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Preface

Geometry is one of the oldest branches of mathematics, nearly as old as human
culture. Its beauty has always fascinated mathematicians, among others. In writing
this book we had the purpose of sharing with readers the pleasure derived from
studying geometry, as well as giving a taste of its importance, its deep connections
with other branches of mathematics and the highly diverse viewpoints that may
be taken by someone entering this field.

We also want to propose a specific way to introduce concepts that have
arisen from the heyday of the Greek school of geometry to the present day. We
work with coordinate models, since this facilitates the use of algebraic and analytic
results, and we follow the viewpoint proposed by Felix Klein in the 19th century,
of studying geometry via groups of symmetries of the space in question.

We intend this book to be both an introduction to the subject addressed to
undergraduate students in mathematics and physics, and a useful text-book for
mathematicians and scientists in general who want to learn the basics of classical
geometry: Euclidean, affine, elliptic, hyperbolic and projective geometry. These
are all presented in a unified way and the essential content of this book may be
covered in a single semester, though a longer period of study would allow the
student to grasp and assimilate better the material in it.

We essentially restrict the whole discussion to “plane geometry”, that is
dimension 2, since this is already rich enough. We include some aspects of the 3-
or n-dimensional extension of these plane geometries whenever it is simple to do
so. Once plane geometry is well understood, it is much easier to go into higher
dimensions, and we give guidelines for further reading.

We assume that the reader is familiar with a few facts of plane Euclidean
geometry (especially those concerning triangles and circles), and also with the
elements of analytic geometry (the intersection of straight lines and planes, their
equations and the main properties of conics and quadrics) and of linear algebra (up
to eigenvalues and eigenvectors of a linear transformation of the plane or 3-space).

Also, we suppose the student is familiar with the notions and results of dif-
ferential and integral calculus for real functions of a single real variable, and that
he or she is taking at least a first course in calculus of several variables; basic
knowledge of the complex numbers will be useful in the last chapter.
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With this background it is possible to present formally, applying the ana-
lytic method to coordinate models, the geometries that “come after” Euclidean
geometry: affine, projective, elliptic and hyperbolic.

The study we make of these geometries allows us to understand the funda-
mental role played by the groups of “symmetries” and shows how algebra, analysis
and geometry combine to give a better understanding of a concept, a result or a
problem’s solution.

We have also paid attention to the exercises, choosing them so that their so-
lution deepens or widens our understanding. For exercises of greater than average
difficulty we give references as support. The best measure of the degree of under-
standing is the percentage of exercises solved: all of them should be attempted!

After assimilating the material in this text the reader will be prepared to
step forward, if that is his or her will, into more advanced areas of geometry, such
as differential geometry, foliations and group actions on differentiable manifolds,
among others.
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1

Euclidean geometry

The branch of mathematics known as geometry was formally established in Greece
around the year 300 B.C. However its origins, for our Western culture, go back to
Mesopotamia and Egypt around the year 3000 B.C.

Euclid’s classical treatise “The Elements” [Eu] has paramount importance for
the whole of science because in addition to being a compilation and organization of
all geometrical and physical knowledge generated up to that time, it also presents
a method of validating theoretical knowledge, making it imperishable. This is why
that treatise is still edited in our own days.

That text had small flaws which took a long time to be corrected (see [H]).
However, it is amazing to realize that most of those flaws disturbed Euclid himself,
who, at each occasion, handled the situation with all the caution the culture in
which he was embedded allowed him. In Euclid’s culture, fundamental concepts
such as real number, limit, and group of transformations did not yet exist. Today
we can use these concepts because of the algebraic language we have available.

We do not discuss the Euclidean postulates here (see Appendix 5.4), but
focus on the analytic treatment of geometry which assigns coordinates to points,
equations to loci, and in which the permitted transformations are conceived as
functions. That means that we shall base our study of geometry on the properties
of the system of real numbers that are studied in a first college course of calculus
(see [Cou]). With those properties, it is possible to prove that the Cartesian plane
complies with the Euclidean postulates (Exercise 17).

According to various authors (see, for instance, [Ki]), Euclid felt reluctant
about the method of superposition he used in his proofs of congruences of triangles.
Nevertheless, the analytic method clarifies Euclid’s “principle of superposition” up
to making it the very essence of Euclidean geometry: the study of invariants under
rigid transformations.

This first chapter is devoted to the study of the group of rigid transformations
in �2 and �3, and presents a view of geometric results that can be obtained under
the analytic approach. The main references are [Cox 1, 2, 5], [Eu], [Ev], [H], [Mar],
[Ra], and [Re].
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1.1 Symmetries

The concept of symmetry is fundamental in geometry as well as in nature itself.
The human body is outwardly symmetric with respect to a plane, and that sym-
metry determined the construction of objects which are symmetric as well, such
as vases with two handles or pairs of shoes. The symmetry of a disk with respect
to its center provides many applications. An infinite circular cylinder is symmetric
not just with respect to many planes and many points, but also with respect to
many straight lines; in particular, with respect to its axis. In this section, we shall
show how to justify these last assertions on the basis of the equation of a cylinder.

To be precise about what should be understood by each type of symmetry,
we start by recalling how we determine some distances in three-dimensional space.
We recall those formulas further on.

Q(x2, y2, z2) PP

P (x1, y1, z1)
L

ΠH
H Q

Q

(a) (b) (c)

Figure 1.1: Distances: (a) from a point P to a point Q, (b) from a point P to a straight
line L, and (c) from a point P to a plane Π

Definition. The distance from a point P to a point Q is the length of the rectilinear
segment between the two points.

Definition. The distance from a point P to a straight line L is the length of the
perpendicular segment from the point to the line.

Note that from all the points in the straight line, the foot H of the perpen-
dicular from point P to the straight line L determines a rectilinear segment of
minimal length (it is an edge of any right triangle PHQ in Figure 1.1(b)).

Definition. The distance from a point P to a plane p is the length of the perpen-
dicular rectilinear segment from the point to the plane.

In this case, the foot H of the perpendicular from point P to the plane Π is
also the point of the plane which minimizes the length of all possible rectilinear
segments from P to a point Q of the plane, since PH is an edge of any of the right
triangles PHQ in Figure 1.1(c).
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The different types of symmetry an object in the 3-dimensional space can
have are the following: (a) with respect to a point, (b) with respect to a straight
line, and (c) with respect to a plane.

Definition. An object F is symmetric with respect to a point O if for each point
P in F , P ′ is also in F , where O is the midpoint of the rectilinear segment PP ′

(see Figure 1.2). The point O is called the center of symmetry.

The graph of the sine function is symmetric with respect to the origin (see
Figure 1.2(a)). A cone of revolution is symmetric with respect to its vertex (see
Figure 1.2(b)). A cube is symmetric with respect to its center (see Figure 1.2(c)).
The analytic proof of the first two assertions is very simple, as will be seen.

sin X

P

P

P

P ′P ′

P ′

1

−1

OO

O

(a)

(b) (c)

X

Figure 1.2: Figures symmetric with respect to a point.

Definition. An object F is symmetric with respect to a straight line L if for each
point P in F , P ′ is also in F , where L intersects perpendicularly the rectilinear
segment PP ′ (see Figure 1.3). The straight line L is an axis of symmetry.

The graph of the cosine function is symmetric with respect to the Y axis
(see Figure 1.3(a)), but not with respect to the X axis. A regular pentagon is
symmetric with respect to any straight line through one vertex and the midpoint
of the side opposite to that vertex (as in Figure 1.3(b)). A cube is symmetric
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with respect to each of the straight lines through the centers of opposite faces
(see Figure 1.3(c)). At the end of this section, we shall prove these assertions very
easily.

cos X

P ′

P ′

P ′

P

P

P

X

(a)

(b) (c)

Figure 1.3: Figures symmetric with respect to a straight line.

Definition. An object F is symmetric with respect to a plane Π if for each point P
in F , P ′ is also in F , where Π is the plane perpendicular to the rectilinear segment
PP ′ through its midpoint (see Figure 1.4). The plane Π is a plane of symmetry.

The human body is outwardly symmetric with respect to the plane through
the spinal column and the tip of the nose. A cube is symmetric with respect to a
plane containing diagonals parallel to opposite faces, and with respect to a plane
parallel to opposite faces and through the center. An infinite circular cylinder is
symmetric with respect to any plane perpendicular to its axis, and with respect
to any plane through its axis. We shall verify the latter two assertions at the end
of this section.

There are formulas to compute the distances involved in the definitions of
symmetry. Nevertheless, let us see, before revising them, how some simple algebraic
considerations suffice to obtain the point symmetric to a given point P (x, y, z) with
respect to a coordinate plane, a coordinate axis, and to the origin.

This is useful because — except in those cases when the coordinate system
is given in advance — we shall be able to take the coordinate system so that the
plane, the straight line or the point with respect to which we are interested in
examining the symmetry, will be one of those coordinate elements. Furthermore,
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P

P
P ′

P ′

(b) (c)(a)

Figure 1.4: Figures symmetric with respect to a plane.

the standard inclusion of �2 in �3 allows us to use those criteria in the case of
the plane. The following definitions are illustrated in Figure 1.5.

The symmetric point of P (x, y, z) with respect to the origin of coordinates
O, is the point PO(−x,−y,−z), since P, PO and O are collinear, −P = PO and
||OP || = ||OPO||.

The symmetric point of P (x, y, z) with respect to the X axis, is the point
PX(x,−y,−z), since the vector P − PX = (0, 2y, 2z) is perpendicular to (1, 0, 0)
and the midpoint of the rectilinear segment PPX is (x, 0, 0) ∈ X .

Analogously, it is proved that the point symmetric to P (x, y, z) with respect
to the Y axis is the point PY (−x, y,−z), and that the point symmetric to P (x, y, z)
with respect to the Z axis is the point PZ(−x,−y, z).

It is also easy to prove that the points symmetric to P (x, y, z) with respect
to each of the coordinate planes are as follows:

PXY (x, y,−z) is symmetric to P (x, y, z) with respect to the XY plane,

PY Z(−x, y, z) is symmetric to P (x, y, z) with respect to the Y Z plane,

PZX(x,−y, z) is symmetric to P (x, y, z) with respect to the ZX plane.

On the basis of the preceding paragraphs, the reader should not find any
difficulty in proving the following result:

If a given figure is symmetric with respect to the three coordinate planes, then it
is also symmetric with respect to the coordinate axes and to the origin.
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X

Y

Z

O

P (x, y, z)

PY Z

PZ

PXZ

PX

PO

PXY

PY

Figure 1.5: Points symmetric to a given point with respect to the coordinate planes and
axes, and to the origin.

Now let us study the necessary formulas and algebra to determine the sym-
metries we have mentioned above.

For any two given vectors in �3 we define their scalar product as

(x1, y1, z1) · (x2, y2, z2) = x1x2 + y1y2 + z1z2 .

By means of this scalar product, we obtain the norm of a vector (x, y, z) in �3:

||(x, y, z)|| =
√

(x, y, z) · (x, y, z) =
√

x2 + y2 + z2,

which can be interpreted as the length of the diagonal of the parallelepiped deter-
mined by (0, 0, 0), (x, y, z), and the projections of (x, y, z) on each of the coordinate
planes and on each of the coordinate axes (make a drawing).

By means of the norm we can define the distance between two points
P (x1, y1, z1) and Q(x2, y2, z2) as:

d(P, Q) = ||P − Q|| =
√

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2,
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and so the angle between two vectors ū = (u1, u2, u3) and v̄ = (v1, v2, v3) can be
defined as:

∠(ū, v̄) = ∠ cos
(

ū · v̄
||ū|| ||v̄||

)
,

since Schwarz’s inequality asserts that (see Exercise 7)

|ū · v̄| ≤ ||ū|| ||v̄||.

Remark 1. In this book we identify �2 with the image of �2 in �3 given by
(x, y) �→ (x, y, 0). Of course, this is not the only way of considering �2 as a vector
subspace of �3, but this is the most commonly used.

In addition to the scalar product of two vectors ū = (u1, u2, u3) and v̄ =
(v1, v2, v3) in �3, we also have their cross product

ū × v̄ = (u2v3 − u3v2, u3v1 − u1v3, u1v2 − u2v1) =

∣∣∣∣∣∣
ı̂ ĵ k̂

u1 u2 u3

v1 v2 v3

∣∣∣∣∣∣ ,

where ı̂, ĵ and k̂ are the vectors of the standard base of �3: (1, 0, 0), (0, 1, 0) and
(0, 0, 1), respectively.

By means of the norm of the cross product, we can compute the area of a
parallelogram: if θ = ∠(ū, v̄), then we easily prove that

||ū × v̄|| = ||ū|| ||v̄|| |sin θ|.

Finally, the scalar triple product of three vectors ū, v̄, w̄, denoted as [ū, v̄, w̄],
is used for computing the oriented volume of the parallelepiped determined by 0̄,
ū, v̄, w̄, ū + v̄, ū + w̄, v̄ + w̄ and ū + v̄ + w̄ (see Figure 1.6):

[ū, v̄, w̄] = ū · v̄ × w̄ = ||ū|| ||v̄ × w̄|| cosφ,

where φ = ∠(ū, v̄ × w̄). Since v̄ × w̄ is perpendicular to v̄ and w̄, the number
||ū|| cosφ is the oriented height of P(ū, v̄, w̄) with respect to the basis formed by
the parallelogram determined by v̄ and w̄ (see Figure 1.6), whose area is precisely
||v̄ × w̄||.

Now it is easy to establish a formula for computing the distance from a given
point Q(a, b, c) to a line L ⊂ �

3 through a point P0 in the direction of a unit
vector û:

d(Q,L) = ||(Q − P0) × û|| = ||Q − P0|| |sin θ| (1.1)

since ||û|| = 1, the norm of (Q−P0)×û is equal to ||Q−P0|||sin θ| which is precisely
the height of the parallelogram shown in Figure 1.7, and which is contained in the
plane defined by L and Q, where θ = ∠(ū, Q − P0).
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φ

u

v

w

v × w

Figure 1.6: Geometric interpretation of the scalar triple product.

If the straight line and the point are in �2, the formula for the distance
from the point Q(x0, y0) to a straight line L ⊂ �2, represented by the equation
Ax + By + C = 0, is

d(Q,L) =
|Ax0 + By0 + C|√

A2 + B2
. (1.2)

X

Y

Z
Q

P0 û

Q − P0

L

Figure 1.7: How to compute the distance from a point to a straight line in �3.

The reader ought to justify this formula in terms of the scalar product and,
using the same reasoning, prove that the formula for the distance from a point
Q(x0, y0, z0) to a plane Π, represented by the equation Ax + By + Cz + D = 0, is

d(Q, Π) =
|Ax0 + By0 + Cz0 + D|√

A2 + B2 + C2
. (1.3)

Since we already have a way of determining distances between points, angles be-
tween straight lines, areas, and volumes, we are ready to begin with the analytic
study of Euclidean geometry in the plane and in three-dimensional space.
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We are going to prove first that we have the symmetries described in all
the previous examples, selecting in each case an adequate coordinate system so
that we can apply the criteria we have just recalled. There is no general recipe to
determine how to make this choice; in this situation, as in many others, it is only
through practice that we develop an intuition that allows us to make these choices
appropriately.

1. The graph of the sine function is symmetric with respect to the origin.

In this case, the coordinate system has already been established, since the
graph of a function y = f(x) refers to the coordinates (x, y) of a coordinate plane.

The graph of the sine function is formed by the points (x, sin x), and since
sinx = − sin(−x), we can write − sin x = sin(−x). Thus, a point P (x, sin x)
belongs to the graph of the sine function if and only if the point P ′(−x,− sinx)
also belongs to that graph (see Figure 1.8).

P

O

P ′

−x

x

1

−1

sin x

Figure 1.8: The graph of the sine function is symmetric with respect to the origin.

This property of the sine function reminds us of the property of the functions
y = xn, where n is an odd integer; hence it is said that the sine function is an odd
function.

2. The graph of the cosine function is symmetric with respect to the Y axis.

In this case, the coordinate system is also given. We invite the reader to
sketch the graph and to recall the trigonometric identity which implies that a
point P (x, cosx) belongs to the graph of the cosine function if and only if the
point P ′(−x, cos(−x)) also belongs to that graph.

3. Every circle is symmetric with respect to its center and with respect to
each of its diameters.

In this case, it is convenient to take as a coordinate system one whose origin
is the center and whose X axis coincides with the diameter with respect to which
we want to prove the symmetry. Thus, the equation of the circle is

x2 + y2 = r2
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and since x2 = (−x)2 and y2 = (−y)2, it is obvious that P (x, y) satisfies the
equation of the circle if and only if the point P ′(−x,−y) also satisfies it; that is,
the circle is symmetric with respect to its center. For the same reason, PX(x,−y)
belongs to the circle if and only if P (x, y) also belongs to the circle. This proves
the symmetry of the circle with respect to any of its diameters (see Figure 1.9).

X

Y

P (x, y)

PX(x,−y)P ′(−x,−y)

PY (−x, y)

Figure 1.9: Symmetries of the circle.

4. A regular pentagon is symmetric with respect to the straight lines through
one of its vertices and the midpoint of the side opposite to that vertex.

Recall that a pentagon is regular if its sides are congruent to one another
and its interior angles are congruent to one another.

To prove this claim, first, we can take a coordinate system suchthat if A, B,
C, D and E are the vertices of the pentagon, A is chosen on the Y axis and the
vertices C and D symmetric with respect to the Y axis. Thus, the axis is one of
the straight lines we are interested in (see Figure 1.10).

X

Y

A

B

C(−d, 0) D(d, 0)

E

α π − α

Figure 1.10: Symmetries of the pentagon.

Because of the congruence of the interior angles at C and D, the sides BC
and ED form angles π − α and α, respectively, with the positive X axis.
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Therefore, if the slope of DE is m, then the slope of BC is −m, and since
they pass through the points C and D respectively, the equations of the sides BC
and DE are

BC : y = −mx − md, DE : y = mx − md .

With these equations, it is easy to prove that the points of the side CB have
their symmetric points with respect to the Y axis on the side DE. We leave the
proof of this property to the reader. It is also left to the reader to prove that the
symmetric points of the side BA are on the side EA.

5. A circular cylinder is symmetric with respect to its axis, to any plane
through its axis, to any straight line and any plane which cuts the axis perpen-
dicularly, and with respect to any point on the axis.

We can think of a circular cylinder as the surface of revolution generated by
a straight line rotating about a fixed parallel straight line, the axis of revolution.

In this case, we place the cylinder in such a way that the Z axis is its axis; the
plane through the Z axis with respect to which we want to prove the symmetry
is the YZ plane; the plane orthogonal to the axis of the cylinder, with respect
to which we want to examine the symmetry, is the XY plane, and the proposed
center of symmetry is the origin.

With all these specifications, the equation of the cylinder is

x2 + y2 = r2;

since x and y have an even exponent and z is free, it is clear that there exists
symmetry with respect to the origin, to each of the coordinate axes, and to each
of the coordinate planes, in particular, with respect to the Z axis, to the Y Z plane,
and to the XY plane.

X Y

Z

PPZ PY Z

PO

PXY

Figure 1.11: Symmetries of a cylinder of revolution.

At the beginning, the reader might not have believed that there are axes
of symmetry other than the axis of revolution. However, the simplicity of the
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criterion for proving the symmetry of a figure with respect to a coordinate axis
led us to discover that the cylinder has an infinite number of axes of symmetry:
each straight line that intersects the axis of revolution perpendicularly.

That is one of the advantages of studying geometry using algebra: this allows
us to discover geometric facts that we might not have imagined or believed before.

6. A cone of revolution — which is generated by complete straight lines — is
symmetric with respect to its vertex, to its axis, and with respect to each straight
line through its vertex and perpendicular to its axis. It is also symmetric with
respect to the plane through its vertex and perpendicular to its axis, and to each
plane containing the axis.

In this case, it is also convenient to take the Z axis as the axis of revolution,
the origin as the vertex, the plane perpendicular to the axis with respect to which
we are interested in analyzing the symmetry as the XY plane, and the plane
through the axis of revolution as the Y Z plane.

The reader must make a drawing, establish the equation of the cone, and ver-
ify that every assertion of the proposition is satisfied because the cone of revolution
turns out to be symmetric with respect to all the coordinate elements.

7. A cube is symmetric with respect to the planes equidistant from two
parallel faces, to the planes containing parallel diagonals of parallel faces, to the
straight lines through the centers of opposite faces, to the straight lines through
the midpoints of opposite edges, and to the point where all planes and axes of
symmetry meet.

Let us consider a cube whose edges have length 2a. Let us place the cube in
such a way that the origin is the point where the equidistant planes of opposite
faces meet (see Figure 1.12), and let us take as coordinate planes precisely those
equidistant planes.

The equations of the planes containing the faces are x = a and x = −a, y = a
and y = −a, z = a and z = −a; furthermore, if the vertices of the top are A, B,
C and D, and those of the base are R, S, T , and U , then the faces are defined as
follows:

ABCD = {(x, y, z)| z = a, |x| ≤ a, |y| ≤ a};
RSTU = {(x, y, z)| z = −a, |x| ≤ a, |y| ≤ a};
BSTC = {(x, y, z)| y = a, |x| ≤ a, |z| ≤ a};
ARUD = {(x, y, z)| y = −a, |x| ≤ a, |z| ≤ a};
ARSB = {(x, y, z)|x = a, |y| ≤ a, |z| ≤ a};
DUTC = {(x, y, z)|x = −a, |y| ≤ a, |z| ≤ a}.

The coordinates of a point P on the face ABCD are (x, y, a), where |x| ≤ a and
|y| ≤ a; thus, its symmetric point with respect to the plane XY is PXY (x, y,−a),
which belongs to the face RSTU .
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C(−a, a, a)

T (−a, a,−a)

S(a, a,−a)

B(a, a, a)

R

(a,−a,−a)

A

(a,−a, a)

D

(−a,−a, a)

U

(−a,−a,−a)
X

Y

Z

Figure 1.12: Symmetries of a cube.

The symmetries with respect to the Y Z plane, which is equidistant to the
front and back faces, and to the ZX plane, which is equidistant to the right and
left faces, are proved analogously.

Thus, according to the remark following the list of criteria for symmetry
with respect to the coordinate elements, we have also proved the symmetries with
respect to the coordinate axes — the straight lines joining the centers of opposite
faces, and to the origin — the meeting point of the three straight lines joining
the centers of opposite faces intersect. This point is called the center of the cube
because it is a center of symmetry.

To prove that the cube is symmetric with respect to the planes determined
by parallel diagonals of parallel faces, it suffices to characterize, in an appropriate
way, the points belonging to the faces which are at both sides of one of those planes.
The behavior of the parameters will then facilitate verifying the symmetry.

Let us consider as an example the plane ARTC (see Figure 1.12), which
clearly has (1, 1, 0) as a normal vector and, since it passes through the origin,
satisfies the equation x + y = 0.

Figure 1.12 shows that the face ARUD is symmetric to the face ARSB with
respect to the plane ARTC.

The points of the plane ARUD are of the form P = A + sû + tv̂, where û is
a unit vector in the direction of A − D = (2a, 0, 0) and v̂ is a unit vector in the
direction of A − R = (0, 0, 2a):

(x, y, z) = (a,−a, a) + s(1, 0, 0) + t(0, 0, 1) = (a + s,−a, a + t).

The points are confined to the face ARUD when −2a ≤ s ≤ 0 and −2a ≤ t ≤ 0.
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By a similar argument it is shown that the points P ′ on the face ARSB are
of the form

(x, y, z) = (a,−a, a) + σ(0, 1, 0) + τ(0, 0, 1) = (a,−a + σ, a + τ),

where 0 ≤ σ ≤ 2a and −2a ≤ τ ≤ 0.
When s = −σ and t = τ, the segment PP ′ is perpendicular to the plane

ARTC, since P − P ′ = (s, s, 0) is parallel to (1, 1, 0). By the formula (1.3), the
distances from P and P ′ to ARTC are, respectively,

|a − s − a|√
2

=
|s|√

2
;

|a − a + s|√
2

=
|s|√

2
.

This shows the symmetry we were interested in.
For the other planes that have parallel diagonals of opposite faces, the com-

putation is similar.
In Section 5 we shall analyze the symmetries of each platonic solid — the

cube in particular — from the viewpoint of rigid transformations. That method,
which is much more powerful than the one used here, affords us an easier and
more complete analysis.

Exercises

1. Give examples of figures with an infinite number of: (a) centers of sym-
metry, (b) axes of symmetry, (c) planes of symmetry.

2. Prove that if a figure in the Cartesian plane is symmetric with respect
to both axes, then it necessarily has a center of symmetry.

3. Draw a curve C on the plane and fix a point O /∈ C. Complete the
drawing so that the figure obtained is symmetric with respect to O.
Repeat the exercise, now fixing a straight line L.

4. Analyze the symmetries of all the conics, including the singular cases
(that is, when the cutting plane passes through the vertex of the cone),
and the symmetries of the quadric surfaces.

5. What characterizes the standard equation of a quadric surface which
is symmetric with respect to a coordinate plane? What if we further
assume it to be symmetric with respect to a coordinate axis? And with
respect to the origin?

6. Prove that if a figure in the Cartesian space is symmetric with respect
to each coordinate plane, then it is also symmetric with respect to the
coordinate axes and to the origin.

7. How many axes of symmetry does an isosceles triangle have? And an
equilateral triangle?

8. By making a drawing, determine the projections of P (x, y, z) in the
3-space, onto each coordinate axis and each coordinate plane; draw the
parallelepiped they determine.
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9. Prove the Schwarz inequality by means of the inequality
||ū + tv̄||2 ≥ 0.

10. Justify formula (1.2) used to compute the distance from a point to a
straight line in �2, and formula (1.3) used to obtain the distance from
a point to a plane in �3.

11. Prove that the cross product of two vectors, ū, v̄, is a vector orthogonal
to both of them.

12. Prove that three vectors are coplanar if and only if their scalar triple
product is zero.

13. Prove the following identities for vectors in �3, which imply that the
cross product is not associative:

(ū × v̄) × w̄ = (ū · w̄)v̄ − (v̄ · w̄)ū,
(ū × v̄) × w̄ + (v̄ × w̄) × ū + (w̄ × ū) × v̄ = 0̄.

14. Give a formula (and justify it) to compute the distance between two
straight lines which cross one another in a space (two straight lines cross
one another in a space if they do not intersect and are not parallel).

15. Prove that the graph of the sine function is not symmetric with respect
to the coordinate axes.

16. Complete the proof of the symmetries of a cone of revolution and make
a drawing where all of them are shown.

17. Prove that the Euclidean axioms are satisfied in �2. (See these postu-
lates in Appendix 5.4.)

18. Prove that a cube is symmetric with respect to each straight line joining
midpoints of opposite faces.

19. Note that at each vertex of a cube, three edges meet. Use this property
to convince yourself that the longest diagonals of a cube are not axes
of symmetry.

20. Prove that the diagonals of a rectangle which is not a square, are not
axes of symmetry of that rectangle. Are there any straight lines which
are axes of symmetry of a rectangle? Is there any center of symmetry?

21. How many planes of symmetry does a cube have? And how many axes
of symmetry? And how many centers? Justify your answers.

22. Answer the questions in Exercise 21 for the case of a sphere, and justify
your statements.

1.2 Rigid transformations

At the beginning of this chapter, we stated that the mathematical concept which
allows validating the process of superposition (used by Euclid to prove the con-
gruence of two triangles) is the concept of a group of rigid transformations.

The concept of a group, which is very powerful and fundamental for many
branches of mathematics, was first understood and used by Evariste Galois (1811–
1832) around the year 1830 to decide on the solvability of equations of arbitrary
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degree by radicals. Later, in 1872, Felix Klein (1849–1925) gave a lecture known
as the Erlanger Programm (because the university where Klein was going to work
is located in Erlangen, a Bavarian city), in which he proposed to take the group
concept as the axis of the study of geometry [Ke]:

Geometry is the study of invariants under a group of transformations.

For instance, the symmetry of a figure with respect to a plane can be ex-
pressed by saying that the figure remains invariant under a reflection in that
plane. Other figures remain invariant when we rotate them about a point, such
as a circle which rotates about its center, or when we translate them by a fixed
distance, such as an infinite cylinder.

The reader will judge for himself or herself, throughout this book, the scope of
Klein’s proposal and the posterior development due to Sophus Lie. We recommend
to the reader interested in knowing about the historical development of the concept
of symmetry prior to the proposal by Klein and the works by Lie, the very pleasant
book by Yaglom [Y].

The transformations allowed by Euclid are those which preserve the Eu-
clidean distance, and we shall deal mainly with these. First, we look at the group
corresponding to �2 and then the group of �3.

Definition. A rigid transformation of the plane is a surjective1 function T : �2 →
�

2 which preserves distances between points; that is,

d(P, Q) = d(T (P ), T (Q)).

Rigid transformations are also called isometries because they preserve dis-
tances (and therefore measurements, such as areas, etc.)

Translations, rotations, and reflections are examples of rigid transformations
on the plane. These transformations can be defined on the basis of intuitive situ-
ations.

Definition. A translation on the plane by a fixed vector ā ∈ �2 is the transfor-
mation Tā : �2 → �

2 which moves each point by a distance equal to ||ā|| in the
direction of ā (see Figure 1.13):

Tā(P ) = P + ā.

Notice that it was not necessary to use either the coordinates of P or those
of ā; thus, the definition of translation in �3 will be the same. Also notice the
difference in the notation of P and ā; this notation is due to the different roles
they play: ā is a fixed vector which moves each point P ∈ �2.

A translation is a rigid transformation, since

d(Tā(P ), Tā(Q)) = ||P + ā − (Q + ā)|| = ||P − Q|| = d(P, Q).

1It is not necessary to assume surjectivity; we do so for simplicity.
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X

Y

P

P + ā

Q

Q + ā

ā

Figure 1.13: Translation in �2 by a fixed vector ā.

What can we say about the set of all translations?
To begin with, the composition of two translations, Tb̄ ◦Tā, is another trans-

lation, namely Tā+b̄, as can be proved immediately by applying the composition
to an arbitrary point P :

(Tb̄ ◦ Tā) (P ) = Tb̄ (Tā(P )) = Tb̄ (P + ā) = P + ā + b̄ = Tā+b̄(P ) .

In addition, since the translation by the vector 0̄ leaves each point in its place
(that is, T0̄ is the identity transformation), when composing T0̄ with any other
translation Tā from the right or the left, we obtain Tā again:

Tā ◦ T0̄ = Tā+0̄ = Tā .

Since a rigid transformation preserves distances, it is injective, or in other
words it takes distinct points to distinct points.

This situation insures the existence of (Tā)−1, but intuitively it is evident
that to take each point back to its place after moving it by ā, it suffices to move
it by −ā. Thus,

(Tā)−1 = T−ā.

Moreover, since any composition of functions is associative, we have that

Tc̄ ◦ (Tb̄ ◦ Tā) = (Tc̄ ◦ Tb̄) ◦ Tā.

All these properties mean that:

The set of translations of the plane forms a group under composition.

Before stating the definition of a group, which is fundamental throughout
this book, it is important to emphasize the following fact:

Remark 2. Each vector of�2 determines a translation and, furthermore, the sum of
vectors determines the translation associated to the composition of the translations
defined by those vectors.
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Now, �2 is a geometric object where we can measure distances and therefore
we can speak of the concepts of nearness by means of neighborhoods of radius ε.
On the other hand, we have proved that the transformations form a group. This is
a very important property of �2 (and of any �n in general): to have a geometric
structure as well as an algebraic structure, and these structures “combine appro-
priately”. This is what is known as a Lie Group. Throughout this book, we shall
see that this same situation holds for other geometric objects which we know well.

Let us now give the definition of a group:

Definition. A group is a set G in which an operation is defined, that is, a function
	 : G × G → G with the following properties:

1a. Closed: The set G is closed under the operation 	. That is, the result of
operating with two elements of G is an element of G:

g 	 h ∈ G for all g, h ∈ G.

Notice that this property is obvious from the definition of 	, since G
is the codomain of this function, but this fact is so important that it is
worthwhile emphasizing it.

2a. Associativity: For any three elements of G, it is the same to operate with
the first two of them and then operate this result with the third one as to
operate the first element with the result of operating with the last two of
them. Namely,

(g 	 h) 	 k = g 	 (h 	 k) .

3a. Existence of the identity element: There exists an element e ∈ G such that
when operating it with any other element of G the latter is not affected. With
symbols,

e 	 g = g 	 e = g.

4a. Existence of inverses: For each g ∈ G, there exists another element of G,
g−1, such that when operating it with g the result obtained is the identity
element e. With symbols,

g−1 	 g = g 	 g−1 = e.

When additionally to these four properties commutativity also holds,

g1 	 g2 = g2 	 g1,

the group is called a commutative or Abelian group, after Niels Henrik Abel
(1802–1829).
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Several of the numerical systems the reader is familiar with, such as the in-
tegers, the rational numbers, and the real numbers, are groups. The integer num-
bers form a group, an Abelian group, with the operation of addition; the rational
numbers and the real numbers are both Abelian groups under the operation of
addition and, if zero is omitted (in both cases), the remaining numbers also form
a commutative group under the operation of multiplication.

It is evident that translations of the plane form a commutative group under
the operation of composition, and we know that vectors in �2 form a commutative
group under the operation of addition. The correspondence is bijective and respects
operations according to Remark 2; this is a very important property and it is
worthwhile emphasizing it.

Definition. An isomorphism of groups is a bijective correspondence between two
groups, φ : G → G′ which preserves group operations. That is:

φ(g1) · φ(g2) = φ(g1 	 g2)

for all g1, g2 in G, where 	 is the operation in G1 and · is the operation in G′.

Thus one has:

The additive group �2 is isomorphic to the group of all translations of �2.

Another example of a group, which is fundamental in geometry, is that of the
square (n×n)-matrices with real entries and with determinant different from zero,
GL(n,�); the operation considered is the multiplication of matrices. We leave to
the reader the proof of this statement for (2 × 2)-matrices as well as for (3 × 3)-
matrices, which are the ones we shall use. Except for the case n = 1, these groups
are not commutative, which is very easily proved.

In the Cartesian plane, the definitions of a rotation around the origin and
a reflection with respect to a straight line through the origin, can be expressed
in terms of (2 × 2)-matrices with real entries. This follows from the fact that the
rotation of a point P by an angle θ around the origin in �2 can be reduced to the
rotation of the vectors of a basis of �2, and similarly for the reflections. Let us
see why this is so.

If we rotate the rectangular triangle corresponding to P = x(1, 0) + y(0, 1),
we obtain (see Figure 1.14)

Roθ(P ) = xRoθ(1, 0) + y Roθ(0, 1).

However, the rotation of (1, 0) by an angle θ about the origin transforms it
to (cos θ, sin θ), and takes (0, 1) to (−sin θ, cos θ). Thus,

Roθ(x, y) = x(cos θ, sin θ) + y(−sin θ, cos θ) = (x cos θ − y sin θ, x sin θ + y cos θ),

which justifies the following statement.
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X

Y

P (x, y)

y(0, 1)

x(1, 0)

θ

Roθ(P )

(cos θ, sin θ)

(−sin θ, cos θ)

Figure 1.14: Rotation by an angle θ about the origin in �2.

Proposition. The rotation by an angle θ around the origin in �2 is the function
Roθ : �2 → �

2 whose effect on a point P (x, y) is

Roθ(x, y) =
(

cos θ − sin θ
sin θ cos θ

) (
x
y

)
=

(
x cos θ − y sin θ
x sin θ + y cos θ

)
.

In other words, a rotation around the origin in the plane is the linear trans-

formation determined by a matrix of the form
(

cos θ − sin θ
sin θ cos θ

)
.

A rotation around the origin is a rigid transformation, since the rectan-
gular triangles of Figure 1.14 are congruent and, accordingly, for any P ∈ �2,
||Roθ(P )|| = ||P ||. Thus, taking into account the linearity of the transformation
induced by the matrix above:

d(Roθ(P ), Roθ(Q)) = ||Roθ(P ) − Roθ(Q)|| = ||Roθ(P − Q)|| = ||P − Q||.

Notice that the matrix of a rotation has the form(
a −b
b a

)
, where a2 + b2 = 1. (1.4)

On the basis of this remark, it is very easy to prove that, as intuition suggests,
when applying to a point P (x, y) first the rotation by an angle θ and then the
rotation by an angle φ, the effect is the same as rotating P (x, y) by the angle θ+φ.

In fact, using the substitutions a = cos θ, b = sin θ, c = cosφ, d = sin φ we
get (

c −d
d c

) (
a −b
b a

)
=

(
ca − db −cb − ad
da + cb −db + ca

)
.

Thus, the trigonometric identities for the cosine and the sine of the sum of two
angles imply that ca− db = cos(θ + φ) and da + cb = sin (θ + φ). This proves that
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the composition of two rotations Roφ ◦Roθ is defined by the matrix corresponding
to the rotation by an angle θ + φ.

That is, there is a bijective correspondence between the rotations about the
origin by an angle θ ∈ [0, 2π) and the matrices of the form (1.4). Moreover, that
correspondence respects the operations, namely, the composition of rotations cor-
responds to the multiplication of matrices.

By taking into account this correspondence, it is easy to prove the following
theorem.

Theorem. Rotations around the origin form a commutative group.

Proof. We prove each of the conditions for having a group structure.

Closed: The composition of two rotations is another rotation, as we have already
seen.

Associativity: The composition of rotations is associative, since that is true for
any functions. Nevertheless, in this case it also follows from the fact that the
multiplication of matrices is associative, as the reader shall prove in Exercise 1.

Existence of the identity element: The rotation by an angle 0 corresponds to the
matrix (

1 0
0 1

)
,

which is the identity element for the multiplication of matrices.

Each rotation has an inverse rotation: When composing the rotation by the angle
−θ with the rotation by the angle θ, the result is the rotation by the angle 0,
which is the identity element for the composition of rotations, for if a = cos θ and
b = sin θ, (

a b
−b a

) (
a −b
b a

)
=

(
a2 + b2 −ab + ab
−ba + ab b2 + a2

)
=

(
1 0
0 1

)
.

Commutativity: The composition of two rotations can be applied in either order
without affecting the result. The proof of this property is left to the reader. �

Notice that these arguments actually show that the set of all real matrices of
the form (1.4) is an Abelian group, isomorphic to the group of rotations around
the origin in �2.

Our last example of a rigid transformation on the plane is that of reflections
with respect to a straight line through the origin. For this example we also give a
definition in agreement with intuition; this definition implies that these reflections
are linear transformations of the plane.

In Figure 1.15, we have again associated to the point P the rectangular
triangle corresponding to P = x(1, 0) + y(0, 1), and we have reflected the whole
triangle with respect to the straight line Lφ (think of it as if it were a mirror),
which forms an angle φ with the positive X axis, denoted as X+.
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The reflected triangle is again a rectangular triangle, and the corresponding
vector Reφ(P ) can be formed as follows:

Reφ(P ) = xReφ(1, 0) + y Reφ(0, 1).

Since the straight line forms the angle φ with X+, the reflection of (1, 0) with
respect to the straight line Lφ forms the angle 2φ with X+ and, accordingly, its
coordinates are (cos 2φ, sin 2φ).

The reflection of (0, 1) does not form an angle of π/2 with (cos2φ, sin2φ),
but an angle of −π/2 because a reflection changes the orientation of the angles.
Hence, the reflection of (0, 1) is (sin 2φ,− cos 2φ), and we are ready to construct
the matrix that gives the reflection.

X

Y

P ′

Py(0, 1)

x(1, 0)

φ

2φ

Lφ

(cos 2φ, sin 2φ)

(sin 2φ, − cos 2φ)

Figure 1.15: Reflection with respect to a straight line through the origin.

Proposition. The reflection with respect to the straight line Lφ through the origin,
which forms an angle φ with the positive X axis on the plane, is the transformation
Reφ : �2 → �

2 whose effect on a point P (x, y) is

Reφ(x, y) =
(

cos 2φ sin 2φ
sin 2φ − cos 2φ

) (
x
y

)
=

(
x cos 2φ + y sin 2φ
x sin 2φ − y cos 2φ

)
.

The proof that a reflection of this type is a rigid transformation is left to the
reader.

This time the matrix has the form(
a b
b −a

)
, where a2 + b2 = 1. (1.5)

Notice that the determinant of a matrix of a rotation is 1, while the determi-
nant of a matrix of a reflection is −1. These results imply that the composition of
two reflections can not be a reflection, for the corresponding matrices are multiplied
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and the determinant of the matrix of their product is equal to the multiplication
of their respective determinants: 1.

Therefore, we can not think of proving that the reflections form a group, since
the product of two of them is not a reflection anymore. Also, the identity element
of the multiplication of matrices has determinant 1, so it is not a reflection.

However, it is true that the inverse of a reflection is itself a reflection, as
intuition suggests: If P ′ is the reflection of a point P with respect to a straight
line, and then P ′ is reflected with respect to that same straight line, we obtain P
again (see Exercise 5 below). We invite the reader to prove this result formally by
multiplying by itself the matrix of a reflection.

Now, if we write the matrix of a rotation in the form (1.4), and that of a
reflection in the form (1.5), we shall be able to prove easily that their product
is a reflection, although the straight line with respect to which the reflection is
done depends on the order of multiplication (see Exercise 5). In other words, the
composition of a rotation with a reflection (in either order) is again a reflection.

This suggests the following theorem.

Theorem. The set of rotations in �2 about (0, 0) and reflections with respect to a
straight line through (0, 0) form a group under composition.

The proof is left to the reader. Just remember that the inverse of a multipli-
cation of matrices (or of the composition of transformations) is the multiplication
of the inverses taken in reverse order.

This group is called the orthogonal group of order 2, O(2,�), because the
associated matrices have the elements of an orthonormal basis as column vectors:
a right basis for the rotations and left one for the reflections.

For the matrices M whose column vectors constitute an orthonormal basis
of �2 (or of �n), it is immediately verified that their inverse, M−1, is equal to
their transpose, M t, the matrix whose columns are the rows of the original matrix
(respecting their order), and they are called orthogonal matrices.

The orthogonal matrices whose determinant is +1, which simply is the group
of rotations, form the so-called special orthogonal group, which is denoted as
SO(2,�).

Before beginning with the study of rigid transformations in �3, let us re-
member that, since in �3 we have a way of measuring the distance between ā and
b̄, the isomorphism between the additive group �2 and the group of translations
of the plane (under composition) allows us to speak of “nearby” translations, or
more precisely of the neighborhood of radius ε of a translation Tā: it is formed by
all the translations Tb̄ such that ||ā − b̄|| < ε.

An analogous property holds for the group of rotations around the origin: we
can identify the rotation by an angle θ with the point of the unit circle in �2:

S1 = {(x, y) ∈ �2|x2 + y2 = 1}
determined by the oriented line through the origin that forms an angle θ (measured
counter-clock-wise) with the the positive X axis. We can say how close the points
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of the circle are because we know how to measure distances in S1. Hence we can
also measure how close two rotations of the plane are. In fact S1 can be seen as the
multiplicative group of the complex numbers of norm 1, and the correspondence
with SO(2,�) is a group isomorphism.

Sophus Lie (1842–1899) was the first mathematician to study this type of
groups. He was a contemporary and friend of Klein. These groups are called Lie
groups after him. We shall study them further on in this book and, in the case of
rotations, we shall show the convenience of using complex coordinates.

As to rigid transformations of the three-dimensional Euclidean space into
itself, the space we live in, we can also give as examples translations, rotations,
and reflections.

Translations are defined exactly the same way as in the case of the plane, for
the translation in �3 by the fixed vector ā ∈ �3 is given by

Tā : �3 → �
3 such that Tā(P ) = P + ā.

Notice that, in the proof that the translations in �2 constitute a group, the
fact that ā and P are elements of�2 was not really used; hence the same arguments
imply that translations in �3 form a commutative group. Similar statements hold
also for the corresponding groups of rigid transformations, and the proof of rigidity
also applies in this case.

In fact the previous discussion about translations can be fully generalized to
�

n, and therefore every element ā ∈ �n can be regarded as a translation, a rigid
transformation of �n.

To define a rotation and a reflection in �3, we propose extending the corre-
sponding definitions in �2.

Let us remember that the standard basis of �3 is formed by the vectors
ê1 = (1, 0, 0), ê2 = (0, 1, 0), and ê3 = (0, 0, 1), the three of them with norm 1,
being orthogonal one to another, and forming a right basis.

As for a rotation in �2, we shall require a right basis to transform into
another right basis. The reader may think of three rods welded together at one of
their extremes, so that they remain perpendicular to one another; they can move
but their common extreme must remain fixed. Hence, it is possible to define a
rotation in �3 by means of a 3 × 3 orthogonal matrix with determinant 1.

Definition. A rotation about the origin in�3 is a linear transformation Ro : �3 →
�

3 determined by a matrix of the form⎛⎝u1 v1 w1

u2 v2 w2

u3 v3 w3

⎞⎠ ,

where û = (u1, u2, u3), v̂ = (v1, v2, v3), ŵ = (w1, w2, w3) form a right orthonormal
basis.
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It is clear that under a rotation around 0̄ in �3, any sphere with that center
is transformed into itself, particularly the sphere of radius 1,

S2 = {(x, y, z) ∈ �3|x2 + y2 + z2 = 1}.

Our experience of playing with a ball shows us that if we want to make the
ball rotate into our hands, we must place one hand opposite to the other. That
corresponds to the algebraic fact that a rotation about the origin in �3 leaves a
certain straight line through the origin fixed point to point, which is the axis of
rotation.

That is so because the characteristic polynomial is of the third degree and it
must have a real root. With that characteristic value (proper value or eigenvalue),
we determine an invariant subspace of the rotation. Accordingly, any rotation in
�

3 around the origin reduces to a rotation on the plane that is perpendicular to
the axis of rotation (see [Ra]).

For a reflection, we require the standard basis to transform into a left or-
thonormal basis.

