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p. ; cm.
Includes bibliographical references and index.
ISBN 978-0-470-06035-3 (cloth : alk. paper)
1. Biomedical engineering—Computer simulation. I. Kojic, Milos, 1941–
[DNLM: 1. Biomedical Engineering. 2. Biomedical Technology.
3. Computer Simulation. 4. Software. QT 36 C7375 2008]
R858.C6415 2008
610.28—dc22

2008002698

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN 978-0-470-06035-3

Typeset in 10/12pt Times by Integra Software Services Pvt. Ltd, Pondicherry, India
Printed and bound in Great Britain by Antony Rowe Ltd, Chippenham, Wiltshire



About this Book

This book is comprised of the following entities:

A. The Main Text

Presented in three parts: I II and III
Organized in chapters and sections with reference to other entities on the web.

B. Theory – available at www.wiley.com/go/kojic

Additional details are provided which complement the main text and extend it to give the
more complete presentation of the text in the Entity A.

C. Examples – available at www.wiley.com/go/kojic

Additional details are provided for examples from Entity A, and some additional examples
are given.

D. Software – the link for the software can be accessed via www.wiley.com/go/kojic

User can run examples by the Software with menu for each example. The menu contains
example parameters, options for execution and results display, and Tutorial. Examples are
organized according to chapters and sections of the main text (Entity A). Some examples
are from the main text and a number of additional examples are included.

The Software will continuously be updated by the authors.

To access parts B, C and D on the web, the user will need to use the password: nanotechnology
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University of Kragujevac, Serbia

Gareth McKinley
Massachusetts Institute of Technology, USA

Srboljub Mijailović
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Preface

Bioengineering in recent years has become one of the most attractive fields of research
and development in industry, education and medicine. The development mainly relies on
experimental investigations, which have increasingly been coupled to computer modeling.

The aim of this book is to provide basic information about the methods used in computer
modeling and simulation of biological systems and processes and to present typical results
of modeling. The book is accompanied by software on the world wide web for studying the
representative biomechanical problems in more detail. The primary goal of the book is to
serve as a textbook in various bioengineering university courses, as well as a support for
basic and clinical research.

The presented text, results and software rely on the work of the authors over a number of
years, together with collaborators and contributors from the University of Kragujevac, Serbia
and other universities (Harvard University, Boston University, University of Texas Health
Science Center at Houston, The Hong Kong Polytechnic University). Most of the topics are
presented as an introduction, referring to our modeling results, rather than as an extensive
overview of various approaches. On the other hand, we have given in-depth analyses where
we considered useful to further elucidate the biomedical problem.

The book is divided into three parts: I Theoretical Background of Computational Methods,
II Fundamentals of Computational Methods, and III Computational Methods in Bioengi-
neering. In the first part, Chapters 1–3, the basic relations are summarized for the ease of
the presentations in the subsequent chapters and for overall completeness. This summary is
accompanied by a rather small number of solved examples to illustrate applications of the
theoretical considerations.

Part II, Chapters 4–8, covers computational methods that are subsequently implemented
in modeling of bioengineering problems. The basis is the Finite Element (FE) method which
is commonly used in engineering, science and medicine. Here, we give the essence of
the method, for solids, general field problems and coupled physical fields, in linear and
nonlinear domains. Also, we present in Chapter 8 the fundamentals of more recent methods,
such as Dissipative Particle Dynamics (DPD), Smoothed Particle Hydrodynamics (SPH),
and Element-Free Galerkin (EFG) method, as well as coupling of these methods to the
FE method, and a multiscale approach. The last methods are especially well suited for
bioengineering applications and are also implemented in the subsequent chapters. The most
representative example solutions are shown at the end of sections, and for most of them the
software on the web provides a more detailed analysis.

In the last part, Chapters 9–19, the computational methods of Part II are applied to various
bioengineering problems. Each chapter contains the following: physiological background and
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significance, description of the computational methods used for modeling of the considered
problems, and example solutions. The examples are selected to be representative and the
most important results are shown in the form of graphs or fields of the considered physical
quantity. The solutions are mainly obtained using the current stage of the computer package
PAK (University of Kragujevac, Serbia).

On the web, accompanying the book, the following sections are provided: Theory,
Examples, and Software. In Theory, we provide additions to the text in the book in order
to make some of the topics more complete and with more detail of certain derivations.
In Examples we give further details for some of the examples from the book, or present
more example solutions. The Software contains most of examples from the book, with extra
examples given. For each of the examples a specific interface is developed so that the model
can be generated by the menu with the suitable model parameters. These parameters can be
changed within a given range in order to elucidate the effects of various conditions for the
considered problem. Post-processing of results can be selected by the menu and results can
be displayed by the selected option. Also, a Tutorial is provided for each example where
the example is described in detail and guidance through the solution approach is suggested.
The Software relies on the current stage of the software package PAK and the size of each
example, as well as the range of the model parameters, are limited. Questions about the use
of the Software and solutions of problems which are more general or over the prescribed
limits, can be sent to the authors: http://www.wiley.com/go/kojic.

The book is prepared mainly as a textbook for upper-level undergraduate or graduate
courses in bioengineering, engineering and applied sciences in general, and medicine. For
the courses where the computational methods are important, the chapters within Part I and
Part II should be used. There, a selection can be made with respect to problems of solids
or field problems. In the case of the emphases on solids, Chapters 2, 4, 5, 6 and 8 provide
the theoretical background and basics of the computational methods. When the emphasis
is on the field problems, then Chapters 2 (with selection of sections), 3, 7 and 8 can be
used. After these theoretical background chapters a number of chapters within Part III can be
examined. In the case where the fundamentals of the computational methods are not essential,
an overview of topics within Part I and Part II can be made, or both parts can be skipped;
followed by a selection of Chapters in Part III. We have organized chapters in Part III to
be self-sufficient in a way that each chapter has physiological considerations, a presentation
of computational methods, and example solutions. Here, also, some of the computational
methods description can be skipped without losing the essence of the computer modeling
goals and purpose.

We consider that support by the Software on the web should be of great help for
lecturers when organizing classes. The theoretical presentations (either from the theoretical
background or from bioengineering applications) can be accompanied by use of the Software
with menu-driven modeling and solution display. Use of the Software can also aid students
when studying various theoretical or bioengineering problems.

The book is also prepared to be useful for researchers in various fields related to
bioengineering as well as other scientific fields, including medical applications. The book
provides basic information about how a bioengineering (or medical) problem can be modeled,
which computational models can be used, and the background of the applied computer
models. Each of the bioengineering problems treated in this book has been analyzed elsewhere
from different aspects, with more detail and particular theoretical considerations. We have
referred to these analyses to a certain extent, but these referrals are far from being complete,
since the field of computer modeling in bioengineering is vast and consistently expanding.
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Part I

Theoretical Background of
Computational Methods





1

Notation – Matrices and Tensors

In this chapter, we give the definition of matrices and tensors for the purpose of notation used
in the book. We summarize the basic relations that are useful for reading the text, without
any proofs or in-depth presentation. More details are given on the web (Theory, Chapter 1,
Examples, Chapter 1). For further reading the reader should consult books specialized to this
topic (e.g. Fung 1965, Malvern 1969, Mase & Mase 1999).

1.1 Matrix representation of mathematical objects

For some physical quantities, a single number is sufficient to define the quantity. For example,
we use T to denote temperature at a given material point, and associate a certain value with
T (e.g. T = 20 �C). The quantity specified by a single number is called a scalar. We will
denote scalars by italic letters.

However, many quantities need more than one number to be completely defined. For
example, in order to define velocity of a particle, we need to know not only the magnitude of
the velocity, but also its direction and orientation in space. The spatial direction, magnitude
and orientation are defined by, say, three velocity components in a Cartesian coordinate
system: v1� v2� v3. We denote the velocity by a bold letter v, associating with it three scalars
v1� v2� v3. In general, we use a bold lower case letter for a vector b, or a column matrix of
the order 1×n, defined as

b =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1

b2

�
�

bn−1

bn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1.1.1)
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4 COMPUTER MODELING IN BIOENGINEERING

We will be using notation of a transpose of a vector, bT , which assumes an interchange of
the rows and columns, i.e.,

bT = [
b1 b2 � � bn−1 bn

]
(1.1.2)

For some physical quantities we need more complex representation than a vector. For
example, the state of stress at a material point is represented by values of forces per unit area
at three orthogonal planes (details are shown on the web – Theory, Chapter 1). Hence we
need nine scalars (three for each force), which we order in a two-dimensional matrix form
as �11� �12� �13� � � � � � ��31� �32� �33. In general, a two-dimensional matrix B (capital bold
letter is used for a matrix) of order m×n is defined as a mathematical object with terms
Bij in which the first index denotes the row number, and the second index represents the
column number,

B =

⎡
⎢⎢⎢⎢⎢⎢⎣

B11 B12 . . B1n−1 B1n

B21 B22 . . B2n−1 B2n

� � . . � �
� � . . � �

Bm−1�1 Bm−1�2 . . Bm−1�n−1 Bm−1�n

Bm1 Bm2 . . Bm�n−1 Bm�n

⎤
⎥⎥⎥⎥⎥⎥⎦

(1.1.3)

We will be mainly using square matrices, where m = n. If the columns and rows are
interchanged, then we have the transposed matrix,

(
BT
)

ij
= Bji (1.1.4)

Following this definition of matrix, it is possible to extend the matrix to have more than
two dimensions. However, in our presentation throughout the book, by a matrix we assume a
two-dimensional square matrix, unless otherwise stated. A square matrix is symmetric when

Bji = Bij i� j = 1� 2� � � � � � n (1.1.5)

1.2 Basic relations in matrix algebra

We list here some of the basic matrix algebra relationships that are used in this book.
The addition of vectors a and b is expressed by

c = a +b or ci = ai +bi i = 1� 2� � � � � � � n (1.2.1)

resulting in the vector c with components ci. In the case of subtraction we have a ‘minus’
instead of ‘plus’ sign. Summation of matrices A and B assumes the same order of these
matrices, say m×n, and is given as

C = A+B or Cij = Aij +Bij i = 1� 2� � � � � � �m� j = 1� 2� � � � � � n (1.2.2)

The resulting matrix C is also of the order m×n, with terms Cij .
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The scalar (matrix) multiplication of vectors a and b results in the scalar c according to
the relation

c = aT b = bT a =
n∑

s=1

asbs = asbs (1.2.3)

We will generally omit the summation sign by using the convention that the summation is
carried over repeated indices (here the index ‘s’ is also called the dummy index). This is
known as the Einstein summation convention. On the other hand, a dyadic multiplication
abT gives the matrix C,

C = abT or Cij = aibj (1.2.4)

with the terms Cij .
The matrix multiplication between a matrix and a vector, or between two matrices, is

defined as follows:

c = Ab� ci = Aikbk (1.2.5)

C = AB� Cij = AikBkj (1.2.6)

Note that the following relation can be proved

CT = �AB�T = BT AT �
(
CT
)

ij
= BkiAjk (1.2.7)

The scalar multiplication of two matrices is given as

c = A ·B = AijBij (1.2.8)

The inverse of a matrix A, denoted as A−1, is the matrix which satisfies the relation

AA−1 = I� AikA
−1
kj = 	ij (1.2.9)

where I is the identity matrix (diagonal terms equal to one, all other terms equal to zero),
and 	ij are the Kronecker delta symbols: 
ij = 1 for i = j� 
ij = 0 for i �= j.

The determinant of a matrix A, denoted as detA or �A�, is defined as

det A ≡ �A� = eijkA1iA2jA3k� i� j� k = 1� 2� 3 (1.2.10)

where eijk is the permutation symbol, with values: eijk = 0 for i = j or j = k or i = k or
i = j = k� eijk = 1 for even permutation of 1,2,3; eijk = −1 for odd permutation of 1,2,3.
Calculation of the matrix determinant is needed for the matrix inversion, therefore the inverse
matrix exists if the determinant of the matrix is not equal to zero.

Two matrices A and B are orthogonal if the following relationship is satisfied:

AB = I� or AikBkj = 	ij� i� j = 1� 2� � � � � � �m� k = 1� 2� � � � � � n (1.2.11)

Note that the identity matrix is of dimension m×m. The matrix A is orthogonal if

AT A = I� or AkiAkj = 	ij� i� j = 1� 2� � � � � � �m� k = 1� 2� � � � � � n (1.2.12)
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1.3 Definition of tensors and some basic tensorial relations

Tensors are mathematical objects defined by components associated with a coordinate system.
These components change when the coordinate system is changed, according to certain
rules (tensorial transformation rules). Note, however, that tensors (as well as vectors) do
not change with the change of the coordinate system, only their components change. We
will use tensors to represent physical quantities for which the transformation rules have the
physical background. Throughout the book we will be using the Cartesian coordinate system
with unit vectors (triad) i1� i2� i3, shown in Fig. 1.3.1.

A first-order tensor b is represented in two coordinate systems (with unit vectors ik and
ik) as

b = bkik = b1i1 +b2i2 +b3i3 = bkik = b1i1 +b2i2 +b3i3 (1.3.1)

where bk and bk are the vector components in the two coordinate systems. The relationships
between the components in the two systems are given by

bj = Tjkbk (1.3.2)

where Tjk are the cosines of angles between the unit vectors ij and ik of the two coordinate
systems, Tjk = cos�ij� ik�. Note that this equation represents the matrix multiplication of
the form (1.2.5), involving the 3 × 3 transformation matrix T and the 3 × 1 vector of the
form (1.1.1).

A second-order tensor B is defined as

B = Bjkijik = B11i1i1 +B12i1i2 +B13i1i3 + � � � � � +B31i3i1 +B32i3i2 +B33i3i3 =
= Bjkijik = B11i1i1 +B12i1i2 +B13i1i3 + � � � � �+B31i3i1 +B32i3i2 +B33i3i3

(1.3.3)

with components Bjk and Bjk in the coordinate systems ik and ik, respectively. These com-
ponents can be represented in the matrix form (1.1.3). The transformation of the tensorial
components due to change of the coordinate system is

Bjm = TjkBksTms (1.3.4a)

Fig. 1.3.1 Graphical representation of a vector b in two Cartesian systems
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which corresponds to the matrix multiplication (1.2.6),

B = TBTT (1.3.4b)

Tensors of higher order can be defined, following (1.3.3), but we will use the second-order
tensors and will call them tensors.

We further cite the tensorial relations used in the book. The dot product (multiplication)
of two vectors, tensor and vector, and two tensors, are consecutively defined as follows:

c = a ·b = akik ·bmim = akbk (1.3.5)

c = Ab = Ajkijik ·bmim = Ajkbmijik · im = Ajkbmij	km = Ajkbkij

cj = Ajkbk

(1.3.6)

C = AB = Ajkijik ·Bmsimis = AjkBmsijik · imis = AjkBms	kmijis = AjkBksijis

Cjs = AjkBks

(1.3.7)

Here we have employed the orthogonality of the unit vectors ik and im, i.e., ik · im = 	km.
The dot product of two vectors is also called the scalar product. It can be seen that the dot
product of two vectors gives a scalar, the dot product of tensor and vector gives vector, and
the dot product of two tensors gives a tensor.

We will also use the cross-product of two vectors defined as

c = a ×b� or ci = eijkajbk (1.3.8)

The scalar product of two tensors gives a scalar, and is defined as

c = A ·B = AijBij (1.3.9)

The Euclidean norms of a vector and a tensor are

�b� = (
bjbj

)1/2
� �A�2 = (

AijAij

)1/2
(1.3.10)

The rotation tensor R corresponding to two coordinate systems with unit vectors ik and
ik is defined by the components

Rkm = cos�ik� im� (1.3.11)

It can be shown that the following relationship holds (see web – Theory, Chapter 1)

im = Rim (1.3.12)

leading to a rotation of vector im. Multiplication of any vector b by the rotation tensor R
rotates this vector as it rotates the vector im. The following relation is valid R = TT . It is
important to emphasize that multiplication of a vector b by the transformation matrix T
gives the vector components in a rotated coordinate system of the same vector (see (1.3.2)
and Fig. 1.3.1; also see web – Theory, Chapter 1). On the other hand, multiplication of a
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vector b by the rotation tensor R produces another vector b, rotated with respect to b (see
web – Theory, Chapter 1).

Finally, we define the principal values and principal directions of a tensor. In order to
introduce these quantities, consider the following equation

Ap = �p or �A−�I� p = 0 (1.3.13)

where � is a scalar, and p is a unit vector. The equation has a nontrivial solution �p �= 0� if
determinant of the system matrix A−�I is equal to zero,

det �A−�I� = 0� or �3 − I1�
2 + I2�− I3 = 0 (1.3.14)

where I1� I2� I3 are the first, second and third invariants of the tensor A,

I1 = trA = Aii = A11 +A22 +A33� I2 = 1
2

(
AiiAjj −AijAji

)
�

I3 = det A = eijkA1iA2jA3k� i� j� k = 1� 2� 3
(1.3.15)

If the matrix A is symmetric and its terms are real numbers, then there are three real solutions
�1� �2� �3 which are the principal values, or eigenvalues of matrix A. To each principal
value �k there corresponds the principal vector, or eigenvector pk. It can be shown that
principal vectors pk are orthogonal (or orthonormal if eigenvectors are unit vectors), forming
the principal basis of the tensor A (see Example 1.5-4). Therefore, the tensor A in the
principal basis, written in a matrix and tensorial form, is:

A =
⎡
⎣�1 0 0

0 �2 0
0 0 �2

⎤
⎦ � or A = �1p1p1 +�2p2p2 +�3p3p3 (1.3.16)

In practical calculations of the principal vectors, we use (for a given principal value �k)
two of the equations (1.3.13) and one representing the condition that pk is a unit vector.
Therefore the following system of equations is solved:

�A11 −�k�p�k�1 +A12p�k�2 +A13p�k�3 = 0

A21p�k�1 + �A22 −�k�p�k�2 +A23p�k�3 = 0� no sum on k
(
p�k�1

)2 + (p�k�2

)2 + (p�k�3

)2 = 1

(1.3.17)

Further details about the eigenvalue problem can be seen in Examples 1.5-4; 2.1-4 and 2.1-6
on the web (Examples, Chapter 2).

1.4 Vector and tensor differential operations
and integral theorems

Here, the vector and tensor differential operations and integral theorems used in this book
are summarized. Throughout the text, we mainly refer to the Cartesian coordinate system.
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Differential Operations
We start with the differential operator ‘nabla’ or ‘del’, defined as

� = 

x1

i1 + 

x2

i2 + 

x3

i3 ≡ 

xk

ik (1.4.1)

which is a vector-operator with components /xk� k = 1� 2� 3. When applied to a scalar
function ��x1� x2� x3�, the gradient of the function � is obtained,

�� = �

x1

i1 + �

x2

i2 + �

x3

i3 ≡ �

xk

ik (1.4.2)

as a vector, with the components �/xk. The gradient of a vector field b �x1� x2� x3� is

�b = 

xk

(
bjij

)
ik = bj

xk

ijik (1.4.3)

and represents the second-order tensor with components ��b�kj = bj/xk. The �b is called
the dyadic product of the vectors � and b.

The divergence of a vector field b �x1� x2� x3� is defined as

� ·b ≡ divb = 

xk

(
bjij

) · ik = bj

xk

ij · ik = bj

xk

	jk = bk

xk

(1.4.4)

and represents a scalar. The divergence of a tensor field A �x1� x2� x3� is

� ·A ≡ divA = ik


xk

· (Ajmijim
)= Ajm

xk

ik · ijim = Akm

xk

im (1.4.5)

Therefore, � ·A is a vector with components �� ·A�m = Akm/xk.
The curl of a vector field is (see the definition of cross-product (1.3.8)) is

� ×b = emjk

bk

xj

im =
(

b3

x2

− b2

x3

)
i1 +

(
b1

x3

− b3

x1

)
i2 +

(
b2

x1

− b1

x2

)
i3 (1.4.6)

representing a vector with components shown here.
The Laplacian operator is defined as

� ·� ≡ � = ik


xk

· im


xm

= 2

xkxk

≡ 2

�x1�
2 + 2

�x2�
2 + 2

�x3�
2 (1.4.7)

which is a scalar differential operator. Hence, the Laplacian of a scalar field is the scalar

� ·�� ≡ �� = 2�

xkxk

≡ 2�

�x1�
2 + 2�

�x2�
2 + 2�

�x3�
2 (1.4.8)

while the Laplacian of a vector field is the vector

� ·�b ≡ �b = 2bj

xkxk

ij = (
�bj

)
ij (1.4.9)

with components �bj .
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Integral Theorems
We list here the integral theorems that are used subsequently. The mostly used is the Gauss
Theorem (Fung 1965, Bird et al. 2002). If a closed volume V in space is bounded by a
surface S, then for a vector field we have

∫
V

� ·bdV =
∫
S

n ·bdS� or
∫
V

bk

xk

dV =
∫
S

bjnjdS (1.4.10)

where n is the unit normal of the surface element dS. This relation is also known as the
Gauss–Ostrogradskii or the Divergence Theorem. In the case of a scalar field ��xk� and a
tensor field A �xk�, the Gauss theorem is

∫
V

��dV =
∫
S

�ndS� or
∫
V

�

xi

dV =
∫
S

�nidS (1.4.11)

and ∫
V

� ·AdV =
∫
S

n ·AdS� or
∫
V

Aki

xk

dV =
∫
S

nkAkidS (1.4.12)

Note that in case of a two-dimensional domain, the volume V becomes the surface S and the
surface S in the above integrals becomes the two-dimensional domain contour line L. Proof
of the Gauss theorem and additional details are given on the web – Theory, Chapter 1.

Next, we give the expression for the so-called material derivative of volume integral.
Assume that a continuum is moving in space. Considering the continuum as a set of material
particles, we have that physical quantities, such as mass density, temperature, velocity,
stresses, are associated with each material particle, changing over time while particles move.
Let �V be the total value of a quantity � (it is a scalar: temperature, density, � � � , or a
component of a vector or tensor) over all material particles occupying currently a fixed
closed space volume Vspace, i.e.

�V =
∫

Vspace

�dV (1.4.13)

If we want to find the rate of change of �V , we obtain

D�V

Dt
=

∫
Vspace

�

t
dV +

∫
Sspace

�v ·ndS =

=
∫

Vspace

(
�

t
+ �

xk

vk +�
vk

xk

)
dV =

∫
Vspace

(
D�

Dt
+�

vk

xk

)
dV

(1.4.14)

The integral over the surface Sspace, which encloses the volume Vspace, represents the flux of
� through the surface. We have used the Gauss theorem (1.4.11) to transform the surface
integral to the volume integral. Also we use the notation D�V /Dt to indicate that the time
derivative is evaluated assuming the same material particles. Consequently, the derivative

D�

Dt
≡ �

t
+ �

xk

vk (1.4.15)
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is called the material (or substantial) derivative of �. If a spatial field of a physical
quantity � which changes with time is defined, � �xk� t�, then the derivative �/t is the
local derivative assuming constant spatial coordinates xk; while the term ��/xk� vk is the
convective derivative which takes into account motion of the material particle. Therefore, for
a given spatial field �, the sum of these last two derivatives gives the rate of change D�/Dt
for a material particle (material point) at a given space position. The material derivatives are
used when transport phenomena are studied (e.g. mass and heat transport).

Additional details about the relations presented in this section are given on the web –
Theory, Chapter 1.

1.5 Examples

Example 1.5-1. Prove the e-� identity
The following relations between the permutation symbol eijk and the Kronecker-delta symbol
	ij can be proved:

eijkeimn = 	jm	kn −	jn	km (E1.5-1.1)

Details of the poof of these relations are given on the web – Examples, Section 1.5.

Example 1.5-2. Derive the procedure for calculation of the inverse matrix
For simplicity, consider a 3×3 matrix A. The matrix A−1 is the matrix which satisfies the
relation (1.2.9). We write the matrix A−1 as

A−1 = [
A−1

ij

]= [
x�1�x�2�x�3�

]
(E1.5-2.1)

where the vector x�i� is the i-th column of the matrix A−1, i.e. we have that x�i�j = A−1
ji . The

equations (1.2.9) can be written as a system of three equations:

Ax�i� = ��i�� i = 1� 2� 3 (E1.5-2.2)

where the vectors ��1����2����3� have the components 	�i�j = 	ij .
By solving this system of equations, we obtain that the terms A−1

ij of the matrix A−1 are:

A−1
ij = 1

D
Dji� or A−1 = 1

D
DT (E1.5-2.3)

where D = [
Dij
]

is the matrix of cofactors of the matrix A. Details of this derivation and
problems for exercise are given on the web – Examples, Section 1.5.

Example 1.5-3. Determine the rotation tensor using the relation (1.3.12)
The component form of this relation is

i���k = Rkji���j (E1.5-3.1)
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We multiply this equation by i���s and sum such three equations on � to obtain

3∑
�=1

i���ki���s =
3∑

�=1

Rkji���ji���s = Rkj

3∑
�=1

i���ji���s = Rkj	js = Rks (E1.5-3.2)

We have used here the orthogonality property of the base vectors i���. Namely, we have that
i���k = i�k�� and then

3∑
�=1

i�j��i�s�� = i�j� · i�s� = 	js (E1.5-3.3)

The relation (E1.5-3.1) can be written in a dyadic (direct notation) as

R =
3∑

�=1

i���i��� = i�1�i�1� + i�2�i�2� + i�3�i�3� (E1.5-3.4)

The tensor R written in a matrix form is

x1 x2 x3

x1

R = x2

x3

l1 l2 l3

m1 m2 m3

n1 n2 n3

(E1.5-3.5)

where the coefficients li�mi� ni are the cosines of the angles between, respectively, the axes
x1� x2� x3 and x1� x2� x3. Note that the transformation matrix T in (1.3.2) is

x1 x2 x3

x1

T = RT x2

x3

l1 m1 n1

l2 m2 n2

l3 m3 n3

(E1.5-3.6)

EXERCISE
(a) Determine the rotation tensor R using the relation (1.3.12) and two orthogonal bases p���

and p��� which do not coincide. The solution is (see web – Examples, Section 1.5):

R =
3∑
�

p���p��� (E1.5-3.7)

(b) Write the rotation tensor in the bases p��� and p���.

(c) Prove that the rotation tensor is orthogonal, i.e. RT R = I.

Example 1.5-4. Show that that the principal vectors are orthogonal and that the
symmetric tensor in the principal directions is diagonal
Consider two principal vectors pm and pn of the symmetric matrix A, corresponding to the
eigenvalues �m �= �n. Then, according to (1.3.13) we have

Apm = �mpm

Apn = �npn� no sum on m and n
(E1.5-4.1)
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If we multiply the first equation by pT
n and the second equation by pT

m and subtract the
resulting scalar equations, we obtain

pT
n Apm −pT

mApn = 0 = ��m −�n� pT
n pm (E1.5-4.2)

since the matrix A is symmetric, and pT
n pm = pT

mpn. The vectors pm and pn are the unit
vectors, therefore we have that

pT
n pm = 	mn (E1.5-4.3)

which shows that the principal vectors are orthogonal (or orthonormal). The orthogonality
of the principal vectors is also applicable in the case when some principal values are equal.
Details of the proof for this case can be found elsewhere, e.g. in Bathe (1996).

To prove that A is diagonal in the coordinate base pm, we write the system of equa-
tions (1.3.13) in a matrix form as

AP = P� (E1.5-4.4)

where the matrices P and � are

P = �p1p2p3� � � =
⎡
⎣ �1 0 0

0 �2 0
0 0 �3

⎤
⎦ (E1.5-4.5)

Note that PT P = I due to the othogonality condition (E1.5-4.3). From multiplication of
(E1.5-4.4) from the left by PT it follows

PT AP = PT P� = �� hence A = � (E1.5-4.6)

where A is the matrix in the coordinate system with the base vectors pm (see also the
transformation rule (1.3.4a,b)).

EXERCISE
Express the matrix A in terms of matrices P and � (spectral decomposition of A) and
determine A−1. Solution is given on the web – Examples, Section 1.5.

Example 1.5-5. Determine the differential operator ‘nabla’ in cylindrical
coordinate system
The relations between Cartesian x� y� z and cylindrical system r� �� z are (see Fig. E1.5-5,
where P is a point in space and P′ is its projection onto x−y or r −x plane),

x = r cos �� y = r sin �� z = z (E1.5-5.1)

The relations between the unit vectors ix� iy� iz and r0� c0� iz are

r0 = cos �ix + sin �iy� c0 = − sin �ix + cos �iy� iz = iz (E1.5-5.2)

Relations between the partial derivatives in the two coordinate systems are



x
= cos �



r
− 1

r
sin �



�
�



y
= sin �



r
+ 1

r
cos �



�
(E1.5-5.3)



14 COMPUTER MODELING IN BIOENGINEERING

Fig. E1.5-5 Cartesian and cylindrical coordinate systems

Using the relations (E1.5-5.2) and (E1.5-5.3) we obtain that the operator � in the cylindrical
coordinate system is

� = r0



r
+ c0

1
r



�
+ iz



z
(E1.5-5.4)

Note that the following relations are valid:

r0

�
= − sin � ix + cos � iy = c0

c0

�
= − cos � ix − sin � iy = −r0

(E1.5-5.5)

which are obtained from (E1.5-5.2). Derivatives of r0� c0� iz with respect to r and z are equal
to zero.

Detailed derivations of the above relations and problems for exercise are given on the
web – Examples, Section 1.5.
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2

Fundamentals of Continuum
Mechanics

In this chapter we briefly summarize the fundamentals of continuum mechanics of solids.
We first define the basic concepts in continuum mechanics, such as stress and strain and
then present the constitutive relations that are used in modeling biosolids. Further, the
principle of virtual work is given in a simple form for linear problems. This is the most
fundamental principle on which rely almost all numerical methods in the book. Finally, the
basic relations of nonlinear continuum mechanics are presented. Each section is followed by
typical examples. Additional details and examples are given on the web (Theory, Chapter 2;
Examples, Chapter 2). A number of books cover in-depth the mechanics of continuous
media (e.g. Fung 1965, Malvern 1969, Mase & Mase 1999).

2.1 Definitions of stress and strain

We define stress and strain as the basic mechanical quantities. The definitions assume
small deformation of a continuous medium. It is assumed that the continuum represents a
deformable solid which moves in space and deforms under mechanical action. The stresses
and strains are defined at a material point of the body. During body deformation, the stresses
and strains change and the aim of continuum mechanics is to determine these changes within
the entire body, i.e. for all material points. This approach, where we follow the history of
changes of quantities (such as stresses and strains) at material points, is called the Lagrangian
description of continuous media.

2.1.1 Stress

In order to define stress, consider a material body � which deforms under mechanical
action, as schematically shown in Fig. 2.1.1a. Internal forces are generated within the body

Computer Modeling in Bioengineering Edited by M. Kojić, N. Filipović, B. Stojanović, N. Kojić
© 2008 John Wiley & Sons, Ltd
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Fig. 2.1.1 Stresses within a material body produced by mechanical action. (a) Elementary
material volume �V around point P, force �F and stress vector t�n� on the surface �S
with normal n; (b) Normal �n and tangential �n components of the stress vector t�n�;
(c) Components �ij of the stress tensor � at the material point P

due to this deformation. These internal mechanical forces can be specified if we consider a
small volume �V of material around a material point P in �. The mechanical action of the
surrounding material on the material within the elementary volume �V occurs over surface
�S and the force per unit area t�n� is referred to as the stress vector, where the superscript
n indicates an outer unit normal n to �S. Thus,

t�n� = lim�S→0

�F
�S

= dF
dS

(2.1.1)

where �F is the force acting on �S. The stress vector t�n� can be decomposed into its normal
and tangential components – the normal and tangential stresses, �n and �n, respectively,
where �n is in the direction of n and �n lies in the plane with normal n,

t�n� = �n +�n (2.1.2)

as shown in Fig. 2.1.1b.
Consider an elementary volume around material point P bounded by surfaces parallel to

the coordinate planes of the Cartesian system x1� x2� x3 (Fig. 2.1.1c). We can specify the
stress vectors on each of the elementary surfaces with the normals i1� i2� i3 and get normal
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and tangential components of these vectors, denoted as �11��12��13� � � � � � ��31, �32��33,
with the directions considered positive in continuum mechanics; components �11��22��33

are the normal stress components, while �ij� i �= j, are the shear stress components. The
stress components can be written in a matrix form as follows

� =
⎡
⎣ �11 �12 �13

�21 �22 �23

�31 �32 �33

⎤
⎦ (2.1.3)

It can be shown that the stress components �ij transforms according to the tensorial trans-
formation rule (1.3.4),

� = T�TT (2.1.4)

therefore the stress at a material point, expressed in terms of the components �ij , represents
the stress tensor,

� = �kmikim (2.1.5)

It also can be shown that the stress tensor is symmetric. The proofs that the stress components
�ij are symmetric and of a tensorial character rely on the physical condition of balance of
forces acting on a material element (see web – Theory, Chapter 2).

Stress vector t�n� on a plane with the normal n can be represented as follows

t�n� = �n� t
�n�
i = �ijnj (2.1.6)

This relation is known as the Cauchy representation theorem (or Cauchy formula) and � is
the Cauchy stress tensor. Therefore, if the stress tensor is known at a material point, we can
calculate stresses (vector t�n�), as well as the normal and shear stresses, on any plane passing
through that point (details are given on the web – Theory, Chapter 2; Examples, Chapter 2).

The principal values of stresses �1��2��3 acting on planes with unit normals p1� p2� p3

can be obtained by performing the eigenanalysis (see Section 1.3 and web – Theory,
Chapter 2). Then, the stress matrix has a diagonal form,

� =
⎡
⎣ �1 0 0

0 �2 0
0 0 �3

⎤
⎦ (2.1.7)

and the stress tensor is

� = �1p1p1 +�2p2p2 +�3p3p3 (2.1.8)

Note that the shear stresses on the principal planes are equal to zero.
The stress state at a material point can be represented by Mohr’s circles (see web – Theory,

Chapter 2), with a use of the so-called pole of the Mohr circle. From this representation,
it can be found that maximum shear stresses are acting on the planes rotated for 	/4 with
respect to the principal axes.
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In many applications, it is necessary to represent the stress state by the mean stress �m,

�m = 1
3

��11 +�22 +�33� = 1
3

��1 +�2 +�3� (2.1.9)

and by the deviatoric stress � ′, with the components

� ′
ij = �ij −�m
ij (2.1.10)

Obviously, the deviatoric stress � ′ differs from the stress � in the normal components only.
According to equation (2.1.9), the mean stress is one-third of the trace of � and thus it has
the same value in any coordinate system (i.e. it is invariant with respect to the coordinate
transformation).

It is of fundamental importance that the stress components within a continuum are such
that the equilibrium equations (balance of linear momentum) must be satisfied (see web –
Theory and Examples, Chapter 2),

��ik

�xk

+fV
i = 0 i� k = 1� 2� 3� or

(
T �

)T + fV = 0 (2.1.11)

where fV
i

(
N/m3

)
are components of the body force per unit volume fV �  is the ‘nabla’

differential operator defined in (1.4.1); and T � is the matrix multiplication (1.2.5) between
vector  and matrix �. If inertial forces are taken into account, we obtain (from the balance
of linear momentum) the dynamic equations of motion

−�üi +
��ik

�xk

+fV
i = 0� i� k = 1� 2� 3 (2.1.12)

where � is the mass density and üi are the components of acceleration of the material point.
Finally, we give a representation of stress in the form of a one-dimensional matrix

(whose size is 6×1), since due to the symmetry of stresses there are only six different stress
components. We can define the stress as

���T = ��11 �22 �33 �12 �23 �13� (2.1.13)

where, obviously, �1 ≡ �11��2 ≡ �22� � � � � ��6 ≡ �13. Then, the transformation (2.1.4) can
be written in a form

��� = T� ��� (2.1.14)

where the matrix T� contains cosines of angles between the axes xi and xi (see
Example 2.2-2). Note that the equilibrium equations (2.1.11) can be written using the one-
index stress representation (2.1.13), as

L� + fV = 0� or Lij�j +fV
i = 0 (2.1.15)

where operator L is

L =
⎡
⎣ �/�x1 0 0 �/�x2 0 �/�x3

0 �/�x2 0 �/�x1 �/�x3 0
0 0 �/�x3 0 �/�x2 �/�x1

⎤
⎦ (2.1.16)

It is possible to write three stress invariants, scalar functions of the stresses, which do not
change when the stress components are changed via coordinate transformations (see web –
Theory, Chapter 2).



FUNDAMENTALS OF CONTINUUM MECHANICS 19

The equilibrium equations in the cylindrical coordinate system r� �� z are

��rr

�r
+ 1

r

��r�

��
+ ��rz

�z
+ �rr −���

r
+ fV

r = 0

��r�

�r
+ 1

r

����

��
+ ���z

�z
+ 2�r�

r
+fV

� = 0

��rz

�r
+ 1

r

���z

��
+ ��zz

�z
+ �rz

r
+fV

z = 0

(2.1.17)

Details of the derivation of these equations are given on the web – Theory, Chapter 2.

2.1.2 Strain and strain rate

Strain is a mechanical quantity used to specify a measure of material deformation. It is
commonly said that strain is used to define kinematics of material deformation. We here
assume that the deformation is small, i.e. that displacements of material points due to
deformation are small.

Consider first the strain e of a material element of the elementary length ds (see
Fig. 2.1.2a), as

e = d�ds�

ds
(2.1.18)

giving the change of unit length. Following this definition, we can define the strains of
material elements in the directions of a coordinate system x� y� z (we also use notation x� y� z
instead of x1� x2� x3 for ease of presentation)

exx = d�dx�

dx
� eyy = d�dy�

dy
� ezz = d�dz�

dz
� or

eii = d�dxi�

dxi

� i = 1� 2� 3 �no sum on i�

(2.1.19)

Fig. 2.1.2 Definition of small strains. (a) Extension of a line element; (b) Deformation of
a rectangular material element
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However, in order to describe distortion of the material, it is necessary to introduce
shear strains as measures of shape change. These strains are defined as change of the angle
between any two initially orthogonal line segments (Fig. 2.1.2b). Hence, for a coordinate
system x� y� z we have

�xy = 	

2
−�xy� �yz = 	

2
−�yz� �xz = 	

2
−�xz� or

�ij = 	

2
−�ij� i �= j� i� j = 1� 2� 3

(2.1.20)

where �ij is the angle between the line segments dxi and dxj after deformation. Clearly,
the shear strains are symmetric, i.e. �ji = �ij . The shear strains �ij are the engineering shear
strains traditionally used in engineering literature. On the other hand, the tensorial shear
strains are used in continuum mechanics, defined as

eij = 1
2

�ij� i �= j� i� j = 1� 2� 3 (2.1.21)

It can be shown that the strain components eij , with the shear strains (2.1.21), transform
according to the tensorial rule (1.3.4). This property of eij follows from kinematics of
deformation (see web – Theory, Chapter 2). Therefore, from the components eij we can
obtain the strains eij in a rotated coordinate system xi and determine change in lengths and
distortions associated with other directions (see web – Theory, Chapter 2). Strain tensor, e,
can be expressed in a matrix form, or in a tensorial form (see (2.1.3) and (2.1.5) for stress
tensor) as

e = ekmikim (2.1.22)

This strain tensor e is called the small (linear)strain tensor.
The strain tensor can be represented in the principal directions or by use of Mohr circles.

