
API 2.6
REFERENCE GUIDE

The OpenACC®
API 2.6
The OpenACC Application Program Interface describes a
collection of compiler directives to specify loops and regions
of code in standard C, C++ and Fortran to be offloaded from a
host CPU to an attached accelerator device, providing portability
across operating systems, host CPUs, and accelerators.

Most OpenACC directives apply to the immediately following
structured block or loop; a structured block is a single statement
or a compound statement (C and C++) or a sequence of
statements (Fortran) with a single entry point at the top and a
single exit at the bottom.

General Syntax
C/C++
#pragma acc directive [clause [[,] clause]...] new-line

FORTRAN
!$acc directive [clause [[,] clause]...]

An OpenACC construct is an OpenACC directive and, if
applicable, the immediately following statement, loop or
structured block.Compute Construct

A compute construct is a parallel, kernels, or serial
construct.

Parallel Construct
A parallel construct launches a number of gangs executing
in parallel, where each gang may support multiple workers, each
with vector or SIMD operations.

C/C++
#pragma acc parallel [clause [[,] clause]…] new-line
{ structured block }

FORTRAN
!$acc parallel [clause [[,] clause]…]
structured block
!$acc end parallel

CLAUSES
if(condition)
default(none)
default(present)
device_type or dtype([* | device-type-list])
async [(expression)]
wait [(expression-list)]
num_gangs(expression)
num_workers(expression)
vector_length(expression)
reduction(operator: list)
private(list)
firstprivate(list)

See Compute Construct Clauses.

copy(list)
copyin(list)
copyout(list)
create(list)
no_create(list)
present(list)
deviceptr(list)
attach(list)

See Data Clauses; data clauses on the parallel construct
modify the structured reference counts for the associated data.

Kernels Construct

A kernels construct surrounds loops to be executed on the
device, typically as a sequence of kernel operations.

C/C++
#pragma acc kernels [clause [[,] clause]…] new-line
{ structured block }

FORTRAN
!$acc kernels [clause [[,] clause]…]
structured block
!$acc end kernels

CLAUSES
if(condition)
default(none)
default(present)
device_type or dtype([* | device-type-list])
async [(expression)]
wait [(expression-list)]
num_gangs(expression)
num_workers(expression)
vector_length(expression)

See Compute Construct Clauses.

copy(list)
copyin(list)
copyout(list)
create(list)
no_create(list)
present(list)
deviceptr(list)
attach(list)

See Data Clauses; data clauses on the kernels construct
modify the structured reference counts for the associated data.

Serial Construct
A serial construct surrounds loops or code to be executed
serially on the device.

C/C++
#pragma acc serial [clause [[,] clause]…] new-line
{ structured block }

FORTRAN
!$acc serial [clause [[,] clause]…]
structured block
!$acc end serial

CLAUSES
if(condition)
default(none)
default(present)

device_type or dtype([* | device-type-list])
async [(expression)]
wait [(expression-list)]
reduction(operator: list)
private(list)
firstprivate(list)

See Compute Construct Clauses.

copy(list)
copyin(list)
copyout(list)
create(list)
no_create(list)
present(list)
deviceptr(list)
attach(list)

See Data Clauses; data clauses on the serial construct modify
the structured reference counts for the associated data.

Compute Construct Clauses
if(condition)
When the condition is nonzero or .TRUE. the compute region will
execute on the device; otherwise, the encountering thread will
execute the region.

default(none)
Prevents the compiler from implicitly determining data attributes
for any variable used or assigned in the construct.

default(present)
Implicitly assume any non-scalar data not specified in a data
clause is present.

device_type or dtype([* | device-type-list])
May be followed by any of the clauses below. Clauses following
device_type will apply only when compiling for the given
device type(s). Clauses following device_type(*) apply to
all devices not named in another device_type clause. May
appear more than once with different device types.

async [(expression)]
The compute region executes asynchronously with the
encountering thread on the corresponding async queue. With no
argument, the compute region will execute on the default async
queue.

wait [(expression-list)]
The compute region will not begin execution until all actions
on the corresponding async queue(s) are complete. With no
argument, the compute region will wait on all async queues.

num_gangs(expression)
Controls how many parallel gangs are created.

num_workers(expression)
Controls how many workers are created in each gang.

vector_length(expression)
Controls the vector length on each worker.

reduction(operator: list)
A private copy of each variable in list is allocated for each gang.
The values for all gangs are combined with the operator at the
end of the parallel region. Valid C and C++ operators are +, *,
max, min, &, |, ,̂ &&, ||. Valid Fortran operators are +, *, max, min,
iand, ior, ieor, .and., .or., .eqv., .neqv.

private(list)
A copy of each variable in list is allocated for each gang.

firstprivate(list)
A copy of each variable in list is allocated for each gang and
initialized with the value of the variable of the encountering
thread.