Definition. A reflection about the origin in �3 is a linear transformation Re :
�

3 → �
3 determined by a matrix of the form⎛⎝u1 v1 w1

u2 v2 w2

u3 v3 w3

⎞⎠ ,

where û = (u1, u2, u3), v̂ = (v1, v2, v3), ŵ = (w1, w2, w3) form a left orthonormal
basis.

The following are some examples of reflection matrices in �3:⎛⎝−1 0 0
0 a −b
0 b a

⎞⎠ ,

⎛⎝1 0 0
0 a b
0 b −a

⎞⎠ and

⎛⎝−1 0 0
0 −1 0
0 0 −1

⎞⎠ .

The first matrix leaves invariant the X axis, although it exchanges the semi-
axes (on the Y Z plane we have a rotation). The second matrix fixes point by point
the X axis and makes a reflection on the Y Z plane. The third matrix corresponds
to a very interesting case: the antipodal application, which leaves invariant all
the straight lines through the origin, although each point is transformed into its
symmetric image with respect to the origin.

Every sphere with the center at the origin is mapped into itself under a
reflection. If we investigate the invariant subspaces under reflection, we find again
a straight line through the origin, for the characteristic polynomial is of degree 3,
although in this case the points may not remain fixed, but exchange with those of
the complementary half straight line.
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The proof that rotations and reflections in �3 are rigid transformations is
based again on the fact that they are linear transformations and, since we do not
use coordinates as in the case of the plane, that same proof holds for �3.

Again, it happens that rotations and reflections in �3 constitute a group
under composition (the composition corresponds to the operation of matrix mul-
tiplication). In this case, the group is denoted as O(3,�), and it is called the
orthogonal group of order 3.

The definition of rotations and reflections in �3 as linear transformations
makes the origin remain fixed. However, it is clear that we can apply rotations
and reflections with respect to any point of �3. The treatment we have provided
may seem restrictive, but the following considerations will show that is not so.

Proposition. Any rigid transformation is the composition of a translation with an
orthogonal transformation.

Proof. Let us denote with T a rigid transformation in �3. If T (0̄) = ā, the com-
position of T−ā with T , leaves 0̄ fixed. Now it will suffice to prove that any rigid
transformation U which leaves 0̄ fixed is orthogonal. The details are left to the
reader.

A possible way of proving this claim is to show that:

(i) U respects norms, that is, ||ā|| = ||U(ā)||.

(ii) U respects the scalar product. For proving it, we can develop both members
of the equality

||ā − b̄||2 = ||U(ā) − U(b̄)||2,

which holds because U is rigid, and take into account (i).

(iii) U is linear. For proving it, verify that ||U(λā) − λU(ā)||2 = 0, and
||U(ā + b̄) − U(ā) − U(b̄)||2 = 0.

Since 0̄ is the only vector characterized by its norm, that proves that U “takes
out” scalars and distributes over addition. Hence, the matrix corresponding to U
in an orthonormal basis is orthogonal. �

It is easy to convince oneself that any rigid transformation on the plane is de-
termined by three non-collinear points and their images, and that any rigid trans-
formation in three-dimensional space is determined by four non-coplanar points
and their images (and so on).

Considering these results, it can be proved that any rigid transformation on
the plane is the product of at most three reflections (see Exercise 7 and Exercise
8 below).

The group of rigid transformations of the plane on the plane is the Euclidean
group of order 2, E(2), and the group corresponding to �3 is the Euclidean group
of order 3, E(3).
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In Section 1.3 we show that we are familiar with many examples of invariance
under rigid transformations. Moreover, we shall introduce a fundamental concept
of differential geometry, that of curvature.

Exercises

1. Is �− {0} a group with respect to multiplication?

2. Prove that GL(2,�), the set of 2 × 2 matrices with real entries and
determinant different from zero, forms a group under multiplication
called the general linear group of order 2. Is this group commutative?

3. Prove that the multiplication of matrices of the type (1.4) is commu-
tative.

4. Prove that a reflection on the plane with respect to a straight line
through the origin is a rigid transformation.

5. Prove that the inverse transformation of a reflection of the plane with
respect to one line through the origin is that same reflection. That is,
given a reflection Re : �2 → �

2, one has that Re ◦ Re is the identity.

6. Determine the line of reflection that corresponds to the composition of
a rotation and a reflection; verify that this line depends on the order
of the composition.

7. Prove that any rotation on the plane about the origin is the composition
of two reflections with respect to straight lines through the origin.

8. Prove that any translation on the plane is the composition of two re-
flections with respect to parallel straight lines which are perpendicular
to the direction of the translation.

9. Prove that the statements in Exercises 7 and 8 can be generalized this
way:
“The composition of two reflections with respect to arbitrary straight
lines is a rotation, except in the case when the straight lines are parallel,
where a translation is obtained.”
Therefore, it makes sense to state that a translation is the limit of
rotations. Can you justify this latter statement?

10. Prove that a rigid transformation on the plane is determined when the
images A′, B′, and C′ of three non-collinear points A, B, and C are
known.

11. Prove that any rigid transformation on the plane is the composition of
at most three reflections. For that, take three points A, B, and C and
their images A′, B′, and C′, and verify that the statement holds for
each of the following cases, which are all possible cases.
i) A = A′, B = B′ and C = C′;
ii) A = A′, B = B′ and C �= C′;
iii) A = A′, B �= B′ and C �= C′;
iv) A �= A′, B �= B′ and C �= C′.

12. Establish for �3 the statement analogous to that in Exercise 6 and
prove it.
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13. Establish for �3 the statement analogous to that in Exercise 7 and
prove it.

14. Establish for �3 the statement analogous to that in Exercise 10 and
prove it.

15. Associate to each 3 × 3 matrix M with real entries an element of �9

writing the rows one next to the other, and reciprocally. Define in �9 a
distance by means of the scalar product, and use it to define a distance
between the 3×3 matrices. Prove that if the distance d between matrices
is restricted to the elements of O(3,�), for any M ∈ SO(3,�), there
exist ε > 0 such that if d(M, M ′) < ε, then M ′ can not be a reflection.
(This says, in other words, that SO(3,�) is an open subset of O(3,�).
In fact O(3,�) has two disjoint “pieces”, or connected components,
and SO(3,�) is one of these.)

16. Prove that there is an isomorphism between the field � of complex
numbers x + iy and the set of matrices with real entries of the form„

x −y
y x

«
,

provided by the usual addition and multiplication for matrices. Prove
as well that those matrices are the composition of a rotation with a
homothesis Hρ : �2 �→ �2 that takes (x, y) into (ρx, ρy) with ρ =
||(x, y)||.

1.3 Invariants under rigid transformations

Now we analyze what properties of geometrical objects are preserved — that is,
what properties are invariant — under rigid transformations.

Of course, the types of triangles — equilateral, isosceles, and scalene — are
invariant characterizations under rigid transformations, since they are defined in
terms of distances. If the three sides of a triangle ABC are equal (in length), the
same holds for the triangle A′B′C′ obtained by applying a rigid transformation to
the triangle ABC. Moreover, the lengths of the sides are preserved and that forces
the angles to have the same measurements. (Can you give a justification of this
assertion?) The analogous properties hold for the other two types of triangles.

Parallel straight lines are taken into parallel straight lines under a rigid trans-
formation, because parallel straight lines are equidistant; and straight lines that
intersect one another at a certain angle are transformed into other straight lines
that intersect one another with that same angle (consider the triangle formed by
one point on each straight line and its point of intersection). Therefore, under a
rigid transformation a square is transformed into another square, and so on.

The types of conic sections are also invariant under rigid transformations.
For instance, an ellipse is the locus of the points P on the plane such that the
sum of their distances to two fixed points F1 and F2, called foci, remains constant
(which is usually denoted as 2a). Thus, if the images of the foci under a rigid
transformation T are F ′

1 and F ′
2, then the defining condition of an ellipse holds
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for the point P ′ = T (P ) with respect to F ′
1 and F ′

2. Moreover, of course, the semi-
axes of the latter ellipse will have the same length as those of the semi-axes of the
former.

The same reasoning is applied to the other types of conic sections and to
quadric surfaces in general. To explain this, let us start by making precise what is
a quadric surface and how they are classified.

A quadric surface is the locus of the points (x, y, z) which satisfy a second
degree equation in three variables,

Ax2 + By2 + Cz2 + 2Dxy + 2Exz + 2Fyz + Gx + Hy + Iz + J = 0,

and the different types of quadric surfaces, a total of fifteen (some of them degen-
erated), are obtained by varying the coefficients of this equation.

The classification of the different types of quadric surfaces is made, first, on
the basis of the matrix of the quadratic form determined by the symmetric matrix⎛⎝A D E

D B F
E F C

⎞⎠ .

The reader may recall that a matrix like this one is always diagonalizable
and the entries in its diagonal, the characteristic values of the transformation
corresponding to the matrix, indicate how much the characteristic vectors are
dilated or contracted, and if their direction is unchanged or reversed (see [B-ML]
or [Ra]).

The rank of a matrix is the dimension of its image, which in this case is the
same as the number of its characteristic values different from zero; its signature
is the difference between the number of its positive proper values and that of its
negative proper values. The rank and the signature of a matrix are invariant under
orthogonal transformations because the characteristic polynomial is invariant.

The invariance of a quadric surface (concerning its type and measure) under
a rigid transformation will be proved by the following facts:

1o. The degree of a polynomial is invariant under rigid transformations, for it is
invariant under a translation as well as under an orthogonal transformation.
Accordingly, a quadratic polynomial is transformed into another quadratic
polynomial, that is, every quadric surface is transformed into another quadric
surface.

2o. The only standard forms of quadric surfaces are 1), 3), 7) and 13) in the list
below. They are shown in Figure 1.16).

• Rank 3:
1) The empty set, which corresponds to the equation x2 +y2 +z2 = −1.
2) An ellipsoid, which corresponds to the equation x2 + 2y2 + 3z2 = 1.
3) A point, given by the equation x2 + 2y2 + 3z2 = 0.
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4) A two-sheeted hyperboloid, given by the equation x2−2y2−3z2 = 1.
5) A one-sheeted hyperboloid, with typical equation is x2+2y2−3z2 = 1.
6) A cone, whose typical equation is x2 + 2y2 − 3z2 = 0.

• Rank 2:
*) The empty set, given by x2 + y2 = −1.
7) A straight line, given by the equation x2 + 2y2 = 0.
8) Two intersecting planes, whose equation is x2 − 2y2 = 0.
9) An elliptic cylinder, whose typical equation is x2 + 2y2 = 1.
10) A hyperbolic cylinder, given by the equation x2 − 2y2 = 1.
11) A hyperbolic paraboloid, whose equation is x2 − 2y2 = z.
12) An elliptic paraboloid, with equation x2 + 2y2 = z.

• Rank 1:
**) The empty set, given by x2 = −1.
13) A double plane, whose typical equation is x2 = 0.
14) Two parallel planes, which correspond to the equation x2 = 1.
15) A parabolic cylinder, whose typical equation is x2 = y.

3o. There exist quadric surfaces with identical rank and signature but distinct
type. The difference is due to the non-quadratic part in their equation, which
makes them have distinct properties, as for instance regarding their dimen-
sion, or their extension: whether or not they are bounded (when the surface
is contained in some ball with center at the origin), or whether the surface
is limited by some plane (as occurs with a paraboloid), or it is ruled, (if
through each of their points passes a straight line completely contained in
the surface), if the surface is constituted by only one piece, and so on.

This last part is left to the reader as an exercise, following the reasoning
we give in the case of quadric surfaces of rank 3.

• Signature 3: The two surfaces of rank 3 with signature 3 are an ellipsoid
and a point, but the independent term, which is not affected by a rigid
transformation, gives two degrees of freedom to the points that satisfy
(2) and no degree of freedom to the only point that satisfies (3).

• Signature 1: The two surfaces of rank 3 with signature 1 are a hyper-
boloid of one sheet and a cone, but the independent term distinguishes
them: if in equation (5) we leave in the left-hand member a difference of
squares, the new right-hand member is a difference of squares as well,
and that shows that we have a double-ruled surface (two straight lines
completely contained in the hyperboloid pass through each point), while
a cone is a simply ruled surface (only one straight line completely con-
tained in the cone passes through each point different from the vertex:
the generatrix to which that point belongs).

• Signature −1: There exists only one surface of rank 3 and signature −1:
the hyperboloid of two sheets.
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Figure 1.16: Non-degenerated quadric surfaces in �3.
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It is clear that not all of the loci listed above can be called surfaces, such as
the empty set (equations 1,) *), and **)), the point (3), and the straight line (7).
These are limit cases of an ellipsoid and an elliptic cylinder, respectively; thus, they
are called degenerated quadrics. However, all of them are loci that correspond to
quadratic polynomial equations in three variables.

The proof of the invariance of the rank and the signature of a matrix under
a non-singular transformation can be studied in [B-ML]. A consequence of that
invariance is the invariance of the degree.

Now we give a first version of the most important invariant under isometries
in differential geometry: the curvature of a surface at each of its points; as we shall
see, the value of the curvature may change from point to point. A good reference
for those who wish to learn more about this topic is [DoC].

The figures studied in differential geometry must be smooth. That is, if the
figures under study are curves, it is required that the tangent line at each of their
points be well-defined; if the figures under study are surfaces, the condition is that
the tangent plane at each of their points be well-defined.

We recall that a smooth curve has a well-defined tangent line at each of
its points. This allows us to approximate the curve by these tangent lines in a
sufficiently small neighborhood of each point, which is very useful. Analogously,
a surface has its tangent plane at each of its points, giving us the possibility of
substituting the surface by its tangent plane locally (see Figure 1.17).

The latter situation does not always occur: there can be points where the
surface fails to have a well-defined tangent space. For instance consider a surface
as simple as a cone of revolution; the tangent plane can not be defined at its vertex.
To convince ourselves of that, it suffices to consider that each of the generating
lines is not just tangent to the cone, but it is also contained in it. If there existed
a tangent plane to the cone at its vertex, each generatrix should be contained in
that plane, but this is evidently impossible.

Calculus provides a simple technique to detect when a surface is smooth
at a given point. This is simpler when the surface under study is defined by a
differentiable function F : �3 → �, such as E(x, y, z) = x2+4y2+9z2, P (x, y, z) =
x2 + y2 − z, Π(x, y, z) = x + 2y + 3z, etc. (To clarify some concepts mentioned
in what follows in this section, the reader may consult our Appendix 5.1, or also
Appendix 5.1 of [Cou].)

A hyperboloid of two sheets (4), a cone (6), and a hyperboloid of one sheet
(5), are all level surfaces of the function

F (x, y, z) = x2 − y2 − z2,

whose gradient ∇F is

∇F (x, y, z) = (2x,−2y,−2z),

which becomes zero only at (0, 0, 0).
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The origin does not belong to the hyperboloid of two sheets x2 − y2 − z2 = 1
(nor to the hyperboloid of one sheet) and thus ∇F (P ) 	= (0, 0, 0) at every point
P of the hyperboloid. That is why we say that 1 is a regular value of F.

On the other hand, the origin does belong to the cone x2−y2−z2 = 0, being
its vertex, and since ∇F (0, 0, 0) = (0, 0, 0), we say that 0 is a critical value of F .

If a surface S is the inverse image of a regular value r (see Appendix 5.1) of
a differentiable function F : �3 → �, that is, if

S = {(x, y, z) ∈ �3|F (x, y, z) = r and ∇F (x, y, z) 	= (0, 0, 0)},

then the implicit function theorem implies that S is smooth at each point, having
everywhere a well-defined tangent space. In fact it is easy to prove, using the
Chain Rule, that for any P0 ∈ S, the gradient of F at the point P0, ∇F (P0), is
a vector perpendicular to the velocity vector α′(t0) of every smooth curve α(t) =
(x(t), y(t), z(t)) contained in S and passing through P0 at the instant t0. Let us
see how the curve is contained in S,

F (x(t), y(t), z(t)) = r for every t ∈ Dom(α).

By deriving with respect to t, evaluating at t0 and by using the Chain Rule we
obtain

dF

dt
(t0) = ∇F (P0) · α′(t0) = 0.

Hence, the plane through P0 and perpendicular to ∇F (P0) contains the tangent
vector of every smooth curve contained in S through P0; that is why it is called
the tangent plane to S at P0. Its equation is

(P − P0) · ∇F (P0) = 0. (1.6)

P1

P2
P3

H1

H2

H3

T1

T2

T3

N̂N̂

Figure 1.17: Tangent planes to different surfaces at some of their points.

In Figure 1.17 we illustrate several planes tangent to an ellipsoid, a hyper-
boloid, a paraboloid and a torus of revolution.
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In the case of the ellipsoid, the plane tangent at one of its points intersects
it only at that point, and leaves the whole surface only on one side of the tangent
plane. Points of this type are called elliptic points.

In the case of the hyperbolic paraboloid, the plane tangent at one of its points
intersects it in two straight lines, since it is a double-ruled surface, and there are
points of the surface at both sides of the tangent plane. The latter is a necessary
condition for a point to be a hyperbolic point.

In the case of the torus of revolution, the intersection with the tangent plane
depends on where the point is located. There are elliptic points, hyperbolic points,
and parabolic points in the torus, say �, for which there exists a curve C such that
at every point in C, the vector normal to � is fixed and the tangent plane leaves
� in one of the two semi-spaces it defines.

The reader may verify these statements by determining the equation of the
tangent plane with formula (1.6), for all the aforementioned surfaces are inverse
images of regular values of differentiable functions from �3 in � (see Exercise 6c).

Notice that given a surface S defined as above, i.e., the inverse image of a
regular point of smooth function F in �3, at each point P ∈ S the vector ∇F (P )
is normal to S; this vector spans a real line, and each plane in �3 containing this
line intersects the surface in a curve called a normal section. In Figure 1.18 we
show normal sections C1, C2 and C3 at the point P0 of a cylinder, an ellipsoid, and
a hyperbolic paraboloid.

If a smooth curve α(s) = (x(s), y(s), z(s)) is parametrized so that its tangent
vector α′(s) always has norm 1, we can define its curvature k(s0) at the point
α(s0) as the norm of the vector α′′(s0) = (x′′(s0), y′′(s0), z′′(s0)).

This is so because ||α′(s)|| is constant, and thus by obtaining the derivative
of this vector we only measure the variation with respect to its position, the speed
at which the curve gets away from the tangent line at the point.

The parameter s with which we obtain ||α′(s)|| is called arc length, for it
allows us to traverse equal arcs at equal time intervals. Any smooth curve admits
this type of parametrization (see [DoC]).

For a straight line, the curvature at any of its points is zero, since the
parametrization of a straight line by arc length is α(s) = P0 + sû, given P0 and û
constants, with ||û|| = 1, it turns out that α′′(s) = 0̄ for all s.

For a circle, the curvature is the inverse of the radius, since if the parametriza-
tion is

α(s) = (r cos(s/r), r sin (s/r)),

then the velocity vector is

α′(s) = (− sin (s/r), cos(s/r)),

whose norm is 1, and the acceleration vector is

α′′(s) = (−(1/r) cos(s/r),−(1/r) sin (s/r)),
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whose norm is 1/r. Moreover, in all cases it points toward the concave part of the
circle.

Π1
Π1

Π1

Π2

Π2

Π2

Π3

Π3
Π3

C1

C1

C1

C2

C2

C2

C3

C3

C3

Figure 1.18: Normal sections of a cylinder, an ellipsoid, and a hyperbolic paraboloid.

The definition of curvature of a surface S ⊂ �
3 at one of its points P0

requires giving a sign to the curvatures of the normal sections. For that purpose,
we fix one of the possible unit normal vectors, N̂(P0), at the point and project
the vector α′′(s0) on it; if the projection has the same direction as N̂(P0), the
section will have positive curvature, and negative if the projection has the reversed
direction of N̂(P0).

In the case of an ellipsoid, the acceleration vectors of all normal sections
will be on the same side of the tangent plane, while in the case of a hyperbolic
paraboloid, at each point there will be normal sections on both sides of the tangent
plane, as occurs with the curves C1 and C3 of the hyperbolic paraboloid of Figure
1.18.

There are as many normal sections as diameters in a small circle centered
at P0 of the tangent plane, in other words, one for each θ ∈ [0, π]. Therefore, the
curvature of a normal section, which is called sectional curvature, can be seen as
a function of the angle θ, k(θ).

A very important result in calculus establishes that a continuous function
defined in a closed interval takes its maximum and its minimum. Therefore, for
some θ1, θ2 ∈ [0, π], we have k1 = k(θ1) as the maximal curvature and k2 = k(θ2)
as the minimal curvature of the normal sections.

The curvature of a surface at one of its points, K(P ), was defined by Leon-
hard Euler (1707–1783) as the product of the maximal and minimal curvatures

K(P ) = k1(P )k2(P ).

Notice that the value of K(P ) does not change even if we choose as normal vector
−N̂(P0). At present, K(P ) is called Gaussian curvature of the surface at a point
P , after Karl Friedrich Gauss (1777–1865), who identified this as one of the most
important concepts in differential geometry (see [DoC]).
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When K(P ) is constant, the surface is called a surface of constant curvature.
A sphere has constant curvature K = 1/r2, where r is the length of its radius, and
a plane has constant curvature K = 0.

Since the norm of α′′(s) is invariant under rigid transformations, when ap-
plying a rigid transformation to a surface, the curvatures of the normal sections
are also invariant.

In Exercise 5 we leave the reader the task of completing the proof of the
invariance of the curvature K(P ) under rigid transformations, and of computing
the curvature of the surfaces at the points indicated in the Exercises. The following
formula will be useful; it expresses the curvature k(t) of a curve α(t) with an
arbitrary parameter (see Exercise 5):

k(t) =
||α′ × α′′||
||α′||3 . (1.7)

We suggest to examine the image of the surface to decide which are the
sections of maximal and minimal curvature.

Before finishing this section, we define two other concepts which can be easily
understood if we analyze them in the examples of the surfaces we have been
working with.

The first concept is that of a homogeneous surface. Intuitively, we say that
a surface is homogeneous if a piece of surface surrounding one point on it can be
superposed on the surface around any other of its points. This situation happens
with the plane, the sphere, and the cylinder but not with the torus of revolution
or an ellipsoid.

Formally, we can say that a surface S is homogeneous if for any two points P
and Q on the surface, there exists a rigid transformation that takes a piece of the
surface surrounding P into a piece of the surface surrounding Q. In other words,
all points have isometric neighborhoods.

The second concept we want to introduce is that of isotropy. It refers to
the fact that at each point the surface shows the same aspect by looking at all
directions. The plane and the sphere are isotropic but the cylinder is not. Beware
that there is another important notion of isotropy (also called the stabilizer),
which is different from this one and refers to the set of elements in a group of
transformations of some space that leave fixed a given point.

We say that a point on a surface is an umbilic (or navel) point if all sectional
curvatures at the point are equal. The points of a cylinder are not umbilics, but
those of a sphere or of a plane are.

Exercises

1. Prove that the characteristic polynomial of a matrix is invariant under
rigid transformations.
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2. For each of the quadric surfaces with the same rank and signature, give
metric properties, such as symmetries and extensions, which show the
difference among the different types.

3. Make a drawing of a surface defined by the equation

3x2 − y2 + 4xz − 10x + 2y − 4z + 3 = 0.

4. Without making any computation, prove each of the following state-
ments. (a) The curvature of a plane at each of its points is 0. (b) The
curvature of a sphere takes the same value at each of its points (deter-
mine that value). (c) The curvature of a cylinder takes the same value
at each of its points (determine that value). (d) The curvature of a
hyperbolic paraboloid at any of its points is negative.

5. Prove Formula (1.7). (Suggestion: see [DoC].)

6. Compute the curvature of each of the following surfaces at the points
indicated.
(a) Hyperbolic paraboloid: x2−y2 = z, at (0, 0, 0). What is the tangent
plane at the origin?
(b) Quartic of revolution: z = x4 +2x2y2 + y4, at (0, 0, 0). What is the
tangent plane at the origin?
(c) Torus of revolution: x4 + y4 + z4 +2x2y2 +2x2z2 + 2y2z2 − 10x2 −
10y2 + 6z2 + 9 = 0, at the points (0, 1, 0), (0, 2, 1) and (0, 3, 0).

1.4 Cylinders and tori

In this section we use a concept which is fundamental in all branches of math-
ematics, that of equivalence class, and we introduce the concept of geodesic: a
trajectory on a surface that minimizes, at least locally, the distance between two
points of the surface.

We use equivalence relations (see Appendix 5.2) to construct new geometrical
objects departing from other known objects, so that the new objects preserve
important properties of the original ones.

For instance, we shall construct a cylinder and a plane torus which inherits
a metric, a way of measuring, from that in the plane. Therefore these are surfaces
of constant Gaussian curvature equal to zero. This cylinder and this torus are
geometrically distinct from the cylinder and the torus of revolution contained in
�

3, from which they inherit a metric, distinct from the one induced from �
2 as

we do below. The new objects we get via equivalent relations are surfaces (or
more generally manifolds, see the Appendix 5.1) defined by mathematical means,
and they do not need to have a previously specified environment, though it is an
exercise to show that all manifolds can be realized in some Euclidean space).

As the reader may expect, the geodesics in the plane are the straight lines.
Since the metric on the cylinder and the torus that we shall construct come from
the Euclidean metric in �2, and the distances between “nearby points” in the
torus and the cylinder are just the distances between the corresponding “nearest”
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points in �2, one has that the geodesics in these surfaces are the image of the
lines in �2 under the natural projection.

When we were children, to construct a cylinder (rather, a portion of a cylin-
der) we used to take a rectangle made out of pasteboard and glue two of its parallel
sides.

Now let us take vertical strips of width 1 in �2, as shown in Figure 1.19.
We say that two points belong to the same equivalence class (see Section 5.2) if
their coordinates have the same ordinate, and their abscissas differ by an integer
number, that is,

(x, y) ∼1 (x′, y′) if y = y′, x − x′ ∈ �.

Then in the vertical strip

B̄ = {(x, y)| 0 ≤ x ≤ 1} ,

there is one and only one representative element of each class of equivalence,
except for the points of the outer edges with the same ordinate, because they are
representative elements of the same class of equivalence. Identifying those points is
equivalent to gluing two parallel edges of the pasteboard; thus, we obtain an object
which may be thought of as an infinite cylinder and which may be represented as

Cil = �2/ ∼1, where (x, y) ∼1 (x′, y′) if y = y′, x − x′ ∈ �.

The same cylinder may be obtained from any vertical strip of width 1 when
gluing the edges, for a strip of this type contains a representative element of each
class of equivalence, except for the points of the edges.

X

Y

(x,y) (x+1,y) (x+2,y) �
2/ ∼

Figure 1.19: By identifying the points of �2 with the same ordinate and x − x′ ∈ Z, we
obtain a cylinder.

Actually, we call a set R which satisfies the following two conditions a fun-
damental region:

(i) Any point P of the plane has at least one representative element P ′ ∈ R.

(ii) If P ′ is an interior point of R, then P ′ is not equivalent to any other P ′′ ∈ R.
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The interior of a set is the greatest open set contained in the set; hence, an
interior point belongs to a disc (without the boundary) completely contained in
the set.

One way of constructing a fundamental region is to take a point P and look
for its closest equivalents, P ′ and P ′′. The perpendicular bisectors of the segments
P ′′P and PP ′ bound a strip in �2 which is a fundamental region. If we take
P to be the point (1/2, 0) ∈ �2, this construction yields the above strip B̄ as
fundamental domain.

The cylinder that we get in this way shares many qualities with the plane,
such as all the local metric properties, but it also has essential differences as we
shall see. Among those differences, one is that any straight line parallel to the
X-axis in the plane becomes a closed curve in the cylinder, which results from
identifying the extremes of any piece of length 1.

A closed curve of that type in the cylinder can be distinguished from a circular
line on the plane by the fact that while the latter can be deformed continuously
into a point without leaving the plane, a “circular line” constructed as above on
the cylinder, can not be deformed continuously into a point without leaving the
cylinder (see Figure 1.20).

X

Y

Figure 1.20: There are closed curves on a cylinder which cannot be deformed into a point
of the cylinder without leaving it.

The study of closed curves in a surface leads to a very important concept in
geometry, called the fundamental group, but its study is not in the scope of this
book. The reader interested in this topic may consult [F].

Another related way of establishing this difference arises from observing that
every circular line on the plane is the boundary of a bounded region of the plane:
the interior of the disc. Instead, on the cylinder a “circular line” resulting from
that identification does not determine a bounded region. This leads to another
important notion in topology, the homology groups of spaces.

Instead, the cylinder and the plane share the geodesics, which are curves that
minimize the distance between two points sufficiently closely, in the sense stated
in the following theorem.

Theorem. The shortest trajectory between two points P and Q on the plane is the
rectilinear segment between P and Q.
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Proof. Let us remember that the length of a differentiable parametrized curve
α : (c, d) → �

2 from α(a) = P to α(b) = Q (where [a, b] ⊂ (c, d)), is

l(α) =
∫ b

a

||α′(t)||dt.

If v̂ is a fixed vector of norm 1, the derivative of α(t) · v̂ is α′(t) · v̂; therefore,
by integrating the latter function we obtain

(Q − P ) · v̂ =
∫ b

a

α′(t) · v̂ dt ≤
∫ b

a

||α′(t)||dt = l(α),

where the inequality between both integrals is a consequence of the inequality
(point to point) between the functions of the integrands.

Now it suffices to take v̂ = Q−P
||Q−P || so that the first part of the previous

expression becomes ||α(b)−α(a)||, which proves that the length of the segment is
less than or equal to the length of any other curve joining P and Q. �

Thus, given any two points P and Q of the cylinder, if P ′ is a point of �2

which is mapped into P , among all the points of �2 which are mapped into Q
there exists one, denoted by Q′, which is the closest to P ′. The rectilinear segment
between P ′ and Q′ determines a curve in the cylinder and if there existed a curve
from P to Q on the cylinder shorter than that corresponding to the segment, that
curve would generate a curve in �2 with smaller length than that of the segment,
which is not possible.

The plane torus — metrically different from the torus of revolution of Ex-
ercise 6(c), Section 1.3, as seen below — has similar differences and resemblances
with the plane. The plane torus is formed by the equivalence classes of points of
�

2 under the relation

(x, y) ∼2 (x′, y′) if x − x′ ∈ �, y − y′ ∈ �,

that is, now two points of the plane are related if the difference of their abscissas
and that of their ordinates are both integer numbers.

Just as the first condition leads us to a vertical strip as fundamental domain,
the second condition leads us to a fundamental region which is a square of side
1. This square is the intersection of a vertical strip as before, with a horizontal
strip. The parallel edges of the square are identified by the equivalence relation
(see Figure 1.21). The reader can easily see that the resulting object is a torus
S1 × S1, although if he or she tries to construct it with a square made out of
paper, he or she will confront the problem that when gluing the last two edges,
the paper gets crumpled.

The plane torus can not be constructed without corrugations or folds in our
three-dimensional Euclidean space, since as on the cylinder every circular line
constructed by the identification has length equal to 1, the length of one side of
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the square, on the plane torus every circular line constructed by each of the two
identifications has that same length. That is why the paper corrugates when trying
to glue the edges of the cylinder.

Moreover, at each point of the plane torus, the Gaussian curvature vanishes,
K(P ) = 0, in contrast with the torus of revolution where there exist elliptic,
parabolic, and hyperbolic points (Exercise 6(c) of Section 1.3).

!
X

Y

(x,y+1) (x+1,y+1)

(x,y) (x+1,y)

Figure 1.21: When identifying the points of �2 with x−x′ ∈ Z and y−y′ ∈ Z, we obtain
a plane torus (which does not fit in �3).

In this case, there exist two classes of closed curves which can not be deformed
into a point, neither can they be deformed into each other: one class for each pair
of parallel sides of the square.

Although these results establish an essential difference between the Euclidean
plane and the plane torus, from the local metric viewpoint they look the same:
when determining which are the geodesics in the torus, it suffices to consider that
for any two different points P and Q on the torus, if P ′ ∈ �2 is mapped into P
when taking equivalence classes, there exists a point Q∗ ∈ �2 which is mapped
into Q and is the closest to P ′ among the nine possible points (see Figure 1.22).

The rectilinear segment from P ′ to Q∗ is mapped into a curve of the torus
which necessarily minimizes the length of the path from P to Q on the plane torus.
For if there existed a curve on the plane torus from P to Q of length less than
that of the rectilinear segment, that curve would generate a curve between P ′ and
Q′ of length less than that of the segment, which is impossible.

In other words, we consider the so-called standard projection of a space into
the set of its equivalence classes. In this case,

Π : �2 → Torus,

which maps each point (x, y) into its class [(x, y)] according to the equivalence
relation ∼2.
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Q∗

Q′
P ′ Q

P

Figure 1.22: The rectilinear segment from P ′ to Q∗ generates a curve on the torus which
minimizes the path from P to Q.

The geodesics of the plane torus are the images under Π of the geodesics of
�

2, for the way of measuring in the plane torus is inherited from that in �2.
It is also convenient to note that the cylinder and the plane torus have a

well-defined tangent plane at each of their points. This is so because when gluing
the edges of a strip which is a fundamental region of the cylinder, the glued points
have the same quality as all the others, particularly, curves in all directions go
through them, as shown in Figure 1.23.

The tangent plane at a point P is considered formed by the velocity vectors
of curves which go through P (they may be rectilinear segments centered at P ).
The curves can be traversed in one direction or the other and with any speed we
desire; that is why the tangent vectors actually form a complete plane (see Figure
1.23).

Figure 1.23: The tangent vectors at any point P of a cylinder (resp. a plane torus) form
the tangent plane at P .

An interesting exercise, especially for the applications that will be studied
below, is to think of a straight line drawn in �2 whose trace we would like to
preserve when obtaining the identifications we have posed.

On the cylinder, we would obtain a “helix,” and as limit cases we would have
a straight line and a circle (see Figure 1.24).
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On the torus, we can obtain many types of closed curves, as occurs with the
straight line through the origin whose slope is 1, since the four vertices of the
square are finally identified as just one, or with any other straight line joining
two points with integer coordinates, for the same reason of the previous case (see
Figure 1.24).
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Figure 1.24: A straight line in �2 originates helices on the cylinder and curves which
wind round the torus, sometimes densely, without self-intersections.

Furthermore, take a line through the origin in �2 with any slope you want
which is of the form m/n with m, n positive integers. We leave as an exercise for
the reader to show that this line projects to a closed curve in the torus, which
winds around the torus several times before closing. Moreover, we can take all the
lines in the plane with that same slope. They obviously fill out the whole plane,
and therefore their images in the torus fill it out entirely, thus giving a partition
of the torus into smooth curves, all of them “parallel”. This is a beautiful example
of an important geometric structure on surfaces (and manifolds in general) called
a foliation.

Now take a line on the plane through the origin whose slope is irrational.
The curve that is generated on the torus does not close and, furthermore, it winds
around on the torus in such a way that for any point of the torus, there are points
of the curve as close as we want: the curve is a dense set on the torus.

To prove the latter result, let us consider the straight line y = mx with
m ∈ � \�. Hence, the points on the left side of the square that are equivalent
to points of the straight line of the form (n, mn), with n integer, are of the form
(0, mn−[mn]), where [mn] is the integer part of mn; we shall write yn = mn−[mn].
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We divide the left side of the square in k parts, with k ∈ �. Among the
points (0, yj) originated by the k + 1 points (1, m), (2, 2m), . . . , (k + 1, (k + 1)m),
by the “principle of nested intervals”, there are two of them on the same rectilinear
segment of length 1/k, that is, for some r, s ∈ {1, 2, . . . , k + 1}, we have

ys − yr <
1
k
.

The rectilinear segment between the points (r, mr) and (s, ms) is congruent
with the rectilinear segment between (0, 0) and (s−r, (s−r)m), which means that
there exist also two points of the curve on the first rectilinear segment of length
1/k on the left side and, accordingly, on any other of the parts in which we had
divided the left side.

Since k was arbitrary, we conclude that there are points arising from the
curve as close as we want to any point of the left side. Therefore, there exists a
dense set of intersections of the curve with the left side. The same occurs with any
other vertical segment, and that is why the curve of the plane torus originated by
a straight line of irrational slope is dense on the torus and has no self-intersections.

If we now consider all the lines in the plane with that same irrational slope,
we get that their images in the torus fill it entirely by parallel curves which are
pairwise disjoint, but each of them is dense in the torus. This is another example
of a foliation on the torus.

It is worthwhile mentioning that there is an analogous phenomenon for the
curves called hypocycloid and epicycloid, described by a fixed point of a circle of
radius r which rotates without slipping inside (or outside) another circle of radius
R (see Figure 1.25).

R

R

r
r

CC

c

c

Figure 1.25: A hypocycloid and an epicycloid.

When the ratio of the radii is rational, the curve closes, but if that ratio is
irrational, the point touches the circle of radius R at points that form a dense set
in this circle. The proof is left as an exercise in this section.
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Up to now, we have not yet justified the title of this section, but the reader
will agree that the translations T(n,0), corresponding to vectors of the form (n, 0)
with n ∈ �, form a group under composition; thus, it is called a subgroup to the
group of translations. We shall denote it as T�.

If P0(x0, y0) ∈ �2 is translated by means of each element of this subgroup,
we obtain points of the form (x0 + n, y0), which we recognize as points related to
P0 according to the treatment presented at the beginning of this section where we
used equivalence classes.

From this viewpoint, we say that the orbit of P0 under the group T� is

O(P0) = {(x, y)| (x, y) = T(n,0)(x0, y0) = (x0 + n, y0) for some n ∈ �}.

Hence, the cylinder can be seen as the space of orbits of the points of the plane
under the action of the group T�, i.e., the space obtained by thinking of each orbit
as being a “point”.

Analogously, the plane torus can be seen as the space of orbits of the points of
the plane under the action of the group T�×�, whose elements are the translations
T(n,m) associated to vectors (n, m) with integer entries.

Actually, these are two different ways of reading the same geometrical fact:
(i) obtaining surfaces with a Euclidean structure departing from �

2, whether as
spaces of identification under an equivalence relation, which is the topological
viewpoint, or (ii) as spaces of orbits of the points of �2, under the action of a
group, which is the dynamical (and also algebraic) viewpoint.

The space of orbits of a group action can have very different properties.
For instance, if the group acting in �2 is T� where Tr ∈ T� corresponds to the
horizontal translation by a vector (r, 0) with r ∈ �, we see that the orbit of a point
P (0, y0) is the complete horizontal line y = y0; accordingly, the space of the orbits
of the points of �2 under the action of the group T� is only a straight line, which
can be thought of as the Y axis. Notice that this action descends to an action
of � on the torus, with space of orbits a circle. Of course we may define similar
actions of � on �2 and on the torus, but now taking as generator a translation
in the direction of a line with non-zero slope. We leave it to the reader to find out
what the corresponding spaces of orbits are. Notice that in the case of irrational
slope the corresponding curves in the torus are dense, as we know already. Hence
the orbit space is an example of a rather “bizarre” topological space.

Exercises

1. Give four examples of homogeneous surfaces and analyze which of them
contain umbilics.

2. Establish the parametric equations of the hypocycloid and prove that
if the ratio of the radii is not rational, the curve touches the circle at a
dense set of points.
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3. If m = p/q, with p and q relatively prime integers, the curve on the
plane torus resulting from the projection of the straight line through
the origin with slope m closes when it passes again through a point with
integer coordinates. Determine how many times the curve should have
wound around the plane torus following the direction of the “meridians”
as well as following the direction of the “parallels” so that it closes. (We
call the closed curves resulting from the identification on the vertical
lines meridians, and the closed curves resulting from the identification
on the horizontal lines parallels.)

4. On the torus of revolution, draw the curve that corresponds to m = 3/2
on the plane torus.

5. What is the space of the orbits of the points of �2 under the action of
the group of translations T

�2 , that is, if any point can be mapped into
any other point?

1.5 Finite subgroups of E(2) and E(3)

In this section we study some subgroups of O(2,�) and O(3,�) from a different
viewpoint to that of Section 1.4; now we are interested in studying objects that are
preserved under the action of those subgroups, that is, under any transformation
of the subgroup being studied.

In Section 1.2 we already saw that the rotations in �2 with center at the
origin form the group SO(2), and the compositions of reflections on lines through
the origin give rise to the group O(2,�). O(2,�).

Actually, the function

det : O(2,�) → �,

which associates to each matrix its determinant, splits up O(2,�) into two disjoint
classes: the class of rotations and the class of reflections. When we multiply each
rotation by a fixed reflection, we obtain all the reflections. Although in this book
we do not use the concept of normal subgroup, it is worthwhile noting that the
subgroup SO(2,�) is a normal subgroup of O(2,�) because it is the inverse image
of 1 (see [B-ML]).

An object that remains invariant under any rotation about the origin is a
circle with center at the origin and arbitrary radius, C(Ō, r). A circle also remains
invariant under any reflection with respect to any of its diameters, each contained
in a straight line through the origin of �2. Thus, a circle remains invariant under
every element of O(2,�).

Let us now consider a subgroup H of SO(2) which does not contain all
the rotations with center at the origin. If in the subgroup there is a non-trivial
rotation, by an angle θ, Roθ, then it must contain all of its iterations, that is, the
composition of Roθ with itself any number of times it may be necessary, as well
as their inverses.
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Exercise 2 of Section 1.4 shows that the simplest case occurs when θ is of the
form 2π/k with k ∈ �. Thus, if a point P belongs to a figure F which must remain
invariant under a subgroup containing Roθ, then its images under the iterations
of the rotation, Ro

(i)
θ (P ) = Roθ ◦ · · · ◦ Roθ(P ), must also belong to F .

This is the case, for instance, of a regular polygon of n vertices inscribed in
a circle with center at the origin; in Figure 1.26 we show the case of a square and
that of a regular pentagon, both inscribed in C(Ō, 1).

The square remains invariant under the rotation by θ = 2π/4 = π/2 and its
multiples 2θ, 3θ and 4θ = id; the pentagon remains invariant under the rotation
by φ = 2π/5 and its multiples 2φ, 3φ, 4φ and 5φ = id . In both cases, the number
of rotations is the same as the number of sides of the polygon.

However, we can also notice immediately that the square also remains invari-
ant under the reflections with respect to the straight lines through the midpoints
of opposite sides (M and M ′, N and N ′ in the square of Figure 1.26), which are the
axes in the case of the square shown in Figure 1.26, and under the reflections with
respect to the diagonals (which are the straight lines joining opposite vertices).
There are four reflections.

Instead, the reflections leaving invariant the pentagon correspond to straight
lines containing one vertex and the midpoint of the opposite side, like A and MA

in the pentagon shown in Figure 1.26. There are five such reflections.
We call the subgroup of O(2,�) containing both Roπ/2 and Reπ/4 and all the

products that may be formed with these transformations the group of symmetries
of the square.
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Figure 1.26: Symmetries of regular polygons.

Since the product of two rotations is a rotation and the product of one
rotation with one reflection is a reflection, the four possible powers of a = Roπ/2

yield the four rotations mentioned above, and when multiplied by b = Reπ/4, we
obtain the four reflections we observe on the square.

Hence, to describe this group, two generators are enough: a = Roπ/2 and
b = Reπ/4. These generators satisfy the relations a4 = id, b2 = id and ab = ba3
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(see [B-ML]).
The group of symmetries of the pentagon must contain Ro2π/5, Re2π/5, and

all the possible products that may be formed with these two transformations.
This group is generated by a = Ro2π/5 and b = Re2π/5, which satisfy the relations
a5 = id, b2 = id and ab = ba4.

In general, the group of symmetries of a regular polygon with n sides is the
so-called dihedral group, which consists of 2n elements generated by one rotation
a and one reflection b which satisfy the relations an = id, b2 = id and ab = ban−1.

This group can be described geometrically as follows: let us consider the XY
plane in �3 and a regular polygon with n sides contained in that plane, whose
vertices belong to the unit sphere S2.

The subgroup of SO(3) formed by the rotations of XY that preserve the
polygon is, clearly, a group with n elements. Actually, it is a cyclic group (i.e., it
consists of the powers of only one element) Γ of order n, generated by the matrix

a =

⎛⎝cos 2π/n − sin 2π/n 0
sin 2π/n cos 2π/n 0

0 0 1

⎞⎠ ,

which clearly satisfies an = id. We have thus already n symmetries of the polygon.
The reflection of the XY plane missing to double that number can be seen

as the rotation b of the sphere S2 by an angle of 180◦ about one of the axes
of symmetry of the polygon. That is, with respect to a straight line joining two
opposite vertices if n is even, or with respect to one vertex and the midpoint of the
opposite side if n is odd. The composition of b with the n elements of Γ, including
the identity element, gives the other n elements of the dihedral group. It is obvious
that b2 = id. We leave as an exercise for the reader to verify that a and b satisfy
the relation ab = ban−1.

It is of the utmost importance to notice that there are subgroups of the or-
thogonal group O(2,�) which originate naturally when studying objects as simple
as the regular polygons.

On the other hand, we can ask what is the space of orbits of the points P ∈ �2

corresponding to the group G generated by one rotation of the type Ro2π/n, with
n ∈ �.

It is clear that any sector of the plane bounded by two rays departing from
the origin and forming an angle of 2π/n contains a representative element of each
orbit, except through the points on the edges that, as in the case of the cylinder,
must be identified. In this case, a point P in a boundary ray is identified with the
point P ′ in the other boundary ray if both of them are at the same distance from
the origin; in this way an infinite cone is formed, although the generatrices are
not complete straight lines but only rays through the origin. That is the space of
orbits of the points of �2 under the action of the group G. Note that the vectors
tangent to the cone at the vertex do not form a plane.

We leave as an exercise to investigate what happens when we start with a
rotation of �2 by an angle of the form 2π/α with α irrational.
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Let us now consider the case of O(3,�). Again, the function determinant
splits up the group into two classes: the class of matrices with determinant 1 and
the class of matrices with determinant −1.

Again, we call the elements of the first class, which form the subgroup SO(3),
rotations, whereas we call the elements of the second class reflections, and these
do not form a subgroup; they can be obtained by multiplying each rotation by a
fixed reflection.

In this case, it is also trivially true that a sphere with center at the origin
and arbitrary radius remains invariant under any element of O(3).