Also, we will use the strain represented by a 6×1 matrix,

�e�T = [
e11 e22 e33 �12 �23 �13

]
(2.1.23)

Then, the transformation (2.1.4) can be written as

�e� = Te �e� (2.1.24)

with the matrix Te containing cosines of angles between the axes xi and xi (see Exam-
ple 2.2-2).

The strain components can be calculated from the displacements ui,

eij = 1
2

(
�ui

�xj

+ �uj

�xi

)
� or e = 1

2

(
u + �u�T

)
(2.1.25)

and therefore the strain field can be obtained from the displacement field. In the cylindrical
coordinate system the strains are

err = �ur

�r
� e�� = 1

r

�u�

��
+ ur

r
� ezz = �uz

�z

er� = 1
2

(
1
r

�ur

��
+ �u�

�r
− u�

r

)
� e�z = 1

2

(
�u�

�z
+ 1

r

�uz

��

)
� ezr = 1

2

(
�ur

�z
+ �uz

�r

) (2.1.26)
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where ur� u�� uz are radial, circumferential and axial components of the displacement vector
u, respectively. Details of derivation of the expressions (2.1.26) are given on the web –
Theory, Chapter 2.

Finally, we introduce the rate of strain (or strain rate, or rate of deformation) tensor D
and the spin tensor W. The strain rate tensor is defined as

Dij = ėij = 1
2

(
�u̇i

�xj

+ �u̇j

�xi

)
� or ė = 1

2

(
 u̇ + � u̇�T

)
(2.1.27)

and the spin tensor is

Wij = 1
2

(
�u̇i

�xj

− �u̇j

�xi

)
� or W = 1

2

(
 u̇ − � u̇�T

)
(2.1.28)

where  u̇ is defined according to (1.4.3). Note that the spin tensor is skew-symmetric,
i.e. Wii = 0� Wji = −Wij . Therefore, we have in general three nonzero components
W12� W23� W31 and can associate a rotation vector w with components w1 = −W31�
w2 = −W23� w3 = −W12. The strain rate tensor gives the rate of deformation, while the spin
tensor (or the rotation vector) gives the rate of material rotation.

As in the case of the stress tensor, the strain tensor invariants also can be defined (see
web – Theory, Chapter 2).

2.1.3 Examples

Example 2.1-1. Representation of stress state for two-dimensional problems by the
Mohr circle and with use of the pole of Mohr circle
Let x−y be a plane in which we perform the analysis for a two-dimensional problem (plane
strain, plane stress, or axisymmetric conditions; see Section 2.2). Then, the stress tensor is

� =
⎡
⎣ �xx �xy 0

�yx �yy 0
0 0 �zz

⎤
⎦ (E2.1-1.1)

To this stress tensor, there correspond two principal stresses in the x−y plane, �1 and
�2. The given stresses (E2.1-1.1) can be expressed in terms of the principal stresses and
angle � between the first principal direction and the x-axis (see (2.1.4) and web – Theory,
Chapter 2),

�xx = 1
2

��1 +�2�+ 1
2

��1 −�2� cos 2�� �yy = 1
2

��1 +�2�− 1
2

��1 −�2� cos 2�

�xy = 1
2

��1 −�2� sin 2�

(E2.1-1.2)
By eliminating cos 2� and sin 2� from the first and last equation of the system (E2.1-1.2),
we obtain that

(
�xx − �1 +�2

2

)2

+�2
xy =

(�1 −�2

2

)2
(E2.1-1.3)
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Fig. E2.1-1 Mohr circle for a two-dimensional problem and pole of the Mohr circle

This equation represents a Mohr circle in the �n−�n plane, as shown in Fig. E2.1-1. Details
of derivation of (E2.1-1.2) are given on the web – Theory, Chapter 2.

A graphical method for determination of stresses for two-dimensional problems can be
formulated by use of the Mohr circle pole. To outline this method, we first emphasize that the
stresses considered here are acting on planes in which lies the z-axis. Each plane intersects
the x−y plane along a straight line; for example, the plane on which act the stresses �xx and
�xy intersects the x−y plane along a straight line parallel to y-axis. The method is described
as follows. We first determine a point P, called the pole of the Mohr circle. Assuming that
the stresses �xx� �yy��xy are given, we draw a circle passing through points A

(
�xx� �xy

)
and A′ (�yy��yx

)
, with the center O3

((
�xx +�yy

)
/2� 0

)
, Fig. E2.1-1. A positive direction for

the shear stress is shown in the figure; it is the opposite with respect to the direction used in
calculations. Then, we draw a vertical line through point A, representing the direction of the
plane on which the stresses �xx and �xy are acting and obtain the point P – the pole of Mohr
circle – at the intersection with the circle. Note that we can draw a horizontal line through
point A′ and obtain the same point P. The pole has the following characteristic: by drawing
the direction of a plane through P we obtain the intersection with the circle which gives the
stresses �n and �n on that plane. For example, by drawing the line PC we obtain the direction
of the principal plane on which the stress �2 is acting; the plane is inclined by the angle �
with respect to the x-axis. Or, planes PB and PB′ are the planes with the maximum shear
stress �max. Note that the relations (E2.1-1.2) also follow from the graphical representation
in Fig. E2.1-1. For a given state of stress there corresponds one pole P. Hence, the pole can
be considered as the characteristic point in the �n−�n plane representing the state of stress at
a material point. This unique mapping between the state of stress and the pole in the �n−�n

plane has been used to graphically determine stress fields in plasticity (e.g. Prager 1959,
Kojić & Cheatham 1974).
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EXERCISE
Select a direction at an angle of 	/4 with respect to the x-axis and find normal and shear
stresses on that plane using the pole of Mohr circle in Fig. E2.1-1.

Example 2.1-2. Homogenous deformation
A homogenous deformation is a deformation of a material body where the displacement field
is given as (Mase & Mase 1999)

ui = aij
0xj (E2.1-2.1)

where aij are constants and 0xj are the initial coordinates of material points. For this
displacement field we obtain that the small (linear) strains are (see (2.1.25)),

eij = 1
2

(
�ui

�0xj

+ �uj

�0xi

)
= 1

2

(
aij +aji

)= const� (E2.1-2.2)

Therefore, the strains are independent of material coordinates. A number of interesting cases
and results can be analyzed for the homogenous deformation. We here consider several
examples.

(a) Uniaxial deformation. If a11 = a0, and all other coefficients aij are equal to zero,
we have (the upper left index t is used to denote a deformed configuration)

u1 = a0
0x1�

tx1 = �1+a0�
0x1� e11 = a0

u2 = u3 = 0� tx2 = 0x2�
tx3 = 0x3� eij = 0 �except e11�

(E2.1-2.3)

Note that if the displacement vector u is along a direction x with the unit vector n �n1� n2� n3�
(see Fig. E2.1-2Aa), so that

u = a0
0x� and ui = a0

0xni = a0

(
0x1n1 + 0x2n2 + 0x3n3

)
ni (E2.1-2.4)

where 0x1�
0x2�

0x3 are coordinates of the vector 0xn, we further obtain the strain compo-
nents as

eij = a0ninj (E2.1-2.5)

Fig. E2.1-2A Homogenous deformation of material. (a) Uniaxial deformation; (b) Expan-
sion in plane x1−x2; (c) Pure shear in plane x1−x2
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By applying the transformation (2.1.24), we obtain e11 = a0, whereas the other strain com-
ponents eij = 0.

(b) Expansion in plane x1 −x2. If a11 �= 0 and a22 �= 0 and all other coefficients aij = 0,
we obtain that

u1 = a11
0x1�

tx1 = �1+a11�
0x1� e11 = a11

u2 = a22
0x2�

tx2 = �1+a22�
0x2� e22 = a22 other eij = 0

(E2.1-2.6)

The deformed material element is shown in Fig. E2.1-2Ab.
(c) Pure shear in plane x1−x2. If only a12 �= 0 and all other coefficients aij = 0, we have

that the displacement field and the strain field are

u1 = a12
0x2�

tx1 = �1+a12�
0x2� e12 = �12

2
= 1

2
a12� other eij = 0 (E2.1-2.7)

The displacement field is shown in Fig. E2.1-2Ac.
(d) Material plane remains plane under homogenous deformation. Consider a material

plane in the undeformed configuration defined by

b1
0x1 +b2

0x2 +b3
0x3 +b0 = 0 (E2.1-2.8)

where bj are constants. After deformation (E2.1-2.1), the coordinates of material points
become

txi = �
ik +aik�
0xk or tx = �I +A� 0x (E2.1-2.9)

where A is the matrix of the coefficients aij and I is the identity matrix. By solving (E2.1-2.9)
for 0x, we obtain that

0xk = cki
txi� where

[
cij

]= �I +A�−1 (E2.1-2.10)

providing that the matrix �I +A� is nonsingular. Substituting (E2.1-2.10) into (E2.1-2.8), we
obtain that

d1
tx1 +d2

tx2 +d3
tx3 +b0 = 0 (E2.1-2.11)

where dk = bscsk are constants. Equation (E2.1-2.11) represents a plane, hence the material
points initially lying in a plane (E2.1-2.8) remain in that plane after deformation.

(e) Straight material line remains straight. The equation for a straight line passing
through points A and B can be written as

0x1 = k13
0x3 +k10�

0x2 = k23
0x3 +k20 (E2.1-2.12)

where k13 = 0�AB�1/
0�AB�3� k10 = −k13

0xA
3 + 0xA

1 � k23 = 0�AB�2/
0�AB�3� k20 = −k23

0xA
3 +

0xA
2 . After deformation (E2.1-2.1), we obtain for the coordinate tx3:

tx3 = a31

(
k13

0x3 +k10

)+a32

(
k23

0x3 +k20

)+ �1+a33�
0x3 (E2.1-2.13)
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From this equation, we express 0x3 in terms of tx3 and substitute into (E2.1-2.12). Hence,
we have

0x3 = d33
tx3 +d30�

tx1 = d13
tx3 +d10�

tx2 = d23
tx3 +d20 (E2.1-2.14)

The expressions for tx1 and tx2 show that the points lay on the straight line after deformation.
The coefficients dij follow from (E2.1-2.13) and (E2.1-2.14).

(f) A sphere deforms into ellipsoid. Consider a sphere

(
0x1 −0xO1

)2 + (0x2 −0xO2

)2 + (0x3 −0xO3

)2 = R2 (E2.1-2.15)

where 0xOi are coordinates of the center of the sphere O. By substituting coordinates 0xi from
(E2.1-2.10), which correspond to the deformation (E2.1-2.1), into (E2.1-2.15), the following
equation is obtained

Bij
txi

txi +Ct
i xi +D = 0 (E2.1-2.16)

where Bij�Ci and D are the coefficients from this coordinate substitution. The surface (E2.1-
2.16) represents an ellipsoid. Change of the sphere into ellipsoid is graphically represented
in Fig. E2.1-2B, where the material element aligned with the principal axes of deforma-
tion, p1� p2� p3, remain orthogonal and lie along a rotated axes, p1� p2� p3. The principal

Fig. E2.1-2B Material points lying on the sphere surrounding a material point P at initial
configuration 0��� (left panel) form an ellipsoid after deformation at the deformed configu-
ration t��� (right panel). The displacement vector of point P is tu. The infinitesimal material
lines along the principal deformation directions, p1� p2� p3, remain orthogonal and lie on the
directions, p1� p2� p3
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directions after deformation also remain the principal directions of the strain ellipsoid (see
Example 2.1.5 on the web). Note that in the case when the deformation is given by the
displacement field

ui = a0
0xi (E2.1-2.17)

the sphere (E2.1-2.15) becomes

�tx1 − txO1�
2 + �tx2 − txO2�

2 + �tx3 − txO3�
2 = ��1+a0�R�2 (E2.1-2.18)

which is the sphere with an increased (decreased) radius if a0 > 0�< 0�. Here, txOi =
�1+a0�

0 xOi are the coordinates of the center of the sphere after deformation. Therefore, the
material expands uniformly, with the expansion strain e11 = e22 = e33 = a0 = eV /3.

EXERCISE
Assume that the nonzero constants in (E2.1-2.1) are: a11 = 0�01� a12 = a21 = 0�05�
a22 = 0�02. Draw the material elements after deformation if they initially lie in the x − y
plane and have the shape of: (a) a square with the side length of 2 m and (b) a sphere with
the radius of 2 m.

2.2 Linear elastic and viscoelastic constitutive relations

Under a given stress field within a continuum the extent of material deformation measured
by strains depends on material characteristics of the continuum. These characteristics are
represented by the relationships between stresses and strains, called constitutive relations.
They are phenomenological laws, established by experimental observations and are also
termed here as material models. We present the most common and simple constitutive
relations (constitutive laws): linear elastic, nonlinear elastic and linear viscoelastic.

2.2.1 Linear elastic constitutive law

In presenting this simplest material model, we will use the matrix representation of stress
and strain (2.1.13) and (2.1.23), with the ‘vector’ terms

�1 ≡ �11� �2 ≡ �22� �3 ≡ �33� �4 ≡ �12� �5 ≡ �23� �6 ≡ �13

e1 ≡ e11� e2 ≡ e22� e3 ≡ e33� e4 ≡ �12� e5 ≡ �23� e6 ≡ �13

(2.2.1)

Note that stresses �1��2��3 and e1� e2� e3 should not be confused with the principal stresses
and strains (see (2.1.7)). The linear constitutive relations for an isotropic material (Hooke’s
law) can be expressed by

� = Ce� or �i = Cikek� i� k = 1� 2� � � � � � 6 (2.2.2)

where Cik are elastic constants of the elastic constitutive matrix. Using material isotropy
conditions, it can be shown (Wang 1953, Fung 1965) that the elastic constants can be
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expressed in terms of two distinct material constants. For example, the elastic modulus, or
Young’s modulus, E; and the Poisson ratio �. The Young modulus represents the slope of
the linear stress–strain relationship �-e in case of uniaxial loading of material,

� = Ee (2.2.3)

while the Poison ratio is the ratio between the magnitude of lateral strain eyy and longitudinal
strain exx, when the material is loaded in the x-direction, i.e.

� =
∣∣∣∣ eyy

exx

∣∣∣∣
�=�xx

� (2.2.4)

(see web – Theory, Chapter 2 for details).
Below are given different forms of the elastic matrix C in terms of the elastic constants

E and �, corresponding to several physical conditions. Details about these conditions are
given on the web – Theory, Chapter 2. For a general three-dimensional deformation, C is

C = E�1−��

�1+���1−2��

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
�

�1−��

�

�1−��
0 0 0

�

1−�
1

�

�1−��
0 0 0

�

1−�

�

1−�
1 0 0 0

0 0 0
1−2�

2�1−��
0 0

0 0 0 0
1−2�

2�1−��
0

0 0 0 0 0
1−2�

2�1−��

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.2.5)

In the case of axisymmetric problems (see Fig. 2.2.1), the nonzero strains (shear strain
�xy and normal strains – radial exx, axial eyy, and circular ezz) will be ordered in the book as
e1 = exx� e2 = eyy� e3 = �xy� e4 = ezz. Then, the 4×4 constitutive matrix C is

C = E�1−��

�1+���1−2��

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
�

1−�
0

�

1−�
�

1−�
1 0

�

1−�

0 0
1−2�

2�1−��
0

�

1−�

�

1−�
0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.2.6)

For plane strain conditions, ezz = 0 and the 3×3 constitutive matrix C is of the form (2.2.6)
with deleted fourth row and column. In the case of plane stress (membrane) conditions, the
3×3 constitutive matrix C is obtained from (2.2.6) by imposing the condition �zz = 0. The
procedure of imposing this condition is called static condensation. The resulting matrix is
(see Example 2.2-1)

C = E

1−�2

⎡
⎢⎢⎣

1 � 0

� 1 0

0 0
1−�

2

⎤
⎥⎥⎦ (2.2.7)
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Fig. 2.2.1 Stresses and strains for two-dimensional conditions, physical space and stress
representation in x−y plane. (a) Plane strain; (b) Axial symmetry

This matrix is also applicable to the tangential plane of curved space membranes (see
Fig. E2.2-1b). When transversal shear stresses and strains are taken into account for a
membrane (also with bending), we have a shell structure, and the constitutive matrix is

C = E

1−�2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 � 0 0 0 0

� 1 0 0 0 0

0 0 0 0 0 0

0 0 0
1−�

2
0 0

0 0 0 0
1−�

2
0

0 0 0 0 0
1−�

2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.2.8)

We have written a 6 × 6 matrix with zero third row and third column, corresponding to
normal stress and strain in the normal shell direction, as it is usually used in numerical
methods. Note that the nonzero normal strain ezz for the plane stress conditions (membrane
or shell) is related to the in-plane stresses and strains as

ezz = − �

E

(
�xx +�yy

)= − �

1−�
�exx + eyy� (2.2.9)

This expression for ezz will be used in the numerical methods presented later in the book.
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The elastic constitutive relations between the deviatoric stresses � ′
ij (2.1.10) and devia-

toric strains e′
ij = eij − em, where em = �e11 + e22 + e33� /3 is the mean strain, are

� ′
ij = 2Ge′

ij (2.2.10)

Here G = E/�2 �1+��� is the shear modulus. The relation between the mean stress �m and
the volumetric strain eV = 3em is

�m = KeV (2.2.11)

where K = E/�3 �1−2��� is the bulk modulus.
We will also use the inverse relationship with respect to (2.2.2), i.e. the relationship

between strain and stress tensors as

e = C−1�� or ei = C−1
ik �k� i� k = 1� � � � � 6 (2.2.12)

or

e =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

exx

eyy

ezz

�xy

�yz

�xz

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1/E −�/E −�/E 0 0 0

−�/E 1/E −�/E 0 0 0

−�/E −�/E 1/E 0 0 0

0 0 0 1/G 0 0

0 0 0 0 1/G 0

0 0 0 0 1/G

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

�xx

�yy

�zz

�xy

�yz

�xz

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.2.13)

where C−1 is the compliance matrix.
Constitutive relations for orthotropic elasticity, and isotropic and anisotropic thermoelas-

ticity are given on the web – Theory, Chapter 2.

2.2.2 Viscoelasticity

The material constitutive behavior described above shows that the current stress state depends
on the current state of deformation, therefore the current material response does not depend on
the history (or time) of deformation. Experiments show that there are materials in which the
current state depends not only on the current state of deformation, but also on the history of
deformation (materials with ‘memory’ of the deformed configurations which occurred prior
to the current one). These materials with memory are called viscoelastic. Biological materials
can have these constitutive characteristics, displaying damping resistance, i.e. the resistance
dependent on the rate of deformation (see description of muscle models in Chapter 12).

We consider here linear viscoelasticity, where the constitutive law for uniaxial loading
can be written as (Fung 1965, Malvern 1969),

t� = Ete+
t∫

0

G�t − ��
de

dt
d� (2.2.14)

where t� and te are the current stress and strain, E is Young’s modulus, and G�t� is called
the relaxation function. This viscoelastic constitutive law is linear since the addition to the
elastic part of the stress is proportional to the relaxation function. This constitutive law relies
on a generalization of the Maxwell and Kelvin–Voigt models, consisting of an elastic spring
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and a dashpot, which represent the elastic and viscous characteristics of the models (see
Example 2.2-4 and Software on the web).

The one-dimensionl relationship (2.2.14) can be generalized to tensorial viscoelastic
relationships of the form (Malvern 1969),

t� ′ = 2G

⎡
⎣e′ −

t∫
0

GS �t − ��
de′

dt
d�

⎤
⎦ � t�m = K

⎡
⎣teV −

t∫
0

GV �t − ��
deV

dt
d�

⎤
⎦ (2.2.15)

where GS �t� and GV �t� are the relaxation functions corresponding to deviatoric and volu-
metric stresses and strains.

Finally, we give a form of three-dimensional viscoelastic constitutive relationships for
a linear constitutive law (Evans & Hochmuth 1976, With 2006). This law represents a
generalization of the Kelvin model (see Example 2.2-4):

�ij = �E
ij +�v

ij�

�v
ij = �vėV 
ij +2�vėij

(2.2.16)

where �E
ij and �v

ij are elastic and viscous stresses; ėV is volumetric strain rate, and ėij

are components of the strain rate; and �v and �v are material constants for the viscous
constitutive law.

2.2.3 Transformation of constitutive relations

The transformation of constitutive relations due to change of coordinate systems is very
important in practical applications. We here give the relations to which we will refer in the
subsequent chapters.

By substituting (2.1.14) and (2.1.24) into the constitutive relations (2.2.2), we obtain the
constitutive matrix C in the rotated coordinate system as (details are given on web – Theory,
Chapter 2)

C = T�C �T��T (2.2.17)

For a general three-dimensional deformation we have that C = C since the material is
isotropic. However, the transformation (2.2.17) of the membrane or shell matrices given in
(2.2.7) and (2.2.8) preserve the isotropy only for coordinate systems obtained by rotation
around the z-axis normal to the membrane or shell surface (see web – Examples, Chapter 2).

The transformation (2.2.17) is also applicable to constitutive matrices of nonlinear mate-
rial models, and will be employed in the subsequent text.

2.2.4 Examples

Example 2.2-1. Derivation of the constitutive matrix for plane stress and shell conditions
In the case of plane stress (membrane) in the x−y plane (see Fig. E2.2-1a) we have the
condition

�zz = 0 (E2.2-1.1)
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Fig. E2.2-1 Plane stress and shell conditions for stresses. (a) Plane stress (plate); (b) Shell

Also, the following shear strains and stresses are equal to zero

�xz = �yz = 0� �xz = �yz = 0 (E2.2-1.2)

With use of (2.2.2) and (2.2.5), the condition (E2.2-1.1) can be written as

�zz = 0 = E�1−2��

�1+���1−2��

[
�

�1−��
�exx + eyy�+ ezz

]
(E2.2-1.3)

from which we obtain the normal strain through the thickness (see (2.2.9))

ezz = − �

�1−��
�exx + eyy� (E2.2-1.4)
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Now we substitute this expression for ezz into the first two relations (2.2.2) and obtain

�xx = E�1−2��

�1+���1−2��

[
exx + �

1−�
eyy − �2

�1−��2
�exx + eyy�

]
= E

1−�2

(
exx +�eyy

)

�yy = E�1−2��

�1+���1−2��

[
�

1−�
exx + eyy − �2

�1−��2
�exx + eyy�

]
= E

1−�2

(
�exx + eyy

)
(E2.2-1.5)

Therefore, the constitutive matrix is as given in (2.2.7). The procedure of correction of the
constitutive matrix is called static condensation.

We apply the same static condensation procedure for the shell, using the shell local
coordinate system x1� x2� x3, shown in Fig. E2.2-1b. The resulting constitutive matrix in the
local shell system is as given in (2.2.8). The shell constitutive matrix is isotropic with respect
to coordinate systems obtained by rotation around the shell normal x3, but not isotropic with
respect to coordinate systems arbitrary oriented in space (see web – Example 2.2-6).

Finally, note that we can further perform the static condensation of the matrix (2.2.7)
to obtain the uniaxial stress–strain law. Namely, assuming that �yy = 0, from the second
of equations (E2.2-1.5) follows eyy = −�exx, and than from the first equation we obtain
�xx = Eexx which is the uniaxial Hooke’s law (2.2.3).

Example 2.2-2. Derivation of transformation matrices for transformation of stresses
and strains written as one-dimensional arrays
We apply the transformation (2.1.4) to the stress components and then write the stress
as a one-dimensional array (2.1.13). Further, the relation (2.1.4) can be written in the
form (2.1.14),

� = T�� (E2.2-2.1)

where the stress components �k and �k� k = 1� 2� � � � � 6 correspond to the coordinate systems
xi and xi, respectively. Matrix T� is

T� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

l2
1 m2

1 n2
1 2l1m1 2m1n1 2n1l1

l2
2 m2

2 n2
2 2l2m2 2m2n2 2n2l2

l2
3 m2

3 n2
3 2l3m3 2m3n3 2n3l3

l1l2 m1m2 n1n2 l1m2 +m1l2 m1n2 +n1m2 n1l2 + l1n2

l2l3 m2m3 n2n3 l2m3 +m2l3 m2n3 +n2m3 n2l3 + l2n3

l3l1 m3m1 n3n1 l3m1 +m3l1 m3n1 +n3m1 n3l1 + l3n1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(E2.2-2.2)

The coefficients li�mi� ni are the cosines of angles between the axes of the two coordinate
systems and together they define the transformation matrix T in Example 1.5-3,

T =
x1 x2 x3

x1 l1 m1 n1

x2 l2 m2 n2

x3 l3 m3 n3

(E2.2-2.3)
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The transformation of the strain tensor is given by (2.1.4) as in the case of the stress
tensor, and the transformation can be written as (equation (2.1.24))

e = Tee (E2.2-2.4)

The matrix Te is

Te =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

l2
1 m2

1 n2
1 l1m1 m1n1 n1l1

l2
2 m2

2 n2
2 l2m2 m2n2 n2l2

l2
3 m2

3 n2
3 l3m3 m3n3 n3l3

2l1l2 2m1m2 2n1n2 l1m2 +m1l2 m1n2 +n1m2 n1l2 + l1n2

2l2l3 2m2m3 2n2n3 l2m3 +m2l3 m2n3 +n2m3 n2l3 + l2n3

2l3l1 2m3m1 2n3n1 l3m1 +m3l1 m3n1 +n3m1 n3l1 + l3n1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(E2.2-2.5)

The inverse relations of (E2.2-2.1) and (E2.2-2.4) are

� = T
�
� and e = T

e
e (E2.2-2.6)

It can be shown that the following relations hold:

T
� = TeT and T

e = T�T (E2.2-2.7)

Also, the following orthogonality relation, that can be verified, holds

T�TTe = I6 (E2.2-2.8)

where I6 is a 6×6 identity matrix.

Example 2.2-3. Determine the reactions of a restrained pipe under internal pressure
A straight pipe is restrained from axial deformation as shown in Fig. E2.2-3a. The pipe is
subjected to loading by internal pressure p. In this analysis we assume that the pipe wall
thickness 
 is small compared to the pipe radius R. Also, it is assumed that the pipe supports
allow change of the pipe radius. Under these assumptions it can be considered that the
stress–strain state within the entire pipe is uniform.

The nonzero stresses within the pipe wall are the axial stress �aa and circular stress �cc.
The stress through the pipe wall thickness can be neglected with respect to �aa and �cc

because the thickness of the wall is small when compared to the radius. Therefore, we have
the plane stress conditions for the pipe material. On the other hand, if we consider a cross-
section shown in Fig. E2.2-3a, the circular stress can be determined from the equilibrium of
vertical forces due to pressure and due to circular stress. Thus, we have

Fp = 2Rip�Fc = 2�cc
� Fp = Fc ⇒ �cc = Ri



p (E2.2-3.1)

Here Fp and Fc are vertical forces per unit axial length due to pressure and due to circular
stress.
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Fig. E2.2-3 Restrained pipe under internal pressure. Wall reactions FA and FB include
action of pressure and axial stress �aa in the pipe wall. (a) Geometry of the structure, stresses
and forces; (b) Wall reactions in terms of pressure p

Due to axial restrain by the supports A and B, the axial strain in the pipe wall is eaa = 0.
Thus, from (2.2.2) and the constitutive matrix (2.2.7) we obtain that

�aa = �E

1−�2
ecc (E2.2-3.2)

From (2.2.13) we obtain the hoop strain ecc as

ecc = 1
E

��cc −��aa� (E2.2-3.3)

We now substitute ecc into (E2.2-3.2) and use �cc to obtain the relationship between the
axial stress �aa and the pressure p,

�aa = �
Ri



p (E2.2-3.4)

where Ri = R−
 is the internal pipe radius.
The reactions FA = FB are due to the direct loading by pressure and due to stress �aa in

the pipe wall. Using the directions of the reactions as shown in Fig. E2.2-3a, we obtain

FA = FB = 	R2
i p−	Dm
�aa = 	Ri ��1−2��Ri −�
�p (E2.2-3.5)
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where Dm = 2Ri +
 is the mean pipe radius. Here, we used the expression (E2.2-3.4) for
the stress �aa. It can be seen that the reactions increase linearly with increasing pressure p,
as schematically shown in Fig. E2.2-3b.

Example 2.2-4. Determine the force–elongation relations for Maxwell, Voigt and Kelvin
bodies
The most commonly used viscoelastic models are the Maxwell, Voigt and Kelvin models
(Fung 1993) shown schematically in Fig. E2.2-4A. They are the one-dimensional mechan-
ical analogs consisting of elastic (spring) and viscous (dashpot) elements to represent the
viscoelastic behavior of material. The constitutive relation is here expressed as the force–
elongation relationship and for each model it is obtained as follows.

In the case of the Maxwell model we have

Fk = kuk� F� = �u̇� (E2.2-4.1)

where Fk and F� are the elastic and viscous forces, uk is spring elongation, u̇� is the dashpot
elongation velocity; and k and � are the spring constant and viscous damping coefficient,
respectively. Since Fk = F� = F and u = uk +u� (Fig. E2.2-4Aa), the constitutive relation
is obtained as

Ḟ /k+F/� = u̇ (E2.2-4.2)

Therefore, the governing constitutive equation of the Maxwell model is represented by a
first-order linear differential equation.

For the Voigt model we have (Fig. E2.2-4Ab)

F = Fk +F�� uk = u� = u (E2.2-4.3)

Fig. E2.2-4A Schematic representations of three linear viscoelastic models
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and the constitutive relation (also known as equation of motion) is

F = ku+�u̇ (E2.2-4.4)

Finally, for the Kelvin model the governing equation of motion is (Fig. E2.2-4Ac)

F = F1 +F2 = k1uk +k2u = k1

(
u−u�

)+k2u = �k1 +k2�u−k1u� (E2.2-4.5)

where the geometric relation uk = u−u� has been used. If we take the time derivative of
this equation and use that �u̇� = k1uk (the force in the dashpot and spring with the spring
constant k1 is equal to F1), then, combining with (E2.2-4.5), the constitutive equation is
obtained as

F + �

k1

Ḟ = k2u+�

(
1+ k2

k1

)
u̇ (E2.2-4.6)

The above relationships (E2.2-4.2), (E2.2-4.4) and (E2.2-4.6) can be generalized and
used by relating the stress to the strains and strain rates.

If the material is subjected to the unit step force, the material response u�t�, known
as creep, for these three models is as shown in Fig. E2.2-4B. A notable difference in the
creep responses is obtained form these three models. Material response for other load-
ing conditions can be obtained by using the software (see web – Software, Chapter 2).
Also, in the Software is an example with a model defined in (2.2.15) and variable
loading.

Fig. E2.2-4B Viscoelastic response of material under unit step force. All material coefficients
are set to unity. (a) Force function; material elongation with time (creep) for: (b) Maxwell;
(c) Voigt; (d) Kelvin models



FUNDAMENTALS OF CONTINUUM MECHANICS 37

2.3 Principle of virtual work

The principle of virtual work is one of the most fundamental principles in mechanics. It is
used in many numerical methods as a basis for the development of necessary relations. Here
we derive this principle for linear problems: linear material model and small strains.

2.3.1 Formulation of the principle of virtual work

Consider a deformable body in equilibrium, shown in Fig. 2.3.1, subjected to external
loadings and with given boundary conditions. Let us assume that a field of virtual displace-
ments 
u is imposed, keeping the loading (and stresses) unaltered. Those displacements
are infinitesimally small and satisfy the displacement boundary conditions. Virtual strains
corresponding to the virtual displacements are


eks = 1
2

[



(
�uk

�xs

)
+


(
�us

�xk

)]
(2.3.1)

We note here that there are two types of boundary conditions: (a) stress (loading) and
(b) displacement boundary conditions. In case (a) the stresses can be zero (free surface), or
can be given, as in the case of pressure loading shown in Fig. 2.3.1. Part of the surface where
the loading is prescribed is denoted by S� . Displacement boundary conditions mean that
displacements are prescribed at some points, as the zero displacements at the supports A and
B, or for part of the surface, such as un = 0 shown in the figure. Concentrated forces might
act on the body, such as forces F1 and F2 shown in Fig. 2.3.1. It can be proved that in the
case of a linear elastic material and small displacements, the solution for a displacement field
within the body is unique (uniqueness theorem) for given boundary and loading conditions.

Fig. 2.3.1 Schematics of deformable body used for the derivation of the principle of virtual
work. Virtual displacements and virtual strain at a material point P are �u and �e. Virtual
displacements at points of action of forces are �u�C� and �u�D�, while the virtual displacements
at the supports are restrained. Virtual displacements correspond to the equilibrium state of the
body under given loads. Parts of the surface where stresses and displacements are prescribed
are S� and Su, respectively
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Starting from the equilibrium equations and using the boundary conditions, we finally
obtain the following result (detailed derivation is given on web – Theory, Chapter 2)


Wint = 
Wext (2.3.2)

i.e. the virtual work of internal forces 
Wint and virtual work of external forces 
Wext are
equal. The internal and external virtual works are


Wint =
∫
V

�ij
eijdV =
∫
V


eT �dV (2.3.3)

and


Wext =
∫
V

FV
k 
ukdV+

∫
S�

f S
k 
uS

kdV +∑
i

F
�i�
k 
u

�i�
k � sum on k�k = 1� 2� 3 (2.3.4)

Here fS
k and 
uS

k are the distributed surface forces and virtual displacements at the surface S� .
Also, F

�i�
k and 
u

�i�
k are the components of the concentrated force ‘i’ and virtual displacement

of the material point where this force is acting on the body. Note that the matrix form of
virtual work in (2.3.3) assumes the stress and strain vectors (2.1.13) and (2.1.23).

2.3.2 Examples

Example 2.3-1. Determine the deformation of an artery bifurcation
Consider a simplified model of artery bifurcation, shown in Fig. E2.3-1. The bifurcation
consists of the main artery and two daughter branches. The artery vessels are represented by
pipes of circular cross-sections and uniform thickness. The geometrical parameters are shown
in the figure. Assuming that the arteries are restrained from axial elongation, determine the
displacement of the branching cross-section B under the blood pressure p.

When the artery structure is loaded by pressure, the material deforms and the point B
moves along the x-axis since the structure and loading are symmetric with respect to the
x-axis. We assume that the wall thickness of each artery is small with respect to the cross-
sectional radius, so that the stresses and strains are uniform within the wall. Also, the stress
and strains are uniform along the length of the arteries.

In order to determine displacement of the point B, we apply the principle of virtual work
(2.3.2). Here, the external forces F1� F2� Fa are the axial forces due to pressure, as shown
in Fig. E2.3-1, where F1 = F2 because the branches are the same. The internal virtual work
corresponds to the axial virtual strain in each of the three components of the bifurcation.
Therefore, we have

�Fa −2F1 cos ��
uB = A
∫
L

�aa
eaa +2A1

∫
L1

�aa1
eaa1 (E2.3-1.1)

where A and A1 are the cross-sectional areas equal to 	
(
R2 − �R−
�2

)
and 	

(
R2

1−
�R1 −
1�

2
)

for the main artery and the branches, respectively; L and L1 are the lengths; �aa

and �aa1 are the axial stresses, and 
eaa and 
eaa1 are the virtual axial strains in the main
artery and in the branches, respectively. Here, it is assumed that the virtual displacement 
uB
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Fig. E2.3-1 Geometry of artery bifurcation simplified model. The branched arteries have
the same geometrical data (cross-section areas and lengths). The pressure inside the arteries
is p; the axial forces generated by the pressure are Fa and F1 = F2; and the hoop stresses due
to pressure are �cc and �cc1 = �cc2. The axial displacements of the artery ends are restrained

of point B is in the positive x-direction (it is equally correct to assume 
uB in the negative
x-direction, since it is kinematically admissible).

The axial forces due to pressure are:

Fa = Aintp� F1 = F2 = A1intp (E2.3-1.2)

where Aint = 	 �R−
�2 � A1int = 	 �R1 −
1�
2 are the internal surface areas of the artery

cross-sections (also R1 = R2� 
1 = 
2). The axial strains in the arteries can be expressed in
terms of the displacement uB, as follows:

eaa = uB/L� eaa1 = −uB cos �/L1 (E2.3-1.3)

Determination of the axial stresses requires the following considerations. As shown in
Example 2.2.3, the internal pressure within straight pipes produces the hoop stress given in
(E2.2-3.1), hence in this example we have

�cc =
(

R



−1

)
p� �cc1 =

(
R1


1

−1
)

p (E2.3-1.4)

Therefore, the hoop stresses do not depend on the axial deformation of arteries and are
considered known quantities for a given pressure p. Furthermore, for the main artery, the
following relations can be obtained from Hooke’s law (2.2.13) and (2.2.2):

ecc = 1
E

��cc −��aa� � �aa = E

1−�2
�eaa +�ecc� (E2.3-1.5)

where E and � are Young’s modulus and Poisson’s ratio of tissue, respectively. We have
used the elastic matrix (2.2.7) because the material of the artery wall deforms under plane
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stress conditions (stress in the normal direction to the wall surface can be considered equal
to zero for small ratio 
/R). From these two equations it follows that

�aa = Eeaa +��cc� �aa1 = Eeaa1 +��cc1 (E2.3-1.6)

Here, the expression for the stress �aa1 is also given and it follows from the analogy with
the derivation for the main artery.

Finally, we substitute the expressions for the virtual strains 
eaa = 
uB/L and 
eaa1 =
−
uB cos �/L1, which follow from (E2.3-1.3), and the stresses from (E2.3-1.6), into (E2.3-
1.1) and obtain

�Fa −2F1 cos ��
uB

=
⎡
⎣A

L

∫
L

�Eeaa +��cc�dL−2
A1

L1

cos �
∫
L1

�Eeaa1 +��cc1�dL1

⎤
⎦
uB

(E2.3-1.7)

This equation must be satisfied for any value of 
uB, and the terms multiplying 
uB on the
left- and right-hand side must be equal. Substituting further eaa and eaa1 from (E2.3-1.3), and
taking into account that all terms within the integrals are independent of the axial coordinate,
we obtain the solution for the displacement uB as

uB = Fa −2F1 cos �−� �A�cc −2A1�cc1 cos ��

E �A/L+2A1 cos2 �/L1�
(E2.3-1.8)

From this solution, we can compute axial stresses and strains within each artery, as well as
the reactions at the end points A, C and D (see Example 2.2.3).

EXERCISE
Determine displacement uB and reactions at the end of arteries using the following data:
E = 0�5 N/mm2� v = 0�5� L = L1 = L2 = 50 mm� 
1 = 
2 = 
 = 1�5 mm� � = 30 ��
p = 1�5 N/mm2

(a) Assume that the pressure is constant over time

(b) Assume that the pressure varies over time as

p = p0 sin
(

2	
t

T

)
� where p0 = 2 N/mm2� T = 1s

In the case of variable pressure with time, draw the dependence on time of: displacement
uB, reactions at the arterial ends, and axial and hoop stresses and strains.

2.4 Nonlinear continuum mechanics

There are basically two types of nonlinearities in continuum mechanics: (a) material and
(b) geometrical. In case (a) we have small strains, but the constitutive law is nonlinear;
in case (b) the strains are large and the constitutive law can be either linear – then the
problem is geometrically nonlinear only, or nonlinear – the problem is geometrically
and materially nonlinear. We here give the basic kinematic quantities used in describing
geometric nonlinearity of deformation.
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2.4.1 Deformation gradient and the measures of strain and stress

Basically all large strain kinematic quantities rely on the deformation gradient. We start by
introducing a configuration 0� of a continuum defined by coordinates of all material points
0x corresponding to initial time �t = 0�, i.e.