Data Construct
A device data construct defines a region of the program within
which data is accessible by the device.

C/C++
#pragma acc data [clause[[,] clause]…] new-line
{ structured block }

FORTRAN
!$acc data [clause[[,] clause]…]
structured block
!$acc end data

CLAUSES
if(condition)
When the condition is zero or .FALSE. no data will be allocated or
moved to or from the device.

copy(list)
copyin(list)
copyout(list)
create(list)
no_create(list)
present(list)
deviceptr(list)
attach(list)

See Data Clauses; data clauses on the data construct modify the
structured reference counts for the associated data.

Enter Data Directive
An enter data directive is used to allocate and move data to
the device memory for the remainder of the program, or until a
matching exit data directive deallocates the data.

C/C++
#pragma acc enter data [clause[[,] clause]…] new-line

FORTRAN
!$acc enter data [clause[[,] clause]…]

CLAUSES
if(condition)
When the condition is zero or .FALSE. no data will be allocated or
moved to the device.

async [(expression)]
The data movement executes asynchronously with the
encountering thread on the corresponding async queue. With
no argument, data movement will execute on the default async
queue.

wait [(expression-list)]
The data movement will not begin execution until all actions
on the corresponding async queue(s) are complete. With no
argument, the data movement will wait on all async queues.

copyin(list)
create(list)
attach(list)

See Data Clauses; data clauses on the enter data directive
modify the dynamic reference counts for the associated data.

Exit Data Directive
For data that was created with the enter data directive, the
exit data directive moves data from device memory and
deallocates the memory.

C/C++
#pragma acc exit data [clause[[,] clause]…] new-line

FORTRAN
!$acc exit data [clause[[,] clause]…]

CLAUSES
if(condition)
When the condition is zero or .FALSE. no data will be moved from
the device or deallocated.

async [(expression)]
The data movement executes asynchronously with the
encountering thread on the corresponding async queue.

wait [(expression-list)]
The data movement will not begin execution until all actions on
the corresponding async queue(s) are complete.

finalize
Sets the dynamic reference count to zero.

copyout(list)
delete(list)
detach(list)

See Data Clauses; data clauses on the exit data directive
modify the dynamic reference counts for the associated data.

Data Clauses
The description applies to the clauses used on compute
constructs, data constructs, and enter data and exit
data directives. Data clauses may not follow a device_type
clause. These clauses have no effect on a shared memory device.

copy(list) parallel, kernels, serial, data, declare
When entering the region, if the data in list is already present on
the current device, the structured reference count is incremented
and that copy is used. Otherwise, it allocates device memory
and copies the values from the encountering thread and sets
the structured reference count to one. When exiting the region,
the structured reference count is decremented. If both reference
counts are zero, the data is copied from device memory to the
encountering thread and the device memory is deallocated.

copyin(list) parallel, kernels, serial, data, enter data,
declare
When entering the region or at an enter data directive,
if the data in list is already present on the current device, the
appropriate reference count is incremented and that copy is
used. Otherwise, it allocates device memory and copies the
values from the encountering thread and sets the appropriate
reference count to one. When exiting the region the structured
reference count is decremented. If both reference counts are
zero, the device memory is deallocated.

copyout(list) parallel, kernels, serial, data, exit data,
declare
When entering the region, if the data in list is already present on
the current device, the structured reference count is incremented
and that copy is used. Otherwise, it allocates device memory and
sets the structured reference count to one. At an exit data
directive with no finalize clause or when exiting the region,
the appropriate reference count is decremented. At an exit
data directive with a finalize clause, the dynamic reference
count is set to zero. In any case, if both reference counts are zero,
the data is copied from device memory to the encountering
thread and the device memory is deallocated.