However, if we want to discover any object that remains invariant under the
elements of a subgroup different from the identity element G < O(3), the object
must have a certain regularity, for otherwise its group of isometries will be very
poor, as occurs with a cloud, whose form can be completely arbitrary. Furthermore,
the more regular the object is, the greater the group G of isometries which leave
it invariant.

We work with bounded objects, that is, objects that can be confined to a
sphere although its radius may be very large. We call the points V in the object
whose distance to the origin is a maximum vertices.

If the norm of V is r, V belongs to the sphere with the center at the origin
and radius r as well as all its transformations under elements of G. For reasons
that will be apparent later, we require the number of vertices to be finite, and
each vertex can be transformed into another by means of some isometry.

Since each element of O(3,�) is an isometry, the distance between any two
vertices and its transformed vertices must be the same. The rectilinear segments
determined by one vertex V0 and any of its transformed vertices closest to V0 are
called edges.

For a rotation to appear in the subgroup whose axis goes through a vertex
V0, we must require that all the edges intersecting on it have the same length,
and the angles between any two of them must be congruent. Since the vertices are
transformed one into another, the previous considerations are valid for any vertex.

Given that the number of vertices is finite, so is the number of edges. If we
take two consecutive edges from those intersecting at one vertex V0, a1 and a2,
when considering the other extremes of these edges, V1 and V2, we can take edges
consecutive to a1 and a2, a′

1 and a′
2, the closest possible to the other: a′

1 close to
a2 and a′

2 close to a1.
In this way we form a regular polygon, which is inscribable in a circle and

therefore is planar. These polygons, all of them congruent one to another, are the
faces of a regular polyhedron, and the body they delimit is a platonic solid. These
solids were studied by the ancient Greeks and played an important role in their
philosophy.

Hence, a regular polyhedron is inscribable in a sphere, and its faces are regular
polygons, all of them congruent one to another. An obvious example is a cube,
inscribable in the sphere whose center is that of the cube and whose diameter has
the length of a main diagonal (see Figure 1.27). The other examples are the other
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“geometrical bodies” which we constructed in elementary school: the tetrahedron
(four faces), the octahedron (eight faces), the dodecahedron (twelve faces), and
the icosahedron (twenty faces).

Before we study these five geometrical objects which surprised the Greeks
and, far from being just abstractions, appear repeatedly in nature, it is convenient
to prove that they are the only possible regular polyhedra in three dimensions.

For that purpose, we observe that at each vertex, at least three faces must
meet (on the contrary, we could not glue the faces). Thus, the number k of faces
coinciding in one vertex is such that k ≥ 3. As the number n of sides of a regular
polygon is also at least 3, we have n ≥ 3, with these results we have found lower
bounds for both k and n. To find their upper bounds, it suffices to observe that
the sum of the k interior angles of the faces intersecting at one vertex must be less
than 2π :

k(n − 2)π
n

< 2π,

that is, k(n − 2) − 2n < 0. By adding 4 to both members of this inequality, we
obtain the inequality (k − 2)(n − 2) < 4, from which it follows that the only
admissible values for a pair (k, n) are

(3, 3), (3, 4), (3, 5), (4, 3), (5, 3) ,

each of which holds just in one of the platonic solids shown in Figure 1.27.
In Table 1.1, we show the number of vertices, edges, and faces of the platonic

solids. From these data, we can observe two very interesting properties.

Solid # vertices # edges # faces

Tetrahedron 4 6 4
Hexaedron (cube) 8 12 6
Octahedron 6 12 8
Dodecahedron 20 30 12
Icosahedron 12 30 20

Table 1.1: Number of vertices, edges, and faces of the platonic solids

To begin with, the numbers of the cube (or hexahedron) and those of the
octahedron correspond, except that the numbers of vertices and of faces are in-
terchanged; we observe the same behavior in the numbers corresponding to the
dodecahedron and the icosahedron. This is so because when taking the barycen-
ters of the faces as vertices and forming regular polyhedra following the same
rules we used before, we obtain the other solid of the pair, including the case of
the tetrahedron which must be considered as its own pair.

We say that the members of a pair are one the dual of the other, for reasons
we shall explain below.
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Figure 1.27: The five platonic solids
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The other relevant property is that when forming, in each case, the number

X = V − E + +F

where V is the number of vertices, E is the number of edges, and F is the number
of faces, in every case we obtain X = 2.

The first one to observe this property was Leonhard Euler (1707–1783); thus,
this number X is called after him the Euler characteristic of the surface under
study.

Of course, there exist surfaces for which the value of the Euler characteristic
is not 2, as in the case of the torus. It is known that this number depends only on
the surface in question and, for orientable surfaces (such as the sphere, the torus,
etc.) it is given by the formula X = 2 − 2g where g is the genus of the surface.
Notice that the platonic solids are all homeomorphic to the 2-sphere.

If we split up the torus into triangles, as shown in Figure 1.28 (notice that
the triangles intersect in one side, one point, or they do not intersect at all), by
counting the faces, edges, and vertices we can verify that X = 0:

• The total of vertices is 8, 4 “inside” and 4 “outside”.

• There are 4 edges inside and 4 outside, plus 4 more edges at each interior
vertex (each of these edges intersects with an exterior vertex); the total of
edges is 4 + 4 + 16 = 24.

• At each interior vertex, 6 faces meet, but 4 of them also intersect with another
exterior vertex; thus, we shall count only 2 of those. Hence, the result is
4 × 4 = 16 faces.

Accordingly, the Euler characteristic of the torus is

X = 8 − 24 + 16 = 0.

1
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3

4

5

6

7

8

Figure 1.28: Euler’s characteristic is 0 for a torus.
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The Euler characteristic is a concept that nowadays belongs to the area of
topology. It can be proved that it does not depend on the “triangulation”, when-
ever the triangles intersect as was described above; that is why it is a characteristic
of a “topological object” (cf. [DoC]).

Let us see what the groups of symmetries of the platonic solids are. We leave
the case of the tetrahedron to the reader (see Exercise 5 of this section). However,
we expect that the analysis of the cases of the cube and the dodecahedron will
allow him or her to prove that the symmetries of the tetrahedron form a group
isomorphic to the group of permutations of four symbols (which correspond to the
vertices). This group is usually denoted as S4 and is called the symmetric group
on four symbols (see Appendix 5.2).

As we did in Section 1.1, we place the cube so that its faces are parallel to
the coordinate planes and its center is the origin. Thus, the vertices belong to a
sphere with center at the origin, forming the symmetries of the cube as a subgroup
of O(3,�) (see Figure 1.29, which is analogous to Figure 1.12).

The task now is to determine the subgroup of O(3,�) that leaves the cube
invariant. According to what we have seen, it suffices to restrict our work to the
subgroup of the rotations, SO(3,�), since when composing any of them with the
antipodal map, given by the matrix⎛⎝−1 0 0

0 −1 0
0 0 −1

⎞⎠ ,

which evidently fixes the cube by applying each vertex into its diametrically oppo-
site vertex, we obtain all the reflections that leave the cube invariant, as we have
already explained above.

In contrast with the case of the tetrahedron, we can not think of permuting
arbitrarily the 8 vertices, since in the cube there are vertices whose distance from
one to another is l — the length of one edge — while others are

√
2l apart — the

length of a diagonal of one face — and others are at distance
√

3l — the length
of one diagonal of the cube.

The task becomes easier if we note that the diagonals of the cube, which are
4 (shown in Figure 1.29),

D1 = AT ; D2 = BU ; D3 = CR; D4 = DS,

must be mapped one into another under any rotation that leaves the cube invari-
ant, that is, any rotation that fixes the cube produces a permutation of four objects,
the diagonals.

To prove that any permutation of D1, D2, D3, and D4, arises from a rotation
of the cube, we take two diagonals and exhibit a rotation that exchanges them,
leaving the other two fixed. In this way we see that each transposition of two
diagonals determines a rotation of �3 that preserves the cube.
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Figure 1.29: The rotations that fix the cube take diagonals into diagonals.

Hence, since transpositions generate all the permutations and the composi-
tion of two rotations is another rotation, any permutation of four objects can be
obtained as the image of a rotation of the cube around one of its diagonals.

The rotation R that interchanges D1 and D2 and leaves fixed the other two
diagonals has as an axis the straight line through the midpoints of the opposite
sides AB and TU , being the rotation about that axis of an angle of π.

To verify that R(D1) = D2 and R(D2) = D1, it suffices to observe that
A �→ B, U �→ T , B �→ A and T �→ U . The other two diagonals are mapped each
into itself because C �→ R and R �→ C, which is D3 to D3 and, since D �→ S
and S �→ D, D4 also transforms into itself. In the language of permutations, R
corresponds to the transposition (12), and there are 6 = 4 · 3/2 transpositions of
4 objects.

As an exercise, let us see what is the resulting rotation of composing two
rotations obtained by transpositions.

Let us call R′ the rotation corresponding to the transposition (23); the com-
position of R′ with R corresponds to first applying the transposition (12) and then
(23), and this takes 1 to 3 and 3 to 2:

(23)(12) = (132).

Since the diagonal D4 remains fixed, the rotation corresponding to the permutation
(132) has D4 as axis and the angle of around that axis is a multiple of 2π/3, for
there are 3 edges that concur at the vertex D.

If we prove that there are as many rotations as elements in the group S4,
that is, 24, then we shall have proved that the correspondence between the per-
mutations of the diagonals and the rotations of the cube is an isomorphism of the
symmetric group in four letters, S4, and the subgroup of SO(3) which leaves the
cube invariant.
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With that, we shall have proved as well that the group of isometries of the
tetrahedron is a subgroup of the group of isometries of the cube. That follows
immediately from the fact that, in the cube, there are two inscribed tetrahedra
(one reflected from the other): those formed with the diagonals of the faces that
intersect with one vertex (see Exercises 5 and 7).

To count the rotations that preserve the cube, let us analyze which are the
axes of rotation and the possible angles of rotation that do not produce the iden-
tity:

• If the axis is the straight line joining the midpoints of two opposite sides, the
angle of rotation can only be π; since there are 6 pairs of opposite edges, we
have 6 rotations of this type.

• If the axis is the straight line joining the centers of opposite faces, the angles
of rotation that leave the cube fixed are multiples of π/2. There are 3 of these
axes and they do not produce the identity. Since there are 3 pairs of opposite
faces, we have 9 rotations of this type.

• If the axis is the straight line joining opposite vertices, since at a vertex 3
sides concur, the possible angles of rotation are multiples of 2π/3, and only
2 of them do not produce the identity. Since there are 4 pairs of opposite
vertices, we have 8 rotations of this type.

If to these 23 rotations we add the identity, we have 24 different rotations,
the same number as that of elements in S4.

A good exercise for the reader is to find the rotation corresponding to the
product of 2 disjoint transpositions, such as (12)(34), and to a permutation of
length 4, such as (1234).

We suggest that the reader make a complete table with the correspondence
among the products of transpositions and rotations (we leave it as an exercise).

Moreover, of course, we should recall that the group of all isometries of the
cube consists of the 24 rotations listed above and of the 24 reflections obtained by
composing each of those rotations with the antipodal transformation.

The case of the octahedron is translated into that of the cube because of
duality. Moreover, the case of the dodecahedron, which is translated into that of
the icosahedron for the same reason, is just a little bit more complicated than that
of the cube, as we see below.

Again not all the vertices of the dodecahedron are the same distance apart
from each other; therefore, we can not arbitrarily permute its 20 vertices.

However, as in the cube, the 4 diagonals necessarily are mapped one into
another under any isometry that leaves the cube invariant; in the dodecahedron
there are 5 inscribed cubes which are necessarily interchanged under any isometry
that leaves the dodecahedron fixed. They are the cubes whose edges are diagonals
of the pentagons, one on each face (see Figure 1.30).
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Figure 1.30: Isometries of the dodecahedron.

If we take the diagonal AB, the antipodal vertices A′ and B′ determine a
diagonal parallel to the former; the diagonal CD, also parallel to AB (because
both are parallel to the edge RS of the dodecahedron) with the antipodal vertices
produces the diagonal C′D′. They are four parallel edges of the cube.

Another set of parallel diagonals results from considering the diagonals AC,
A′C′, DB and D′B′, all of them parallel to the edge TU of the dodecahedron,
and the last set of parallel diagonals is formed by AD′, A′D, CB′ and C′B, all of
them parallel to the edge LM of the dodecahedron.

The regularity of the dodecahedron implies that the parallelepiped whose
vertices are A, B, C, D, A′, B′, C′ and D′ is actually a cube.

The 5 diagonals of each face of the dodecahedron are edges of a different
cube; thus, these 5 cubes are inscribed in the dodecahedron, and it is possible to
take one into any of the others by means of rotations of the following types.

• Rotations whose axis pass through the centers of two opposite faces, by an
angle of 2kπ/5, with 1 ≤ k ≤ 4; there are 6 pairs of opposite faces and four
rotations different from the identity for each pair. That gives 24 rotations of
this type.

• Rotations whose axis pass through two opposite vertices, by an angle of
2kπ/3, with 1 ≤ k ≤ 3; there are 10 pairs of opposite vertices and 2 rotations
different from the identity for each pair. That gives 20 rotations of this type.

• Rotations whose axis pass through the midpoints of opposite sides, by an
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angle of 2kπ/2, with k = 1, 2; there are 15 pairs of opposite sides and only
one rotation different from the identity for each pair. Thus, there are 15
rotations of this type.

If to these 59 rotations we add the identity, we have 60 rotations, which
is precisely the number of elements of A5, the alternate subgroup, or of even
permutations, of S5.

The reader should prove that the correspondence between the group of rota-
tions that leave the dodecahedron invariant and the elements of A5 is actually an
isomorphism, as well as that

No isometry of the dodecahedron produces a transposition of the 5 cubes,

for any isometry of the dodecahedron that interchanges a pair of cubes nec-
essarily also exchanges another pair.

The complete group of isometries of the dodecahedron is obtained by com-
posing each of the rotations with the antipodal map; therefore, it is isomorphic to
A5 × {±1}, but not to S5, according to the remark we have just made.

The discussion above shows that the group of symmetries of the cube is a
subgroup of the group of symmetries of the dodecahedron and, since the group of
symmetries of the cube contains the group of symmetries of the tetrahedron as a
subgroup, it turns out that

S4 is a subgroup of the group of symmetries of each platonic solid.

Thus, we have showed the following information about the groups of symme-
tries of the platonic solids (the reader should have taken care of the tetrahedron):

• For the tetrahedron, this is the symmetric group S4, with A4 as subgroup
of rotations.

• For the cube and the octahedron this is S4 × {±1}, with S4 as subgroup of
rotations.

• For the dodecahedron and the icosahedron this is the alternating group A5×
{±1}, with A5 as subgroup of rotations.

This determines completely the algebraic structure of these groups of sym-
metries.

Exercises

1. Prove that SO(2,�) is a group isomorphic to the multiplicative group
of the complex numbers of norm 1.

2. Consider the function determinant from GL(3,�) to � − {0}. Is the
image of O(2,�) under that function a subgroup of the multiplicative
group �− {0}?
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3. Given a reflection on the XY plane with respect to a straight line
through the origin, find the matrix of the rotation about the origin of
the XY Z Cartesian space whose effect on XY is the initial reflection.

4. Verify that the transformations given in the geometric description of
the dihedral group of order 2n, a and b, satisfy ab = ban−1.

5. Prove that the group of symmetries of the tetrahedron is isomorphic
to S4. (Suggestion: Exhibit a reflection that interchanges two vertices
and leaves fixed the other two, which is equivalent to a transposition
of the vertices. See Appendix 5.3.)

6. Establish explicitly the isomorphism between the group of the rotations
that leave the cube invariant and the symmetric group S4.

7. Draw the two tetrahedra inscribed in a cube, formed with the diagonals
of the faces that intersect with one vertex. Justify the statement:
The group of isometries of the tetrahedron is a subgroup of the group
of isometries of the cube.

8. Determine the subgroup of SO(3) that consists of all the rotations that
leave the north pole of the sphere S2 fixed. (The subgroup is called the
stabilizer of the north pole.)

9. Prove that SO(3) acts transitively in points of S2, that is, for any two
points P, Q ∈ S2, there exists a rotation that takes P into Q.

10. Given P, Q ∈ S2, determine how many elements of SO(3) take P into
Q.

11. What is the Euler characteristic of the double torus shown below?

12. Split up a closed disk into four “triangles” and compute its Euler char-
acteristic.

13. Verify that if in one of the “triangles” of the disk an interior point is
fixed, and from it straight lines are drawn to the vertices of the “trian-
gle,” the value of the Euler characteristic with this new triangulation
is the same as that of the former.

1.6 Frieze patterns and tessellations

Many buildings present decorative stripes, called frieze patterns, along their
façades or on their interior walls. The design of a frieze pattern is formed by one
single figure which is repeated indefinitely, as occurs with those shown in Figure
1.31 obtained by rotating an engraved and inked cylinder.
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Figure 1.31: Frieze patterns of Mexican origin.

It is also common to find walls and complete floors of buildings covered by
one single figure which is repeated regularly, as occurs with those shown in Figure
1.32. In colloquial language, we call the pieces used to cover the floor tiles; however,
in mathematics we call the whole design formed on the floor with those pieces a
tiling or tessellation.

The problem we study in this section consists of finding all possible types
of frieze patterns and tessellations in regards to the subgroups of E(2) which
preserve them. This problem was solved in practice long ago; after it was stated
mathematically with precision, it inspired generalizations to elliptic and hyperbolic
geometries, as we shall see in Chapters 3 and 4.

Figure 1.32: Tessellations of Arabian origin.
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To create a frieze pattern, we must draw a straight line L following these two
rules:

1. Use a pattern cut out on a piece of cardboard, as shown in Figure 1.33, with its
base standing over a line L, and denote by a the length of its base. Then repeat
the pattern by translating the cardboard a length a along the line L. You can
use it on both sides of the line L, with its base remaining on L. Now iterate this
process.

2. If the pattern is used on one side of the straight line L, it is not permitted to
use it again on the same side with another position, for that would be equivalent
to having another pattern.

Hence, the group of isometries of a frieze pattern consists of the elements of
E(2) which leave a straight line fixed and contain an infinite cyclic subgroup of
translations.

We shall demonstrate how to construct all the possible types of frieze patterns
using the triangle that results from cutting a rectangle along one of its diagonals
as a pattern (in practice, we must leave a small edge). Later on, we shall prove
that actually there are no more possible types of frieze patterns.

L

Figure 1.33: A simple pattern with no internal symmetries fixing the base.

It is convenient to denote as rA the points of L corresponding to segments
of length ra, where r is of the form n/2, with n an integer. For the analysis of the
isometries of the plane that leave the frieze pattern invariant, we shall begin by
listing the isometries with which we generated the frieze pattern.

1o. The easiest way is to use the pattern on each segment by displacing it. The
frieze pattern obtained after painting the blank space is F1 of Figure 1.34.

This frieze pattern remains invariant under the infinite cyclic group G1 of
isometries generated by the translation Tā, where ā is a vector parallel to L and
of length a. The following notation is read as “G1 is the group generated by Tā:”

G1 =< Tā > .

2o. We can also use the pattern on both sides by rotating it, in each case, 180◦

about the point (1/2)A of L, and then displacing the figure we have obtained by
means of Tā. The frieze pattern F2 that results by painting the blank space of the
pattern in each segment on both positions is the second one of Figure 1.34.
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The group G2 of isometries that leave this frieze pattern invariant can be
generated with σ1/2, the rotation of 180◦ about the point (1/2)A, and Tā. We know
that σ2

1/2 = id, and in the figure, it is easy to verify that σ1/2 ◦Tā ◦σ1/2 = (Tā)−1;
thus, to introduce G2 we also write these relations:

G2 =< σ1/2, Tā|σ2
1/2 = id, σ1/2 ◦ Tā ◦ σ1/2 = (Tā)−1 > .

3o. If we use the pattern on both sides of the straight line by reflecting the pattern
with respect to L and then making a translation by Ta, the obtained frieze pattern
is F3, the third one of Figure 1.34.

The group G3 of isometries that leave F3 invariant is generated by the trans-
lation Tā and the reflection with respect to L, which we denote as RL. The com-
position of these isometries is commutative; thus, in this case the only relation is
R2

L = id, and we write
G3 =< RL, Tā|R2

L = id > .

4o. The fourth frieze pattern of Figure 1.34, F4, results from reflecting the tile in
each case with respect to its right vertical edge.

The group G4 of isometries that leave F4 invariant can be generated by the
translation T2ā, for we have formed a figure of twice the length of the original
pattern, and the reflection with respect to the straight line V perpendicular to L
at the point A, which we denote as RV . We know that R2

V = id, and it is easy to
prove that RV ◦ T2ā ◦ RV = T−1

2ā , thus, in this case we write

G4 =< RV , T2ā|R2
V = id, RV ◦ T2ā ◦ RV = T−1

2ā > .

5o. We can also form a frieze pattern F5, which reminds us of our footsteps on the
sand, by using the isometry precisely called a step and which we denote as γ; a
step results from composing the translation by a with the reflection with respect
to L: γ = Tā ◦ RL.

In this case it is not necessary to include a translation among the generators,
for γ2 = T2ā; thus, the group G5 is

G5 =< γ > .

Note that although both groups G1 and G5 are cyclic and infinite, the ele-
ments of E(2) generated by each of them are different isometries; that is why the
frieze pattern F1 is not invariant under a step.

6o. A sixth frieze pattern results if we use the two reflections RL and RV , and
(necessarily) the translation T2ā.

The frieze pattern F6 (see Figure 1.34) remains invariant under the group
G6 generated by these three isometries. Since G6 contains the two generators of
G4, the following relations hold in this case, as well as that obtained from R2

L = id
and that of the square of their composition, (RL ◦ RV)2 = σ2

A = id. Thus, in this
case we write

G6 =< RV , RL, T2ā|R2
V = id, R2

L = id, (RL ◦ RV)2 = id, RV ◦ T2ā ◦ RV = T−2ā > .
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7o. Finally (we justify below our statements), the frieze pattern F7 is constructed
by first reflecting the pattern with respect to the right vertical line, and then
rotating it by 180◦ about the point of L denoted as 2A (see F1 of Figure 1.34).

The group G7 of isometries that leave F7 invariant has the following repre-
sentation:

G7 =< RV , σ2A|R2
V = id, σ2

2A = id, (RV ◦ σ2A)2 = T4ā > .

Note that also in this case, it is not necessary to include a translation among
the generators, for (RV ◦ σ2A)2 = T4ā.

We leave as an exercise for the reader to analyze which are the axes and
centers of symmetry of the frieze patterns we have constructed (when those exist),
and to determine the so-called fundamental domains: that is, the pieces of frieze
patterns that build up the complete frieze when they are translated by the elements
of the corresponding subgroup.

Remember that we are interested in proving that there are no more types
of frieze patterns than those corresponding to Figure 1.34, in the sense that the
obtained subgroups are all of the subgroups of isometries that leave a straight line
fixed and satisfy conditions 1 and 2.

Proposition. The subgroups of isometries of E(2) that leave a straight line L fixed
and satisfy conditions 1 and 2 are only the subgroups G1 through G7.

Proof. The isometries that leave a straight line L on the plane invariant, and for
which the conditions 1 and 2 hold, are the following:

(i) Any translation by nā, where ā is a vector parallel to L and n is an integer,
denoted as Tnā. The restriction that the multiple must be an integer is be-
cause the pattern can not be superimposed, since the figure obtained on one
segment would not then correspond to the figure of the pattern.

(ii) Any rotation by 180◦ about a point rA ∈ L where r = n/2, with n an integer,
denoted as σrA.

(iii) The reflection with respect to L, denoted as RL.

(iv) The reflection with respect to a straight line V perpendicular to L at a point
of the type nA (remember that the pattern can not be superimposed even
on a portion). Notice that using such a reflection forces the translation that
leaves the design invariant to correspond to a vector 2nā.

(v) A “step,” γ = Tā ◦ RL, the isometry that generates the frieze pattern F5.

Now let us see which groups can be generated with these isometries.

1. If a subgroup contains only translations, it must be precisely G1, for the
pattern must be used once on each segment of length a and always on the
same side.
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〉
, where

σ2
1/2 = Id, σ1/2 ◦ Tā ◦ σ1/2 = (Tā)−1
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G4 = 〈T2ā, RV〉, where
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V = Id, RV ◦ T2ā ◦ RV = T−2ā ......
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F6 remains invariant under
G6 = 〈T2ā, RV , RL〉, where
R2

V = Id, R2
L = Id, (RL ◦ RV)2 = Id,

RV ◦ T2ā ◦ RV = T−2ā
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F7 remains invariant under
G7 = 〈RV , σ2a〉, where
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V = Id, σ2
2A = Id

y (RV ◦ σ2a)2 = T4ā

... ...

... ...

L

Figure 1.34: The different types of frieze patterns and their groups.
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2. If a group contains an isometry of the type (ii), with r = 1/2, the pattern
is used on both sides on each segment and the translation necessarily is Tā;
thus, the subgroup they generate is G2.

3. If the subgroup contains an isometry of the type (iii), the pattern has been
used on both sides and the translation must be Tā. The generated group is
G3.

4. If the subgroup contains an isometry of type (iv), we can add another of type
(i), with n = 2. The subgroup they generate is precisely G4.

5. If the subgroup contains the isometry (v), it automatically contains the trans-
lation by T2ā and none corresponding to a vector of smaller length; thus, the
group it generates is G5.

6. If the subgroup contains an isometry of type (ii) and one of type (iii), one of
type (iv) automatically appears, and since all of them are involutions (their
square is the identity element), it is necessary to add one translation which
corresponds to 2ā; thus, the group is G6.

7. If now we allow for an isometry of type (ii) and another of type (iv), the
group they generate is G7.

8. An isometry of type (ii) and another of type (v) which do not produce a
superposition of the pattern are σ1/2 and γ; however, then the straight line
V is necessarily an axis of symmetry (prove it), and the group is isomorphic
to G7.

9. The isometries (iii) and (iv) produce, by composition, one of type (ii); all of
them are involutions, and then the translation by T2ā must be introduced in
the group. Thus, the group is G6.

10. If we can apply the isometries (iii) and (v) to the pattern, we obtain the
frieze pattern F3, since G3 contains a subgroup isomorphic to G5.

11. The isometries (iv) and (v) originate, by composition, centers of symmetry
(determine them); that is, there appears an isometry of type (ii), and the
subgroup is again isomorphic to G7.

The reader must prove that it is not necessary to consider groups with more
than three generators. For instance, by inspecting the frieze patterns illustrated we
can discover that several of them remain invariant under steps of length different
to that of γ. If the reader additionally solves Exercise 6, we can consider that the
proof of the proposition is complete. �

Let us now study the tessellations. Our presentation on this theme will not be
exhaustive, for the proof that there are only 17 different types of tessellations for
the plane is too extensive and it is not a goal of this book. We shall only generate
an example of each of the possible types; from the way we shall construct them,
it will become evident that they are different.
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For the reader interested in this theme, we mention several references with
different in-depth approaches, among others: [Mar], [G-S], [Sp], and [C-G]. The
first reference includes a proof of this result, and the last given reference is a very
attractive video.

In this case the mathematical problem consists of determining the different
subgroups of E(2) (non-isomorphic subgroups) whose generators leave a tessella-
tion invariant.

Of course, if the tessellation has no regularity, the only isometry that leaves
it invariant is the identity. The tessellations that are invariant under a non-trivial
subgroup of E(2) are constructed departing from a region which repeats itself
covering the whole plane. That is, a region such that its various images by the
elements of the corresponding subgroup cover the whole plane and none of them
overlap (except for boundary points).

Naturally, the first thing that comes to mind is to take any of the seven frieze
patterns and translate it by the elements of the group generated by Tā⊥ , where
ā⊥ is perpendicular to ā, and has the same length (width).

That is the exercise we solved as shown in Figure 1.35, where we can immedi-
ately observe that we do not obtain seven different groups for those tessellations,
but only five, for the tessellation M4 is obtained from tessellation M3 by means
of a rotation by π/2; accordingly, the group that leaves invariant one of the tes-
sellations is the conjugate of that which leaves invariant the other. In the group
there are reflections and steps.

In algebra we say that a subgroup H ′ of a group G is the conjugate of another
subgroup H , if there exists an element g ∈ G such that any h′ ∈ H ′ can be obtained
as h′ = ghg−1.

Hence, the isometries g′ that leave M4 invariant can be obtained from the
elements g ∈ M3 by means of the conjugation given by the rotation by π/2:
g′ = Roπ/2 ◦ g ◦ Ro−1

π/2.
The tessellation M1 also remains invariant under the same group as M3; in

this case the bijection that takes one tessellation into the other is established as
follows: First, we apply a rotation by π/4 (taking as center of rotation the center
of any of the squares), then the distance between the axes of the steps is reduced
(instead of 2||ā|| it will be ||(1/2)d̄||, where d̄ is the diagonal vector contained in an
axis of symmetry) and, finally, the translation in the steps is Td̄. The composition
of these three transformations is not an isometry, but only a change of scale, and
thus it will become evident that to each isometry that leaves M3 invariant, there
is a corresponding isometry of the same type that leaves M1 invariant.

The notation associated with each Mi is the one used in crystallography,
where these groups appear naturally.

In this case, we are not able to use the same pattern to generate tessellations
corresponding to every possible type; therefore, it is worthwhile to make some
simple remarks and to prove a theorem (of crystallographic restriction) which
naturally classifies the 17 types of tessellations.
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M1

pm

M2

p2
M3

pm

M4

pm
M5

pg

M6

p4m
M7

pmg

Figure 1.35: Five of the 17 types of tessellations.
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For that purpose, we first need the following definition:

A point O of the plane is an n-center of a tessellation if it is the center of a
rotation by an angle of 2π/n, with n ∈ �, which leaves the tessellation invariant.

Now some useful remarks:

I. The groups of rotations that permit the invariance of a region are the cyclic
groups generated by an angle of the form 2π/n with n ∈ �; otherwise, the
images of the region would overlap.

II. If O is an n-center of a tessellation and O′ = T (O), where T ∈ G, being G
the group of isometries that leave the tessellation invariant, then O′ is also
an n-center of a tessellation. Analogously, if L is the axis of a reflection that
leaves the tessellation invariant, L′ = T (L) is also an axis of symmetry of the
tessellation.

III. If O1 and O2 are n-centers of a tessellation, the distance between the two
of them can not be less than half of the minimum norm of the translations
that leave the tessellation invariant. That is so because the composition of
the rotation R−1

2 with center at O2 by the angle −2π/n, and R1 with center
at O1 by the angle 2π/n is a translation T (prove it), which must belong to
the group of invariance of the tessellation, G, and therefore is of the form
T = T j

b̄
◦ T i

ā; accordingly,
R1 = R2 ◦ T.

By applying both members to O2, we obtain an isosceles triangle with vertices
O1, O2 and T (O2). Hence, by the triangle inequality,

||T || ≤ 2d(O1, O2),

as we stated.

Now we can enunciate and prove the Theorem of the Crystallographic Re-
striction.

Theorem. If O is an n-center of a tessellation, then n can only take the values 2,
3, 4 or 6.

Proof. Let Q 	= O be another n-center of the tessellation whose distance to O is
minimum. If R is obtained by rotating O around Q by +2π/n, and S is obtained
by rotating Q around R by that same angle (make a drawing), R and S are also n-
centers of the tessellation and we have the equalities d(O, Q) = d(R, Q) = d(R, S)
and ∠OQR = ∠QRS.

If S = O, the points O, Q, and R form an equilateral triangle and n = 6.
However, if S 	= O, we also have the inequality d(O, Q) ≤ d(O, S), because of the
choice of Q. If the equality holds, we have a rhombus with equal adjacent angles,
that is, a square, which implies n = 4. Also if d(O, Q) < d(O, S), the angle must be
greater than 2π/4 and the only possibilities for n are 3 or 2, as we had stated. �
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Hence, a natural classification of the tessellations refers to the type of n-
centers it permits: a 6-center is also a 3-center and a 2-center, but there are
3-centers and 2-centers that are not 6-centers. Something analogous occurs for
the 4-centers and the 2-centers, and it can be proved that the 4-centers are not
compatible with the 6-centers nor with the 3-centers (see [Mar]).

(a) (b)

Figure 1.36: Two tessellations with 6-centers.

We begin with the study of tessellations that allow 6-centers.
Of course, we can take as a basic piece of the tessellation a regular hexagon

in order to have 6-centers. We can also “mark” the faces if we wish: we shall call
“mark” a curve from the center of the tile to some (or all) of the vertex, as for
instance in Figure 1.36.(a); if we want our transformations to preserve these marks
and the complete tesselation, then we will preserve some of its symmetries. If the
hexagon has no marks, the center of any of the tessellations is a 6-center, and any
vertex of one of the hexagons is a 3-center. Moreover, the straight lines containing
the diagonals of the hexagon are axes of symmetry, as well as the straight lines
containing the sides of the hexagon (Figure 1.36(b)). In crystallography, that type
of tessellation is denoted as p6m.

Let us now take a basic hexagon with marks as those shown in Figure 1.36; the
reflection with respect to a diagonal then does not leave the basic piece invariant,
but the center of any hexagon is indeed a 6-center of the tessellation. Therefore, the
tessellation (b) of Figure 1.36 remains invariant under a group different from that
corresponding to the tessellation (a), for the first one does not contain reflections,
and the second one does. The type of the tessellation (a) is denoted as p6.

If the marks of the basic hexagon are only three, as those shown in Figure
1.37(a), again the diagonals of the hexagon are not axes of symmetry, and in this
case the center of any hexagon is a 3-center of the tessellation, as well as the
vertices. There are no 6-centers. Their type is denoted as p3.
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(a) (b) (c)

Figure 1.37: Three tessellations with only 3-centers.

However, if the three marks are apothems of the hexagon, as shown in Figure
1.37(b), and we reflect the central hexagon with respect to its sides to generate the
adjacent hexagons, and we translate in the directions of the apothems by multiples
of 4 times the apothem, the result is that the center of any hexagon turns out to
be a 3-center, but the vertices are not. There are no 6-centers, but in this case
there are axes of symmetry: the straight lines containing the apothems. The sides
of the hexagons are not axes of symmetry. The corresponding notation for this
type of tessellation is p3m1.

Finally, another tessellation with only 3-centers results from taking as a basic
piece an equilateral triangle with three marks, as those shown in Figure 1.37(c),
by reflecting it with respect to its sides to obtain the adjacent triangles. The
center of any equilateral triangle is a 3-center, but they are not contained in axes
of symmetry; however, the vertices are 3-centers contained in axes of symmetry.
Their type is denoted as p31m.

Let us now study the tessellations with 4-centers. The basic piece is a square,
with or without marks.

To eliminate reflections, we mark the square as shown in Figure 1.38(a), and
to generate the adjacent tessellations we only translate. The center of any of these
tessellation will be a 4-center of the tessellation, as well as the vertices, but there
are no axes of symmetry. The type of this tessellation is denoted as p4.

If we do not mark the square and translate it by ā and ā⊥, the centers and the
vertices of the squares are 4-centers, and both the sides and the diagonals of the
squares are axes of symmetry of the tessellation (Figure 1.38(b)). All the 4-centers
of the squares belong to axes of symmetry. The notation for this tessellation is
p4m.

Finally, we mark the square again as in the first case, but now we reflect it
with respect to its sides to generate the adjacent squares. In Figure 1.38(c) we
show the resulting tessellation. The centers of the squares are 4-centers of the
tessellation, but in this case the vertices are not 4-centers. However, there are axes
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of symmetry: the sides of the squares. The difference with tessellation (a) is that
the 4-centers do not belong to axes of symmetry. The notation for this tessellation
is p4g.

(a) (b) (c)

Figure 1.38: Three tessellations with 4-centers.

The tessellations that only accept 2-centers are five.
The first one is obtained by marking a square as shown in Figure 1.39(a) to

break symmetries with respect to the diagonals; the adjacent squares are obtained
by translating vertically and horizontally by integer multiples of a. The center and
the vertices of each square are 2-centers, and there are no axes of symmetry. The
crystallographic notation is p2.

The second tessellation is obtained by reflecting the marked square with
respect to its sides; the result is shown in Figure 1.39(b). The centers of the
squares are 2-centers which do not belong to axes of symmetry, but the vertices
are 2-centers which do belong to axes of symmetry. The crystallographic notation
for this tessellation is cmm.

The third tessellation of this type is obtained by reflecting the marked square
with respect to its vertical sides, creating thus a frieze pattern which we then
translate by the elements of the group generated by ā⊥. The resulting tessellation
is shown in Figure 1.39(d); the centers of the squares are 2-centers which do
not belong to axes of symmetry, and these are all parallel one to another. The
crystallographic notation for this tessellation is pmg.

A fourth tessellation uses the marked square to create steps whose translation
is T(1/2)ā; the length of the translation prevents the existence of axes of symmetry,
and the centers of the squares are 2-centers. The resulting tessellation corresponds
to that shown in Figure 1.39(e), whose crystallographic notation is pgg.

Finally, if we use as a basic piece a rectangle with no marks, and translate it
horizontally and vertically by integer multiples of a, the center, the vertices and
the midpoints of the sides of the rectangle are 2-centers, and all of them belong
to axes of symmetry: the sides and the straight lines through the center of each
rectangle which are parallel to its sides (see Figure 1.39(c)). The crystallographic
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(a) (b) (c)

(d) (e)

Figure 1.39: The five tessellations with only 2-centers.

(a) (b)

(c) (d)

Figure 1.40: Four tessellations without centers of symmetry.
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notation is pmm, Figure 1.39(c).
We need just four more tessellations to complete the 17 we promised; these

four tessellations share the characteristic of not having centers of symmetry.
We already know two of them: they are M1 and M5 shown in Figure 1.35

(they are shown again in Figure 40(d) and (b), respectively). The first one allows
axes of symmetry — the diagonals perpendicular to those that divide the two
colors — and steps; their crystallographic notation is pm. The second one only
allows steps, and their crystallographic notation is pg.

Another tessellation is obtained from the frieze pattern F3, when the addi-
tional translation is not vertical, but by integer multiples of l̄ = 2ā⊥ + (1/2)ā.
That produces axes of steps which are not axes of symmetry, as occurs for the
tessellation of Figure 1.40(c), whose crystallographic notation is cm.

To generate the last tessellation, we take as a basic piece a two-color rectangle,
as shown in Figure 1.40(a). If we translate the rectangle horizontally and vertically
by integer multiples of its base and of its height, there are no axes of symmetry.
Its crystallographic notation is p1.

We reiterate that the proof that there are no more types of tessellations
remaining invariant under a group of isometries of the plane can be found in [Mar]
and [Sp].

It is worthwhile to mention that at the Alhambra, a palace in the Moorish
style at Granada, Spain, there are tessellations of the 17 types exhibited in this
section. The proof can be found in [Mo] (see also the videotape [C-G]).

Exercises

1. Look for illustrations of frieze patterns of ancient cultures (Greek,
Celtic, Mayan, etc.) and identify under what group of transformations
those frieze patterns are invariant.

2. Give an example of each type of frieze patterns constructed by using
the same basic pattern (different to that used in this textbook).

3. Determine fundamental regions for each frieze pattern of Figure 33, and
also for those of Exercise 1.

4. Determine the centers and axes of symmetry of each frieze pattern of
Figure 33.

5. Prove that the group which leaves the following frieze patterns invariant
is G7.

... ... ... ...

... ... ... ...

L L
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6. Identify the group which leaves invariant the following tessellations in
the Alhambra.

7. Design a tessellation for each of the 17 groups of isometries of the plane
given in Table 1.

8. For at least three of the engravings by Escher which cover the Euclidean
plane, identify the group used to construct it. ( See [Cox1].)

9. Find out what is a non-periodic tessellation. (See [G-S].)



2

Affine geometry

This exposition of affine geometry is somehow different from those usually found in
the literature. We have chosen a way of presenting affine geometry that constitutes
a natural bridge between Euclidean geometry and projective geometry, both from
the historic and the formal viewpoints. The reason this is possible is that the group
of affine transformations is larger than the Euclidean group and is contained in
the group of projective transformations.

We describe the relation between affine geometry and “perspective”, under-
stood as the theory developed by artists of the Renaissance who decided to create
a method to take into a canvas (a flat surface), three-dimensional scenes of our
environment, abandoning their plastic arts. This is presented in various texts by
different authors, as for instance [Ki] and [R-S].

For instance, we see that the borders of a road, which actually are parallel
to one another, intersect in the distance. This happens for all roads with any
direction. Painters had to draw on a flat surface each point where the borders of
roads meet, with different directions. They called these vanishing points and when
they decided to place them all in a single straight line of the drawing, the so-called
horizon line, they opened the way for mathematicians to analyze the behavior “at
infinity” of many geometric objects and concepts.

For instance, when in a certain Euclidean configuration there is the possibility
of having parallel straight lines, some properties must be stated in various versions,
as happens with the following proposition (see Figure 2.1):

Proposition. A quadrilateral has six vertices, except in the case of parallel sides:
if only two sides are parallel, then the quadrilateral has five vertices, and if there
are two pairs of parallel sides, the quadrilateral has only four vertices.

Let us recall that a quadrilateral is a figure determined by four straight lines
of which no three lines meet in one point, and where there is not a triple of parallel
lines; a vertex of the quadrilateral is the intersection of two sides (see Figure 2.1).

In affine geometry, for which parallel lines intersect at a “point at infinity”,
any quadrilateral has six vertices, but some of these vertices are special.

Actually, the concept of parallelism has given rise to many discussions since
its formulation. If we compare the statement of postulate 5 in Euclid’s Elements —
that of parallel lines — with the other four postulates (see Appendix 5.4), whose
statements are brief, we can understand why some people believed one could prove
postulate 5 on the basis of the other four. Euclid took care in stating it in a way
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1

1
1

2

2
2

3
3

3

4

4

4

5

5
6

Figure 2.1: In a quadrilateral, the number of vertices depends on the number of pairs of
parallel sides.

which is useful for proofs, but this made it much more complicated than the other
four postulates.

To find a geometry — projective geometry — where any two “straight” lines
intersect, it was necessary to understand the behavior “at infinity” of parallel
lines. This took a long time: the origins of projective geometry go back to the
16th century, with Desargues and Pascal, while it was not until the 19th century
when this geometry was fully formalized. There are no “special cases” in projective
geometry; that is why we are able to state and prove results in a uniform way.

Affine geometry, defined by Leonhard Euler, was the step between Euclidean
geometry and projective geometry. The rules established by the painters had af-
forded a consistent treatment of the behavior “at infinity” of parallel lines. Affine
Geometry proved to be more general than Euclidean geometry, allowing the math-
ematical treatment of the vanishing points and the horizon line, as well as telling
us how to relate mathematically two paintings, or two photographs, of the same
landscape made from different positions. The reader would agree that we can rec-
ognize the landscape represented in both paintings or photographs; this means
that there exist relationships in both illustrations which our brain can recognize
and compare. Those relationships are the invariants of affine geometry.

This chapter is devoted to the study of affine transformations and their invari-
ants, one of these being the type of conic. Our presentation will have “perspective”
as a referent. The algebraic part is based on [B-ML]; the discovery of perspective
is described in [Va].

2.1 The line at infinity

The problem a painter confronts (but not a photographer) is to represent objects
of the three-dimensional space on a piece of paper or on a two-dimensional canvas.
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The essential part of the solution that the theory of perspective offers consists
of choosing the floor as being the Cartesian plane and then giving the rules for
sketching on the plane of the drawing the straight lines of the floor which are
parallel. Henceforth, these two planes play different roles, and we shall devote
ourselves to explaining how they are related.

We call a point of the plane of the drawing which is a meeting point of
the lines corresponding to all lines on the floor parallel to a given direction a
vanishing point; the vanishing points of each family of parallel lines of the floor
form a straight line (rather a rectilinear segment) on the plane of the drawing,
called the horizon line.

In Figure 2.2, we show a scheme of the drawing of a building located on a
corner. The kerbs define two vanishing points, and these determine the horizon
line. Note that the edges of the last floor of the building also meet at the vanishing
points, for they are parallel to the kerbs, although they do not belong to the floor:
the Cartesian planes parallel to the plane of the floor intersect at the horizon line.

The main difference between the Cartesian plane of the floor and the plane
of the drawing is that on the plane of the drawing we mark points which do not
exist on the Cartesian plane of the floor, the vanishing points.

These remarks give rise to two basic rules for drawing with perspective:

1. All lines parallel to the same direction in the three-dimensional space are
sketched as concurring at the same vanishing point.

2. The vanishing points of the lines on the plane of the floor are sketched as
belonging to the same line, the horizon line.

Figure 2.2: Sketch of a building.

These two rules suffice to make correct sketches on a piece of paper (or a can-
vas) of a floor of square tiles on which we may be standing: once we have sketched
one of them (the shadowed quadrilateral in Figure 2.3, whose form depends on the
position of the sketcher), the vanishing point of the “horizontal” sides, F1, and the
vanishing point of the “vertical” sides, F2, determine the horizon line, which may
not be horizontal on the paper. By cutting with it the straight line to which the
diagonal sketched on the shadowed quadrilateral belongs, we determine a third
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vanishing point, F3; this is the point where the strokes of all the diagonals of the
quadrilaterals representing the other tiles meet (since on the plane of the floor
they are parallel to the sketched diagonal).

To verify that the drawing of the other tiles is already determined, it suffices
to sketch the straight lines passing through F3 and each of the corners marked
with H1 and V1. These lines include the diagonals of the right and the upper tiles,
respectively, of the shadowed tile.

The intersection of F3H1 and V1F1 and that of F3V1 and F2H1 determine
the points M2 and N2 respectively. The point M2 is the right upper corner of the
tile to the right of the shadowed tile, and the point N2 is the right upper corner
of the tile on top of the shadowed tile.

If now we draw the straight line F2M2, its intersection with the straight line
F1H1 is the point H2, which is the corner of the base of the second horizontal tile;
drawing the line F1N2, we cut the line F2V1 at the point V2, which is the corner
of the left side of the second vertical tile. Thus, we have completed three tiles
adjacent to the shadowed tile, since the next tile on the diagonal is also already
determined.