0x = x �t = 0� (2.4.1)

The time parameter t can be real time or a parameter for defining the configuration. Usually,
the configuration 0� corresponds to the stress-free (undeformed) reference configuration.
Under loading the material deforms and at a ‘time’ t (load level t) we have the current
configuration t� when the material coordinates are tx (Fig. 2.4.1). Note that a Cartesian
coordinate system can be used to follow the motion of material points in space (Fig. 2.4.1a),
or the finite element description can be employed where the natural coordinates of material
points within each element remain constant (in Fig. 2.4.1b the coordinates r and s remain

Fig. 2.4.1 Configurations and position vectors during large strain deformation of material
body. (a) General representation; (b) Use of finite element modeling, with material coor-
dinates r� s within the finite elements (Reproduced with permission from Kojić & Bathe:
Inelastic Analysis of Solids and Structures, Springer-Verlag, Berlin, 2005)
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unchanged, see Sections 4.1 and 4.2). Deformation gradient t
0F, with components t

0Fij , is
defined as (Kojić & Bathe 2005)

t
0F = � tx

� 0x
� t

0Fij = � txi

� 0xj

(2.4.2)

The deformation gradient can be expressed in terms of displacements tu as

t
0F = I + � tu

� 0x
� t

0Fij = 
ij + � tui

� 0xj

(2.4.3)

The inverse deformation gradient is

0
t F ≡ t

0F−1 = � 0x
� tx

� 0
t Fij = � 0xi

� txj

(2.4.4)

since � txi/� txj = 
ij = (
� txi/� 0xk

) (
� 0xk/� txj

)
. From (2.4.3) and (2.4.4) it follows that

0
t F = I − � tu

� tx
� 0

t Fij = 
ij − � tui

� txj

(2.4.5)

The deformation gradient has a physical meaning. It relates the differential material
vectors d ts and d 0s, consisting of the same material particles, in two configurations t� and
0�, through the relationship

d ts = t
0Fd 0s� d txi = � txi

� 0xk

d 0xk = t
0Fikd

0xk (2.4.6)

where d txk and d 0xk are the components of d ts and d 0s. Also, the relationship between
elementary material volumes d tV and d 0V in two configurations (Bathe 1996) is

d tV = det �t
0F�d 0V (2.4.7)

Proof of this relation is given on the web – Theory, Chapter 2 (Section 2.4e).

Cauchy–Green Deformation Tensors
The squared lengths of a material element at initial configuration 0� and a current configu-
ration t� can be related as

�d ts�
2 = � txk

� 0xm

� txk

� 0xs

d 0xmd 0xs� �d ts�
2 = d 0sT t

0Cd 0s (2.4.8)

or

(
d 0s

)2 = � 0xk

� txm

� 0xk

� txs

d txmd txs�
(
d 0s

)2 = d tsT 0
t Bd ts (2.4.9)

where t
0C is the right Cauchy–Green deformation tensor,

t
0C = t

0FT t
0F� or t

0Cms = � txk

� 0xm

� txk

� 0xs

(2.4.10)
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and the Finger deformation tensor,

0
t B = 0

t FT 0
t F� or 0

t Bms = � 0xk

� txm

� 0xk

� txs

(2.4.11)

We will use in the numerical methods the left Cauchy–Green deformation tensor t
0B, as the

inverse of 0
t B,

t
0B = t

0F t
0FT � t

0Bms = � txm

� 0xk

� txs

� 0xk

(2.4.12)

It can be shown (see web – Theory, Chapter 2, Section 2.4) that the principal values
of the tensors t

0C and t
0B are the squares of the principal stretches t

0�
2
i in the directions of

the principal vectors of the right basis tpi and the left basis tpi, see Fig. 2.4.2. Hence, we
can write

t
0C =

3∑
i=1

t
0�

2
i

tpi
tpi� and t

0B =
3∑

i=1

t
0�

2 t
i pi

tpi (2.4.13)

Figure 2.4.2 illustrates the polar decomposition theorem, according to which the defor-
mation at a material point can be decomposed into pure stretch in the principal directions
and material rotation. In accordance with this theorem, the deformation gradient can be
expressed as:

t
0F = t

0R t
0U� and t

0F = t
0V t

0R (2.4.14)

where t
0R is the rotation tensor, and t

0U and t
0V are the right and left stretch tensors. Proof

of the relations is given on the web – Theory, Chapter 2 (see also Example 2.4-1).

Strain Measures
Various strain measures have been introduced by employing the polar decomposition
theorem. We list some of them that are commonly used, and also give their representation
in the principal directions:

Green-Lagrange strain, t
0EGL = 1

2
�t

0C− I� or

t
0EGL = 1

2

3∑
i=1

(
t
0�

2
i −1

)t
pi

tpi

(2.4.15)

Almansi strain, t
tE

A = 1
2

(
I −0

t B
)

or

t
tE

A = 1
2

3∑
i=1

(
1−t

0 �−2
i

)
tpi

tpi

(2.4.16)

Logarithmic �or Hencky� strain, t
0EH =

3∑
i=1

ln �t
0�i�

tpi
tpi

t
0E

H
mn =

3∑
i=1

ln �t
0�i� �tpi�m �tpi�n

(2.4.17)
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Fig. 2.4.2 Decomposition of deformation into stretch and rotation: t
0F = t

0R t
0U = t

0V t
0R.

(a) A sphere is deformed into an ellipsoid, with the principal stretch directions pi (right basis)
and pi (left basis); (b) Material is first stretched and then rotated; (c) Rotation followed by
stretch (Reproduced with permission from Kojić & Bathe 2005: Inelastic Analysis of Solids
and Structures, Springer-Verlag, Berlin)

Here t
0E

H
mn are the components the Hencky strains in a coordinate system xi. Note that

for stretches close to one, all large strains reduce to small strains (2.1.25) (see Examples,
Chapter 2, on the web). Also, the shear components in the principal bases are equal to zero.
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Stress Measures
The mechanical power per unit volume tẆ is given by

tẆ = t�ij
tDij (2.4.18)

where t�ij are the Cauchy (true) stresses (forces per unit current area); and tDij are the strain
rates (2.1.27). This mechanical power must be equal to the mechanical power calculated
as the product of the rate of a given strain and the corresponding stress measure. From
this equality of the mechanical power, we find the relationship between a stress measure,
work-conjugate to a given strain measure, and the Cauchy stresses t�ij . It can be shown
(Bathe 1996, Kojić & Bathe 2005) that the Cauchy stress can be considered conjugate to the
Almansi and logarithmic strains. The conjugate stress to the Green–Lagrange strain is the
second Piola–Kirchhoff stress t

0S, related to the Cauchy stress as,

t
0S =

0�
t�

0
t F t� 0

t FT � t
0Sij =

0�
t�

� 0xi

� txk

� 0xj

� txm

t�km (2.4.19)

where 0� and t� are mass densities at the initial and current configurations, respectively.
Note that the ratio 0�/t� can be expressed as 0�/t� = det �t

0F�, see web – Theory, Chapter 2,
equation (T2.4-33).

2.4.2 Nonlinear elastic constitutive relations

The stress–strain relationships for many materials, and biological materials in particular, are
nonlinear. Then the constitutive matrix depends on the strain level and changes during the
course of material deformation. The material is considered elastic if it returns to the initial
zero-stress and zero-strain state after it is unloaded.

There are various nonlinear elastic material models (Desai & Siriwardane 1984, Fung
1965, 1993, Ogden 1997). Here we consider the hyperelastic models. These materials are
characterized by the existence of a strain energy function (see web – Theory, Chapter 2,
Section 2.2d). This function of strains is such that its derivatives with respect to strains give
the stresses.

The strain energy function for large strains is usually expressed in terms of the Green–
Lagrange strains, W = W

(
EGL

ij

)
. Then the derivatives with respect to strains give the conju-

gate second Piola–Kirchhoff stresses,

t
0Sij = � tW

� tEGL
ij

(2.4.20)

Commonly used expressions of the strain energy function have exponential form (Fung
et al. 1979, Fung 1993, Holzapfel et al. 2000). This form can in general be written as
(Humphrey 1995)

W = 1
2

c �exp �Q�−1� (2.4.21)

where Q is a quadratic form of the Green–Lagrange strain components. Nine coefficients and
the modified Green–Lagrange strains (which preserve material incompressibility) are used.
In Fig. 2.4.3 we give a graphical representation of a two-dimensional form of this function
(Fung et al. 1979, Takamizawa & Hayashi 1987) and the stress–stretch relationships for
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Fig. 2.4.3 Strain energy function in the �x − �� coordinates and uniaxial stress–stretch
curves for blood vessel wall (Takamizawa & Hayashi 1987, Holzapfel et al. 2000). (a) Strain
potential showing convexity; (b) Uniaxial stress–axial strain constitutive relationships.
Data: Q = a1

(
EGL

��

)2 +a2

(
EGL

xx

)2 + 2a4E
GL
�� EGL

xx � c = 28�58 kPa; dimensionless coefficients:
a1 = 0�8329� a2 = 0�6004� a4 = 0�0169 (Reproduced with permission from Takamizawa,
K. & Hayashi, K. 1987: Strain energy density function and uniform strain hypothesis for
arterial mechanics, J. Biomechanics, 20, 7–17)

uniaxial material loadings. Details about this function and other forms of the strain energy
function are given on the web – Theory, Chapter 2.

Finally, we show nonlinear elastic constitutive behavior for biological membranes. The
constitutive relations are represented by the uniaxial and biaxial stress–stretch curves. These

Fig. 2.4.4 Uniaxial and biaxial constitutive curves of dog’s lung tissue slab (Lee &
Hoppin 1972). Stress is normalized with respect to a reference stress �ref (Reproduced
with permission from Lee, C.G. & Hoppin, F.G. Jr.: Lung elasticity. In Y.C. Fung,
N. Perrone & M. Anliker (eds.), Biomechanics – Its Foundations and Objectives
(pp. 317–35), Prentice-Hall, Englewood Cliffs, NJ, 1972)
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curves are shown in Fig. 2.4.4 for a lung tissue (Lee & Hoppin 1972). The main property
shown in these curves is the material nonlinear hardening: for small stretches, the stresses
are small, while the material becomes very stiff in the domain of large stretches. More details
about mechanical behavior of biological membranes are given in Chapter 11.

2.4.3 Examples

Here, we present one example. Additional examples are given on the web – Examples,
Section 2.4.

Example 2.4-1. Determine principal stretches and principal directions for pure shear
Deformation of the material element in the case of pure shear is shown in Fig. E2.4-1. It is
assumed that all material points move in the x−y plane and straight-line elements remain
straight, with no elongational (normal) strains in the x and y directions. The displacement
field is defined by

tux ≡ tu = y �V/H� t = y�̇t = y t�� t� = �̇t (E2.4-1.1)

where V is constant velocity of the line element at the top surface, for y = H ; and
�̇ = V/H = const. Note that for small strains t� = tan t� ≈ t� is the shear strain (see (2.1.20)).
In this analysis, we assume large displacements u�y� t�.

The x� y components of deformation gradient follow from (2.4.3) and (E2.4-1.1),

t
0F ≡ F =

[
1 �
0 1

]
(E2.4-1.2)

For simplicity, we omit the left indices ‘t’ and ‘0’ in the text below, but assume that the
reference configuration corresponds to the undeformed configuration at t = 0. Thus, the
deformation tensors C and B, given in (2.4.10) and (2.4.12), are

C = FT F =
[

1 �
� 1+�2

]
� B = FFT =

[
1+�2 �

� 1

]
(E2.4-1.3)

Fig. E2.4-1 Pure shear of material element, large strains. (a) Deformed element; (b) Prin-
cipal directions of the right �p1� p2� and left �p1� p2� bases. While material deforms, the
principal directions of the two bases rotate in the opposite directions (according to Kojić &
Bathe 2005)



48 COMPUTER MODELING IN BIOENGINEERING

The characteristic equation (1.3.14) for both tensors C and B is
∣∣∣∣
[

1−�2 �
� 1+�2 −�2

]∣∣∣∣=
∣∣∣∣
[

1+�2 −�2 �
� 1−�2

]∣∣∣∣= �4 −�2
(
2+�2

)+1 = 0

(E2.4-1.4)
where �2 is the principal value. The solutions of this equation are

�1 = cot �� �2 = tan � (E2.4-1.5)

where

� = 1
2

tan−1 �2/�� (E2.4-1.6)

We now determine the principal vectors of the right and left bases. The first equation of
the system (1.3.17) for the vector p1 is

�1− cot2 ��p1x +�p1y = 0� tan �1 = p1y

p1x

= 1− cot2 �

�
= 1− cot2 �

2 cot 2�
= cot � (E2.4-1.7)

Therefore, the angle �1 between the vector p1 is �1 = 	/2 −� as shown in Fig. E2.4-1b.
Note that the second equation of the system (1.3.17) for the vector p1 is the same as in
(E2.4-1.7). Thus we have that

�p1x + �1− cot2 ��p1y = 0� tan �1 = p1y

p1x

= − �

1− cot2 �
= − 2 cot 2�

1− cot2 �
= tan �

(E2.4-1.8)
and �1 = �. The vectors of the right and the left bases and angles �� �1 and �1 are shown in
the figure. Note that at the initial configuration �t = 0�, we have that 0� = 0�1 = 0�1 = 	/4,
the right and left bases coincide, and the right basis rotates counterclockwise, while the left
basis rotates clockwise (see figure). As time increases, the material element approaches to the
x-axis, therefore the first principal direction p1 approaches the x-axis, with large elongation
stretch �1, while the vector p2 approaches to the y-axis with large compressive stretch �2.

The rotation tensor R can be obtained from (E1.5-3.7),

R = p�1�p�1� +p�2�p�2� = sin 2�i1i1 − cos 2�i1i2 + cos 2�i2i1 + sin 2�i2i2 (E2.4-1.9)

In the matrix form, R is given as

R =
[

sin 2� cos 2�
− cos 2� sin 2�

]
(E2.4-1.10)

Note that the orthogonality condition (1.2.12) RT R = RRT = I is satisfied.
The right and left stretch tensors U and V follow from (2.4.14),

U = RT F =
[

sin 2� cos 2�
cos 2� � cos 2� + sin 2�

]

V = FRT =
[

� cos 2� + sin 2� cos 2�
cos 2� sin 2�

] (E2.4-1.11)
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The rate of deformation tensor and the spin tensor, given in (2.1.27) and (2.1.28), are

D = V

H

[
0 1
1 0

]
� W = V

H

[
0 1

−1 0

]
(E2.4-1.12)

We note that the above analysis of principal stretches and principal directions can be
obtained graphically using the Mohr circles (see web – Examples, Sections 2.1and 2.4).

Various stress and strain measures are calculated in Example 2.4.2, see web – Examples,
Section 2.4.

EXERCISE
Draw the Mohr circles for the deformation tensors C and B and graphically determine
principal stretches and principal stretch directions. Determine values of the maximum shear
and directions of the maximum shear. Show how the principal stretches and the maximum
shear change over time, as well as their directions (see web – Examples, Section 2.4).
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3

Heat Transfer, Diffusion,
Fluid Mechanics, and Fluid
Flow through Porous
Deformable Media

The basic relations in heat conduction, diffusion, fluid mechanics, and flow through porous
deformable media are summarized in this chapter. Also, heat transfer and diffusion within
the flowing fluid is considered. The presented relations are used in further developments
of numerical methods. We first present heat transfer, then diffusion, followed by fluid
mechanics and fluid flow through porous deformable media. Many textbooks are available
for these topics (e.g. Mills 1999, 2001, Incropera & DeWitt 1996, Munson et al. 1998, Lewis
& Schrefler 1987).

3.1 Heat conduction

Heat energy propagates through a continuous medium when there is temperature difference
(temperature gradient) within the continuum. In the case of a solid, the heat energy prop-
agation is called heat conduction, while heat propagation within a moving fluid is called
heat transfer. We here derive the differential equations of heat conduction as the basic ones,
while the heat transfer equations will be derived in Section 3.3.

Computer Modeling in Bioengineering Edited by M. Kojić, N. Filipović, B. Stojanović, N. Kojić
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3.1.1 Governing relations

The differential equation of heat conduction relies on the balance of internal energy within
an elementary material volume dV and unit time of the continuum,

dU

dt
= dQ

dt
(3.1.1)

where dU/dt is the rate of change of internal energy, and dQ/dt is transfer rate of energy as
heat. Rate of change of the internal energy can be expressed in terms of rate of temperature
change, dT/dt,

dU

dt
= �c

dT

dt
dV (3.1.2)

where � is mass density (kg/m3�� c is specific heat (J/kgK), and T(K) is temperature. We
further introduce the surface heat flux q vector, with the components qi (or qx� qy� qz in the
x� y� z coordinate system, Fig. 3.1.1) (W/m2), and use the Fourier law of heat conduction,

q = −k�T� qi = −kik

�T

�xk

(3.1.3)

Fig. 3.1.1 Heat conduction. (a) A temperature domain (body �) with boundary conditions
on surfaces: ST – surface with prescribed temperature, ST0 – surface with given surrounding
temperature (boundary condition expressed as qcon� = h�TS −T0�, where qcon� is convective
flux, TS is temperature at the surface, T0 is the surrounding temperature, and h coefficient of
convection (W/m2K)), Sq – given flux through the surface; (b) Elementary material volume
with heat fluxes through the surfaces and heat source qV �W/m3)
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where k is the heat conduction matrix,

k =
⎡
⎣kx 0 0

0 ky 0
0 0 kx

⎤
⎦ � kik = ki	ik� i� k = 1� 2� 3 (3.1.4)

where ki (or kx� ky� kz) (W/m K) are the heat conduction coefficients corresponding to an
orthotropic medium; for isotropic medium ki = k.

Equation (3.1.1) finally becomes (see detailed derivations on web – Theory, Chapter 3)

−�c
�T

�t
+�T �k�T�+qV = 0� or −�c

�T

�t
+ �

�xi

(
ki

�T

�xi

)
+qV = 0� i = 1� 2� 3

(3.1.5)

where we have assumed that the heat conduction coefficients ki depend on temperature.
When ki are temperature independent, the term with derivatives with respect to xi have the
form ki�

2T/�2xi, with summation over the dummy index i.

3.1.2 Examples

Example 3.1-1. Steady heat conduction laterally through long column
Uniform temperatures T1 and T2 are given along all column sides, Fig. E3.1-1a. There is no
heat flow in the axial column direction, hence the problem is two-dimensional, with identical
temperature field in x−y planes. Also, there is a symmetry plane due to symmetry of the
boundary conditions, shown in the figure.

For T2 = 0, the analytical steady state solution can be obtained (Polivka & Wilson 1976)
in a form of infinite series:

T�x,y� = 4T1




∝∑
n=0

1
�2n+1�

sin
�2n+1�
y

a
sinh

�2n+1��a−x�


a
cos ech�2n+1�


(E3.1-1.1)

Fig. E3.1-1 Steady lateral heat conduction through a column with given temperatures along
the column sides. (a) Geometry and boundary conditions; (b) Temperature distribution along
symmetry plane for: k = 1 W/mK� a = 4 m� T1 = 100 �C� T2 = 0 �C
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Temperature distribution along the symmetry plane is shown in Fig. E3.1-1b. The finite
element solution for this example is presented in Section 7.2.2 (see also web – Software).

Example 3.1-2. Unsteady heat conduction through a semi-infinite medium
A constant flux is given on the surface bounding the semi-infinite solid shown schematically
in Fig. E3.1-2a. Initially, temperature of the solid is equal to zero.

It can be considered that the heat flow in the solid occurs in the direction normal to
the surface, shown in the figure as the x-axis. Then, the analytical solution can be obtained
(Polivka & Wilson 1976),

T �x� t� = 2
k

[√
kt



exp

(−x2/ �4kt�
)− x

2
erfc

(
x/
(

2
√

kt
))]

(E3.1-2.1)

where

erfc �x� = 2



∝∫
x

exp
(−u2

)
du (E3.1-2.2)

Fig. E3.1-2 Unsteady heat conduction through semi-infinite solid. (a) Schematic represen-
tation of the solid with 1D heat conduction in the x-direction; (b) Increase of temperature with
time at the surface where constant flux is given; (c) Temperature profiles along the distance x
from the surface with flux. Data: flux q = 1 W/m2, heat conduction coefficient k = 1 W/mK,
mass density � = 1 kg/m3, specific heat c = 1 J/kgK, initial temperature Tinitial = 0 0C
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Temperature at the boundary and distribution along the x-axis are shown in Figs. E3.1-
2b,c. The temperature increases with time, on the surface with flux as well as within the body.
The temperature profiles show that the temperature decreases with x. The finite element
solutions are given in Example 7.2.2 (see also web – Software).

3.2 Diffusion

Diffusion is a process of mass transport within a mixture of several constituents. We will
consider mass transport of constituents within a liquid solution. There are two distinct cases
which we are going to consider: diffusion of dilute substances, and diffusion in concentrated
solutions. We first introduce the basic terms and Fick’s law, which is the fundamental
diffusion law and is analogous to Fourier’s law in heat conduction.

3.2.1 Differential equations of diffusion

Definitions of concentration
There are various definitions of concentration of a constituent within a mixture (Mills
2001). We will use two of them: mass concentration and volumetric concentration. Mass
concentration cmj and partial density �j �kg/m3� of species ‘j’, and the density of mixture
(total density) �, are defined as (see Fig. 3.2.1)

cmj = �j

�
� �j = �mj

�V
� � = �m

�V
� (3.2.1)

where �mj and �m are, respectively, elementary masses of the species and mixture within
an elementary mixture volume �V . The relations following from these definitions are

� =∑
j

�j�
∑

j

cmj = 1 (3.2.2)

Note that the mass density can also be defined as the mass per mol (kg/mol). We further
introduce the substance density �̄j which occupies a volume �Vj within the volume �V and
consequently the volumetric concentration cVj ,

�̄j = �mj

�Vj

= �const�j � cVj = �Vj

�V
= �j

�̄j

�
∑

j

cV j = 1 (3.2.3)

Fig. 3.2.1 Elementary volume of a mixture
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where it is indicated that the substance densities are material properties and are constant,
and the sum of cVj is equal to 1.

Fick’s Law
The Fick law is a phenomenological law which states that the mass flux of a species ‘j’,
qmj �kg/m2s�, is in the negative direction of the spatial gradient of the species concentration,
�cmj , expressed in a mathematical form as

qmj = −�Dj�cmj no sum on j (3.2.4)

Here Dj �m2/s� is the diffusion coefficient. If the volumetric concentration is used, the Fick
law is

qmj = −��̄jDj�
(
cVj/�

)
no sum on j (3.2.5)

When the total density � is constant, the Fick law becomes

qmj = −�̄jDj�cVj no sum on j (3.2.6)

Governing Equations of Diffusion
From the equation of balance of mass for a species ‘j’, in analogy with the derivation of
equation (3.1.5) for heat conduction (see Fig. 3.1.1, where the heat flux should be replaced
by the mass flux, and the heat source term qV by the mass source term qV

mj �kg/m3s��,
replacing the Fourier law (3.1.3) by the Fick law (3.2.4), we obtain

− ��j

�t
+�T

(
�Dj�cmj

)+qV
mj = 0� or

− ��j

�t
+ �

�xi

(
�Dj

�cmj

�xi

)
+qV

mj = 0� no sum on j� sum on i � i = 1� 2� 3 (3.2.7)

Therefore, we have the equation of mass balance for each species of the mixture. If the
number of constituents is M , the number of equations to be solved is M −1 because the sum
of concentrations is equal to one (see (3.2.2) and (3.2.3)). These equations correspond to the
concentrated solution, where change of the mass concentrations of species causes change of
the mixture density.

For a dilute solution, we have a solvent (incompressible fluid) as the dominant medium
in mass, which also occupies the space, with a small mass (and volumetric) part belonging
to species. Then it can be considered that the mixture density � = const., and the equations
of mass balance (3.2.7) can be written as

− �cVj

�t
+�T

(
Dj�cVj

)+qV
mj/�̄j = 0� or

− �cVj

�t
+ �

�xi

(
Dj

�cVj

�xi

)
+qV

mj/�̄j = 0� no sum on j� sum on i � i = 1� 2� 3 (3.2.8)

These equations have the same form as the heat balance equation (3.1.5).



HEAT TRANSFER, DIFFUSION, FLUID MECHANICS, AND FLUID FLOW 57

3.2.2 Examples

Example 3.2-1. One-dimensional unsteady diffusion of a dilute solution
In the case of one-dimensional diffusion without the mass source, and for one spices �j = 1�,
the diffusion equation (3.2.8) reduces to

−�c

�t
+ �

�x

(
D

�c

�x

)
= 0 (E3.2-1.1)

Consider the solution of this equation within the region −x0 ≤ x ≤ x0 with the initial
condition:

c�x� t0� = exp
( −x2

4Dt0

)
(E3.2-1.2)

where t0 > 0 is the initial time; and D = const. The spatial boundary conditions are assumed as

c�±x0� t� =
√

t0

t
exp

(−x2
0

4Dt

)
(E3.2-1.3)

The analytical solution of this problem is (Crank 1979)

c�±x� t� =
√

t0

t
exp

(−x2

4Dt

)
(E3.2-1.4)

Graphical representation of the initial concentration and at t = 5 s are shown in Fig. E3.2-1.
This example is also solved using the finite element method, see Example 7.3-1.

EXERCISE
Compute and plot concentration distribution for different diffusion coefficient D and different
initial time t0 (see web – Software).

Fig. E3.2-1 Unsteady one-dimensional diffusion through infinite medium. (a) Initial con-
centration (eq. (E3.2-1.2)); (b) Analytical solution for concentration distribution along the
distance x for t = 5 s. Data: diffusion coefficient D = 10 m2/s� t0 = 10 s, mass density
� = 1 kg/m3
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3.3 Fluid flow of incompressible viscous fluid with heat
and mass transfer

Biological fluids can be considered incompressible and viscous and we present here the
governing equations for these fluids: the equation of balance of mass (continuity equation)
and equations of balance of linear momentum. These equations are used in the numerical
applications. Also, we present the equations of heat transfer (heat conduction within the
fluid, with convective effects) and mass transfer (diffusion with convection).

In deriving the governing equations we adopt a control volume, which represents an
elementary volume fixed in space, with dimensions dx, dy and dz (Fig. 3.3.1b), through which
the fluid is flowing. The control volume surrounds the point in space, with coordinates x� y� z
(Fig. 3.3.1a). The goal of fluid mechanics is to determine the spatial fields of fluid variables,
such as pressure and velocity. This approach in studying a continuous medium is called the
Eulerian (or spatial) description. We pointed out in Section 2.1 that the Lagrangian (or
material) description is used in solid mechanics.

Fig. 3.3.1 Control volume of a fluid, surrounding spatial point Pxyz (the position of Pxyz

is fixed in space), through which the fluid is flowing. (a) Control volume within the fluid
domain; (b) Enlarged control volume with mass fluxes through elementary surfaces parallel
to stationary coordinate planes, and rate of change of mass within the volume �̇dV due to
fluid density change
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3.3.1 Governing equations of fluid flow and of heat
and mass transfer

Continuity Equation
Figure 3.3.1a shows a control volume within a fluid flow domain, while in Fig. 3.3.1b this
control volume is enlarged – with the mass fluxes through the elementary surfaces. The fluid
density is � and velocity components are vx� vy� vz. The equation of balance of mass within
the control volume leads to the continuity equation (detailed derivation is given on the web –
Theory, Chapter 3),

��

�t
+� · ��v� = 0� or

��

�t
+ � ��vi�

�xi

= 0� or
D�

Dt
+�� ·v = 0 (3.3.1)

We have used here D�/Dt = ��/�t + ���/�xi� vi to denote the so-called total (material)
derivative of the fluid density � (see (1.4.15)). The material derivative D �•� /Dt of any fluid
quantity is used in the Eulerian description, which has a general form,

D�•�

Dt
= ��•�

�t
+� �•� ·v� or

D�•�

Dt
= ��•�

�t
+ ��•�

�xi

vi (3.3.2)

The derivative ��•� /�t is the local derivative at the spatial point (assuming no motion of the
fluid); and the term ���•� /�xi� vi represents the convective part of the material derivative,
which takes into account motion of the fluid (see detailed description on the web – Theory,
Chapter 3). In case of incompressible fluid we have � = const., and

� · ��v� = 0� or
�vi

�xi

≡ �vx

�x
+ �vy

�y
+ �vz

�z
= 0 (3.3.3)

The scalar product of the operator � ≡ �/�xkik and a vector is called the divergence of the
vector (see (1.4.4)), therefore the continuity equation for incompressible fluid is expressed
by the condition that the divergence of velocity is equal to zero at each point of the fluid
domain.

Constitutive Relations
The stresses �ij acting on a fluid element can be decomposed into pressure p and viscous
stresses �ij , hence we have

�ij = −p	ij + �ij (3.3.4)

where 	ij is the Kronecker delta symbol (= 1 for i = j� = 0 for i �= j). Obviously, it is
assumed, as in solids (see Section 2.1.1), that the tensile stress is positive. The viscous stress
components are proportional to the strain rates ėij defined in (2.1.27),

�ij = 2�ėij = �
(
vi�j + vj�i

)
� or

�xx = 2�vx�x� �yy = 2�vy�y� �zz = 2�vz�z� (3.3.5)

�xy = �
(
vx�y + vy�x

)
� �yz = �

(
vy�z + vz�y

)
� �xz = �

(
vx�z + vz�x

)

where ��Pa s� is the viscosity coefficient (or dynamic viscosity).
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The Navier–Stokes Equations
These equations represent the equations of balance of linear momentum, as we have for a
solid – equations (2.1.12). However, since here the Eulerian description of the fluid motion
is used, it is necessary to employ the material derivative for evaluating the inertial term, and
the equations of motion (for � = const.) are

�

(
�vi

�t
+ �vi

�xk

vk

)
= − �p

�xi

+ ��ik

�xk

+fV
i i = 1� 2� 3� sum on k � k = 1� 2� 3 (3.3.6)

where fV
i are the volumetric force components as in the case of a solid. Substituting now

the constitutive equations (3.3.5) for the viscous stresses, we obtain

�

(
�vi

�t
+ �vi

�xk

vk

)
= − �p

�xi

+�
�2vi

�xk�xk

+fV
i i = 1� 2� 3� sum on k � k = 1� 2� 3 (3.3.7)

Here, the incompressibility condition (3.3.3) is taken into account. Detailed derivation of
(3.3.3) and (3.3.7) is given on the web – Theory, Chapter 3.

Heat Transfer with Convection
In order to obtain the equation for heat conduction in flowing fluid (usually called heat
transfer) we simply replace the time derivative �T/�t in (3.1.5) by the material derivative
DT/Dt according to (3.3.2) and obtain

−�c

(
�T

�t
+ �T

�xi

vi

)
+ �

�xi

(
ki

�T

�xi

)
+qV = 0� sum on i � i = 1� 2� 3 (3.3.8)

Diffusion with Convection
As for heat transfer, we now substitute the time derivative �cVj/�t in (3.2.8) by the material
derivative DcVj/Dt (following (3.3.2)), and obtain the diffusion equations for each diluted
species,

−
(

�cVj

�t
+ �cVj

�xi

vi

)
+ �

�xi

(
Dj

�cVj

�xi

)
+qV

mj/�̄j = 0�

no sum on j� j = 1� 2� � � � �M� sum on i � i = 1� 2� 3

(3.3.9)

Details on the derivations of (3.3.8) and (3.3.9) are given on the web – Theory,
Chapter 3.

In practical applications we first solve for the fluid velocities and then use the velocity
field to calculate temperatures or concentrations from (3.3.8) or (3.3.9), respectively, with
the corresponding initial and boundary conditions for temperatures and concentrations.

3.3.2 Examples

We provide a few examples for which the finite element solutions are presented in Section 7.4.
Other examples can be found on the web – Examples and Software.

Example 3.3-1. Two-dimensional steady flow between two parallel walls
Viscous fluid is flowing between two parallel walls, which are long in the z-direction (Fig.
E3.3-1a). Under these conditions it can be considered that fluid flow is two-dimensional,



HEAT TRANSFER, DIFFUSION, FLUID MECHANICS, AND FLUID FLOW 61

Fig. E3.3-1 Two-dimensional steady fluid flow between parallel walls. (a) Geometrical
and material data; (b) Velocity vector field; (c) Velocity profile v�y� = vx�y�

with velocities in the x-direction only. Therefore, we have one of the equations (3.3.7), with
zero external force. Geometrical and material data, and boundary conditions are given in
the figure. It is assumed that the flow is stationary. Boundary conditions consist of given
pressures p1 and p2 at the entrance and at the outlet, respectively; and zero velocities at the
walls. This fluid flow is known as the Poiseuille flow.

The differential equation of motion is

−�p

�x
+�

�2v

�y2
= 0 (E3.3-1.1)

and it can be satisfied only if each of the terms is equal to the same constant. Therefore, we
have that �p/�x = const., or �p/�x = −�p1 −p2�/L. Substituting this value for the pressure
gradient into the above equation follows the dependence v�y� which satisfies the boundary
conditions, as

v = 1
2�

p1 −p2

L

(
h2 −y2

)
(E3.3-1.2)

The velocity vector field and parabolic-shape curve representing the dependence v�y�, for
the given data are shown in Fig. E3.3-1b,c. Comparison of the finite element solution with
this analytical solution is given in Example 7.4.1, with the software on the web (see web –
Software) to obtain solutions for various data.
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EXERCISE
(a) Compute and plot the velocity distribution when the viscosity is changed as � = k�0,
where �0 is the referent value given in Fig. E3.3-1, and k is a positive scalar. (b) Determine
the shear stress � and plot the graphs ��y� for various values of the viscosity �. (c) Find the
rate of energy dissipation per unit axial length of the channel.

Example 3.3-2. Unsteady fluid flow on a plate
The motion of a fluid, which lies on a plate, is caused by plate motion with constant velocity
v0. The motion of the plate starts at t = 0, when the fluid is at rest. The fluid domain is
considered to be semi-infinite in the y-direction (Fig. E3.3-2a) and the velocity of fluid tends
to zero when y tends to −� for any time t > 0. Influence of gravity is neglected. Under
the assumption that flow is parallel to the plate, that convective term is neglected, and with
constant pressure in time and space, the Navies–Stokes equations (3.3.7) reduce to the wave
equation

�v

�t
= �

�2v

�y2
(E3.3-2.1)

where � = �
/

� �m2/s� is kinematic viscosity. The analytical solution of this equation (in
the domain L, near the plate) is (Batchelor 1967)

v�y� t� = v0 + 4v0




�∑
n=1

�−1�n

2n−1
e−�2n−1�2
2vt

/
4L2

cos
�2n−1�
y

2L
(E3.3-2.2)

The velocity distribution in the domain L and for several times is shown in Fig. E3.3-2b.
It can be seen that the velocity tends to the plate velocity v0 in the entire domain as time
increases. Finite element solutions are shown in Example 7.4-2.

EXERCISE
Calculate shear stress distribution along the y-axis, in the vicinity of the moving plate, for
times used in Fig. E3.3-2b. Use n = 5 in (E3.3-2.2).

Fig. E3.3-2 Unsteady fluid flow (seminfinite domain in the y-direction) caused by the
moving plate on the top of the fluid domain. (a) Geometrical and material data; (b) Velocity
distribution in the domain L near the moving plate for several times
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Fig. E3.3-3 Linear convection–diffusion equation (Burger’s viscous equation). (a) Initial
conditions according to (E3.3-3.2), constant B = 50; (b) Solutions for several times

Example 3.3-3. Linear convection–diffusion equation (Burger’s viscous equation)
If in the equation (3.3.8) for heat transfer with convection, and in the equation (3.3.9) for
diffusion with convection – all material parameters are taken as unity (�� c and k in (3.3.8),
and D in (3.3.9)), then the one-dimensional problems for heat conduction and diffusion can
be represented by the same equation (known as Burger’s viscous equation)

�u

�t
+ �u

�x
= �2u

�x2
(E3.3-3.1)

where u is either temperature T or concentration cV . Also, it is assumed that the fluid velocity
is constant and equal to unity, and that there are no source terms. We use the initial condition
for this equation as (Chawla et al. 2000):

u�x� 0� = exp�−Bx2� (E3.3-3.2)

graphically shown in Fig. E3.3-3a; where B is a constant.
The analytical solution of (E3.3-3.1) which satisfies the initial conditions (E3.3-3.2) is

u�x� t� = 1√
s

exp
(

−B
�x− t�2

s

)
� s = 1+200t (E3.3-3.3)

and is shown in Fig. E3.3-3b. Finite element solutions are given in Example 7.4-3 (see also
web – Software, Chapter 7).

EXERCISE
Compute and plot temperature/concentration distribution for different values of constant B
and compare the solutions for the same times tk. For selected values of time t and coordinate
x (i.e. t = tk� x = xp) find the change of u among the solutions; can this change be computed
analytically (and compared with the values obtained from graphs)?

3.4 Fluid flow through porous deformable media

In this section we present the governing equations for flow of fluid through porous deformable
media. It is assumed that the fluid is compressible, the solid medium is elastic and strains
within the solid are small (Lewis & Schrefler 1987, Kojić et al. 1998, 2001).



64 COMPUTER MODELING IN BIOENGINEERING

3.4.1 The governing equations

Consider a solid whose material is porous, with pores filled by a fluid. It is assumed that
the solid material deforms, while the fluid moves relative to the solid matrix. Let the current
deformed configuration at time t be t� as shown in Fig. 3.4.1. The current position of a
material point P within the solid–fluid mixture – considered as a continuum – is tr. The
physical quantities at the material point, used further to describe deformation of the solid and
the fluid flow, are: displacement of solid u, relative fluid velocity with respect to the solid
(Darcy’s velocity) q, and fluid pressure p. Darcy’s velocity is the volumetric flux (volume
per unit time) of fluid through a unit area of the mixture (units are m/s) and represents the
mean relative velocity of the fluid with respect to the moving solid.

Here we present the governing equations for the coupled problem described above. First,
consider the equilibrium equation of the solid,

�1−n��T �s + �1−n��sb+k−1nq − �1−n��sü = 0 (3.4.1)

where �s is stress in the solid phase, n is porosity, k is permeability matrix, �s is density of
solid, b is body force per unit mass, and ü is acceleration of the solid material. If the one-
index notation is employed, then the differentiation operator LT must be used, see (2.1.16)
and web – Theory, Chapter 2. Equation (3.4.1) and the others that follow correspond to
the current configuration t� and time ‘t’, but we omit the left upper index ‘t’ in order to
simplify the notation.

