank(Q) = r + 1.

We must still show that P is principal. Now∧r+1
Q ∼=

∧r+1
(P⊕Q′).
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Since Q is free of rank r + 1, the Binomial Theorem (Theorem B-5.32 in Part 1)

gives
∧r+1Q ∼= Rx. On the other hand, Theorem B-5.35 in Part 1 gives

∧r+1
(P⊕Q′) ∼=

r+1∑
i=0

(∧i
P⊗Rx

∧r+1−i
Q′
)
.(4)

We claim that
∧i

P = {0} for all i > 1. By Lemma C-5.189, we have PM
∼= (Rx)M

for every maximal ideal M in Rx. Now Exercise C-5.25 on page 445 gives(∧i
P

)
M

∼=
∧i(

PM

) ∼= ∧i
(Rx)M

for all maximal ideals M and all i. But
∧i

(Rx)M = {0} for all i > 1 (by the
Binomial Theorem or by the simpler Corollary B-5.30 in Part 1), so that Proposi-

tion C-5.38 gives
∧i

P = {0} for all i > 1.

We have just seen that most of the terms in (4) are {0}; what survives is∧r+1
(P⊕Q′) ∼=

(∧0
P⊗Rx

∧r+1
Q′
)
⊕
(∧1

P⊗Rx

∧r
Q′
)
.

But
∧r+1

Q′ = {0} and
∧r

Q′ ∼= Rx, because Q′ is free of rank r. Therefore,∧r+1(P ⊕ Q′) ∼= P. Since P ∼=
∧r+1(P ⊕ Q′) ∼=

∧r+1 Q ∼= Rx, we have P ∼= Rx

principal. Thus, Rx, and hence R, is a UFD. •

Having studied localization, we turn, briefly, to globalization, merely describing
its setting. To a commutative noetherian ring R, we have associated a family of
local rings Rp, one for each prime ideal p, and an R-module M has localizations
Mp = Rp ⊗R M . These data are assembled into a sheaf over Spec(R), where
Spec(R) is equipped with the Zariski topology. There are two ways to view a sheaf.
One way resembles covering spaces in algebraic topology. Equip the disjoint union

E(M) =
⋃

p∈Spec(R)

Mp

with a topology so that the projection π : E(M)→ Spec(R), defined by π(e) = p if
e ∈Mp, is a local homeomorphism. All such sheaves form a category Sh(R), where
a morphism ϕ : E(M)→ E(M ′) is a continuous map with ϕ|Mp : Mp →M ′

p an Rp-
map for all p. Now Sh(R) is an abelian category (Rotman [187], p. 309), which has
enough injectives ([187], p. 314). A section of E(M) over an open set U ⊆ Spec(R)
is a continuous function s : U → E(M) with πs = 1U . The family Γ(U,E(M)) of all
sections over U is an abelian group. Sections give rise to the second way of viewing
a sheaf, for Γ(�, E(M)) is a presheaf of abelian groups. We call Γ(Spec(R), E(M))
the global sections of E(M). Now global sections Γ(Spec(R),�) : Sh(R)→ Ab is
a left exact additive functor ([187], p. 378), and its derived functorsHn(Spec(R),�)
are called sheaf cohomology. These cohomology groups are the most important
tool in globalizing. We strongly recommend the article by Serre [198] for a lucid
discussion.
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Exercises

C-5.70. If (R,m, k) is a noetherian local ring and B is a finitely generated R-module,
prove that

depth(B) = min
{
i : ExtiR(k,B) �= {0}

}
.

∗ C-5.71. Let R be a regular local ring.

(i) Prove that R is a field if and only if dim(R) = 0.

(ii) Prove that R is a DVR if and only if dim(R) = 1.

∗ C-5.72. (i) Let (R,m, k) be a noetherian local ring, and let x ∈ R be a regular element;
i.e., x is not a zero-divisor. If x1 + (x), . . . , xs + (x) is an (R/(x))-sequence, prove
that x, x1, . . . , xs is an R-sequence.

(ii) Let R be a commutative ring. If x1, . . . , xd is an R-sequence, prove that the cosets
x2 + (x1), . . . , xd + (x1) form an (R/(x1))-sequence.

C-5.73. Let R be a noetherian (commutative) ring with Jacobson radical J = J(R). If
B is a finitely generated R-module, prove that⋂

n≥1

JnB = {0}.

Conclude that if (R,m, k) is a noetherian local ring, then
⋂

n≥1 m
nB = {0}.

Hint. Let D =
⋂

n≥1 J
nB, observe that JD = D, and use Nakayama’s Lemma.

C-5.74. Use the Rees Lemma to prove a weaker version of Proposition C-5.179: if
(R,m, k) is a regular local ring, then D(R) ≥ V (R) = dim(R).

Hint. If ExtdR(k,R) �= {0}, then D(R) > d− 1; that is, D(R) ≥ d. Let m = (x1, . . . , xd),
where x1, . . . , xd is an R-sequence. Then

ExtdR(k,R) ∼= Extd−1
R/(x1)

(k,R/(x1))

∼= Extd−2
R/(x1,x2)

(k,R/(x1, x2))

∼= · · ·
∼= Ext0k(k, k) ∼= Homk(k, k) ∼= k �= {0}.

C-5.75. If k is a field, prove that the ring of formal power series k[[x1, . . . , xn]] is a UFD.

Example C-5.191. Note: ComRingsop ∼= category of affine schemes.

If R is a commutative ring, then X = Spec(R) is the set of all of its prime
ideals. The Zariski topology has as closed sets those subsets of the form

V (S) = {p ∈ Spec(R) : S ⊆ p},
where S is any subset of R. Of course, open sets are complements of closed sets. A
base11 of the Zariski topology turns out to be all D(s) = X − V ({s}), where s ∈ R
is nonzero. Thus,

D(s) = {p ∈ Spec(R) : s /∈ p}.
11Recall that a base of a topology is a family of open subsets B such that every open set is

a union of sets in B.
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Exercise C-4.37 on page 377 shows that we can define a presheaf on a space X by
giving its values on basic open sets. If D(t) ⊆ D(s), then t ∈

√
Rs, by Hilbert’s

Nullstellensatz, and so tn = rs for some r ∈ R and n ≥ 0. The structure sheaf
of R is the presheaf O over X = Spec(R) of commutative rings having sections

O(D(s)) = s−1R and restriction maps ρ
D(s)
D(t) : s

−1R → t−1R defined by u/sm �→
urm/tnm (recall that tn = rs). The structure sheaf O is a sheaf of commutative
rings, and the stalk Op is the localization Rp. (See Hartshorne [95], p. 71.) �

Example C-5.192. Serre [198] developed the theory of sheaves over spaces X
that need not be Hausdorff, enabling him to apply sheaves in algebraic geometry.
For example, the structure sheaf O of a commutative ring R is a sheaf of commu-
tative rings over X = Spec(R), and Spec(R) is rarely Hausdorff. Because of the
importance of Serre’s paper, it has acquired a nickname; it is usually referred to as
FAC.