It is clear that the process continues so that the drawing of all the tiles
actually corresponds to what our eyes see.

F1F2 F3

V1

V2

H1

H2

M2

N2

Figure 2.3: The correct drawing of a floor of tiles.

Thus, although the points corresponding to the edges of the tiles are not
located at equal distances on the paper, they are completely determined by the way
we sketched the first tile (it can be any quadrilateral, depending on the position
of the sketcher). In other words, those points are not arbitrary. For example, the
center of a tile is the point of intersection of the diagonals; hence, the point of the
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drawing that corresponds to the center of a tile is the point where the diagonals
of the quadrilateral representing that tile intersect.

To formalize these ideas, scientists had to solve a problem that does not ever
arise when making drawings: Since when rotating 180◦, the borders of a road seem
to intersect as well in the other direction, should we add one or two points “at
infinity” to a straight line?

Gerard Desargues (1591–1661, French engineer) and Johan Kepler (1571–
1630, German astronomer) determined that for each line there must exist only
one point at infinity. This means that the topological appearance of an affine line
is that of a closed curve, such as the circle, although the point that closes the
curve is of a “different quality” from that of the other points, for it is the “point
at infinity”. The projection of a circle on a straight line shown in Figure 2.4 justifies
intuitively this decision. This difference between the types of points will disappear
in projective geometry, as will be seen in the following chapter. That is why the
projective plane is homogeneous.

We call a vanishing point the point at infinity; that is, a “point at infinity”
is where any two straight lines of the same family of parallel lines meet (there is
one for each Euclidean direction). The union of all the points at infinity of a plane
forms the line at infinity, which replaces the horizon line.

Note that the line at infinity also has the topological appearance of a circle,
for the slopes of the Cartesian lines pass from +∞ to −∞, depending on whether
the angle between the line and the positive part of the X axis approaches 90◦ from
the right or from the left, respectively. That means that the horizon line should
be sketched slightly curved, but for any practical purpose sketching it like (part
of) a line is correct.

A

B

C

D

E

F

OP∞ P∞

A′ B′ C′ D′ E′ F ′

Figure 2.4: To each straight line, only one point at infinity is added.

The affine plane, A2, is obtained by adding the line at infinity to the points
of the Euclidean plane; considered as a set, the line at infinity remains invariant
under the transformations which we shall call affinities (see Figure 2.5).

Thus, in contrast to the Euclidean plane, on the affine plane, any two lines
intersect: two ordinary lines intersect at an ordinary point if their slopes are dif-
ferent and at a point at infinity if they have the same slope. Furthermore, an
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ordinary line and the line at infinity intersect at the point at infinity determined
by the slope of the ordinary line.

Since we are interested in using coordinates, we must be able to assign them
to the points at infinity without losing the advantage of having coordinates for
the ordinary points. We know that the ordered pairs of real numbers exhaust
the ordinary points; accordingly, we need another number, which can be a third
coordinate, for distinguishing the ordinary points from those at infinity.

We take as a third coordinate the number 1 for the ordinary points and 0
for the points at infinity. The reason for this choice will be evident in the next
chapter.

The ordinary points have as first coordinates the usual ones, so (x, y, 1) are
the coordinates of an ordinary point.

The points at infinity, each common to all the lines parallel to certain di-
rection, have as first coordinates a pair of numbers λ and µ whose quotient µ

λ
determines the slope of their direction. Then λ and µ cannot be both zero, but
the quotient can be infinite.

That means we are dealing with a class of pairs: all of those which determine
the same quotient. The notation (λ : µ : 0) for the coordinates of a point at infinity
will make us remember that we must consider as equal two triples which define
the same slope, such as (2 : 3 : 0) and (−4 : −6 : 0).

This way of taking the coordinates of a point at infinity agrees with several
facts: each point at infinity defines a class of lines, those which are parallel to the
given direction. Moreover, there are as many points at infinity as there are slopes
of lines on the plane.

We can represent the affine plane using three coordinate axes, as shown in
Figure 2.5: the line at infinity, characterized by the third coordinate z = 0, and the
two ordinary axes (which are not necessarily perpendicular one to another, just
transversal) characterized by y = 0 and x = 0. In these axes the third coordinate
of the points must be 1.

In order to locate points on the affine plane, we need to fix the point corre-
sponding to (1, 1, 1), because then the point corresponding to 1 on the axes y = 0
and x = 0 arises from cutting them, respectively, with the lines determined by
(0 : 1 : 0) and (1, 1, 1), and by (1 : 0 : 0) and (1, 1, 1). Fixing the point (1, 1, 1) is
equivalent to sketching the first tile in Figure 2.3. Once that is done, the points
on each axis corresponding to 2, 3, and so on, are determined by the construc-
tion shown in Figure 2.3; the same can be said of the points assigned to rational
numbers p/q on each axis.

By paying attention to the denominator of p/q, we can see that the last result
is a consequence of the following remark: for obtaining the point of coordinates
(1/q, 0, 1), it suffices to draw the line through (0, 0, 1) and (1, q, 1), determining
thus one point on the upper side of the first tile corresponding to (1/q, 1, 1); the
line through (1/q, 1, 1) and (0 : 1 : 0) intersects the lower side of the first tile at the
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point (1/q, 0, 1). In Figure 2.5 the points of coordinates (1/2, 3, 1) and (1/3, 0, 1)
appear.

(0:1:0)

(1:1:0)

(1:0:0)

(2,0,1)

(1,0,1)

( 1
2 ,0,1)

( 1
3 ,0,1)

(0,0,1)

z = 0

y = 0

x = 0

(0,1,1)

(0,2,1)

(0,3,1)

( 1
2 ,3,1)

(1,1,1)

Figure 2.5: Coordinate system for the affine plane.

The points corresponding to negative numbers are determined in the same
way, applying the construction for drawing tiles located to the left of (or below)
the tile with vertices (0, 0, 1), (1, 0, 1), (0, 1, 1) y (1, 1, 1) (see Figure 2.6).

To obtain the remaining points corresponding to real numbers on the axes
y = 0 and x = 0, it suffices to consider that a real number is the limit of a sequence
of rational numbers, as in the case of the real line.

As to the line at infinity, its points also have coordinates which are determined
once we have fixed the ordinary point (1, 1, 1). For instance, the point at infinity
of the diagonals is (1 : 1 : 0) is 1; for the lines of slope 1

2 , the point at infinity is
(2 : 1 : 0); and so on.

To draw a line on the affine plane, whose equation is the same as that corre-
sponding to the Euclidean case,

Ax + By + C = 0,

we must locate the corresponding point on the line at infinity, (B : −A : 0), and
take some ordinary point (for instance one of the intersections with the axes, y = 0
or x = 0). In Figure 2.6, we show the lines whose equations are 3x − y + 2 = 0
and −x + 2y + 4 = 0.
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(0:1:0) (1:3:0) (1:1:0) (2:1:0) (1:0:0)

−x+2y+4=0

3x−y+2=0

(0,−2,1)

(0,−1,1)

(0,0,1)

(0,1,1)

(0,2,1)

(0,3,1)

Figure 2.6: Straight lines on the affine plane.

Exercises

1. Determine the coordinates of the point at infinity of the line

−3x + 4y − 5 = 0.

2. Give the equation of the line passing through the ordinary point (4, 1, 1)
and the point at infinity (3 : 2 : 0); also, give the equation of the line
through (0, 0, 1) and the same point at infinity.

3. Give a geometric algorithm for determining, on the plane of the sketch,
the points corresponding to tiles having as a side the fourth part of the
side of the tiles of the previous sketch. Justify your results.

4. Copy Figure 2.3 and draw the other tiles having a common side with
the shadowed tile.

5. Draw the lines corresponding to the equations of Exercises 1 and 2
on an affine coordinate system given in advance on the paper of the
drawing.
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6. Make a construction to locate the point corresponding to the third
horizontal tile on the same row of the tile sketched in the figure below.

7. Sketch the representation of a rectilinear segment on the affine plane
and give a geometric algorithm for obtaining the point of the sketched
segment that represents the midpoint of the original segment. Justify
this.

2.2 Affine transformations and their invariants

If two persons located at different positions on the same floor of mosaic tiles draw
it on transparent pieces of paper, when superposing both pieces of paper, we can
see that the sketching of the same marked mosaic tile has different positions on
each piece of paper (the right part of Figure 2.7 shows the superposed pieces of
paper). However, it is possible to go from one drawing to the other by apply-
ing a transformation, composition of a translation Tā and a non-singular linear
transformation L, to the sides OH1 and OV1, as explained below.

The linear transformation L is that which takes the vectors OH1 and OV1 of
the drawing D1, into the vectors ÕH̃1 andÕṼ1 of the drawing D2. Since from no
position on the floor do we see two contiguous edges as parallel, the vectors OH1

and OV1 are linearly independent, as well as the vectors ÕH̃1 and ÕṼ1. That is
why L is non-singular. The translation is that which carries the point O of the
drawing D1 into the point Õ of the drawing D2.

Then we complete each drawing by following the same rules as above.

The previous discussion shows that this type of transformations can be useful.
Let us define them formally.

An affine transformation is the composition of a translation Tā and a non-
singular linear transformation L:

A(P ) = Tā ◦ L(P ) = L(P ) + ā.
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F1
F1

F2F2

V1V1
H1H1

OO

F̃1

F̃2

Ṽ1

H̃1

Õ

D1
D2

Tā

Figure 2.7: To take D1 into D2, we compose a translation with a non-singular linear
transformation.

The affine transformations form a group, the affine group, which we denote
by A(2). Let us show that A(2) is indeed a group.

i) The composition of two affine transformations is an affine transformation,

A2 ◦ A1(P ) = (Tā2 ◦ L2) ◦ (Tā1 ◦ L1)(P )
= L2(L1(P ) + ā1) + ā2

= L2 ◦ L1(P ) + (L2(ā1) + ā2), (2.1)

whose linear part is the composition of the linear parts (which implies that
it is non-singular), and whose translation vector is obtained by adding ā2 to
the vector obtained by applying the transformation L2 to the first translation
vector, ā1.

ii) Associativity holds for any transformations.

iii) The identity element can be expressed as an affine transformation by com-
posing the translation by 0̄ with the identity element.

iv) The inverse of an affine transformation A is an affine transformation, A−1,
which is obtained as follows:

P ′ = L(P ) + ā ⇒ P = L−1(P ′ − ā)
= L−1(P ′) + L−1(−ā) =

(
TL−1(−ā) ◦ L−1

)
(P ′).

Notice that the linear part of the inverse transformation is the inverse
L−1 of the linear part L, whereas the translation on the transformation A−1

corresponds to the vector L−1(−ā).
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Affine transformations can be represented by 3 × 3-matrices such as the one
below: ⎛⎝a b r

c d s
0 0 1

⎞⎠ , with ad − bc 	= 0, (2.2)

where the linear part is given by the submatrix of entries a, b, c, d, and the trans-
lation is given by the column vector (r, s)t.

Let us verify that the elements in A(2) determine transformations of the affine
plane A2 having the properties one would expect from the rules of perspective.

The “type” of point, ordinary or a point at infinity, is an invariant under
the affine group, for when the column vector corresponding to an ordinary point
(x, y, 1) is multiplied by a matrix of the form (2.2), the product is an ordinary
point, that is, it has as third coordinate 1; similarly, a point at infinity is taken
into a point at infinity, for the third coordinate is zero:⎛⎝a b r

c d s
0 0 1

⎞⎠⎛⎝x
y
1

⎞⎠ =

⎛⎝ax + by + r
cx + dy + s

1

⎞⎠ ;

⎛⎝a b r
c d s
0 0 1

⎞⎠⎛⎝x
y
0

⎞⎠ =

⎛⎝ax + by
cx + dy

0

⎞⎠ .

This means that parallel lines go to parallel lines, although they may have the
opposite direction. Notice that if this were not true, the linear part of the affine
transformation would not be injective (why?), but we have already shown that it
is invertible.

The incidence, that is, the fact that a line goes through a point, or that a
point is on a line, or that two lines intersect, is an affine invariant, namely, the
transformed elements must also be incident. This property is formally trivial, but
it is not so when drawing by hand.

Another affine invariant is the degree of the polynomial equation that defines
a locus. A translation leaves invariant the coefficient of the term of highest degree,
as the reader should prove. For the case of a non-singular linear transformation,
we shall prove this fact in the following chapter for a larger group, GL(3,�).

In order to obtain the equation of the locus F ′ into which the locus given
by a polynomial equation F (x, y) = 0 is transformed, we proceed as always: If
P ′ = A(P ), then P = A−1(P ′), and by substituting (x, y) in terms of (x′, y′) in
the equation of the original locus, we obtain the equation of the transformed locus.

As an example, let us take a specific line and a specific conic:

−x + 2y − 3 = 0; y2 = 4x, (2.3)

and let us obtain the equations of the resulting line and conic under the affine
transformation

A =

⎛⎝1 1 2
2 −3 −2
0 0 1

⎞⎠ .
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The inverse matrix of A is (the reader must verify it)

A−1 =

⎛⎝−3 −1 4
−2 −1 2
0 0 1

⎞⎠ ,

and by applying it to (x′, y′, 1) to obtain (x, y, 1) we have:⎛⎝−3 −1 4
−2 −1 2
0 0 1

⎞⎠⎛⎝x′

y′

1

⎞⎠ =

⎛⎝−3x′ − y′ + 4
−2x′ − y′ + 2

1

⎞⎠ =

⎛⎝x
y
1

⎞⎠ .

That is, the expressions for x and y which we must substitute in (2.4) are the
following:

x = −3x′ − y′ + 4; y = −2x′ − y′ + 2.

The transformed equations of the line and the conic are, respectively,

−x + 2y − 3 = −(−3x′ − y′ + 4) + 2(−2x′ − y′ + 2) − 3
= −x′ − y′ − 3 = 0,

y2 − 4x = (−2x′ − y′ + 2)2 − 4(−3x′ − y′ + 4)
= 4x′2 + y′2 + 4x′y′ + 4x′ − 12 = 0.

Note that our computations showed that under an affine transformation an
equation of the first degree is transformed into another equation of the first degree.
Similarly, an equation of the second degree is transformed into another equation
of the second degree.

One can ask whether an ellipse can be transformed into a parabola or a hy-
perbola under an affine transformation. We shall prove that this does not happen,
for the type of conic is an affine invariant.

Since a translation does not change the type of conic (for it is a rigid transfor-
mation), it suffices to verify the statement for a non-singular linear transformation
L; we do it proceeding analogously as we proved the invariance of the discriminant
of a conic under orthogonal transformations.

If the conic is given by

Ax2 + 2Bxy + Cy2 + Dx + Ey + F = 0,

its discriminant is B2 −AC, the additive inverse of the determinant of the matrix
M of the quadratic part.

For the conic transformed under L, the discriminant is the additive inverse
of the determinant of the matrix of the quadratic part: (L−1)tML−1 (we have
denoted by L−1 the matrix of the inverse transformation of L).

Since the determinant of a product is the product of the determinants, and
the determinant of a matrix equals that of its transpose, the sign of the discrimi-
nant of the original conic equals that of the discriminant of the transformed conic,
thus the type of conic is preserved.
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This property agrees with the fact that an ellipse does not have points at
infinity since the ellipse is a bounded conic. A parabola has a point at infinity (P
in Figure 2.8), in the sense that the line tangent to the parabola at one of its points
tends to become parallel to the focal axis when the point recedes indefinitely from
the vertex (on either side of the focal axis). Hence, the point at infinity of the
axis of the parabola is the limit of the points at infinity of the lines tangent to
the parabola when the points of tangency recede from the vertex (on either side
of the focal axis).

(0:1:0)

(1:0:0)

(0,0,1)

P A1 A2

x=0

y=0

z=0

Figure 2.8: The points at infinity of each type of conic.

Similarly, a hyperbola has two points at infinity, given by the slopes of its
asymptotes (A1 y A2 in Figure 2.8), for the tangent line at one of its points tends
to one of the asymptotes when the point recedes indefinitely from the vertex of
the branch to which it belongs. Each branch of the hyperbola is on different sides
of the line at infinity, and the reader should not be surprised by the way the two
branches of the hyperbola stick to each other, because a Möbius strip intervenes
there (see Section 3.2).

This suggests how the concept of asymptote can be defined in general: an
asymptote of a curve C in the affine plane is a line L (having no ordinary points of
C), such that the point at infinity of the lines tangent to C approaches the point
at infinity of L as the the points of C approach the line L.

That is, the concept of asymptote is a concept of affine geometry.
At this point, we hope the reader will admit a fact that may seem surprising:

the sketch of each of the affine conics in the affine plane is a closed curve, for the
point at infinity of the focal axis “closes” the parabola, and the points at infinity
of the hyperbola “stick” one branch to the other.

We leave to the reader the task of proving that the affine group A(2) has
E(2), the Euclidean group of rigid transformations, as subgroup. Hence A(2) also
contains the group of orthogonal transformations O(2), the group of the rotations
SO(2), and the group of translations, which is isomorphic to �2 as an additive
group. In fact there is a classical operation in group theory called the semi-direct
product of groups, and the reader interested in this can verify that A(2) is the
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semi-direct product of O(2) and �2. This is in fact an easy exercise using the
matrix representation of affine transformations given in (2.2).

The group of projective transformations, which we study in the next chapter,
is determined by all the 3 × 3-matrices with non-zero determinant, so it has the
affine group as a subgroup, by (2.2). Hence there are more affine invariants, in
particular, all those which are invariant under the group of projective transforma-
tions.

There is another affine invariant, which is not a projective invariant, that
we are interested in emphasizing: the ratio in which a point P divides a recti-
linear segment AB. We know that translations preserve that ratio because they
are rigid transformations, and it is easy to verify this same statement for linear
transformations L.

Let us suppose that the ratio in which the point P divides rectilinear segment
AB is λ, that is,

P − A = λ(B − P ).

Then, L(P ) also divides the segment L(A)L(B) in the same ratio, as the following
computation proves:

L(P ) − L(A) = L(P − A) = L(λ(B − P )) = λ(L(B) − L(P )).

This invariant is translated on the plane of perspective as a local model of the
affine plane, since the corners of the tiles were determined by fixing the segment
corresponding to the unit on the axes x = 0 and y = 0.

The reason for calling the plane of perspective a local model of the affine
plane will be clear when we construct the projective plane in the next section.

Exercises

1. Find the inverse transformation of

T =

0
@3 1 −2

2 2 4
0 0 1

1
A .

2. Find the transformed point of the point at infinity (3 : 2 : 0) under the
transformation T of Exercise 1.

3. Apply the previous transformation to the points A(2, 4, 1) and B(2, 8, 1),
and verify that the mid-point of the segment AB is transformed into
the mid-point of the segment T (A)T (B), where T is the transformation
of Exercise 1.

4. Prove that the coefficient of the term of highest degree of a polynomial
equation in two variables, P (x, y), does not vary when a translation is
applied.
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5. Apply the transformation of Exercise 1 to the following conics, and
verify that, in each case, they are of the same type as the original
conic.

x2

4
+

y2

16
= 1;

x2

4
− y2

4
= 1.

6. On a long piece of transparent paper, draw a good part of the hyperbola

x2

100
− y2 = 1,

and then glue the two borders of each asymptote by making one half
turn in one of the short edges. You are constructing a Möbius strip.

7. Determine the subgroup of A(2) corresponding to E(2), and the sub-
groups corresponding to O(2), SO(2), and to the translations.

8. Define the n-dimensional Euclidean space �n, the dot product in �n,
its group of isometries E(n), and its subgroups: O(n), SO(n), and the
group of translations in �n.

9. How many directions are there in �3? How many points at infinity is
it necessary to add? How about �n?

10. Generalize the definition of the affine group to A(n), ensuring that E(n)
is a subgroup of it.
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Projective geometry

Projective geometry is the most extensive geometry among those we study in this
book: its group of transformations admits as subgroups those we have already
studied and those we shall study later on.

In addition to the Euclidean and the affine groups, there are other subgroups
of the projective group playing an important role in geometry. In particular, we
are interested in studying those which give rise to non-Euclidean geometries. The
final part of this chapter is devoted to the so-called elliptic geometry, and Chapter
4 deals with hyperbolic geometry.

As in Chapter 2, we work mainly in dimension 2, but in some topics we shall
extend our considerations to higher dimensions with no difficulty at all.

Of course, projective geometry owes its name to the fact that projections are
permitted in it. Hence, in this geometry the type of conic is not an invariant, for
any conic can be obtained from another by means of an adequate projection, as
illustrated in Figure 3.1.

Figure 3.1: By projecting a circle on planes with different angles of inclination with
respect to the axis of the cone of light another non-singular conic is obtained.

The circular border of the screen of a lamp is projected on the wall as a
branch of a hyperbola, but if we interpose an inclined pasteboard, the border of
the illuminated region may be a circle, an ellipse, a parabola, or a hyperbola. The
singular cases — a point, a double straight line, and two intersecting straight lines
— result when the plane passes through the center of projection, which is the
vertex of the cone of light.
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By extending the group of transformations that we consider we lose some
invariants, but interesting new notions arise, such as duality, whose beauty and
power are present in many branches of mathematics.

3.1 The real projective plane

To reproduce a three-dimensional object on a plane accurately, the Italian artists
devised the following technique, illustrated by Albrecht Dürer (1471–1528) in [Du]
(see Figure 3.2).

Figure 3.2: Renaissance technique to draw objects on a canvas.

A ring was fixed on the wall at the height of the eyes of a person, and the free
extreme of a cord joined to a piece of plumb was inserted through the ring. The
free extreme passed through a frame, and the cord was stretched up to touching a
point of the object so that it would be visible from the ring. Finally, a horizontal
cord and a vertical one were fixed to the frame in such a way that these would meet
touching the cord through the frame. The meeting point of the horizontal and the
vertical cords allowed marking on a cardboard (pasted on another frame) a point
corresponding to the point of the object. Doing this for all points in the surface
of the object, one gets a representation of it on the cardboard, a “projection” of
the object on the cardboard.

The frame could be situated more or less far away from the object, and surely,
it was a little bit inclined, but in any case, each point of the tense cord represented
the selected point of the object.
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The way we shall define a projection is based precisely on that property of
the cord.

Moreover, notice that if our eye actually were a point and we could look
around in all directions, as many as diameters in a sphere, each direction would
touch the objects around us in exactly one point. That is why we obtain a rep-
resentation of the objects in our environment on the plane of the drawing, from
which we recognize these objects.

In the chapter on Euclidean geometry we learned how to construct new spaces
from others already known, by having a method to form equivalence classes of
points in the given space; each such equivalence class was then considered a point
of the new space.

In this spirit, to construct the projective plane we define in �3 − {(0, 0, 0)}
the equivalence relation suggested by the previous discussion, and which we denote
by “∼”:

(x1, x2, x3) ∼ (x′
1, x

′
2, x

′
3) (3.1)

if there is a λ ∈ �− {0} such that xi = λx′
i.

The geometric interpretation of this equivalence relation of the points of
�

3 −{(0, 0, 0)} is that every point of a straight line through the origin, except the
origin itself, belongs to the same class.

The set of all these equivalence classes has dimension 2, since we are losing
one dimension when identifying each line to a point.

A projective point is the class of points in�3 which define the same direction,
and the real projective plane, P 2(�), consists of all the projective points, that is,
the classes defined in �3 − {(0, 0, 0)} by the equivalence relation (3.1).

The class defined by a non-zero triple (a, b, c) is denoted as (a : b : c); the
colons between the coordinates help us to remember that we are considering classes
of triples, not the triples themselves, and we bear in mind that at least one of the
coordinates is not zero.

Notice that this equivalence relation can be defined among the non-zero vec-
tors in any vector space V over a field k (we shall deal only with k = � or �):
two non-zero vectors v̄ and w̄ are related if and only if one of them is obtained
from the other by multiplication by a non-zero scalar:

v̄ ∼ w̄ if and only v̄ = λw̄ for some λ ∈ k − {0},

that is, if they belong to the same one-dimensional subspace.
The set thus obtained is called the projectivized space of V , denoted P (V ).
For V = �3 we write

P 2(�) = P (�3).

The reader should not be surprised because the numbers differ: the exponent in the
first member of the equality denotes the dimension, 2, of the real projective plane,
and the exponent in the second member, 3, denotes the dimension of �3, which is



94 Chapter 3. Projective geometry

diminished in the projection by 1 because all points in the same one-dimensional
subspace are equivalent, since any two of them are scalar multiples of each other.

There are two examples we are interested in analyzing: P 1(�) and P 1(�).
Both cases are interesting in their own right; the first one because P 1(�) is the
real projective line, that corresponds to the “directions” of lines in the Euclidean
plane, and the second one because it turns out to be “equal” to the 2-sphere (as
proved below), and we shall develop the models of hyperbolic geometry in it.

A projective point in P 1(�) = P (�2) corresponds to a straight line through
the origin in �2. Such a line meets the circle S1 = {(x, y) ∈ �2|x2 + y2 = 1}
at exactly two antipodal points (x, y) and (−x,−y). Therefore the projective line
P 1(�) can be also defined as the space obtained from the circle S1 by identifying
antipodal points.

This means that in order to have a set of representative elements, it suffices
to take a semi-circle and identify its extremes. The resulting figure is a closed
curve, like the circle, and all the points have the same quality (since the semi-
circle could be any half of S1) in contrast with an affine straight line where the
point at infinity is different from the other points.

In topology, it is said that P 1(�) is homeomorphic to a circle because there
exists a bijective, continuous, and invertible function between P 1(�) and S1,
whose inverse function is likewise continuous. The projection shown in Figure
3.3 exhibits such a correspondence, a homeomorphism. In Appendix 5.5 we state
precisely what is understood by a topology and by a relative topology, and we
prove that this projection is in fact a homeomorphism.

O
P

Q

R

S

P ′ Q′

R′

S′

Figure 3.3: A real projective straight line is homeomorphic to a circle.

In the case of P 1(�), which is the projectivized P (�2) of �2, we must form
classes of ordered pairs of complex numbers not both zero, (z : w), and the equiv-
alence thus obtained, (z : w) ∼ (z′ : w′), takes place when there exists some
complex number λ ∈ �− {0} such that (z, w) = (λz′, λw′).

To determine the form of P 1(�), we first take pairs of complex numbers
(z, w) where w 	= 0. The division by w produces representative elements of the
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type (z : 1), and that makes evident that there are as many classes with non-zero
second coordinate as there are elements in �.

The pairs with w = 0 form a single class, (1 : 0), which corresponds to
the only complex direction that exists in �: any non-zero complex number z is
obtained from another non-zero complex number z∗ by multiplying it by the non-
zero complex number z/z∗, and hence (z : 0) = (z∗ : 0).

The point (1 : 0) ∈ P 1(�) is usually denoted by ∞, and that justifies writing
P 1(�) = � ∪ {∞}. However, this is merely a notation, for the elements of P 1(�)
all have the same quality. Another notation is � ∪ {∞} = �̂, called the extended
complex plane.

There is another way of interpreting P 1(�). For that purpose, let us notice
that �2 has real dimension 4 and, as in the real case, we can restrict ourselves to
vectors (z, w) ∈ �2 of norm 1. That is, if z = x + iy and w = u + iv, we shall
require the real and imaginary parts to satisfy x2 + y2 + u2 + v2 = 1, which is the
equation of S3, the sphere of radius 1 with center at the origin:

S3 = {(x, y, u, v) ∈ �4|x2 + y2 + u2 + v2 = 1}.

The (projective) points of P 1(�) are one-dimensional complex subspaces of
�2 through the origin (except the origin itself),

{(z, w) ∈ �2 − (0, 0)|w = kz, being k ∈ � fixed },

which can be interpreted as a plane through the origin of �4; this plane intersects
S3 in a circle whose points are representative elements of the same class (in the
real case, the antipodal points of S1 result from cutting S1 with the straight line
through the origin formed by the points in the same class). That is why we can
write

P 1(�) = P (�2) = S3/S1.

This means that P 1(�) is obtained from S3, identifying with a point each circle
given by the intersection of S3 with a complex line through the origin.

Regarding its form, as mentioned before, P 1(�) is homeomorphic to the
two-dimensional sphere S2,

S2 = {(x, y, z) ∈ �3|x2 + y2 + z2 = 1},

which is called the Riemann sphere in this context. A homeomorphism (that is,
a bijective, continuous, and invertible function, whose inverse function is likewise
continuous) between P 1(�) and S2 is obtained by the correspondence illustrated
in Figure 3.4 and defined as follows. Any point P of S2, except the north pole, N ,
determines with N a straight line that intersects the plane of the equator, which
we identify with �, at one single point z ∈ � that we associate with (z : 1). Hence,
if we agree to assign to N the point (1 : 0), we obtain the so-called stereographic
projection

ΠN : S2 → P 1(�)
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Figure 3.4: P 1(�) is homeomorphic to S2.

which establishes a homeomorphism between S2 and P 1(�) (see Appendix 5.5).
In addition, the stereographic projection has the property of being conformal,

that is, two curves on the sphere which intersect forming a certain angle are
projected into curves of the plane which intersect forming that same angle in
absolute value (see Exercise 9 at the end of this section).

The constructions above generalize to �n+1 and yield a description of the
n-dimensional real projective space Pn(�) as the set of equivalence classes of
the n-dimensional sphere — the unit sphere in �n+1 — where two points are
equivalent if and only if they are antipodal, since there are as many directions in
�n+1 as pairs of antipodal points in

Sn = {x̄ ∈ �n+1| ||x̄|| = 1} .

In particular, P 2(�) is obtained from the sphere S2 identifying points by the
antipodal relation:

x̄ ≡ −x̄.

Notice that there is an obvious projection map from S2 to P 2(�), taking
each point x ∈ S2 into its equivalence class [x] ∈ P 2(�). This map is clearly 2 to
1, and this is why we say that the sphere S2 is a double covering of the projective
plane P 2(�). More generally, Sn is a double covering of Pn(�).

Hence we can write (and it is convenient to have in mind all these interpre-
tations of the real projective plane)

P 2(�) = P (�3) = (�3 − {0̄})/ ∼ = S2/(x̄ ≡ −x̄).

In a later section we shall deal with the topological aspect of P 2(�), for it
involves the notion of orientability, which is worthwhile discussing carefully. How-
ever, before finishing this section, we are interested in showing how the equations
of the loci are established, since the coordinates are useful for that purpose.
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In P 2(�), the projective lines are defined by two projective points, that is, by
two linearly independent directions of �3; if we take one vector for each direction,
the two vectors generate a plane through the origin in �3, that is, a subspace of
dimension 2, and a projective line can be defined as follows:

A projective line in P 2(�), consists of the projective points defined by copla-
nar directions in �3.

In other words, just as the points in P 2(�) correspond to one-dimensional
subspaces of �3, the projective lines correspond to two-dimensional subspaces of
�

3.
If we cut the sphere S2 with a plane through the origin, the result is an

equator of the sphere, that is a circle of maximal radius, and each pair of antipodal
points on it must be identified to obtain representative elements of all the points
forming a projective straight line. This corresponds to Figure 3.3.

The equation of a projective line is the equation of the plane through the ori-
gin of�3 determined by two different directions (each of them defining a projective
point), (a : b : c) and (d : e : f).

In the three-dimensional Cartesian space, a vector normal to the plane deter-
mined by those two directions is obtained as the cross product (a, b, c)× (d, e, f),
and if we denote it by (A, B, C), the equation of the plane through the origin of
�

3 is
Ax + By + Cz = 0.

The projective line defined by this equation consists of the points (x : y : z) ∈
P 2(�) such that Ax + By + Cz = 0.

This equation is linear and homogeneous. This is precisely why if a triple
(x0, y0, z0) satisfies the equation, so that the corresponding point is in that plane,
then also (kx0, ky0, kz0) satisfies this equation for all k 	= 0 :

A(kx0)+B(ky0)+C(kz0) = k(Ax0+By0+Cz0) = 0 ⇐⇒ Ax0+By0+Cz0 = 0.

This is a remarkable fact:

If a projective locus is given by a certain polynomial equation, then that equation
must be homogeneous, for we say that a projective point satisfies the equation only
if this is valid for every triple representing the point.

Notice that we are requiring the function L(x, y, z) = Ax0 + By0 + Cz0, to
take the same value (0 in this case) at equivalent points. This remark is the basis
for the method used to embed P 2(�) in �4 (see Section 3.3).

Now we are ready to prove the first geometric fact of projective geometry
that contrasts with Euclidean geometry, for it implies that there are no parallel
projective lines:

Theorem. Every two lines of the projective plane have exactly one common point.
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Proof. Two distinct projective lines have equations

Ax + By + Cz = 0,
A′x + B′y + C′z = 0,

where (A, B, C) and (A′, B′, C′) are non-parallel vectors in �3.
Each equation gives rise to a plane through the origin in �3, and since the

planes are distinct, they intersect at a straight line through the origin with direc-
tion vector (L, M, N) = (A, B, C) × (A′, B′, C′). That straight line through the
origin corresponds to a projective point, as was stated. �

Exercises

1. Determine the point where the following projective lines intersect.
L1: 3x − y + z = 0 and L1: −x − 2y + 2z = 0.

2. Which of the following equations define a locus in P 2(�)? Justify your
answer.
(a) 3x2 + xy − z2 = 0; (b) −x3 − y2 + x + z = 0;
(c) x4 + y4 − z4 = 0; (d) x2 + y2 + z2 = 0.

3. Find the representative elements of (−2 : 6 : −4) having the property
indicated below:
(a) x = 1; (b) z = 1; (c) (x, y, z) ∈ S2.

4. Prove that three projective points belong to the same projective line if
and only if the determinant of the coordinates of their representative
elements is zero.

5. Prove that if the coordinates O(0 : 0 : 1), H(1 : 0 : 1), V (0 : 1 : 1),
U(1 : 1 : 1), are assigned to four points O, H, V, U in a general position,
that is, such that no triple is collinear, that determines coordinates for
all the other points of P 2(�).

6. Given a point (x1, x2, x3) ∈ S2, determine the complex number z =
x + iy associated to it by the stereographic projection from the north
pole.

7. Define P 3(�) and explain how to characterize the projective lines and
the projective planes in this projective space.

8. Define P n(�) = P (�n+1) and consider

||(z0, z1, . . . , zn)|| = ||(x0, y0, x1, y1, . . . , xn, yn)||,

where zk = xk + iyk and ||(x0, x1, . . . , xn, yn)|| is the norm defined
by the scalar product in �n+1. Prove that P n(�) = S2n+1/S1. (The
natural projection Π : S2n+1 → P n(�) is known as the Hopf fibration;
see [DoC].)

9. Prove that the stereographic projection is conformal, that is, two curves
on the sphere that intersect at a point P forming an angle α are mapped
under the stere graphic projection into curves forming that same angle
(in absolute value). (Suggestion: Consider the figure below, where τ is
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the plane tangent to the sphere at the point P , v̄ and w̄ are the vectors
tangent to the curves on the sphere; H and H′ belong to the orthogonal
projection of the straight line NP into the plane τ : H is the intersection
of that projection and the plane tangent to the sphere at N , and H′
belongs to the plane of the equator, which is parallel to the former.)

N H

P
v

w

H′

P ′

v′

w′

XY

τ

3.2 The Duality Principle

As a consequence of the theorem in the previous section, there are no exceptional
cases in the projective plane for the intersection of projective lines, and that is
why to the valid statement

Two points determine a line,

there corresponds another statement which is also valid:

Two lines determine a point.

This fact is the key to one of the most beautiful properties of the real pro-
jective plane, duality, the bijective correspondence between points and lines of the
real projective plane that respects incidence: a point and a line are incident if the
point belongs to the line, or the line passes through the point.

The Duality Principle of projective geometry states:

If a valid statement is posed only in terms of points, lines and the incidence re-
lations, then the dual proposition, obtained from the original statement by inter-
changing the terms point and line, is also true.

For instance, if we think of a triangle as being the figure determined by three
non-collinear points (the vertices of the triangle), then the lines determined by
(that are incident with) two of those points are the three sides of the triangle.
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The dual notion is that of a trilateral: the figure determined by three non-
concurrent lines, the sides of the trilateral. The points where two sides intersect
are the vertices of the trilateral.

Thus, a trilateral also has three vertices and three sides, and that justifies say-
ing that a triangle is self-dual. However, that does not happen with a quadrangle
(see Exercise 1).

The scalar product in �3 yields to an easy expression of the incidence of
a point and a line. If the equation of the projective line is Ax + By + Cz = 0,
determined by the (equivalence class of the) non-zero triple (A, B, C), then using
the scalar product in �3 we can write

(A, B, C) · (x, y, z) = 0, (3.2)

and the point (x0 : y0 : z0) is incident with the line defined by (A : B : C) if and
only if

(A, B, C) · (x0, y0, z0) = 0.

However, this equation can also be interpreted as the incidence of the projective
line defined by (A : B : C) and the point (x0 : y0 : z0).

The geometric duality justifies the name dual space V ∗ of a vector space V
given to the set of linear transformations T : V → k where k is the field of scalars
(see [B-ML] or [Ri]). In fact, when V = �

3, the triple (A, B, C) can be seen as
the linear transformation (x, y, z) �→ (Ax + By + Cz) from �

3 into �, and the
equation (3.2) characterizes the kernel of that transformation, that is, the locus
of the triples (x, y, z) which under the transformation defined by

T (x, y, z) = (A, B, C) · (x, y, z)

are mapped into 0 ∈ �.
That locus is a plane through the origin of �3, which defines a projective

line, and the correspondence is established by the class (A : B : C), since (A, B, C)
and (λA, λB, λC) have the same kernel.

Hence, in P 2(�) there is a bijection between points and lines; any statement
of incidence among points and lines can be dualized, and if the original statement
is valid, its dual is also valid.

For example, we have already asked the reader to prove the following state-
ment (see Exercise 4):

Statement. Three points P , Q and R are incident with the same line if and only
if the determinant of their coordinates becomes zero.

By exchanging the terms “point(s)” and “line(s),” we obtain the dual state-
ment:

Statement. Three lines P, Q and R are incident with the same point if and only
if the determinant of their coordinates becomes zero.
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In both cases, we are saying that there is a linear dependency among the
three objects, points in one case, lines in the other; in addition, if two of them
satisfy (3.2), a linear combination of them also does.

A line can be seen as a range of points: all the points that are incident with
the line, and a point can be seen as a pencil of lines: all the lines that are incident
with the point. (See Figure 3.5.)

It is worthwhile mentioning that, in more colloquial language, the lines that
are incident with the same point are called concurrent, and the points that are
incident with the same line are called collinear.

In both cases, the pencil and the range are determined by two of its elements,
and the remaining elements are combinations of those two; we express this as a
remark.

Remark. If in a pencil of lines or in a range of points we choose two elements, A
and B, then any other element P is a linear combination of A and B, P = λA+µB,
and P can be represented by (λ : µ).

Figure 3.5: A line is a range of points, and a point is a pencil of lines.

The most remarkable example of applying the principle of duality is the so-
called Theorem of Desargues and its dual, which in this case coincides with the
converse theorem.

Theorem of Desargues. If the triangles A, B, C and A′, B′, C′ are such that the
lines defined by corresponding vertices are not collinear, then the intersections of
corresponding sides are collinear.

In Figure 3.6, the thick lines AA′, BB′ and CC′ are incident with a point
O, and the points R = AB ∩ A′B′, S = BC ∩ B′C′ and T = CA ∩ C′A′ seem to
be collinear; we shall prove that this is actually the case by using a technique of
Desargues, of projection and section, with which he obtained a large number of
results.

Before giving the proof, we shall write the dual proposition according to the
rule of exchanging the terms point and line (the readers must convince themselves
that we have proceeded correctly).
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Figure 3.6: Two triangles in perspective from a point are also in perspective from a line.

Dual proposition of the Theorem of Desargues. If the trilateral figures abc and
a′b′c′ are such that the points defined by corresponding sides, aa′, bb′ and cc′, are
incident with a line L, then the lines defined by corresponding vertices, a ∩ b and
a′ ∩ b′; b ∩ c and b′ ∩ c′; c ∩ a and c′ ∩ a′, are incident with a point O.

The two statements can be summarized thus:

Two triangles are in perspective from a point if and only if they are in perspective
from a line.

Proof of the Theorem. The points O, A, B, C, A′, B′, C′, R, S and T belong
to the same plane, whereas X is a point outside that plane; in the line XB we
choose a point Y , and we call Z the intersection of XB′ with the line OY (the
lines intersect because the points X , B, O, Y and B′ are coplanar).

The lines OA, OC and OY are the edges of a triangular pyramid, and the
triangles AY C and A′ZC′ belong to two plane sections of the pyramid. The planes
of those sections intersect at a line to which T = AC ∩A′C′, CY ∩C′Z = L, and
Y A ∩ZA′ = M , belong, and when we project the triangles ACY and A′C′Z into
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the original plane, we retrieve the triangles ABC and A′B′C′.
The projection of the collinear points T , L and M in the original plane gives

rise to the points, necessarily collinear, T , S and R. �
The relation between the projective plane and the affine plane will be clear

below, but for now we want to note that each projective point (x : y : z) admits a
representative element where at least one of the coordinates is 1, for

• if x 	= 0, (x : y : z) = (1 : y/x : z/x);

• if y 	= 0, (x : y : z) = (x/y : 1 : z/y);

• if z 	= 0, (x : y : z) = (x/z : y/z : 1),

and in the third form we already recognize the coordinates of the ordinary points
of the affine plane.

Exercises

1. Dualize the concept of quadrilateral, given at the beginning of Chapter
2.

2. Justify the following statement:
In P 3(�), a tetrahedral is self-dual.

3. Prove the Theorem of Desargues using Exercise 5 of Section 3.1.

4. Generalize to P n(�) the notion of duality. That is, establish a bijec-
tion between the set of points (x0 : x1 : ... : xn) and that of the pro-
jective hyperplanes, such that it respects the incidence, understand-
ing by projective hyperplane the subset defined by an (n + 1)-tuple,
(A0 : A1 : · · · : An) by means of the equation

(A0 : A1 : · · · : An) · (x0 : x1 : · · · : xn) = 0.

5. Use the scalar product to prove that in �n+1 there is a duality between
the set Gk,n of the k-subspaces and the set G(n−k),n of the (n − k)-
subspaces for every k ∈ 1, 2, . . . , n. Those sets are called Grassmannian
manifolds (see [Mat]), and with them a duality is established in P n(�)
between the projective (k − 1)-planes and the projective (n − k − 1)-
planes.

3.3 The shape of P 2(�)

After defining the real projective plane, we write

P 2(�) = P (�3) = (�3 − {0̄})/ ∼ = S2/(x̄ ≡ −x̄),

and the last expression indicates that when we restrict ourselves to unit vectors
in �3, that is, to the points of the sphere, we identify antipodal points to get the
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projective plane. Hence, we can retain the points of a hemisphere whenever we
identify antipodal points on the boundary.

Figure 3.7 suggests that the gluing cannot be done in�3 if we do not allow the
surface that we construct to have a self-intersection. But points of self-intersection
should not exist, because although each point of the arc AB is identified with a
point of the arc A′B′, and each point of the arc BA’ is identified with a point of
the arc B′A, there are no points of contiguous arcs which should be identified,
since they are not antipodal. However, those points necessarily arise if we want to
construct P 2(�) in �3.

A

A

B B
B

B

A′

A′

B′
B′

B′

B′

A A′A A′

Figure 3.7: P 2(�) cannot be constructed in �3 without self-intersections.

Instead, P 2(�) fits into �4 without self-intersections. To prove it, we define
F : P 2(�) → �

4 by

(x : y : z) �→ (x2 − y2, xy, xz, yz).

Any two antipodal points of the sphere are mapped into the same point of �4,
and that allows us to define a function in P 2(�), F : P 2(�) → �

4, given by

(x : y : z) �→ (x2 − y2, xy, xz, yz),

whose injectivity (which the reader must verify) allows P 2(�) to fit in �4 without
self-intersections.

The projective plane is a surface with only one side. To understand what this
means, we take again the sphere and mark on it a symmetric belt around a great
circle (see Figure 3.8).

It is clear that we can eliminate one of the two caps, for the points of a
cap have their antipodal points in the other cap, and it is also true that we can
eliminate half of the belt, for example that which is behind, since the corresponding
antipodal points are in the front half of the belt.

The left and right edges of the front half of the belt are formed by antipodal
points and, therefore, they must be identified in the way indicated by the arrows;
that can be done only after twisting one short edge 180◦, originating a Möbius
strip, named after its creator, F. A. Möbius (1790–1868).

To finish constructing the projective plane, the border of the Möbius strip
must be pasted to the border of the disk, but again we shall have problems to do
the gluing in our three-dimensional space.
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Figure 3.8: P 2(�) contains a Möbius strip.

The Dutch engraver Maurits Cornelis Escher (1898–1972) [Es] made several
engravings that illustrate the essential property of a Möbius strip: one can walk
on the Möbius strip in such a way that when getting back to the point where
the route was initiated, our head will be toward the opposite direction, which is
represented by the pin of Figure 3.9.

Figure 3.9: A cylinder has two sides, a Möbius strip has only one side.

To establish what we understand by orientability of a surface, we begin by
defining what it means to triangulate it.

The sphere of Figure 3.10 is divided into eight “triangles,” so that the fol-
lowing conditions hold:

i) the union of all the triangles is the sphere, and

ii) the intersection of two non-disjoint triangles can only be a common vertex
or a complete common side.

The triangulation of a surface will be necessary to define the Euler characteristic
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of a surface; remember that in Chapter 1 we learned how to compute it for the
Platonic solids and also for the torus and the double torus.

Figure 3.10: Triangulation of a sphere using oriented triangles.

We say that a surface is orientable if after triangulating it and drawing in one
of the triangles a curved arrow indicating the direction of traversing its boundary,
then when translating the curved arrow to the other triangles a common side of
two triangles is always traversed in opposite directions, as illustrated in the sphere
of Figure 3.10.

We invite the reader to try do that on the Möbius strip; in Figure 3.11 a strip
is included before its short edges are glued, which shows why that is impossible.