The equilibrium equation of the fluid phase is

n�p+n�f b−k−1nq −n�f v̇f = 0 (3.4.2)

where p is pore fluid pressure, �f is fluid density and v̇f is fluid acceleration. This equation
is also known as the generalized Darcy’s law. Using the relation between Darcy’s velocity
q and the fluid velocity vf ,

q = n
(
vf − u̇

)
(3.4.3)

Fig. 3.4.1 Configuration t� at time t and variables at a material point P of the mixture:
displacement of solid u, relative fluid velocity with respect to the solid (Darcy’s velocity)
q, and fluid pressure p
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we transform (3.4.2) into

−�p+�f b−k−1q −�f ü − �f

n
q̇ = 0 (3.4.4)

Note that the above equilibrium equations are written per unit volume of the mixture.
If we multiply (3.4.4) by n and add to (3.4.1) we obtain

�T � +�b−�ü −�f q̇ = 0 (3.4.5)

where � is the total stress which can be expressed in terms of �s and p, as

� = �1−n��s −nmp (3.4.6)

and � = �1−n��s + n�f is the mixture density. Here m is a constant vector defined as
mT = �1 1 1 0 0 0� to indicate that the pressure contributes to the normal stresses only. It
is assumed that the pressure has a positive sign in compression, while tensional stresses are
considered positive. The one-index notation for stress is used (see Section 2.2), and it will
be further used for stresses and strains to simplify the presentation.

The next fundamental equation is the constitutive relation for the solid,

� ′ = CE �e − e p� (3.4.7)

where CE is the elastic constitutive matrix of the solid skeleton, e is the total strain, and e p

is the strain in the solid due to pressure (Lewis & Schrefler 1987)

e p = − m
3Ks

p (3.4.8)

where Ks is the bulk modulus (see (2.2.11)) of the solid material – solid grains. Obviously,
the tensional strains are considered positive. Also, � ′ is the so-called effective stress defined
as (according to Terzaghi 1936)

� ′ = � +mp (3.4.9)

Further, the fluid continuity equation can be written as

�Tq +
(

mT − mTCE

3Ks

)
ė +

(
1−n

Ks

+ n

Kf

− mTCEm

9Ks
2

)
ṗ = 0 (3.4.10)

Details about derivation of this equation are given on the web – Theory, Chapter 3.
The above continuity equation is written for the current configuration and the current

porosity n. However, in the incremental (finite element) analysis change of porosity can be
taken into account, particularly when the mixture experiences significant porosity change.
In order to find change of porosity, we write the continuity equation for the fluid as

�T ��f q�+ ���f n�

�t
= 0 (3.4.11)
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With use of the constitutive relation for fluids: ��f /�t = − ��p/�t��f /Kf , where Kf is the
compressibility modulus of a fluid, this equation becomes

�T ��f q�+ n�f

Kf

�p

�t
+�f

�n

�t
= 0 (3.4.12)

This equation relates the changes of Darcy’s velocity, pressure and porosity.
Finally, we note that various stress and strain measures can be employed in this analysis.

In the case of small strains, the Cauchy stress and small strains are employed and the above
relations are applicable. In the case of large strains, logarithmic strains and Cauchy stresses
may be used (see Section 2.4), with the proper modifications of the above relations. Details
about these modifications are given on the web – Theory, Chapter 3.

3.4.2 Examples

Example 3.4-1. One-dimensional creep response of human spinal motion
segment (SMS)
The model of an SMS is based on the consolidation of a one-dimensional column of
poroelastic material. The cylindrical column lies on the rigid foundation and is loaded at
the top by pressure. The column is constrained laterally, while the fluid is not allowed to
flow through the column boundary and the bottom of the cylinder. A step load p0 is applied
and free drainage is allowed at the top surface. Geometrical and material data are given in
Fig. E3.4-1.

Fig. E3.4-1 One-dimensional creep response of an SMS. (a) Geometrical and material data
(notation: E is Young’s modulus, v is Poisson’s coefficient, � is mixture density, �f is fluid
density, n is porosity, k is permeability coefficient, Ks is compressibility modulus of solid,
Kf is compressibility modulus of fluid, L is column length and p0 is applied pressure);
(b) Displacement of the column top surface during creep
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The analytical solution for the column settlement (displacement of the top surface), uc,
can be obtained in the form of a series (Biot 1941)

uc�t� = p0La− 8�a−ai�p0L


2

�∑
n=0

exp
{
−
[

�2n+1�


2L

]
ct

}

�2n+1�2
(E3.4-1.1)

where a� ai and c are constants given in terms of the poroelastic material properties (Simon
et al. 1985):

a = �1−2���1+��

E�1−��
� ai = a

1+a�2Q
� c = k

a�2 +Q−1
�

Q−1 = n

Kf

+ �−n

Ks

� � = 1− KD

Ks

� KD = E

3�1−2��
(E3.4-1.2)

This example is also solved by the finite element method, see Example 7.7.1 and Software
on the web.
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4

Isoparametric Formulation
of Finite Elements

This is the introductory chapter for the finite element method (FEM). The FEM is the
dominant method for general computer modeling in engineering and science, as well as
in bioengineering. We only present the isoparametric formulation as the most general that
is employed in subsequent chapters. This formulation assumes that the same interpolation
functions are used to interpolate domain geometry and the fields of physical quantities which
are to be obtained by the FEM. Other formulations and many theoretical and practical aspects
of the FEM, which are not essential for this book, are not discussed; they can be found in a
large body of literature (e.g. Huebner 1975, Sekulovic 1984, Hughes 1987, Crisfield 1991,
Bathe 1996, Kojić et al. 1998, Kojić & Bathe 2005).

After the introduction, we present the isoparametric formulation starting from a simple
one-dimensional finite element, and then proceed to more general, three-dimensional, two-
dimensional and shell finite element formulations. A number of solved examples demonstrate
applicability of the FEM. These and additional examples are supported by the Software on
the web.

4.1 Introduction to the finite element method

The finite element method was introduced in the 1960s as a generalization of the matrix
methods of structural analysis. Since then the FEM has become the most general method in
computational mechanics and other scientific and engineering fields. The FE methodology
advanced from modeling linear problems in solid mechanics to nonlinear problems in any
physical field, including biology and medicine. The enormous advances in the FEM are
based on a large number of researchers in this field, developments in computer technology,
and practical benefits in industrial and scientific applications. Many journals are almost
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entirely devoted to the FEM, such as the International Journal for Numerical Methods in
Engineering, and Computer Methods in Applied Mechanics and Engineering. A large number
of industrial and scientific software packages based on the FEM have been developed and
are in use in everyday industrial and scientific applications. In recent years, the FEM is
becoming more attractive in bioengineering and medicine, as a tool for computer modeling.

The basic idea of the FEM is that any physical field can be discretized into a finite
number of subdomains called finite elements. This discretization is schematically shown in
Fig. 4.1.1 (see color plate) for a displacement field due to deformation of a blood vessel
wall and for the field of blood velocity. Here, we consider deformation of solids, while the
FE modeling of fluid flow will be presented in Chapter 7.

To introduce the FEM we assume static deformation of a solid. The displacement field
u�x� y� z� caused by a mechanical action is approximated within each finite element by the
displacement vector fields ue�r� s� t� (we further use u �r� s� t� to simplify notation), where
r� s� t are the local coordinates of the finite element (‘t’ will generally be used for ‘time’, but
in the text the specific meaning of ‘t’ will always be defined if it does not represent time).
The approximate displacement is expressed in terms of the displacement vector Ue (further
written as U) of the finite element nodes, as

u = NU� ui =
N∑

K=1

NKUK
i ≡ NKUK

i � i = 1� 2� 3� K = 1� 2� � � � �N (4.1.1)

where NK are the interpolation functions, UK
i are the components �x� y� z� of the displacement

vector of the node K, and N is the number of the finite element nodes. By a proper assemblage
of the equilibrium equations of the finite elements, we obtain the equilibrium equation for
the entire domain (body) in the form

Fig. 4.1.1 Discretization into finite elements of the blood velocity field and displacement
field of blood vessel deformation. The velocity v and displacement u at a material point
within a finite element are obtained, respectively, by interpolations from the nodal points
vectors VK and UK (see Plate 1)
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KsysUsys = Fext
sys � or(

Ksys

)
IJ

(
Usys

)
J
= (

Fsys

)ext

I
� I� J = 1� 2� � � � �Ntotal� sum on J

(4.1.2)

Here Usys is the vector of nodal displacements of all nodes; Ksys is the stiffness matrix of
the entire system; Fext

sys is the vector of external forces, represented by forces acting on the
finite element nodes; and Ntotal is the total number of degrees of freedom of the system
(Ntotal ≤ 3Nnodes for three-dimensional finite element discretization shown in Fig. 4.1.1, where
Nnodes is the total number of FE nodes). We further use capital letters for node numbers. By
solving for the displacement vector Usys, displacements u within each finite element can be
further calculated, and also the strains (see (2.1.25)) and stresses (see (2.2.2)).

The presented basic idea is applicable to more complex problems, such as dynamic and
nonlinear problems of solids, as well as to general field problems. In this and subsequent
chapters we give details (to a certain extent) of how the basic finite element relations are
formulated and how more complex problems can be modeled by the FEM.

4.2 Formulation of 1D finite elements
and equilibrium equations

We introduce the basic relations of the isoparametric FE formulation through a simple one-
dimensional (1D) structural example and then describe the assemblage procedure for the
system of finite elements. The final relations, written in general form, are subsequently used
for other types of finite elements.

4.2.1 Truss finite element

Let us consider a simple bar structure consisting of two straight bars and subjected to a
force F (Fig. 4.2.1a). A schematic representation by line elements is shown in Fig. 4.2.1b.
In this scheme we have specified two elements and ‘1’ and ‘2’ and three nodes. The bars

Fig. 4.2.1 A simple bar structure loaded by axial force F. (a) Structure geometry – lengths
L1 and L2, cross-sectional areas A1 and A2, Young’s moduli E1 and E2; (b) Schematic
representation by two truss finite elements, with FE nodes 1, 2 and 3, and nodal displacements
U1� U2 and U3
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are called truss finite elements, and the end points of the bars are called the finite element
nodal points (1, 2 and 3 in the figure). Now we present the isoparametric formulation of a
truss finite element.

Interpolation Functions
Consider a truss finite element shown in Fig. 4.2.2a. The forces F 1 and F 2 are called the
nodal forces. As shown in the figure, the nodal force for element 1 at node 1 comes from
the support, while at node 2 it comes from element 2. On the other hand, for element 2 the
nodal force at node 2 comes from element 1, while the nodal force at node 3 is the external
force with respect to the structure (external body action).

Due to element deformation we have a displacement u of the cross-section at a coordi-
nate x (Fig. 4.2.2b), while the deformation e is

e = du

dx
= �

E
= F

AE
(4.2.1)

Hooke’s law (2.2.3) and the value for stress � = F/A are used here. Since the axial force
is the same along the element, the displacement along the element can be obtained by
integration of this equation,

u = F

AE
x+U 1 (4.2.2)

where the condition: u = U 1 for x = 0 is used. From (4.2.2) it follows that U 2 = �F/AE�L+
U 1, where L is the element length, so that the displacement u�x� can be written as

u =
(

1− x

L

)
U 1 + x

L
U 2 (4.2.3)

Instead of the coordinate x, we introduce the natural coordinate

r = −1+2
x

L
(4.2.4)

Fig. 4.2.2 Truss finite element. (a) Nodal displacements and forces; (b) Displacement of a
cross-section; (c) Isoparametric functions N1�r� and N2�r�; (d) Interpolation of geometry
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Note that the value of the natural coordinate changes from −1 to 1, for any element length,
which is of fundamental importance in the isoparametric FE formulations. Using (4.2.4) we
substitute x by r in (4.2.3) and obtain

u = NU� or u�r� = N1�r�U
1 +N2�r�U

2 (4.2.5)

where N is a 1×2 interpolation matrix with the terms N1�r� and N2�r� called the interpolation
functions; and U is the nodal point displacement vector with components U 1 and U 2. The
interpolation functions are

N1�r� = 1
2

�1− r� � N2�r� = 1
2

�1+ r� (4.2.6)

A graphical representation of the interpolation functions is shown in Fig. 4.2.2c. Note the
following relation is applicable

x = NX� or x�r� = N1�r�X
1 +N2�r�X

2 (4.2.7)

and is in agreement with (4.2.3). Here X is the vector of nodal coordinates of the element
(note that the origin for coordinate x in Fig. 4.2.2d is not at node 1 as in Fig. 4.2.2b). The
term isoparametric formulation comes from the fact that the same interpolation matrix is
used for displacements and coordinates (element geometry). Note that the linear interpolation
functions N1�r� and N2�r� are introduced using Hooke’s law (4.2.1), and the relation (4.2.5)
gives the exact displacement field (4.2.2).

Stiffness Matrix and Equilibrium Equation
Using (4.2.1) for the strain and (4.2.5) for the displacement, we first express the strain e as

e = BU� or e = B1U
1 +B2U

2 (4.2.8)

where the matrix B is

B = �B1 B2	 = [
N1�x N2�x

]
(4.2.9)

The derivatives N1�x ≡ dN1/dx and N2�x ≡ dN2/dx can be obtained with use of (4.2.4) as

B = J−1
[
N1�r N2�r

]
(4.2.10)

where J−1 is the inverse of the Jacobian of the transformation between the Cartesian and
natural coordinate system,

J = dx

dr
(4.2.11)

The relations (4.2.8)–(4.2.11) have a general form employed in the isoparametric finite
element formulation. In our case we have that

B =
[
− 1

L

1
L

]
� J = L

2
� J−1 = 2

L
� e = U 2 −U 1

L
(4.2.12)
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To obtain the element equilibrium equation we apply the principle of virtual work (2.3.2).
First, the virtual strain 
e can be expressed using (4.2.8) as


e = 
UT BT (4.2.13)

Then, with Hooke’s law (2.2.3) and expression (4.2.8) for the strain e, the internal virtual
work 
W int for the finite element can be written in the form (see (2.3.3))


W int =
∫
V


e�dV =
∫
V


eEedV = 
UT KU = 
UT Fint (4.2.14)

Here, V is the element volume, and

K =
∫
V

BT EBdV (4.2.15)

is the element stiffness matrix. We have introduced the internal nodal force vector Fint

(with components F int
1 �F int

2 ) of the element, which produces the same work on the nodal
virtual displacement 
U, as does the stress � on virtual strain 
e over the element volume.
Physically, the force Fint is the element resistance force by which the element reacts to the
external loading exerted on the element. From (4.2.14) it follows that

Fint = KU (4.2.16)

The expressions (4.2.15) and (4.2.16) have a general form which is also used later. Note
that the stiffness matrix is symmetric. The symmetry property is valid in general for all finite
element types. In our case of truss elements, the stiffness matrix is

K =
1∫

−1

[ −1/L
1/L

]
E
[

1/L 1/L
]
A

L

2
dr = EA

L

[
1 −1

−1 1

]
(4.2.17)

The relation

dV = Adx = AJdr = A
L

2
dr (4.2.18)

is used here, which also has a general form within the isoparametric formulation. Note that
the stiffness matrix in (4.2.17) is given in the closed (analytical) form since the terms within
the integral are constant. However, in the case of nonlinear material behavior, Young’s
modulus E in the constitutive law (4.2.1) depends on the strain e and the integration might be
performed numerically. Details about numerical integration are given on the web – Theory,
Chapter 4.

The external virtual work results from the virtual work of the forces F 1 and F 2 on the
virtual displacements 
U 1 and 
U 2, hence


W ext = 
UT Fext� or 
W ext = 
U 1F 1 +
U 2F 2 (4.2.19)

From the principle of virtual work (2.3.2), and expressions (4.2.14) and (4.2.19), follows


UT KU = 
UT Fext� or 
UT �KU −Fext� = 0 (4.2.20)
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Since the virtual displacements are arbitrary (hence, nonzero), from (4.2.20) follows the
equilibrium equation of the finite element,

KU = Fext� or KIJUJ = Fext
I � I� J = 1� 2 (4.2.21)

where the element stiffness matrix components Kij are given in (4.2.17). The displace-
ment vector components Uj are U1 = U 1�U2 = U 2 (Fig.4.2.2a). The external force compo-
nents Fext

i are Fext
1 = F 1�F ext

2 = F 2 and in general include the action of the neighboring
elements and/or forces produced by other external mechanical actions.

The equilibrium equation (4.2.21) has a general form applicable in the finite element
method. In the subsequent sections several isoparametric elements will be described, where
we will only give specifics for determination of the stiffness matrix and nodal forces of these
elements.

Transformation of the Stiffness Matrix
The derived truss stiffness matrix corresponds to the coordinate system in which one coordi-
nate axis (in our derivation it is the x-axis) is along the truss axis. That coordinate system is
usually called the local system. In applications, however, it is necessary to use a coordinate
system in which the truss element is not aligned to any of the coordinate axes (Fig. 4.2.3).

Let the cosines of angles between the axis x along the element (with unit vector i)
and coordinate axes x� y� z be l = cos ��m = cos ��n = cos , and the displacement vector
along the element be U

(
U 1 = U

1
�U 2 = U

2
)

. The displacement vector of the element in the

coordinate system x� y� z is defined as U
(
U 1

1 U 1
2 U 1

3 U 2
1 U 2

2 U 2
3

)
, with components U1 = U 1

1 ≡
U 1

x �U2 = U 1
2 ≡ U 1

y � � � � � � � �U6 = U 2
3 ≡ U 2

z . Then, the relationships between the components
of the element displacement vector in the two systems can be written as

U = TU� or Ui = TikUk� i = 1� 2� k = 1� 2� � � � � � 6 (4.2.22)

Fig. 4.2.3 Truss finite element inclined to the coordinate axes, with nodal displacement
components with respect to the global x� y� z coordinate system and to local element axis x.
The direction of the unit vector i is defined by the angles ����
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where the 2×6 transformation matrix T is

T =
[

l m n 0 0 0
0 0 0 l m n

]
(4.2.23)

Note that the transformation matrix satisfies the orthogonality condition (1.2.12), i.e.

TT T = I� or TkiTkj = 
ij� i� j = 1� 2� � � � � � 6� k = 1� 2 (4.2.24)

We now impose the condition that the internal virtual work expressed in the two systems,

W

int
and 
W int, must be equal, i.e. 
W

int = 
W int. Then from (4.2.14) and (4.2.22) follows


U
T
KU = 
UT KU� 
UT TT KTU = 
UT KU (4.2.25)

and consequently,

K = TT KT (4.2.26)

This relation expresses the transformation rule for the stiffness matrix when the coordinate
system is changed from the element local to the global coordinate system. The element
stiffness matrix K has the dimension 6 × 6, it is symmetric, and the rows and columns
correspond to the displacements U 1

x �U 1
y � � � � � � � �U 2

z .
Note that the relationships between the components of the nodal force in the two coor-

dinate systems have the form (4.2.22),

F = TF� or Fi = TikFk� i = 1� 2� k = 1� 2� � � � � � 6 (4.2.27)

where the element force vectors F and F are: F
(
F 1 = F 1�F 2 = F 2

)
and F

(
F1 = F 1

1 �
F2 = F 1

2 � � � � � F6 = F 2
3

)
.

4.2.2 Equilibrium equations of the FE assemblage
and boundary conditions

In order to derive the equilibrium equations we consider our simple structure in Fig. 4.2.1.
Using displacements shown in the figure, the equilibrium equations (4.2.21) for the two
elements can be obtained as:

K1
11U

1 +K1
12U

2 = F sup

K1
21U

1 +K1
22U

2 = F 1
2

K2
11U

2 +K2
12U

3 = F 2
2

K2
21U

2 +K2
22U

3 = F

(4.2.28)

Here F sup is the support reaction force; F 1
2 is the force of element 1 due to the action of

element 2; F 2
2 is the force of element 2 due to the action of element 1. The stiffness matrix

terms of elements 1 and 2 are K1
11�K1

12 and K2
21�K2

22, respectively. The second and the third
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equations represent the equations of balance corresponding to the same displacement U 2.
Therefore, by summing these two equations, a system of three equations is obtained:

K1
11U

1 +K1
12U

2 = F sup

K1
21U

1 + (K1
22 +K2

11

)
U 2 +K2

12U
3 = 0

K2
21U

2 +K2
22U

3 = F

(4.2.29)

where the relation F 2
2 = −F 1

2 is used (Newton third law of action and reaction). Assuming that
the displacement U 1 is nonzero, we have three equations with three unknown displacements.

Analyzing the system matrix in (4.2.29) we note that the term corresponding to the
displacement U 2, common to both finite elements, represents the sum of the terms K1

22 and
K2

11. This is an important result in forming the stiffness matrix Ksys (see (4.1.2)) of the FE
assemblage. Also, on the right-hand side we only have the external structural load vector
Fext

sys �F
supF	, since the interaction forces between the elements cancel (internal structural

nodal forces). Therefore, the equilibrium equation of the finite element assemblage (4.1.2)
is obtained.

Generalizing the above result, we have that the structural stiffness matrix, or the system
stiffness matrix, is

Ksys =
NE∑
e=1

Ke (4.2.30)

where NE is the number of finite elements. The summation assumes that the element stiffness
matrix terms (corresponding to the common displacement) are added. Note that the system
stiffness matrix is symmetric. Also, the assemblage (4.2.30) is applicable in any finite element
analysis.

Boundary Conditions
Assuming that the displacement U 1 is nonzero and unknown, we find that, with use of
(4.2.17), the system stiffness matrix in (4.2.29) is singular, i.e. detK = 0. This singularity
reflects the physical condition that the structure is free to move in space; it has a rigid
body displacement, or mode. Therefore, we have to eliminate this singularity by imposing
boundary conditions that prevent rigid body motion. In our case, the structure is attached to
the rigid foundation (Fig. 4.2.1), hence

U 1 = 0 (4.2.31)

Then, we remove the first equation from (4.2.28) and substitute U 1 = 0 into the last two
equations. The nonsingular system is

(
K1

22 +K2
11

)
U 2 +K2

12U
3 = 0

K2
21U

2 +K2
22U

3 = F
(4.2.32)

which can be solved for the unknowns U 2 and U 3.
With these solutions for displacements, the support reaction F sup can be obtained from

the first of the equations (4.2.29). Note that the condition (4.2.31) is imposed by deleting
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the row and the column from the system of equations (4.2.29) corresponding to the zero
displacement U 1. This procedure of deleting the rows and columns from the system of
equilibrium equations is generally applicable in finite element analysis. A similar procedure
can be applied when some nonzero displacements are prescribed (see web – Software).

4.2.3 Examples

Example 4.2-1. Analyze truss structure under static loading
The truss structure consisting of four trusses is attached to the rigid foundation at points 1,
2, 3, 4 (Fig. E4.2-1). The trusses are connected at a joint A (point 5) and all connections of
trusses are pin-joints. The structure is loaded by a vertical force F.

The deformed structure and the deflection uA are shown in the figure. Suggestions for
exercise and detailed analysis of this example are given within the Software on the web
(Example 4.2-1).

Example 4.2-2. Analyze dependence of the size of the stiffness matrix on element
numbering
A truss structure consisting of 17 trusses represents a typical structure used in the design of
bridges, Fig. E4.2-2. The structure is lying in the x−y plane and all displacements under the
loading occur in this plane.

The system matrices for the two node numbering ((a) and (b)) are shown in the figure.
A significant difference in the number of matrix terms can be observed. Detailed analysis
of the example can be performed using the software (Example 4.2-2), where options for
exercise are suggested. Numbering of displacements follows the node numbers. The term
�Ksys�IJ �= 0 when the displacements UI and UJ belong to the same finite element.

Fig. E4.2-1 Truss structure loaded by vertical force. Initial and deformed configurations.
Due to symmetry of the structure and the loading, the point A displaces vertically under the
action of force F
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Fig. E4.2-2 Dependence of the matrix size on the node numbering. Matrices are shown for
two numberings, (a) and (b), demonstrating that the numbering (a) gives smaller matrix than
the numbering (b). The symmetric part of the matrix, used in the calculation, occupies space
between the skyline and the main diagonal. Numbers in circles are node numbers, numbers
in squares are element numbers, and other numbers represent the displacements

4.3 Three-dimensional (3D) isoparametric finite element

Following the above basic ideas about the isoparametric finite element formulation, we
extend these ideas to a general 3D finite element formulation. We first consider 3D problems
followed by 2D conditions, because 2D finite elements have specific subtypes and their
presentation is more complex.

4.3.1 Element formulation

Interpolation of Geometry and Displacements
A 3D finite element is shown in Fig. 4.3.1a. We consider a simple element bounded by
six plane surfaces, and with eight nodes numbered by 1� 2� � � � � 8. We here describe the
eight-node element, and a generalization to 3D elements with larger number of nodes and
curved surfaces (higher order elements) is straightforward (see web – Theory, Chapter 4).

The element geometry and the displacement field are interpolated by the relationships:

x =
⎧⎨
⎩

x1

x2

x3

⎫⎬
⎭≡

⎧⎨
⎩

x
y
z

⎫⎬
⎭= NX� or xi =

N∑
K=1

NKXK
i � i = 1� 2� 3 (4.3.1)

and

u =
⎧⎨
⎩

u1

u2

u3

⎫⎬
⎭≡

⎧⎨
⎩

ux

uy

uz

⎫⎬
⎭= NU� or ui =

N∑
K=1

NKUK
i � i = 1� 2� 3 (4.3.2)
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Fig. 4.3.1 Three-dimensional eight-node finite element. (a) Physical space (nodal displace-
ment components only shown for node 8); (b) Element mapped to natural coordinate space
(numbers in parentheses for some nodes are the values of natural coordinates at these nodes)

where x is the position vector of a material point within the element (we use both notations
x1� x2� x3 and x, y, z for coordinates of a point); and u is the displacement vector of a point,
with components u1� u2� u3 (or ux�uy� uz). The vector X of nodal coordinates and the nodal
point displacement vector U are defined as

XT = [
X1

1X1
2X1

3 � � � � � � �XN
1 XN

2 XN
3

]
(4.3.3)

and

UT = [
U 1

1 U 1
2 U 1

3 � � � � � � �UN
1 UN

2 UN
3

]
(4.3.4)

where X1
i �i = 1� 2� 3� and U 1

i �i = 1� 2� 3� are coordinates and displacements of the first
node, � � � � � XN

i and UN
i are coordinates and displacements of the node N , and N is number

of nodes, in our case N = 8. The interpolation matrix N is

N =
⎡
⎣ N1 0 0 N2 0 0 � � NN 0 0

0 N1 0 0 N2 0 � � 0 NN 0
0 0 N1 0 0 N2 � � 0 0 NN

⎤
⎦ (4.3.5)

where NK �r� s� t� � K = 1� 2� � � � �N are the interpolation functions of the natural coordinates
r, s, t. The interpolation functions can be written in the form

NK �r� s� t� = 1
8

�1+ rKr� �1+ sKs� �1+ tKt� � K = 1� 2� � � � � 8 (4.3.6)

where the natural nodal coordinates rK� sK� tK for some nodes are given in Fig. 4.3.1b. Note
that the natural coordinates of the nodes are equal either to 1 or −1. Also, the interpolation
functions have the property that NK = 1 at the node ‘K’, while NK = 0 at all other nodes
(see Fig. 4.2.2c for the 1D element). The eight-node element is called linear because all
interpolation functions are linear with respect to each natural coordinate.
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Strains
To obtain the expression for the strain components we use the matrix representation of strains
(2.1.23), the expressions (2.1.25) and interpolation of displacements (4.3.2). Then we have

e =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

exx

eyy

ezz

xy

yz

zx

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1�1

u2�2

u3�3

u1�2 +u2�1

u2�3 +u3�2

u1�3 +u3�1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

N1�1 0 0 � � � NN�1 0 0

0 N1�2 0 � � � 0 NN�2 0

0 0 N1�3 � � � 0 0 NN�3

N1�2 N1�1 0 � � � NN�2 NN�1 0

0 N1�3 N1�2 � � � 0 NN�3 NN�2

N1�3 0 N1�1 � � � NN�3 0 NN�1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U 1
1

U 1
2

U 1
3

���

UN
1

UN
2

UN
3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

= BU

(4.3.7)

where the derivatives of the interpolation functions are denoted as NK�i ≡ �NK/�xi, and the
strain-displacement relation matrix B is defined by these derivatives. Since the interpolation
functions are defined in terms of the natural coordinates, with a use of the chain rule for the
derivatives �NK/�xi, it follows that

NK�j = �NK

�r

�r

�xj

+ �NK

�s

�s

�xj

+ �NK

�t

�t

�xj

(4.3.8)

We next introduce the Jacobian of transformation (see also (4.2.11),

J =
[

�x
�r

]
=

⎡
⎢⎢⎢⎢⎢⎢⎣

�x

�r

�y

�r

�z

�r
�x

�s

�y

�s

�z

�s
�x

�t

�y

�t

�z

�t

⎤
⎥⎥⎥⎥⎥⎥⎦

(4.3.9)

where r stands for the natural coordinate position vector �r1 ≡ r� r2 ≡ s� r3 ≡ t�, and its
inverse J−1,

J−1 =
[

�r
�x

]
=

⎡
⎢⎢⎢⎢⎢⎢⎣

�r

�x

�s

�x

�t

�x
�r

�y

�s

�y

�t

�y
�r

�z

�s

�z

�t

�z

⎤
⎥⎥⎥⎥⎥⎥⎦

(4.3.10)

Note that the derivatives in the Jacobian (4.3.9) can be computed using (4.3.1) as

Jmn =
N∑

K=1

�NK

�rm

XK
n (4.3.11)

In general, the relations between the derivatives can be written as

� �•�

�x
= J−1 � �•�

�r
� and

� �•�

�r
= J

� �•�

�x
(4.3.12)
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Therefore, the derivatives of the interpolation functions in (4.3.8) can be written as

�NK

�x
= J−1 �NK

�r
� or

�NK

�xi

= J−1
ij

�NK

�rj

� K = 1� 2� � � � �N� i� j = 1� 2� 3
(4.3.13)

In practical applications, the strains at a material point within the element (at given
coordinates r, s, t) are determined by calculating: the Jacobian J and its inverse J−1; the
derivatives �NK/�xi according to (4.3.13); the matrix B in (4.3.7); and finally the strains
from (4.3.7).

Stiffness Matrix and Nodal Forces
The internal virtual work can be expressed as (see (4.2.14))


W int =
∫
V


eT �dV = 
UT
∫
V

BT CBdVU = 
UT KU (4.3.14)

where we have employed the relation (4.3.7) from which 
eT = 
UT BT , and the constitutive
relationship (2.2.2) � = Ce. Clearly, the stiffness matrix K is

K =
∫
V

BT CBdV (4.3.15)

and the element internal force Fint is given by the expression (4.2.16). The stiffness matrix
is symmetric and has dimensions 3N ×3N (in our case 24×24) and the force vector Fint is
of size 3N� Fint

(
F�int�1

x F �int�1
y F �int�1

z � � � � � F �int�N
x F �int�N

y F �int�N
z

)
.

In the case when body forces are present, the corresponding nodal forces are calculated
from the equality of virtual work:

∫
V


uT fV dV = 
UT
∫
V

NT fV dV = 
UT FV ⇒ FV =
∫
V

NT fV dV (4.3.16)

where fV is the force per unit volume, and FV is the vector of equivalent volumetric nodal
forces. Here, the displacement interpolation (4.3.2) has been used.

The external nodal forces resulting from the pressure on an element surface are calculated
by employing again the equivalence of virtual work. A simple approximation for the eight-
node element is to calculate the total force as Fp = pA (where p is the mean pressure and
A is the area of the element side) and use Fp/4 at each node in the mean normal surface
direction. Details about calculation of the nodal pressure forces are given on the web –
Theory, Chapter 4.

Calculation of the above volumetric integrals must be performed numerically. Details
about numerical integration are given on the web – Theory, Chapter 4.

4.3.2 Examples

We here give one example only. Other examples are described on the web (Software).
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Fig. E4.3-1 Bending of cantilever modeled by 3D finite elements. (a) Schematics of the
FE mesh and loading; (b) Deflection of the mid-plane x−y (FEM and analytical solutions).
Data: Lengths �m� L = 1� h = 0�1� a = 0�05� E = 2×105MPa� v = 0�3� F = 0�01 MN

Example 4.3-1. Bending of cantilever modeled by 3D finite elements
A cantilever structure is subjected to loading by a force. The cantilever is modeled by 3D
finite elements, as shown in Fig. E4.3-1a.

Distribution of deflection of the cantilever mid-plane (material line OA) for data given
in the figure is shown in Fig. E4.3-1b. It can be seen that the agreement between the FE
and analytical solutions is very good. Detailed analysis of beam deformation and options of
solving this example are given on the web (see Software).

4.4 Two-dimensional (2D) isoparametric finite elements

In the case of 2D problems, deformation is described by the displacement field in a plane. We
will use the coordinate system x1� x2, or x, y in this plane. Consequently, 2D isoparametric
elements can be considered as special cases of 3D elements described in Section 4.3. The
expressions for the element stiffness matrix and nodal forces have the same form as for 3D
elements, as well as the integration scheme over the element volume. Some particular details
are given on the web – Theory, Chapter 4.
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4.4.1 Formulation of the elements

The four-node and nine-node elements are shown in Fig. 4.4.1. The natural coordinates are
now r and s. The interpolation of geometry and displacements follows directly from (4.3.1)
and (4.3.2),

Fig. 4.4.1 Two-dimensional four-node and nine-node finite elements. (a) Physical space –
linear element (left) and parabolic element (right), components of the nodal displacements are
only shown for node 4; (b) Elements mapped to natural coordinate space; (c) Axonometric
view of the element with displacements at node 4, the element thickness is h
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x =
{

x1

x2

}
≡
{

x
y

}
= NX� or xi =

N∑
K=1

NKXK
i � i = 1� 2 (4.4.1)

and

u =
{

u1

u2

}
≡
{

ux

uy

}
= NU� or ui =

N∑
K=1

NKUK
i � i = 1� 2 (4.4.2)

where N is number of element nodes; and the vectors X and U are X
(
X1

1 X1
2 � � � � �XN

1 XN
2

)
and U

(
U 1

1 U 1
2 � � � � �UN

1 UN
2

)
. In the case of a four-node element, the interpolation functions

can be expressed in the form (4.3.6), with the third coordinate t = 0, and with the coefficient
1/4 instead of 1/8. We will mainly use linear elements, with N = 4. Details about higher
order elements (parabolic) are given on the web – Theory, Chapter 4.

In order to determine strains and stresses within a 2D element we have to distinguish
three types of these elements: plane strain, plane stress and axisymmetric elements, shown
schematically in Fig. 4.4.2.

Plane Strain Element
In the case of plane strain deformation, displacements and strains in the z-direction are
equal to zero (Fig.4.4.2a). Deformation of material is independent of the z-coordinate and

Fig. 4.4.2 Two-dimensional four-node finite elements. Plane strain and plane stress
elements (a) In plane; (b) Axonometric representations; (c) Axisymmetric element – volume
corresponding to one radian is used
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the displacement uz = 0. The nonzero strains are exx� eyy� xy and they follow from the
relations (4.3.7),

e =
⎧⎨
⎩

exx

eyy

xy

⎫⎬
⎭=

⎡
⎣ u1�1

u2�2

u1�2 +u2�1

⎤
⎦
⎡
⎣ N1�1 0 N2�1 0 � � � NN�1 0

0 N1�2 0 N2�2 � � � 0 NN�2

N1�2 N1�1 N2�2 N2�1 � � � NN�2 NN�1

⎤
⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

U 1
1

U 1
2

�
�

UN
1

UN
2

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

= BU

(4.4.3)

The stresses are obtained using the elastic constitutive relationship (see (2.2.2)) and the
constitutive matrix (2.2.6) – without fourth row and column,

� = Ce, or

� =
⎧⎨
⎩

�xx

�yy

�xy

⎫⎬
⎭= E�1−��

�1+���1−2��

⎡
⎢⎢⎢⎢⎢⎣

1
�

1−�
0

�

1−�
1 0

0 0
1−2�

2�1−��

⎤
⎥⎥⎥⎥⎥⎦

⎧⎨
⎩

exx

eyy

xy

⎫⎬
⎭

(4.4.4)

Besides these stress components, the nonzero stress is �zz which can be obtained from the
expression for ezz in (2.2.13) and the condition ezz = 0:

�zz = �
(
�xx +�yy

)
(4.4.5)

The stiffness matrix is of the dimension 3×3 and has the form (4.3.15).
Note that the integration over the volume to obtain the element stiffness matrix assumes

integration over the element area and unit thickness h = 1 (see Fig. 4.4.2b) in the z-direction.
Also, the nodal forces represent the forces due to stresses or due to surface forces evaluated
over the unit element thickness. Equilibrium equations assume the unit element thickness,
and therefore the nodal forces are in N/m.

Plane Stress Element
The physical condition for a plane stress (membrane) element is that the normal stress to the
plane x−y is equal to zero,

�zz = 0 (4.4.6)

Now we use the constitutive matrix (2.2.7) to obtain stresses in (4.4.4). The strain through
the element thickness is obtained from the stresses using the third row in equation (2.2.13)
and the condition (4.4.6) (see also (2.2.9)),

ezz = − �

E

(
�xx +�yy

)= − �

1−�
�exx + eyy� (4.4.7)

The element stiffness matrix is calculated by integration over the element surface with
multiplication by the element thickness h,
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K = h
∫
A

BT CBdA (4.4.8)

The nodal forces correspond to the thickness h (see Fig. 4.4.2b) and are in N.

Axisymmetric Element
This element is used for modeling the problems with axial symmetry in geometry, loading
and boundary conditions. Then, we model one radial plane (see Fig. 4.4.2c) by 2D axially
symmetric elements. Displacements occur in the radial planes, but now the circumferential
(hoop) strain is generated, which is related to the radial displacement as

ezz = ur

r
= ux

x
(4.4.9)

where r = x is the radial distance of a material point, and ur = ux is the radial displacement.
In the strain–displacement relationship (4.4.3) we add the relation (4.4.9) and obtain

e =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

exx

eyy

xy

ezz

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎣
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u2�2

u1�2 +u2�1
u1

x

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

N1�1 0 N2�1 0 � � � NN�1 0
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x
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0
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(4.4.10)

For a point at the axis of symmetry �x = 0� we use in practical applications ezz = exx.
The integration performed for evaluation of the element matrices and vectors assumes,

respectively, the integration over the element volume and area corresponding to one radian in
the circumferential direction, see Fig. 4.4.2c. The nodal forces represent the forces for the one-
radian volume or the one-radian surface. Details are given on the web – Theory, Chapter 4.

4.4.2 Examples

Example 4.4-1. Deformation of a thick-walled cylinder subjected to internal and external
pressures
A thick-walled cylinder, shown in Fig. E4.4-1a, is loaded by internal and external pressures
pi and pe. In the axial direction the cylinder can be free to deform or it can be restrained.
Axisymmetric finite elements are used and the FE mesh in a radial plane is shown in
Fig. E4.4-1b.

Radial distribution of stresses along the cylinder radius are shown in Figs. E4.4-1c,d for
data given in the figure. The solutions compare well with the analytical solutions.

Suggestions for detailed analysis and solutions using the Software are given on the web.