create(list) parallel, kernels, serial, data, enter data,
declare
When entering the region or at an enter data directive,
if the data in list is already present on the current device, the
appropriate reference count is incremented and that copy
is used. Otherwise, it allocates device memory and sets the
appropriate reference count to one. When exiting the region,
the structured reference count is decremented. If both reference
counts are zero, the device memory is deallocated.

no_create(list) parallel, kernels, serial, data
When entering the region, if the data in list is already present on
the current device, the structured reference count is incremented
and that copy is used. Otherwise, no action is performed and any
device code in the construct will use the local memory address
for that data.

delete(list) exit data
With no finalize clause, the dynamic reference count is
decremented. With a finalize clause, the dynamic reference count
is set to zero. In either case, if both reference counts are zero, the
device memory is deallocated.

present(list) parallel, kernels, serial, data, declare
When entering the region, the data must be present in device
memory, and the structured reference count is incremented.
When exiting the region, the structured reference count is
decremented.

deviceptr(list) parallel, kernels, serial, data, declare
C and C++; the list entries must be pointer variables that contain
device addresses, such as from acc_malloc. Fortran: the list
entries must be dummy arguments, and must not have the
pointer, allocatable or value attributes.

attach(list) parallel, kernels, serial, data, enter data
When entering the region or at an enter data directive,
if the pointers in list are already attached to their targets, the
attachment count is incremented. Otherwise, it attaches the
device pointers to their device targets and sets the attachment
count to one. When exiting the region, the attachment count is
decremented, and if the count reaches zero, the pointers will be
detached.

detach(list) exit data
With no finalize clause, the attachment count for the pointers
in list are decremented. With a finalize clause, the attachment
counts are set to zero. In either case, if the attachment count
becomes zero, the pointers in list will be detached.

Host Data Construct
A host_data construct makes the address of device data
available on the host.

C/C++
#pragma acc host_data [clause[[,] clause]…] new-line
{ structured block }

FORTRAN
!$acc host_data [clause[[,] clause]…]
structured block
!$acc end host_data

CLAUSES
use_device(list)
Directs the compiler to use the device address of any entry in list,
for instance, when passing a variable to a procedure.

if(condition)
When the condition is zero or .FALSE. the device address will not
be used.

if_present
If any entry in list is not present on the current device, the device
address will not be used and no error will result.

Loop Construct
A loop construct applies to the immediately following loop or
tightly nested loops, and describes the type of device parallelism
to use to execute the iterations of the loop.

C/C++
#pragma acc loop [clause [[,] clause]…] new-line

FORTRAN
!$acc loop [clause [[,] clause]…]

CLAUSES
collapse(n)
Applies the associated directive to the following n tightly nested
loops.

seq
Executes the loop or loops sequentially.

auto
Instructs the compiler to analyze the loop or loops to determine
whether it can be safely executed in parallel, and if so, to apply
gang, worker or vector parallelism.

independent
Specifies that the loop iterations are data-independent and can
be executed in parallel, overriding compiler dependence analysis.

tile(expression-list)
With n expressions, specifies that the following n tightly nested
loops should be split into n outer tile loops and n inner element
loops, where the trip counts of the element loops are taken from
the expression.

The first entry applies to the innermost element loop.

May be combined with one or two of gang, worker and
vector clauses.

device_type or dtype([* | device-type-list])
May be followed by the gang, worker, vector, seq, auto,
tile, and collapse clauses. Clauses following device_
type will apply only when compiling for the given device
type(s). May appear more tha once with different device types.

private(list)
A copy of each variable in list is created for each thread that
executes the loop or loops.

reduction(operator: list)
A private copy of each variable in list is allocated for each
thread that executes the loop or loops. The values for all threads
are combined with the operator at the end of the loops. See
reduction clause in the Compute Construct clauses for valid
operators.

LOOP CLAUSES WITHIN A PARALLEL CONSTRUCT OR
ORPHANED LOOP DIRECTIVE
gang
Shares the iterations of the loop or loops across the gangs of the
parallel region.

worker
Shares the iterations of the loop or loops across the workers of
the gang.

vector
Executes the iterations of the loop or loops in SIMD or vector
mode.