Figure 3.11: The Möbius strip is not orientable.

The arrow of the first triangle has been translated and marked in each tri-
angle, but after identifying the edges to form the Möbius strip, we obtain one side
that is traversed in the same direction for the two triangles to which that side
belongs.

If in Figure 3.9 instead of the pin we had taken a screw with a right-hand
spiral groove to complete a right-hand coordinate system at each point of the
strip, we would have an incompatibility when crossing the side where we made the
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gluing; that is why we say that the Möbius strip is not orientable.
This theme deserves several additional comments; for instance, topologists

construct the real projective plane from a square whose edges must be identified
as indicated by the arrows in Figure 3.12 (since a square and a hemisphere are
homeomorphic, in Figure 3.12 we actually have a repetition of the first part of
Figure 3.7). It is clear that by gluing the edges with only one arrow, we already
have a Möbius strip, that is why the gluing of the double arrows is impossible
without self-intersections of the object.

The notion of orientability can be defined for objects with dimensions differ-
ent from 2, and it is possible to prove that Pn(�) is orientable if and only if n is
even (see [Hr]).

A

B

B

A′

B′

B′

A A′

Figure 3.12: Construction of the real projective plane from a square.

Finally, it is worthwhile proving that P 3(�) is homeomorphic to SO(3), the
group of rotations of �3, regarded as a space.

For this we notice that P 3(�) results from identifying antipodal points of
the sphere S3, consisting of points in �4. This determines a topology on P 3(�).
Furthermore, to construct P 3(�) it is obviously enough to consider the upper
hemisphere of S3, which is a 3-disc D3, and identify the points of its boundary,
which is an equator of S3.

It is easy to see that a hemisphere of S2 is homeomorphic to a disc D2, the
set of the points of �2 with norm strictly less than 1; for this it suffices to consider
the orthogonal projection from the north hemisphere on the XY plane (see Figure
3.13). Analogously, a “hemisphere” of S3 is homeomorphic to a 3-disc D3, the
points of �3 with norm less than 1 (in this case we project orthogonally the north
“hemisphere” of S3 upon the XY Z space), and it is immediately verified that the
boundary of D3 is S2.

That means that we can think of P 3(�) as the space obtained from the
three-dimensional ball D3 when we identify the antipodal points in its boundary
(cf. Exercise 8).
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On the other hand, we know that a rotation about the origin of �3 (an
element of SO(3) leaves a line fixed (pointwise) — the axis of the rotation — and
leaves the planes orthogonal to the axis invariant (in this case as a set); all the
points of those planes turn around by the same angle, that of the rotation.

X

X

Y

Y

Z

D1
D2

Figure 3.13: A hemisphere of Sn is homeomorphic to Dn.

There are as many possible axes of rotation as diameters of a sphere, and as
many possible angles of rotation as points in the interval [−π, π], except that once
the axis has been chosen, rotating by π has the same effect as rotating by −π.

Thus, in the sphere of �3 with the center at the origin and radius π, the
diameters correspond to the possible axes of rotation, and the points that lie
inside that sphere, which necessarily belong to some diameter, determine an angle
of rotation defined by the point of the interval (−π, π) which corresponds to the
diameter.

All the previous discussion means that we can identify each point that lies
inside the sphere of radius π, i.e., a point of D3

π, with a rotation whose axis
contains the diameter defined by the point, and whose angle is defined by the
oriented distance θ ∈ (−π, π) from the point to the center of the sphere. Instead,
the points of the boundary, which is the sphere with center at the origin and of
radius π, must be identified if they are antipodal, as occurs in the construction of
P 3(�).

Therefore, SO(3) is the space resulting from D3
π when we identify the an-

tipodal points in its boundary, and since D3
π and D3 are homeomorphic, so are

SO(3) and P 3(�).

Exercises

1. Construct three Möbius strips using three strips of paper. Color the
first one with any color, and cut the other two this way: one along the
central line, and the other along a curve equidistant from the long edge
and the central line. Explain what happens in each case.
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2. Draw an interval, divide it into several subintervals and, after assigning
a route direction in the first one (indicate it by an arrow), copy it for the
others by translating the arrow. Verify that it is possible to complete the
vector associated with each arrow with another vector in the Euclidean
plane, forming a right-hand base for the plane at the point, so that
this choice is compatible after identifying the borders of the original
segment.

3. Verify that S2 is orientable following any of these two procedures:
a) “Triangulate” the sphere, and verify that it is possible to orient the
triangles so that the common sides are traversed in opposite directions.
b) Compute the gradient of the function F (x, y, z) = x2 + y2 + z2

(see Appendix 5.1) and verify that at any point (x0, y0, z0) ∈ S2,
∇F (x0, y0, z0) �= (0, 0, 0). The fact that ∇F (x, y, z) varies continuously
with the point (x, y, z) ∈ S2 implies that compatible orientations for
curves around close points can be defined (see [DoC] for another defi-
nition of orientability).

4. Mark the horizontal sides of a square with arrows pointing to the right,
and the vertical sides with arrows pointing one downward and the other
upward. First glue the horizontal sides making the arrows coincide
(What is obtained?), and explain why in �3 it is not possible to do
the missing gluing by making the vertical arrows coincide. The object
obtained from that identification on the sides of a square is called a
Klein bottle, which is a non-orientable surface.

5. Rotate the circle on the Y Z ⊂ �3 with center at (0, 2, 0) and radius 1
about the axis Z. Prove that the torus of revolution T thus obtained
is invariant under the antipodal mapping, and that by identifying the
antipodal points of T , a Klein bottle is also obtained.

6. Prove the injectivity of the function F : P 2(�) → �4 given by (x : y :
z) �→ (x2 − y2, xy, xz, yz).

7. Give a continuous, injective, and invertible function, whose inverse func-
tion is likewise continuous, between the regions of the plane bounded
by a square and by a circle.

8. Define a topology for SO(3) and another for P 3(�) (see Appendix 5.5).

9. The edge of a cap of Figure 3.8 can be deformed into a point of the
cap without leaving the cap. Is it possible to deform the central line of
the strip (which is a projective line) into the edge of the strip? In other
words, is it possible to deform a projective line into a point without
leaving P 2(�)?

10. Define P n(�) and assign a topology to it.

3.4 Coordinate charts for P 2(�) (and for P 1(�))

At the end of Section 3.2 we saw that any point of the projective plane admits
representative elements of at least one of the following forms:

• if x 	= 0, then (x : y : z) = (1 : y/x : z/x);

• if y 	= 0, then (x : y : z) = (x/y : 1 : z/y);
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• if z 	= 0, then (x : y : z) = (x/z : y/z : 1);

that is why in differential geometry it is said that the mappings from �
2 into

P 2(�)

x̄1(u, v) = (1 : u : v),
x̄2(u, v) = (u : 1 : v),
x̄3(u, v) = (u : v : 1), (3.3)

form an atlas for P 2(�) (see [DoC]).
Each of the mappings x̄ : �2 → P 2(�) is a parametrization of a region

U ⊂ P 2(�), and since the inverse mapping x̄−1 : U → �
2, allows assigning

coordinates (u, v) to a point P of the projective plane, it is called a coordinate
chart.

If a point admits more than one of those representations, as occurs for (2 :
3 : 4), the change of coordinates is differentiable because

(2 : 3 : 4) = x̄1(u1, v1) = x̄2(u2, v2) = x̄3(u3, v3)

implies that

(2 : 3 : 4) = (1 : u1 : v1) = (u2 : 1 : v2) = (u3 : v3 : 1). (3.4)

From the first equality of (3.4) it turns out that (u2, 1, v2) = u2(1, u1, v1), and
therefore u2u1 = 1 and u2v1 = v2. The change of coordinates is given by

u2 = u−1
1 , v2 = v1u

−1
1 ,

which are differentiable functions of u1 and v1 at (u1, v1) = (3/2, 4/2).
The second equality of (3.4) implies that (u3, v3, 1) = v3(u2, 1, v2); accord-

ingly, v3v2 = 1 and v3u2 = u3. The change of coordinates is given by

u3 = u2v
−1
2 , v3 = v−1

2 ,

which are differentiable functions of u2 and v2 at (u2, v2) = (2/3, 4/3).
The reader will have no difficulty in verifying that u3 and v3 are also differ-

entiable functions of u1 and v1 at (u1, v1) = (3/2, 4/2).
Also since the Jacobians ∂(ui,vi)

∂(uj ,vj)
are different from zero for all the points in

the intersection x̄i(�2)∩ x̄j(�2), the Theorem of the Inverse Function states that
(uj, vj) are also differentiable functions of (ui, vi).

The fact that any point of the real projective plane belongs to at least one
parametrized neighborhood, x̄1(�2), x̄2(�2), or x̄3(�2), and that the changes of
coordinates (ui(uj , vj), vi(uj , vj)) are diffeomorphisms, that is, differentiable func-
tions with differentiable inverse function, what we have just proven is expressed
by saying that P 2(�) is a differentiable manifold of dimension 2.

Notice that each parametrization covers the projective plane, except for a
projective line characterized by x = 0 in the case of x̄1, y = 0 in the case of
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x̄2, and z = 0 in the case of x̄1; two of the parametrizations are not enough
because the point of intersection of the two missing lines, one in each parametrized
neighborhood, is missing in both.

The last parametrization given in (3.3) is the one we used for the ordinary
points of the affine plane; if we had chosen any of the other two, the line at infinity
would have as an equation x = 0 in the first case, or y = 0 in the second case.

Actually, it makes sense to say that the affine plane results from choosing
a line of the projective plane, which must remain invariant under the allowed
transformations of affine geometry.

This justifies the technique of homogenizing a polynomial equation with real
coefficients in two variables, F (x, y) = 0. Let us consider as an example the Carte-
sian equation of a conic:

Ax2 + 2Bxy + Cy2 + 2Dx + 2Ey + F = 0. (3.5)

If z 	= 0, the substitution x �→ x/z, y �→ y/z in (3.5) gives rise to the equation

A(x/z)2 + 2B(x/z)(y/z) + C(y/z)2 + 2D(x/z) + 2E(y/z) + F = 0, (3.6)

which is transformed into a homogeneous polynomial equation in the three vari-
ables x, y and z when we multiply by z2:

Ax2 + 2Bxy + Cy2 + 2Dxz + 2Eyz + Fz2 = 0. (3.7)

This is the projective equation of a conic, and it will be easy to prove with (3.7),
once we introduce the group of transformations whose invariants we are interested
in, the statement made in the introduction to this chapter: that all non-singular
conics are projectively equivalent.

For now notice that any projective locus given by a homogeneous polyno-
mial equation can be studied using three affine equations, because there are three
standard forms for “unhomogenizing”.

In our example, if z 	= 0, we can divide by z2 and retrieve the original equation
(3.5), but we can also divide by y2 for the points (x : y : z) with y 	= 0, and obtain
the equation

Ax2 + 2Bx + C + 2Dxz + 2Ez + Fz2 = 0 (3.8)

where we write x instead of x/y and z instead of z/y.
Of course, we can proceed analogously for x: divide by x2, which makes sense

for all the points (x : y : z) ∈ P 2(�) such that x 	= 0; in this case we obtain a
second degree equation in y and z which we shall not write.

As we already stated, homogenization is a technique that we apply when we
want to study projective properties of a geometric object.

In the case of P 1(�) we can also talk about coordinate charts, but now the
coordinates are complex.

We know that any point (z : w) ∈ P 1(�) admits a representative element of
at least one of the two following forms:
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• if z 	= 0, (z : w) = (1 : w/z);

• if w 	= 0, (z : w) = (z/w : 1).

Thus, in this case two parametrizations that map � into P 1(�) are enough to
have all the points of P 1(�) parametrized:

x̄1(z1) = (1 : z1), z1 ∈ �
x̄2(z2) = (z2 : 1), z2 ∈ �. (3.9)

At each parametrized neighborhood only one point is missing: (0 : w) for
the first one, and (z : 0) for the second, but this point is included in the other
parametrized neighborhood. For the points (z : w) included in both charts, the
change of coordinates is given by z1 = z−1

2 .
Also in this case the change of coordinates is differentiable, for the derivative

of a function f : � → � is defined exactly the same way as in the case of �:
it is the limit (if it exists) of the quotient of the increment of the value of the
function and the increment of the variable, when the latter approaches zero (see
[A] or [Ma]).

Hence the change of coordinates z1 = z−1
2 is differentiable at every point of

its domain (defined by z1, z2 	= 0), as well as its inverse function; in analysis of a
complex variable, a differentiable function is called holomorphic or analytic, and
when the inverse function is also differentiable, the original function is called a
biholomorphism.

Because of this property of the change of coordinates, it is said that P 1(�)
is a Riemann surface. The reader interested in this theme, into which we shall go
further in Chapter 4, can see [F] or [Spr].

Exercises

1. Prove that the sphere S2 = {(x, y, z) ∈ �3|x2+y2 +z2 = 1} is a differ-
entiable manifold of dimension 2, by using two parameterizations: the
stereographic projection from the north pole, and the stereographic pro-
jection from the south pole. Determine the intersection of the regions
of the sphere parametrized by each, and explicitly give the changes of
coordinates to prove that they are diffeomorphisms.

2. Define two stereographic projections for the sphere of dimension n,
Sn = {(x1, . . . , xn+1) ∈ �n+1|x2

1 + · · · + x2
n+1 = 1}, to prove that it

is an n-dimensional manifold.

3. Prove that the Klein bottle is a differentiable manifold of dimension 2.

4. Prove that P n(�) is a differentiable manifold of dimension n. What
can you say in this respect about P n(�)?
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3.5 The projective group

We have promised two things with respect to the group of transformations whose
invariants we shall study in this chapter: that it will contain the affine group
as a subgroup, and that, honoring its name, it will include the projections of a
projective line into another from a point exterior to both lines.

As to the second point, the projections of a line into another from a point
exterior to both are called perspectivities. Since the composition of two perspec-
tivities is not necessarily a perspectivity (see Figure 3.16), but it must be an
element of the projective group, any element of the projective group will be called
a projectivity.

As to extending the group A(2) of the affinities, which are given by invertible
matrices of 3 × 3 of a certain type, it is natural to consider the linear group of
order 3, GL(3,�), consisting of all 3 × 3 non-singular matrices. Let us see if it is
the adequate group for our purposes.

First of all, projectivities must map projective points into projective points
and projective lines into projective lines. This is fine because any T ∈ GL(3,�) is
a non-singular linear transformation of �3 and therefore carries one-dimensional
and two-dimensional subspaces of�3 ( lines through the origin and planes through
the origin) into subspaces of the same dimension.

However, we need more: the resulting subspace must be independent of the
particular vector (or vectors) that defines the original subspace. That this is the
case follows from the linearity of the function:⎛⎝a b c

d e f
g h i

⎞⎠ ⎛⎝λx
λy
λz

⎞⎠ =

⎛⎝λ(ax + by + cz)
λ(dx + ey + fz)
λ(gx + hy + iz)

⎞⎠ .

Thus, any element of GL(3,�) maps projective points into projective points
and also projective lines are transformed into projective lines, because of duality
(think of the vector in �3 normal to the two-dimensional subspace corresponding
to the projective line that must be transformed).

Finally, notice that any non-zero multiple of a given matrix M ∈ GL(3,�)
defines the same projectivity, for the resulting triples differ only by that multiple;
therefore, the obtained projective point is the same and, by duality, the same can
be said of a projective line.

That is why the projective group will be PGL(3,�), the set of the classes
of matrices in GL(3,�) defined by the equivalence relation

⎛⎝a b c
d e f
g h i

⎞⎠ ∼

⎛⎝a′ b′ c′

d′ e′ f ′

g′ h′ i′

⎞⎠



114 Chapter 3. Projective geometry

if there exists λ ∈ �− {0} such that⎛⎝a′ b′ c′

d′ e′ f ′

g′ h′ i′

⎞⎠ =

⎛⎝λa λb λc
λd λe λf
λg λh λi

⎞⎠ .

It is interesting to see how the image of a point and the image of a line under
the same projectivity are related.

Let us take as an equation of the line Ax + By + Cz = 0, and let us rewrite
it as a product of matrices

(
A B C

)⎛⎝x
y
z

⎞⎠ = 0. (3.10)

Since the matrix M that defines a projectivity is invertible, the relation P ′ = MP ,
implies that P = M−1P , and by substituting⎛⎝x

y
z

⎞⎠ =

⎛⎝a b c
d e f
g h i

⎞⎠−1 ⎛⎝x′

y′

z′

⎞⎠ ,

in (3.10), we obtain the equation of the line transformed under the projectivity
corresponding to M :

(
A B C

) ⎛⎝a b c
d e f
g h i

⎞⎠−1 ⎛⎝x′

y′

z′

⎞⎠ = 0. (3.11)

and (A′ B′ C′) 	= (0 0 0) because M is non-singular and (AB C) 	= (0 0 0).

From this equation it is clear that the triple defining the transformed line is
given as (

A′ B′ C′) =
(
A B C

) ⎛⎝a b c
d e f
g h i

⎞⎠−1

,

and (A′ B′ C′) 	= (0 0 0) because M is non-singular and (AB C) 	= (0 0 0).

Since in the projective plane there are no distinguished points, one expects
that any point P can be transformed into another point P ′ by means of a projec-
tivity; if that is so, the analogous property holds for lines, because of duality. In
Exercise 4 the reader must prove these assertions, and that is why we say that the
projective group is transitive on points and lines.

Let us now verify that the projective group is more extensive than the affine
group. It will suffice to prove that a perspectivity can be given as an element
of PGL(3,�), but that it is not an affine transformation. Let us begin with the
latter.

Proposition. A perspectivity is not an affine transformation.
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Proof. Let us consider Figure 3.14, which illustrates the affine plane, where the
lines L and M correspond to the axes y = 0 and x = 0, and the point O from
which we shall project L into M has coordinates (1, 1, 1). The coordinate system
is completed with the axis z = 0, which in the affine plane corresponds to the line
at infinity.

The drawing shows that under the projection of L into M from O, the point
at infinity (0 : 1 : 0) of the affine plane is the image of a finite point (x, 0, 1)
(actually, we know that it is the point (1, 0, 1)), and instead the point at infinity
of the line L (the axis y = 0), (1 : 0 : 0) is projected into a finite point (0, y, 1) (in
this case we also know the point: (0, 1, 1)).

Since the type of point is invariant under affine transformations, we have
proven that a perspectivity cannot be an affine transformation. �

(0 : 1 : 0) (1 : 0 : 0)

y = 0

L

�
2

(1, 0, 1)

(0, 0, 1)

(0, 1, 1)

x = 0

M
(1, 1, 1)

y = 0

Figure 3.14: A perspectivity is not an affine transformation.

However, a perspectivity is certainly given by an element of the projective
group:

Proposition. A perspectivity is a projectivity.

Proof. We must prove that given two lines L and M, and a point exterior to both,
O, there exists an element of PGL(3,�) which maps the points P of L into the
points P ′ of M so that P , O, and P ′ are collinear.

The adequate coordinate system is that where LL corresponds to y = 0 and
M corresponds to x = 0 (see Figure 3.15); the center of projection will be the
point O(1 : 1 : 1) and the third axis is a line different from the previous ones and
which does not pass through O.

Notice that (0 : y : 1) is collinear with (x : 0 : 1) and (1 : 1 : 1) if and only
if (x : 0 : 1) is collinear with (0 : y : 1) and (1 : 1 : 1); That is, a perspectivity
is its own inverse (Exercise 2). The collinearity is equivalent to the nullity of the
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determinant formed with its coordinates:∣∣∣∣∣∣
x 0 1
0 y 1
1 1 1

∣∣∣∣∣∣ = 0,

and computing the determinant we find that this happens when y = x/(x − 1).
Thus, our task is reduced to finding a matrix that maps the point (x : 0 : 1)

into the point (0 : x : x − 1) (Why?).
It is clear that the point common to L and M, (0 : 0 : 1), remains fixed,

which means that (notice that on the right-hand side we only require that λ 	= 0):⎛⎝a b c
d e f
g h i

⎞⎠ ⎛⎝0
0
1

⎞⎠ =

⎛⎝0
0
λ

⎞⎠ , λ 	= 0.

By doing the multiplication on the left-hand side we obtain c = 0, f = 0, and
i 	= 0, and therefore the matrix has the form⎛⎝a b 0

d e 0
g h i

⎞⎠ , i 	= 0.

(0 : 1 : 0)

(1 : 0 : 0)

(x : 0 : 1)(0 : 0 : 1)

(0 : y : 1)

(1 : 1 : 1)

L

M

Figure 3.15: A convenient coordinate system for the proof.

By establishing the condition that the points of the line L, (x : 0 : z), be
mapped into points of the line M, (0 : y′ : z′), we obtain a = 0 (verify it); this
restricts the matrix even more:⎛⎝0 b 0

d e 0
g h i

⎞⎠ , i 	= 0.
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Let us now recall the remarks made with respect to Figure 3.14: the point
(1 : 0 : 1) is projected into the point (0 : j : 0), with j 	= 0, and the point (1 : 0 : 0)
is projected into the point (0 : h : h), with h 	= 0. This implies that the matrix
also satisfies that d 	= 0, g + i = 0, and d = −i, so it is of the form⎛⎝ 0 b 0

−i e 0
−i h i

⎞⎠ .

The condition that defines the perspectivity implies that any line through
(1 : 1 : 1) transforms into itself, thus the point (1 : 1 : 1) remains invariant:⎛⎝ 0 b 0

−i e 0
−i h i

⎞⎠ ⎛⎝1
1
1

⎞⎠ =

⎛⎝k
k
k

⎞⎠ , for some k 	= 0.

Multiplication on the left-hand side yields⎛⎝ b
−i + e

−i + h + i

⎞⎠ ,

and since the three entries must be equal and different from zero, we have b =
−i + e = h.

We now use the result of Exercise 2: a perspectivity is an involution. Hence,
multiplying the matrix by itself we obtain the identity matrix (verify it!); the result
gives b = −i; if we set b = 1, then the matrix is⎛⎝0 1 0

1 0 0
1 1 −1

⎞⎠ .

That is why there is only one T ∈ PGL(3,�) which gives the required perspec-
tivity. �

Let us assume now that we have a perspectivity of L into M from O (see
Figure 3.16), and another of M into N from O′; the composition is a projectivity,
but it is not necessarily a perspectivity of L into N , for the lines AA′′, BB′′ and
CC′′ are not necessarily concurrent.

But it is true that any projectivity between two lines, that is, a correspon-
dence between their points established by an element of PGL(3,�), can be ex-
pressed as the product of at most three perspectivities. This is a consequence of
the so-called Fundamental Theorem of Projective Geometry, which we state and
prove below.

Theorem. Given two quadruples, A, B, C, D and A′, B′, C′, D′ of points of P 2(�),
each in general position, there exists one and only one projectivity T ∈ PGL(3,�)
such that A′ = T (A), B′ = T (B), C′ = T (C) and D′ = T (D).
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A

B

C

D

A′
B′

C′
D′

A′′
B′′

C′′
D′′

O′

O

L
M

N

Figure 3.16: The projectivity that results from composing two perspectivities is not nec-
essarily a perspectivity.

The proof is a consequence of the following Lemma.

Lemma. Given four points A, B, C, D ∈ P 2(�) in general position, it is possi-
ble to find representative elements for them such that (a1, a2, a3) = (b1, b2, b3) +
(c1, c2, c3) + (d1, d2, d3).

Proof of the Lemma. Four projective points in general position are equivalent to
four non-coplanar directions of �3. Thus, vectors with the direction of any three
of them generate a basis for �3, so they determine a vector having the fourth
direction:

(a1, a2, a3) = β(b′1, b
′
2, b

′
3) + γ(c′1, c

′
2, c

′
3) + δ(d′1, d

′
2, d

′
3).

Therefore, we take (b1, b2, b3) = (βb′1, βb′2, βb′3), (c1, c2, c3) = (γc′1, γc′2, γc′3), and
(d1, d2, d3) = (δd′1, δd

′
2, δd

′
3), to obtain the required representative elements. �

Proof of the Theorem. We apply the lemma to each quadruple to obtain represen-
tative elements such that

Ā = B̄ + C̄ + D̄, Ā′ = B̄′ + C̄′ + D̄′.

Hence, if M ∈ GL(3,�) is the only matrix that maps the basis B̄, C̄, D̄ of �3 into
the basis B̄′, C̄′, D̄′, the linearity implies that Ā′t = MĀt. �

An immediate consequence is the following.

Corollary 1. If T ∈ PGL(3,�) leaves fixed four points in general position, then
T = id ∈ PGL(3,�).
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When the equivalent lemma and theorem are stated for the case of P 1(�),
it is easy to prove the following result, which refers to a range of points or to a
pencil of lines illustrated in Figure 3.5.

Corollary 2. A projective correspondence between two pencils of lines or two ranges
of points is determined by two triples of corresponding points.

As a consequence we have another corollary.

Corollary 3. A projectivity between two pencils of lines or two ranges of points is
the product of at most three perspectivities.

Proof. Notice that if the point of intersection of two lines is mapped into itself, a
projectivity between the two lines must be a perspectivity (Why?). Thus, given
A, B, C ∈ L and A′, B′, C′ ∈ L′, the projectivity T between the lines L and L′,
which maps a triple into another, can be exhibited by introducing an auxiliary
line M through A′ (see Figure 3.17).

Now we project the points of L into M from O = AA′ ∩BB′; the images of
A, B and C are A′, B′′ and C′′. Next we project the points of M into L′ from
O′ = B′B′′ ∩ C′C′′: A′ is mapped into itself, B′′ into B′, and C′′ into C′. By
composing both perspectivities we obtain the projectivity T .

A
B

C

A′ B′ C′

B′′

C′′

O

O′

L

L′

M

Figure 3.17: A projectivity between two different lines is a composition of two perspec-
tivities.

When L = L′, the introduction of an auxiliary line L′′ into which we project
the points of L′ from O′′ exterior to both lines, takes us to the previous situation
(see Exercise 8). �

Before finishing this section, let us have a look on P 1(�), to determine some
properties of the transformations that act in it.
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By analogy with the case of P 2(�), the group whose invariants we are inter-
ested in studying must be PGL(2,�), that is, classes of invertible 2 × 2-matrices
whose entries a, b, c, d, are complex numbers and which act on an element of
(z : w) ∈ P 1(�) by multiplication:(

a b
c d

) (
z
w

)
=

(
az + bw
cz + dw

)
.

Hence, except for the point of P 1(�) with w = 0, it makes sense (because (z : 1)
is a representative element of a point with w 	= 0) to write

f(z) =
az + b

cz + d
, (3.12)

and the action of f can be extended to �̂ following the usual rules of calculus
when the variable z approaches infinity:

f(∞) = a/c, f(−d/c) = ∞.

Notice that in the first case the procedure is equivalent to using the chart
corresponding to z 	= 0, that is, if the representative element is (1 : w), for w = 0
we obtain the value a/c.

The expression (3.12) shows that we can restrict ourselves to matrices with
determinant 1 (it suffices to divide the coefficients by the square root of the de-
terminant of the matrix).

Therefore, the group that acts on P 1(�) is PSL(2,�), where S indicates
that the determinant is 1. This group is better known as the group of Möbius
transformations, and we are interested in it because it plays a relevant role in
hyperbolic geometry, as we will see in Chapter 4.

For the moment we only prove that the Möbius transformations are directly
conformal transformations of P 1(�). This means that they respect angles includ-
ing their orientations.

Proposition. The Möbius transformations, PSL(2,�), are directly conformal.

Proof. It is enough to do the division indicated in (3.12):

f(z) =
az + b

cz + d
=

a

c
+

b − (ad/c)
cz + d

,

since the right-hand side expresses f as a composition of directly conformal trans-
formations (see Exercise 10)

z �→ cz �→ cz + d �→ 1
cz + d

�→ b − (ad/c)
cz + d

�→ b − (ad/c)
cz + d

+ (a/c). �
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Exercises

1. Do the computations omitted in the proof that a perspectivity is an
element of PGL(3,�).

2. Prove that a perspectivity is an involution (i.e., it is its own inverse).

3. Determine the equation of the line into which the line defined by 2x −
y + 4z = 0 is transformed under the projectivity given by the matrix0

@ 0 1 0
−1 −1 −1

1 1 −1

1
A .

4. Is it always possible to find a projectivity that maps a given point into
another? What about any two lines? What happens if additionally we
fix a point in each line? Justify your answers.

5. Prove that the image of a non-singular conic under a projectivity is
another non-singular conic.

6. Find a projection in �3 that maps a circle into a hyperbola.

7. Prove Corollary 2.

8. Prove Corollary 3 when the two triples of points belong to the same
line.

9. State and prove the Fundamental Theorem of Projective Geometry for
P n(�).

10. Compare the Fundamental Theorem of Projective Geometry with the
statement that the drawing of a tile determines the other tiles.

11. Verify that each of the types of transformations into which a Möbius
transformation is decomposed is conformal.

3.6 Invariance of the cross ratio

Once we have proved that PGL(3,�) is the group of projectivities, our task now
is to find the associated invariants. One of them, fundamental for a great part of
the theory, is numeric and it refers to the cross ratio of four elements of a pencil
or a range, which we shall think of as P 1(�).

Let us start by observing that a perspectivity does not respect the ratio into
which a point divides a segment. Figure 3.18 shows an isosceles triangle, and when
its base AB is projected from C into a line through B, different from the base,
the mid-point M is mapped into a point M ′ which does not divide the segment
A′B into equal parts.

Thus, the ratio into which a point divides a segment is not a projective
invariant; this is why it may seem surprising that the cross ratio, (A, B; C, D),
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among four collinear points, A, B, C, and D, is a projective invariant. The cross
ratio for points of the real line has the form

(A, B; C, D) =
C−A
B−C
D−A
B−D

=
(A − C)(D − B)
(C − B)(A − D)

. (3.13)

A

A′

B

C

M

M ′

Figure 3.18: The ratio into which a point divides a segment is not a projective invariant.

The double quotient (3.13) is formed, as exhibited by the middle member, as
the quotient of two ratios: the ratio into which C divides the segment AB by the
ratio into which D divides that same segment.

Notice that the order in which the points are written is very important. To
convince oneself of that, the classic Exercise 4 proves that given four fixed collinear
points, there are only six possible values for the cross ratio, depending on the order
in which the points are written. For instance, it is very easy to verify that if we
exchange the pairs, keeping the order in them, the cross ratio is preserved:

(A, B; C, D) = (C, D; A, B).

In Figure 3.19 we have marked the angles α, β, γ and δ; it is left to the reader
as an exercise (Exercise 3) to prove, using the Law of Sines, that (A, B; C, D) and
(A′, B′; C′, D′) have the same expression in terms of the sines of those angles:

sin α sin δ

sinβ sin γ
.

One particularly interesting case occurs when the value of the cross ratio
(A, B; C, D) is −1; it is said then that A, B, C, D form a harmonic set of points
(as the reader may suspect, the term comes from music), and that C and D are
harmonic conjugates one to another with respect to A, B.1

1If a chord pressed at the points A and B gives a certain note, by pressing it at the points C
and D, the other notes of the major triad are obtained.
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In the study of projective invariants, there are several sets of harmonic points
that arise naturally, as will be seen below.

A C
B

D

A′
C′

B′

D′

α
β

γ

δ

O

Figure 3.19: The cross ratio (A,B; C, D) is equal to the cross ratio (A′, B′; C′, D′).

The way of extending the definition of cross ratio to four points of a projective
line, with coordinates (a1 : a2), (b1 : b2), (c1 : c2), (d1 : d2), is

(A, B; C, D) =

∣∣∣∣a1 c1

a2 c2

∣∣∣∣ ∣∣∣∣d1 b1

d2 b2

∣∣∣∣∣∣∣∣c1 b1

c2 b2

∣∣∣∣ ∣∣∣∣a1 d1

a2 d2

∣∣∣∣ . (3.14)

Verifying that the definition does not depend on the representative elements
chosen for the points is immediate, because of the properties of determinants. And
to prove that this definition extends that of the Euclidean case, compute the value
of the cross ratio when the second coordinate of each point is 1.

In the Exercises section there are several expressions for the cross ratio that
it is worthwhile to know, so that we can use the most adequate of them at a given
situation.

To prove the invariance of the cross ratio among four elements of a pencil
or a range under projectivities, we first consider that by eliminating the absolute
value in the numerator of formula (1.2), we obtain the oriented distance from a
point P0(x0, y0) ∈ �2 to the line L of equation Ax + By + C = 0:

d(P0,L) =
Ax0 + By0 + C√

A2 + B2
. (3.15)

Let us now consider two lines A and B, with equations

α(x, y) = A1x + B1y + C1 = 0 and β(x, y) = A2x + B2y + C2 = 0,
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which we represent by α = (A1, B1, C1) and β = (A2, B2, C2).
With that notation, the set of points P (x, y) ∈ �2 whose distances to A and

B are in the constant ratio k is the line C corresponding to γ(x, y) = 0, where the
coefficients of γ are given by

γ = α − k

√
A2

1 + B2
1√

A2
2 + B2

2

β, (3.16)

as can be verified easily by writing the two distances in the form (3.15) and
requiring their quotient to be k.

The interesting geometric interpretation of the above discussion is that the
line C represented by (3.16) divides the pair (A,B) in the ratio k, and if we have
another line D with equation δ(x, y) = 0 given by

δ(x, y) = α − h

√
A2

1 + B2
1√

A2
2 + B2

2

β, (3.17)

the cross ratio of the lines (A,B; C,D) is simply k/h.
Let us write this result as a lemma, with the simplified notation that takes

into account that, for the projective lines obtained by homogenizing the equations,
the coefficients of the combination provide coordinates for the lines of the pencil
defined by (A,B).

Lemma 1. If the concurrent lines A, B, C and D have coordinates α, β, α + λβ
and α + µβ, then the value of the cross ratio (A,B; C,D) is

(A,B; C,D) =
λ

µ
.

Notice that it is not necessary to normalize the equations, for the factor√
A2

1+B2
1√

A2
2+B2

2

would appear in the numerator as well as in the denominator.

To prove the invariance under T ∈ PGL(3,�) of the cross ratio of four
collinear points A, B, C and D, we just need to establish a second lemma.

Lemma 2. If A, B, C and D are four collinear points with coordinates

(a1 : a2 : a3); (b1 : b2 : b3) ;
(a1 : a2 : a3) + λ(b1 : b2 : b3) ; (a1 : a2 : a3) + µ(b1 : b2 : b3),

respectively, by joining them to a point (r1 : r2 : r3) exterior to their line, we
obtain lines A, B, C and D whose cross ratio is

(A,B; C,D) =
λ

µ
.
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Proof. It suffices to write the equations of the lines by means of the nullity of
the determinant whose columns are (x, y, z)t, (a1, a2, a3)t, and (r1, r2, r3)t, for
α(x, y, z) = 0, and analogously for the other three. In the case of C and D, the
middle column is a combination of two columns and, by the properties of deter-
minants, the equations of the four lines have precisely the form given in Lemma
1, proving this second lemma. �

With these results, the invariance of the cross ratio under projectivities is
immediate.

Theorem. The cross ratio (A, B; C, D) of four collinear points A, B, C, D is
invariant under any T ∈ PGL(3,�).

Proof. The collinear points A, B, C, D are mapped under T into collinear points
A′, B′, C′, D′. The argument used in the proof of the lemma of Section 3.5, insures
that it is possible to find representative elements of the first three points such that
their coordinates are

(a1 : a2 : a3), (b1 : b2 : b3), (a1 : a2 : a3) + (b1 : b2 : b3),

and then the linear combination of (a1 : a2 : a3) and (b1 : b2 : b3), which gives
the coordinates of D, is determined by the value λ of the cross ratio (A, B; C, D) :
(a1 : a2 : a3) + λ−1(b1 : b2 : b3).

By applying T to each of those points, the combinations of the coordinates of
A′ and B′ corresponding to C′ and D′ coincide with those of C and D; accordingly,
(A, B; C, D) = (A′, B′; C′, D′). �

Exercises

1. Consider the points −2, 0, 3 and 5 of the real line, and establish all the
possible cross ratios among them.

2. Prove that for points in �2, the formulas for the coordinates of the
point P (x, y) which divides the segment P1P2 in the ratio µ are

x =
x1 − µx2

1 − µ
, y =

y1 − µy2

1 − µ
.

(Suggestion: Consider the similar triangles that are formed by drawing
through P1 the line parallel to the X axis, and through P and P2 the
lines parallel to the Y axis.)

3. In Figure 3.19, prove that (A, B; C, D) = (A′, B′; C′, D′) by expressing
both cross ratios in terms of the sines of the angles α, β, γ and δ.

4. Prove that given four fixed collinear points, the only possible values for
the cross ratios that can be established among them are λ, 1−λ, λ/(1−
λ) and their reciprocals.
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5. Prove that four points of a range form a harmonic set if and only if
(A, B; C, D) = (A, B; D, C).

6. State and prove results for lines of a pencil, analogous to those proposed
in the previous exercises.

7. In each case, prove that the cross ratio has the proposed value when
the elements of the pencil of concurrent lines or a range of collinear
points have the expressions given below (we write ā for (a1 : a2)):

(ā, b̄; k1ā + h1b̄, k2ā + h2 b̄) =
h1k2

h2k1
;

(ā + k1 b̄, ā + k2b̄; ā + k3 b̄, ā + k4b̄) =
(k3 − k1)(k4 − k2)

(k3 − k2)(k4 − k1)
;

(k1ā + h1b̄, k2ā + h2b̄; k3ā + h3b̄, k4ā + h4b̄) =

˛̨̨
˛k3 h3

k1 h1

˛̨̨
˛

˛̨̨
˛k4 h4

k2 h2

˛̨̨
˛˛̨̨

˛k3 h3

k2 h2

˛̨̨
˛

˛̨̨
˛k4 h4

k1 h1

˛̨̨
˛

.

3.7 The space of conics

At the beginning of this chapter we presented a drawing that intuitively justifies
the fact that

All non-singular conics are projectively equivalent.

Now we are ready to prove this statement formally. This follows by observing,
as we show below, that to each non-singular conic there corresponds a non-singular
symmetric matrix M (rather its class), that is, an element of PGL(3,�), and
conversely. Since PGL(3,�) is a group, for any two elements M and M ′ there
exists another element, T , thought of as a projective transformation such that
M ′ = TM . Hence all non-singular conics are projectively equivalent.

The way of assigning a symmetric matrix (actually a class) to a projective
conic comes from writing the following equation as a product of matrices:

Ax2 + 2Bxy + Cy2 + 2Dxz + 2Eyz + Fz2 = 0,

obtained by homogenizing the Cartesian equation of a conic, Ax2 +2Bxy+Cy2 +
2Dx + 2Ey + F = 0.

The reader can verify that the first member of the previous equation is

(
x y z

) ⎛⎝A B D
B C E
D E F

⎞⎠⎛⎝x
y
z

⎞⎠ . (3.18)

In addition it is also easy to prove the uniqueness of the class of the symmetric
matrix, which henceforth will be called the matrix of the conic.
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By using those matrices, the classification of the projective conics is simple,
for we can diagonalize the matrix because it is symmetric. Furthermore, by using
an adequate projectivity, the entries of the diagonal are 1 or −1. Hence, if the
conic is non-singular, then its rank is 3, and for it to be non-empty, its signature
must be 1. Therefore its standard form is

x2 + y2 − z2 = 0.

In the singular case there are several possibilities and singular conics do not
have a unique standard form. Since their corresponding matrix must be singular,
their rank is 2 or 1.

When the rank is 2, the signature can be 2 or 0, and the standard forms are
the following:

• x2 + y2 = 0, which corresponds to the projective point (0 : 0 : z);

• x2 − y2 = 0, which corresponds to two projective lines, (x : x : z) and
(x : −x : z).

Finally, when the rank is 1, the standard form is

• x2 = 0, whose locus is the double line (0 : y : z).

Let us now analyze the conics from another point of view.
Since to each projective conic there corresponds a symmetric 3 × 3-matrix,

we can parametrize the space of conics with the entries of this type of matrices:
three parameters in the diagonal and three above the diagonal (a total of six).
However, by forming classes we lose one dimension, and that is why we essentially
have five parameters, that corresponds to the geometric fact that fivepoints, and
not fewer, determine a conic.

That is, each projective conic determines an element of P 5(�) and vice-versa,
although the mapping is not bijective, since any point in P 5(�) whose coordinates
have all the same sign corresponds to the empty set. That would not happen if
the coordinates were complex numbers, for in that case the locus of an equation
such as x2 + y2 + z2 = 0 is not the empty set.

To avoid the situation when an equation does not have roots, in algebraic
geometry the variables take values in algebraically closed fields, where any polyno-
mial with coefficients in it has a root and, accordingly, all the roots are in the field.
The Fundamental Theorem of Algebra, due to Karl Friedrich Gauss (1777–1855),
establishes that � has that property (see [B-ML] or [A]).

For the rest of this section, we shall assume that the variables take values in
�; the classification of the conics then is simplified because the only invariant is
the rank (we leave this as an exercise for the reader).

If we take a random element (A : B : C : D : E : F ) of P 5(�), it is most
likely that it determines a non-singular conic, since that is equivalent with asking
that the determinant of the symmetric matrix is not zero.
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When the determinant is zero, the coordinates of the point (A : B : C : D :
E : F ) ∈ P 5(�) must satisfy the third-degree equation

ACF + 2BED − CD2 − AE2 − FB2 = 0. (3.19)

This equation defines a hypersurface in P 5(�), whose complement is an open set
formed by points representing non-singular conics.

The term hypersurface only indicates that one degree of freedom has been
lost, which is due to the restriction imposed by the equation; in this case, we
subtract 1 from the dimension 5, and therefore we say that the conics of rank ≤ 2
determine a subset of dimension 4 in P 5(�).

We can also obtain that conclusion about the dimension by observing that a
conic of rank 2 represents two different lines (complex lines), and since in P 2(�)
duality also holds, the space of lines has dimension 2. Accordingly, the dimension
of the space of pairs of lines is 4.

When the rank is 1, all the subdeterminants of order 2 in the matrix of the
conic become zero (which implies that equation (3.19) is satisfied). That might
seem to establish too many equations, each would make us lose one degree of
freedom. However, if the readers write the determinants, they will find out that
only three of the determined equations are linearly independent, that is why the
dimension of the space of conics of rank 1 is 2. This space is contained (as a closed
subset) in the hypersurface defined by (3.19); its complement in this hypersurface
consists of the conics of rank 2.

Of course, the conclusion about the dimension is immediate if we take into
account that each conic of rank 1 determines one projective (double) line, and
that the dimension of the space of the lines in P 2(�) is 2.

Before concluding this section, we introduce the Veronese mapping ,which
can be defined both over � and over �:

v : P 2(�) → P 5(�)

given by (x : y : z) �→ (x2 : y2 : z2 : 2xy : 2xz : 2yz). This mapping is clearly
differentiable and injective (verify it), and that is why the image has dimension 2.
Hence its image is a surface in P 5(�), called the Veronese surface.

Under this mapping, each conic C ⊂ P 2(�) belongs to a hyperplane of P 5(�),
whose equation has as coefficients the entries of the matrix of the conic

Ax1 + Bx2 + Cx3 + Dx4 + Ex5 + Fx6 = 0.

The dual space of P 5(�) consists precisely of all hyperplanes, and the corre-
spondence between conics of P 2(�) and hyperplanes of P 5(�) can be interpreted
as a correspondence between the conics of P 2(�) and the dual space (P 5(�))∗ of
P 5(�).
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Exercises

1. Verify that by projectivizing the equation of a non-singular conic, the
associated matrix is non-singular.

2. In �2, give the equations of two conics passing through the same four
points. Use those equations to give two different conics in P 2(�) inter-
secting at four points.

3. Classify the conics in P 2(�). (Suggestion: Remember that in this case
the only invariant is the rank.)

4. Prove that the Veronese mapping is injective.

3.8 Projective properties of the conics

In Figure 3.20 we have drawn an ellipse in which we have fixed six arbitrary points,
numbered from 1 to 6; the line 12 intersects the line 45 at a point P , the line 23
intersects the line 56 at a point Q, and the line 34 intersects the line 61 at a point
R. Now draw the line PQ; we can observe that it seems to pass through the point
R. Surprisingly, one has that this is actually so!

1

2

3

4

5

6

P
Q

R

Figure 3.20: The intersections of opposite sides of an hexagon inscribed into a conic are
colinear.

One of the purposes of this section is to prove that collinearity, which was
discovered by Blaise Pascal (1623–1662) who, astonished, decided to call mystic a
hexagon inscribed into a conic.

Notice that a particular case of Pascal’s Theorem is the Theorem of Pappus
(whose proof is left to the reader).
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Theorem of Pappus. If 1, 3 and 5 are three points of a line, and 2, 4 and 6 are
three points of another line, then the intersection of 12 with 45, that of 23 with
56, and that of 34 with 61 are collinear.

However, Pascal’s theorem is probably not the most amazing result about
conics. For instance, we have this other result: take four points A, B, C, D of a
conic (see Figure 3.21), and consider the lines they form with two fixed points, O
and O′, also in the conic. There always exists a projectivity between the pencils
defined by O and O′ which maps OA, OB, OC and OD into O′A, O′B, O′C and
O′D.

The converse of this result is also true, and both are briefly stated as follows:

Theorem (Projective Characterization of the Conics). Every conic is the locus of
the intersections of corresponding lines of two pencils with vertices O and O’, the
correspondence being given by a projectivity.

This result is actually a corollary of the following theorem of Jacob Steiner
(1796–1863).

Steiner’s Theorem. Given four points A, B, C, D in a conic, the cross ratio of
the lines they determine with a fifth point O in the conic does not depend on the
point O.

Proof. The proof reduces to verifying that if O′ is another point in the conic, then

(OA, OB; OC, OD) = (O′A, O′B; O′C, O′D), (3.20)

where OA denotes the line of the pencil defined by O which contains A, O′A
denotes the line of the pencil defined by O′ which contains A, and analogously for
B, C, and D.

A

B C

D

O
O′

Figure 3.21: Being fixed A, B, C, D ∈ C, for any O, O′ ∈ C, it occurs that
(OA, OB; OC, OD) = (O′A, O′B; O′C, O′D).