Example 4.4-2. Deformation of a plate with a hole subjected to uniaxial tension
A plate with a hole, shown in Fig. E4.4-2a, is subjected to uniaxial loading (extension or
compression). It is assumed that the plate has unit thickness. Data are given in the figure.
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Fig. E4.4-1 Cylinder loaded by internal and external pressures, free to deform or restrained
axially. (a) Three-dimensional representation of the cylinder, with the section modeled by
finite elements; (b) Finite element model in a radial plane x−y; (c) Radial stress distribution;
(d) Hoop stress distribution. Data: Ri = 0�5 m� Re = 1�0 m� E = 2 × 105 MPa� v = 0�3�
pi = 10 MPa� pe = 0

One-quarter of the plate is modeled due to symmetry conditions. Deformed configuration,
with the field of the extensional stress �xx, is shown in Fig. E4.4-2b. The hole in the plate
causes the increase of stress near the hole (stress concentration), as can be seen from the
graph in Fig. E4.4-2c. The analytical solution for small d/b (if d/b is less then 1/4 the error
is less then 6%, Timoshenko & Goodier 1951) is

�xx = p

2

[
2+

(
d

2y

)2

+3
(

d

2y

)4
]

(E4.4-2.1)

Solutions for various geometrical data and loading can be obtained using the Software
on the web.
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Fig. E4.4-2 A plate with a hole subjected to uniaxial loading. (a) Geometry of the plate,
with the section ABCD modeled by finite elements; (b) Field of extensional stress �xx and
FE mesh – deformed configuration; (c) Distribution of extensional stress along the line
x = 0 (analytical and numerical solutions), with notable stress concentration. Data: Lengths
�mm� L = 56� b = 20� d = 4� E = 7×104 MPa� v = 0�25� p = 25 MPa

4.5 Isoparametric shell finite element for general
3D analysis

Thin-walled structures in which structural surface dominates are called shells. These struc-
tures are broadly used in technical practice. Examples of shell structures are a car body, an
airplane structure, domes, cooling towers, etc. The efficiency of the material in carrying the
loads (defined as the ratio between the load value and the mass of the structure) is very high
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for shells. Consequently, shells have been used in design since ancient times and will likely
be used in future for numerous applications.

The mechanical behavior of shells is complex and various shell theories have been
developed. Also, shell finite element analysis has been the challenging topic in the FE
research and a number of approaches have been introduced. The results of these efforts
are different formulations of shell finite elements for general and specific conditions (see
e.g. Hughes 1987, Bathe 1996, Chapelle & Bathe 2003). We present a simple four-node
isoparametric shell element for general 3D analysis which provides reliable and accurate
results for the problems of interest in bioengineering applications.

4.5.1 Basic assumptions about shell deformation

The basic shell geometry is shown in Fig. 4.5.1 (Kojić et al. 1998). The shell is defined by
its mid-surface mathematically expressed by a function

f�x� y� z� = 0 (4.5.1)

and by its thickness measured along the normals to the mid-surface. The unit normal n is
determined by

n = �f/��f� or ni = �f/�xi

��f� (4.5.2)

where �f is the gradient to the mid-surface, with components �f/�xi� i = 1� 2� 3. The
position vector x of a material point P can be expressed as the sum of the position vector x0

of a point P0 in the mid-surface and the relative position vector along the shell normal,

x = x0 + zn� or xi = x0i + zni (4.5.3)

where z is the coordinate in the direction of the normal (−h ≤ z ≤ h, where h is the shell
thickness).

The physical assumptions for the kinematics of deformation rely on Mindlin’s plate
theory. These assumptions can be summarized as follows: Displacement u of a material
point P due to shell deformation can be expressed as the sum of the displacement u0 of the
point P0 and the rotation displacement urot,

u = u0 +urot� i.e. u = tx − 0x0 = tx0 − 0x0 + z
(

tn − 0n
)
� (4.5.4)

Here, as shown in Figs. 4.5.1a,b, the vectors 0x� 0x0 and tx� tx0 are the position vectors
of the points P and P0 before and after deformation, respectively. Also, 0n and tn are the
normals before and after deformation. This assumption about the displacements of material
points implies that the straight material elements, originally in the normal direction to the
shell surface, remain straight; this is expressed by the term z

(
tn −0 n

)
in equation (4.5.4).

Change of the normal is due to the rotation � which as the vector lies in the shell tangential
plane. Then, change of the normal can be expressed as
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Fig. 4.5.1 Geometry and deformation of shell. (a) Geometry and position vectors of a
material element P0P before and after deformation; (b) Displacements in the local shell plane
x − z; (c) Rotation of the material element P0P in the x − z plane which includes rotation
and shear of the cross-section

tn − 0n = �× 0n� or
(

tn − 0n
)

i
= eijk�j

0nk� or(
tn − 0n

)
x
= �y�

(
tn − 0n

)
y
= −�x

(4.5.5)

where eijk is the permutation symbol (see (1.3.8)).
The components of change of the normal are written in the local shell system x� y� z

to emphasize that the rotation vector lies in the tangential plane. This fact is illustrated in
Fig. 4.5.1c (in plane x−z). We have graphically shown a very important physical assumption
about the shell deformation: rotation of the shell normal consists of the part �′ which is due
to bending, and a part due to transversal shear. In Fig. 4.5.1c we have �y = �′

y +xz, where
�′

y is the rotation due to bending moment around the axis y, and xz is the shear strain in
plane x−z due to transversal loading in plane x−z.
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4.5.2 Formulation of a four-node shell element

The shell element described here relies on the above assumptions about the deformation. We
present a four-node element (Dvorkin & Bathe 1984). The natural coordinate system has the
origin in the mid-surface, with the r� s coordinates representing the position of a material
point in the mid-surface, and t the position along the shell normal. The coordinates of a
material point in the global coordinate system xi �x1 ≡ x�x2 ≡ y� x3 ≡ z�, can be expressed as

xi =
N∑

K=1

NKXK
i + t

2

N∑
K=1

NKhKV K
ni � i = 1� 2� 3 (4.5.6)

where N = 4 is the number of nodes; NK �r� s� are the interpolation functions; hK are the
thicknesses at shell nodes; and V K

ni ≡ nK
i are the components of the normals at nodal points.

Using (4.5.4) and (4.5.5) the displacements ui �r� s� t� can be written in the form (see
Fig. 4.5.2)

ui =
N∑

K=1

NKUK
i + t

2

N∑
K=1

hKNK

(−V K
2i �K +V K

1i �K

)
� i = 1� 2� 3 (4.5.7)

Here, UK
i are the nodal point displacements; V K

1i and V K
2i are the components of the vectors

VK
1 and VK

2 which lie in the tangential plane at nodes (which can be suitably selected, for
example by multiplying the unit vector of one coordinate axis and normal n); and �K and �K

are the rotations around VK
1 and VK

2 , as the components of the nodal rotation vector �K in
the local shell system VK

1 � VK
2 � VK

n . From (4.5.7) it follows that each node has five degrees
of freedom, and the nodal displacement vector for the node K is

(
UK
)T = [

UK
x UK

y UK
z �K �K

]
(4.5.8)

Fig. 4.5.2 Four-node shell finite element. (a) Element geometry, the natural coordinate
system r� s� t and base vectors gr� gs in the tangential plane; (b) Position of a material point
P with respect to the mid-surface point P0 and the local shell coordinate system x� y� z at
point P0; (c) Nonzero stresses in the local shell coordinate system
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The strains can be obtained by applying the relationship (4.3.7) to the displacement
field (4.5.7):

e = [
B1B2� � � � BN

]
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

U1

U2

�

�
UN

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(4.5.9)

The submatrix BK is

BK �r� s� t� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

NK�1 0 0 tgK
11 NK�1 tgK

21 NK�1

0 NK�2 0 tgK
12 NK�2 tgK

22 NK�2

0 0 NK�3 tgK
13 NK�3 tgK

23 NK�3

NK�2 NK�1 0 t�gK
11 NK�2 +gK

12 NK�1� t�gK
21 NK�2 +gK

22 NK�1�

0 NK�3 NK�2 t�gK
12 NK�3 +gK

13 NK�2� t�gK
22 NK�3 +gK

23 NK�2�

NK�3 0 NK�1 t�gK
11 NK�3 +gK

13 NK�1� t�gK
21 NK�3 +gK

23 NK�1�

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.5.10)

where: NK�i ≡ �NK/�xi� gK
1i = − �1/2�hKV K

2i � gK
2i = �1/2�hKV K

1i � i = 1� 2� 3. The derivatives
�NK/�xi can be computed using (4.3.13). Note that the submatrix BK is a 6×5 matrix. The
Jacobian matrix terms Jij follow from (4.5.6),

J1i =
N∑

K=1

NK�r

(
XK

i + t

2
hKV K

ni

)
� J2i =

N∑
K=1

NK�s

(
XK

i + t

2
hKV K

ni

)
�

J3i = 1
2

N∑
K=1

hKNKV K
ni

(4.5.11)

In order to determine the stiffness matrix we use (4.3.15). The matrix C corresponds to
the global strain and stress components ei and �i defined in (2.2.1). However, the matrix C
must be such that it reduces to the shell matrix C given in (2.2.8). Therefore, we obtain C
by applying the transformation (2.2.17) to the shell matrix C,

C = T
�

C
(

T
�
)T

(4.5.12)

where the terms of the matrix T
�

depend on the angles between axes of the local shell
and global coordinate systems. Details about this transformation and other options for the
calculations of strains, stresses, stiffness matrix and nodal forces, including a generalization
to multilayered shells, are given on the web – Theory, Chapter 4.

4.5.3 Examples

Example 4.5-1. Deformation of a squared plate subjected to normal concentrated force
A squared plate, clamped or free supported, is loaded by a concentrated force at the plate
center C (Fig. E4.5-1A). One-quarter of the plate, ABDC, is modeled due to symmetry in
geometry, boundary conditions and loading.
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Fig. E4.5-1A Squared plate subjected to a concentrated force at the plate center. (a) Plate
geometry; (b) Finite element model – one-quarter of the plate is modeled due to symmetry.
The symmetry boundary conditions and the shell element local axes and rotations (see
Fig. 4.5.2a) are shown in the figure

The deflection of the central point C can be obtained in the analytical form (Timoshenko
& Vojinovski-Kriger 1962), and in the case of clamped plate edges it given as (for v = 0�3)

uC = 0�0056
12FL2�1−�2�

Eh3
(E4.5-1.1)

where E is Young’s modulus and � is Poisson’s ratio for elastic material of the plate.
For the data: L = 4 cm� h = 0�01 cm� E = 107N/cm2� � = 0�3�F = 4 N , the displace-
ment field is shown in Fig. E4.5-1Ba. The normalized displacement (normalization with

Fig. E4.5-1B Solutions for clamped plate under concentrated force. (a) Deformed shape
and field of effective stress; (b) Deflection of central point C normalized with respect to the
analytical solution, in terms of number of finite elements in one direction �Nx = Ny�. Data
given in the text
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respect to the analytical solution (E4.5-1.1)) in terms of the mesh density, expressed by
the number of finite elements in one direction, is shown in Fig. E4.5-1Bb. It can be see
that the FE solution approaches rapidly to the analytical solution with the increase of mesh
density.

Solutions for other conditions: free support of the plate, loading by pressure, and change
of geometrical and material parameters, as well as for various mesh densities, can be obtained
by the Software on the web.

Example 4.5-2. Half of a sphere loaded by extension and compression forces
Due to symmetry conditions (symmetry planes are x−y and y−z), one-quarter of the structure
is modeled, with symmetry conditions shown in Fig. E4.5-2.

Deformed configuration with the field of effective stress is shown in the figure. Displace-
ments at the points A and C are uzA = −uxC = 0�08915 cm, while the analytical solution
is uzA = −uxC = 0�0924 cm (Simo et al. 1989). The data used for this solution are: sphere
radius an thickness are R = 10 cm, h = 0�04 cm; Young’s modulus and Poisson’s ratio are
E = 6�825×107 N/cm2� v = 0�3; and the force F = 1 N.

Detailed analysis of this example can be obtained using Software on the web.

Fig. E4.5-2 Half of a sphere loaded by extension and compression forces. One-quarter of
the structure is modeled, with symmetry boundary conditions; FE mesh, initial and deformed
configurations with the field of effective stress. Note that point A moves in y−z plane, while
point C moves in the x−y plane. Data given in the text
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5

Dynamic Finite Element Analysis

Fundamentals of the finite element dynamic analysis of solids are presented in this chapter.
We first formulate the differential equations of motion for isoparametric finite elements
assuming dynamic loading and the presence of viscous damping within the material. Then
the Newmark method is presented for integration of differential equations of motion. We
also give the basic relations for determination of structural frequencies and vibration modes.
Finally through examples we present the dynamic response of simple structures.

5.1 Introduction to dynamics of structures

In the previous chapter we considered static deformation of solids and structures, where the
material deforms under loading which changes over time quasi-statically, producing slow
(quasi-static) displacements. The dynamic effects, which are basically due to inertial forces,
can be neglected under these conditions. However, in engineering practice as well as in
biological solids, there are situations where dynamic effects must be included, such as in the
case of structures under earthquake loading, impact loading, or fast muscle contraction.

As in static analysis, the finite element method can be used to find the dynamic responses
of complex solids, structures and biosolids. We present the basis of the FE dynamics that will
be used subsequently in bioengineering applications. The FE discrete differential equations
of motion and a procedure for integration of these differential equations are presented to the
extent needed for this book.

Very important information about the dynamic behavior of a solid can be obtained by
finding the system frequencies and modal shapes. This is achieved by the so-called eigen-
analysis. It can be shown that when the frequency of loading is close to the system (natural)
frequency, the displacements may become very large even under small load intensity. For
example, if an earthquake wave is close to the natural frequency of a structure, the amplitudes
of displacements of the structure may become very large and cause structural collapse. Here,
we only give the fundamental relations of the eigen-analysis.

Computer Modeling in Bioengineering Edited by M. Kojić, N. Filipović, B. Stojanović, N. Kojić
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5.2 Differential equations of motion

Consider a material body subjected to external time-dependent forces F1 �t� � F2 �t� � � � � .
producing motion and deformation, as schematically shown in Fig. 5.2.1. The motion is such
that we must take into account inertial forces. The inertial force dFin of a mass dm is

dFin = −üdm = −�üdV (5.2.1)

where ü ≡ d2u/dt2 is the acceleration, � is material density, and dV is the elementary
volume. The inertial force is a volumetric force and the equivalent nodal inertial force vector
Fin follows from (4.3.16),

Fin = −
∫
V

�NT üdV =−
∫
V

�NT NdVÜ = −MÜ (5.2.2)

where M is the element mass matrix,

M =
∫
V

�NT NdV (5.2.3)

and Ü is the nodal acceleration vector. In derivation of (5.2.3) the relationship ü = NÜ is
used, which follows from the interpolation of displacements within the finite element, see
(4.3.2) for the 3D solid element. Note that the mass matrix is symmetric, with dimension
3N ×3N for a 3D finite element.

The derived mass matrix is called the consistent mass matrix. In practical applications of
dynamic FE analysis, a simplified, so-called lumped mass matrix is used. The lumped mass
matrix is a diagonal matrix with the nonzero terms equal to the element mass divided by the
number of element nodes.

When damping (viscous) effects are present within the material, the elementary damping
force can be expressed as

dFw = −bu̇dV (5.2.4)

Fig. 5.2.1 A schematic representation of the dynamics of a deformable body. Elementary
mass dm within the finite element; elementary inertial force dFin and the time variable nodal
force components at a node K
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where b is the damping (viscous) coefficient. Then, following the above derivation for the
element inertial nodal force vector, we obtain the element nodal damping vector Fw as

Fw = −BwU̇ (5.2.5)

where Bw is the element damping matrix,

Bw =
∫
V

bNT NdV (5.2.6)

We now substitute the inertial and damping nodal force vectors (5.2.2) and (5.2.5) into the
element equilibrium equation (4.2.21), and further assemble the equilibrium equations to obtain

MsysÜsys +Bw
sysU̇sys +KsysUsys = Fext

sys (5.2.7)

where Msys� Bw
sys and Ksys are the mass, damping and stiffness matrices of the system, respec-

tively; and Fext
sys is the system external force vector that includes the external concentrated,

surface and body forces. Equation (5.2.7) represents the differential equation of motion of a
material system discretized into finite elements.

5.3 Integration of differential equations of motion

Differential equations of motion (5.2.7) represent a system of linear differential equations
of the second order. They can be integrated numerically to give the solution for the dis-
placements, velocities and accelerations of nodal points and then of material points during
a selected time period. Numerical methods of integration assume the incremental solutions
with a time step �t. Integration is performed within a time step, using the solution at the
start of the time step and by employing certain approximations for changes of displace-
ments, velocities and accelerations within the time-step period �t. A variety of incremental
integration schemes have been introduced (see, e.g. Bathe 1996). We present one of these
methods, the widely used Newmark method, which is also employed in later applications.

Newmark Method
In order to derive the incremental relations for a finite element we will use the following
notation: the current step is denoted by ‘n’; all quantities which change with time will have
the left superscript ‘n’ or ‘n+1’, for values at the start and end of the time step, respectively.

The basic approximation used in the Newmark method is that the acceleration within the
time step is considered constant, and is given as

Ü ��� = �1−	� nÜ +	n+1Ü� 0 ≤ � ≤ �t (5.3.1)

where 0 ≤ 	 ≤ 1 is a parameter; 	 = 0� 	 = 1 and 	 = 0
5 correspond, respectively, to the
Euler forward, Euler backward, and trapezoidal integration scheme. From the expression
(5.3.1) it follows that the velocity changes linearly within the time step (see Fig. 5.3.1).

Integrating this equation with respect to time �, the velocity n+1U̇ and displacement n+1U
at end of time step are obtained as

n+1U̇ = nU̇ + [�1−	� nÜ +	 n+1Ü
]
�t (5.3.2)
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Fig. 5.3.1 Approximation for velocity of a material point within a time step

and

n+1U = nU + nU̇�t + 1
2

[
�1−	� nÜ +	 n+1Ü

]
��t�2 (5.3.3)

In order to improve the solution accuracy and stability (see Bathe 1996), instead of
(5.3.3) the following expression for the displacement n+1U is used:

n+1U = nU + nU̇�t +
[(

1
2

−�

)
nÜ +� n+1Ü

]
��t�2 (5.3.4)

where � is another integration parameter. It can be shown that the best solution accuracy
is obtained for 	 = 0
5 and � = 0
25. Now we substitute n+1Ü from (5.3.4) into (5.3.3) and
express n+1Ü in terms of the displacement n+1U as

n+1Ü = 1

���t�2

[
n+1U − nU − nU̇�t −

(
1
2

−�

)
��t�2 nÜ

]
(5.3.5)

Then, by substituting this expression for n+1Ü into (5.3.3) it follows that

n+1U̇ = 	

��t

(
n+1U − nU

)−
(

	

�
−1

)
nU̇ −

(
	

2�
−1

)
�t nÜ (5.3.6)

Finally, the differential equation of motion of the finite element (see (5.2.7)) for the end
of the time step can be written as

Mn+1Ü +Bw n+1U̇ +K n+1U = n+1Fext (5.3.7)

Then we substitute the expressions for n+1Ü from (5.3.5) and n+1U̇ from (5.3.6) into (5.3.7)
and obtain the system of algebraic equations

K̂ n+1U = n+1F̂ (5.3.8)

where

K̂ = K +a0M +a1Bw (5.3.9)

n+1F̂ = n+1F+M
(
a0

nU +a2
nU̇ +a3

nÜ
)+Bw

(
a1

nU +a4
nU̇ +a5

nÜ
)

(5.3.10)
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Here, K is the element stiffness matrix. The coefficients in (5.3.9) and (5.3.10) are

a0 = 1

���t�2 � a1 = 	

��t
� a2 = 1

��t

a3 = 1
2�

−1� a4 = 	

�
−1� a5 =

(
	

2�
−1

)
�t

(5.3.11)

Since we imposed the condition of satisfying the differential equations at the end of the time
step (see equations (5.3.7) and (5.3.8)), the Newmark method is thus implicit.

The solution procedure for the current time step consists of the following: we form the
matrix K̂ and the nodal vector n+1F̂ according to (5.3.9) and (5.3.10) for each finite element,
assemble them into the system matrix and vector in a usual manner (see Section 4.2.2)
and solve the system (5.3.8) for the nodal displacements n+1U. Then we calculate n+1Ü and
n+1U̇ from (5.3.5) and (5.3.6) to be used as nÜ and nU̇ for the next time step. Of course,
the displacements n+1u, velocities n+1u̇ and accelerations n+1ü at any material point of a
finite element ‘e’ can be determined by using, respectively, the interpolations from the nodal
values: n+1u = Nn+1Ue� u̇ = NU̇e and ü = NÜe. Also, the strains n+1e and stresses n+1�
within the finite elements can be calculated by employing (4.3.7) and (2.2.2), n+1e = B n+1Ue

and n+1� = C n+1e.

5.4 System frequencies and modal shapes

Important information about the dynamic structural response can be obtained by calculat-
ing the system frequencies and modal shapes. We here outline the basic idea about the
determination of these dynamic parameters.

Calculation of the system frequencies and modal shapes is called the eigen-analysis. It
consists of the following. Consider a system without damping and under no external loadings.
Then the differential equations of motion (5.2.7) reduce to (matrices and vectors correspond
to the assemblage of finite elements)

MÜ +KU = 0 (5.4.1)

Assume the solution of this system in the form

U = A sin��t +� (5.4.2)

where A is the vector of amplitudes, � is the angular frequency, and  is a phase. Substituting
(5.4.2) into (5.4.1), the system of equations reduces to

(
K −�2M

)
A = 0 (5.4.3)

since the common term sin��t + � is different from zero. In order to have the nonzero
vector A (nontrivial solution), the following scalar equation must be satisfied:

det
(
K −�2M

)= 0 (5.4.4)
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This equation is called the characteristic equation of the system. It is of order n with respect
to �2, and the solutions �2

1��2
2� � � � 
 
 ��2

n are the squares of the system frequencies. Here ‘n’
is the number of degrees of freedom of the system. For the dynamic response of a mechanical
system the most dominant frequencies are the lower ones, starting with the smallest value �1.

Substituting a value for �k into (5.4.3) it is possible to determine the ratios A
�k�

i of the
amplitude vector components with respect to one of the components (say A1), so that the
solution (5.4.2) can be written as

U�k� = A
�k�

sin��kt +k� (5.4.5)

The vector A
�k�

represents the modal shape vector corresponding to the system frequency
�k. If an excitation force acting on the system has the frequency �k, it will produce the
motion of the form (5.4.5). The system then enters into the resonant regime in which a small
excitation force can produce large displacements. In practice, due to damping effects, the
resonant amplitudes are lowered and the resonant motion decays. We show modal shapes in
one example (Example 5.5-1).

5.5 Examples

Example 5.5-1. Eigenvalue analysis of a quadratic plate
A quadratic plate is modeled using four-node shell elements. In order to determine sym-
metric and nonsymmetric eigenvalues and eigenvectors, the entire plate is modeled, without
symmetry conditions (Fig. E5.5-1A).

Analytical solution for natural frequencies of simply supported rectangular plate (Bolotin
et al. 1968) is given as

f = �

2

(
m2

1

a2
1

+ m2
2

a2
2

)√
D

�h
(E5.5-1.1)

where D is the plate stiffness,

D = Eh3

12 �1−�2�
(E5.5-1.2)

Fig. E5.5-1A Simply supported quadratic plate modeled by four-node shell finite elements
in eigenvalue analysis (the mesh is 16×16 elements)
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and a1� a2 are the plate dimensions, h is the plate thickness, and m1 and m2 are natural
numbers. For quadratic plate a1 = a2 = a, so that (E5.5-1.1) is reduced to

f = �

2a2

√
D

�h

(
m2

1 +m2
2

)= f ∗ (m2
1 +m2

2

)
(E5.5-1.3)

It can be seen from this equation that f ∗ is a constant dependent on material properties and
plate dimensions. Natural frequencies can be obtained by choosing various values for m1

and m2, see Table E5.5-1.
Several modal shapes, corresponding to the smallest frequencies are shown in Fig. E5.5-1B.

Table E5.5-1 Natural frequencies of a simply supported
quadratic plate, for data given in Fig. E5.5-1A. Numbers in
parentheses are the FE solutions

Analytical solutions f = f∗�m2
1 +m2

2� �s−1�

m1
m2 1 2 3

1 47
9865 119
966 239
932
�48
1389� �121
686� �248
967�

2 119
966 191
946 311
912
�121
686� �194
849� �321
533�

3 239
932 311
912 431
878
�248
967� �321
533� �437
516�

Fig. E5.5-1B Modal shapes for four smallest natural frequencies (f1 to f5) of simply
supported quadratic plate (note that f2 = f3 and the mode for f2 is shown)
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Finite element solutions for various plate dimensions and material data, as well as for a
clamped plate, can be obtained by using software (see web – Software).

Example 5.5-2. Dynamic response of the cylindrical pipe subjected to the step pressure
A cylindrical pipe is subjected to the step pressure as show in the Fig. E5.5-2a. Due to
symmetry, only one-half of the pipe is modeled using 2D axisymmetric elements. The

Fig. E5.5-2 Cylindrical pipe subjected to the step pressure p �N/cm2�. (a) Geometrical and
material data; (b) Radial displacement of the point B at middle of the pipe; (c) Deformed
configuration and distribution of axial stress �N/cm2� at time t = 3×10−4 s
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Newmark integration method is used to determine the dynamic response of the structure (60
time steps, �t = 10−5s, FE code PAK, Kojić et al. 1998a,b).

Detailed analysis of this example can be performed using the software (see web –
Examples and Software).

References
Bathe, K.J. (1996). Finite Element Procedures, Prentice-Hall, Englewood Cliffs, NJ.
Bolotin, V.V. et al. (1968). Stiffness – Durability – Vibrations (in Russian), Izdateljstvo Masinostojenije,

Moscow.
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Introduction to Nonlinear Finite
Element Analysis

In this chapter we present the basic relations of nonlinear finite element analysis of solids.
The concept of linearization and forming an incremental-iterative scheme for nonlinear
problems is introduced in a simple example. Then a linearized form of the principle of virtual
work is derived as the basis for the finite element nonlinear analysis. The nonlinear finite
element problems can in principle be divided into geometrically and materially nonlinear
problems; we describe them with derivations of the corresponding matrices of 2D and 3D
finite elements. Finally, we give specifics when large strain finite element formulation is
used. A typical structural nonlinear example is presented, while other examples can be solved
using the Software on the web.

6.1 Introduction

In an analysis of the deformation of solids or structures, a problem is considered non-
linear when the displacements due to mechanical action are not linearly proportional to
loads. Therefore, for a discretized system a relation of the form (4.1.2) is not applica-
ble. Instead of this linear force–displacement relationship, an incremental solution approach
is introduced in which the total loads are divided into a number of increments and
solutions for the displacement increments are obtained successively. Hence, a system of
equations

nK�U = �Fext� nKJK�UK = �Fext
J � J�K = 1� 2� � � � � � � � �Ntotal (6.1.1)

is formed, corresponding to the load step n (denoted by left upper index) in the incremental
procedure. Here, �U is the vector of nodal displacement increments, nK is the system
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stiffness matrix corresponding to the current displacements nU� �Fext is the vector of external
force increments, and Ntotal is the number of system degrees of freedom. Note that here the
stiffness matrix K changes during deformation, therefore we have the dependence K �U�,
i.e. KJK

(
U1 U2� � � �UNtotal

)
.

In order to illustrate the basic strategy in solving nonlinear problems, consider a simple
structure shown in Fig. 6.1.1a. A bar is fixed at one end, while the other end can slide along
the x-axis under the action of a force F . We assume that the material is linear elastic, so that
the axial force Fa generated within the bar is Fa = AE �1−L/L0�, see (4.2.1), where A and
E are the cross-sectional area and Young’s modulus of material, L0 �= R

√
1+ r2� r = H/R�

is the initial length and L is the current length of the bar. From the balance between the
force F and the component of Fa along the x-axis (denoted here as F int), with use of the
geometry shown in the figure, the following relation between the force and the displacement
u is obtained:

F = F

AE
= F

int = F int

AE
=
(

1− L

L0

)
1−u/R

L
=

=
⎛
⎜⎝1−

√
r2 + �1−u/R�2

√
r2 +1

⎞
⎟⎠ 1−u/R√

r2 + �1−u/R�2
� L0 = L0/R�L = L/R

(6.1.2)

This dependence of the force on the displacement is shown in Fig. 6.1.1b, for r = 0�5 and
for the displacement range 0 ≤ u/R ≤ 2.

Assume now that the whole loading interval is divided into a number of steps. The
external load (here it is the force F ) changes from nF ext to n+1Fext within step ‘n’, producing
a change of the internal force from nF int to n+1F int. Assume that the equilibrium state at
the beginning of a load step is determined, hence the equation nF int = nF ext is satisfied.
Further, we seek the increment of displacement �u, corresponding to the force increment
�F = n+1F − nF , such that the equation of balance is satisfied,

n+1F int = n+1Fext (6.1.3)

The internal force due to deformation of the bar is the nonlinear function of displacement u
according to (6.1.2) so that a Taylor series of the first order can be written as

n+1F int ≈ nF int + n

(
	F int

	u

)
�u = nF int + nK�u (6.1.4)

where nK = n
(
	F int/	u

)
is the structural stiffness evaluated for displacement nu. We now

substitute this approximation for the internal force into (6.1.3) and obtain

nK�u�1� = n+1Fext − nF int (6.1.5)

where �u�1� is the first approximation for the displacement increment �u. The first approxi-
mation for the displacement n+1u�1�, the internal force n+1F int�1� and the stiffness n+1K�1�, are

n+1u�1� = nu+�u�1�� n+1F int�1� = F int
∣∣
u= n+1u�1� and n+1K�1� = K�u= n+1u�1� (6.1.6)
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Fig. 6.1.1 A bar loaded by force F. (a) The bar end moves along x between points A and
C, the initial length is L0, the current length is L, and the displacement is u; (b) The force–
displacement curve for r = H/R = 0�5; (c) Analytical relationship F�u/R� and iterative
solutions to obtain the true displacement u/R = 0�54 corresponding to force F = 0�266
(maximum force is F = 0�2675 for displacement u/R = 0�58)

Substituting now the stiffness n+1K�1� and internal force n+1F int�1� into (6.1.3), the fol-
lowing equation is obtained:

n+1K�1��u�2� = n+1Fext − n+1F int�1� (6.1.7)
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from which the increment �u�2� can be calculated. Continuing this iterative procedure, we
find the following equilibrium equation for the iteration ‘i’,

n+1K�i−1��u�i� = n+1Fext − n+1F int�i−1� (6.1.8)

and then the displacement n+1u�i� is

n+1u�i� = nu+�u�1� +�u�2� + � � � � �+�u�i� (6.1.9)

The iteration scheme (6.1.8) represents the so-called Newton iteration or full Newton iteration
scheme. In the case of convergence, the ‘unbalanced force’

(
n+1Fext − n+1F int�i−1�

)
, as well

as the increments �u�i� decrease during the iterations.
Another approach in iterations is the so-called modified Newton iteration scheme. Then,

instead of calculating the stiffness K at each iteration, K is evaluated at selected iterations,
or only at the beginning of load steps (then K = nK). In this approach, the computational
time is saved since K is not calculated, but the convergence rate might be slow.

The stiffness in our example is

K = AE

R

1√
1+ r2

[
1+ L0

L
2

(
L′ �u/R−1�−L

)]
(6.1.10)

where L′ = dL/du. To demonstrate the convergence rate for the two iterative schemes, we
used one load step – from the loading equal to zero to F

ext = 0�266 (which corresponds
to displacement u/R = 0�54). If the full Newton iterative scheme is used, the number of
iterations was seven, while 48 iterations were necessary when the initial stiffness was used
to achieve �u�i� ≤ 10−5 (see Fig. 6.1.1c). The example shows that the Newton iteration
algorithm provides the quadratic convergence rate; this can be seen from the values for
the displacement increments, unbalanced force and stiffness �K = KR/�AE� � R = 1� given
in Table 6.1.1. The displacement increments are also included when the modified Newton
iterations are used. A significant difference in the convergence rate can be noticed for the
two types of iteration schemes. Additional aspects of analysis of this example are given on
the web (see Software – Chapter 6).

Table 6.1.1 Increments of displacement �u�i�, unbalanced force F
ext−F

�i−1�
and

stiffness K
�i−1�

during iterations

Full Newton Modified Newton

Iteration i �u�i�/R F
ext−F

�i−1�
K

�i−1�
�u�i�/R

1 3�71×10−1 2�66×10−1 7�15×10−1 3�71×10−1

2 1�10×10−1 4�53×10−2 4�12×10−1 6�33×10−2

3 4�26×10−2 9�63×10−3 2�26×10−1 3�11×10−2

4 1�40×10−2 1�89×10−3 1�35×10−1 1�87×10−2

5 2�21×10−3 2�27×10−4 1�03×10−1 1�25×10−2

6 5�93×10−5 5�78×10−6 9�74×10−2 8�86×10−3

7 4�31×10−8 4�19×10−9 9�72×10−2 6�57×10−3
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6.2 Principle of virtual work and equilibrium equations in
nonlinear incremental analysis

In Section 2.3 we presented the principle of virtual work as one of the most fundamental
principles in mechanics. The basis of this principle relies on the equilibrium condition for
stresses within a deformable body and at the boundary. Also, it was assumed that the
displacements were small. Furthermore, the principle is also applicable to any mechanical
system, composed of deformable and rigid bodies, with small and large displacements and
deformation, under static or dynamic conditions. We here write this principle assuming
discrete or continuum mechanical system in a form suitable for the incremental analysis.

According to the principle of virtual work we have that for any system configuration n�,
the internal and external virtual works are equal,


 nW int = 
 nW ext (6.2.1)

This fundamental relation will be further implemented.

6.2.1 Discrete system

Consider a discrete nonlinear system with Ntotal degrees of freedom. The system can be
composed of rigid and deformable bodies, where deformable bodies can be discretized by
a method such as the finite element method. Assume that we are solving the problem
incrementally, as in the case of the simple example in Section 6.1. Hence, for an incremental
step n we start with the known system configuration n� and seek the unknown configuration
n+1�. The principle of virtual work (6.2.1) for the configuration n+1� can be written as


 n+1UT n+1F
int = 
 n+1UT n+1Fext (6.2.2)

where n+1U� n+1Fint and n+1Fext are the displacement vector (translations and rotations),
internal and external forces (forces and moments), respectively. The dimension of these
vectors is Ntotal. Since the virtual displacement is an arbitrary vector (see Section 2.3), from
(6.2.2) follows the equilibrium equation of the form (6.1.3),

n+1 Fint = n+1Fext (6.2.3)

Note that in the case of dynamic analysis (see Chapter 5), the inertial forces must be included
into the vector n+1Fint. Here, for simplicity of the presentation, we assume a quasi-static
motion of the system and neglect the inertial effects.

Next, an incremental-iterative solution scheme can be formulated by linearization of
equation (6.2.3), as in Section 6.1 for the one-degree-of-freedom example. Following the
procedure for the derivation of (6.1.8), we obtain

n+1K�i−1��U�i� = n+1Fext − n+1Fint�i−1�� or n+1K
�i−1�
jk �U

�i�
k = n+1Fext

j − n+1F
int�i−1�
j (6.2.4)

n+1U�i� = nU +�U�1� +�U�2� + � � � � �+�U�i� (6.2.5)

The stiffness matrix n+1K�i−1� is

n+1K�i−1� = �n+1�

(
	Fint

	U

)�i−1�

� or n+1K
�i−1�
jk = �n+1�

(
	F int

j

	Uk

)�i−1�

(6.2.6)
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6.2.2 Principle of virtual work for a continuum

We here derive the equation which represents the principle of virtual work for a deformable
solid, assuming an incremental solution scheme. Consider first mechanical work of stresses
due to virtual strains (Bathe 1996). If the configuration n� is employed as the reference
configuration, then the Green–Lagrange strain n+1

nE
GL

and its work-conjugate second Piola–
Kirchhoff stress n+1

nS for the end of the step (see (2.4.15) and (2.4.19)) are the strain and
stress measures for expressing the internal virtual work. The internal virtual work per unit
volume 
 n+1W

int
is


 n+1W
int = 
 n+1

nEGL · n+1
nS = 
n+1

nE
GL
jk

n+1
nSjk = (


 n+1ejk +
 n+1�jk

) (
n�jk +��jk

)
≈ 
 n+1ejk

n�jk +
 n+1ejk��jk +
 n+1�jk
n�jk

(6.2.7)

Here n+1ejk ≡ n+1
nejk are the small strains defined in (2.1.25) with displacements �ui and

with respect to the reference configuration n�� n+1eij = 0�5
(
	 ��ui� /	nxj + 	

(
�uj

)
/	nxi

)
;

while n+1�j ≡ n+1
n�j are the nonlinear (small) strains expressed in terms of displacement

increments as

n+1�ij = 1
2

	 ��uk�

	 nxi

	 ��uk�

	 nxj

� sum on k  k = 1� 2� 3 (6.2.8)

Also, in (6.2.7) we used the fact that the Piola–Kirchhoff stress reduces to the Cauchy stress
when two configurations n� and n+1� are close; and, further, the product 
 n+1�jk��jk as
the second-order small term is neglected.

Next, we use the constitutive relations for the stress increments ��jk as

��jk = nCjkpq
n+1epq� or ��j = nCjk

n+1ek (6.2.9)

where nCjkpq is the constitutive tensor evaluated at the start of the step. When the one-index
notation for stresses and strains is employed (see (2.1.13) and (2.1.23)), the constitutive
matrix nCjk stands for the constitutive tensor nCjkpq. Substituting (6.2.9) into (6.2.7), a
linearized form of the internal virtual work for the configuration n+1� is obtained,


 n+1W
int ≈ 
 n+1ej

n�j +
n+1ej
nCjk

n+1ek +
 n+1�j
n�j (6.2.10)

Here and in further presentation, the one-index notation is used as a more convenient form
(the one-index form n+1�j follows the notation in (2.1.23)).

Finally, substituting (6.2.10) into (6.2.1) a linearized form of the principle of virtual work
for a deformable solid is obtained,

∫
nV

[

 n+1ej

n�j +
 n+1ej
nCjk

n+1ek +
 n+1�j
n�j

]
dV = 
 n+1W ext (6.2.11)

with the integration over the volume nV . When an iterative solution scheme is employed, as
in (6.1.8) or (6.2.4), the reference configuration for the iteration ‘i’ becomes the last known
configuration n+1��i−1� instead of n�, and the integration is performed over the volume
n+1V �i−1�.
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6.2.3 Finite element model

Equilibrium equations for a finite element can be obtained by application of (6.2.11) and
with the use of the interpolation for the displacement field within the element. We assume
an isoparametric interpolation (4.1.1) and then express the strains in terms of the nodal
displacement increments �U. For linear strains and variations of linear strains we obtain
(see, for example, expressions (4.2.8), (4.3.7), (4.4.3) and (4.5.9))

n+1
ne = n

nBL�U and 
 n+1
ne = n

nBL
 n+1U (6.2.12)

where the n
nBL is the linear strain–displacement matrix and the left indices ‘n’ mean that the

matrix corresponds to the configuration n� with derivatives of the interpolation functions
NK with respect to the coordinates nxi (i.e. 	NK/	 nxi); and vector 
 n+1U = 
��U� is the
vector of variation of nodal displacements. It can be shown that, with use of the definition
(6.2.8) of n+1

n�ij , the product 
 n+1
n�j

n�j can be written in a matrix form as


 n+1
n�k

n�k = 
 n+1UT n
nBT

NL
n�̃ n

nBNL�U (6.2.13)

where n
nBNL is the nonlinear strain–displacement matrix, containing derivatives of the inter-

polation functions with respect to the coordinates nxi, and n�̃ is the matrix with stresses
components n�j (details of derivation of (6.2.13) are given on the web – Theory, Chapter 6).