Definition. An O-Module (note the capital M), where O is a sheaf of commuta-
tive rings over a space X, is a sheaf F of abelian groups over X such that

(i) F(U) is an O(U)-Module for every open U ⊆ X,

(ii) if U ⊆ V , then F(U) is also anO(V )-Module, and the restriction ρVU : F(V )→
F(U) is an O(V )-Module homomorphism.

If F and G are O-Modules, then an O-morphism τ : F → G is a sheaf map such
that τU : F(U)→ G(U) is an O(U)-map for every open set U .

For example, if O is the structure sheaf of a commutative ring R, then every R-

module M gives rise to an O-Module M̃ over Spec(R) whose stalk over p ∈ Spec(R)
is Mp = Rp ⊗R M .

All O-Modules and O-morphisms form an abelian category OMod which has a
version of tensor product. If F and G are O-Modules, then U �→ F(U)⊗O(U) G(U)
is a presheaf, and the tensor product F ⊗O G is defined to be its sheafification.

There is a faithful exact functor RMod → OMod with M �→ M̃ , and RMod is

isomorphic to the full subcategory of OMod generated by all M̃ (see Hartshorne
[95], II §5).

Definition. If O is a sheaf of commutative rings over a space X, then an O-Module
F is coherent12 if there is an exact sequence

Os → Or → F → 0,

where r, s are natural numbers and Or is the direct sum of r copies of O. (We
remark that Or is not a projective object in the category of O-Modules.)

If F is an O-Module over X, then an r-chart is an ordered pair (U,ϕ), where
ϕ : F|U → Or|U is an O-isomorphism of O-Modules; we call U the coordinate
neighborhood of the chart. An O-Module F is locally free of rank r if there
is a family (Ui, ϕi)i∈I of r-charts, called an atlas, whose coordinate neighborhoods

12A coherent F-Module is an analog of a finitely presented module, and coherent rings are
so called because their finitely generated modules are analogous to coherent O-Modules.
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form an open cover of X. An invertible sheaf 13 is a locally free O-Module of
rank 1.

Let F be a locally free O-Module over a space X, and let (Ui, ϕi)i∈I be an
atlas. Whenever an intersection Uij = Ui ∩ Uj is nonempty, we can define O|Uij-
isomorphisms ϕi : (F|Ui)|Uij → Or|Uij and ϕj : (F|Uj)|Uij → Or|Uij (these iso-
morphisms are really restrictions of ϕi and ϕj). Now define O|Uij-automorphisms
of Or|Uij

gij = ϕiϕ
−1
j ,

called transition functions. Transition functions satisfy the cocycle condi-
tions :

(i) gijgjkgki = 1Or|Uij
for all i, j ∈ I (ϕiϕ

−1
j ϕjϕ

−1
k ϕkϕ

−1
i = 1);

(ii) gii = 1Or|Ui
for all i ∈ I.

Of course, transition functions depend on the choice of atlas (Ui, ϕi)i∈I . Consider
new transition functions arising from a new atlas (Ui, ϕ̃i)i∈I in which we vary only
the O|Ui-isomorphisms, keeping the same coordinate neighborhoods. If we define
hi by ϕ̃i = hiϕ

−1
i , then the new transition functions are

g̃ij = ϕ̃iϕ̃
−1
j = hiϕiϕ

−1
j h−1

j = higijh
−1
j .

Let (gij), (g̃ij), where gij , g̃ij ∈ Aut(Or|Uij), be two families that may not have
arisen as transition functions of a locally free O-Module of rank r. Call (gij), (g̃ij)
equivalent if there are O(Uij)-isomorphisms hi such that

g̃ij = higijh
−1
j .

Definition. Locally free O-Modules F and G of rank r are isomorphic if their
transition functions (gij) and (g̃ij) are equivalent.

Given a family (gij), where gij ∈ Aut(Or|Uij), that satisfies the cocycle condi-
tions, it is not hard to see that there is a unique (up to isomorphism) locally free
O-Module F whose transition functions are the given family. In particular, if F
is the constant sheaf with F(U) of rank r, then there is an open cover U giving
transition functions gij = hih

−1
j .

A locally free O-Module of rank r is almost classified by an equivalence class of
cocycles (gij); we must still investigate transition functions that arise from an atlas
having different families of coordinate neighborhoods. It turns out that transition
functions are elements of a certain cohomology set of a sheaf with coefficients in the
general linear group GL(r, k) (cohomology need not be a group when coefficients
lie in a nonabelian group). �

13If F is an invertible sheaf, then there exists an (invertible) sheaf G with F ⊗O G ∼= O.
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base of topology, 675

basepoint, 104, 463
basic subgroup, 521

basis
dependence, 349
free abelian group, 328
free algebra, 556
free group, 82
free module, 329, 481
free monoid, 92
ideal, 283
standard, 253
vector space

finite-dimensional, 252
infinite-dimensional, 319

Basis Theorem
finite abelian groups, 367, 499
Hilbert, 286

Bass, H., 300, 415, 498
Bautista, R., 160
Beltrami, E., 594

Besche, H. U., 4
biadditive, 509
bidegree, 334
Bifet, E., 225
bifunctor, 521
bijection, 241
bilinear form, 417

alternating, 418
nondegenerate, 420
skew, 418
symmetric, 417

negative definite, 426
positive definite, 426

bilinear function, 417, 509
bimodule, 470
binary operation, 29
Binomial Theorem

commutative ring, 32
exterior algebra, 569

birational map, 627
Bkouche, R., 488
block in G-set, 77
Block, R. E., 166

Boole, G., 129
Boolean group, 129
Boolean ring, 33, 41
Boone, W. W., 125
boundaries, 262
bouquet, 110
bracelet, 24
bracket, 162
Brauer group, 218

relative, 220
Brauer, R., 159, 190, 216, 219
Brauer–Thrall conjectures, 159
Bruck, R. H., 72
Bruck–Ryser Theorem, 72
Brunelleschi, F., 68
Buchberger’s algorithm, 646
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Buchberger’s Theorem, 643
Buchberger, B., 629, 640