Let us prove that the above equation is always satisfied.
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We know that we can find coordinates α and β for OA and OB such that
α + β are the coordinates of OC. Therefore, by (3.16), the cross ratio of the lines
through O reduces to the quotient −β(D)/α(D).

We can also find representative elements for the lines through O′ such that if
α′ and β′ are the coordinates of O′A and O′B, then α′ + β′ are the coordinates of
O′C, and for the same argument given before, the cross ratio of the lines through
O′ is −β′(D)/α′(D).

Hence, proving (3.20) reduces to verifying the equality

β′(D)/α′(D) = β(D)/α(D). (3.21)

For this we write the equations of the pairs of lines OA and O′B, and O′A and
OB, which are respectively,

(αx̄t)(β′x̄t) = 0 and (α′x̄t)(βx̄t) = 0 .

Since the four points O, A, O′, B also belong to the conic C, its equation must be
a linear combination of the two previous equations:

r(αx̄t)(β′x̄t) + s(α′x̄t)(βx̄t) = 0.

The same can be said with respect to the pairs of lines OA, O′C and O′A,
OC; thus, the equation of C is also a linear combination of the two equations

(αx̄t)(α′x̄t + β′x̄t) = 0 and (α′x̄t)(αx̄t + βx̄t) = 0.

If the coefficients of this other linear combination are ρ and σ, we have

ραα′ + ραβ′ + σαα′ + σα′β = 0.

Since B renders the second and the fourth terms, but does not satisfy αα′ = 0,
the coefficient ρ + σ of the αα′ term must be zero; that implies that r = −s = 1.
Therefore, the equation of C is

(αx̄t)(β′x̄t) − (α′x̄t)(βx̄t) = 0,

which we obtain the equality (3.21). �
Equation (3.20) implies that it makes sense to define the cross ratio of four

points in a conic precisely as the cross ratio of the lines of the pencil with vertex
O ∈ C containing those four points, since that number does not depend on the
choice of O ∈ C.

The proof of the Theorem of the Projective Characterization of the Conics
is left now to the reader (Exercise 1). Pascal’s Theorem is a simple consequence
of Steiner’s Theorem, as will be seen below.

Theorem (of the Mystic Hexagon). In any hexagon inscribed into a conic, the
intersections of opposite sides are collinear.
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Proof. We decided to denote the points with numbers because then the opposite
sides (obtained by “skipping” two consecutive sides) are obtained by adding 3
modulo 6 to the vertices of the elected side: 12 and 45 with intersection P , 23 and
56 with intersection Q, and 34 and 61 with intersection R.

Figure 3.22, which reproduces Figure 3.20, not only shows the intersections
P , Q and R of opposite sides, but also S = 12 ∩ 56 and T = 16 ∩ 45, which will
be useful for establishing cross ratios in the lines 56 and 16, whose equality will
be established by means of projections into the conic and by Steiner’s Theorem.

What has to be proven — the collinearity of P, Q and R — will follow
from the fact that the equality of cross ratios of lines in two pencils implies that
PQ = PR.

We write (Q, S; 6, 5) for the cross ratio of the four points on the side 56 of
the hexagon. If we project these points into the conic from the vertex 2, we obtain,
respectively, 3, 1, 6 and 5; therefore,

(Q, S; 6, 5) = (3, 1; 6, 5).

1

2

3

4

5

6

P
Q

R

S T

Figure 3.22: P , Q, and R are colinear.

If now we project these points of the conic into the line 16 from 4, we obtain,
respectively, R, 1, 6 and T ; thus,

(Q, S; 6, 5) = (3, 1; 6, 5) = (R, 1; 6, T ).

Hence, there is a projectivity of the pencil with vertex at P onto itself such that

(PQ, PS; P6, P5) = (PR, P1; P6, PT ).

The lines PS and P1 are the same, and also the lines P5 and PT are the same.
Therefore, the lines PQ and PR are the same as well, as was stated. �

Before finishing this section, we shall establish a very important property of
a quadrilateral, which generalizes the following fact about any Euclidean parallel-
ogram (see Figure 3.23).
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A line parallel to two sides of a parallelogram through the point of intersection of
its diagonals intersects both of the other sides at their mid-points.

A

B C

D

M

∞

Figure 3.23: M is the mid-point of BC.

Notice that this is equivalent to saying that (B, C; M,∞) form a harmonic
set of points, where ∞ is the point at infinity of the line BC.

Since in projective geometry there are no parallel lines, the statement takes
the following form.

Lemma. Let A, B, C, D, F and G be the vertices of a quadrilateral, and take the
three vertices B, C, and F belonging to one of its sides. The pairs of vertices A, C
and B, D are opposite vertices, and the lines AC and BD intersect in a point L
such that the line LG meets the first side in a point M . The points B, C, M , and
F form a harmonic set of points, that is, (B, C; M, F ) = −1 (see Figure 3.24).

A

B CM

N

L

D

G

F

Figure 3.24: B, C, M and F form a harmonic set.

Proof. It was left to the reader to prove that (B, C; M, F ) = (C, B; M, F )−1; thus
B, C, M and F form a harmonic set of points if and only if (B, C; M, F ) =
(C, B; M, F ).

Again, it is enough to project conveniently to obtain the wanted equality:
first we project from L the side BC into the side AD, and then we project from
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G the side AD into the side BC,

(B, C; M, F ) = (D, A; N, F ) = (C, B; M, F ).

The equality of the first and last members is what we wanted. �

Exercises

1. Prove that a conic is the locus of the intersections of corresponding
lines of two pencils related by a projectivity.

2. Prove Pascal’s Theorem in the case of the hexagon shown below.

1

2

3

4

5

6

3. Dualize the concept of conic using the projective characterization of
conic.

4. Dualize Pascal’s Theorem; this proposition is called Brianchon’s Theo-
rem.

5. Prove the Theorem of Pappus.

6. Analyze what happens with Pascal’s Theorem when two of the vertices
are mixed, i.e., when one “side” becomes tangent to the conic.

3.9 Poles and polars

When we dealt with the theme of duality, we used the concept of orthogonality in
�

3 several times, where the scalar product is the usual one.
Any scalar product in �3 gives rise to a symmetric matrix (it is called the

matrix of the metric) (see [B-ML] or [Ri]), which in the case of the usual scalar
product is the identity matrix (for the product of matrices), and that is why we
omit it when writing (a, b, c) · (r, s, t); in the general case, to obtain the scalar
product of any two vectors, we would write

(
a b c

) ⎛⎝A B D
B C E
D E F

⎞⎠⎛⎝r
s
t

⎞⎠ .
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The symmetric matrix can be thought of as the matrix of a conic C,

(
x y z

) ⎛⎝A B D
B C E
D E F

⎞⎠⎛⎝x
y
z

⎞⎠ = 0, (3.22)

and when P0(x0 : y0 : z0) does not belong to the conic, algebra shows that the
locus of the points P (x : y : z) that satisfy the equation

(
x0 y0 z0

) ⎛⎝A B D
B C E
D E F

⎞⎠ ⎛⎝x
y
z

⎞⎠ = 0, (3.23)

is a straight line, called the polar line of P0 with respect to C, and any point in
that line is a polar point of P0 (see Figure 3.26).

Notice that the symmetry of the matrix implies that the relation “A is polar
of B with respect to C” is a symmetric relation.

Notice as well that the points in the conic are polars of themselves, and that
the polars of collinear points are concurrent lines (prove it).

From our discussion about the form of P 2(�), the reader will agree that there
is an essential difference between a projective line and a conic, in spite of both
being topological circles: the first one does not separate P 2(�) into two disjoint
regions (the middle line of the strip is a projective line, for it comes from a circle
of maximal radius), while a conic does (the edge of the strip is a conic, and since
a conic comes from two antipodal parallels, it satisfies a second degree equation).
Of the two regions mentioned above, one is homeomorphic to a disk and the other
to a Möbius strip (see Figure 3.25).

(0 : 1 : 0)

(1 : 0 : 0)(0 : 0 : 1)

Figure 3.25: A conic separates P 2(�) into two non-homeomorphic parts.

Thus, a point P0 which does not belong to the conic may lie inside the
conic, and in such a case there are no tangent lines to the conic through P0

(prove it algebraically); however, if the point lies outside the conic, in the region
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homeomorphic to the strip, there are two lines tangent to the conic passing through
P0, and the points of tangency determine the polar.

We understand as a line tangent to C precisely a line which intersects C at a
double point, that is, if the line is determined by two points R and S, any point
of the line different from S is of the form R + λS, and by substituting this point
in equation (3.23), we obtain a second-degree equation in λ:

(R + λS)M(R + λS)t = 0,

(R + λS)M(R + λS)t = 0,

where M denotes the matrix of the conic.
If we develop this equation, we obtain

λ2(SMSt) + 2λ(SMRt) + RMRt = 0,

and the root is double when the discriminant becomes zero:

(SMRt)2 − (SMSt)(RMRt) = 0. (3.24)

Now it is easy to determine the polar of a point R exterior to the conic (see
Figure 3.26).

Proposition. If it is possible to draw two tangent lines from R to a conic, and the
points of tangency are S1 and S2, then the polar of R is the line S1S2.

Proof. It will suffice to prove that both S1 and S2 belong to the polar of R. Since
S1 belongs to the conic, the equation (3.24) reduces to S1MRt = 0, which shows
that S1 belongs to the polar of R.

The same holds for S2, and therefore every linear combination of both also
belongs to the polar. �

S1

S2

R

Figure 3.26: The points of tangency determine the polar.

If the point R lies inside the conic, its polar can be drawn by applying the
proposition we have just proven in the following way. Take two lines L and L′

through R; each intersects the conic at two distinct points (prove it), A and A′

for L, and B and B′ for L’ (see Figure 3.27).
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The tangent lines to C at A and A′ intersect at a point X , and according to
the construction given in the last proposition, the polar of X is the line through
A and A′. Analogously for B and B′: the tangent lines to L through B and B′

intersect at a point Y whose polar is precisely the line through B and B′.
Hence X and Y are polars with respect to R, which implies that the line

through X and Y is the polar of R.

A

B A′

B′
L L′

R

X Y

Figure 3.27: Construction of the polar for a point R in the interior of C

The concept of polarity can be used to solve an important problem of linear
algebra, which is the simultaneous diagonalization of two quadric forms.

For this theme we follow one of our main references, [Re].

Definition. A triangle ABC is called a self-polar triangle with respect to a conic
C if each side is the polar of the opposite vertex.

The condition might seem very restrictive, and it is reasonable to ask whether
for any conic there exist self-polar triangles.

The answer is positive, as can be easily verified (make a drawing): If a point
A exterior to C is fixed, and we seek BC to be its polar with respect to C, we can
choose B arbitrarily in the polar of A, and then C, by definition of a self-polar
triangle, must be the intersection of the polar of A with the polar of B.

Let us now see what is the equation of the conic C when the triangle of
reference is a self-polar triangle with respect to the conic; the sides of the triangle
have equations x = 0, y = 0, and z = 0, and each of the points of intersection of
the axes is polar of the other two.

The coordinates of those points are (0 : 0 : 1), (0 : 1 : 0) and (1 : 0 : 0), and
the condition of polarity implies that the matrix of the conic is diagonal.

Even in basic courses of analytic geometry one learns about the advantages
of the matrix of a conic (or quadric) being diagonalizable: under that form (the
standard form), it is very easy to recognize the conic. Later on, the need of diag-
onalizing two quadric forms simultaneously arises.
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That is why it would be very useful that there existed self-polar triangles with
respect to two conics, for by taking one such triangle as reference, the matrices of
both conics would have diagonal form.

The important question now follows:

Given two conics, is there a triangle being self-polar with respect to both?

A question like this should always be analyzed from the point of view of the
degrees of freedom, that is, of the dimensions of the objects involved.

The space of the triangles in P 2(�) has dimension 6 (because each vertex
can be taken arbitrarily in the projective plane), and the dimension of the space
of the self-polar triangles with respect to a conic has dimension 3, since the first
vertex can be taken arbitrarily in a space of dimension 2, P 2(�), the second vertex
can be taken arbitrarily in a space of dimension 1, the polar of the first vertex,
and there are no degrees of freedom for the last vertex.

If now we have two conics, claiming that there exist self-polar triangles with
respect to both conics is asking for two three-dimensional spaces of a space of
dimension 6, the space of the triangles, to intersect.

Broadly speaking, a way of determining a three-dimensional space in a space
of dimension 6 consists in establishing three linearly independent polynomial equa-
tions, because each equation eliminates one degree of freedom; in addition, for two
three-dimensional spaces to have common points, we need a system of six equations
with six unknowns to be solvable.

Stated in these terms, the problem seems to have a solution, although we must
remember that not every polynomial equation of degree greater than 1 with real
coefficients has a real solution. That is why it is necessary to establish a condition
which guarantees that we have solutions. This condition is not too restrictive (see
Figure 3.29).

Theorem. Given two conics which intersect at four points, there always exists a
self-polar triangle with respect to both conics.

Before proving the theorem, we prove a very interesting property of the points
of intersection of a conic and a line.

P

C M DL

P

Figure 3.28: P, M, C and D, form a harmonic set.
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Lemma. Given a point P which does not belong to a conic C and a line through P
that intersects C at C and D, if M is the intersection of the polar P of P , then
(P, M ; C, D) = −1. Conversely, if M is such that (P, M ; C, D) = −1, then M
belongs to the polar of P .

Proof of the Lemma. If the coordinates of C and D are (1 : 0 : 0) and (0 : 1 : 0),
respectively, the equation of the conic is of the form xy + z(kx + ly + mz) = 0
(because the conic is not singular), k, l and m being constant, and the coordinates
of P and M are of the form (1 : r : 0) and (1 : s : 0), respectively. By establishing
the condition that P and M are polars, it turns out that r + s = 0, and with that,
the condition of harmonicity holds. The converse theorem is obvious. �

The theorem is a consequence of this Lemma and that of the previous section,
as is shown below.

Proof of the Theorem. In Figure 3.29 we denote the four points by A, B, C, and D,
and we consider the lines AB, CD, AC, and BD. Let P = AD∩BC, Q = AC∩BD,
and R = AB ∩ CD. We shall prove that PQR is self-polar with respect to both
conics.

By the lemma at the end of Section 3.8, (P, M ; B, C) = −1, where M =
QR ∩ BC, and by the lemma we have just proven, M belongs to the polar of P .
Analogously it is proven that (R, N : A, B) = −1, where N = QR ∩ BC.

Hence N belongs to the polar of P , which implies that MN = QR, which
is the polar of P . Similarly, it is proven that PQ is the polar of R, and then also
PR is the polar of Q. Summarizing, the triangle PQR of the diagonal points of
the quadrangle ABCD is a self-polar triangle with respect to a conic containing
the four points. �

Before closing this section, it is worthwhile mentioning that the condition
imposed in the statement of the theorem arises naturally when the field of coeffi-
cients is �, as established by a very important result about algebraic curves which
we shall not prove (see [Fu]), but we shall explain, for it will allow us to prove
that the degree of a polynomial equation is a projective invariant.

Theorem of Bezout. Two projective curves in P 2(�) without common components
and with equations F (x, y, z) = 0, G(x, y, z) = 0, of degrees m and n, intersect at
m n points.

We know that if F and G define a projective locus, they must be homo-
geneous, and we also know that polynomials can be factored; therefore, the as-
sumption that they do not have common components means that F and G do not
have common factors. Under that condition, the theorem asserts that the num-
ber of common points of the curves defined by the equations F (x, y, z) = 0 and
G(x, y, z) = 0, is mn.

Corollary. The degree of a homogeneous polynomial with real coefficients,
F (x, y, z), is a projective invariant.
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A

B
C

D

M

N

P

R

Q

Figure 3.29: The diagonal triangle PQR of the quadrangle ABCD is self-polar with
respect to both conics.

Proof. We shall apply the Theorem of Bezout, taking n = 1, that is, when G
represents a line. The number of points at which the curve defined by F intersects
that line is the degree of F . In consequence any projectivity T ∈ PGL(3,�)
respects that number of intersections:

#{T (F ) ∩ T (G)} = m,

for the common points are mapped into common points and there can not be new
common points for the images, by the injectivity of T .

Since PGL(3,�) is a subgroup of PGL(3,�), the result is still valid when the
polynomials F and G have real coefficients and T ∈ PGL(3,�). Since the trans-
form of a line is a line, the preservation of the number of intersections preserves
the degree of F . �

Exercises

1. Prove that the polars of collinear points are concurrent.

2. Prove that a line through a point that lies inside of a conic (characterize
them) cannot be tangent to the conic.

3. Prove that in the Euclidean plane �2 no line through the center of
a hyperbola is tangent to the hyperbola, in spite of the center being
exterior to the conic.
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3.10 Elliptic geometry

To finish this chapter we study the elliptic plane. This means the projective plane
P 2(�) equipped with a specific rule for measuring lengths of curves (and areas of
regions) in it.

To define this way of measuring in P 2(�), we take into account that in S2

we already have a way of measuring lengths and areas inherited from �
3. Hence,

we can define the length of a curve C of the elliptic plane as the length of any of
the two curves in S2 that are mapped into C under the standard projection

Π : S2 → P 2(�).

As in Chapter 1, the curves must be smooth and parametrized, so that we
can use the usual formula of calculus to compute its length:

l(α) =
∫ b

a

||α′(t)||dt ,

where α : [a, b] → S2 is a parametrization of the curve.
The problem of determining the curves on the sphere that minimize the path

between two of its points, the geodesics of the sphere, was posed by navigation
(let us forget about seas, islands, etc. to be surrounded) from remote times:

Which is the route from one point to another on Earth that minimizes the
distance traveled?

To answer that question, we have recourse to an easy experiment which
consists in fixing a tensed rubber band from A to B (see Figure 3.30).

If by keeping the extremes fixed we pull the rubber band and then we release
it, the rubber band will always take the form of an arc of a maximal circle, that
is, one of the circles that result from cutting the sphere with a plane through its
center.

The Principle of the Minimal Effort asserts that this is the curve which
minimizes the tension in the rubber band, because the length also does so.

In differential geometry [see DoC] it is said that a curve of a surface contained
in�3 is a geodesic of that surface if at each one of its points, its acceleration vector
is orthogonal to the plane tangent to the surface at that point.

That gives rise to a system of second-order differential equations determined
by the geodesics when the initial conditions are fixed: one point through which the
geodesic passes and its velocity. (The solution of that system of equations exists
and is unique according to the Theorem of Existence and Uniqueness of Solutions
of Differential Equations; see [L].)

The reason for asking the tangent component of the acceleration to be zero
is inspired by Euclidean geometry: the lines of the Euclidean plane have this
property. It is easy to prove that the curves of a surface in �3 with that property
of zero acceleration, minimize the distance among sufficiently close points. Saying



142 Chapter 3. Projective geometry

A

B

Figure 3.30: The geodesics of the sphere are maximal circles.

“sufficiently close” is justified if we notice that any two points in the sphere are in
a maximal circle, which is divided in two arcs by these points, and if the points are
not antipodal, then only one of these arcs provides the route of minimal length.

In other words, a geodesic in a surface S is a curve C in it, such that for each
point P ∈ C, there is a neighborhood U of P in S such that if P ′ is a point in
U ∩ C, then C is the path in S of shortest length joining these two points.

In the Euclidean plane the straight lines are the geodesics, and they are used
to form polygons; we established some of their properties in Chapter 1. Now we
may ask ourselves what if we replace the euclidean plane and its straight lines by
the sphere with its geodesic lines? Thus we arrive at spherical geometry.

Differently to what happens in the Euclidean plane, in the sphere it is false
that two points determine a unique geodesic. For instance, through the poles of
the Earth (or through any two antipodal points of the sphere) pass infinitely many
different maximal circles, all the meridians.

However, that does not happen if instead of the sphere we consider the elliptic
plane, for two projective lines intersect at only one point. This is an important
reason for considering elliptic geometry instead of spherical geometry.

An elliptic line is therefore, by definition, a geodesic in the elliptic plane.
These are the images in P 2(�) of the circles of maximal length in the 2-sphere
under the projection Π : S2 → P 2(�).

Notice that the circles of maximal length in S2 correspond to the intersections
of the sphere with 2-planes in�3 passing through the center 0. Hence the projective
lines actually become elliptic lines (or geodesics) when we endow P 2(�) with the
previous way of measuring lengths of curves. So these lines can be thought of as
being formed by the representative elements of norm 1 of points of a projective
line.

Since any two projective lines always intersect at one point, we can establish
a first result:



3.10. Elliptic geometry 143

1. In the elliptic plane there are no parallel lines.

This fact is one of the possible denials of Playfair’s Axiom, which is equivalent
to Euclid’s Postulate V; hence, elliptic geometry is a non-Euclidean geometry.

Another result in contrast to the Euclidean case is:

2. The elliptic lines have finite length (actually π), and the elliptic plane itself has
finite area, 2π (half the area of S2).

The first scholars who approached non-Euclidean geometries (see [Bo], [W]
or [R-S]) arrived at the conclusion that by, substituting Postulate V for its denial
N1: “a line does not admit parallels” (see Appendix 5.3), the lines should have
finite length; this was enough for them to consider that they had arrived at an
absurd result.

We leave to the reader the task of proving that in the elliptic plane Postulates
I to IV hold, although Postulate II must be interpreted in the sense suggested by
Bernhard Riemann: it is always possible to go forward on a geodesic, for as long
as we wish.

Another very interesting result refers to the sum of the angles of an elliptic
triangle, that is, a triangle whose sides are arcs of elliptic lines.

3. The sum of the angles of an elliptic triangle is greater than 180◦.

In Figure 3.31, a spherical triangle is shown to the left (and, necessarily, the
antipodal triangle that is congruent), and the maximal circles which give rise to
the elliptic lines are shown to the right.

α

α

β

β

γ

γ

TT

T1

T2T3

T ′
1

T ′
2

T ′
3

Figure 3.31: In an elliptic triangle the sum of its angles is greater than 180◦.

In both drawings of Figure 3.31 we denote by T the elliptic triangle, and by
α, β and γ its interior angles (remember that the angle between two intersecting
curves is the angle between the tangents to the curves at the point of intersection).
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Let us prove the above statement, that the sum of the angles of T is more
than 180◦. For this, let us call the part of S2 between two meridians (maximal
circles) forming an angle α a spindle of angle α of S2. It is easy to see that such a
spindle has area 2α (prove it using that the unit sphere has area 4π). Notice that if
we cut this spindle by the meridian which is orthogonal to the other two, then the
spindle splits in two congruent triangles of equal area α, whose inner angles are
π/2, π/2 and α, so its sum is π + α > 180◦, proving the claim for these triangles.

In general, the triangle T is contained in the three spindles: one with angle
α, another with angle β, and one more with angle γ.

In the spindle of angle α, the complement of T is denoted by T1; in that of
angle β, the complement is denoted by T2, and in that of angle γ the complement
is denoted by T3. Therefore, if we use the same letter for the areas and for the
triangles, we have

T + T1 = 2α ; T + T2 = 2β ; T + T3 = 2γ . (3.25)

The sum of these three equations is

3T + T1 + T2 + T3 = 2(α + β + γ). (3.26)

Observe now that the triangles in Figure 3.31 that have been denoted by T ′
1,

T ′
2 and T ′

3 are congruent to T1, T2 and T3, respectively, because they are antipodal
(see the drawing to the left in Figure 3.31). That is why the following equality is
valid. This formula expresses the area of the hemisphere illustrated by the bottom
left disk in the right-hand side of Figure 3.31, :

2π = T + T1 + T ′
2 + T3 = T + T1 + T2 + T3. (3.27)

By substituting the value we have just obtained for T + T1 + T2 + T3, it turns out

2T + 2π = 2(α + β + γ), (3.28)

and since T > 0 because it is the area of an elliptic triangle, we have proven that
the sum of the angles of an elliptic triangle is greater than π. �

Finally, let us notice that equation (3.28) establishes that

4. The sum of the angles of an elliptic triangle determines its area: If T has interior
angles α, β and γ, then:

Area (T ) = α + β + γ − π .

This statement is not true in the Euclidean plane: the sum of the angles of a
Euclidean triangle is constant, 180◦. On the other hand, we have similar triangles
(with the same angles) whose areas are as small or as large as we wish. Actually,
we can say more:

5. In the elliptic plane there are no similar triangles which are not congruent.
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To prove it, we use Figure 3.32, in which the drawing to the left illustrates
the elliptic triangle of angles α, β and γ. The planes Π1 and Π2 through the
origin, which determine the meridians forming the angle α, have normal vectors
corresponding to two radii, r1 and r2, which form that same angle α, for the
tangent lines with angle α and the radii r1 and r2 are perpendicular to the line
Π1 ∩ Π2.

We shall show how to determine a radius r3, forming with radius r1 an angle
γ, and with radius r2 an angle β.

The drawing to the right in Figure 3.32 illustrates the cone of revolution
about r2 whose generatrices form an angle β with r2, and the cone of revolution
about r1 whose generatrices form an angle γ with r1; remember that the angle
between r1 and r2 is α.

α

β

β

γ

γT

βγ

r1

r1

r2

r2

Π1Π2

Figure 3.32: The angles of an elliptic triangle determine it (except for orientation).

The two cones intersect at two common generatrices, r3 and r′3, symmetric
with respect to the plane containing r1 and r2. Those generatrices determine the
planes Π3 and Π′

3, which give rise to maximal circles forming, with those stemming
from Π1 and Π2, two congruent triangles with opposite orientations, having angles
α, β and γ, which concludes the proof. �

The results we have obtained so far are only a part of elliptic geometry, and
the sphere itself has very important properties which we have not mentioned; to
know several of them, the reader can see [H-C].

We only mention briefly the theme of the spherical tessellations, that is,
determining all the possible ways of covering the sphere with regular and congruent
spherical polygons.
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The total of the possibilities results by projecting the Platonic solids into the
sphere from its center, and by adding just the degenerated case of two hemispheres,
each of which can be considered as a polygon of two sides (meridians) forming an
angle of 180◦ (that is why we call it a degenerated case). The justification that
there are no more possibilities is left as an exercise for the reader (see Exercise 4).
We refer to sections II.1 and II.2 in [Se] for more on this topic.

Figure 3.33: Tessellation of S2 determined by a regular dodecahedron.

Exercises

1. Verify the validity of the four first Euclidean postulates in the elliptic
plane.
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2. Determine the minimal upper bound for the sum of the angles of an
elliptic triangle.

3. Determine the minimal upper bound for the length of an elliptic circle.

4. Prove that there are only five non-degenerated regular spherical tiles
with which the sphere can be covered.

5. A Platonic solid is inscribed into a sphere S, but if we take a sphere
with the same center and of radius smaller than that of S cutting each
edge of the Platonic solid in two points, it is possible to use those points
to obtain other tessellations of the smaller sphere, which although not
formed by congruent spherical polygons only, have certain symmetries.
Can you determine the subgroup of O(3) that leaves each of them
invariant?
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Hyperbolic geometry

In Chapter 3 we saw that elliptic geometry is a non-Euclidean geometry, for any
pair of elliptic lines intersect; that is, parallel lines do not exist in that geometry
(denial N1 of Postulate V).

In this chapter, we study hyperbolic geometry, where denial N2 of Euclid’s
Postulate V holds: Given a line and a point which is not in the line, there exists
more than one parallel to the line passing through the point. Again, we shall do
it by using models, as in the cases of Euclidean and elliptic geometries.

The history of the discovery of the existence of this geometry, and of the
creation of a good model for it, is very interesting (see [Ki], [R-S], [Y] or [W]);
thus, the first section of this chapter presents the usual models of the hyperbolic
plane. Surprisingly, these models are related to one another by means of bijective
projections, and there exists a function that takes one into the other and allows
using both of them without distinction.

To achieve the development of hyperbolic intuition it is very important to get
familiar with the so-called conformal models (this concept will be explained below),
by doing by oneself the respective drawings, although there is software which does
it. Another source consists in analyzing M.C. Escher’s engravings related to this
theme; some of them are included in [Cox1] accompanied by an analysis, and many
more appear in [Er] or [Es].

Hence, we invite the reader to observe how the use of complex coordinates
gives rise to a very fruitful interrelation of algebraic, topological, metric, and an-
alytic arguments, as well as to study, if he or she desires to go deeply into this
fascinating theme of mathematics, the book [T] by one of the best contemporary
geometers, William Thurston, whose works gave a great impulse to hyperbolic
geometry in the 1980s.

4.1 Models of the hyperbolic plane

Once Janos Bolyai (1802–1860) and Nikolai Ivanovitch Lobachevsky (1793–1856)
had proven the consistency of the system of axioms that results from substitut-
ing Postulate V in the Euclidean system by its denial N2 (Through a point not
on a line there exists more than one parallel to the line), prominent mathemati-
cians attempted to find a model of hyperbolic plane geometry among the surfaces
contained in �3.
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That meant, in particular, that the length of the curves on the surface, chosen
as hyperbolic lines, the geodesics, should be infinite, when their length is measured
as we do in calculus courses. The search was unsuccessful because, as David Hilbert
(1862–1943) would prove later, it is impossible that there exists a surface of �3

with the required characteristics: that the way of measuring be the one induced
by the usual metric of �3, that the geodesics have infinite length and that the
Gaussian curvature, defined in Chapter 1, be constant and negative (see [DoC],
Chapter 5).

A surface of�3 that has constant Gaussian curvature −1 is the pseudosphere,
a surface of revolution generated by a tractrix (see Figure 4.1).

P

Figure 4.1: Geodesics of the pseudosphere.

An example of the tractrix is the curve drawn on the sand by a trolley toy
pulled by a little boy, after he rotates 90◦ with respect to his initial direction
(which we have marked with a vertical arrow in Figure 4.1); the projection of the
small rope on the ground gives a tangent segment between the object and the
perpendicular trajectory, which becomes an asymptote of the tractrix; since the
small rope is taut, the segment has always the same length. The parametrization
of the tractrix is proposed as Exercise 1, and the reader must verify that it satisfies
this last condition which characterizes it.

In Figure 4.1 we have illustrated some geodesics of the pseudosphere; to
obtain them, we can employ again a taut band, except that in this case there will
be situations where the band must be placed inside.

The great flaw of this model, discovered by Eugenio Beltrami (1835–1900),
is that it is not complete, that is, one can not walk as much as desired on one of
the generatrices when going to the hole of the trumpet; that violates Postulate II.

Beltrami himself elaborated two other complete models. With the way of
measuring that we shall introduce, lines will have infinite length. However, both
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models have the disadvantage of not being conformal; in other words, given two
geodesics that intersect at a point, the angle we see, that formed by the tangent
lines, is not the angle that corresponds to the way of measuring. However, both
are useful for studying different problems (see [Ve]), and that is why we include
them.

The projective model of the hyperbolic plane, also due to Beltrami, consists
of a disk without the boundary. The points of the interior of the disk will be the
points of the hyperbolic plane, and the points of the boundary of the disk are
called points at infinity, since they play a role similar to the points at infinity of
the affine plane.

L
P

Figure 4.2: The projective model of the hyperbolic plane.

In Figure 4.2 we have drawn some chords; Beltrami called these chords hy-
perbolic lines, and it is clear that there are many of them containing the point P
and that do not intersect the line L: all the chords within the gray area. Thus,
denial N2 of Postulate V holds (see Appendix 5.4).

Since the hyperbolic lines of this model are segments of Euclidean lines,
actually we could think that we have done nothing new. The difference is the
metric given for this model (see [Ve]), that it is not induced by the usual scalar
product, and that has as a consequence, for example, that the hyperbolic lines
have infinite length, that is, a point moving towards the boundary with constant
speed will never reach it.

We shall very carefully construct the hyperbolic metric below by using an-
other of the models.

The validity of Postulate I is immediate (see Appendix 5.4), for it is always
possible to draw the segment corresponding to two given points of the hyperbolic
plane. It is also true that we can produce that segment to obtain a complete
hyperbolic line, that is, a cord that, as we shall see, turns out to have infinite
length. Therefore, Postulate II will also be valid.

When we introduce the model in which we shall define the way of measuring
lengths and angles, the reader will be able to verify that the lines with the same
point at infinity are tangent in it (notice that each line has two, not one, points
at infinity). That is not what we see in the projective model, for the chords that
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have a common point on the boundary form angles different from zero; therefore,
in this model, one angle is that which we “read” when seeing it (since the only
intuition we have developed is the Euclidean one), and another angle is the one
that comes out from the corresponding formulas.

The reason for calling this model projective is that the group of transforma-
tions permitted in it is the subgroup of PGL(3,�) obtained by fixing the conic
x2 + y2 − z2 = 0. To avoid misunderstandings caused by the term “projective,”
we shall call it the Beltrami model.

The second model is called the model of the hyperboloid, and it is obtained
from the former by placing the disk on the plane z = 1 (we shall call this disk
D1), and projecting from the origin the points P ∈ D1 into points P ′ of the upper
sheet of the two-sheeted hyperboloid (see Figure 4.3)

−x2 − y2 + z2 = 1 .

By cutting the upper sheet of the hyperboloid with a plane through the origin, we
obtain a branch of a hyperbola which is a hyperbolic line of this model.

The reader will agree that we are projecting (from the origin) the lines of the
first model into the hyperboloid; this projection is bijective and, therefore, it is
possible to find many lines M′ in the model of the hyperboloid that pass through
a point Q′ exterior to a line L′ without intersecting it.

M

M′

L

L′

Q

Q′

z = 1

X
Y

Z

Figure 4.3: The model of the hyperboloid of the hyperbolic plane.

The other two models of the hyperbolic plane are due to Henri Poincaré
(1854–1912), and they are the most convenient to develop the hyperbolic intuition
because they are conformal.
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The model of the Poincaré disk , ∆, also consists of a disk without its bound-
ary, but in this case the curves chosen as hyperbolic lines are the arcs of circle
that intersect the boundary orthogonally.

In Figure 4.4 we have drawn several hyperbolic lines with the same point at
infinity; those lines are called hyperbolic parallels, unlike ultraparallels such as L
and M, which are lines that do not intersect at points of the hyperbolic disk or
at points at infinity.

Two hyperbolic parallel lines are tangent at a point at infinity, since all of
them converge to the same point on the boundary, forming an angle of 90◦ with it.
Notice how the pencil of parallels varies: to the right of the diameter that passes
through the point at infinity P∞, the circles are concave to the right, and those
at the left are concave to the left.

The model of the upper half plane, H+, has as points those of the upper half
plane of the Cartesian plane: P (x, y) with y > 0, and the points of the X axis
play the role of points at infinity.

In this model, the hyperbolic lines are the semi-circles perpendicular to the
X axis; among them we include those of infinite radius: the straight lines perpen-
dicular to the X axis. Figure 4.5 is analogous to Figure 4.4.

P∞

L

M

Figure 4.4: Model of the disk of Poincaré, ∆.

The model of the upper half plane has a physical origin that is explained
as follows. When a spoon is submerged into a glass of water, by looking through
the glass it seems that the spoon is bent; that is so because light does not follow
the trajectory of a straight line when passing from one medium (air) to another
(water), but it modifies its trajectory according to the following law.

Law of Refraction (W. Snell, 1621). The product of the sine of the angle of inci-
dence with the coefficient of density of the medium from which the light comes, is
equal to the product of the sine of the angle of refraction times the coefficient of
density of the medium into which it enters (see Figure 4.6, where the angles are
measured with respect to the perpendicular):

d1 sin α = d2 sin β .
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Y

X

P∞

Figure 4.5: The model of the upper half plane of Poincaré, H+.

α

β

α1
d1

d1

d2

d2

α2
α2

α3
d3

Figure 4.6: In a non-homogeneous medium, the trajectory of light does not follow a
straight line.

At the right we have illustrated the trajectory of light when it successively
traverses media whose density increases. The trajectory is not a line, for an essen-
tial property of light is that it travels so that the time elapsed is minimized, not
the distance.

Notice that if the density increases exponentially (say 1 at height 1, 2 at
height 1/2, 22 at height 1/4, and so on), light never reaches the border; that is
why we call those points at infinity or ideal points. The union of all these points is
called the ideal boundary. In the model of the disk, this ideal boundary is a circle
that plays the role of the “horizon”, and it is called “the visual sphere (or circle)”.

We conclude this section by exhibiting bijections among the different models;
since we already have a bijection between the Beltrami model and the model of
the hyperboloid, it suffices to give a bijection between the Beltrami model and
those of Poincaré.
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For that purpose, let us consider the unit sphere S2 of �3, and let us place
the projective model on the disk of the equator (see Figure 4.7 (a)).

Let us project the hyperbolic lines of the Beltrami model perpendicularly into
the upper hemisphere of the sphere; each of the lines determines a plane perpen-
dicular to the plane of the equator and, accordingly, it intersects the sphere in a
circle perpendicular to the disk of the equator. This gives a “model” for hyperbolic
geometry on the upper half sphere.

Now we use the stereographic projection of the sphere onto the plane of the
equator from the point, (0, 0, 1); the circles on the sphere which are perpendicular
to the equator are transformed into circles of the XY plane and remain perpen-
dicular to the equator, for the stereographic projection is conformal as the reader
should have proven in Exercise 9, Section 3.1.

The composition of both projections, first XY on S2 and then the stereo-
graphic projection of S2 on XY , transforms the lines of the projective model into
lines of the model of the Poincaré disk ∆.

In other words, we are doing the following: each line l in the Beltrami model
meets the boundary at two “ideal” points, say a, b. Then the hyperbolic line in the
Poincaré disk model that corresponds to l is the portion contained in the disk of
the unique circle in the XY plane that meets the boundary circle perpendicularly
at the points a, b.

XX

YY

ZZ

LL

L′

L′

(0, 0, 1)(0, 0, 1)

(a) (b)

Figure 4.7: Relation between the different models of the hyperbolic plane.

To get the model of the half plane H+, again we project the Beltrami model
perpendicularly into the upper hemisphere, and then we project stereographically
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S2 on the XZ plane from the point (0, 1, 0) (see Figure 4.7(b)).
The equator gives rise to the X axis, and the upper hemisphere is mapped

into the upper half plane of the XZ plane. Because of the conformality of the
stereographic projection, the semi-circles orthogonal to the equator are projected
into semi-circles perpendicular to the X axis, giving rise to the model of the upper
half plane of Poincaré.

Notice that we have established a bijection between the model of the disk,
∆, and that of the half plane, H+; the reader should prove that it is conformal.

We suggest that the reader solve all the following exercises and pose some
others; that is the only way to develop hyperbolic intuition.

To that respect, it is worthwhile noting that the model of the Poincaré disk
has a very important advantage in contrast to the model of the half plane: it shows
that all the points of the boundary have the same quality.

Instead, in the model of the half plane, the point that is missing in the X axis
to make it a topological circle seems to play a special role; that is false. However,
we shall follow the traditional notation and denote it with the symbol ∞.

Exercises

1. Verify that a parametrization of the tractrix is

α(t) =

„
sin t, cos t + log tan(

t

2
)

«
,

where t measures the angle that the position vector of α(t) forms with
the vertical axis (see Figure 4.1).

2. In the projective model, find two hyperbolic lines which contain the
point (0 : 0 : 1) and which do not intersect the line 2x − z = 0.

3. Determine the hyperbolic line of the model of the hyperboloid, into
which the line of the projective model that passes through the points
(1 : 0 : 1) and (0 : 1 : 1) of D1 is projected.

4. Prove that the bijection established between the two models of Poincaré
is conformal.

5. In the model of the Poincaré disk , ∆, mark four points of the boundary
so that they divide it into congruent arcs (in the Euclidean sense), and
draw the hyperbolic lines that join two consecutive points. Now divide
each arc into two equal parts, and draw the hyperbolic lines that join
the new points with their adjacent points. Repeat the process while it
is possible. The polygons one gets in this way are called ideal, since
their vertices are points at infinity.

6. In the model of the Poincaré disk , ∆, mark eight points, 1, 2, . . . , 8,
in the boundary so that they divide it into congruent arcs, and draw
the lines of the model that join 1 with 3, 2 with 4, and so on. Observe
that these hyperbolic lines determine a regular hyperbolic octagon. By
taking into consideration that the models of Poincaré indeed are confor-
mal, state the measurement of the angles at which any two of the lines
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intersect, and the sum of the interior angles of this regular hyperbolic
octagon.

7. Generalize the method used in the previous exercise to construct regular
hyperbolic polygons with n sides for n > 4.

8. Design a process similar to the previous one to construct a regular
hyperbolic triangle with no vertices at infinity.

9. Observe that in the second step of Exercise 5 you obtained an ideal
octagon whose sum of interior angles is 0◦, while for the ordinary oc-
tagon of Exercise 6 the sum of the interior angles was greater than 2π.
Can you give an argument to justify the existence of regular hyperbolic
octagons whose sum of interior angles is exactly 2π?

10. In the model of the upper half plane, H+, draw several triangles and
in one of them verify that the sum of the interior angles is less than
180◦ (remember that angles are measured in the usual way).

11. In each of the models of Poincaré, draw a hyperbolic line L and, for
each of its two points at infinity, draw several elements of the pencil of
parallels to L.

4.2 Transformations of the hyperbolic plane

Since we have several models of the hyperbolic plane, in each of them we must
give transformations which are not just bijections between the points, but also
bijections between the lines. Let us start with the Beltrami model; we leave the
case of the hyperboloid as an exercise for the reader.

The Beltrami model is called projective precisely because its group of trans-
formations is a subgroup of PGL(3,�).

If we make the equation of the circle that is the boundary of the disk homo-
geneous, we obtain a projective conic C,

x2 + y2 − z2 = 0. (4.1)

Consider the projective transformations T ∈ PGL(3,�) that leave the conic
C invariant (as a set); that is, T (C) = C. These form a subgroup GC (prove it) and
take the interior of the conic into itself because of what follows.

In Section 3.9, we saw that a conic separates P 2(�) into two disjoint parts:
a Möbius strip and a disk. The strip and the disk are not homeomorphic because
in the disk every closed curve can be deformed into a point without leaving the
disk, and in the strip there are curves, such as the central line, which do not have
that property.

Thus, since any T ∈ GC is the projectivization of a non-singular linear trans-
formation, that makes it a homeomorphism; accordingly, T can not interchange
the interior and the exterior of the conic. That is, a projective transformation T
leaving the conic invariant necessarily leaves its interior invariant; hence, T maps
points of the Beltrami model into points of that same set.
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It is also true that hyperbolic lines are transformed into hyperbolic lines,
since a plane through the origin of �3 is transformed by T into another plane
through the origin, and if the plane cuts the interior of the conic, the transformed
plane cuts it as well, according to the previous result.

If we take representatives (x : y : 1), we obtain the disk D1 of Figure 4.3, and
the hyperbolic lines result from cutting D1 with planes of �3 through the origin.

The reader is asked to verify that there always exists an element T ∈ GC
which transforms any point P of the hyperbolic plane into another point Q, both
arbitrarily chosen, and the same happens with two hyperbolic lines.

Furthermore, we can fix a hyperbolic line L and a point L in it, and another
hyperbolic line M and a point M in it, and it will always be possible to find a
transformation T ∈ GC that maps L into M and L into M . That is why it is said
that the group GC is transitive at points and lines (see Exercise 3).

For the model of the hyperboloid, the group of permitted transformations is
the subgroup of GL(3,�) that fixes the sheet of the hyperboloid with z > 0; the
reader should characterize it.

Let us now see the models of Poincaré, where we make a more complete study
of the group of permitted transformations and the associated invariants.

The advantage of having various models for the same geometry is that each
model has certain advantages and gives different insights. So we warn the reader
that we shall use different models without distinction, as it may be convenient.

As usual, we want to consider transformations that leave invariant the set
we are dealing with, and also that they take hyperbolic lines into hyperbolic lines,
that is, Euclidean circles (including straight lines) orthogonal to the boundary into
other circles with the same property.

To begin with, notice that H+ and ∆ can be seen as subsets of �, that is,

H+ = {z = x + iy ∈ �| y > 0}, ∆ = {z ∈ �| |z| < 1}.

Moreover, observe that the transformation Q ∈ PSL(2,�) (the group of
Möbius transformations introduced at the end of section 3.5),

Q(z) =
z − i

−iz + 1
, (4.2)

maps the upper half plane H+ into the disk ∆. Since we have Q explicitly, and its
inverse, we are able to pass easily from either model to the other.

In Section 3.5 we proved that Möbius transformations are compositions of
transformations that respect not only the angles, but also their orientation:

• homothetic map composed with rotation: T (z) = cz, with c ∈ �;

• translations: T (z) = z + b;

• composition of the reflection with respect to the real axis with the inversion
on the unit circle (see Appendix 5.6): T (z) = 1/z.
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Although that suffices to assure that a Möbius transformation necessarily maps a
circle into another circle (admitting as circles those of infinite radius, the Euclidean
lines), we shall prove this last assertion below with a simple computation.

Thus, the subgroup of PSL(2,�) of maps that preserve the unit disk ∆,
i.e., maps T such that T (∆) = ∆, also take “lines” of the Poincaré disk model
into lines of this model, and similarly for the subgroup of PSL(2,�) of maps that
preserve the upper half plane, for in both cases the corresponding lines are circles
orthogonal to the boundary. These transformations preserve the angles and the
orientations. They are also “isometries”, as we shall see.

The transformations of each model that play the role of Euclidean reflections
will be obtained by using a certain transformation, that somehow “reverses the
plane” in question: it reverses the orientation of the angles and leaves the model
invariant in each case.

In the case of ∆, the required transformation is the conjugation, which maps
each complex number into its conjugate:

J : �→ � such that x + iy �→ x − iy.

Geometrically, the conjugate z̄ of z results from reflecting z with respect to
the real axis; that is why the conjugation reverses the orientation of angles.

The conjugation has also an algebraic interpretation: it is an automorphism
of�, that is, an isomorphism of the field � into itself, and it fixes each real number
(see [B-ML]).

In the case of H+, the transformation that reverses the orientation of angles
that we shall add to obtain the inverse isometries will be the reflection with respect
to the imaginary axis: z �→ −z̄ (prove that z and −z̄ are symmetric to one another
with respect to the imaginary axis).