Substituting (6.2.12) and (6.2.13) into (6.2.11) and, taking that variations 
 n+1U of the
nodal displacement vector are arbitrary, the equilibrium equation of a finite element is
obtained as

�nKL + nKNL��U = n+1Fext − nFint (6.2.14)

Here nKL and nKNL are linear and nonlinear (geometrical nonlinearity) element stiffness
matrices,

nKL =
∫

nV

n
nBT

L
nC n

nBLdV and nKNL =
∫

nV

n
nBT

NL
n�̃ n

nBNLdV (6.2.15)

and nFint is the vector of element internal forces (due to stresses within the material),

nFint =
∫

nV

n
nBT

L
n�dV (6.2.16)

The external forces are the nodal forces from the action of surrounding finite elements or
the external structural loadings (see Sections 4.2.and 4.3). The constitutive matrix nC is

nC = 	 n�

	 ne
� or nCij = 	 n�i

	 nej

(6.2.17)

A usual assemblage procedure is performed (see Section 4.2.2) to obtain the incremental
system of algebraic equations, which is then solved for the nodal displacement increments
��U�sys for the entire material system. An iterative scheme of the form (6.2.4) can be formed
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to solve for the increments �U�i�
sys. Therefore, the incremental-iterative equilibrium equations

for a finite element are now

(
n+1KL + n+1KNL

)�i−1�
�U�i� = n+1Fext − n+1Fint�i−1� (6.2.18)

where the last known configuration n+1��i−1� is used as the reference configuration; also the
constitutive matrix corresponds to the last known values for stresses and strains, i.e. n+1C�i−1�

is used,

n+1C�i−1� = 	 n+1��i−1�

	 n+1e�i−1�
� or n+1C

�i−1�
ij = 	 n+1�

�i−1�
i

	 n+1e
�i−1�
j

(6.2.19)

Considering the nonlinearities of the matrices in (6.2.18), two types of nonlinearities
can be distinguished: geometric and material. The geometric nonlinearity comes from large
displacements during deformation. This nonlinearity enters into the evaluation of the deriva-
tives of the interpolation functions �	NK/

(
	 n+1xj

)�i−1�
for the iteration ‘i’), and also into

the volume of the finite elements. We note that the external loading may also depend on
displacements, when the external force vector n+1Fext changes within load steps and within
equilibrium iterations. The material nonlinearity is due to nonlinearity of the constitutive law
which leads to changes of the constitutive matrix n+1C�i−1� during deformation history of the
material. A problem is considered geometrically nonlinear only if the constitutive relations
are linear and displacements are large. A problem is materially nonlinear only (MNO) when
the constitutive law is nonlinear and the displacements are small. In the case of an MNO
problem, the equilibrium equation (6.2.18) reduces to

(
n+1KL

)�i−1�
�U�i� = n+1Fext − n+1Fint�i−1� (6.2.20)

where

(
n+1KL

)�i−1� =
∫
V

BT
L

n+1C�i−1� BLdV�
(

n+1Fint
)�i−1� =

∫
V

B T
L

n+1
��i−1�dV (6.2.21)

In summarizing the above presentation of the FE nonlinear analysis we emphasize the
following important facts. First, in order to obtain the internal nodal force vector at the end
of step,

(
n+1Fint

)�i−1�
, the stresses n+1��i−1� must be evaluated. In a displacement-based FE

formulation, used in this book, it is assumed that the strains n+1e�i−1� are known from the last
known displacements n+1u�i−1�. Then, for given strains, the stresses depend on the material
properties expressed by the constitutive relationships � �e�. Therefore, the evaluation of the
n+1��i−1� in an incremental analysis requires integration of the constitutive law � �e� within
the step, according to

n+1��i−1� = n� +
n+1e�i−1�∫

ne

� �e�de (6.2.22)

where the integral represents the stress integration in the incremental step.
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The second fact is that for a nonlinear constitutive law, it is necessary to calculate the
tangent constitutive matrix n+1C�i−1�. If this matrix is obtained by the differentiation of the
governing relations used within the stress integration algorithm, the matrix is called the
consistent tangent constitutive matrix.

Finally, we emphasize that the accuracy of the solution depends on the algorithm for stress
integration, and not on the matrix n+1C�i−1�. This follows from the equation (6.2.3) which
has to be satisfied through the equilibrium iteration scheme, and from the expression (6.2.21)
(see also (6.2.16)) for the internal nodal forces. On the other hand, the matrix n+1C�i−1�

affects the convergence rate only, and not the solution accuracy. The best convergence rate
is obtained when a consistent tangent matrix is computed (Kojić & Bathe 2005).

At the end of this section we give the expressions for the nonlinear strain–displacement
matrix BNL and the stress matrix �̃ in (6.2.15) for a 3D isoparametric element (the linear
strain–displacement matrix is given in (4.3.7)). For simplicity we omit indices for the
reference configuration and incremental step. The matrix BNL is (Bathe 1996, Kojić &
Bathe 2005)

BNL =
⎡
⎣B̂NL 0̂ 0̂

0̂ B̂NL 0̂
0̂ 0̂ B̂NL

⎤
⎦ (6.2.23)

where

B̂NL =
⎡
⎣N1�1 0 0 N2�1 � � NN�1

N1�2 0 0 N2�2 � � NN�2

N1�3 0 0 N2�3 � � NN�3

⎤
⎦ � 0̂ =

⎡
⎣0

0
0

⎤
⎦ (6.2.24)

The stress matrix is

�̃ =
⎡
⎣� 0 0

0 � 0
0 0 �

⎤
⎦ (6.2.25)

where � is the 3×3 matrix given in (2.1.3), and 0 is the 3×3 zero matrix. The matrix BNL

and the stress matrix �̃ for other elements can be found elsewhere (e.g. Bathe 1996).
Note that the above equilibrium equations (6.2.18) can be extended to include inertial and

resistance effects (see Section 5.2). Then, the inertial and resistance forces n+1Fin = −M n+1Ü
and n+1Fw = −(n+1Bw�i−1�

) n+1
U̇ must be added on the right-hand side; M is the constant

mass matrix, n+1Bw�i−1� is the resistance matrix, n+1Ü and n+1U̇ are the nodal acceleration
and velocity vectors. The integration of differential equations can be performed as for linear
problems (Section 5.3); details are given on web – Theory, Chapter 6.

6.2.4 Finite element model with logarithmic strains

The logarithmic strains are often used in large strain analysis in engineering because the
experiments are usually performed employing this strain measure. The logarithmic strain
is the ‘true strain’ because it can be considered, in uniaxial extension, as a sum of the
ratios of the increments of length with respect to the current length. Namely, if we extend a
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material sample from the initial length 0L to the final length N L by N increments �Ln�
n = 1� 2� � � � ��N , the strain increments can be calculated as �ne = �Ln/

nL, where nL is
the length at the n-th step; and the strain N e is the sum of the strain increments. Hence,
we have

N e =
N∑

n=1

�Ln

nL
� limN→	

(
N e
)= ln

N L
0L

= ln
(

N
0 �
)= N EH (6.2.26)

where N
0 � is the stretch and N EH is the Hencky (logarithmic) strain (see Section 2.4.1). Note

that dEH = de, i.e. increment of the logarithmic strain is equal to the increment of small
strain in the current configuration.

If logarithmic strains are used in general deformation conditions, it is necessary
for the current incremental step ‘n’ to perform the following computational steps (see
Section 2.4.1):

1. Determine deformation gradient n
0F and the left Cauchy–Green deformation tensor

n
0B = n

0F n
0FT .

2. Calculate the principal stretches n
0�1�

n
0 �2�

n
0 �3 and the principal unit vectors of the left

basis np1�
n p2�

n p3; calculate logarithmic strains n
0E

H
j = ln

(
n
0�j

)
� j = 1� 2� 3.

3. Calculate principal stresses �j� j = 1� 2� 3, using the corresponding constitutive law.
Transform the principal stresses to the common coordinate system xi using the transfor-
mation (2.1.14).

It is assumed here that the material is isotropic elastic.
The logarithmic strains are used in modeling biological tissue (Chapter 11). Also we

employ the logarithmic strains for calculation of strains of material fibers, such as in the
modeling of muscle (see Chapter 12).

Logarithmic strains are particularly used for modeling inelastic large strain deformations,
as in the case of plastic deformation of metals in technological operations. Then, a ficti-
tious elastic configuration is determined first and principal logarithmic elastic strains are
calculated prior to the stress integration within the load step (see Kojić & Bathe 2005 for
details).

6.3 Examples

Example 6.3-1. Large displacement of a channel section cantilever with local buckling
A cantilever channel-section beam is loaded by a tip force F at the free end, as shown
in Fig. E6.3-1a. Due to the slenderness of the structure, the force causes regions of
local buckling. The four-node shell elements (see Section 4.5.2) are used to model the
cantilever.

The solution is determined using prescribed vertical displacement w of the point where
the load is acting. Then, the force F necessary to cause this displacement is calculated.
Deformed configuration of the cantilever, with the effective stress (von Mises stress, see
web – Theory, Chapter 2), is shown in Fig. E6.3-1b, while the dependence of the force on
the deflection w is given in Fig. E6.3-1c. Detailed analysis of this example can be performed
using the Software (see web, Software).
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Fig. E6.3-1 Bending of a channel-section beam with local buckling. (a) Geometrical and
material data; (b) Deformed configuration with local buckling regions and field of von Mises
stress; (c) Dependence of vertical force F on the vertical displacement w of the point under
the force
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7

Finite Element Modeling of Field
Problems

In this chapter we present a finite element formulation for modeling field problems. General
three-dimensional conditions are assumed and the isoparametric interpolation of physical
fields is used. The FE formulation relies on the Galerkin method used to transform the
governing partial differential equations of Chapter 3 into the FE algebraic equations. This
general method is first implemented to linear problems of heat conduction and diffusion, and
then to laminar incompressible viscous flow with and without heat and mass transfer. Next,
the FE equations are derived in the case of fluid flow with large changes of the fluid domain;
the arbitrary Lagrangian–Eulerian (ALE) formulation is used. Also, the FE modeling of the
solid–fluid interaction is presented, according to a weak coupling approach. Finally, the FE
balance equations are derived for fluid flow through porous deformable media. Each section
is followed by typical example solutions.

7.1 Introduction

In many engineering and bioengineering problems the task is to determine the field of
physical quantities, such as temperature, concentration, fluid pressure and velocities. Here we
give some general considerations about solving field problems and then present the Galerkin
method.

Computer Modeling in Bioengineering Edited by M. Kojić, N. Filipović, B. Stojanović, N. Kojić
© 2008 John Wiley & Sons, Ltd
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7.1.1 General considerations

In Chapter 3 we presented the governing equations of heat conduction, diffusion, laminar
fluid flow, and flow through porous deformable media. They all rely on the physical law
of balance of energy, mass and linear momentum, and have the form of partial differential
equations with time and spatial derivatives.

Analytical methods were developed in the past as the first methods to solve the governing
equations, summarized in textbooks (e.g. Incropera & DeWitt 1996, Munson et al. 1998,
Mills 1999, 2001). In these methods, an analytical form of solutions is obtained so that
the governing equations are satisfied within the domain, as well as for initial and boundary
conditions. Usually, the analytical functions of time and space are such that the governing
equations and boundary conditions are satisfied exactly. There are also approximate analytical
solutions in which the functions are represented by series in which the higher order terms
can be neglected.

The main limitation of the analytical methods is that they are only applicable to special,
noncomplex geometrical shapes, with material parameters independent of the solution vari-
ables and other simplified conditions. They are not applicable to general, complex nonlinear
problems, such as, for example airflow in alveolated structures with large motions of the
boundaries, or blood flow in microvessels.

When modeling field problems by the finite element method (FEM) we seek the solution
which satisfies the governing equations within the finite elements (subdomains) in a weighted
sense (details are given in the next section). Also, the physical field within each element
is approximated and expressed in terms of the nodal values, as in the case of solids where
the displacements of points within a finite element are approximated from the nodal point
displacements. The FE balance equations are commonly derived using the Galerkin method
which is presented next.

7.1.2 The Galerkin method

To introduce the Galerkin method, consider the differential equation corresponding to heat
transfer or diffusion (without convection) derived in Chapter 3:

−c
��

�t
+ �

�xi

(
D

��

�xi

)
+fV = 0 (7.1.1)

where ��xi� t� is the field variable; c and D are the material coefficients, dependent in
general on the coordinates xi and on �; and fV �xi� t� is a source term.

The basic idea of weighted methods is to multiply the differential equation by a function
of coordinates and impose the condition that the equation is satisfied over a selected domain
in a weighted sense,

∫
V

� �x1� x2� x3�

[
−c

��

�t
+ �

�xi

(
D

��

�xi

)
+fV

]
dV = 0 (7.1.2)

where � �xi� is a weighted function, and V is a selected domain. The equation (7.1.2) repre-
sents the so-called weak form of the differential equation since the differential equation (7.1.1)
is not necessarily satisfied at each point of the domain.
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In the Galerkin method we use here the domain V of an isoparamertric (3D) finite
element and interpolation functions NK �r� s� t� as the weighted functions; see Section 4.3
for the description of NK (Huebner 1975). The capital letters are used for indices (as NK)
corresponding to node numbering in order to make a distinction from lower case indices
which refer to a Cartesian system xi. Therefore, N weak form equations for a finite element
are obtained,

∫
V

NK

[
−c

��

�t
+ �

�xi

(
D

��

�xi

)
+fV

]
dV = 0 K = 1� 2� � � � �N (7.1.3)

where N is the number of nodes.
In forming the equations of balance for a finite element, the key step is to transform the

volume integral into a form suitable for application. Namely, the Gauss theorem (e.g. Fung
1965; see also Section 1.4) can be applied to the second term under the volume integral to
obtain

∫
V

NK

�

�xi

(
D

��

�xi

)
dV =

∫
S

NKD
��

�xi

nidS −
∫
V

DNK�i��idV (7.1.4)

where S is the element surface; notation �i ≡ �/�xi is used for shorter writing. The term
D��ini represents the flux qS of � through the element surface, therefore the surface integral
can be written as

FS
K =

∫
S

NKD
��

�xi

nidS =
∫
S

NKqSdS (7.1.5)

where FS
K �t� is the surface flux corresponding to the node ‘K’.

Next, the interpolation of the variable � within the element can be used:

� = NK	K = N1	
1 +N2	

2 + � � � 
+NN 	N (7.1.6)

where 	K are the nodal values of �. Now, substitute (7.1.6) and (7.1.4) into (7.1.3) and also
use (7.1.5), to obtain

M�̇+K� = FS +FV � or

MKJ	̇
J +KKJ	

J = FS
K +FV

K � K� J = 1� 2� � � � �N
(7.1.7)

Here � is the vector of nodal values 	K� �̇ is the vector of time derivatives at nodal points,
and the matrices and vectors are:

MKJ =
∫
V

cNKNJdV� KKJ =
∫
V

DNK�iNJ�idV�

FS
K =

∫
S

NKqSdS� FV
K =

∫
S

NKfV dS

(7.1.8)

The system of equations (7.1.7) represents the equations of balance for a finite element.
Assemblage of the element equations is then performed as in the case of a solid (Section 4.2)
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and the system of equations having the form (7.1.7) is obtained. Appropriate boundary
conditions must be implemented prior to solving the equations of the entire system. Note
that the surface fluxes FS

K cancel over the internal surfaces of the finite elements and the
contribution to the system surface vector FS comes from the flux on the surface of the entire
domain.

The incremental form for time integration of (7.1.7) is

(
1
�t

M +K
)

n+1� = n+1FS + n+1FV + 1
�t

Mn� (7.1.9)

where �t is the time step, and the upper left indices n and n+ 1 denote values at the start
and end of the n-th time step.

When the material parameters depend on the variable � and/or the domain changes
significantly, an iterative solution scheme must be developed. As in Section 6.2 (see equa-
tions (6.2.4) and (6.2.5)), we write the solution in a form

n+1��i� = n�+���1� +���2� + � � � 
 
+���i� (7.1.10)

which corresponds to the iteration ‘i’. The incremental-iterative equation for the step n and
iteration i is

n+1

(
1
�t

M +K
)�i−1�

���i� = n+1FS�i−1� + n+1FV�i−1� − n+1K�i−1� n+1��i−1� −
1
�t

n+1M�i−1�
(

n+1��i−1� − n�
) (7.1.11)

where the matrices and vectors are evaluated using the last known values n+1��i−1�. The
element equations are assembled and solved for the increments ���i�. The iterations continue
until a selected accuracy criterion for

∥∥���i�
∥∥ is satisfied.

The Galerkin method is further implemented in heat transfer, diffusion, fluid flow and
flow through porous deformable media.

7.2 Heat conduction

7.2.1 The finite element equations

The governing equation for heat conduction is given in (3.1.5),

−�c
�T

�t
+ �

�xi

(
ki

�T

�xi

)
+qV = 0 (7.2.1)

This equation has the same form as (7.1.1), hence the FE balance equation (7.1.7) becomes:

MṪ+Kk T = QS +QV (7.2.2)
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where T is the vector of nodal temperatures, while QS and QV are the surface and volume
nodal fluxes, respectively. The matrix M is given in (7.1.8), and the conductivity matrix
Kk is

Kk
IJ =

∫
V

(
3∑

j=1

kjNI�jNJ�j

)
dV =

∫
V

(
k1NI�1NJ�1 +k2NI�2NJ�2 +k2NI�3NJ�3

)
dV (7.2.3)

The heat flux through the element surface consists, in general, of three parts:

(a) given, prescribed flux qn;

(b) flux due to convection, qc = hc �Tsurr −TS�, where hc�W/m2 K� is the convective heat
transfer coefficient, Tsurr is the surrounding temperature, and TS is the body temperature
at the surface; and

(c) flux due to radiation qr = hr �Trad −TS�, where hr�W/m2K� is the heat radiation coeffi-
cient, and Trad is the radiation temperature.

Then, the nodal heat flux for the node ‘I’ is obtained as

Qn
I =

∫
Se

NIqndS� Qc
I =

∫
S

NIhc �Tsurr −TS�dS = −Kc
IJT

J +Qsurr
I �

Qrad
I =

∫
S

NIhr �Trad −TS�dS = −Krad
IJ T J +Qrad

I

(7.2.4)

where the expressions for Kc
IJ � Qsurr

I � Krad
IJ , and Qrad

I follow from the surface integrals.
Therefore, for the elements having the surface on the boundary, the equation of balance

with the terms (7.2.4) and (7.2.2) becomes:

MṪ+KT = Q�

K = Kk +Kc +Krad� Q = Qn +Qsurr +Qrad +QV (7.2.5)

Time integration of the system of differential equations is performed according to (7.1.9),
and the iterative scheme (7.1.11) must be used when the material parameters depend on
temperature and/or the heat conduction domain changes over time.

7.2.2 Examples

Finite element solutions for two examples are presented here, for which the analytical
solutions are given in Section 3.1.2. Other examples are available on the web – Section 7.2.

Example 7.2-1. Steady heat conduction laterally through a long column
The definition of this example is given in Section 3.1.2. Here, we show the FE solution.
Due to symmetry conditions with respect to the plane y = a/2, a half of the cross-section is
discretized, Fig. E7.2-1b. The boundary condition that the flux is equal to zero through the
symmetry plane is imposed.
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Fig. E7.2-1 Steady heat conduction laterally through a long column. (a) Geometry of the
column and boundary conditions; (b) Column cross-section and a sketch of FE mesh; (c) Tem-
perature field for data: a = 4 m� T1 = 100 �C� T2 = 0 �C� k = 1 W/mK ; (d) Temperature
distribution along the symmetry plane (analytical and FE solutions)

Temperature field and distribution of temperature along the symmetry plane are shown
in Figs. E7.2-1c,d. A study of accuracy of the FE solution in terms of the mesh density can
be performed using Software on the web.

Example 7.2-2. Unsteady heat conduction through a semi-infinite medium
This example is defined in Section 3.1.2 (Example 3.1-2). Here, we find the temperature
field by using an FE model. We use 3D finite elements as shown in Fig. E7.2-2a, with the
length model L.
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Fig. E7.2-2 Unsteady heat conduction through semi-infinite solid. (a) Schematic repre-
sentation of the solid and FE mesh (3D finite elements) to model 1D heat conduction;
(b) Increase of temperature with time at the surface where constant flux is given; (c)
Temperature profiles along the length L for several times. Data: flux q = 1 W/m2, heat
conduction coefficient k = 1 W/mK, mass density � = 1 kg/m3, specific heat c = 1 J/kgK,
initial temperature Tinitial = 0 �C

Temperature at the boundary and distribution along the length L are shown
in Figs. E7.2-2b,c. It can be seen that the FE solutions agree well with the analytical solu-
tions. An insight into effects of the model length, heat conduction coefficient and lateral
dimensions of the FE model, can be obtained using Software on the web.

7.3 Diffusion

7.3.1 The finite element equations

Consider the governing equation (3.2.8)

−�cj

�t
+ �

�xi

(
Dj

�cj

�xi

)
+ cV

j = 0 (7.3.1)
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for a constituent ‘j’, where cj stands for the volumetric concentration and cV
j is the source

term. This equation is analogous to the heat conduction equation (7.2.1) and the balance
equation for a finite element is (see (7.2.2)):

MjĊj +Kd
j Cj = QS

j +QV
j no sum on j (7.3.2)

where Cj is the vector of nodal concentrations for the constituent ‘j’; the vector QV
j is

defined as the vector FV in (7.1.8) where cV
j should be used for fV . The matrix Mj is given

in (7.1.8) with c = 1, while the matrix Kd is

(
Kd

j

)
IJ

=
∫
V

DjNI�kNJ�kdV =
∫
V

Dj

(
NI�1NJ�1 +NI�2NJ�2 +NI�3NJ�3

)
dV (7.3.3)

If the element surface flux is �cn�j kg/m2s, the nodal flux QS
j is

QS
jI =

∫
S

NI �cn�j dS (7.3.4)

As in the case of heat conduction, the FE equation of balance includes the nonzero terms
(7.3.4) when the element has a surface on the boundary.

The equations of balance (7.3.2) are applicable to each of the constituents. Therefore,
for each constituent we perform assemblage of the element equations of balance and then
integrate these equations following (7.1.9). When the material parameters depend on the
concentrations and/or the diffusion domain changes, the iterative procedure (7.1.11) should
be followed. Note that this FE modeling is applicable to dilute solutions where concentrations
of constituents do not affect the characteristics of the mixture.

7.3.2 Examples

Example 7.3-1. One-dimensional unsteady diffusion
This problem is described in Section 3.2.2, Example 3.2-1. Here, we present the FE solution
using four-node 2D finite elements (see Section 4.4.1 for the description of these elements).
One-half of the total domain is modeled �0 ≤ x ≤ x0� due to symmetry with respect to
x = 0, as schematically shown in Fig. E7.3-1a. Initial concentrations at the FE nodes are
calculated from (E3.2-1.2). The imposed boundary conditions include: given concentration
at the end nodes from (E3.2-1.3); and the symmetry (no flux) condition at the nodes with
coordinate x = 0.

The solutions shown in Fig. E7.3-1b are obtained using 200 finite elements and time
step �t = 1 s. From the graphs in the figure it can be seen that the deviation of the FE from
analytical solutions is maximum at x = 0 and is around 3% for t = 2 s. The FE solution
accuracy increases with decreasing time step and with increase of number of finite elements.
Investigation of the solution accuracy can be performed using Software (see web). Note that
this problem can be modeled using 1D or 3D finite elements, as well.
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Fig. E7.3-1 Unsteady one-dimensional diffusion through infinite medium. (a) Schematic
representation of the FE model; (b) FEM and analytical solutions for three times

7.4 Fluid flow with heat and mass transfer

In this section the finite element equations for incompressible viscous fluid flow are derived,
considering that fluid domain does not change. It is first assumed that there is no heat and
mass transfer, and subsequently heat and mass transfer are included.

7.4.1 The finite element equations

Velocity–Pressure Interpolation
Let us first consider the equation of balance of linear momentum (3.3.6) which we write as

�

(
�i

�t
+i
kk

)
+ �p

�xi

− ��ik

�xk

−fV
i = 0 i = 1� 2� 3� sum on k � k = 1� 2� 3 (7.4.1)

The fluid domain is discretized into finite elements with the FE mesh fixed in space in which
the flow occurs. A 3D fluid flow is assumed within the domain which does not change. The
following interpolation for velocity v is adopted:

v = NV� or i = NKV K
i � sum on K� K = 1� 2� � � � 
 �N� i = 1� 2� 3 (7.4.2)

where NK �r� s� t� are the interpolation functions, used also for interpolation of element
geometry (see Section 4.3.1, equation (4.3.1)); and V is the vector of nodal velocities – its
transpose is VT

[
V 1

1 V 2
1 � � � V N

1 �V 1
2 V 2

2 � � � V N
2 �V 1

3 V 2
3 � � � V N

3

]
, see web – Theory, Chapter 7.

The pressure is also interpolated within finite elements. It is necessary to use another
interpolation functions N̂K �r� s� t� for the pressure (Bathe 1996) so that the pressure p is

p = N̂P� or p = N̂KPK� sum on K� K = 1� 2� � � � 
 �N (7.4.3)

where P is the nodal pressure vector.
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Now we apply the Galerkin method (Section 7.1) with multiplying (7.4.1) by the inter-
polation functions NK �r� s� t�. Also, the Gauss theorem (7.1.4) is used for the terms �p/�xi

and ��ik/�xk and the following balance equation is obtained:

MV̇ + K̂V +KpP = F −F� (7.4.4)

where the matrices can be written in component form as (with no sum on i and sum on
j� i� j = 1� 2� 3)

�MKJ �ii =
∫
V

�NKNJdV (7.4.5)

[(
K̂

)
KJ

]
ii
=
⎡
⎣�

∫
V

NKNJ�jjdV

⎤
⎦

ii

(7.4.6)

[(
Kp

)
KJ

]
ii
= −

∫
V

NK�iN̂JdV (7.4.7)

Here, as in general within the text, the capital indices represent the node numbers, while
the indices i and j denote the coordinate numbers �= 1� 2� 3�. The terms of the nodal force
vectors are:

�F�Ki =
∫
V

NKfV
i dV +

∫
S

NK

(−p�ij + �ij

)
njdS� �F��Ki =

∫
V

NK�j�ijdV (7.4.8)

Note that the integral over the element surface in the nodal vector Fv represents the integral
over the normal stress on the surface. In the FE assembling process, only the surface nodal
forces at the external boundaries remain, while those corresponding to the internal element
surfaces cancel (as in the case of solids, see Section 4.2.2 where the internal FE nodal forces
cancel).

A more common form of equation (7.4.4), which will be used in most applications, is
obtained by substituting the constitutive law for the viscous stress (3.3.5), i.e. �ij = 2�ėij =
�
(
i�j +j�i

)
. Then equation (7.4.4) becomes

MV̇ +KV +KpP = F (7.4.9)

where now the matrix K is (with no sum on i and sum on j� i� j = 1� 2� 3)

��K�KJ �ii =
[
K̂KJ

]
ii
+ [K�KJ

]
ii
� with

[
K�KJ

]
ii
=
∫
V

�NK�jNJ�jdV
(7.4.10)

Also, the nodal force vector can be expressed in terms of pressure and velocity on the
surface,

�F�Ki =
∫
V

NKfV
i dV +

∫
S

NK

(−p�ij +�i�j

)
njdS (7.4.11)
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Comparing (7.4.9) with (7.4.4) we note that in (7.4.9) there is no term −F� on the right-hand
side; it is taken by the additional term in the element matrix K as given in (7.4.10).
Equation (7.4.9) thus represents the Navier–Stokes equation for a finite element.

Consider now the continuity equation (3.3.3). Multiplying this equation by the interpo-
lation functions N̂K , a weak form of the continuity equation is obtained as

⎛
⎝∫

V

N̂KNJ�jdV

⎞
⎠V J

j = 0� or KT
pV = 0 (7.4.12)

where the matrix Kp is given in (7.4.7).
The system of equations (7.4.9) (or (7.4.4)) and (7.4.12) represent the system of FE

equations which are assembled in a usual manner (see Section 4.2). The system is nonlinear
since the matrix K is nonlinear: it contains the velocity as the coefficient in �KKJ �ii.
Therefore, an iterative scheme (7.1.11) must be employed. For a time step ‘n’ we have the
following iterative form (no sum on i)

[ 1
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p 0

]{
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}
=
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0

}
−
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p 0
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+
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MnV

0

}
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)
KJ

]
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=
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n+1K
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KJ

]
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+
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n+1J
�i−1�
KJ

]
ik[

n+1J
�i−1�
KJ

]
ik

= �
∫
V

NK
n+1

�i−1�
i�k NJdV

(7.4.13)

As in other iterative schemes, the iterations stop when the norm of the incremental vector
of the left-hand side, or the norm of the right-hand side (the ‘unbalanced force’) is smaller
than a selected error tolerance.

Penalty Method
The above formulation assumes interpolations of velocities and pressure, also called the
mixed formulation, resulting in a solution for nodal velocities and pressures. However, it is
possible to eliminate pressure calculation in the system (7.4.9) using a penalty method. The
procedure is as follows. The continuity equation (3.3.3) is approximated as

i�i +
p

�
= 0 (7.4.14)

where � is a selected large number, the penalty parameter. Substituting the pressure p from
(7.4.14) into the Navier–Stokes equations (3.3.7) we obtain

�

(
�i

�t
+i�kk

)
−�j�ij −�i�kk −fV

i = 0 (7.4.15)
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Then the FE equation of balance (7.4.9) becomes

MV̇ + (K +K�


)
V = F +F� (7.4.16)

where

[
K�

KJ

]
ik

= �
∫
V

NK�iNJ�kdV � �F��Ki = �
∫
S

NKj�jnidS (7.4.17)

In examples we show a selection of the range of the penalty parameter � and its effect on
the solution (see web – Software).

Fluid Flow with Heat Transfer
The additional term in the governing equation for heat transfer in fluids (3.3.8), with respect
to the heat conduction equation (3.1.5), is −�cT�ii. Then, in the FE equation for heat
conduction (7.2.2) we have the additional term, and this equation becomes

MT Ṫ+KkT+KTV = Q (7.4.18)

where

KT = �KT1KT2KT3� � �KT��KJ = �
∫
V

cT��NKNJdV� � = 1� 2� 3 (7.4.19)

The matrix MT is the matrix M in (7.2.2), but this notation is used here to emphasize that
this matrix is not the matrix M for fluid used above. Therefore, in solving fluid flow with
heat transfer, we have the system of equations: (7.4.9) or (7.4.16) – and (7.4.18) coupled
with respect to velocities, pressures and temperatures. Note that in using an iterative scheme
of solution (7.4.13), we have the temperature-dependent matrices MT and Kk as in the heat
conduction case, but also the temperature-dependent matrix KT in which the terms c�i−1�

and T
�i−1�
�� are used for iteration ‘i’.

Fluid Flow with Mass Transfer
Completely analogous to the FE equation (7.4.18) for heat transfer, the FE equation for mass
transfer is obtained: equation (7.3.2) is expanded to include an additional convection term(
�cj/�xi

)
i (see (3.3.9), and (3.2.8) or (7.3.1)).

Hence,

MjĊj +KjCj +KCjV = QS
j +QV

j no sum on j (7.4.20)

where

KCj = [(
KCj

)
1

(
KCj

)
2

(
KCj

)
3

]
(
KCj

)
�KJ

=
∫
V

Cj��NKNJdV� � = 1� 2� 3
(7.4.21)
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Of course, equation (7.4.21) is solved together with (7.4.9) or (7.4.16), with the concentration
boundary conditions (see web – Theory, Chapter 7).

7.4.2 Examples

Example 7.4-1. Two-dimensional steady flow between two parallel walls
A description of this example is given in Example 3.3-1. We here solve this example
using nine-node 2D finite elements (Fig. E7.4-1a) and compare the numerical and analytical
solutions. In this finite element, velocities are calculated at all nodes, while the pressure is
only associated with the corner nodes (pressure is linear over the element). The boundary
conditions imposed here are the same as in the analytical model: zero velocity at the walls
and given pressures at the inlet and the outlet of the channel.

Solutions for other geometrical and material data and pressures, as well as with a change
of mesh density, can be obtained using Software on the web.

Fig. E7.4-1 Steady fluid flow in a channel. (a) Finite element mesh and boundary con-
ditions; (b) Pressure field (linear along the x-axis); (c) Velocity profile (analytical and FE
solutions). Data: h = 10 m, L = 100 m, p1 = 2 Pa, p2 = 1 Pa, � = 0
1 kg/ms, � = 1 kg/m3;
number of elements in x and y directions are 10 and 5, respectively
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Example 7.4-2. Unsteady fluid flow on a plate
The example is described as Example 3.3-2 in Section 3.3.2. Here we present the solution
obtained by using the FE modeling. The boundary conditions used here are that the FE nodes
on the top surface have constant velocity v0, while the nodes at the bottom surface do not
have any constraint.

The velocity distribution in the domain L near the moving plate, for several times, is
shown in Fig. E7.4-2b, obtained analytically and by FE method. It can be seen that the
velocity tends to the plate velocity v0 in the entire domain as time increases. Finite element
solutions agree well with the analytical solutions.

Solutions with other data for the model can be obtained using Software on the web.

Example 7.4-3. Linear convection–diffusion equation (Burger’s viscous equation)
This example is described in Section 3.3.2 (Example 3.3-3). Here we solve the 1D equa-
tion (E3.3-3.1) as well as the FE equation (7.4.18) or (7.4.20).

The finite element model used here consists of 100 four-node 2D finite elements, in
a row along the x-direction, and the solution is obtained using time step �t = 0
001 s.
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Fig. E7.4-2 Unsteady flow of fluid caused by motion of a plate on the top surface. Plate
moves by constant velocity. (a) Finite element model, data for the model, and boundary
conditions; (b) Velocity distribution along the fluid depth, analytical and FEM solutions, are
shown for several times. Time step is �t = 10 s and the division in the x and y directions
is 4×8
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Fig. E7.4-3 Concentration (temperature) distribution along x-axis for three times. Numer-
ical (FEM) and analytical solutions of linear convection–diffusion equation (E3-3.1)

The solutions compare well with the analytical solutions, as can be seen from Fig. E7.4-3.
Solutions for other times and time steps can be obtained using Software (see web – Software,
Chapter 7).

7.5 FE equations for modeling large change of fluid
domain – Arbitrary Lagrangian–Eulerian (ALE)
formulation

In this section we present a method of the FE modeling fluid flow when the fluid domain
boundaries change in time. The basic equations of the so-called arbitrary Lagrangian–Eulerian
formulation (ALE formulation) are derived and transformed to the FE equations of balance
of linear momentum (Donea et al. 1982, Donea 1983, Nitikitpaiboon & Bathe 1993, Filipović
1999, Filipović et al. 2006).

7.5.1 The ALE formulation

The fluid flow is modeled here using a moving mesh. The reference domain – the FE mesh,
in which usual FE calculations are performed – is moving in space. The control volume,
which in this case is the volume of a finite element, changes with time. At a point G of the
FE mesh in Fig. 7.5.1, the fluid velocity is v and the mesh velocity is vm. Consequently, in
deriving the FE equations for mass balance and balance of linear momentum, the fact that
the reference domain is not stationary must be taken into account. One of the approaches to
appropriately account for motion of the reference domain is the ALE formulation which is
briefly presented here.

The Navier–Stokes equations of balance of linear momentum (3.3.7) can be written in
the ALE formulation as

�
[
∗

i + (j −m
j

)
i�j

]= −p�i +�i�jj +fV
i (7.5.1)
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Fig. 7.5.1 Schematics of the FE modeling according to the ALE formulation (2D represen-
tation). An FE mesh attached to the solid wall is moving in space, changing also its size and
shape. The current position of the fluid particle is F and the point of the mesh (grid) is G,
with velocities v and vm; their initial positions are F 0 and G0. Note that the fluid point F̄ 0

initially at G0 is at space position F̄ different from F , displaced by a vector u. The coordinate
system in the reference domain �1� �2 moves with the reference domain, without rotation

while the continuity equation remains as in (3.3.3). Here i are the velocity components of a
generic fluid particle and m

i are the velocity components of the point on the moving mesh
occupied by the fluid particle; other quantities are as in (3.3.7). The symbol ‘∗’ denotes the
mesh-referential time derivative, i.e. the time derivative at a considered point on the mesh,

�•�∗ = ��•�

�t

∣∣
�i=const (7.5.2)

The Cartesian spatial coordinates of a generic fluid particle are xi and of the corresponding
point on the mesh are �i. In deriving (7.5.1) we used the following expression for the material
derivative D��i�/Dt (for a fixed material point, see (3.3.1)),

D��i�

Dt
= ���i�

�t

∣∣
� + �j −m

j �
���j�

�xi

(7.5.3)

The first term on the right-hand side is the so-called ‘mesh-referential time derivative’, while
the second is the convective term.

The Galerkin method for the space discretization of the fluid domain can now be applied,
as in Section 7.4.1. The finite element equations for a 3D domain that follow from (7.5.1)
and (3.3.3) are (see (7.4.4 and (7.4.12)):
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�
∫
V

NK∗
i dV+�

∫
V

NK

(
j −m

j

)
i�jdV =

= −
∫
V

NKp�idV +
∫
V

�NKi�jjdV +
∫
V

NKfV
i dV (7.5.4)

∫
V

N̂Ki�idV = 0 (7.5.5)

The integration is performed over the volume V of a finite element, which now is time
dependent, using the Gauss theorem as in Section 7.1.2.

Consider first the system of equations (7.5.4) which is nonlinear with respect to the
velocities, but also with the element volume change. In an incremental analysis a linearization
with respect to time must be performed using the known values at the start of time step n.
The approximation for a quantity F can be written as

n+1F
∣∣

n� = nF
∣∣

n� +F ∗�t (7.5.6)

This relation is further applied to the left- and right-hand sides, (LHS) and (RHS), of (7.5.4)
to obtain

n�LHS�+ �LHS�∗�t = n+1�RHS� (7.5.7)

In calculating the mesh-referential time derivatives we use the relations:

(
�F

�xi

)∗
= �F ∗

�xi

−
(

�m
k

�xi

)
�F

�xk

(7.5.8)

and

�dV�∗ = �m
k

�xk

dV (7.5.9)

With these linearizations the equations (7.5.4) and (7.5.5) can be written as

nM�1�V
∗ + nK�1��V + nKp�P = n+1F�1� − nF�1� (7.5.10)

and

nM�2�V
∗ + nK�2��V = n+1F�2� − nF�2� (7.5.11)

Expressions for these matrices and vectors are given on the web, Theory – Chapter 7.
The integrals are evaluated over the known FE volumes and surfaces at start of time step.
Further, some of the terms are calculated using the values at the last iteration (see (7.1.11)
and (7.4.13)). Of course, the mesh-referential time derivatives V∗ and P∗ are replaced by
V∗ = �V/�t and P∗ = �P/�t to obtain the incremental algebraic equations of the form
(7.1.11) or (7.4.13).
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The presented formulation of the FE modeling is necessary when the fluid boundaries
change significantly over the time period used in the analysis. It is particularly convenient
when the boundary of the fluid represents a deformable solid, as Fig. 7.5.1 suggests, for
appropriate modeling of the solid–fluid interactions. Finally, note that the mesh motion is
arbitrary and for each problem can be specifically designed. Also, it is important to emphasize
that the solution for the fluid flow does not depend on the FE mesh motion (Filipović
et al. 2006).