Buchsbaum, D. A., 223, 349, 518, 522

Burnside Basis Theorem, 48
Burnside ring, 199

Burnside’s Lemma, 20, 183

Burnside’s problem, 125
Burnside’s Theorem, 168, 202

Burnside, W., 20, 125

C∞-function, 35

cancellation law
domain, 34

group, 130

Cardano, G., 5
Carmichael, R., 35

Carnap, R., 461

Cartan, E., 66, 161, 166
Cartan, H., 380, 475, 538

Cartan–Eilenberg Theorem, 538

cartesian product, 235
castle problem, 8

Casus Irreducibilis, 189

categorical statement, 355
category, 443

G-category, 408

abelian, 346
additive, 340

cocomplete, 385

cogenerator, 398

composition, 443
enough injectives, 378

enough projectives, 378

exact, 349
generator, 385

morphism, 443

noetherian, 391
objects, 443

opposite, 465

pre-additive, 446
small, 525

virtually small, 405

Cauchy sequence, 654
Cauchy’s Theorem, 10

Cauchy, A.-L., 7

Cayley graph, 18
Cayley Theorem, 2

Cayley, A., 2, 3, 140

Cayley–Hamilton Theorem, 392
Čech, E., 380

center

group, 155
Lie algebra, 168

matrix ring, 268, 281

ring, 277

centerless, 155
central extension, 314

universal, 314
central simple algebra, 209
centralizer

group element, 8
subgroup, 8
subset of algebra, 212

chain, 314
chain map, 259

over f , 275
change of rings, 475
character, 173, 203

afforded by, 173
degree, 173
generalized, 179
induced, 187
irreducible, 173
kernel, 184
linear, 173

regular, 176
restriction, 191
table, 180
trivial, 176

character group, 532
characteristic of field, 60
characteristic polynomial, 390
characteristic subgroup, 32
chessboard, 23
Chevalley, C., 65, 161, 332
Ch’in Chiu-shao, 8
Chinese Remainder Theorem

Z, 25
k[x], 89

circle operation, 280
circle group, 129
circuit, 17, 107
Claborn, L., 471
class

function, 176
group, 471
number, 471
sums, 155

class equation, 11
class group, 540
class of nilpotent group, 44
Classification Theorem of Finite Simple

Groups, 66, 176, 227
Clifford algebra, 572
Clifford, W. K., 572
coboundary, 241
cocomplete, 385
cocycle identity, 238
codiagonal, 302, 341
coefficients, 41
cofactor, 584
cofinal subset, 318
cofinite, 41, 596
cogenerator, 398
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Cohen, I. S., 317, 450
coherent sheaf, 525
Cohn, P. M., 474
cohomological dimension, 323
cohomology

sheaf, 379
cohomology group, 241
cohomology groups of G, 309
coinduced module, 326
cokernel, 297

additive category, 343
Cole, F., 55
colimit (see direct limit), 658
colon ideal, 603
coloring, 21
Columbus, 4
column space of matrix, 270
commensurable, 13

common divisor, 10
in Z, 10
several polynomials, 103
two polynomials, 66

commutative, 128
commutative diagram, 305
commutative ring, 32

Dedekind, 467
domain, 34
DVR, 421
euclidean ring, 98
factorial, 104
field, 37
integers in number field, 449
Jacobson, 610
local

regular, 514
PID, 101
polynomial ring, 42

several variables, 45
reduced, 598
UFD, 105
valuation ring, 444

commutator, 35
subgroup, 35

compact, 674
companion matrix, 385
Comparison Theorem, 273
complement, 40, 325

of subgroup, 231
complete factorization, 120
complete graph, 17
completely decomposable, 425
completely reducible, 170
completion, 655
complex, 257

acyclic, 262
component, 109
connected, 105

covering, 111
de Rham, 574
differentiations, 257
dimension, 103
direct sum, 354
modulus, 129
pointed, 104
quotient, 104, 260
simplicial, 103
simply connected, 108
subcomplex, 260
zero, 257

component, 109
composite integer, 11
composite of functions, 239
composition factors, 195
composition series, 195, 302

length, 195

composition, category, 443
compositum, 209
congruence mod I, 55
congruence class, 244
congruent mod m, 19
congruent matrices, 419
conjugacy class, 8, 157
conjugate

algebraic integers, 196
elements in field extension, 459
group elements, 154
intermediate fields, 207

conjugate subgroups, 8
conjugation

Grassmann algebra, 567
groups, 154
quaternions, 276

connected, 105
connecting homomorphism, 265
constant

g-sheaf, 360
presheaf, 369
sheaf, 370

constant function, 236
constant functor, 462
constant polynomial, 44
constant term, 44
content, 109
continuous, 675
contracting homotopy, 265
contraction of ideal, 449
contragredient, 198
contravariant functor, 464
convolution, 274, 282
coordinate field, 625
coordinate list, 253
coordinate ring, 597
Copernicus, 4
coproduct
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family of objects, 452
two objects, 447

corestriction, 320

Corner, A. L. S., 425
Correspondence Theorem

groups, 165

modules, 298
rings, 279

coset

ideal, 55

subgroup, 144
cosyzygy, 489

covariant functor, 461

covering complex, 111
fiber, 111

intermediate, 116

lifting, 111
projection, 111

regular, 117

sheets, 111
universal, 116

covering space, 359

Cramer’s Rule, 586
crossed homomorphism, 248

crossed product algebra, 328

Cubic Formula, 5
cubic polynomial, 44, 188

Culler, M., 126

cycle
homology, 262

permutation, 117

cycle structure, 120
cyclic

group, 141

module, 296

cyclic algebra, 328
cyclotomic field, 461

cyclotomic polynomial, 93

DCC, 128, 286, 301
De Morgan laws, 41

De Morgan, A., 41

de Rham complex, 168, 574
de Rham, G., 168, 574

Dean, R. A., 39

decomposable, 425
Dedekind ring, 467, 535

Dedekind Theorem, 204

Dedekind, R., 174, 204, 446
degree

G-set, 5

character, 173
euclidean ring, 98

extension field, 78

graded map, 550

homogeneous element, 550
polynomial, 42

several variables, 631
representation, 169
several variables, 630

degree-lexicographic order, 634
deleted resolution, 273
derivation, 587

group, 248
Lie algebra, 162
principal, 248
ring, 161

derivative, 46
derived series

groups, 37
Lie algebra, 165

Derry, D., 425
Desargues, G., 68
Descartes, R., 3, 7
descending central series, 43