The conjugation also appears in the proof that the elements of PSL(2,�)
preserve “circles”; the reader should interpret the importance of this lemma in
terms of the hyperbolic lines of the models.

Lemma. Any Möbius transformation

f(z) =
az + b

cz + d
,

where a, b, c, d ∈ � and ad−bc = 1, maps circles into circles, considering as circles
those of infinite radius, the Euclidean lines.

Proof. There are several ways for proving this result. One of them is by noticing,
as before, that every Möbius transformation is a composition of simpler transfor-
mations, each of them obviously taking circles into circles. Here we use a different
method: we use that we know how the equations of the straight lines and circles
look to prove the lemma directly.

The equation of a “circle” C in the Cartesian plane is

Ax2 + Ay2 + Dx + Ey + F = 0. (4.3)
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Of course the coefficients are real, and it is clear that A = 0 when we are dealing
with a Euclidean line.

By substituting in equation (4.3) the expressions for x and y as the real part
x and the imaginary part y of z,

x =
z + z̄

2
, y =

z − z̄

2i
, (4.4)

we obtain the equation of C in terms of z and z̄ (make the computations):

Azz̄ +
D − iE

2
z +

D + iE

2
z̄ + F = 0.

This equation has the following properties: the coefficient of zz̄ is a real number;
the coefficient of z and that of z̄ are conjugate; the independent term F is real.
Since the coefficients are elements of �, we shall write the equation of the circle
C as

Azz̄ + Bz + B̄z̄ + C = 0, with A, C ∈ �. (4.5)

To obtain the equation of f(C) we proceed as we have always done: since f has an
inverse f−1 ∈ PSL(2,�), if f(z) = w, then z = f−1(w), and we can substitute z
and z̄ in (4.5) by the expressions that we obtain for f−1. For this, let us recall that
the Möbius transformations can be handled in terms of matrices (the elements of
PSL(2,�)): (

a b
c d

)(
z
1

)
=

(
az + b
cz + d

)
;

thus, as the determinant of the matrix is 1, its inverse (prove that this corresponds
to f−1) is (

d −b
−c a

)
.

Hence,

z = f−1(w) =
dw − b

−cw + a
.

The conjugate of a sum of complex numbers is the sum of the conjugates,
and the analogous property holds for products; therefore, to obtain z̄ it suffices to
conjugate all the terms to the right, that is,

z̄ =
d̄w̄ − b̄

−c̄w̄ + ā
.

The reader should verify that the expression that results from substituting z and
z̄ in (4.5),

A

(
dw − b

−cw + a

) (
d̄w̄ − b̄

−c̄w̄ + ā

)
+ B

(
dw − b

−cw + a

)
+ B̄

(
d̄w̄ − b̄

−c̄w̄ + ā

)
+ C = 0,

has the properties that characterize the equation of a circle when it is written in
terms of w and w̄. �
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Corollary. Four points z1, z2, z3, z4 in the extended complex plane �̂ belong to a
circle if and only if their cross ratio is real.

Proof. The Fundamental Theorem of projective geometry is valid when the coordi-
nates are complex numbers (review the arguments); therefore, there always exists
a transformation T ∈ PGL(2,�) which maps any three points of P 1(�) = �̂,
z1, z2, z3 into three other arbitrary points, w1, w2, w3. If the latter points are on
the real axis, the circle C through z1, z2 and z3 is mapped into the real line and for
any other point z ∈ C, the cross ratio (z1, z2; z3, z) is real because (w1, w2; w3, T (z))
is also. �

To characterize the transformations of PSL(2,�) that leave each model in-
variant, it suffices to require the oriented boundary of the considered set to remain
invariant under the permitted transformations. In fact, by preserving the orienta-
tion of the angles, the region to the left of the boundary, when it is traversed as
shown in Figure 4.8, is again mapped into the region to the left.

It is now clear that in either case, the transformations of PSL(2,�) that
leave each model invariant are a subgroup of PSL(2,�). Let us determine what
these subgroups are.

X

YIm

�

+90o

+90o

+90o

Figure 4.8: By respecting the boundary, a Möbius transformation maps the region to the
left into itself.

We denote by G+
H+ the subgroup of PSL(2,�) that leaves the upper half

plane invariant, and by G+
∆ the corresponding group for ∆. Let us determine G+

H+

first.
If f ∈ PSL(2,�) is such that f(z) ∈ H+ for every z ∈ H+, then one also

has that f maps the boundary � into the boundary, by continuity.
It is immediate to verify that when all the coefficients of f are real numbers,

we have f(�) ⊂ �, and since f preserves the orientation of �, the upper half
plane is mapped into the upper half plane.

We shall prove that the condition for the coefficients to be real is also neces-
sary.
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Let us then look for the subgroup of the transformations f ∈ PSL(2,�)
which map the real line into itself. By evaluating f(z) at z = 0 we obtain

f(0) =
b

d
∈ �;

and we can write b = λd, with λ ∈ �.
Since ∞ belongs to every line through the origin in �̂, it must also hold that

evaluating f(z) at ∞ we obtain a real number, that is,

f(∞) = lim
z→∞

(
az + b

cz + d

)
=

a

c
∈ �,

if c 	= 0 (what happens if c = 0?); accordingly, a = µc, with µ ∈ �. By evaluating
f(z) first at z = 1 and then at z = −1, the corresponding results are

f(1) =
a + b

c + d
∈ �, f(−1) =

−a + b

−c + d
∈ �.

We leave as an exercise for the reader to prove that these relations imply
that the coefficients a, b, c are real multiples of d; it is then possible to divide the
numerator and the denominator of f(z) by d to obtain an expression where all the
coefficients are real numbers. Moreover, if we further divide each coefficient by the
square root of the determinant, we can have a′d′ − b′c′ = 1,

f(z) =
a′z + b′

c′z + d′
,

and the transformation is unchanged. All this can be stated as the following the-
orem.

Theorem. A Möbius transformation f(z) leaves the upper half plane H+ invariant
if and only if it can be represented in the form

f(z) =
az + b

cz + d
,

with a, b, c, d real numbers such that ad − bc = 1. The group formed by these
transformations is denoted as PSL(2,�).

By adding the reflection with respect to the imaginary axis, we obtain the
complete group of transformations of the upper half plane, GH+ , whose associated
geometry we shall study.

It can be proven that GH+ contains any transformation that preserves angles
(not necessarily their orientation) and leaves the upper half plane fixed, although
we shall not do it in this book (see [Be]).
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Then, the group of transformations that preserve angles and leave the upper
half plane fixed, GH+ , consists of the transformations f : � → � of any of the
following two forms:

f(z) =
az + b

cz + d
or f(z) =

a(−z̄) + b

c(−z̄) + d
,

where a, b, c, d ∈ � and ad − bc = 1.

We can do something similar to determine the subgroup G∆ that leaves the
disk ∆ invariant: characterize the elements of the subgroup of PGL(2,�) that
leave S1 fixed, the boundary of the unit disk, and add the reflection with respect
to the real axis.

However, it is easier to observe that it suffices to use the transformation Q
in (4.2) and its inverse Q−1 to obtain, from the elements f ∈ GH+ , the elements
h ∈ G∆:

h = QfQ−1 : ∆ → ∆. (4.6)

It is an exercise for the reader to verify that QfQ−1 actually has as domain and
co-domain ∆, and also to become convinced that each element h ∈ G∆ can be
expressed in this way, uniquely.

Then it is very easy to characterize the elements of G∆, since by multiplying
the matrix of an element f ∈ GH+ by the matrix of Q and that of Q−1 following
the order indicated by (4.6), the result is a matrix with complex entries where the
elements of the diagonals are conjugate to one another.

We have then a theorem analogous to the previous one.

Theorem. A Möbius transformation f(z) leaves the unit disk ∆ invariant if and
only if it has the form

f(z) =
az + b

b̄ + ā
, where |a|2 − |b|2 = 1.

These transformations form a group.

Therefore, in the case of the hyperbolic disk, the group whose geometry we
shall study, G∆, has elements of the form

h(z) =
az + b

b̄z + ā
or h(z) =

az̄ + b

b̄z̄ + ā
,

where |a|2 − |b|2 = 1.

Exercises

1. Prove that the set of transformations T ∈ PGL(3,�) that leave the
conic (4.1) fixed is a group GC .
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2. Find a transformation T ∈ GC such that it maps the line y = 0 and
the point (5 : 0 : 1) into the line x − y = 0 and the point (0 : 0 : 1).
Solve this exercise in general.

3. Prove that if we arbitrarily choose a pair of lines L and M of the
projective model, and fix a point on each, L and M respectively, it is
possible to find T ∈ GC such that it maps L and L into M and M .
How many possible T ’s are there?

4. Determine the subgroup of GL(3,�) that leaves the model of the hy-
perboloid invariant.

5. Prove that the map z �→ z̄ from � into � is an isomorphism of the field
� into itself that leaves � fixed point-wise.

6. Find the elements of PSL(2,�) that correspond to each of the following
transformations:
f1(z) = z + 1; f2(z) = 2z; f3(z) = (cos θ + i sin θ)z; f4(z) = 1/z.

7. Prove that the subgroup G∆ that leaves the Poincaré disk invariant
can be obtained from the subgroup GH+ by using the relation given
by equation (4.6).

4.3 Steiner network

In this section we study essential properties of Möbius transformations which are
very useful for studying the groups GH+ and G∆.

Let us start by observing that any Möbius transformation has two fixed
points, α and β, which may be the same. That follows from the fact that when
posing

az + b

cz + d
= z,

we determine a second-degree equation,

cz2 + (d − a)z − b = 0. (4.7)

The Fundamental Theorem of Algebra asserts that both roots belong to �, and
to obtain them we apply the usual formula.

The geometric consequences of this algebraic fact are very interesting.
Let us first explore the case when α 	= β; from the lemma in Section 4.2, it

is immediate that any circle in the extended complex plane �̂ through α and β is
transformed under f into another circle passing through those points.

Let us call F1 the family of all the circles through α and β; according to
what was stated above, F1 is invariant under f , that is, f (F1) = F1.

What is remarkable in this situation is that there is another family F2 which
is invariant under f and whose elements intersect orthogonally with those of F1.

To visualize this second family, we assume that α = 0 and β = ∞ (the
transformation h(z) = z−α

z−β shows that there is no loss of generality) and we
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identify these points with those corresponding to the north and south poles of the
Riemann sphere (see Figure 4.9).

In the sphere, each element of the family F1 is formed by two meridians
making an angle π; the elements of the family F2 are the parallels. It is clear that
through each point P of the sphere, different from 0 and ∞, passes one and only
one element of each family, and that the angle formed at P by these circles is a
right angle.

To the right in Figure 4.9 there appears the result of stereographically pro-
jecting both families from (0,−1, 0) on a plane through the north and south poles,
denoted as N and S both in the sphere and in the plane.
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Figure 4.9: Any f ∈ PSL(2,�) determines in b� two invariant families of circles whose
elements intersect orthogonally.

Since the stereographic projection is conformal, the elements of each fam-
ily that intersect at a certain point of the plane different from N and S, do so
orthogonally.

The reader familiar with this concept will suspect that the family F2 corre-
sponds to the circles of Apollonius with limit points α = N and β = S, which
we prove in Appendix 5.6. The set of these two families of circles forms a circular
network on the plane called a Steiner network.

In Appendix 5.6 we prove other properties of the Steiner network related
with inversion.

When α = β the result is a degenerated Steiner network; we invite the reader
to draw it as a limit case of the previous one.

Now we want to study the effect of f on the families F1 and F2. This is simple
when we take the model of the upper half plane; for the sake of simplicity we re-
strict ourselves to those transformations that preserve orientation, f ∈ PSL(2,�).
Thus, equation (4.7) has real coefficients and the study can be carried out using
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the fixed points of f , α and β, which are the roots of (4.7).

(a) The roots α and β are distinct real numbers; the transformation is called
hyperbolic because it leaves two points at infinity fixed. Notice that the
transformation h(z) = z−α

z−β maps α, β ∈ � into 0 and ∞ respectively. This
allows us to take f into a standard form, where the fixed points are 0 and
∞. In this case b and c must be both zero, so f is necessarily of the form

f(z) = kz, with k > 0 , (4.8)

where k = a/d. This is called the standard (or canonical) form of a hyperbolic
Möbius transformation. We ask the reader to verify that for each k > 0 there
exists a matrix in PSL(2,�) giving rise to such a transformation.

(b) The roots α and β coincide, and therefore they must be real. In this case the
transformation is called parabolic because it leaves only one point at infinity
fixed. The standard form of f ∈ GH+ parabolic is obtained when the only
fixed point is ∞. In this case the form of f is

f(z) = z + 1 (4.9)

because, as before, ∞ being a fixed point implies that c = 0, and the fact that
it is the only fixed point implies that the discriminant of equation (4.7) is zero;
in consequence, (a+d)2 = 4. Since additionally ad = 1, the previous equation
becomes (1/d) + d = ±2, which implies d = ±1, and by projectivizing the
resulting matrix we obtain f(z) = z + k, with k ∈ �; to make the study, we
take k = 1.

(c) The roots α and β are complex conjugate numbers; the transformation is
called elliptic because it does not leave points at infinity fixed. In this case
the standard form of f ∈ GH+ is obtained by taking the fixed points to be i
and −i. One gets:

f(z) =
az + b

−bz + a
. (4.10)

Concerning the hyperbolic plane we conclude that the three possibilities are:
(a) one has two fixed points in the ideal boundary, and the transformation is
hyperbolic; (b) there is only one fixed point and it is in the ideal boundary, and
the transformation is parabolic; or (c) there is one fixed point in the interior of
the hyperbolic plane, and the transformation is elliptic.

We can also obtain interesting conclusions about the way these three types
of transformations move the points of the hyperbolic plane (in either model), and
their geometry around each fixed point

In case (a), the transformation f ∈ PSL(2,�) leaves two points of the bound-
ary fixed. Hence the hyperbolic line L through them also remain fixed (as a set);
the other elements of the family F1 also remains fixed as sets, though they are
not hyperbolic lines anymore; the points in them, other than the two fixed points,
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move along these curves, getting further and further away from one of the fixed
points, and getting closer and closer to the other fixed point. That is why one of
the fixed points is said to be an attractor, meaning that f(P ) is closer than P
to the fixed point, while the other fixed point is a repelling point, for the points
recede from it under f (see Appendix 5.6).

The elements of the family F2 are all hyperbolic lines; they are transformed
one into another by f ; by continuity, if one of these lines (perpendicular to the
previous lines) is moved in one direction (toward the right or the left), all the other
lines move in that same direction (see Figure 4.10 (a)).

In case (b), f leaves only one point of the boundary fixed (α = β). The family
F1 consists of Euclidean circles tangent to one another (and tangent to the real
axis) at the fixed point; they are not hyperbolic lines and in hyperbolic geometry
they are called horocycles. As we will see, they turn out to be curves equidistant
to one another under the hyperbolic metric, that we define below, and each is
invariant (as a set) under f . The points in the plane move along these lines. The
latter is obvious if we consider the standard form f(z) = z + 1, whose fixed point
is ∞ and where the horocycles are Euclidean lines parallel to the real axis. The
family F2 does consist of hyperbolic lines, all of them tangent at α, and therefore
they form a pencil of parallels. As in the previous case, if f moves them in one
direction, for example to the left, the others will also move in that same direction
(see Figure 4.10 (b)).

Finally, in case (c), since � is mapped into itself, the other elements of
the family F2 (which are not hyperbolic lines) also remain invariant (as a set),
while those of the family F1 (which are hyperbolic lines) are transformed one into
another, giving the impression of turning around the fixed point (see Figure 4.10
(c)). Observe that the matrix of the standard form is a matrix of a rotation.

Here it is worthwhile emphasizing an algebraic fact.

Remark. The transformations f ∈ PSL(2,�) can be classified according to the
square of their trace, a+d, because the sign of the discriminant of (4.7) determines
the number of real roots. However, if we compute the discriminant and recall that
ad − bc = 1, it is easy to prove the following (see Exercise 2):

• f ∈ PSL(2,�) is hyperbolic if and only if (a + d)2 > 4;

• f ∈ PSL(2,�) is parabolic if and only if (a + d)2 = 4:

• f ∈ PSL(2,�) is elliptic if and only if (a + d)2 < 4.

The reader should make the drawings analogous to those of Figure 4.10 for the
model ∆. For this topic, the classic reference is [Be].

Exercises

1. Analyze how the Steiner network is transformed under Q−1, and make
the drawings corresponding to Figure 4.10 in the case of ∆.
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α = f(α)

α = f(α) β = f(β)
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Figure 4.10: Each f ∈ GH+ defines a Steiner network.

2. Prove the assertion made in the final Remark.

4.4 The hyperbolic metric

We have already seen that in order to find models for hyperbolic plane geometry,
we take certain surfaces, either in the plane or in �3, and then modify the concept
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of “straight lines” (or geodesics, properly speaking). This corresponds to changing
the way of measuring lengths of curves and leads to a different metric on these
surfaces, the hyperbolic metric. The geodesics, or simply hyperbolic lines, are the
curves that measure the hyperbolic distance between any two of its points; these
are the curves of shortest length between any two points in the hyperbolic plane.

A consequence of Hilbert’s result, mentioned in Section 4.1, is that to obtain
the hyperbolic plane as a subset of some Euclidean space �n, with the metric
induced by the usual scalar product, it is necessary that n ≥ 4. Exercise 6 of this
section will help to convince the reader that the hyperbolic plane “does not fit”
in �3 if we want its metric to be induced from that in the ambient space.

The physical motivation for the model of the upper half plane posed that
when the medium becomes denser as we approach the boundary, light, whose
speed is constant, must modify its trajectory to keep on traveling at the same
speed. If the density tends to infinite as we approach the boundary, light will
never reach the border. This is what happens in the hyperbolic plane, and that is
why the length of the geodesics is infinite.

A natural way to make the ambient space denser as we approach the bound-
ary consists in modifying the Euclidean scalar product (which is basic to measure
distances and angles) so that the norms are increased as we approach the bound-
ary. The effect is that as we get close to the boundary, a step that may look small
to the “Euclidean eyes”, becomes large when we see it with “hyperbolic eyes”.

Definition. The hyperbolic scalar product of two vectors in the upper half plane,
ū and v̄, with the initial point based at z = x + iy, is given by

ū ·H v̄ =
ū ·E v̄

y2
,

where ·E denotes the usual scalar product of the Euclidean plane (see Figure 4.11).

Notice that this hyperbolic scalar product inherits from the usual scalar
product the properties needed for a scalar product:

• Its value is a real number for any two vectors ū and v̄ with initial point based
at the same point; it is not negative when ū = v̄ and, in this case, becomes
zero only if ū = 0̄.

• It is distributive on addition of vectors, and it takes out scalars of each factor
(some form of associative law); that is, it is bilinear.

• Its value does not depend on the order of the factors (obviously a commuta-
tive law); that is, it is symmetric.

Once the scalar product ·H is defined, we can define the hyperbolic norm of
a vector v̄ with initial point at certain point P0(x0, y0) of the upper half plane:

||v̄||H = (v̄ ·H v̄)1/2.
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Figure 4.11: The hyperbolic scalar product in H+ depends on the height where the initial
points of the vectors fall.

With that it is possible to measure the hyperbolic length of a curve in H+ analo-
gously to the usual way: if α : [a, b] → H+ is a differentiable curve, its hyperbolic
length is

lH(α) =
∫ b

a

||α′(t)||Hdt.

Notice that the way of computing the norm varies with the point α(t) which is the
initial point of the tangent vector; however, if the curve is smooth, the variation
is continuous and that gives the integral meaning.

Given two points P1, P2 ∈ H+, the hyperbolic distance of P1 to P2 is the
infimum of the lengths of the curves in H+ joining these two points.

Hence, we have a new way of measuring in the upper half plane, called a
hyperbolic metric. The metrics obtained from scalar products that vary smoothly
with the initial point of the vectors are called Riemannian metrics, and they play
a central role in differential geometry.

To get an insight into what this metric does, imagine there is a person A
that belongs to the hyperbolic plane and moves around; of course its “hyperbolic
size” is constant. However, if we belong to the Euclidean world and we look at
him from the outside, we see him in his true size only when he is standing near
the hight y = 1 in H+ (since at these points the hyperbolic and the Euclidean
metrics coincide). As he walks down towards the real axis, he looks smaller and
smaller to us, becoming just like an ant as he approaches the border. Conversely,
he looks like a giant to us as he moves up, getting further away from the x-axis.

Our main purposes for giving this definition of scalar product is to define
a metric for which the hyperbolic lines, as defined before, minimize the distance
between two of its points, and they have infinite length.

Let us now prove the second statement in the special case of the positive
Y semiaxis; then we will prove that by transforming this line into any other hy-
perbolic line using an element in f ∈ GH+ , the hyperbolic norm of the tangent
vectors does not change. That means that f is an isometry, and that any line has
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infinite length.
The hyperbolic line corresponding to the positive Y semiaxis has a very

simple parametrization:
(x(t), y(t)) = (0, t),

where t ∈ (0,∞). To prove that it has infinite length is enough to prove that the
length of the half line corresponding to (0, 1] is infinite. Recall that the way of
computing the length of a curve is analogous to the usual one, except that the
norm of the tangent vector is the hyperbolic norm:∫ 1

0

||(x′(t), y′(t))||H dt = lim
a→0

∫ 1

a

||(0, 1)||H dt

= lim
a→0

∫ 1

a

1
t

dt

= lim
a→0

ln (t)|1a = lim
a→0

(0 − ln (a)) = +∞. (4.11)

Accordingly, the length of this half hyperbolic line (which is a segment of Euclidean
length equal to 1) is infinite.

Let us map the positive part of the Y axis into any hyperbolic line; it will
suffice to consider the case of the semi-circle with center at the origin and of radius
1, additionally requiring i to be transformed into itself and the orientation to be
preserved.

Thus, f ∈ GH+ must satisfy

f(0) = −1; f(∞) = 1; f(i) = i. (4.12)

The elements of GH+ that preserve the orientation have the form

f(z) =
az + b

cz + d
,

with a, b, c, d ∈ �, and by (4.9) we have that

b

d
= −1;

a

c
= 1;

ai + b

ci + d
= i.

Hence,

b = −d; a = c; ai + b = di − c, which implies a = d, b = −c.

Therefore, the expression for f(z) is

f(z) =
dz − d

dz + d
=

z − 1
z + 1

.

The points of the positive part of the Y axis have the form z = it; thus, by applying
f to them we obtain

f(it) =
it − 1
it + 1

=
(it − 1)(−it + 1)
(it + 1)(−it + 1)

=
−1 + t2 + 2ti

1 + t2
.
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That is, the points f(it) on the semi-circle have the parametrization

(x(t), y(t)) =
(
−1 + t2

1 + t2
,

2t

1 + t2

)
,

and the tangent vector is, after simplifying,

(x′(t), y′(t)) =
(

4t

(1 + t2)2
,
2(1 − t2)
(1 + t2)2

)
.

If the reader computes the hyperbolic norm of (x′(t), y′(t)), he or she will
find out that it is 1/t, the same as that for the vector tangent to the positive Y
semiaxis at the point it. We also leave to the reader the proof of the validity of
the result for any other hyperbolic line, that is, when the circle has its center at
any point of the X axis and its radius is arbitrary.

With that, the reader will have proven that the length of any segment remains
invariant under any f ∈ GH+ , and we can state this result as follows.

Theorem 1. The elements of GH+ are isometries of H+ with respect to the hyper-
bolic metric.

Also from the first computation another fundamental result is immediate:

Theorem 2. Hyperbolic lines are curves that minimize the hyperbolic distance be-
tween two of its points. That is, they are geodesics.

Proof. By Theorem 1, it suffices to consider the case of the hyperbolic line given by
the imaginary semiaxis; any curve (x(t), y(t)) joining the points Ai and Bi of the
imaginary axis has hyperbolic length greater than or equal to that corresponding
to the segment from Ai to Bi, which is L(B/A). To verify it, we consider the case
of a curve without self-intersections with t ∈ [a, b], and we recall that y(t) > 0:∫ b

a

||(x′(t), y′(t))||H dt ≥
∫ b

a

||(0, y′(t))||H dt

=
∫ b

a

∣∣∣∣y′(t)
y(t)

∣∣∣∣ dt

= ln (y(t))|ba = ln (B) − ln (A) = ln (B/A).
�

Now the results come one after another as in a cascade, as the following.

Proposition 1. Two horocycles with the same point at infinity are equidistant
curves. That is, if from one point of one of the horocycles we draw a perpen-
dicular to the other, the length of the segment of perpendicular is independent of
the point.
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Figure 4.12: The horocycles with the point at infinity in common are equidistant curves.

Proof. A transformation f ∈ GH+ that maps the fixed point to ∞ transforms any
of the horocycles into a circle of infinite radius, that is, a Euclidean line. In addi-
tion, since all horocycles intersect orthogonally the hyperbolic line perpendicular
to the X axis at the point of tangency, by transforming them into Euclidean lines
these turn out to be horizontal (see Figure 4.12). Thus, the hyperbolic distance
between two of them is constant, as was stated. �
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Figure 4.13: L and M are not equidistant curves, but M and E are.

Notice that two parallel hyperbolic lines, that is, with a point at infinity in
common, are not equidistant curves, for the hyperbolic distance between them
(the length of the segment of the perpendicular from P ∈ L to M) increases as
the point P recedes from the point at infinity.

In Figure 4.13 we illustrate the case when one of the hyperbolic lines is a
parallel M to the imaginary axis: the distance from L to the line M increases
as much as desired as P approaches the other point at infinity of L; instead, any
Euclidean half line E through H indeed is a curve equidistant from M. The reader
can prove it by noticing that all the arcs from Qi to M are homothetic.

We have not yet analyzed what a hyperbolic circle looks like; the concept
makes sense since, by fixing a point C, in any direction from it we can draw a
hyperbolic line and measure on it any distance r fixed in advance (see Figure
4.14).

We leave as an exercise for the reader to prove the following proposition.
Figure 4.14 suggest how to proceed.
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Figure 4.14: Hyperbolic circles are Euclidean circles, but the centers are different.

Proposition 2. Hyperbolic circles are Euclidean circles, although the hyperbolic cen-
ter is shifted toward the boundary.

Now we can prove a theorem that perhaps the reader already expected.

Theorem 3. The only isometries of H+ into itself that preserve orientation are the
elements of PSL(2,�).

Proof. Theorem 1, which was proven in this section, implies that the elements of
PSL(2,�) are isometries of H+. Therefore, to prove Theorem 3 we only need to
prove the implication in the other direction, that is, that these are all the isometries
that preserve orientation.

As in the Euclidean and the elliptic cases, an isometry is a bijection T :
H+ → H+ which preserves the distance between points. Therefore, if a curve C is
a geodesic, T (C) is a geodesic as well. The argument used in the Euclidean case
to verify that two congruent triangles determine a unique isometry T is also valid
in this case, for if P, Q, R and P ′, Q′, R′, are the vertices of the two congruent
triangles, any S ∈ H+ determines with P and Q a triangle.

An isometry T that maps ∆PQR into ∆P ′Q′R′, also maps ∆PQS into
∆P ′Q′S′, and for S′ there are only two possibilities, which are the points of in-
tersection of the hyperbolic circles with center at each of the vertices P ′ and
Q′ and radii dH(P, S) and dH(Q, S), respectively. The choice will depend on
whether DPQR into DP ′Q′R′ are equally oriented or not. If T respects the ori-
entation, it necessarily coincides with the only element f ∈ PSL(2,�) such that
(P, Q; R, S) = (P ′, Q′; R′, f(S)). Otherwise, we must compose f with the reflection
on the imaginary axis to obtain T . �

This section concludes by stating what is the metric in the case of the disk
and expressing the hyperbolic distance in terms of the cross ratio.

We had stated that by giving a metric for one of the models, we would be
able to define the metric for another model using a bijection between both models.
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By using the bijection established by (4.2),

Q(z) =
z − i

−iz + 1
;

it is possible to prove that the scalar product for the model of the disk is given by
the formula

ū ·∆ v̄ =
4ū ·E v̄

(1 − r2)2
, (4.13)

where r is the distance from the point of origin of the vectors to the center of the
disk (see Figure 4.15).

r

p ū

v̄

Figure 4.15: How to measure in the model of the disk of Poincaré.

The hyperbolic distance from the center of ∆ to any point of the boundary
is infinite, for we already proved that the distance from i (which is mapped into 0
by Q) to any point of the edge of the half plane is infinite.

Moreover, since 1 and −1 remain fixed, the hyperbolic line of H+ that con-
tains i, 1 and −1 is transformed into the hyperbolic line of ∆ through 0, 1 and
−1: the horizontal diameter. The remaining hyperbolic lines through i in H+, give
rise to the other diameters, all of them hyperbolic lines of ∆.

Let us now express the distance between two points z and w in terms of the
cross ratio (z∗, w∗; z, w), where z∗ and w∗ are the points at infinity of the unique
hyperbolic line L determined by z and w (see Figure 4.16).

Let us consider the transformation T ∈ PSL(2,�) that maps L into the
imaginary axis so that z∗ is transformed into 0; the other point at infinity is
transformed into ∞ and the points z and w have images of the form iy1 and iy2.

The reader will have no trouble in justifying each of the following equalities:

dH(T (z), T (w)) = ln
(

T (z)
T (w)

)
= ln (0,∞; iy1, iy2)
= ln (z∗, w∗; z, w)). (4.14)
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z∗ w∗

z

w

Figure 4.16: The distance from z to w is given by (z∗, w∗; z, w).

Since the transformation Q : H+ → ∆ is a projectivity and, therefore, leaves
the cross ratio invariant, the previous formula is also valid for points in ∆.

Exercises

1. Prove that the Euclidean half line E of Figure 4.13 is a curve equidistant
from the hyperbolic line M.

2. Prove that two Euclidean rays with origin at the same point at infinity
of H+ are equidistant curves with the hyperbolic metric.

3. Is the Euclidean translation z �→ z + b, being b ∈ �, a translation on
the hyperbolic plane? Justify your answer.

4. Prove Proposition 2. (Suggestion: Locate two points A and B of the
imaginary axis at the same hyperbolic distance r from i, and determine
the Euclidean circle C of diameter AB. Given any hyperbolic line L
through i, compute the hyperbolic length of the segment from i to L.)

5. Justify formula (4.13).

6. Prove that there exist regular hyperbolic polygons of n sides with all
their angles being right angles if n > 4.

7. Construct several regular Euclidean hexagons, all of them congruent,
and by cutting along one radius, add to each a triangle congruent to the
six triangles that form the hexagon. Now join the hexagons to another
one along one of its sides; if the number of hexagons modified is large,
it is not easy to handle the object, in spite of having negative curvature
only at the centers of the “hexagons”. This illustrates the impossibility
of the hyperbolic plane fitting in �3 with the induced metric.

8. Prove, from (4.14), that dH satisfies the triangle inequality.
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4.5 First results in hyperbolic geometry

In this section we study several results obtained by the early scholars of hyperbolic
geometry. This give us a taste of richness of this topic, which can be studied with
many techniques. Some of the results we describe here contrast with what happens
in the other geometries we have studied.

We do not present the original proofs, which can be found in [Bo] and [W];
a brief account of their historical development can be found in [R-S]. We use both
of the Poincaré models without distinction.

1o. (Girolamo Saccheri (1667–1733)). The sum of the angles of a hyperbolic triangle
is less than 180◦.

Proof. We use an isometry to map the vertex A to the center of the disk, and thus
two sides are radii, while the other two vertices determine the side BC, which
belongs to an arc perpendicular to the edge of the disk (see Figure 4.17). The
hyperbolic angles β and γ are smaller than the respective Euclidean angles β′ and
γ′. Hence,

180◦ = α + β′ + γ′ > α + β + γ . �

B

A

Cα

β

γ

β′

γ′

Figure 4.17: In a hyperbolic triangle, α + β + γ < 180◦.

It is interesting to compare the following result with the equivalent statement
for triangles in spherical (or elliptic) geometry, explained in Chapter 3 and recalled
below.

2o. (Johann Heinrich Lambert (1728–1777)). The area of a hyperbolic triangle is
equal to π minus the sum of the interior angles of the triangle.
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Actually, the original statement by Lambert refers to a hyperbolic polygon:
“The difference of the sum of the interior angles of a Euclidean polygon minus
the sum of the interior angles of a hyperbolic polygon with the same vertices is
proportional to the (hyperbolic) area of the polygon”.

Proof. In the case of an elliptic triangle, the computation of its area gave as result

area of the triangle = α + β + γ − π;

in this case, the computation of the area of a triangle gives us the same type of
information, although the arguments we use are entirely different.

Let us start by clarifying how to measure hyperbolic areas. It suffices to
consider that, if the way of measuring the hyperbolic length of a vector tangent
at the point z = x+ iy ∈ H+ varies with respect to the Euclidean length inversely
to the imaginary part y, then the hyperbolic element of area varies with respect
to that of the Euclidean inversely to y2.

Since any f ∈ GH+ is a hyperbolic isometry, the area does not vary if we
map the side AB of the triangle so that it coincides with the line corresponding
to the semi-circle |z| = 1 (see Figure 4.18).

Let us make the computation in the case of the ideal triangle AB∞ (notice
that the height is infinite), for any triangle can be obtained as the difference of
two triangles with the same ideal vertex (Exercise 1).

α

α

α′ β

β

γ

A

B

C
Im

�

Figure 4.18: Area (∆ABC) = π − (α + β + γ).

It is clear that x varies from cos(π − α) to cosβ, and that given x, the
imaginary part y varies from

√
(1 − x2) to ∞. Therefore, the area of the hyperbolic

triangle ∆AB∞ is

area ∆AB∞ =
∫ cos β

cos(π−α)

(∫ ∞
√

(1−x2)

dy

y2

)
dx = π − (α + β).

The reader can apply this result to the triangles ∆BC∞ and ∆CA∞ to
obtain the statement that

area (∆ABC) = 180◦ − (α + β + γ). �
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Notice that, according to the previous computation, in hyperbolic geometry
it is possible to have a triangle of infinite height and finite area.

In the case of a hyperbolic quadrilateral P , with angles α, β, γ, δ, Lambert’s
result states that

area P = 2π − (α + β + γ + δ).

The following result, due to Gauss, characterizes the circles in a way that is
valid for hyperbolic circles and for Euclidean circles as well.

For that, Gauss defined when a point A of the hyperbolic plane is a point
corresponding to a fixed point D with respect to a pencil of hyperbolic lines with
vertex O. The condition is that the hyperbolic triangle OAD is isosceles, which
Gauss expressed by saying that OA and OD must form equal angles on the same
side of AD (see Figure 4.19).

3o. (Carl Friedrich Gauss (1777–1855)). A circle is the locus of the points in the
lines of a pencil corresponding to a fixed point D.

A′′

A′

D
A

O

Figure 4.19: Points corresponding to D in straight lines through O.

Proof. In this case, we take the model of the disk and, by means of an isometry,
we locate the vertex of the pencil at the center O of the disk. For an arbitrary
fixed point D ∈ ∆, the point corresponding to D in one of the lines of the pencil
is the point A such that OAD is an isosceles triangle; for that reason not just
the angles have the same amplitude, but also all the segments OA have the same
length, dH(O, D) (see Figure 4.19). �

The following result should not surprise us after the remark made in the
proof of 1o, but it has the merit of defining a number associated to hyperbolic
geometry.

4o. (Ferdinand Karl Schweikart (1780–1859)). The height of a rectangle and isosce-
les triangle increases as the sides increase but without exceeding a certain length,
called the constant.
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P1 P2

V

L

A1

A2

B1

B2

Figure 4.20: The height of AiV Bi cannot exceed dH(V,L).

Proof. In the model of the disk, we locate the right angle at the center of the disk
by means of an isometry; in Figure 4.20 we show that the height cannot exceed
the distance from the center of the disk to the line L through P1 and P2, where
these are the points at infinity of the rays to which the congruent sides belong.

The reader must make the computation of such a constant. �
The fundamental property of hyperbolic geometry is the fact that through a

point P not on a line L, there exists more than one line which does not intersect
L, and we define as parallels only the lines sharing a point at infinity with L; the
remaining lines are called ultraparallels. The following result states how the angle
formed by the parallels depends on the distance from P to L.

5o. (Janos Bolyai, (1802–1860)). The angle 2α formed by the two parallels to a
line L through a point P not on L depends only on the distance from the point to
the line (the angle of parallelism).

Proof. If we use the model of the disk, by applying an isometry to the point P and
the line L so that it maps the point P into the center of the disk, it turns out that
the angle 2α between the parallels to L is the angle between the radii determined
by the points at infinity P1 and P2 of L (see Figure 4.21).

It is easy to see that the distance a from P to L increases as the arc P1P2

closes; actually, the relation between 2α and a is

cosh a sinα = 1. (4.15)

The proof of this formula can be found in [Be], as well as several other results in
hyperbolic trigonometry. �

The last result we mention in this section shows how the model of the up-
per half plane can be extended to higher dimensions, and it has the feature of



4.5. First results in hyperbolic geometry 181

P2

P1

P2

P1

P

L

2α

a

Figure 4.21: The angle of parallelism depends on a.

emphasizing the fact that in the hyperbolic space there are subsets (of smaller
dimension), for which Euclidean geometry is valid.

We can take as a model for the 3-dimensional hyperbolic space the upper
half space H+ = {(x, y, z)| z > 0} in �3, equipped with the scalar product defined
similarly as for the plane: we modify the usual one dividing it by z2, the square
of the height above the XY plane (see Figure 4.22). The hyperbolic metric is
then defined exactly as before. Analogously to the horocycles, a horosphere in
the 3-dimensional hyperbolic space is a 2-plane contained in the upper half space,
tangent to the plane of the points at infinity (see Figure 4.22). When adding to it
the “point at infinity”, this becomes a 2-sphere. This picture is clearer in the disk
model for the 3-dimensional hyperbolic space ∆, where the horospheres are actual
Euclidean spheres embedded in ∆ so that they are tangent to the boundary of ∆
at one point. Of course these concepts obviously extend to higher dimensions: in
the n-dimensional hyperbolic space �n one has horocycles and horospheres of all
dimensions up to n − 1.

6o. (Nikolai Ivanovitch Lobachevsky, (1793–1856)). Euclidean geometry is valid in
a sphere of infinite radius (i.e., a horosphere).

Proof. We restrict to �3 for simplicity. The points of the XY plane are points at
infinity and the geodesics are semi-circles perpendicular to the XY plane with its
center at it, plus the half lines perpendicular to the XY plane, all of which have
a common point at infinity that must be added to those of the XY plane. �

As stated in the result by Lobachevsky, in the planes parallel to the XY plane
(horospheres that have this last point at infinity in common), where z is constant,
the scalar product of vectors tangent to that plane differs from the Euclidean scalar
product only in one constant: 1/z2. It is just like having the usual Euclidean space,
but all distances are divided by this constant.
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X
Y

Z

z = ct. horosphere

Figure 4.22: Model of the upper half space for the 3-dimensional hyperbolic space.

That is why in a horosphere the Euclidean geometry is valid.
It is worthwhile mentioning that, just as both Poincaré models, the Beltrami

model generalizes easily to higher dimensions (see [Ve]). The model of the hy-
perboloid also generalizes to dimensions greater than 2 and is the most adequate
model for constructing subgroups of isometries of the hyperbolic space Hn, with
properties similar to those for the case n = 2 that we describe in the following
sections .

To conclude this first approach to hyperbolic geometry, in the following sec-
tion we show how to construct new objects whose geometry is hyperbolic, and in
the last section of this chapter we deal with the problem of covering the hyperbolic
plane with congruent tiles.

Exercises

1. Prove that any triangle in H+ whose vertices are hyperbolic points can
be obtained from triangles with an ideal vertex.

2. Compute the constant defined in [4].

3. Prove that two lines are ultraparallel if and only if they have a common
perpendicular.

4. Obtain and justify a formula for the area of a hyperbolic polygon of n
sides.

5. Prove that if n ≥ 3, there exist regular polygons whose angles satisfy
0 < α < (n − 2)π/n.

6. Justify calling an elliptic transformation a rotation.

7. In 4o, prove that the hyperbolic line AD forms with OA and OD equal
angles if and only if the center of the Euclidean circle that contains it
belongs to the linear bisector of the angle AOD.
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8. Compute the quotient of the hyperbolic area of a disk and the hyper-
bolic length of its boundary, and determine the limit of that quotient
as the hyperbolic length of the radius approaches ∞. Compare your
answer with that obtained in the Euclidean case.

9. Consider the model of the upper half space mentioned in result 6o.
What can be said about a half sphere with center on the XY plane?

4.6 Surfaces with hyperbolic structure

In Chapters 1 and 3, we created new geometric objects departing from other
objects that we already knew well, by means of the technique of forming the
quotient space, modulo a subgroup of the group of isometries under study; that
is, the new object consists of the equivalence classes defined by the subgroup of
the group of isometries under study.

Thus, by considering subgroups of translations of �2, first with only one
generator, T(1,0) and then with two generators, T(1,0) and T(1,0), we obtained a
cylinder and a torus S1 × S1, respectively, which inherited the measure �2.

In Chapter 3, we obtained the elliptic plane by forming the classes defined
in the sphere S2 by the subgroup of isometries of the sphere, which has only two
elements: the identity element and the antipode.

Now we shall introduce the theory equivalent to these in the hyperbolic case.
It is worth mentioning that this is a very rich and widely studied area of

mathematics, where hyperbolic geometry (see, for example, [Ve]) and complex
variables (more specifically, the theory of Riemann surfaces) converge (see [Spr]
or [F]).

The whole theory can also be developed from the point of view of algebra and
algebraic geometry, obtaining thus the algebraic curves. The required mathematics
for those themes is beyond the purpose of this book, so we content ourselves with
giving an intuitive introduction to this fascinating area of geometry.

Let us start by noticing that we know that for translations of �2 as well as
for the antipode mapping in S2, each point has a neighborhood in which there is
only one representative element of the equivalence classes of each of its points (see
Figure 4.23), and also in both cases the maps in question are isometries of the
corresponding surface. That is why, in regions sufficiently small, the new object
“behaves” like the original one from the metric viewpoint.

A subgroup of a group of isometries with the previous property is called a
discontinuous subgroup.

That does not happen with a subgroup generated by a rotation or by a
reflection.

If we consider a rotation by 2π/n in �2, any neighborhood of the point
about which the rotation takes place contains several representative elements of
the points that appear in it, and the same happens in the case of the sphere
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S2 when we consider a rotation of �3: the rotation leaves its axis fixed and for
the points at which that axis intersects the sphere, it is not possible to find a
neighborhood containing only one representative element of the points that appear
in it. Something analogous happens if we consider the subgroup that generates a
reflection, {I, Re}.

(0, 0) (1, 0) (2, 0)

(0,−1) (1,−1) (2,−1)

Figure 4.23: Each representative element has a neighborhood where there is only one
representative element of the classes that appear in it.

In the case of the subgroup generated by a rotation, we would have a peculiar
situation when forming the quotient object: a neighborhood of the fixed point is
more like a cone than a plane, for the tangent vectors of differentiable curves
through that point do not form a plane. In the case of a reflection, the points of
the line with respect to which the reflection takes place do not have neighborhoods
homeomorphic to a disk, but to half a disk including the diameter; those types of
situations demand a special treatment, for they are “manifolds with boundary”
(see [G-R]).

However, one can have very interesting groups constructed from rotations
and or reflections, but having more than one generator. In fact the whole group
SO(3) consists of rotations.

Similar constructions can also be made in hyperbolic geometry, to obtain
groups of isometries with interesting quotient spaces, obtained by considering the
corresponding equivalence classes in the hyperbolic plane.

In the case of the hyperbolic plane (think of H+), there are also transfor-
mations that leave fixed hyperbolic points, the elliptic transformations. We know
already that near its fixed point, an elliptic transformation behaves like a rotation,
and we have just seen that this gives problems when passing to the equivalence
classes. These problems can be dealt with easily, but this needs a treatment which
is beyond the scope of this book. So we restrict ourselves to the case of transfor-
mations without ordinary fixed points.

A first example of a discontinuous subgroup is given by the subgroup gener-
ated by a hyperbolic transformation T . That is, we consider T and all its iterates
(T ◦ T ), (T ◦ T ◦ T ), etc., as well as its inverses T−1, (T−1 ◦ T−1), etc.
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Let us remember that a hyperbolic transformation T has its two fixed points
at infinity, z∗ and w∗, and therefore the geodesic line L they determine is invariant;
hence, any point P ∈ L is transformed into another point T (P ) ∈ L, and the
oriented distance between P and T (P ) does not depend on P , as the reader must
prove using the standard form of f for the case of H+: f(z) = kz, (k > 0), whose
fixed points are 0 and ∞ and, accordingly, L is the imaginary axis.

Actually, the effect of T on any point R ∈ H+ can be obtained as follows:
let us draw the perpendicular from R to L, which we have taken as a diameter,
and let us call H the foot of that perpendicular. We then apply T to H , and
T (R) is obtained by locating the point R′ of the perpendicular to L through T (H)
such that d(T (H), R′) = d(H, R) (see Figure 4.24). Notice that this distance is an
oriented distance because T respects the orientation of angles.

R T (R)

H T (H)

|a| |a|

L

Figure 4.24: How to locate T (R) for a hyperbolic transformation.

Given the special role played by the line L for determining the transformed
point of any point R of the hyperbolic plane under T , we say that L is the axis
of T , and the distance between P ∈ L and T (P ) ∈ L is called the distance of
translation.

The fact we wanted to prove is that the distance between a point and its
transformed point is greater for points not on the axis of translation than in the
case of points on L, for the arc of the geodesic determined by R and T (R), which
from the Euclidean approach already has a length greater than that of the arc of L,
has a length even greater in the hyperbolic metric. Therefore, the distance between
a point R and its point T (R) transformed under a hyperbolic transformation takes
its minimum at the points of the axis L.