7.5.2 Examples

Example 7.5-1. Unsteady flow in a contracting or expanding pipe
This example is presented to compare the FE solution (using the ALE formulation of this
section, Filipović et al. 2006) and the analytical solution (Uchida & Aoki 1977).

The fluid flow within a very long (infinite) pipe, symmetric with respect to the plane
x = 0, is induced by the wall motion. Only half of the flow domain is modeled due to
symmetry of the fluid flow field, as shown in Fig. E7.5-1A.

The radial velocity of fluid at the wall, w, is equal to the wall velocity da/dt = ȧ.
The boundary conditions are shown in the figure. The wall motion is defined as (Uchida &
Aoki 1977)

ȧa/ = � = ȧ0a0/ (E7.5-1.1)

where a0 and ȧ0 are the initial radius and wall velocity, respectively. The absolute value of
the parameter � represents the Reynolds number of the problem. For � > 0 the pipe expands
and for � < 0 the pipe contracts over time. Integrating (E7.5-1.1), the dependence a�t� can
be obtained (and the wall velocity):

a/a0 = [
1+2�

(
t/a2

0

)]1/2
� w/�w�t=0 = ȧ/ȧ0 = [

1+2�
(
t/a2

0

)]−1/2
(E7.5-1.2)

Fig. E7.5-1A Flow patterns in a contracting pipe and boundary conditions. The x and y
velocity components are u and v; the current pipe radius is a�t� and is equal along the pipe
and the flow field is symmetric with respect to the axial coordinate x
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Fig. E7.5-1B Axial velocity distribution (vm =mean axial velocity) for two values of the
Reynolds number �. These solutions correspond to doubled radius (expanding pipe), or half
of the initial radius (contracting pipe). The FEM solutions for ��� = 0
1 are close to the
analytical ones (not shown in the figure) (according to Filipović et al. 2006)

The FE model consists of 810 two-dimensional axisymmetric elements (see Section 4.4).
The initial radius of the pipe is a = 0
025 m and the infinite pipe length is replaced by axial
length of the model equal to 1.0 m. The outflow boundary conditions at the pipe end are used
(zero stresses). The calculations are performed until the radius becomes two times larger with
respect to the initial radius (expanding pipe), or it becomes two times smaller than the initial
radius (contracting pipe). The initial conditions for the velocities are taken to be the steady
solutions of this problem, obtained numerically for the nonmoving walls. The computed dis-
tributions of axial velocity for expanding and contracting pipes for several values of � are
shown in Fig. E7.5-1B. Solutions for radial velocities and other geometrical and material data,
as well as with a change of mesh density, can be obtained using Software on the web.

It can be seen that the numerical solutions are close to the analytical results, even in
cases of very large wall motions.

7.6 Solid–fluid interaction

There are many conditions in science, engineering and bioengineering where fluid is acting
on a solid producing surface loads and deformation of the solid material. The opposite also
occurs, i.e. deformation of a solid affects the fluid flow. In these cases, the solid and fluid
form a coupled mechanical system, so that in modeling the solid and fluid domains must
be considered together. Therefore, we need to solve the solid–fluid interaction problem. An
example of this coupled solid–fluid system is when blood flows through a deformable blood
vessel (see a schematics of a blood vessel in Fig. 7.6.1).

There are, in principle, two approaches for the FE modeling of solid–fluid interaction
problems: (a) strong coupling method, and (b) loose coupling method. In the first method, the
solid and fluid domains are modeled as one mechanical system. In the second approach, the
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Fig. 7.6.1 Illustration of the solid–fluid interaction. A fluid is flowing through the
deformable vessel producing tangential and normal stresses on the vessel surface. The com-
mon solid and fluid FE nodes have the same displacements and velocities

solid and fluid are modeled separately, the solutions are obtained with different FE solvers,
but the parameters from one solution which affect the solution for the other medium are
transferred successively.

Consider the example shown in Fig. 7.6.1. Assuming that there is no slip between the
fluid and solid at the common boundary, we have that the nodes at the solid–fluid boundary
have the same displacements and velocities for the solid and fluid domains. If the strong
coupling approach is used, the terms of the finite element matrices and forces corresponding
to these common nodes are summed, as is usual in the finite element assembling procedure
(see Section 4.2.2). However, the values of matrix terms for the fluid and solid domains are
usually several orders of magnitude different, so that computational difficulties may arise
in the solution process. On the other hand, if the loose coupling method is employed, the
systems of balance equations for the two domains are formed separately and there are no
such computational difficulties. Hence, the loose coupling method is advantageous from the
practical point of view and we further describe this method.

7.6.1 Loose coupling method

As stated above, the loose coupling approach consists in the successive solutions for the solid and
fluid domains. Consider fluid flow within a deformable vessel shown schematically Fig. 7.6.1.
The vessel deforms due to loading from the fluid which generates surface forces that are trans-
ferred to the solid. The stresses acting on the vessel surface are the tangential stresses �rad

and �ax and the normal stress �n. The flow domain changes due to the vessel deformation,
while the common nodes have the same displacements and velocities for the fluid and solid.

The computational steps within a time step ‘n’ employed when solving the solid–fluid
interaction are given in Table 7.6.1. The solution is obtained iteratively, and the iteration
counter in the solid–fluid interaction loop is ‘I’. We have denoted by n+1�

�I�
Sf the stress

within the fluid, at the common boundary S. Also, �disp and �velocity are the error tolerances,
respectively, for the norms of displacement increments of the solid and for the velocity
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Table 7.6.1 Iteration scheme for the solid–fluid interaction, loose coupling approach

1. Initial conditions for the time step ‘n’
Iteration counter I = 0:
configuration of solid n+1��0� = n�; common velocities n+1V�0� = nV.

2. Iterations for both domains: I = I +1

a) Calculate fluid flow velocities and pressures n+1V�I�
f and pressures n+1P�I�

by an iterative scheme, see (7.4.13).

b) Calculate interaction nodal forces from the fluid acting on the solid as

n+1F�I�
S = −

∫
S

NT n+1�
�I�
Sf dS (7.6.1)

c) Transfer the load from the fluid to solid. Find a new deformed configuration
of the solid n+1��I�. Calculate velocities of the common nodes with the fluid
n+1V�I� to be used for the fluid domain.

3. Convergence check. Check for the convergence on the solid displacement and
fluid velocity increments for the loop on I:

∥∥∥�U�I�
solid

∥∥∥≤ �disp�
∥∥∥�V�I�

fluid

∥∥∥≤ �velocity (7.6.2)

If the convergence criteria are not satisfied, go to the next iteration, step 2. Oth-
erwise, use the solutions from the last iteration as the initial solutions for the next
time step and go to step 1.

increments. Other convergence criteria may also be used, such as the error in the ‘unblanced
force’ or energy (Bathe 1996, Kojić & Bathe 2005).

A graphical interpretation of the algorithm for the solid–fluid interaction problem is
shown in Fig. 7.6.2 (Filipović 1999).

7.6.2 Examples

Example 7.6-1. Viscous flow in a collapsible tube
Fluid flow through collapsible tubes is a complex problem due to the interaction between
the tube wall and the flowing fluid. It is usually used to simulate biological flows such as
blood flow in arteries or veins and airflow in the bronchial airways.

It is assumed that the collapse is symmetric with respect to both x–y and x–z planes.
One-quarter of the fluid flow field is modeled due to symmetry with respect to the two
coordinate planes. Boundary conditions consist of prescribed velocity at the inlet nodes (zero
velocity at the interface surface with the shell elements) and the symmetry conditions at
the symmetry planes. Fluid flow is calculated by using 1250 eight-node 3D elements, and
500 four-node shell elements for the model of the tube wall, with the wall thickness ratio
h/R0 = 1/20 (Filipović 1999).
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Fig. 7.6.2 Block diagram of the solid–fluid interaction algorithm. Information and transfer
of parameters between the CSD (computational solid dynamics) and CFD (computational
fluid dynamics) solvers through the interface block (Filipović 1999)

Fig. E7.6-1 Collapse of a tube loaded by external pressure p∗
ext and with flowing fluid

through the tube. (a) Tube geometry before collapse; (b) Shape of the tube after collapse;
(c) Pressure distribution along the collapsed tube (at the tube center line). Data: Lengths (cm)
R0 = 1� L = 10� h = 0
05; nondimensional volume flux q = 8 �V̇L/�R4

oE = 15 × 10−5,
dimensionless external pressure Pext = p∗

ext/E = 6
38×10−4
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We keep the fluid pressure equal to zero at the tube outer end, and induce the tube collapse
by increasing the chamber pressure, p∗

ext. The tube is first inflated when p∗
ext = 0, deforming

axisymmetrically. A small geometric irregularity is introduced to initiate the collapse. Then,
the external pressure is increased and when it exceeds a critical value, the wall locally loses
its stability and the tube buckles as shown in Fig.E7.6-1b. Figure E7.6-1c shows the pressure
drop along on the tube center line (together with solution given in Heil 1997).

7.7 Fluid flow through porous deformable media

7.7.1 Finite element balance equations

In this section we transform the fundamental relations of Section 3.4 into the finite element
equations. Large displacements and large strains of the solid, and elastic material with the
constitutive relation (3.4.7) are assumed. First, by employing the principle of virtual work
and assuming that the material is elastic, the following equation is obtained from (3.4.5):

∫
nV

�eT CEedV +
∫

nV

�eT

(
CEm
3Ks

−m
)

pdV +
∫

nV

�uT �üdV +
∫

nV

�uT �f q̇dV

=
∫

nV

�uT �bdV +
∫

nA

�uT tdA

(7.7.1)

where the left upper index ‘n’ denotes that the configuration n� (at start of a time step in
incremental analysis) is considered; on the right-hand side is the virtual work of the external
body force b and the surface loading t on the area nA (see Sections 4.3 and 6.2.2). Next,
following the Galerkin method we multiply (3.4.4) by the interpolation matrix NT

q for the
relative velocity of fluid q, and integrate over the finite element volume nV . The resulting
equation is

−
∫

nV

NT
q �pdV +

∫
nV

NT
q �f bdV −

∫
nV

NT
q k−1qdV −

∫
nV

NT
q �f üdV −

∫
nV

NT
q

�f

n
q̇dV = 0 (7.7.2)

Further, we multiply the continuity equation (3.4.10) by the interpolation matrix NT
p for

pressure (which is the vector-column) and obtain

∫
nV

NT
p �T qdV +

∫
nV

NT
p

(
mT − mT CE

3Ks

)
ėdV +

∫
nV

NT
p �

1−n

Ks

+ n

Kf

− mT CEm
9K2

s

�ṗdV = 0

(7.7.3)

The standard procedure of integration over the element volume in equations (7.7.1)–
(7.7.3) is employed, with use of the Gauss theorem (see Section 7.1). The resulting FE
system of equations is solved incrementally, with time step �t. The condition that the balance
equations are to be satisfied at the end of each time step (denoted by the left upper index
‘n+1’; at time t +�t) is imposed. This leads to the following system of equations
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The matrices and vectors in this equation are:

Muu =
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nV

NT
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NT
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(7.7.5)

In these expressions Nu ≡ N is the interpolation matrix for displacements (see Section 4.3),
nn is the normal vector to the boundary and nB is the strain–displacement transformation
matrix (note that in the case of large displacements nB can be decomposed into linear and
nonlinear matrices nBL and nBNL, see Section 6.2.3). With the left upper index ‘n’ for
matrices it is emphasized that they change over time steps (and iterations, see (7.1.11)). As
can be seen from (7.7.4), the nodal point variables are: displacements of solid U, relative
velocities Q and pressures P. Boundary conditions include: general boundary conditions for
the solid, relative velocities and surface pressures. Details of the above derivations are given
on the web – Theory, Chapter 7.

In analyzing the system of differential equations we highlight the following important
facts for its solution. The system is nonsymmetric and nonlinear. Only in the case of small
displacements and constant porosity, the system becomes linear. The system is symmetric
when inertial forces are neglected. For each of these cases a standard Newmark method can



FINITE ELEMENT MODELING OF FIELD PROBLEMS 145

be employed for time integration (Section 5.3). In general, the system is nonlinear and an
iterative procedure must be employed (see Section 7.1 and web – Theory, Chapter 7). During
iterations we use the density of the mixture, �, and the porosity, n, from the start of a time
step, i.e., n� and nn, respectively. After convergence is reached, the porosity is updated by
using (3.4.12), from which it follows:

n+1n = nn−�t

[
nn n�

�p

�t
�

1
Kf

+�T nq
]

(7.7.6)

In deriving this equation the spatial changes of the fluid density are neglected, i.e. ��f /�xi = 0
is used. This is a physically acceptable approximation since the fluid velocity is small, the
fluid is nearly incompressible, and the fully saturated conditions are considered.

7.7.2 Examples

Example 7.7-1. Creep deformation of human spinal motion segment (SMS)
The one-dimensional model description of the SMS is given in Example 3.4-1. Here, the FE
model is used to obtain creep deformation of the SMS over time. Since there is no lateral
deformation and flow, the plane strain four-node finite elements are used, with the boundary
conditions shown in Fig. E7.7-1a. The axial deformation and fluid flow are allowed in
the model.

Fig. E7.7-1 One-dimensional creep response of SMS. (a) The column representing the SMS
and FE model; (b) Column settlement over time due to creep response under step pressure
at the top surface (data given in Example 3.4.1), analytical (Biot 1941) and FEM solutions
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The solution shown in Fig. E7.7-1b is obtained using 10 finite elements. A small deviation
between numerical and analytical solutions, which can be seen in Fig. E7.7-1b, might be
due to simplification in the analytical solution, where it is assumed that the fluid pressure is
constant over the whole column length.

Solutions for various model parameters can be obtained using the Software on the web.
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8

Discrete Particle Methods for
Modeling of Solids and Fluids

A selection of discrete particle methods is presented in this chapter. These methods are
further implemented in the numerical simulations of bioengineering problems. We begin
with molecular dynamics (MD) as the most fundamental method in the discrete particle
approach, and then introduce the dissipative particle dynamics (DPD) mesoscale method, a
recently developed method which is suitable for modeling flows of complex fluids. Coupling
the DPD with the standard FE method in a multiscale modeling scheme is also presented.
Further, the basic relations for the smoothed particle hydrodynamics (SPH) method – as
the true discrete particle method – is described, followed by a meshless (continuum-based)
element free-Galerkin (EFG) method which relies on ‘free particles’ representation. These
methods have a potential for applications in modeling complex bioengineering problems
(e.g. in Chapters 13 and 14).

Each section ends with typical examples and references to others included in Software
on the web.

8.1 Molecular dynamics

8.1.1 Introduction

The molecular dynamics (MD) method is one of the major computational tools for indus-
trial applications and scientific studies in statistical mechanics, condensed-matter physics,
chemistry and materials science.

The simulation of fluids in MD dates from the mid-1950s (Fermi et al. 1955, Alder &
Wainwright 1957) in which the phase diagram of a hard sphere system was investigated.
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Today, MD simulations are increasingly popular in the field of solid and fluid mechanics
and in the last decade several review articles have appeared, starting with the work of Koplik
and Banavar (1995), who discussed the formulation of continuum flow deductions from
atomistic simulations.

8.1.2 Differential equations of motion and boundary conditions

Interaction Forces
The most rudimentary microscopic model is based on spherical particles (atoms) that interact
with one another. The two principal features of an interatomic force are resistance to
compression, and the binding of atoms together in the solid and liquid states. Potential
functions are usually used for describing these characteristics of the interaction forces.

One of the best-known potential functions is the Lennard-Jones (LJ) potential (Rapaport
2004). For a pair of atoms i and j located at ri and rj position vectors, the (LJ) potential
energy is
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where xk	 k = 1	 2	 3 are the coordinates of the particle ‘i’.

Differential Equations of Motion
In order to obtain motions of MD particles (atoms), which include particle trajectories,
velocities and accelerations, the Newton law is applied for each particle. Therefore, we have
that the differential equations of motion are:

mr̈i = fi + fext
i = ∑

j�j �=i�

fij + fext
i i = 1	 2	 � � � � 	N (8.1.3)

Here N is the number of particles, and mi is mass of the particle i. Also fi is the total
interaction force exerted on particle i by all other particles j; practically, only particles within
a domain of influence (such as rc in (8.1.1)) are used. And fext

i is the external force acting
on the particle i.

In these equations Newton’s third law implies that fji = −fij , so each atom pair need
only be examined once. Usually rc is small compared with the size of the model domain,
which significantly reduces the computational effort.

Boundary Conditions
The macroscopic system size (measured in mm) is of the order of 1024 particles, which
is still much larger than 109 memory size order of a modern supercomputer, so that we
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Fig. 8.1.1 A two-dimensional periodic system with the meaning of period boundary con-
dition. The boxes surrounding the shaded box are considered to be periodic images of this
box. A wraparound effect: it is taken that particles 1 and 2 interact with particle 3′ which is
an adjacent copy of particle 3

have a real computer simulation limitation. Hence, only a small domain of the space can be
modeled by MD.

To overcome the MD main limitation, the so-called periodic boundary conditions are
used, giving satisfactory solutions. Namely, it is possible to model one space ‘box’ by
MD and assume that the solutions in the surrounding boxes are the same. Use of periodic
boundary conditions in two dimensions is illustrated in Fig. 8.1.1. The central simulation
box, which is shaded in the figure, is surrounded by its periodic images. When a moving
particle leaves the simulation box at one boundary, one of its images simultaneously enters
this box at the opposite boundary. Therefore the total number of particles in the system is
conserved. There is also a wraparound effect when the particles lying within the distance rc

of a boundary, interact with particles in an adjacent copy of the box, or, equivalently, with
particles near the opposite boundary. For example, we have in Fig. 8.1.1 that the particles 1
and 2 interact with the particle 3′ which is an adjacent copy of particle 3.

MD Algorithm
We here summarize the main steps of an MD algorithm. They are given in Table 8.1.1.

Table 8.1.1 Main steps of an MD algorithm

Input phase
Define initial velocities and coordinates.

Data structure initialization
Perform various auxiliary calculations, such as memory array allocation, dividing the
simulation box into small cells, with definition of neighboring cells.

Time stepping
For each discrete value of time t = n t	 n = 1	 2	 � � � 	Nsteps

Loop over all particles, j = 1	 2	 � � � N ;
Calculate forces;
Apply boundary conditions where necessary;
Calculate new coordinates rj �t +t� and new velocities �j �t +t�

Output
Store information necessary for consequent analyses and for a possible continuation run.
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A simple choice to start with an MD simulation is to use a regular lattice, such as the
square in 2D or cubic lattice in 3D, with uniform atom positions and desired density. The
initial velocities are assigned to have random directions, with a fixed magnitude based on
temperature.

The equations of motion are usually integrated by the so-called leapfrog method (Rapaport
2004). This two-step integration method is applied to each component of particle coordinates
and velocities, as
First step:

t+t/2� = t� +t/2 ta	 t+tr = tr +t t+t/2� (8.1.4)

Second step:
t+t� = t+t/2� +t/2 t+ta (8.1.5)

where r stands for coordinate, � for velocity and a for acceleration components. According
to this algorithm, we first (first step) calculate velocities at the half-time step �t/2� using
the accelerations at start of the time step (first of equations (8.1.4)); and then determine
coordinates at the end of the time step using the half-time velocity (second equation in
(8.1.4)). In the second step, to obtain velocities at end of the time step, velocities at the
half-time are corrected by adding the term with the use acceleration at the end of the time step.

8.1.3 Examples

Example 8.1-1. Planar Poiseuille flow – solution by MD method
It is assumed that a pressure gradient acts along the channel causing the fluid flow. Initially,
the fluid is at rest. The following boundary conditions are used: when an atom reaches
either of the rigid walls, it is reflected back into the interior with velocity having a fixed
value (corresponding to the wall temperature), but with a random direction. Also, periodic
boundary conditions are used: the number of atoms leaving the outlet is equal to the number
of atoms entering the inlet.

Steady solution is reached after 32 000 time steps of size t = 5�0 × 10−3. The results
for the flow velocity for two different times are presented in Fig. E8.1-1.

Fig. E8.1-1 Velocity profile for planar Poiseuille flow for two different times t = 8 and
t = 16 (MD units)
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8.2 Dissipative Particle Dynamics (DPD) method

8.2.1 Introduction to mesoscale DPD modeling

Although computer technology is continuously advancing, still there are limitations facing
the ever increasing demands in computer modeling of scientific and engineering problems.
As stated in Section 8.1, we have such limitations in MD modeling of domains of only
several millimeters in size and over a time span of seconds. An illustrative example is related
to successful modeling of protein conformation changes (Gerstein & Levitt 2005). However,
the MD model is still very far from satisfying the needs in molecular biology of living cells:
In an MD modeling of a small protein in water, half a million sets of Cartesian coordinates
are generated in a nanosecond time period for the positions of 10 000 atoms. The handling
of such large amounts of data is beyond the practical capabilities of computer hardware and
software currently available.

One approach to overcome the limitations of the MD is so-called coarse graining,
i.e. discretization of continuum (fluids and solids) into mesoscale particles of micron length
scale and micro-seconds time scale, considering these particles as clusters of atoms. This
change of scales can be seen in Fig. 8.2.1 where the length and time scale domains are shown,
starting from the quantum mechanics scale to the macroscale. The mesoscale is typically in
the range 10–1000 nm and 1 ns–10 ms.

The discretization into mesoscale particles relies on the Voronoi cell division (tessellation)
of a continuum (e.g. Flekkoy et al. 2000, Serrano et al. 2002, Boryczko et al. 2003, Espanol
1998), see Fig. 8.2.2. As in the case of MD, the Lagrangian description of motion is employed,
with appropriate quantification of interaction forces. One of the most developed mesoscale
discrete particle methods is the dissipative particle dynamics (DPD) method, originating
from work of Hoogerbrugge and Koelman (1992). The DPD method is particularly suitable
for modeling polymeric and other complex fluid systems. We further present the basics of
the DPD.

Fig. 8.2.1 Temporal and spatial scale domains in modeling of biofluids and biosolids,
accessible by computational techniques (according to Nielsen et al. 2004)
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Fig. 8.2.2 Division of space into Voronoi cells and representation of cells by mesoscale
discrete particles. A discrete particle ‘i’ is a cluster of MD particles (atoms) such that all
MD particles within the cell are closer to point ‘i’ than to any other discrete particle. The
interaction forces between particles ‘i’ and ‘j’ are fij = −fji

8.2.2 Basic DPD equations

Differential Equations of Motion and Interaction Forces
In DPD, as in molecular dynamics, the evolution of the particle position, ri, can be obtained
by application of Newton’s second law:

ṙi = vi

v̇i = 1
mi

N∑
j �=i

f̂ij =
N∑

j �=i

fij (8.2.1)

where vi is the particle velocity, mi is the particle mass; f̂ij is the force acting on particle i due
to particle j, while fij is this force per unit mass (see Fig. 8.2.2); and the dot indicates a time
derivative. Here, we have neglected the external forces for simplicity of further presentation.

The interaction forces can be represented as the sum of three forces (Espanol & Warren
1995): conservative (repulsion) fC

ij , dissipative fD
ij , and random force fR

ij ,

fij = fC
ij + fD

ij + fR
ij (8.2.2)

These forces can be expressed as (with no sum on i, j)

fC
ij = aij�1− rij/rc�r0

ij	 fD
ij = −�wD�vij · r0

ij�r0
ij	 fR

ij = aRwR�t�−1/2�ijr
0
ij (8.2.3)

Here, aij is the maximum repulsion force per unit mass, rij is the distance between particles
i and j	 r0

ij = rij/rij is the unit vector pointing in direction from j to i	 � stands for the
friction coefficient, and aR is the amplitude of the random force. Also, wD and wR are weight
functions for dissipative and random forces, dependent on the distance from the particle i;
and �ij is a random number with zero mean and unit variance. The domain of influence of
the interaction forces is rc�, hence fij = 0 for rij > rc�. The coefficient (t�−1/2 multiplying the
random force comes from the integration of the stochastic equations of motion (for physical
interpretation of this coefficient see Español & Warren 1995, and Groot & Warren 1997).

Further, in order that a DPD fluid system possess a Gibbs–Boltzmann equilibrium state,
the following relation between the weight functions of the dissipative and random forces,
wD and wR, must hold (Español & Warren 1995):

wD = (
wR
)2

(8.2.4)
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Also the amplitude of the random force aR is related to the absolute temperature T ,

aR = �2kBT�/mi�
1/2 (8.2.5)

where kB is the Boltzmann constant. The weight functions can be expressed in the form
(Groot & Warren 1997)

wD = �1− rij/rc�
2	 wR = 1− rij/rc (8.2.6)

DPD Boundary Conditions
Implementation of boundary conditions in DPD is not simple and straightforward. There are
several approaches for imposing boundary conditions. For example, to impose planar shear
conditions, according to the so-called Lees–Edwards method, it is assumed that the upper
wall in a periodic box is moving with velocity Vx/2 and lower wall with −Vx/2. A particle
crossing the upper boundary of the box at time t is reintroduced through the lower boundary
with its x-coordinate shifted by −Vxt and the x-velocity decreased by Vx. For a particle
crossing the lower boundary of the box, the x-coordinate shift is Vxt and the x-velocity is
increased by Vx.

In the method of freezing particles, the layer of particles at the walls is attached to the
walls, but continues to interact with other particles.

A no-slip condition at the rigid walls can be imposed by employing the specular and
bounce-back reflections boundary conditions (Haber et al. 2006). The local specular reflection
is expressed by the equations:

v+
Wj ·nW = −v−

Wj ·nW

v+
Wj · �I −nW nW � = v−

Wj · �I −nW nW �
(8.2.7)

where I is the idem dyadic, the minus and plus superscripts denote velocities before and
after collision with the wall, vWj stands for the velocity of particle j relative to the wall
velocity, and nW is a unit vector perpendicular to the wall. Thus, only the normal component
is reflected while the tangential components remain unaltered. The bounce-back reflection
is expressed by the relation

v+
Wj = −v−

Wj (8.2.8)

The Maxwellian reflection method has also been used (e.g. Revenga et al. 1998). Accord-
ing to this method, it is assumed that particles crossing or hitting a wall are randomly
reflected back to the flow, with a Maxwellian velocity distribution centered around the wall
velocity.

Finally, we cite a method for imposing no-slip boundary conditions that includes a
frozen layer of particles near the wall, bounce-back reflection and a modification of the
maximum conservative force

(
aij

)
w

for particles interacting with particles within the frozen
layer (Pivkin & Karniadakis 2005).

In examples given on the web the above boundary conditions are implemented to examine
their suitability for applications.
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Table 8.2.1 The Verlet algorithm for integration of the DPD
differential equations

n+1ri = nri +t nvi +
1
2

�t�2 nfi ⇒ n+1ṽi = nvi +
1
2

t nfi

n+1fi = fi

(
n+1r	 n+1ṽ

) ⇒ n+1vi = nvi +
1
2

t
(

nfi + n+1fi

)

Integration of DPD Equations
In integrating differential equations of motion (8.2.1) with a time step t, the resulting
interaction force fi is expressed as

fi =∑
j �=i

(
fC
ij + fD

ij + fR
ij

)
(8.2.9)

Note that the time step size enters into the evaluation of the random force (see (8.2.3)).
A simple approach to perform the integration of differential equations (8.2.1) is to

implement a simple Euler forward method. It was, however, shown that a so-called velocity-
Verlet algorithm (Groot & Warren 1997) gives more accurate results. The integration scheme
for a time step ‘n’ is as given in Table 8.2.1, where the left upper indices ‘n’ and ‘n+ 1’
correspond, respectively, to the start and end of time step. Note that the particle position
n+1ri at the end of time step is calculated by the Euler forward method, while the force n+1fi

and velocity n+1vi are determined with use of a mid-step velocity n+1ṽi.
Calculation of motion of particles according to Table 8.2.1 requires determination of

particles which are in a neighborhood of the current particle ‘i’. The overall efficiency
of the solution depends, among other computational procedures, on the efficiency of the
determination of neighboring particles. One of commonly used methods is the neighbor-list
method (Rapaport 2004). There, the total domain is subdivided into the cells of the size rc

and searching is performed using these cells.

8.2.3 Examples

Example 8.2-1. Modeling of Poiseuille flow in a channel
In the simulation of fluid flow between two parallel walls (Poiseuille flow, see Example
3.3-1), a total of 600 simple DPD particles is used. The fluid domain in x − y plane is
defined by −25 < x < 25 and −10 < y < 10. The periodic boundary conditions are imposed
along the x-direction. The gravity force in the flow direction, g = 0�05, is applied to each
fluid particle and this drives the flow. Details about this example are given on the web (see
Software).

The region is divided into 10 bins across the channel, while the simulations were run
for 1 000 000 time steps (time step is t = 10−4, DPD units) and the results were averaged
over the last 100 000 time steps. Figure E8.2-1b shows agreement between the DPD and
analytical solutions.

EXERCISE
Use the Software on the web to find solution by varying the model parameters.
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Fig. E8.2-1 DPD modeling of Poiseuille flow. (a) Schematics of discretization into DPD
particles; (b) Velocity profile (flow is in x-direction)

8.3 Multiscale modeling, coupling DPD-FE for fluid flow

In this section we present a methodology of coupling the two scales for fluid flow, mesoscopic
and macroscale, modeled by the DPD method (Section 8.2) and continuum-based FE method
(Section 7.4). This approach is called the mesoscopic bridging scale method (MBS) (Kojić
et al. 2008). The basic equations are given, with application on a simple example.

8.3.1 Introduction to multiscale modeling

As discussed in Section 8.2, a possibility to overcome limitations of the MD model is to
use a multiscale approach which appropriately couples the MD and continuum methods. A
review of the multiscale methods is given by Curtin and Miller (2003), Liu et al. (2004a) (see
also Liu et al. 2004b and references therein) and Nielsen et al. (2004). An extension of this
multiscale approach to further couple the mesoscale and macroscale modeling is presented
in this section. It relies on the bridging scale (BS) method (W.K. Liu and co-workers, see
e.g. Wagner & Liu 2003, Tang et al. 2006) of coupling MD and FE models.

The main idea of the MBS method is that the fluid velocity is decomposed into the
coarse-scale mean velocity and fine-scale velocity fluctuation of a mesoscopic particle. The
mean velocity can be calculated by a continuum-based method, such as the FE method, and
the fine-scale correction velocity is determined by a mesoscopic discrete particle method
(e.g. DPD). Use of the appropriate projection operator provides the orthogonality of the fine-
scale velocities and coarse-scale (FE) interpolation functions. The most significant result is
that this orthogonality allows the total kinetic energy of the material system to be represented
as a sum of the coarse- and fine-scale kinetic energies, uncoupled with respect to the
velocities in the two scales. Finally, this form of the kinetic energy leads to the two systems
of differential equations of motion coupled in the force terms only.
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The MBS approach is particularly attractive for modeling a dilute mixture flow with a
detailed insight into flow in certain local regions, as in the case of, for example, blood flow in
a large artery with growing thrombus at the wall caused by adhesion of platelets. Development
of the thrombus is dependent on both the global hemodynamics within the artery, and
local flow and interactions between blood constituents within a small region around the
thrombus. Continuum methods are applicable for modeling global artery hemodynamics, but
are inadequate for determination of local flows which involve platelet activation, aggregation
and adhesion. Details of this modeling are given in Section 14.5. We here give one simple
example in Section 8.3.3 (see also Example 14.4-1).

8.3.2 Basic equations and boundary conditions

Differential Equations of Motion
A fluid domain is discretized into the mesoscale discrete particles, further called ‘particles’,
representing the fine-scale model; and into finite elements as the coarse-scale model. One
finite element is shown in Fig. 8.3.1. The basic assumption is that the velocity of a particle
‘i’, vi, at any time, can be expressed as

vi = vi +v′
i (8.3.1)

where vi is the coarse-scale velocity, representing the mean particle velocity, obtained by the
FE method; and v′

i is the velocity correction, or fine-scale velocity fluctuation, obtained from
the fine-scale solution. According to (7.4.2), the coarse-scale velocity vi can be expressed in
terms of nodal velocities, V, as

vi = NiV (8.3.2)

where Ni

(
ri	 si	 ti

)
is the matrix of interpolation functions for velocities within the finite

element, with the natural coordinates of particle ‘i’; and V is the nodal velocity vector. The
relations (8.3.1) and (8.3.2) can be written for all particles within the finite element,

v = v+v′ (8.3.3)

v = NV (8.3.4)

Fig. 8.3.1 Discretization of fluid within a finite element into mesoscopic discrete particles;
velocities and interaction forces (2D representation) (according to Kojić et al. 2008)



DISCRETE PARTICLE METHODS FOR MODELING OF SOLIDS AND FLUIDS 157

The vector v and matrix N are defined by (we use vT and NT for more compact writing):

vT = {
vT

1 	 vT
2 � � � � � � 	 vT

na

}T
(8.3.5)

and

NT = [
NT

1 	 NT
2 	 � � � � � � � 	 NT

na

]
(8.3.6)

Here na is the number of particles within the finite element. Note that dimensions of the
vector v (and v′) and matrix N are 3na and 3na ×3N , respectively, where N is the number
of element nodes. Obviously, general 3D flow conditions are considered.

We now use a projection operator (a matrix) Q to express the velocity vector v′ in terms
of the nodal velocity V, as

v′ = Qv (8.3.7)

The projection operator is obtained by the minimization of a properly defined residual (see
Wagner & Liu 2003, Tang et al. 2006, Kojić et al. 2008), so that the kinetic energy of
a finite element, Ek, can be expressed as the sum of two terms, kinetic energy of the
coarse (macroscale), Ek, and kinetic energy of the velocity corrections from the fine scale
(mesoscale), E′

k,

Ek = Ek +E′
k (8.3.8)

where

Ek = 1
2

vT MAv = 1
2

VT MV = 1
2

VT MV (8.3.9)

and

E′
k = 1

2
v′T MAv′ (8.3.10)

Here, MA and M ≡M are the mass matrices corresponding to all particles and FE model,
respectively.

Note that the terms Ek and E′
k are decoupled with respect to the velocities of the two

scales. Details of the derivations resulting in (8.3.8) are given on the web – Theory, Chapter 8.
This decomposition of kinetic energy is the result of the fundamental importance for the
MBS method for fluids.

From the principle of virtual power (With 2005) follow the differential equations of
motion of fluid within one finite element. This mechanical system possesses 3na + 3N
degrees of freedom, corresponding to particle fluctuation velocities v′ and FE nodal velocities
V, respectively. The system is subjected to external and internal forces. The differential
equations are

MAv̇′ = f ′ext + f ′int (8.3.11)

where f ′ext and f ′int are the external force (such as gravity, or inertial forces due to motion of
the reference coordinate system) and internal force – from action of surrounding particles,
respectively; and

MV̇ = Fext +Fint (8.3.12)
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where the vectors Fext and Fint are the external and internal forces corresponding to the FE
nodal velocity vector V (see Section 7.4). The forces f ′ext and f ′int can be further expressed
in terms of the forces fext and f int acting on particles (see Section 8.2.2) as

f ′ext + f ′int = QT
(
fext + f int

)
(8.3.13)

The system of equations (8.3.11) and (8.3.12) looks fully uncoupled and independent.
However, the internal finite element forces Fint are evaluated using the stresses within the
fluid, as described in Section 7.4. The stresses, on the other hand, can be calculated from
the interaction forces among particles, using the Irving–Kirkwood model (Fan et al. 2003,
Ren 2005, Kojić et al. 2006)

� = −n

〈[∑
i

miv̂iv̂i +
1
2

∑
i

∑
j �=i

rijfij

]〉
(8.3.14)

where n is the number density of particles; mi is the particle mass; the vector v̂i is defined as
v̂i = vi −v �x� � v �x� is the stream velocity at the position x; rij = ri −rj; and �� � �� denotes
the ensemble average. Therefore, the following functional relationship can be written:

Fint = Fint
(
f int
)

(8.3.15)

This leads to the result that the differential equations of motion (8.3.11) and (8.3.12) are
coupled through the force terms.

Instead to evaluate the forces f ′ext and f ′int and then calculate the fluctuation velocities
v′ from (8.3.11), it is more efficient to determine the forces fext and f int, use them to find
the stresses within the fluid from (8.3.14), and then determine the nodal forces of the finite
element needed in (8.3.12).

Coupling Navier–Stokes and DPD Equations
In order to couple the finite element balance equations and the mesoscale model, we write
the incremental-iterative equation (7.4.13) as

[ 1
t

M + n+1K̃�i−1�
�� K�p

KT
�p 0

]{
V�i�

P�i�

}

=
{

n+1Fint�i−1�

0

}
+
{

n+1F�i−1�
ext

0

}
−
[ 1

t
M + n+1K̂�i−1�

�� K�p

KT
�p 0

]{
n+1V

�i−1�

n+1P
�i−1�

}
+
{ 1

t
MnV

0

}

(8.3.16)
Here, the internal nodal force vector is

n+1F
int�i−1�
Ki = −

∫
V

NK	j
n+1�

�i−1�
ij dV (8.3.17)

where n+1�
�i−1�
ij are the viscous stresses at end of time step. As can be seen, the modifi-

cation of (7.4.13) is that we here did not express the viscous stress by a continuum-based
constitutive law, as given in equation (3.3.5). Instead, we leave this stress to be evaluated
using a mesoscale discrete particle method, such as the DPD method, while the pressure



DISCRETE PARTICLE METHODS FOR MODELING OF SOLIDS AND FLUIDS 159

part n+1p�i−1� of the total stress n+1�
�i−1�
ij remains in the equation. Note that the internal

force t+tFint�i−1� due to viscous stresses t+t��i−1� replaces the viscous nodal force equal
to K�

t+tV�i−1� on the right-hand side in equation (7.4.13); and the matrix n+1K̃�i−1�
�� is

used as the tangent matrix with respect to the changes of the velocities (see discussion in
Section 6.2.3 on the convergence rate in solving nonlinear problems).

Therefore, the basis of coupling between the mesoscale model (DPD) and macroscale
model (FE) is established through the equation (8.3.16). In an incremental-iterative solution
scheme, we evaluate the nodal FE viscous forces using the mesoscale interaction forces
and perform iterations on the coarse scale to satisfy equilibrium of the fluid continuum and
given boundary conditions. A detailed computational scheme is given on the web – Theory,
Chapter 8. Note that the Navier–Stokes equations express the balance of linear momentum of
the fluid within a finite element in which the internal nodal viscous forces are evaluated using
the interaction forces among the mesoscale particles; therefore the Lagrangian background,
employed in the DPD method, is preserved in this formulation of coupling the two scales.

Local and Global Domains and Boundary Conditions
Finally, in order to achieve the main goals of this multiscale coupling specified in
Section 8.3.1, we divide the entire fluid domain into the local domain (one or more), where
the both mesoscopic (DPD) and continuum (FE) models are used, and the global domain
discretized by the continuum (FE) method only. A schematic representation of this division
is shown in Fig. 8.3.2.