Lie algebra, 165
determinant, 576
diagonal, 341
diagonal map, 302
diagonalizable, 394, 401
diagram, 305

commutative, 305
diagram chasing, 308
Dickson, L. E., 58, 63, 122, 222, 327
dicyclic group, 96
Dieudonné, J., 558
differential form, 574
differentiations, 257
dihedral group, 136

infinite, 34, 123
dilatation, 59
dimension, 255, 322
dimension shifting, 273
Diophantus, 4, 445
direct image, 374
direct limit, 658
direct product

commutative rings, 54

groups, 167
modules, 323, 451
rings, 275

direct sum
additive category, 341
complexes, 354
matrices, 384
modules, 323, 324, 451

external, 324, 326
internal, 326

vector spaces, 259, 268
direct summand, 325
direct system, 657

transformation, 662
directed graph, 18

connected, 18
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directed set, 659
Dirichlet, J. P. G. L., 368, 446, 466, 471

discrete, 678

discrete valuation, 332, 444
discrete valuation ring, 421

discriminant, 223

bilinear form, 420

of OE , 467
of cubic, 224

of quartic, 230

disjoint permutations, 117
disjoint union, 452

distributivity, 29

divides
commutative ring, 36

in Z, 9
divisible module, 496
division algebra, 209

Division Algorithm

k[x], 62

k[x1, . . . , xn], 637
in Z, 10

division ring, 275

characteristic p, 331
divisor

in Z, 9
Dlab, V., 160
domain

commutative ring, 34

DVR, 421
morphism, 443

of function, 236

PID, 101
regular local ring, 516

UFD, 105

Double Centralizer Theorem, 212

double coset, 81
double cover, 370

dual basis, 269

dual space, 260, 269
duals in category, 450

DVR, 421

Dye, R. L., 429
Dynkin diagrams, 167

Dynkin, E., 167

Eckmann, B., 310, 314

edge, 16
trivial, 17

Eick, B., 4

eigenvalue, 388
eigenvector, 388

Eilenberg, S., 310, 358, 417, 441, 475, 491,
538

Eisenstein Criterion, 95

Eisenstein integers, 32
Eisenstein, G., 95

elementary cancellation, 84
elementary divisors

finite abelian group, 373
matrix, 397

elementary matrix, 410
elimination ideal, 648
empty word, 83
endomorphism

abelian group, 274
module, 294
ring, 274

Engel’s Theorem, 165
Engel, F., 165
enlargement of coset, 62, 165, 298
enough injectives, 378
enough projectives, 378
enveloping algebra, 548
epimorphism (epic), 345

equal subsets, 236
equality of functions, 118
equalizer

condition, 369
equivalence

inverse, 356
equivalence class, 244
equivalence relation, 243
equivalent

categories, 356
extensions, 241, 295
filtration, 302
height sequences, 423
matrices, 406
normal series, 197
representations, 171
series, groups, 197

Eratosthenes, 4
etymology

K-theory, 415
abelian, 219
abelian category, 346
acyclic complex, 262

adjoint functors, 392, 666
affine, 594
affine space, 627
alternating group, 141
artinian, 149
automorphism, 155
canonical form, 386
coherent ring, 525
commutative diagram, 305
cubic, 44
cycle, 117
dihedral group, 136
domain, 34
exact sequence, 575
Ext, 295
exterior algebra, 562
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factor set, 237
field, 37
flat, 529
free group, 92
functor, 461
homology, 225
homomorphism, 47
ideal, 446
isomorphism, 47
kernel, 50
Latin square, 71
left exact, 469
nilpotent, 165
polyhedron, 136
power, 130
profinite, 477
pure subgroup, 364
quadratic, 44

quasicyclic, 503
quaternions, 276
quotient group, 162
radical, 598
rational canonical form, 386
regular representation, 203
ring, 29
symplectic, 424
syzygy, 486, 492
Tor, 307
torsion subgroup, 359
variety, 594
vector, 248

Euclid, 4
Euclid’s Lemma, 69, 98, 101

integers, 12
Euclidean Algorithm I

integers, 17
Euclidean Algorithm II

integers, 18
Euclidean Algorithm, k[x], 70
euclidean ring, 98
Eudoxus, 4

Euler φ-function, 142
Euler Theorem, 148
Euler, L., 19, 446
Euler–Poincaré characteristic, 110, 262
evaluation homomorphism, 49
even permutation, 124
exact

abelian category, 347
category, 349
functor, 355, 469

left, 467
right, 517

hexagon, 325
sequence, 305

almost split, 302
complexes, 260

factored, 310
short, 306

splice, 310

triangle, 268
Exchange Lemma, 256

exponent

group, 376
module, 381

extension

central, 314

universal, 314
groups, 227

modules, 295, 306

of ideal, 449
extension field, 78

algebraic, 79

degree, 78
finite, 78

Galois, 207, 475

inseparable, 182
normal, 190

pure, 187

purely transcendental, 345
radical, 187

separable, 182

simple, 214
extension sheaf, 375

exterior algebra, 562

exterior derivative, 574
exterior power, 562

FAC, 384, 525

factor groups, 192

factor modules, 302
factor set, 237

factorial ring (see UFD), 104

faithful G-set, 6
faithful module, 292

family of supports, 380

Fano plane, 69
Fano, G., 69

Feit, W., 34, 219

Feit–Thompson Theorem, 219
Fermat Little Theorem, 22

Fermat prime, 96

Fermat’s Theorem, 148
Fermat, P., 445

Ferrari, Lodovici, 5

FFR, 500
fiber, 111

Fibonacci, 4, 590

field, 37
algebraic closure, 341

algebraically closed, 341

finite, 186

fraction, 38
Galois, 88
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perfect, 401
prime, 59
rational functions, 44

15-puzzle, 124, 126
filtration, 302, 333

length, 302
refinement, 302

filtrations
equivalent, 302

finite
extension, 78
order (module), 379
topology, 479, 679

finite index topology, 675
finite-dimensional, 251
finitely generated

algebra, 604
ideal, 283

module, 296
finitely generated group, 93
finitely presented group, 93
finitely presented module, 488
Finney, Jr., R. L., 488
First Isomorphism Theorem

abelian category, 358
commutative rings, 58
complexes, 260
groups, 163
modules, 297
vector spaces, 269

Fitting subgroup, 49
Fitting, H., 49
Five Lemma, 309
fixed field, 202
fixed points, 253
fixed-point-free, 203
fixes, 117, 180
flabby sheaf, 381
flat dimension, 491
flat module, 529
flat resolution, 491

forgetful functor, 462
formal power series

one variable, 41
several variables, 515

Formanek, E., 560
four-group, 137
fraction field, 38
fractional ideal, 469, 539
Fraenkel, A. A. H., 442
Frattini Argument, 38
Frattini subgroup, 47
Frattini Theorem, 47
free

abelian group, 328
algebra, 556
commutative algebra, 558, 671

group, 82
module, 329, 481
monoid, 92
resolution, 255

free product, 118
freeness property, 330
Freudenthal, H., 310
Freyd, P., 355
Frobenius

automorphism, 186
complement, 204
group, 204
kernel, 205
Reciprocity, 191
Theorem