LOOP CLAUSES WITHIN KERNELS CONSTRUCT
gang [(num_gangs)]
Executes the iterations of the loop or loops in parallel across at
most num_gangs gangs.

worker [(num_workers)]
Executes the iterations of the loop or loops in parallel across at
most num_workers workers of a single gang.

vector [(vector_length)]
Executes the iterations of the loop or loops in SIMD or vector
mode, with a maximum vector_length.

Cache Directive
A cache directive may be added at the top of a partitioned loop.
The elements or subarrays in the list are cached in the software-
managed data cache.

C/C++
#pragma acc cache(list) new-line

FORTRAN
!$acc cache(list)

Atomic Directive
The atomic construct ensures that a specific storage location
is accessed or updated atomically, preventing simultaneous,
conflicting reading and writing threads.

C/C++
#pragma acc atomic [�read | write | update |

capture] new-line
atomic-block

If no clause is specified, the update clause is assumed.

The atomic-block must be one of the following:

	 clause	 atomic-block
	 read 	 v = x;
	 write 	 x = expr;
	 update 	 update-expr;
	 capture 	v = update-expr;
		 { update-expr; v = x; }
		 { v = x; update-expr; }
		 { v = x; x = expr; }

where update-expr is one of
	x++; x--; ++x; --x;
	x binop= expr;
	x = x binop expr;
	x = expr binop x;

FORTRAN
!$acc atomic [read | write | update | capture]
stmt-1
[stmt-2]
[!$acc end atomic]

If no clause is specified, the update clause is assumed. The end
atomic directive is required if stmt-2 is present. The statements
allowed are:
	 clause 	 stmt-1 	 stmt-2
	 read 	 capture-stmt
	 write 	 write-stmt
	 update 	 update-stmt
	 capture 	 update-stmt 	 capture-stmt
		 capture-stmt 	 update-stmt
		 capture-stmt 	 write-stmt
capture-stmt is
	 v = x
write-stmt is
	 x = expr
update-stmt is one of
	 x = x operator expr
	 x = expr operator x
	 x = intrinsic_proc(x, expr-list)
	 x = intrinsic_proc(expr-list, x)

Update Directive
The update directive copies data between the memory for the
encountering thread and the device. An update directive may
appear in any data region, including an implicit data region.

C/C++
#pragma acc update [clause [[,] clause]…] new-line

FORTRAN
!$acc update [clause [[,] clause]…]

CLAUSES
self(list) or host(list)
Copies the data in list from the device to the encountering
thread.

device(list)
Copies the data in list from the encountering thread to the
device.

if(condition)
When the condition is zero or .FALSE., no data will be moved to
or from the device.

if_present
Issue no error when the data is not present on the device.

async [(expression)]
The data movement will execute asynchronously with the
encountering thread on the corresponding async queue.

wait [(expression-list)]
The data movement will not begin execution until all actions on
the corresponding async queue(s) are complete.

Wait Directive
The wait directive causes the encountering thread to wait
for completion of asynchronous device activities, or for
asynchronous activities on one async queue to synchronize with
one or more other async queues. With no expression, it will wait
for all outstanding asynchronous regions or data movement.

C/C++
#pragma acc wait [(expression-list)] [clause [[,] clause]…]
new-line

FORTRAN
!$acc wait [(expression-list)] [clause [[,] clause]…]

CLAUSE
async [(expression)]
Enqueue the wait operation on the associated device queue. The
encountering thread may proceed without waiting.

Routine Directive
The routine directive tells the compiler to compile a procedure
for the device and gives the execution context for calls to the
procedure. Such a procedure is called a device routine.

C/C++
#pragma acc routine [clause [[,] clause]…] new-line
#pragma acc routine(name) [clause [[,] clause]…]
new-line

Without a name, the routine directive must be followed
immediately by a function definition or prototype.

FORTRAN
!$acc routine [clause [[,] clause]…]
!$acc routine(name) [clause [[,] clause]…]

Without a name, the routine directive must appear in the
specification part of a subroutine or function, or in the interface
body of a subroutine or function in an interface block.

