Complex Numbers

Complex Numbers

The imaginary unit i is defined as

$$
\begin{aligned}
& \sqrt{-1}=i \\
& i^{2}=-1
\end{aligned}
$$

Example

$$
\begin{aligned}
& \sqrt{-81}=\sqrt{-1 \cdot 81} \\
& =i \cdot 9=9 i
\end{aligned}
$$

Complex Numbers

The set of all numbers in the form $a+b i$ with

- real numbers a and b,
- i the imaginary unit,
is called the set of complex numbers.

Complex Numbers

The real number a is called the real part, and the real number b is called the imaginary part, of the complex number a + bi.

Equality of Complex Numbers

$\mathrm{a}+\mathrm{b} i=\mathrm{c}+\mathrm{d} i$
if and only if

$$
a=c \text { and } b=d
$$

Adding and Subtracting Complex Numbers

$$
\begin{aligned}
& (\mathrm{a}+\mathrm{bi})+(\mathrm{c}+\mathrm{di})=(\mathrm{a}+\mathrm{c})+(\mathrm{b}+\mathrm{d}) \mathrm{i} \\
& (\mathrm{a}+\mathrm{bi})-(\mathrm{c}+\mathrm{di})=(\mathrm{a}-\mathrm{c})+(\mathrm{b}-\mathrm{d}) \mathrm{i}
\end{aligned}
$$

Multiplying Complex Numbers
$(a+b i)(c+d i)=$
$(\mathrm{ac})+(\mathrm{adi})+(\mathrm{cbi})+(\mathrm{bd}) \mathrm{i}^{2}=$
(ac-bd) $+(\mathrm{ad}+\mathrm{cb}) \mathrm{i}$

Example

Simplify:

$$
\begin{aligned}
& 3+2 i-6 i-8 \\
& =(3-8)+(2-6) i \\
& =-5-4 i
\end{aligned}
$$

Example

Multiply:

$$
\begin{aligned}
& (2-i)(1+3 i) \\
& =2+6 i-i-3 i^{2} \\
& =2+5 i+3 \\
& =5+5 i
\end{aligned}
$$

The complex conjugate of the number $a+b i$ is a-bi, and visa-versa. The product of a complex number and its conjugate is a real number.

$$
(a+b i)(a-b i)=a^{2}+b^{2}
$$

Example

Rationalize:

$$
\begin{aligned}
& \frac{2}{1-i}=\frac{2}{1-i} \cdot \frac{1+i}{1+i} \\
& =\frac{2+2 i}{1-i^{2}}=\frac{2+2 i}{1+1} \\
& =\frac{2+2 i}{2}=1+i
\end{aligned}
$$

For any positive real number b, the principal square root of the negative number $-b$ is defined by

$$
\sqrt{(-b)}=i \sqrt{b}
$$

Example

Simplify:

$$
\begin{aligned}
& \sqrt{-16} \cdot \sqrt{-9} \\
& =4 i \cdot 3 i \\
& =12 i^{2}=-12
\end{aligned}
$$

Quadratic Formula

For the quadratic equation $a x^{2}+b x+c=0$,
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

Examples

Solve:

$$
\begin{aligned}
& 3 x^{2}-2 x+4=0 \\
& x^{2}-2 x+2=0
\end{aligned}
$$

Complex number.

- Standard form

$$
z=x+y i
$$

- Polar form

$$
z=r(\cos \theta+i \sin \theta)
$$

- Exponential form

$$
r=\sqrt{x^{2}+y^{2}}
$$

$$
z=r e^{i \theta}
$$