Frobenius kernels, 206
real division algebras, 215

Frobenius group, 46

Frobenius, F. G., 20, 24, 174, 187, 198, 203,
215, 327, 374

full functor, 355
full subcategory, 349
fully invariant, 32
function, 236

bijection, 241
constant, 236
identity, 236
inclusion, 237
injective, 238
polynomial, 44
rational, 45
restriction, 239
surjective, 238

functor
additive, 340, 465
constant, 462
contravariant, 464
contravariant Hom, 464
covariant, 461
covariant Hom, 461
exact, 355, 469

forgetful, 462
full, 355
identity, 461
left exact, 467, 468
representable, 351, 528
right exact, 517
two variables, 521

fundamental group, 87, 463
Fundamental Theorem

Arithmetic, 198
finite abelian groups

elementary divisors, 374
invariant factors, 376

finitely generated abelian groups
elementary divisors, 374
invariant factors, 377
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Galois Theory, 211, 479
modules

elementary divisors, 382

invariant factors, 382
symmetric functions, 208

symmetric polynomials, 208, 639

G-category, 408

G-domain, 606
G-ideal, 608

g-map, 365

G-set, 5
block, 77

degree, 5

faithful, 6
primitive, 77

g-sheaf, 360

constant, 360
stalk, 360

zero, 361

Gabriel, P., 160, 166, 386
Galligo, A., 487

Galois extension, 207, 475

Galois field, 88
Galois group, 181, 475

absolute, 480

Galois Theorem, 86
Galois, E., 8, 146

Gaschütz, W., 254

Gauss Theorem

R[x] UFD, 110
cyclotomic polynomial, 96

Gauss’s Lemma, 111

Gauss, C. F., 215
Gaussian elimination, 409

Gaussian equivalent, 410

Gaussian integers, 32
gcd, 10

Gelfond, A., 347

Gelfond-Schneider Theorem, 347
general linear group, 50, 128

general polynomial, 84

generalized associativity, 131, 553
generalized character, 179

generalized matrix, 142

generalized quaternions, 82, 254
generate

dependence, 349

generator
category, 403

cyclic group, 141

of ModR, 385
generators and relations, 92, 403

algebra, 556

Gerard of Cremona, 4

germ, 364
germs, 371

global dimension, left, 490
global section, 362
gluing, 369
Godement resolution, 382
Godement, R., 382
Going Down Theorem, 453
Going Up Theorem, 453
Goldman, O., 604
Goodwillie, T. G., 590
Gordan, P., 285
graded algebra, 550
graded map, 550
graph, 16

adjacency matrix, 17
adjacent, 16
automorphism, 16
Cayley, 18
complete, 17

connected, 16
directed, 18
edge, 16
isomorphism, 16
labeled, 18
vertex, 16

Grassmann algebra, 566
Grassmann, H. G., 68, 566
greatest common divisor

domain, 97
in Z, 10
several polynomials, 103
two polynomials, 66

Green, J. A., 314
Griess, R., 168
Griffith, P. A., 518
Gröbner, W., 640
Gröbner basis, 640
Gromov, M., 126
Grothendieck group, 404, 406, 408

Jordan–Hölder, 412
reduced, 407

Grothendieck, A., 336, 402, 412, 415, 441,

592
group

p-group, 11
abelian, 128
additive notation, 130
affine, 139
algebra, 274
alternating, 141
axioms, 128, 138
Boolean, 129
circle group, 129
conjugacy class, 157
cyclic, 141
dicyclic, 96
dihedral, 136
finitely generated, 93
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finitely presented, 93
four-group, 137

free, 82

free abelian, 328
Frobenius, 46, 204

fundamental, 87

Galois, 181
general linear, 128

generalized quaternions, 82

hamiltonian, 156

Heisenberg, 46
infinite dihedral, 34

Mathieu, 75

maximal condition, 35
minimal generating set, 48

modular, 123, 173

nilpotent, 44
normalizer condition, 46

perfect, 36, 78

polycyclic, 34
Prüfer, 503

projective unimodular, 51

quasicyclic, 503
quaternions, 156

quotient, 162

simple, 173
solvable, 34, 192

special linear, 50, 140

special unitary, 437
special unitary group, 235

stochastic, 139

symmetric, 117, 128
topological, 461, 678

torsion, 359

torsion-free, 359

unitary, 437
unitriangular, 30

group algebra, 274

group object, 460
group of units, 37

Gruenberg, K. A., 481

Grushko Theorem, 120
Grushko, I. A., 120

Gutenberg, 4

Hall subgroup, 39
Hall Theorem, 38, 40

Hall, P., 38, 245

Hamel basis, 321
Hamel, G. K. W., 321

Hamilton, W. R., 156, 276, 327, 392

hamiltonian, 156
Haron, A. E. P., 355

Hasse, H., 219, 429

Hasse–Minkowski Theorem, 429

Hausdorff, F., 676
height

abelian group, 422

prime ideal, 502

height (rational function), 353

height sequence, 422

Heisenberg group, 46

Heller, A., 415

Herbrand quotient, 325

Herbrand, J., 325

hereditary ring, 474

Hermite, C., 122

hermitian, 437

Herstein, I. N., 208

higher center, 44

Higman, D. G., 159

Higman, G., 125, 215

Hilbert, D., 29, 209, 232, 285

Basis Theorem, 286

Nullstellensatz, 600, 612

Theorem 90, 217, 327

Theorem on Syzygies, 500

Hipparchus, 4

Hirsch length = Hirsch number, 41

Hirsch, K. A., 41

Hirzebruch, F. E. P., 415

Hochschild, G. P., 336

Hölder, O., 198

Hom functor

contravariant, 464

covariant, 461

homogeneous element, 550

homogeneous ideal, 550

homology, 262

homology groups of G, 309

homomorphism

R-homomorphism, 291

algebra, 543

commutative ring, 47

graded algebra, 550

group, 150

conjugation, 154

natural map, 162

Lie algebra, 164

ring, 279

homotopic, 265

homotopic paths, 105

homotopy

contracting, 265

Hopf’s formula, 314

Hopf, H., 310, 314

Hopkins, C., 139

Hopkins–Levitzki Theorem, 139

Houston, E., 218

Hume, J., 3

Hurewicz, W., 305, 310

hyperbolic plane, 424

hypersurface, 596
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IBN, 483
ideal, 50, 278