CLAUSE
gang
Specifies that the procedure may contain a gang-shared loop,
therefore calls to this procedure must appear outside any gang-
shared loop. All gangs must call the procedure.

worker
Specifies that the procedure may contain a worker-shared loop,
therefore calls to this procedure must appear outside any worker-
shared loop.

vector
Specifies that the procedure may contain a vector-shared loop,
therefore calls to this procedure must appear outside any vector-
shared loop.

seq
Specifies that the procedure has no device work-shared loops. A
call to the procedure will be executed sequentially by the thread
making the call.

bind(name)
Specifies an alternate procedure name to use when compiling or
calling the procedure on the device.

bind(string)
Specifies a quoted string to use for the name when compiling or
calling the procedure on the device.

device_type or dtype([* | device-type-list])
See Compute Construct Clauses section for list of applicable
clauses. Clauses following device_type will apply only
when compiling for the given device type(s). Clauses following
device_type(*) apply to all devices not named in another
device_type clause.

nohost
Specifies that a host version of the procedure should not be
compiled.

Global Data
C or C++ global, file static or extern objects, and Fortran module
or common block variables or arrays that are used in device
routines must appear in a declare directive in a create,
copyin, device_resident or link clause.

Implicit Data Region
An implicit data region is created at the start of each procedure
and ends after the last executable statement in that procedure.

Declare Directive
A declare directive is used to specify that data is to be
allocated in device memory for the duration of the implicit data
region of the program or subprogram.

C/C++
#pragma acc declare [clause [[,] clause]…] new-line

FORTRAN
!$acc declare [clause [[,] clause]…]

Data clauses are allowed.

OTHER CLAUSES
device_resident(list)
Specifies that the variables in list are to be allocated on the
device for the duration of the implicit data region.

link(list)
For large global static data objects, specifies that a global link
for each object in list is to be statically allocated on the device.
Device memory for the object will be allocated when the object
appears in a data clause, and the global link will be assigned.

Runtime Library Routines
Prototypes or interfaces for the runtime library routines, along
with datatypes and enumeration types, are available as follows:

C/C++
#include “openacc.h”

FORTRAN
use openacc

C AND FORTRAN ROUTINES
In the following, h_void* is a void* pointer to host memory,
and d_void* is a void* pointer to device memory.

acc_get_num_devices(devicetype)
Returns the number of devices of the specified type.

acc_set_device_type(devicetype)
Sets the device type to use for this host thread.

acc_get_device_type()
Returns the device type that is being used by this host thread.

acc_set_device_num(devicenum, devicetype)
Sets the device number to use for this host thread.

acc_get_device_num(devicetype)
Returns the device number that is being used by this host thread.

acc_get_property(devicenum, devicetype, property)
Returns an integer-valued property:

acc_property_memory
acc_property_free_memory

acc_get_property_string(devicenum, devicetype,
property)
Returns a C string-valued property.

acc_get_property_string(devicenum, devicetype,
property, retvalue)
Returns a Fortran string-valued property into the last argument:

acc_property_name
acc_property_vendor
acc_property_driver

acc_shutdown(devicetype)
Disconnects this host thread from the device.

acc_async_test(expression)
Returns nonzero or .TRUE. if all asynchronous activities on the
async queue associated with the given expression have been
completed; otherwise returns zero or .FALSE.

acc_async_test_all()
Returns nonzero or .TRUE. if all asynchronous activities have been
completed; otherwise returns zero or .FALSE.

acc_wait(expression)
Waits until all asynchronous activities on the async queue
associated with the given expression have been completed.

acc_wait_all()
Waits until all asynchronous activities have been completed.

acc_wait_async(expression, expression)
Enqueues a wait operation for the async queue associated with
the first argument onto the async queue associated with the
second argument.

acc_wait_all_async(expression)
Enqueues a wait operation for the all async queues onto the
async queue associated with the expression.

acc_get_default_async()
Returns the async queue used by default when no queue is
specified in an async clause.

acc_set_default_async(expression)
Sets the async queue associated with the expression as the
default async queue used by default when no queue is specified
on an async clause.

acc_on_device(devicetype)
In a compute region, this is used to take different execution
paths depending on whether the program is running on a device
or on the host.

acc_malloc(size_t)
Returns the address of memory allocated on the device.

acc_free(d_void*)
Frees memory allocated by acc_malloc.

acc_map_data(h_void*, d_void*, size_t)
Creates a new data lifetime for the host address, using the
device data in the device address, with the data length in bytes.