The subgroup of G∆ generated by a single hyperbolic transformation T has
as a fundamental region any stripe D bounded by two perpendiculars to the axis L
whose feet are a distance |a| apart. That is, if we consider the equivalence class in
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Figure 4.25: The quotient of ∆ by the subgroup generated by a hyperbolic transformation
is a topologic cylinder.

H+ given by z ∼ z′ if and only if there exists g ∈ G∆ such that g(z) = z′, then each
equivalence class has a representative in such a strip D, and this representative is
unique for points in the interior of the strip.

The quotient of ∆ by the subgroup generated by T looks like a cylinder, since
the points at the edges of the strip are related by T in the way described above,
and therefore they must be identified to another one (see Figure 4.25). Notice that
in this hyperbolic cylinder there is a closed curve of minimum length.

In the case of Euclidean geometry, after constructing a cylinder as the set of
equivalence classes defined by the subgroup generated by a single translation, we
proceeded the same way with the subgroup generated by two translations, and we
obtained a torus.

We would like to make a similar construction in hyperbolic geometry, to form
the quotient of ∆ by the subgroup generated by two hyperbolic transformations,
T1 and T2, with different axes, for instance the lines L and M of Figure 4.26.

To obtain a fundamental domain corresponding to T1, a strip as above, we
can apply T1 to M; and to obtain a fundamental domain for T2, we can apply
T2 to L. The intersection of the two strips, that is, the quadrilateral which is the
intersection of the fundamental domains of T1 and T2, in general does not have
the desired properties, for the opposite sides do not have the same length (see
Figure 4.26): |BC|∆ < |AD|∆, and |AB|∆ < |DC|∆, so we can not glue them by
a hyperbolic isometry.

The only case where the opposite sides are congruent is when they have
infinite length, as in Figure 4.27.

It is possible to cover the disk with quadrilaterals obtained from the shaded
quadrilateral αβγδ under the hyperbolic transformations generated by T1 with axis
L and distance of translation |a|, and T2 with axis M and distance of translation
|b|.

To convince the reader, we suggest considering first the shaded quadrilateral
and its infinite images under the hyperbolic transformation that leaves the vertical
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L

T2(L)

M

T1(M)

A

B C

D

|a|
|b|

Figure 4.26: The opposite sides of the quadrilateral ABCD are congruent only if the
quadrilateral is ideal.

α

β γ

δ

|a|

|b|
L

M

Figure 4.27: The images of the quadrilateral αβγδ under the subgroup generated by T1

and T2 cover ∆.
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diameter fixed; the reader will agree that when the hyperbolic transformation
that leaves the horizontal diameter fixed is applied, we not only obtain the image
of the shaded quadrilateral αβγδ, but also those of its images under the first
transformation.

However, the object obtained by forming the classes of equivalence of ∆
module the subgroup generated by T1 and T2 is not a topological torus because it
is missing a point, for all the vertices, which are identified at a single point under
the action of the group, are points at infinity. In complex geometry, that point is
called a puncture of the quotient surface.

The previous discussion shows that we can obtain the punctured torus as
quotient of the hyperbolic plane by the group generated by two hyperbolic isome-
tries, with no fixed points in H+. This means that the punctured torus admits a
hyperbolic structure. If we could obtain the torus by a similar method, we would
have that the torus admits a hyperbolic structure, and it is known that this is
false, as the previous discussion suggests. We refer to [T] for a proof of this claim,
which can also be found in many other books, together with many other fantas-
tic results about this beautiful subject (see also the discussion below concerning
Riemann’s mapping theorem).

Here we are only concerned with groups that give rise to compact surfaces,
those which are not missing a point (no punctures) and which do not have a
boundary.

The transformations we are considering, f ∈ PSL(2,�), are functions �-
differentiable at every point z0 of their domain, that is, for which there exists the
limit

lim
h→0

f(z0 + h) − f(z0)
h

.

This limit is denoted as f ′(z0); it is called the derivative of f at z0 and is a
complex number. The�-differentiable transformations are also called holomorphic
or analytic (see [A]).

Hence, two representative elements of the same point will have coordinates z1

and z2 related by a �-differentiable transformation with �-differentiable inverse.
At the end of section 3.4, we said that the surfaces with that property are

called Riemann surfaces, and it is easy to prove that they turn out to be orientable.
Accordingly, the objects we shall deal with are compact and orientable surfaces.

The surfaces with those properties have been widely studied, and we know
what they are like because of two very important theorems. We do not include
here the proofs of these theorems, but we do provide the reader the bibliographic
references where they can be found.

The first theorem we shall mention belongs to the branch of mathematics
called topology, and [I] is devoted to its proof; [I] is a very accessible book, although
the proof also appears in the references about Riemann surfaces, for instance [Spr].

Theorem of classification of surfaces. The only compact and orientable surfaces
are the sphere and spheres with a finite number of handles (see Figure 4.28).
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The number of handles the surface has is called its genus. A surface of genus
1 is called a torus, and it is homeomorphic to the product S1 × S1. Between the
genus and the Euler characteristic of the surface, X (S), there exists the relation
(see [I] or [Spr]):

X (S) = 2 − 2g.

...

α

β

α1

α2
β1

β2

Figure 4.28: The compact and orientable surfaces are the sphere and spheres with handles.

Notice that each handle gives rise to two closed curves, αi, βi, which cannot
be deformed into a point without leaving the surface, and it can be proven that
it is not possible to deform any of those curves corresponding to a handle into
another of them corresponding to another handle.

Topologists construct a surface of genus g from a polygon with 4g sides,
whose sides they identify as shown by the arrows in Figure 4.29 for the case of
genus 2.

Figure 4.29: Topological construction of a torus with 2 handles.

We ask the reader to prove that on the hyperbolic plane there are regular
polygons of every number of sides, greater than 4, whose angles add up to 2π. This
assures the existence of elements in G∆ which identify two sides with the same
symbol and opposite orientations (as occurred with the translations in the case
of a Euclidean square). This is also a consequence of a very important theorem,
known as the Uniformization Theorem.

This theorem belongs to the branch of mathematics called complex geometry;
it has been studied by many of the world’s top mathematicians, and they have
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developed new theories to understand it fully. The proof of the Uniformization
Theorem, which is beyond the scope of this book, was done simultaneously and
independently in 1907 by Paul Koebe (1882–1945) and Henri Poincaré, but its
origin is found in a famous theorem due to Riemann.

Theorem (Riemann’s mapping). For any open, proper, connected and simply con-
nected subset (i.e., with no holes) R of �, there exists a mapping f : R → ∆ which
is a biholomorphism, that is, �-differentiable with �-differentiable inverse.

Notice that in this dimension, a biholomorphism respects angles, including
their orientation (why?). This justifies saying that if there is a biholomorphism
between two surfaces, the surfaces are conformally equivalent.

We have already exhibited such a biholomorphism in the case when R is a
half plane: the mapping Q : H+ → ∆ given by (4.2).

The references for the theorem of uniformization are [Spr] and [F], and for
Riemann’s mapping theorem see [A].

For the compact Riemann surfaces we are dealing with, the usual version of
the theorem of uniformization asserts that �̂ has a (doubly) elliptic geometry, that
the tori have a parabolic (plane) geometry, and that the surfaces of genus g ≥ 2
have a hyperbolic geometry.

That is a consequence of the impossibility of establishing a biholomorphism
f between the simplest Riemann surfaces from the topological point of view, �̂,
�, and ∆ (notice that biholomorphism implies homeomorphism):

• A sphere and a plane are not homeomorphic, for the sphere is compact and
� is not (see [DoC], for characterizations of compact sets). That is why it is
said that �̂ and � are not conformally equivalent.

• In addition, although � and ∆ are homeomorphic, it is not possible to estab-
lish a biholomorphism between them, for a �-differentiable function whose
domain is � and whose image is contained in the disk ∆D, is a bounded
function; for that type of function, we have a theorem of complex variables,
the theorem of Liouville (see [A]), which asserts that the function must be
constant. Then the image of the function cannot cover ∆, and that is why �
and ∆ are neither conformally equivalent.

The formal statement of the theorem of uniformization is the following.

Theorem of uniformization. Every Riemann surface can be endowed with an ellip-
tic (or spherical) geometry, or with a parabolic (Euclidean) geometry, or with a
hyperbolic geometry, depending on whether it is conformally equivalent to the set of
equivalence classes of �̂, � or ∆, these being determined by a group of isometries
of the corresponding “plane” P whose elements have no fixed points in P .

Here the plane P is the Riemann sphere in the first case, the Euclidean plane
in the second, and the hyperbolic plane in the latter. The corresponding groups
of isometries are SO(3), A(2) and PSL(2,�).



4.6. Surfaces with hyperbolic structure 191

We remark that spherical geometry is also called (doubly) elliptic because
the sphere is a double cover of the elliptic plane and the metric on the eliptic
plane comes from that in the sphere. The only compact surface one has with
this geometry is the Riemann sphere itself. The only compact parabolic surfaces
are tori, but there are many such structures on tori which are not conformally
equivalent, as many as points in � (see [A]). All other Riemann surfaces, i.e.,
all compact surfaces of genus g > 1, admit a hyperbolic geometry. In fact they
admit many non-equivalent such geometries; these correspond bijectively with the
points in a certain vector space (over �) of dimension 3g − 3, by a deep theorem
of Riemann.

That is why we say that most of the compact and orientable surfaces admit
a hyperbolic structure.

Now let us see how to construct a torus with two handles from a hyperbolic
regular octagon whose angles are 2π/8, when the sides are identified as shown in
Figure 4.30. It is necessary to take care of the amplitude of the angles so that when
identifying all the vertices at a point, the plane tangent to the quotient surface
at that point is well defined. With that we guarantee that we have a well-defined
metric in the new object, induced by the metric in ∆.

In the case of the Euclidean square, the identification of the opposite sides
was made with translations by T (1, 0) and T (0, 1); in the case of the hyperbolic
octagon, we identify the sides with the same symbol and opposite orientation by
using the hyperbolic transformations hi, whose axis is the perpendicular Hi com-
mon to the sides marked with the same symbol and whose distance of translation
is that of the perpendicular segment between the sides. As the reader should have
verified, that common perpendicular exists if and only if the lines are ultraparallels,
as in this case.

The octagon is the fundamental domain of the subgroup G2 whose direct
isometries are generated by the four transformations h1, h2, h3 and h4, and it is
clear that ∆ can be covered with the images of the octagon illustrated in Figure
4.30, obtained from the elements of G2.

Exercises

1. Prove that if T is a hyperbolic transformation with axis L, the hyper-
bolic distance d(P, T (P )) does not depend on P ∈ L.

2. Use the homeomorphism established by the function tangent between
the interval (−π/2, π/2) and � to give a homeomorphism between �
and ∆.

3. Prove that every torus with g handles can be obtained from a regu-
lar hyperbolic 4g-gon using hyperbolic transformations, if the angles
maintain adequate amplitude.

4. What condition must a function f : �2 → � satisfy so that it makes
sense to say that f also defines a function from the Euclidean cylinder
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a2

a1

b2
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H1
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a−1
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Figure 4.30: Geometric construction of a torus with 2 handles.

created as quotient of �2 by the subgroup generated by the translation
T(1,0), with values in �?

5. Establish the conditions that a function f : �2 → � must satisfy for
it to make sense to say that it also defines a function whose domain is
the plane torus of Chapter 1.

6. Does it make sense to pose an analogous problem in the case of f :
∆ → � and a torus with more than one handle?

7. Enlarge Figure 4.30 and add to it at least the octagons resulting from
applying hi and h−1

i with i = 1, 2, 3, 4.

4.7 Tessellations

Now we envisage the problem of covering the hyperbolic plane with congruent
tessellations, and finding the group of isometries that leave such a tiling invariant.

In contrast with the Euclidean and elliptic cases, there are infinitely many
different ways of covering the hyperbolic plane with congruent tessellations; as we
shall see, this is a consequence of the richness of hyperbolic geometry, where there
is a great freedom to construct hyperbolic polygons which determine groups of
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isometries with the polygon as fundamental domain. So its various images under
the group cover the whole plane and give a tiling of it.

For example, let us consider triangles, say in 3-space, with angles π
p , π

q , π
r ,

p, q, r ≥ 2, and order them so that p ≤ q ≤ r. There are three obvious possibilities,
according as the sum π

p + π
q + π

r is greater than, equal to, or smaller than π.
When π

p + π
q + π

r = π, it is well known that every such triangle T can be
realized as a Euclidean triangle in �2. Each of its three edges determines a reflec-
tion of �2, and the set of all possible compositions of these three reflections forms
a subgroup Σ(p, q, r) of the group A(2), called a triangle group. It is an exercise
to see that the various images of T under the transformations in Σ(p, q, r) fill out
the whole plane and they are pairwise disjoint, except for points in the bound-
ary of the triangles. We thus get a Euclidean tiling of the plane, as described in
Chapter 1. It is clear that the only unordered triples (p, q, r) that satisfy these
conditions are (2, 3, 6), (2, 4, 4) and (3, 3, 3). In the later case the tiling is by equi-
lateral triangles. The case (2, 4, 4) corresponds to taking the tiling by squares and
triangulating each square by joining with lines its center with the four vertices
and with the middle-points of the edges. This triangulation of the square is called
its barycentric subdivision (we leave as an exercise to show that the triangles one
gets in this way are indeed π

2 , π
4 , π

4 ). The case (2, 3, 6) is the tiling defined by an
hexagon, taking its barycentric subdivision.

If we look at triangles with π
p + π

q + π
r > π, it is easy to see that the only

possibilities for the unordered triple (p, q, r) are (2, 2, r), r ≥ 2, (2, 3, 3), (2, 3, 4)
and (2, 3, 5). The triangle T is now a spherical triangle: it can be realized in the
2-sphere, bounded by geodesics.

It is well known that the last three cases correspond to the tilings determined
by a tetrahedron, an octahedron (or equivalently, a cube) and a dodecahedron (or
equivalently, an icosahedron), that we studied in Chapter 1. The triangles arise
by taking the barycentric sub-division of the corresponding Platonic solid, and
then projecting the solid into the sphere from the center. We refer, for instance, to
Chapter II in [Se] for a careful description of this situation, whose study goes back
to the work of F. Klein and others in the 19th Century. The corresponding group of
isometries of the sphere that preserve this tiling is the subgroup of O(3) generated
by reflections on the planes in �3 determined by the edges of the triangle.

Notice that in all the above cases, the group of symmetries that preserves
the tiling is generated by reflections on the sides of the triangle T , which is a
fundamental domain. In both cases we may look at only the index 2 subgroup,
of the corresponding triangle group, consisting of elements that can be expressed
as composition of an even number of reflections. Since the composition of two
reflections on lines which are not parallel defines a rotation, these are groups of
rotations that preserve the corresponding tiling.

The case π
p + π

q + π
r < π is somehow the “richest”, for we now have infinitely

many possibilities for p, q, r. Given any such triple, one has that the triangle T
can be realized in the hyperbolic plane and one has the corresponding tilings, as
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we explain below.
As to the playful aspect of this problem, of constructing tilings of the hyper-

bolic plane, it was the already mentioned Dutch engraver M. C. Escher who used
it magisterially, in spite of, at least at the beginning, not knowing that he was
using hyperbolic transformations. 1

Escher decorated the hyperbolic polygons with different images to create
several of his most celebrated engravings; if the reader analyzes them from the
point of view of this section (see [Er] and [Es]), he or she will gain hyperbolic
intuition, for they illustrate how the decoration changes by rotating it about a
point, by reflecting it with respect to a hyperbolic line, and by translating it on a
line.

No doubt that one of the best and most joyful ways for gaining intuition of
hyperbolic geometry is to create some tilings with the methods presented here.

Two of the figures in the previous section, 4.27 and 4.30, show how to cover
the Poincaré disk with hyperbolic tessellations: the first ones are ideal quadrilat-
erals, with their vertices at infinity, the second ones would be regular octagons
(they have not been drawn, but we asked the reader to do it in Exercise 7, Sec-
tion 4.5) whose vertices are ordinary points and whose interior angles are 2π/8.
The octagons that have not been drawn are obtained by means of the hyperbolic
transformations used to “glue” the sides with the same symbol and opposite orien-
tations, for each of them translates the octagon along the perpendicular common
to those sides; by using all the hyperbolic transformations generated by those
transformations, we can cover ∆ with regular octagons.

In both cases, the transformations used to cover the disk are transformations
of hyperbolic type, which in a sense are analogous to the Euclidean translations.
In the case of the ideal quadrilateral, two hyperbolic transformations suffice to
generate the subgroup that covers ∆D, but in the case of the octagon with ordinary
vertices, it was necessary to use four hyperbolic transformations to generate the
group that covers ∆.

Thus, we already have an infinite number of ways of covering ∆ with regular
(and different) tessellations:

• With ideal polygons of 2k sides, with k ≥ 2; the reader ought to describe the
group of isometries.

• With regular 4n-gons whose sum of angles is 2π; the group of isometries of
that tiling is generated by the 2n hyperbolic transformations whose axes are
the perpendiculars common to the sides that must be identified, and where
the distances of translation of each is the distance between those sides (see
Figure 4.27).

1“In mathematics I did not ever get a C. It is curious that, it seems, I have been occupied with
mathematics without realizing it. Who could imagine that mathematicians would illustrate their
books with my drawings, that I would hobnob with great scholars as if they were my colleagues
and brothers!” Escher, in [Er].
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We now want to return to discuss the triangle groups in hyperbolic geometry.
We use the disk model. The first step is to describe the transformations of

∆ that play the role of reflections. These are known as inversions, and we discuss
them briefly in Appendix 5.6.

On “the real line”, the inversion with respect to the interval [−1, 1] is the map
x �→ 1

x . Notice that this map carries the origin to ∞, so it has to be defined on the
“extended line” �̂, which is homeomorphic to the circle S1, as we know already.
In this case we have that the map is taking outside the inside of the interval and
vice-versa, with the end points {−1, 1} being fixed. Of course a similar expression
can be given in general, to define the inversion with respect to an arbitrary interval
[xo − ε, xo + ε]; we leave as an exercise to find the corresponding formula.

Inversions extend to automorphisms of �̂ with respect to circles in the obvi-
ous way. If the circle has infinite radius, so it is a Euclidean line, the corresponding
inversion is the usual Euclidean reflection. To define the inversion with respect to
a circle C (of finite radius), we do it line by line, with respect to all lines passing
by the center xo of the circle. Every such line can be considered as a copy of �,
and it meets the disc bounded by C in an interval of radius that of C, so we can
make the inversion on this line just as above.

Analogously to the case of reflections in the Euclidean case, the formula to
determine an inversion in general can be obtained by taking the circle C into the
real line by a Möbius transformation T , then taking the reflection on the straight
line T (P ), using the formula for the reflection on �̂ and then applying T−1. We
refer to our Appendix 5.6 for more about inversions.

Let us now look at the way inversions transform the disc ∆, which is equipped
with the hyperbolic metric. We are actually interested in the inversions that pre-
serve ∆, i.e., inversions ι in �̂ such that ι(∆) = ∆ as a set. For instance, if C
is a straight line in � that passes through the center 0 of ∆, then the Euclidean
reflection in C, which is an inversion, obviously carries ∆ into itself.

We ask the reader to show that inversions are conformal maps, i.e., they
preserve angles, and therefore, given the disc ∆, regarded as a subset of �, one
has that the inversion on a given circle C carries ∆ into itself if and only if C
meets the boundary ∂∆ of ∆ perpendicularly (prove this statement!). According
to Section 2 of this chapter, we then have that inversions on circles orthogonal
to the boundary of ∆ are isometries for the hyperbolic metric. Moreover, the
composition of an even number of inversions preserves the orientation, so every
such map is a Möbius transformation, by Section 2.

If C is a circle in� that meets ∂∆ perpendicularly, denote by L the hyperbolic
line that it defines, i.e., its intersection with ∆. Then we can speak of the inversion
ι = ιL of ∆ defined by L, which is a transformation of ∆ into itself, and we
already know that this is an isometry. Notice that, in analogy with the Euclidean
reflections, given a point P ∈ ∆, its image P ′ = ι(P ) can be characterized by
being the unique point in the hyperbolic line perpendicular to L at P , which is in
the other half plane determined by L, and whose distance to L equals the distance
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from P to this line (see Figure 4.31).

P

P ′

L

Figure 4.31: How to reflect on a hyperbolic straight line for the model of the disk.

Returning to triangles in the hyperbolic disc, we leave as an exercise for the
reader to illustrate the form in which any ideal triangle and its reflected ones (and
the reflected ones of the reflected ones, and so on) on each of its sides cover ∆.

Now let T ⊂ ∆ be a hyperbolic triangle whose vertices are all ordinary points.
In order for it to determine a tiling of ∆, its angles must satisfy that around each
vertex Vi, a finite number 2ki of images of T cover a neighborhood around that
vertex without superimposing.

That implies, if the angle at Vi is αi,

2kiαi = 2π, that is, αi =
π

ki
. (4.16)

The coefficient 2 appears because we are going to apply a reflection on each side of
the triangle, and we want the resulting tiling to remain invariant under rotations
about each vertex, as occurs in the Euclidean case, where the type of rotation was
useful for classifying the tessellations.

An example will help the reader to take care of the problem that arises when
the angle does not permit an even number of reflections. Let us take a triangle with
one vertex at the center of the disk, and whose angle at that vertex is α = 2π/5.

After marking one of the two sides contained in radii, if we proceed to reflect
the triangle on those sides to cover the pentagon, we will not be able to obtain a
pentagon invariant under rotations about the center (Exercise 3).

Accordingly, each angle of a hyperbolic triangle, being the basic piece to
construct a hyperbolic tiling, must be of the form π/n, with n ∈ �. This is why
we take the angles to be π

p , π
q , π

r .
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On the other hand, we know that the sum of the three angles must be less
than π; hence, if α1 = π/p, α2 = π/q and α3 = π/r, we obtain a restriction on
the numbers p, q, r ∈ �:

1
p

+
1
q

+
1
r

< 1. (4.17)

Now, given the triangle T with angles π
p , π

q , π
r , we let Σ be the group of

isometries of ∆ generated by the inversions on the three edges of T . Then the
images of T by the elements of the triangle group Σ give a tiling of the hyperbolic
plane.

A triple (p, q, r) which satisfies these conditions is (7, 2, 3) and the corre-
sponding tiling is given in Figure 4.32. This corresponds to the hyperbolic triangle
of largest possible area (show it!).

Figure 4.32: Tessellation whose basic triangle corresponds to (7, 2, 3).
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The group of Möbius transformations that leave this tessellation invariant
has as generators the rotation by 2π/7 around the center of the central heptagon,
the rotation by 2π/3 around one of the vertices of the heptagon, and the rotation
around the foot of an apothem of the heptagon (the perpendicular from the center
to one side).

For readers interested in this topic, the best reference is [Be].

Exercises

1. Mark at random four points on the boundary of ∆ and draw the hyper-
bolic quadrangle with those vertices; give a geometric algorithm, and
justify it, to obtain the images of that quadrangle under the reflections
on its sides.

2. In the model of the disk, draw a regular pentagon with center at (0, 0)
and divide it into triangles as indicated above. Determine if it is possible
with the marked triangle to generate a tiling whose group of isometries
is non-trivial.

3. Consider the case of a triangle T such that not all of its vertices are
either ideal or ordinary; draw it on both Poincaré models. Can we cover
∆ with it? Justify your answer.

4. At least for three of the engravings by Escher that cover the hyperbolic
plane, determine the values p, q, and r of the basic triangle, and the
subgroup of G∆ that leaves the tiling invariant. (Suggestion: see [Es].)

5. Design at least two hyperbolic tessellations.

6. Given an n-sided convex hyperbolic polygon P in ∆, can you find con-
ditions to insure that the inversions on the edges of P define a group of
transformations such that the various images of P give a tiling of ∆?
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Appendices

5.1 Differentiable functions

To extend the concept of differentiability to a function of several variables, F :
�

n → �, at a point P0 of its domain, we must recall that the value of a differen-
tiable function at a point close to P0, P0 + h̄, can be approximated by the value of
the function at the point, F (P0), plus the value of a linear transformation, called
precisely the derivative at P0, applied to the increment h̄, where ||h̄|| is sufficiently
small.

In the case of a function F : �3 → �, the linear transformation that gives
rise to the approximation can be thought of as a vector, called the gradient of F
at P0, ∇F (P0), formed with the so-called partial derivatives of F at P0(x0, y0, z0),
which can be obtained as follows (we illustrate it with only one of them):

∂F

∂x
(x0, y0, z0) = limh→0

1
h

(F (x0 + h, y0, z0) − F (x0+, y0, z0)) .

It is clear that the partial derivative with respect to one variable considers only the
variation with respect to that variable, while the other variables remain constant.

Thus, ∇F (P0) is formed as follows:

∇F (P0) =
(

∂F

∂x
(x0, y0, z0),

∂F

∂y
(x0, y0, z0),

∂F

∂z
(x0, y0, z0)

)
,

and is applied to a vector ū = (h, k, l) by means of the scalar product,

∇F (P0)(ū) =
(

∂F

∂x
(x0, y0, z0),

∂F

∂y
(x0, y0, z0),

∂F

∂z
(x0, y0, z0)

)
· (h, k, l)

It can be proved that if each of the partial derivatives is continuous and
||(h, k, l)|| is sufficiently small, the approximation

F (x0 + h, y0 + k, z0 + l) ∼ F (x0, y0, z0) + ∇F (P0) · (h, k, l),

is valid, in the sense that the difference between both members approaches zero
more quickly than ||(h, k, l)||.
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For example, for F (x, y, z) = x2 + 4y2 +9z2, the partial derivative of F with
respect to x at P0, the partial derivative of F with respect to y at P0, and the
partial derivative of F with respect to z at P0 are, respectively,

∂F

∂x
(x0, y0, z0) = 2x0;

∂F

∂y
(x0, y0, z0) = 8y0;

∂F

∂z
(x0, y0, z0) = 18z0,

and the gradient of F at (−1, 1,−1) is

∇F (−1, 1,−1) = (−2, 8,−18).

Of course the derivative of a function f : �n → �, when it exists, is not a
vector, but a linear map defined at each point by the 1 × n matrix

Df = (
∂F

∂x1

∂F

∂x2
· · · ∂F

∂xn
) .

A value r ∈ � of F is a regular value if for every (x0, y0, z0) ∈ �3 such that
F (x0, y0, z0) = r, the gradient of F at (x0, y0, z0) is not zero.

The set of the points that are mapped into the same value r is called the
inverse image of r (or the level surface of r) and is denoted as F−1(r). For instance,
the sphere of radius 1 and centered at the origin is the inverse image of 1 under
the function F (x, y, z) = x2 + y2 + z2, and analogously for each of the quadric
surfaces.

A point (x0, y0, z0) ∈ �3 where the gradient ∇F (x0, y0, z0) becomes zero is
known as a critical point of F , and r ∈ � is a critical value of F if there exists a
critical point in the inverse image of r.

In the case of the cone, which is an inverse image of 0 under the function
F (x, y, z) = x2 + y2 − z2, each of the generatrices is a curve on the cone that
passes through the vertex, and that proves that the vectors tangent to curves at
the vertex do not form a plane; that is why the plane tangent to the cone at the
vertex cannot be defined, because 0̄ ∈ �3 is a critical point (the only one) of the
function F (x, y, z) = x2 + y2 − z2.

Each point of �3 is contained in a level surface of this function, and that
is why it is said that the level surfaces of this function foliate the space, they
fill it with their leaves. The name comes from the Latin folia, which means leaf.
We notice, however, that the origin plays a special role, because at this point the
gradient of F vanishes.

The Implicit Function Theorem, which can be found in many text-books,
grants us that away from 0̄ = (0, 0, 0) all the level surfaces of F are smooth, which
intuitively means that the corresponding surface has a well-defined tangent space
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at the point. And the level surface F−1(0) is not smooth at 0̄. This is why the
foliation defined by F is, properly speaking, a singular foliation, defining an actual
foliation on �3 \ {0̄}.

Notice that there is a qualitative change in the type of leaves when passing
from r < 0 to r > 0; these surfaces are all smooth, and the change from one type
of hyperboloid to the other passes through the cone, which is the level surface
0. The cone divides the two types of hyperboloids, and that is why it is called a
separatrix of the foliation. To further study these themes, see [Hr].

5.2 Equivalence relations

In a set A, we have an equivalence relation if we have determined a relation R
among its elements such that it satisfies the three following conditions:

i) Reflexivity: Any a ∈ A is related to itself: aRa.

ii) Symmetry: If a ∈ A is related to b ∈ A, then b is related to a: aRb ⇒ bRa.

iii) Transitivity: If a ∈ A is related to b ∈ A and b is related to c ∈ A, then a is
related to c: aRb and bRc ⇒ aRc.

The elements related to one another form a class of equivalence, and two
different classes cannot have common elements, because of transitivity. Hence, it
is said that

An equivalence relation in a set A induces a partition of A into disjoint classes.

The set of equivalence classes is called the quotient set of A modulo the
equivalence relation.

There are ordinary examples of equivalence relations. For instance, among
the days of a month, the name of a day is the same as that of another if their
numbers differ by a multiple of 7: if day 3 is Sunday, the other Sundays are the
days 10, 17, and 24.

Among the integer numbers, a relation very frequently used comes from the
residue left by those numbers when divided by a fixed number, 5 for example: the
class of 0 is formed by the numbers divisible by 5; the class of 1 is formed by
the numbers of the form 1 + 5k, for any k′ ∈ �; the class of 2 is formed by the
numbers of the form 2+5k, and so on. Each number has its residual class modulo
5 well-defined.

A function f between two sets, f : A → B, with domain A, induces an
equivalence relation in A when considering that two elements a, a′ ∈ A are related
if f(a) = f(a′). The equivalence classes are the subsets of A which are the inverse
image of a fixed element b ∈ B.

In the particular case of a function f : �n → �, the inverse image of a value
r ∈ � is called the level set r of the function. If n = 2, the level sets are level
curves; if n = 3, they are level surfaces, and so on.
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5.3 The symmetric group in four symbols: S4

The bijections of a set into itself can be seen as rearrangements of the elements
of the set, and thus, when the set has a finite number of elements, a bijection is
called a permutation.

The symbols 1, 2, 3, 4 can be arranged in 4! different ways, because the first
symbol can be chosen among 4 elements, for the second symbol there are only
3 options, for the third, only 2, and for the last symbol there remains only one
option.

Since 4! = 24, it is worthwhile writing all the arrangements; we first write
those beginning with 1, then those beginning with 2, and so on. They are

1234 1243 1324 1342
2134 2143 2314 2341
3124 3142 3214 3241
4123 4132 4213 4231

.

Any arrangement can be obtained from another by a permutation, and to deter-
mine it, we write one arrangement under another, and we say that the first symbol
of the second arrangement has substituted that which appears in the first place in
the first arrangement. In the first arrangement we then look for the symbol that
substituted the first one, and we see what symbol of the second arrangement is in
the same place, and so on.

For example, if we take 1234 and 3124, we write(
1 2 3 4
3 1 2 4

)
,

and we read “1 has been replaced by 3, 3 has been replaced by 2, and 2 has been
replaced by 1.” What we briefly write is in the form of a cycle:

(132),

which must be interpreted as follows: 1 is replaced by 3, 3 is replaced by 2, and 2
is replaced by 1.

Notice that 4 remained in its original place, and that is why it is not necessary
to write it.

When the permutation is reduced to an exchange of two symbols, as occurs
with the arrangements 4132 and 4231, the cycle consists only of those two symbols,
(12), and it is called a transposition.

Permutations can be composed, for they are functions, and the result of
applying one permutation first and then another is a permutation of the symbols as
well because the composition of two bijections is a bijection. Since the composition
of functions is associative, and the inverse of a bijection is another bijection, it
turns out that the permutations of four symbols form a group called the symmetric
group in four symbols, which is denoted as S4.
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The identity element of this group is the permutation where every symbol
remains in its place, and it is written as a product of cycles of length 1: (4)(3)(2)(1).

To determine the permutation that results from applying first the permuta-
tion (234) and then the permutation (13), we write the arrangement 1234 and we
apply the two permutations following the proposed order, to the right (234) and
to the left (13), as is usual in the composition of functions, (13)(234). In the next
rows we can see the effect of applying the permutation (234) to the elements of
the first row and then the permutation (13) to the elements of the second row:⎛⎝1 2 3 4

1 3 4 2
3 1 4 2

⎞⎠ .

The comparison of the last row with the first one reveals that 1 is replaced by 3;
3 is replaced by 4; 4 is replaced by 2, and 2 is replaced by 1. That permutation
is represented by the cycle (1342), (remember that the order in the first member
of the equality corresponds to that of the composition of functions) and thus the
product of the permutation (234) and the permutation (13) is

(13)(234) = (1342).

It is clear that (1342) = (3421) = (4213) = (2134), since all these permutations
have the same effect on any arrangement.

The cycles are called 2-cycles, 3-cycles or 4-cycles, depending on the number
of symbols appearing in it. Notice that the product of two disjoint transpositions
cannot be written as a 3-cycle, neither as a 4-cycle, as is the case of (23)(14).

The number of permutations of 4 symbols is 4! = 24, for each arrangement
is the result of applying one permutation to the “natural” arrangement 1234, and
the number of arrangements is 24.

Another way of counting is as follows: since each permutation has an ex-
pression in cycles, we can count the number of 2-cycles, that of 3-cycles, that of
4-cycles, and that of products of disjoint 2-cycles, and then add them up together
with the identity permutation (which can be seen as a product of 1-cycles):

• The number of 2-cycles is 4·3
2 = 6.

• The number of 3-cycles is 4·3·2
3 = 8.

• The number of 4-cycles is 4·3·2·1
4 = 6.

• The number of products of two disjoint 2-cycles is 6/2 = 3, because since
they are disjoint, the order of the factors does not affect the product.

If we add to these 6 + 8 + 6 + 3 = 23 permutations the identity permutation, we
have 24 permutations.

The theme is far from being exhausted in this introduction (we suggest the
reader see [Bi]), but we hope to convince the reader of its importance by obtaining
all the isometries of the tetrahedron using the elements of S4S4.



204 Chapter 5. Appendices

We only need a fundamental fact which is not difficult to prove:

Remark. Any permutation of n symbols can be obtained as a product of a finite
number of transpositions (not necessarily disjoint).

For example, the permutation (243) can be obtained as (verify it):

(243) = (24)(23).

It is easy to prove that any 4-cycle is a product of three transpositions, and
that any 3-cycle is a product of two transpositions.

Because of the remark, it turns out that

1. The transpositions generate the symmetric group, and the permutations can
be classified as even or odd, depending on the number of transpositions nec-
essary to obtain them.

The subgroup of the even permutations is called the alternate group,
and in the case of four symbols is denoted as A4.

With respect to the isometries of the tetrahedron, let us notice two
facts:

2. Any isometry of the tetrahedron gives rise to a permutation of its vertices,
that is, it corresponds to an element of S4.

3. In the tetrahedron, any two vertices are the same distance apart: the length
of one edge (that does not occur in the cube).

Now we are ready to begin the analysis of the isometries of the tetrahedron.

• For any transposition, for example (23), there is an isometry that exchanges
those vertices leaving the other two fixed, 1 and 4: the reflection on the plane
containing the fixed vertices (1 and 4) and the midpoint M23 of the edge of
the other two. For four symbols, there are six transpositions, which matches
with the fact that there are six midpoints of edges.

The product of two transpositions corresponds to the composition of two reflec-
tions:

• If the transpositions are disjoint, like (23) and (14), the two associated re-
flections leave the midpoints M23 and M14 fixed. Then the straight line they
determine remains fixed, and the isometry is a rotation by 180◦ about that
axis. We know there are three permutations which are products of disjoint
cycles, and that corresponds to the fact that there are three pairs of opposite
edges.

• If the transpositions are not disjoint, like (12) and (13), the product is a 3-
cycle, (13)(12) = (123), which leaves 4 fixed. The corresponding isometry is a
rotation by 120◦ about the straight line through the vertex 4 and through the



5.4. Euclidean postulates 205

centroid of the face 123, B123. The product in the opposite order, (12)(13) =
(132), is associated to the rotation about the same axis by 240◦. There are
eightof these 3-cycles, corresponding to the fact that there are four faces and
two rotations, which are not the identity, for each.

We just need to find the isometries associated to 4-cycles, like (1324). These cycles
are products of three transpositions, in this case, (1324) = (14)(23)(12). By the
associativity of the composition of functions, we can multiply first the last two,
(23)(12) = (132), which produces the rotation mentioned at the end of the previous
paragraph; that rotation follows from the reflection associated to the transposition
(14). No vertex remains fixed and, of course, the orientation does not change:
Compare how to go from 1 to 2 and then to 3 on the original face and on the final
face containing those vertices. We know that the number of 4-cycles is six.

In this case the geometric justification of the number of those isometries
comes directly from the exchange between the vertices, none of which remains
fixed under a 4-cycle. Once the vertex i into which we shall apply the vertex 1 has
been chosen (there are only three possibilities), the vertex i can be applied only
into two vertices, for it cannot be applied into 1 because we would have a 2-cycle
and, necessarily, another (and only another one) so that all the vertices would be
exchanged, which is not the case.

We only need to add to these 23 isometries the identity (which is written
as a product of 1-cycles: (1)(2)(3)(4)) to obtain the 24 possible isometries of the
tetrahedron.

5.4 Euclidean postulates

The original form of the Euclidean postulates is as follows (see[E]).
Let the following be postulated:

I. To draw a straight line from any point to any point.

II. To produce a finite straight line continuously in a straight line.

III. To describe a circle with any center and distance.

IV. That all right angles are equal to one another.

V. That, if a straight line falling on two straight lines makes the interior angles
on the same side less than two right angles, the two straight lines, if produced
indefinitely, meet on that same side on which are the angles less than the two
right angles.

Today, Postulate V is presented at schools as Playfair’s Axiom. It was John
Playfair who used this equivalent form of Postulate V in his attempt to prove it
on the basis of postulates I to IV.

Playfair’s Axiom is used in this book to establish the two possible denials of
Postulate V:
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α

β

M
L1

L2

Figure 5.1: If α + β < 180◦, L1 and L2 intersect on that side of M.

P M

L
H

Figure 5.2: M is the only parallel to L through P .

Playfair’s Axiom. Through a given point P exterior to one straight line L, only
one parallel can be drawn to L. (See Figure 5.2.)

Since Playfair’s Axiom establishes both the existence and the uniqueness of
a parallel to a straight line L through a given point P exterior to L, there are two
forms of denying Postulate V:

N1 Through a given point P exterior to a given straight line L, it is not possible
to draw any parallel to L.

N2 Through a given point P exterior to a given straight line L, it is possible to
draw more than one parallel to L.

5.5 Topology

In calculus courses, the notion of an open set of �n is described as a set A such
that any of its points is the center of a ball of positive radius completely contained
in A.

It is easy to verify that the open sets of �n have the following properties:

1. The empty set and the whole (�n) are open sets.

2. The intersection of two open sets is an open set.

3. The arbitrary union of open sets is an open set.
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The definition of a topological space establishes precisely these conditions.
It is said that a set E is a topological space if among the subsets of E there is
a family F , the family of the open sets of E, which satisfies the three conditions
given above. The family F is a topology for E, and each open set is a neighborhood
of each of its points.

Notice that the definition of a continuous function from � into � can be
read as:

The function f : � → � is continuous at a point x0 of its domain if given
an open set B containing f(x0) there exists an open set A containing x0 and such
that f(A) ⊂ B.

Therefore, it is possible to define continuous functions between any two topo-
logical spaces E1 and E2: it suffices to require that the inverse image of any open
set of E2 under f be an open set of E1.

If a function f is continuous and bijective, there exists its inverse function,
f−1, and if this function is also continuous, it is said that E1 and f(E1) ⊂ E2

are homeomorphic (do not confuse with homomorphic, a notion that belongs to
algebra), and that f is a homeomorphism.

It is very important for readers to ask themselves which of the functions they
know are continuous, and among these which are homeomorphisms. For instance,
the projection Π : �2 → � such that Π(x, y) = x is a continuous function when we
consider the usual open sets in �2 and those in �, but it is not a homeomorphism
because it is not injective.

When we have a topology defined in a set E, it is possible to make any of
its subsets, E′, become a topological space by endowing it with the induced (or
relative) topology, which means that A′ ⊂ E′ is a relative open set of E′ if there
exists an open set A of E whose intersection with E′ is A′, that is, A′ = A ∩ E.
The reader will have no difficulty in verifying that the relative open sets satisfy
the three conditions of a family of open sets.

Now it is easy to prove that the stereographic projection of a circle on the
real straight line to which we add a point (see Figure 3.3) is a homeomorphism.

The open sets of S1 will be the relative open sets of S1 as subsets of �2, and
the open sets of �∪P∞ are the usual neighborhoods of points of the straight line
and the neighborhoods of P∞ which we define as the complements of bounded
sets, that is, sets that can be enclosed in an interval (−R, R) with 0 < R < ∞.

Again, the best the reader can do is to verify that by adding these open sets
to the usual open sets of �, a topology for P 1(R) is obtained, and then there will
be no difficulty in proving that the stereographic projection illustrated in Figure
3.3 is a homeomorphism.
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5.6 Some results on the circle

In this appendix we can see the enormous advantage of working with complex
coordinates.

Inversion with respect to a Euclidean circle

The conjugate of a complex number z = x + iy is the complex number in which
the real part remains the same and the imaginary part changes sign, z̄ = x − iy.
The geometric interpretation is a reflection with respect to the real axis.

Consider now a Möbius transformation T that maps � into S1, such as

T (z) =
z + i

iz + 1
.

It is clear that if z is in � −�, then the points T (z) and T (z̄) are such that one
is in the “bounded side” of S1 and the other is outside this region. In fact we can
verify that the product of their norms is 1:∣∣∣∣ z + i

iz + 1

∣∣∣∣ ∣∣∣∣ z̄ + i

iz̄ + 1

∣∣∣∣ =

√(
z + i

iz + 1

) (
z̄ − i

−iz̄ + 1

) (
z̄ + i

iz̄ + 1

) (
z − i

−iz + 1

)
=

√(
z2 + 1
z2 + 1

) (
z̄2 + 1
z̄2 + 1

)
= 1; (5.1)

the second equality above comes from the fact that

(z + i)(z − i) = (iz + 1)(−iz + 1) = z2 + 1

and similarly for z̄.
In plane Euclidean geometry, given a circle C with center O and radius R,

we call two points P and P ′, such that

d(O, P )d(O, P ′) = R2,

inverse points with respect to C.
Equation (5.1) shows that T (z) and T (z̄) are inverse points with respect to

S1, and our experience with the Möbius transformation shows us that if after
applying the inversion with respect to S1 we apply a homothesis H of ratio λ, the
product of the norms of H ◦ T (z) and H ◦ T (z̄) would have been λ2.

That is why it makes sense to call the inversion with respect to a Euclidean
circle a reflection with respect to a hyperbolic line. That is, inversions on circles
play the same role in hyperbolic geometry as the role played in Euclidean geometry
by reflections on straight lines.

It is interesting to note that the points P ′ and P ′′ corresponding to the
stereographic projections of a point P ∈ S2 from the north pole, N , and the south
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pole, S, respectively, are inverse points with respect to the circle of radius 1 of
the equator. This is easy to prove if we consider the right triangles that appear in
the figure created on the plane containing all the points we are dealing with: the
center O of S2, N , S, P , P ′ and P ′′.

We invite the reader to make the drawing and to prove the previous result, as
well as to consider that being P ′ and P ′′ inverse points with respect to S1 proves
that S2 is a differentiable manifold, for the change of coordinates from P ′ to P ′′

is given by z �→ 1/z: a diffeomorphism if z 	= 0.

Circles of Apollonius and Steiner networks

A circle of Apollonius is the locus of the points P of a plane whose distances to
two fixed points, α and β, are equal to a constant k.

In complex coordinates we write

|z − α|
|z − β| = k, (5.2)

Equation (5.2) makes sense for every k ∈ �+ ∪ {0}, and written in Cartesian
coordinates, it takes the form

(1 − k2)x2 + (1 − k2)y2 − 2(α + βk2)x + α2 − k2β2 = 0, (5.3)

which is the equation of a circle because it does not have an xy term and the
coefficients of x2 and y2 are equal.

As k varies in �+ ∪ {0}, we obtain the family of circles of Apollonius deter-
mined by the points α and β (it is the family F2 in Figures 4.9 and 4.10 (a)).

From equation (5.2) it is immediate that as k → 0, the circle approaches the
point α, and that as k → ∞, the circle approaches the point β. These points are
called the limit points of the family of circles of Apollonius.

Also, when k > 1, β is in the interior of the circle, although β is not its
center, and when k < 1, α is in the interior of the circle, again, although α is not
its center.

Equation (5.3) shows that when k = 1, the circle is a straight line, the line
bisector of the segment defined by α and β.

The transformation T ∈ PSL(2,�)

T (z) =
z − α

z − β
,

maps α into 0 and β into ∞, and accordingly transforms the circles through those
points (the family F1 in Figures 4.9 and 4.10) into Euclidean straight lines through
the origin, whereas the circles of Apollonius (the elements of the family F2) are
transformed into concentric circles with its center at the origin, for if w = T (z) is
such that |w| = ρ, that is equivalent to

|z − α|
|z − β| = ρ;
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that is, z belongs to the circle of Apollonius corresponding to the constant ρ.

The families F1 and F2 form a Steiner network, and its elements are called
Steiner circles. The properties listed in [A] for these circles (and which follow from
what we have discussed so far) are the following:

1. For each point in �̂−{α, β}, there is one and only one element C1 ∈ F1 and
only one element C2 ∈ F2 which contain it.

2. Any C1 ∈ F1 and any C2 ∈ F2 intersect at right angles.

3. The Euclidean inversion (hyperbolic reflection) in C1 ∈ F1 maps any C2 ∈ F2

into itself, and to each C1 ∈ F1 into another element of the same family.

4. The limit points are symmetric (inverse to one another) with respect to each
element C2 ∈ F2, and only with respect to them.
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dad de Santa Maŕıa y Universidad de Santiago, 1983.
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