augmentation, 145, 338
basis of, 283
colon, 603
commutative ring, 50
elimination, 648
finitely generated, 283
fractional, 539
generated by subset, 53
homogeneous, 550
invertible, 469, 539
left, 278
Lie algebra, 164
maximal, 74
minimal, 129
minimal left, 287
monomial, 645

nilpotent, 614
order, 379
primary, 617
prime, 75
principal, 51
proper, 50
radical, 598
right, 278
two-sided, 278

ideal generated by X, 280
idempotent, 132, 177
identity

function, 236
functor, 461
group element, 128
morphism, 443

image
abelian category, 346
function, 236
linear transformation, 260
module homomorphism, 296

inclusion, 237
increasing p ≤ n list, 565

indecomposable, 333, 425
Independence of Characters, 203
independent list, 252

maximal, 257
indeterminate, 43
index of subgroup, 147
induced

character, 187
class function, 189
module, 187
representation, 187

induced map, 461, 464
homology, 264

induced module, 326
induced topology, 676
induction (transfinite), 345

infinite order, 133, 379
infinite-dimensional, 251
inflation, 321
initial object, 459
injections

coproduct, 447, 452
direct sum of modules, 327

injective, 238
dimension, 488
limit (see direct limit), 658
module, 492
object in category, 348

injective resolution, 256
injectively equivalent, 489
inner automorphism, 8, 155
inner product, 417

matrix, 419
space, 417

inseparable
extension, 182
polynomial, 182

integers, 9
integers mod m, 31
integers, algebraic number field, 449
integral

basis, 461
closure, 448
element, 446
extension, 446

integral closure, 604
integral domain (see domain), 34
integrally closed, 448
intermediate covering complex, 116
intermediate field, 207
Invariance of Dimension, 255, 256
invariant (of group), 152
invariant basis number, 483
invariant factors

finite abelian group, 376
matrix, 386

invariant subspace, 295

inverse
commutative ring, 36
function, 241
Galois problem, 232
group element, 128
image, 61
limit, 653
right, 282
system, 651

inverse image, 375
inverse image (simplicial map), 111
invertible ideal, 469, 539
invertible matrix, 585
invertible sheaf, 526
irreducible

character, 173
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element, 67

module (see simple module), 299

representation, 156, 170

variety, 614

irredundant, 620

union, 616

Isaacs, I. M., 343

isometry, 135, 429

isomorphic

commutative rings, 47

groups, 150

modules, 291

stably, 411

isomorphism

R-isomorphism, 291

category, 445

complexes, 259

groups, 150

modules, 291

rings, 47

vector spaces, 259

Ivanov, S. V., 125

Iwasawa Theorem, 79

Iwasawa, K., 79

Jacobi identity, 49

Lie algebra, 163

Jacobi, C. G. J., 49

Jacobson radical, 130

Jacobson ring, 610

Jacobson semisimple, 130

Jacobson, N., 164, 610

Janusz, G. J., 150, 222

Jategaonkar, A. V., 490

Jónnson, B., 425

Jordan canonical form, 397

Jordan, C., 24, 55, 63, 198

Jordan, P., 166

Jordan–Dickson Theorem, 63

Jordan–Hölder category, 412

Jordan–Hölder Theorem

Grothendieck group, 412

groups, 198

modules, 303

Jordan–Moore Theorem, 55

juxtaposition, 83

k-algebra, 543

k-linear combination, 250

k-map, 343

Kaplansky Theorem, 535

Kaplansky, I., 52, 223, 282, 411, 434, 501,
522, 560

Kepler, J., 68

kernel

additive category, 343

character, 184

group homomorphism, 153
Lie homomorphism, 164

linear transformation, 260

module homomorphism, 296
ring homomorphism, 50, 279

Killing, W. K. J., 66, 161, 166

Klein, F., 68
Kronecker delta, 30

Kronecker product, 520

Kronecker Theorem, 83

Kronecker, L., 24, 374
Krull dimension, 502

Krull Theorem, 609

Krull, W., 159, 318, 479, 504
Krull–Schmidt Theorem, 159

Kulikov, L. Yu., 521

Kummer, E., 446
Kurosh, A. G., 425, 448

labeled graph, 18

Lady, E. L., 427
Lagrange Theorem, 146

Lagrange, J.-L., 7, 146

Lam, C., 72
Lamé, G., 446

Lambek, J., 533

Landau, E., 14, 139
Laplace expansion, 583

Laplace, P.-S., 583

Lasker, E., 620

Latin square, 71, 157, 466
orthogonal, 71

lattice, 210

Laurent polynomials, 281, 443
Laurent, P. A., 281

law of inertia, 427

Law of Substitution, 128, 237
laws of exponents, 132

Lazard, M., 666

leading coefficient, 42
least common multiple

commutative ring, 72

in Z, 14
least criminal, 40

Least Integer Axiom, 9

left adjoint, 393
left derived functors, 275

left exact functor, 467

left hereditary ring, 535
left noetherian ring, 284

left quasi-regular, 131

length
composition series, 195

cycle, 117

filtration, 302

module, 303
normal series, 192
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word, 83
Leonardo da Pisa (Fibonacci), 4
Leray spectral sequence, 380
Leray Theorem, 381
Leray, J., 380, 381
Levi, F., 97
Levitzki, J., 139, 560
lexicographic order, 631
Lichtenbaum, S., 416
Lie algebra, 162
Lie’s Theorem, 165
Lie, M. S., 161
lifting, 228, 483
limit (see inverse limit), 653
Lindemann, F., 347
linear

fractional transformation, 353
functional, 473

polynomial, 44
representation, 170
transformation, 259

nonsingular, 259
linear character, 173
linear combination

in Z, 10
module, 296
vector space, 250
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linearly independent infinite set, 319
linearly independent list, 252
list, 250
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linearly independent, 252
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map, 428, 435
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linear transformation, 263
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modular group, 123, 173
modular law, 300



550 Index

module, 288
bimodule, 470
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free, 329, 481
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projective, 484
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right, 289
simple, 299

small, 385

torsion, 380
torsion-free, 359, 380
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Molien, T., 154, 338
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monkey, 27
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W+(Ω), 632
free, 92
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lexicographic order, 631
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Moore Theorem, 88
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Moore, J., 358, 491
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epic, 345

identity, 443
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Nakayama’s Lemma, 131
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natural map, 57
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Navarro, G., 369
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nondegenerate, 420

quadratic form, 429
nonderogatory, 394
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linear transformation, 259
matrix, 128

nontrivial subgroup, 139
norm, 216, 456

algebraic integer, 196
euclidean ring, 98
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extension, 190
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factor groups, 192
length, 192
refinement, 197

subgroup, 153
generated by X, 158

Normal Basis Theorem, 466
normal series
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normal subgroup

maximal, 14
minimal, 37

normalized bar resolution, 318
normalizer, 8
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nullhomotopic, 264