acc_unmap_data(h_void*)
Unmaps the data lifetime previously created for the host address
by acc_map_data.

acc_deviceptr(h_void*)
Returns the device pointer associated with a host address.
Returns NULL if the host address is not present on the device.

acc_hostptr(d_void*)
Returns the host pointer associated with a device address.
Returns NULL if the device address is not associated with a
host address.

acc_memcpy_to_device(�d_void*, h_void*,
size_t)

acc_memcpy_to_device_async(�d_void*, h_void*,
size_t, int)

Copies data from the local thread memory to the device.

acc_memcpy_from_device(�h_void*, d_void*,
size_t)

acc_memcpy_from_device_async(�h_void*,
d_void*,
size_t, int)

Copies data from the device to the local thread memory.

acc_memcpy_device(�d_void*, d_void*, size_t)

acc_memcpy_device_async(�d_void*, d_void*,
size_t, int)

Copies data from one device memory location to another.

DATA MOVEMENT ROUTINES
The following data routines are called with C prototype:
	routine(h_void*, size_t)
and in Fortran with interface:
	 subroutine routine(a)
		type(*), dimension(..) :: a
	subroutine routine(a, len)
		type(*) :: a
		integer :: len

The async versions are called with C prototype:
	routine_async(h_void*, size_t, int)

and in Fortran with interface:
	 subroutine routine_async(a, async)
		type(*), dimension(..) :: a
		integer :: async
	subroutine routine(a, len, async)
		type(*) :: a
		integer :: len, async

acc_copyin, acc_copyin_async
Acts like an enter data directive with a copyin clause. Tests
if the data is present, and if not allocates memory on and copies
data to the current device. Increments the dynamic reference
count.

acc_create, acc_create_async
�Acts like an enter data directive with a create clause. Tests
if the data is present, and if not allocates memory on the current
device. Increments the dynamic reference count.

acc_copyout, acc_copyout_async
�Acts like an exit data directive with a copyout and no
finalize clause. Decrements the dynamic reference count. If
both reference counts are zero, copies data from and deallocates
memory on the current device.

acc_copyout_finalize,
acc_copyout_finalize_async
�Acts like an exit data directive with a copyout and
finalize clause. Zeros the dynamic reference count. If both
reference counts are zero, copies data from and deallocates
memory on the current device.

acc_delete, acc_delete_async
Acts like an exit data directive with a delete and no
finalize clause. Decrements the dynamic reference count.
If both reference counts are zero, deallocates memory on the
current device.

acc_delete_finalize, acc_delete_finalize_async
Acts like an exit data directive with a delete and a
finalize clause. Zeros the dynamic reference count. If both
reference counts are zero, deallocates memory on the current
device.

acc_update_device, acc_update_device_async
Acts like an update directive with a device clause. Updates
the corresponding device memory from the host memory.

acc_update_self, acc_update_self_async
Acts like an update directive with a self clause. Updates the
host memory from the corresponding device memory.

acc_is_present
Tests whether the specified host data is present on the
device. Returns nonzero or .TRUE. if the data is fully present on
the device.

acc_attach(h_void**),
acc_attach_async(h_void**, int)
Attaches the device copy of the pointer argument to its device
target, if it is not attached; otherwise increments the attachment
count.

acc_detach(h_void**),
acc_detach_async(h_void**, int)
Decrements the attachment count of the pointer argument;
detaches the device copy of the pointer argument from its
device target if the count reaches zero.

acc_detach_finalize(h_void**),
acc_detach_finalize_async(h_void**, int)
Sets the attachment count of the pointer argument to zero
and detaches the device copy of the pointer argument from its
device target.

Environment Variables
ACC_DEVICE_TYPE device
The variable specifies the device type to which to connect.
This can be overridden with a call to acc_set_device_type.

ACC_DEVICE_NUM num
The variable specifies the device number to which to connect.
This can be overridden with a call to acc_set_device_num.

Conditional Compilation
The _OPENACC preprocessor macro is defined to have value
yyyymm when compiled with OpenACC directives enabled. The
version described here has value 201711

© 2017 openacc-standard.org. All Rights Reserved.

More OpenACC resources available at
www.openacc.org