Nullstellensatz, 600, 612

weak, 599, 612

number field

algebraic, 449

cyclotomic, 463

quadratic, 455
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objects of category, 443

obstruction, 292

odd permutation, 124, 126

Ol’shanskii, A. Yu., 508

Ol′shanskii, A. Yu., 125
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(injective function), 238

one-to-one correspondence

(bijection), 241

onto function

(surjective function), 238
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orbit space, 6
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group, 135

group element, 133

power series, 46
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order-reversing, 210
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totally ordered, 444

ordered pair, 235
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direct sum, 424

group, 431

matrix, 158
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orthogonality relations, 182

orthonormal basis, 425
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φ-function, 142
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Pappus, 4
parallelogram law, 248
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directed set, 659
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partition of n, 377
Pascal, B., 68
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reduced, 17, 107
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direct image, 374
inverse image, 375
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purely transcendental, 345
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quadratic field, 455
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quadratic polynomial, 44
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division ring, 276
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k[x], 63
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complex, 104, 260
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module, 297
space, 258

quotient ring, 57, 278
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r-cycle, 117

R-homomorphism, 291

R-isomorphism, 291

R-linear combination, 296
R-map, 291

R-module, 288

R-sequence, 507
r-transitive, 75

sharply r-transitive, 76

Rabinowitz trick, 600
radical extension, 187

radical ideal, 598

Rado, R., 369
rank, 419

free abelian group, 329

free module, 482
linear transformation, 269

matrix, 270

rank (free group), 89
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rational curve, 625
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rational map, 626

Razmyslov, Yu. P., 560
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realizes the operators, 232

Recorde, R., 3

reduced

abelian group, 502
basis, 648

commutative ring, 598
mod {g1, . . . , gm}, 636
polynomial, 224

reduced path, 17, 107
reduced word, 84
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Ree, R., 66
Rees, D., 498, 504
refinement, 34, 197, 302
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regular character, 176
regular covering complex, 117
regular G-set, 203
regular local ring, 514
regular map, 626
regular on module, 498
regular representation, 169
Reisz Representation Theorem, 422

Reisz, M., 422
Reiten, I., 160, 302
relation, 243
relative Brauer group, 220
relatively prime

k[x], 69
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integers, 12
UFD, 107

remainder, 10
k[x], 63
k[x1, . . . , xn], 637
mod G, 637

repeated roots, 74
representable functor, 351, 528
representation

character, 173
completely reducible, 170
group, 135
irreducible, 156, 170
linear, 170
regular, 169

representation of ring, 292

representation on cosets, 2
representative of coset, 144
residually finite, 90
residue field, 511
resolution

bar, 316
deleted, 273
flat, 491
free, 255
injective, 256
projective, 255

resolvent cubic, 7, 229
restriction, 239

cohomology, 320
representation, 191

restriction sheaf, 375
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retraction, 102, 325

right R-module, 289
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right derived functors, 285, 288

right exact functor, 518
ring, 29, 273

artinian, 128, 286

Boolean, 33, 41
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Dedekind, 535

division ring, 275

quaternions, 276
endomorphism ring, 274

group algebra, 274

hereditary, 474
Jacobson, 610
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left noetherian, 128, 284
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semisimple, 150, 335

simple, 144

skew polynomial, 42
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zero, 31
ring extension, 446
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Roiter, A. V., 160
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multiplicity, 72

polynomial, 64

root of unity, 92, 129
primitive, 92

Rosset, S., 42, 560
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module, 288
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Schering, E., 24, 374
Schmidt, O. Yu., 159
Schneider, T., 347
Schottenfels Theorem, 64
Schottenfels, I. M., 64, 402
Schreier Refinement Theorem, 34

groups, 197
modules, 302

Schreier transversal, 98
Schreier, O., 97
Schur’s Lemma, 146, 200
Schur, I., 245
Scipio del Ferro, 4
Second Isomorphism Theorem

groups, 164
modules, 297

secondary matrices, 417
section, 362

global, 362
zero, 362

Seidenberg, A., 450
self-adjoint, 436
self-injective, 499
self-normalizing, 27
semidirect product, 230
semigroup, 133
semisimple

Jacobson, 130
ring, 150

semisimple module, 334
semisimple ring, 335
separable

element, 182
extension, 182
polynomial, 182

series
composition, 302
factor modules, 302

Serre, J.-P., 97, 223, 336, 384, 441, 487,

525, 592
Serre–Auslander–Buchsbaum Theorem, 518
sesquilinear, 436
set, 442
sgn, 125
Shafarevich, I., 232
Shapiro’s Lemma, 324
Shapiro, A., 324
sharply r-transitive, 76
sheaf

abelian groups, 370
acyclic, 381
coherent, 525
cohomology, 379
constant, 370
direct image, 374
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double cover, 370
extension, 375
extension by zero, 375
flabby, 381
germs, 371
inverse image, 375
locally free, 525
map, 371
restriction, 375
sheet, 359
skyscraper, 370
space, 360
structure, 361

sheafification, 372
g-sheaf, 365
presheaf, 366

sheet, 359
sheets, 111

Shelah, S, 309
short exact sequence, 306

almost split, 302
split, 307

shuffle, 571
signature, 427
signum, 125
similar matrices, 154, 267
Simmons, G. J., 86
simple

extension, 214
group, 173
Lie algebra, 164
module, 299, 334
ring, 144
transcendental extension, 353

simple components, 149
simplex, 103

dimension, 103
simplicial map, 104

inverse image, 111
simply connected, 108
Singer, R., 95

single-valued, 237
skeletal subcategory, 384
skeleton, 103
skew field, 275
skew polynomial ring, 42
skew polynomials, 275
Skolem, T., 215
Skolem–Noether Theorem, 215
skyscraper sheaf, 370
slender, 454
small category, 525
small class (= set), 442
small module, 385
Small, L., 288, 332, 474, 535
smallest

element in partially ordered set, 316

subspace, 250
Smith normal form, 411
Smith, H. J. S., 411
solution

linear system, 249
universal mapping problem, 449

solution space, 144, 249
solvable

by radicals, 188
group, 192
Lie algebra, 165

solvable group, 34
spans, 250

infinite-dimensional space, 319
Spec(R)

topological space, 615
special linear group, 50, 140
special unitary group, 235, 437

Specker, E., 537
spectral sequence, 334
splice, 310
split extension

groups, 230
modules, 295

split short exact sequence, 307
splits

polynomial, 72, 84
splitting field

central simple algebra, 211
polynomial, 84

squarefree integer, 15
stabilizer, 6
stabilizes an extension, 246
stably isomorphic, 411
stalk, 671

g-sheaf, 360
Stallings, J. R., 120, 324
standard basis, 253
standard polynomial, 560
Stasheff, J., 553
Steinberg, R., 66

Steinitz Theorem, 214, 484
Steinitz, E., 214
Stevin, S., 3
Stickelberger, L., 24, 374
Strade, H., 166
string, 373
strongly indecomposable, 426
structure constants, 328
structure sheaf, 361, 525
subalgebra, Lie, 163
subbase of topology, 675
subcategory, 349, 446

full, 349
skeletal, 384

subcomplex, 260
inverse image, 111
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subfield, 38
generated by X, 59
prime field, 59

subgroup, 139
basic, 521
center, 155
centralizer of element, 8
centralizer of subgroup, 8
characteristic, 32
commutator, 35
conjugate, 8
cyclic, 141
Fitting, 49
Frattini, 47
fully invariant, 32
generated by X, 143
Hall, 39, 245
index, 147

nontrivial, 139
normal, 153

generated by X, 158
normalizer, 8
proper, 139
pure, 364
self-normalizing, 27
subnormal, 46, 192
Sylow, 25
torsion, 359

submatrix, 581
submodule, 295

cyclic, 296
generated by X, 296
proper, 295
torsion, 379

subnormal subgroup, 46, 192
subpresheaf, 371
subquotient, 333
subring, 32, 277
subring generated by X, 280
subsheaf, 371
subspace, 249

invariant, 295
proper, 249
smallest, 250
spanned by X, 250

subword, 83
superalgebra, 572
support, 323
surjective, 238
Suslin, A. A., 416, 487
Suzuki, M., 66
Swan, R. G., 325, 411
Sylow subgroup, 25
Sylow Theorem, 26, 27
Sylow, L., 24
Sylvester, J. J., 426
symmetric

algebra, 559
bilinear form, 417

function, 208

group, 117
space, 417

symmetric difference, 33, 129

symmetric functions
elementary, 84, 180

symmetric group, 128, 242

symmetric relation, 243

symmetry, 135
symplectic

basis, 424

group, 431
syzygy, 486

tangent half-angle formula, 624

target, 236, 443, 463
Tarry, G., 72

Tarski monsters, 508

Tarski, A., 508
Tartaglia, 4

tensor algebra, 556

tensor product, 510
sheaves, 525

terminal object, 459

Thales of Miletus, 4
Theatetus, 4

Third Isomorphism Theorem

groups, 165

modules, 298
Thompson, J. G., 34, 46, 203, 207, 219

Thrall, R. M., 159

Three Subgroups Lemma, 50
T.I. set, 208

Tietze, H. F. F., 107

top element, 670
topological group, 461, 678

topological space

metric space, 673
topology, 675

p-adic, 675

base, 675
compact, 674

discrete, 678

finite index, 675
generated by S, 675
Hausdorff, 676

induced, 676
product, 678

Prüfer, 676

subbase, 675
torsion

group, 359

module, 380

subgroup, 359
submodule, 379



Index 557

torsion-free, 359, 380
totally ordered abelian group, 444

trace, 172, 222, 456

trace form, 456
Trace Theorem, 222

transcendence basis, 349

transcendence degree, 351
transcendental element, 79

transcendental extension, 353

transfer, 314

transfinite induction, 345
transformation of direct system, 662

transgression, 321

transition functions
locally free sheaf, 526

transition matrix, 264

transitive
r-transitive, 75

group action, 6

sharply r-transitive, 76
transitive relation, 243

transpose, 248

transposition, 117
transvection

2× 2 matrix, 53

n× n matrix, 53
linear transformation, 59

transversal, 97

Schreier, 98
tree, 17, 107

maximal, 108

triangulated space, 224
trivial character, 176

trivial edge, 17

trivial module, 136

twin primes, 16
type

abelian group, 423

type T(X | R), 93
type (pure extension field), 187

UFD, 105

Ulm, H., 372
unimodular matrix, 50

unique factorization domain, 105

unique factorization, k[x], 71
unit, 36

noncommutative ring, 133

unit (adjoint functors), 393
unitary

group, 437

matrix, 437
transformation, 437

unitriangular, 30

universal

central extension, 314
Coefficients Theorem, 307

universal covering complex, 116

universal mapping problem, 449

solution, 449

upper bound, 210, 314

upper central series, 44

valuation ring, 444

discrete, 421

van der Waerden trick, 87

van der Waerden, B. L., 215

van Kampen, E. R., 109

Vandermonde matrix, 589

Vandermonde, A.-T., 589

variety, 594

affine, 594

irreducible, 614

vector bundle, 361

vector space, 247

vertices, 103

Viète, F., 3, 6

Vietoris, L., 271

virtually small, 405

Vogtmann, K., 126

von Dyck, W., 82

von Neumann regular, 493

von Neumann, J., 493

von Staudt, K. G. C., 68

Watts, C. E., 396–398, 663

weak dimension, 492, 493

Wedderburn Theorem

finite division rings, 146, 215

Wedderburn, J. M., 146, 327

Wedderburn–Artin Theorem, 149, 154

wedge of p factors, 562

Weierstrass, K., 347

weight, 630

well-defined, 237

well-ordered, 316

Weyl, H., 166

Whitehead’s problem, 309

Whitehead, J. H. C., 271

Widman, J., 3

Wielandt, H., 27

Wiles, A. J., 441, 445, 593

Williams, K. S., 102

Wilson’s Theorem, 149

Wilson, J., 149

Wilson, R. L., 166

Witt, E., 146

Wolf, J. A., 125

word

empty, 83

length, 83

positive, 91

reduced, 84

word on X, 83
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Yoneda Lemma, 350
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Zaks, A., 278
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on kn, 596
on Spec(R), 615

Zariski topology, 524
Zariski, O., 524, 596
Zassenhaus Lemma, 195

modules, 302

Zassenhaus, H., 195, 245
Zermelo, E. E. F., 442
zero complex, 257
zero divisor, 34
zero g-sheaf, 361
zero object, 459
zero of polynomial, 593
zero polynomial, 42
zero ring, 31
zero section, 362
zero-divisor, 288

on module, 498
ZFC, 442
Zorn’s Lemma, 314
Zorn, M., 314
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