In order to calculate the flow field, it is necessary to satisfy the boundary conditions.
External boundary conditions are imposed on the coarse scale, i.e. the velocities or the
stresses can be prescribed and used in the FE model. However, the boundary conditions at the
common boundary between the local and global domains must also be specified. As shown
in Fig. 8.3.2, for the DPD model we use the particle velocities at the common boundary to be
equal to the coarse-scale FE velocities. Also, the periodic boundary conditions are imposed
on the common boundary to keep the number of particles constant.

Fig. 8.3.2 Two domains within a flow field: local domain modeled by both DPD and FE
methods; global domain modeled by FE method only. Boundary conditions at the common
boundary between the local and global domains (velocities of particles are equal to those
calculated using the FE model) (according to Kojić et al. 2008)
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Various approaches in implementation of the periodic boundary conditions can be found
elsewhere (e.g. Revenga et al. 1998, Pivkin & Karniadakis 2005, Haber et al. 2006, Filipović
et al. 2008); see also web – Theory, Chapter 8.

8.3.3 Examples

Example 8.3-1. Cavity flow
The flow in the cavity is induced by a horizontal motion of the upper wall with a constant
velocity of V (Fig. E8.3-1A). A local DPD domain (a small square region in the figure) is
selected at the right upper corner of the cavity and the flow is solved both by the FE method
alone and by the FE-DPD multiscale MBS method. In the DPD simulation, 900 mesoscale
DPD particles are used. The boundary conditions for the DPD model are as follows: at the
no-slip rigid wall, the bounce-back condition (see Section 8.2) was employed; at the moving
wall it is assumed that particles have the prescribed velocity V = 1 �m/s; at the FE-DPD
common boundaries, the velocities of particles are taken to be equal to those of the FE
model. Also, the periodic boundary conditions are used for the entering (lower horizontal)
and the outlet (left vertical) boundaries to keep number of particles within the DPD box
constant. The boundary conditions for the FE model consist of the prescribed velocity at
the moving wall and zero velocity at the rigid walls. It is assumed that initial pressures and
velocities in the whole domain are equal to zero.

The velocity components ��x	 �y� along the vertical line, which goes through the middle
of the local �FE +DPD� domain and extends through the global (FE) domain to the bottom
of the cavity (see the right panel of Fig. E8.3-1B), are calculated both by the FE method
alone and by the MBS multiscale method.

Fig. E8.3-1A Driven cavity problem: multiscale FE-DPD model. Global domain (FE) and
local domain �FE +DPD�. Dimensions of the cavity are 30×30 �m, and dimensions of the
DPD box are 7�5 × 7�5 �m. Velocities are prescribed �V = 1 �m/s� on the top boundary,
from the right to the left. Other data: aij = 25	 aR = 3, � = 4�5 (see Section 8.2). The time
step used for the DPD simulation was tDPD = 0�001 and tFE = 0�1 s for the macro-scale FE
model (according to Kojić et al. 2008)
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Fig. E8.3-1B Velocity profiles along the vertical middle-line (shown by vertical line)
passing through the local �FE + DPD� and global (FE) domains. (a) �x component; (b) �y

component. The final time, t = 10 s, is reached after total 2 000 000 DPD time steps (and
100 FE time steps) (according to Kojić et al. 2008)

8.4 Smoothed Particle Hydrodynamics (SPH)

8.4.1 Introduction

The smoothed particle hydrodynamics (SPH) is also a truly discrete particle method as the
MD and DPD described in the previous sections. The basic idea in the SPH is a repre-
sentation of a physical field within a continuum by values at discrete points, considered
as discrete material particles, using the so-called kernel approximation function. Then the
continuum-based partial differential equations of balance are transformed into discrete par-
ticle equations. These discrete balance equations do not require space integration and use
of a space mesh. The original version of SPH was developed for modeling compressible
fluid flows in astrophysical problems (Ginhold & Monaghan 1977, Lucy 1977). Nowadays,
applications of this Lagrangian method range from compressible/incompressible fluid flows
to the structural mechanics.

The SPH has a potential of applications to complex bioengineering problems, such as
blood flow in capillaries (see Section 14.3). We here present the fundamental equations of
the SPH and show an example solution of a simple flow of incompressible fluid. The main
advantage of this method is that it does not require any mesh, while the shortcoming is a
complexity of implementation of boundary conditions.

8.4.2 The basic equations of the SPH method

The fundamental concept of the SPH is expressed by the relation

�f�r�� =
∫
V

f�r′�W �	r − r′	 	 h�dV (8.4.1)

Here �f�r�� is the kernel approximation of a function at a space point defined by the
position vector r; W �	r − r′	 	 h� is called the smoothing kernel function or just kernel in
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SPH literature (Belytschko et al. 1996, Vignjevic 2004), while h defines the size of the
kernel support domain with the spatial volume V ; and r′ is the position vector of a point
within the spatial domain. The SPH kernels have the ‘compact support’, which means that
their value is equal to zero outside the support domain around r:

W �	r − r′	 	 h� = 0 for 	r − r′	 ≥ 2h (8.4.2)

The kernel has to be normalized, i.e. it has to satisfy the condition:∫
V

W �	r − r′	 	 h�dV = 1 (8.4.3)

The above requirements ensure that the kernel is approaching Dirac’s delta function when h
tends to zero, and the approximation of the function tends to the exact value:

lim
h→0

W �	r − r′	 	 h� = ��	r − r′	� 	 and lim
h→0

�f�r�� = f�r� (8.4.4)

When the function f�r� is only known at a set of the discrete points, the integral
equation (8.4.1) becomes the sum, and we have for r = ri:

〈
f�ri�

〉≡ f
(
ri
)≡ f i =

N∑
j=1

mj

�j
f jW ij (8.4.5)

where f j ≡ f�rj�	 W ij = W
(	ri − rj	 	 h

)
. Also, mj/�j = V j is the volume associated to

particle j, and N is the number of particles within the support domain h. The term ‘particle’
in SPH has the same meaning as in the DPD method: the particle replaces its surrounding
material and mass of the particle is constant during motion. A schematics of equation (8.4.5)
is shown in Fig. 8.4.1.

In order to express the balance equations which have the form of partial differential
equations (e.g. (2.1.12), or (7.1.1)) using the SPH method, it is necessary to derive the
expression for partial derivatives or gradient of a function with respect to space coordinates
x�	 � = 1	 2	 3. Following the basic approximation (8.4.1) we have that

Fig. 8.4.1 Schematics of the SPH interpolation. Value of function f at a discrete point ‘i’
is interpolated from the values of surrounding points within the support domain of radius 2h
by use of the kernel function W�rij�
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〈

f�r�


x�

〉
=
∫
V

W �	r − r′	 	 h�

f�r′�

x′

�

dV (8.4.6)

and integrating by parts finally follows


f i


x�

=
N∑

j=1

mj

�j
f j 
W ij


xi
�

(8.4.7)

Details of this derivation are given on the web – Theory, Chapter 8. Although the derivation
of this expression is done correctly, an empirical relation for the derivatives is recommended
(Monaghan 1994):


f


x�

= 1
�

[




x�

��f�−f

�


x�

]
(8.4.8)

Next, we list two kernel functions. The most common is the B-spline function (Monaghan
& Ginhold 1983):

W��	h� = C

hD

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
1− 3

2
�2 + 3

4
�3

)
� < 1

1
4

�2−��3 1 ≤ � ≤ 2	 � = 	r − r′	/h

0 � > 2

(8.4.9)

where D is the number of the dimensions of the problem (1, 2 or 3). The constant C
is the scaling factor which has to provide that equations (8.4.2) and (8.4.3) are satisfied:
C = 2/3	 C = 10/ �7�� 	 C = 1/� for D = 1, 2, 3, respectively. The second is a quintic
spline, which for 2D problems is:

W��	h� = 7
478�

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�3−��5 −6 �2−��5 +15 �1−��5 0 ≤ � < 1

�3−��5 −6 �2−��5 1 ≤ � < 2

�3−��5 2 ≤ � < 3

0 � ≥ 3

	 � = 	r − r′	/h (8.4.10)

The usage of quintic kernel approximately doubles the computational time, but gives more
stable results.

Finally, we give the SPH equations of balance of mass (continuity equation) and balance
of linear momentum. They are:

d�i

dt
=

N∑
j=1

mj�vi
� −v

j
��


W ij


xi
�

(8.4.11)

dvi
�

dt
=

N∑
j=1

mj

[(
�

j
��

��j�2 + �i
��

��i�2

)

W ij


xi
�

+ fVj
�

�j
W ij

]
(8.4.12)

sum on � � � = 1	 2	 3

no sum on i

Details of derivation of these equations are given on the web – Theory, Chapter 8.
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Fig. E8.4-1 Velocity profiles for several times. Analytical and numerical solutions (meth-
ods: SPH – smoothed particle hydrodynamics; DPD – dissipative particle dynamics; EFG –
element free Galerkin; FEM – finite element)

8.4.3 Examples

Example 8.4-1. Unsteady flow between two plates
We consider flow of incompressible fluid between two stationary infinite plates located at
y = 0 and y = H . The fluid is initially at rest and it is driven by body force (given here as
acceleration a� parallel to the x-axis. The analytical solution �� ≡ �x� is given as a series
(Joseph et al. 1997):

� �y	 t� = a

2�
y �y −H�+

+
�∑

n=0

4aH2

��3 �2n+1�3 sin
(�y

H
�2n+1�

)
exp

(
− �2n+1�2 �2�

H2
t

) (E8.4-1.1)

Parameters used in the SPH model are: kinematic viscosity � = 10−6m2s
−1, fluid density

� = 103kgm−3	 H = 10−3m	 a = 10−4ms−2	 �t = 10−4s and 30 particles spanning the space
between plates.

Velocity profiles for several times are shown in Fig. E8.4-1. It can be seen that there
is very good agreement between the SPH and analytical solutions. Practically the same
results are obtained using other numerical methods: DPD, EFG and FE (Detailed analysis
of applicability of these methods, including the multiscale method of Section 8.3 is given
in Kojic 2008).

8.5 Element-Free Galerkin (EFG) method

8.5.1 Introduction

It can be seen from Chapters 4 to 7 that the finite element (FE) method is very well estab-
lished and generally applicable. It is also used in bioengineering as the basic computational
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technique in modeling and is mainly used in this book. However, the method has some
shortcomings, such as a need for remising (creation of a new finite element mesh) when the
finite elements are too distorted due to large deformations. Or, the method is not suitable for
modeling of colloidal fluid flow (such as blood flow in capillaries), where discrete particle
methods of Sections 8.3 and 8.4 may be more appropriate. But these discrete methods suffer
from, for example, complexity of handling boundary conditions.

The so-called element-free Galerkin (EFG) method can be considered as a computational
procedure which overcomes the shortcomings of the abovementioned methods. The funda-
mental idea of the EFG method is to represent the field of a physical quantity by values at
a set of discrete points which are not associated with a mesh as in the FE method, i.e. the
points are element-free. These points are usually called the free points. The approximate
value of a quantity at a material point within the domain is obtained by use of the weight-
type interpolation functions within a domain of influence. The weight functions decay with
the distance from the material point and are negligible outside the domain of influence, as
schematically shown in Fig. 8.5.1a.

Finally, note that the EFG is in essence a continuum method. Discretization of the
continuum leads to discrete (free) points, but evaluation of the matrices and vectors within
the discrete balance equations is performed over the continuous subdomains.

8.5.2 Formulation of the EFG method

The interpolated value u�r� of a physical quantity (spatial function) at a point, which we
call the material point, with the position vector r, is given as (Belytschko et al. 1994)

u�r� =
m∑
j

pj �r�aj �r� ≡ pT �r� a �r� (8.5.1)

Fig. 8.5.1 Interpolation by EFG method (2D domain). (a) Function u�r� at a material
point with the position vector r. The weight function w�r − rK� decreases with the distance
between the material point and the free points K� dmax K defines the size of the domain of
influence for the weight function w�r − rK�; (b) Space cell used for integration and domain
of influence around the integration point
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where pj �r� are the components of the base vector p �r�, expressed as monomials in the
coordinates of r �x	 y	 z� so that the basis is complete; and m is the basis size. The coefficients
aj �r� are to be determined. The linear and quadratic bases for one-dimensional space are

pT �r� = �1	 x� 	 linear, m = 2� pT �r� = [
1	 x	 x2

]
, quadratic, m = 3 (8.5.2)

These bases for the 2D space are

pT �r� = �1	 x	 y� 	 linear, m = 3�

pT �r� = [
1	 x	 y	 x2	 xy	 y2

]
quadratic m = 6

(8.5.3)

The coefficients aj �r� are functions of the position vector and are determined by mini-
mizing a weighted quadratic form

J =
n∑

K=1

w
(
r − rK

) [
pT
(
rK
)

a �r�−UK
]2

(8.5.4)

where K denotes the free point number with the position vectors rK and with the value of the
function UK� w

(
r − rK

)
is the weight function which depends on the distance between the

material point and free point; and n is the number of free points in the domain of influence
around the material point. Minimizing J with respect to the coefficients aj �r�, the system
of equations is obtained:


J


ai

= 2
n∑

K=1

wK
(
pK

j aj −UK
)
pK

i = 0	 sum on j � j = 1	 2	 � � � 	m (8.5.5)

where wK ≡ w
(
r − rK

)
	 pK

j ≡ pj

(
rK
)
. Note that wK also depends on the position vector r

of the material point. This system of equations can be written in the form

Aijaj −BiKUK = 0	 sum on K and j � K = 1	 2	 � � � 	 n� j = 1	 2	 � � � 	m (8.5.6)

where the matrices A and B are:

Aij =
n∑

I=1

wIpI
i p

I
j � BiK = pK

i wK	 no sum on K (8.5.7)

The matrices A and B are of order m×m and m×n, respectively. Equation (8.5.6) can be
solved for the coefficients aj �r�, hence

a �r� = A−1BU� or aj �r� =
n∑

K=1

(
A−1B

)
jK

UK (8.5.8)

Now, substitution of a �r� from (8.5.8) into (8.5.1) follows

u�r� = pT A−1BU =
n∑

K=1

�K �r�UK (8.5.9)
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where the interpolation function �K �r� corresponding to the free point K, is

�K �r� =
m∑

j=1

(
A−1B

)
jK

pj (8.5.10)

The form (8.5.9) is the same as in the FE method, equation (4.2.5) or (4.3.2), where now
we have the interpolation functions �K �r� instead of the FE isoparametric interpolation
functions NK . Here, the interpolation functions are expressed in terms of the Cartesian
coordinates xi and xK

i of the material and free point, while NK are expressed in terms of the
natural coordinates of a finite element.

It is necessary in applications to calculate the derivatives with respect to the coordinates
xi. From (8.5.10) follows

�K	i =
m∑

j=1

[(
A−1B

)
jK

pj	i +
(
A−1

	i B+A−1B	i

)
jK

pj

]
(8.5.11)

where 	i ≡ 
/
xi. By differentiation of the equation A−1A = I (see (1.2.9)) we obtain

A−1
	i = −A−1A	iA

−1 (8.5.12)

which can be used to evaluate A−1
	i .

We further give one of the weight functions, of the exponential form (Belytschko
et al. 1994),

wI
(
d2k

I

)=

⎧⎪⎨
⎪⎩

exp �−dI/c�2k − exp �−dmax I/c�2k

1− exp �−dmax I/c�2k
	 dI ≤ dmax I

0	 dI ≤ dmax I

(8.5.13)

where dI = r − rI is the distance between the material point and the free point I� dmax I is
the domain of influence for the weight function wI � k is the parameter (in our applications
we use k = 1); and

c = � max rK − rJ for all free points (8.5.14)

where 1 ≤ � ≤ 2 is recommended. Another form of the weight function and graphical
representations are shown on web – Theory, Chapter 8.

Once the interpolation functions are formulated, the procedure is computationally similar
to that of the FE method described in Chapter 4 for the solids, or in Chapter 7 for field
problems. For an integration point, shown in Fig. E8.5.1b, the ‘element’ nodes include all
free points within the domain of influence. Of course, the FE interpolation functions NK are
now replaced by the EFG interpolation functions �K .

We perform integration over selected volumes as the subdomains (Figs. 8.5.1a,b) of the
physical field to form the balance equations for the entire domain. In this case the subdomains
are called volume cells and are defined independently of the free points. We simply integrate
over the volume cells numerically by, say, Gauss quadrature, and add contributions to the
matrices and vectors corresponding to variables at free points (degrees of freedom of free
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points) within the domain of influence, see Fig. E8.5.1b. The independence of volume cells
on the free points is the main advantage of the EFG method. To increase solution accuracy,
the number of integration points within a cell can be adjusted to the number of free points
(Belytschko et al. 1994, Vlastelica 2003).

The EFG model can be coupled with an FE model. Details about this coupling are given
on the web (see web – Theory, Chapter 8).

In one example we illustrate the robustness and accuracy of the EFG method (additional
examples are given on the web, within Software).

8.5.3 Examples

Example 8.5-1. Plate with a hole subjected to uniaxial tension
This example is solved using the FE method as in Example 4.4.1, where a detailed description
of the problem is given. Here, we model one-quarter of the plate (as in Example 4.4.2) by
the EFG method. The mesh showing the EFG cells (132 cells) and free points (156 points)
are shown in Fig. E8.5-1a. The geometrical and material data are taken from Belytschko
et al. (1994), but replacing inches by centimeters, R = 1	 L = 5; Young’s modulus is E =
3 × 108 kPa and tensional stress � = 1 kPa. The linear basis (see (8.5.3)) is used for the
displacement field and the exponential weight function (8.5.13) with dmax I = 2 cm.

The EFG solution for the stress �xx along the y-axis is shown in Fig. E8.5-1b, which
agrees well with the analytical solution (in (E4.4-2.1) enters R/y instead of d/2y). Note
that the analytical curves in E8.5-1b and Fig. E4.4-2c correspond to the same analytical
expression (E4.4-2.1), but the ranges of the coordinate y relative to the hole radius are
different (b/d = 2, while L/R = 5).

Fig. E8.5-1 Plate with the hole subjected to uniaxial tension – solution by EFG method.
(a) Geometry of the EFG discretized domain, loading and boundary conditions (see also
Fig. E4.4.2a); (b) Stress distribution along y-axis
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Introduction to Bioengineering

In this chapter we outline the subject and the scope of bioengineering. After a broad
view we specify in general terms the role of computer modeling within bioengineering.
The development of computer models is described and a few examples demonstrate some
achievements in bioengineering and computer modeling.

9.1 The subject and scope of bioengineering

Bioengineering is a broad field of scientific, biological, medical and engineering disciplines
in which living systems, processes and materials are investigated together with nonliving
subjects, environment and materials, in order to advance fundamental knowledge and improve
life. One of the goals of bioengineering is to couple technological advances with basic
investigations in biology and medicine leading to novel discoveries. Due to its inherent
interdisciplinary character, bioengineering is currently one of the most attractive areas in
research, education and industry.

Bioengineering exploits new developments in the life sciences (biology, physiology,
biochemistry, biophysics) and engineering and couples them in order to better understand
living systems. Bioengineers are similar to biologists in that they study living organisms, but
they also have a practical design aim in mind – they use research to create usable, tangible
products.

Biomedical engineering within the broad field of bioengineering represents a subset of
disciplines whose main purpose is to develop, design and manufacture products that will
improve human health. The end user of this process is the patient.

As an illustration of the advances in bioengineering, the American Institute for Med-
ical and Biological Engineering (AIMBE) published in 2005 a ‘Hall of Fame’ list of
major technological achievements in the twentieth century that revolutionized health care
and improved quality of human life (see http://www.aimbe.org/content/index.php?pid=127).
These accomplishments include the artificial kidney, heart valve replacements, computer
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Fig. 9.1.1 The American Institute for Medical and Biological Engineering ‘Hall of Fame’
gives a perspective on the most significant technological advancements in bioengineering in
the twentieth century (http://www.aimbe.org/content/index.php?pid=127) (see Plate 2)

aided tomography (CT), magnetic resonance imaging (MRI), genomic sequencing and
microarrays (Fig. 9.1.1 – see color plate).

For all these accomplishments a broad base of knowledge, expertise and experience
from different scientific disciplines had to be integrated, as illustrated in Fig. 9.1.2. Many
biomedical problems are best addressed using a multidisciplinary approach that extends
beyond the traditional biological and clinical sciences. Bioengineering integrates physical,

Fig. 9.1.2 A schematic view of an integrated bioengineering science. Adapted from the
website of the Department of Biomedical Engineering at Boston University
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engineering and computational science principles for the study of biology, medicine and
health. It advances fundamental concepts and gives new insight into processes occurring
from the molecular to the organ systems level. Furthermore, bioengineers develop innovative
materials, implants, devices and informatics approaches for the prevention, diagnosis and
treatment of disease.

The National Science Foundation and National Institutes of Health (USA) have identified
bioengineering as ‘an essential underpinning field for the 21st century’. Combining the tra-
ditional strengths of engineers (analytical and experimental methods) with those of biologists
working on the molecular and cellular levels, the scope of bioengineering is as vast, and as
intricate, as life itself.

There are already well-established specialty areas, such as biomechanics (the study
of motion and forces affecting biological systems); biomaterials (both synthetic materials
and living tissue); and bioinstrumentation (the development of measurement devices for
diagnostic and treatment applications). Other fields within bioengineering include bioimaging
and bioinformatics, which employ computer algorithms and mathematical methods to analyze
large quantities of genetic data. Imaging technologies that deal with vision identification or
face recognition belong to the field of biometrics.

9.2 The role of computer modeling in bioengineering

Since the topic of this book is computer modeling in bioengineering, we first present a
summary of the theoretical background, then outline the role of computational methods
and computer technology, and finally give two illustrative examples of potential future
achievements in medical science and medial practice assisted by computer modeling.

9.2.1 Computational models

From a biomechanics standpoint, a model represents a mathematical interpretation of the
mechanical behavior of a material body or system. This type of model is commonly called
a mechanical model because it relies on physical laws or empirical relations which are
relevant for the considered problem. The role of mechanical models is to elucidate the
important factors and then simulate and predict the response of a mechanical system. Also,
mechanical models can aid in the design of a system or process, and can serve as a tool
accompanying experimental or clinical investigations. In both engineering and medicine
the development of adequate models is becoming recognized as the cornerstone for future
advancements in these fields.

Bioengineering models play the same role as do mechanical models in general funda-
mental and applied sciences. They are used in basic biomechanical research and laboratory
investigations, as well as for medical and industrial applications.

For relatively simple conditions, models can be formulated using analytical approaches.
However, in the analysis of more complex problems, numerical or computational meth-
ods must be employed. These computational models usually require significant software
development and extensive use of computers. Today, complex computational models for
a biological system or process assume the integration of fundamental disciplines (physics,
biology, chemistry) with numerical methods, computer science and medicine. Altogether,
creating a complex computational model is a challenging, multidimensional task spanning
several, seemingly disparate, fields.

We now summarize the main components of a computational model.
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Theoretical Foundation
For our purposes, it can be considered that in general terms computer modeling relies on
biomechanics as the fundamental scientific discipline. Biomechanics (Humphrey & Delange
2004) is the development, extension and application of mechanics for the purpose of under-
standing the influence of mechanical loads on the structure, properties and function of
biological systems. Biomechanics can be divided into two main branches. One is bionics,
which deals with designing engineering systems that seek to mimic biological ones. An
example would be Leonardo da Vinci’s attempts to design a flying machine based on how
birds fly. The other one is mechanobiology whose goal is to establish how the structure and
function of living tissues, cells, organs and systems are influenced, controlled and regulated
by mechanicals forces and motion. Galileo’s study to relate the structural design of bones to
the load that they carry would be one example.

In the past, several well-known scientists such as Hooke, Euler, Young, Poiseuille, and
von Helmholz studied problems in biomechanics. However, biomechanics as a field began
to rapidly expand in the second half of the twentieth century. There have been three major
events that spurred this development of biomechanics. First, the beginning of outer space
exploration where humans had to face the problem of a prolonged period in reduced gravity,
which causes loss of bone and muscle mass. Second, the formulation of a nonlinear theory of
continuum mechanics was influenced by new materials such as polymers. These theoretical
developments were paralleled by advancements in powerful computational tools that could
be used to numerically (e.g. by use of the finite element method) solve complex systems of
differential equations. Third, the birth of modern biology, which involved the elucidation of
the basic structure of proteins (Pauling) and DNA (Watson and Crick), and thus enabled the
application of quantitative engineering methods to biology.

Biomechanics also plays an important role in healthcare delivery. For a long time, the
most successful products of the biomechanics industry were for example artificial hips,
surgical instruments (clamps, scissors), testing/diagnostic/aid equipment (respirators) and
wheel chairs. Today the role of biomechanics in health delivery and prevention is rapidly
expanding (e.g. artificial heart valves, artificial hearts, understanding and protection of
injuries of athletes, angioplasty, robotic assisted surgery, mechanical exercises that support
tissue healing). Certainly, beyond these ‘classical’ developments are modern trends in the
application of nanotechnology in medicine (Ferrari 2005), with the potential of opening new
frontiers in cancer drug delivery.

We have presented in Chapters 2 and 3 the key relations of general mechanics, including
the specifics of biomechanics, which form the theoretical foundation for the computational
methods used in this book.

Computational Methods
Development of these methods followed advances in computer technology and com-
puter science. In the 1960s the finite element (FE) method emerged as a new approach,
first in structural analysis, and then in general field problems, marking a revolution
in solving various scientific and practical problems. Enormous advances in this field
resulted in the formation of a new branch of the software industry devoted to computer
modeling.

Today, generalizations of the FE method continue in addressing novel, complex problems.
Also, new computational methods are emerging. Chapters 4–8 are devoted to the basics of
the FE and several other methods used later in the book.
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As previously emphasized, it is necessary to develop appropriate software for the models
to be applicable. Presently, there is a great demand for more complex, sophisticated and
efficient models. Therefore, modern achievements in computer science and computer tech-
nology must be utilized, such as parallel and distributed computing within a grid system of
computers (summarized in Tirado-Ramos et al. 2004).

9.2.2 Future advances in computer modeling

In general, future advancements in computer modeling in bioengineering will likely include:

1. development of high-performance computational tools to make advances toward precise
simulations of biomechanical problems, with realistic loading conditions, geometries and
constitutive material properties;

2. multiscale biomechanics – application of physical principles and computational methods
to couple various length and time scales, e.g. understanding relationships between cell-
level organization and macroscopic organ functions.

Finally, we give two examples that demonstrate potential, future achievements in bio-
engineering and computer modeling.

Example 9.2-1. Virtual vascular surgery on the grid
In Fig. E9.2-1 (see color plate) a concept of virtual surgery is illustrated, with the use
of a computer network (grid). The concept consists of several steps, starting with the

Fig. E9.2-1 Virtual vascular surgery on the grid: from the MRI or CT scan recording of
the patient vascular surgery region, to automatic generation of the computational model and
analysis of results, yielding options for the surgical procedure (Reproduced with permission
from P.M.A. Sloot and A.G. Hoekstra: Virtual Vascular Surgery on the Grid, ERCIM news,
October 2004) (see Plate 3)
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MRI or CT scan recording the patient’s vasculature in the region where the intervention
is planned. These imaging scans further serve as input for automatic generation of the
corresponding computer model. Then, by inputting appropriate parameter values into the
model the surgeon can perform a ‘virtual surgery’ using the computer software. The model
and the software allow the surgeon to explore various scenarios as part of the decision-making
process.

In the future, it is conceivable that the surgeon will be able to interact in real-time
with the software, thus having an ‘online’ computational model to assist the surgical proce-
dure. Of course, in order to achieve this goal considerable advances are necessary in both
computational methods (including parallel computing and efficient numerical methods) and
simulation techniques.

Example 9.2-2. Nanoparticle delivery of therapeutic and imaging agents
Nanoparticles can be used to efficiently deliver drugs or imaging agents to the desired
place, for example to cancer cells. Development of computer models to simulate nanopar-
ticle motion, including binding processes between the ligand and receptor complexes,
will help in the design of nanoparticles and their applications. Schematics of a nanopar-
ticle releasing agents that pass through biological barriers are shown in Fig. E9.2-2
(see color plate).

Fig. E9.2-2 A vision of a future multistage nanodevice. A nanoparticle selectively binds
to the cancer neovascular endothelium releasing multiple agents that enable the drug to pass
through biological barriers and reach the targeted tumor cell (Reprinted by permission from
Macmillan Publishers Ltd: Cancer nanotechnology: opportunities and challenges, Mauro
Ferrari, 2005) (see Plate 4)
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Bone Modeling

This chapter is devoted to finite element modeling of bones, and bone fractures in particular.
The fundamentals of the structure and forms of bones are presented first. Then the mechanical
properties of bone tissue used in the FE models are described. Also, the general FE dynamics
equations for bone analysis are given. Typical bone fractures are described next, including
medical aspects and several practical solutions. The FE models and solutions are presented
for: (a) a femur comminuted fracture, with fixation by the neutralization plate, and by the
intramedullary nail; and (b) a hip fracture with internal fixation, using the solutions by
parallel screws and by dynamic hip implant. The solutions for fracture fixation are compared
with respect to the advantages in medical practice applications.

10.1 The structure and forms of bones

In this section we present the basics of the bone structure and form of the bones which make
the skeleton. The skeleton acts as a rigid framework for the protection of soft organs and
allows locomotion.

10.1.1 The structure of bone tissue

The bone tissue represents the basic constituent of the skeleton. It belongs to the group of
supportive connective tissues. Like others, this connective tissue has two components: cells
and intercellular substance. The specific chemical compound of the intercellular substance
and structural organization of the fibrous components determine the rigidity as the main
characteristic of bone tissue.

Bone is functional tissue with permanent metabolic changes and continuous process of
remodeling, resorption and tissue production. Homeostasis of bone tissue is regulated by
systemic hormones and parathyroid glandula hormones. Any disbalance between resorption
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© 2008 John Wiley & Sons, Ltd



182 COMPUTER MODELING IN BIOENGINEERING

and production of bone tissue (homeostasis disorder) leads to major complications and loss
of basic bone functions.

The Intercellular Substance of Bones
The intercellular substance of bones is made out of organic and nonorganic matter. The
organic compound consists of collagen (90–95%) and interfibrillar substance (ground sub-
stance). Collagen, which we can find in bones, represents around 40% of all proteins in
organisms and it appears in the form of fibrils. It comes in the group of collagen type I and
is different from other types by its mechanical and physiochemical characteristics.

The interfibrillar basic substance, consisting of mucopolysaccharide and a small amount
of intercellular liquid, appears in between collagen fibers as the osteoblast.

The nonorganic component of the intercellular substance of bones is made up of mineral
salts. These salts in bones have a crystalline form – hydroxyapatite. The crystals are orientated
towards a long shaft of the collagen fibers (long axis). They are mainly made out of calcium
and phosphate, which is around 85% of the minerals in bones, with significantly less calcium
carbonate (10%) and a very small amount of calcium chloride and magnesium sulphate (5%).
All these salts surround the collagen fibers of bones and imbed inside the fibers. It is thought
that 80% of the minerals of bones are deposited inside the collagen fibers (stable minerals),
while there is around 20% of mineral salts in the ground substance.

The percentage and amount of mineral matter in bones depends on the age, functional
ability of kidneys, hormonal and enzyme status, etc. The mineralization process of bones is
very complex and is dependent on many factors and mechanisms involved in stimulation or
inhibition.

The Histological Structure of Bones
Histologically, there are two types of bones:

1. Fibrous, nonlamellar, woven bone

2. Lamellar, mature bone.

Tough fibrous bone is the first, non-mature bone, which is present in the fetus and slowly
grows into mature lamellar bone before the fetus is born. In infants, most of the bone tissue
domains are transformed into lamellar bone.

Lamellar bone is a type of mature bone which contains collagen fibers spread into parallel
strips and layers, lamellae. Lamellar bone represents the second phase in the maturing of
bone tissue and is present in the area of compact, cortical bone and also in the spongy,
trabecular area of the bone.

Histologically, cortical bone is made out of the lamellar bone which has the basic
morphological and functional unit called osteon or the Haversian system. Osteon represents
a cylinder made of 5–20 concentrated line up bone lamellae layers with the thickness
of 3–7 �m. In the central area there is a vascular canal known as the Haversian canal
(Fig 10.1.1 – see color plate).

Lamellar bone is made out of parallel collagen fibers that are buried in a mineralized
basic bone substance, appearing altogether as a spiral flow. Parallel with lamellae, in osteons
we have osteocytes which spread circumferentially around the Haversian canal and connect
cytoplasmatic extensions.

The external surface of a cortical bone is covered by a compound vascular layer like
a membrane. This layer is called the periosteum and contains collagen fibers parallel to
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Fig. 10.1.1 Structure of a long bone (according to Remagen 1989) (see Plate 5)

the bone surface, blood vessels, nerve fibers, ligament fibers and muscle fiber insertion.
Adjacent to the bone is a layer of cells of osteogenic potential, which are able to transform
into osteoblasts during the phase of skeleton development or regeneration. There is a lack
of periosteum in the domains of joints.

Spongy or trabecular bone is also made out of lamellar bone, but without the Haversian
system. Trabecular spongy bone is composed of a row of thin joined bone layers, lamella,
which point in the direction where most of the mechanical forces are applied. The bone
layers cross at different angles, so they create gaps for the bone core. Lamellar bones do not
contain blood vessels. Adjacent to the trabecular spongy bone there is a row of osteoblasts,
which creates an inner layer of bone – the endost.

10.1.2 The form of bones

All bones of skeletons can be divided into:

(a) tubular bones

(b) short bones

(c) flat bones

(d) other bones

depending on their look and the interrelationship between spongy and compact bones.

(a) Tubular bones have three sections: diaphysis, metaphysis and epiphysis. In the middle
section we have a region with a tubular appearance, which is called the diaphysis; at
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the bone ends there are epiphyses, and the regions between the diaphysis and epiphyses
are called metaphysis. Tubular bones represent long bones of extremities (humerus,
radius, ulna, femur, tibia and fibula), and short bones of the hand and foot (metacarpus,
metatarsal and phalanges). These bones are composed of compact bone (substantia
compacta) and spongy bone (substantia spongiosa). The relationship between compact
and spongy bones is different in different bone domains. For example, in the shaft of
the tubular bone (diaphysis) compact bone makes up the cortex, which surrounds a
medullary cavity or bone marrow and it exists in this particular area in a significant
amount. But, as we move toward the bone ends, the cortex decreases, hence the amount
of compact bone decreases and the spongy bone increases.
Spongy bone is dominant in the area of epiphyses; going towards the middle trunk of
the bone its amount decreases, and then in the diaphysis some of the tubular bone is
lacking (fibula and short tubular bone). Spongy bone has a honeycomb, sponge-like
appearance and is composed of a framework or trabeculae which are connected together.
The trabeculae orientation and thickness depend on the direction of mechanical forces.
In adults, there is a fatty marrow core in the spaces inside the spongy bone. In the
proximal area of the femur and humerus, there remains a small red bone core during a
major part of one’s life. In adults, the red bone core, appearing in flat bones and at the
ends of some other bones, contains cells which create the blood constituents. The fatty
marrow core is made out of fat tissue and blood vessels.

(b) Short bones make up the parts of the base of the hands and foots and some superfluous
bones. They are composed of spongy bone, which is surrounded by a thin layer of
cortical bone in places where these bones are not covered by the articular cartilage.

(c) In the group of flat bones come ribs, sternum, scapula and most of the bones of the
skull. They are different from other bones because they are thin and have a relatively
small amount of spongy bone or they do not have it at all (lacrimal bone, for example).
Here, the spongy bone is surrounded from the inside and outside by cortical bone, and
contains a red bone core.

(d) Other bones are no name bones, some of which are the bones of the skull and spinal
cord. Some domains of these bones can have the appearance of short or flat bones, but
they do not fall within the groups mentioned above. For example, a vertebral body with
its structure can belong to the group of tubular bones, however, some of the areas of
the vertebral arches have the structure of flat bones. Due to the unequal structure of the
spinal cord, it is usually considered that these bones fall into the group of other bones.

10.1.3 Osteoporosis and bone density

During the first three decade of human life bone mass continuously increases achieving
maximum value at the age of 30 years. The bone mass starts to decrease after that age. This
phenomenon is known as the osteoporosis. In latest stages of life the osteoporosis leads to
low bone mass and microarchitectural changes causing enhanced bone fragility and increased
risk of fracture (Fig 10.1.2).

In order to provide an efficient and unique method for osteoporosis assessment the World
Health Organization established criteria based on measuring the bone density. According
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Fig. 10.1.2 Structure of normal and osteoporotic the trabecular bone (adopted from
Remagen 1989)

to these criteria (Huiskes & Van Rietbergen 2005), if the bone density is 2.5 times the
standard deviations below the average bone density for a 25-year-old female, it is diagnosed
as ‘osteoporotic’. Osteoporosis affects cortical bone as well as trabecular bone, but trabecular
bone changes are predominant.

Bone density can be defined as bone mass per total volume of bone including any
holes. The bone density calculated in this way represents the mean density of the apparent
material specimen and is also known as the ‘apparent density’. Note that the bone apparent
density is not equal to the bone tissue density. Let us introduce the bone volume fraction VV

representing ratio of bone volume over total volume,

VV = VB/VT (10.1.1)

where VB and VT are the bone volume and total volume, respectively. Assuming that the
bone tissue is homogenous with density �tissue, the relationship between apparent density and
bone tissue density can be written as

�apparent = VV �tissue (10.1.2)

10.2 The mechanical properties of bone and FE modeling

In this section basic mechanical characteristics of bone are described and the general
concept of the finite element modelling is outlined.

Bone Mechanical Properties
For general physiological loading conditions the bone material can be considered linear
elastic. The constitutive stress–strain relationship shows that bone material behaves in a
manner similar to that of other engineering materials (Huiskes & Van Rietbergen 2005).
Stress–strain curves in tension and compression consist of an initial elastic region, which
is nearly linear. This region is followed by yielding and considerable, nonelastic, ‘plastic’
deformation before a failure. The nonelastic region of the stress–strain curve for the longitu-
dinally oriented specimen reflects diffuse, irreversible microdamage created throughout the
bone structure. Bone tissue that is loaded into this nonelastic region will not return to its
original configuration after the load is removed.
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As we have discussed in Section 10.1, the bone tissue is a two-phase material consisting
of collagen and bone mineral, organized in matrix form. Bone mineral (hydroxyapatite)
is very rigid and has bigger compression than tensile stiffness. On the other hand, bone
collagen has only tensile stiffness. Generally, the bone mineral influence on the mechanical
properties of bone tissue is predominant. Hence, bone tissue has bigger compression than
tensile stiffness and strength. Also, bone tissue has anisotropic behavior caused by specific
microstructural organization. Investigations show that bone tissue is stronger and stiffer in
the direction of the osteon orientation than in the perpendicular direction. Because of that,
bone stability depends not only on load value, but also on load direction.

Elastic modulus and strength of bone tissue are not constant. They are dependent on rate
of deformation. Rate of deformation is usually quantified with material strain rate. Because
of that, bone tissue is viscoelastic material. Studies in which bone specimens were exposed
to loads of different strain rates showed that increasing of strain rate caused increases of
the elastic modulus. The elastic modulus of bone tissue is approximately proportional to the
strain rate raised to the 0.06 power. Using this relation it can be shown that over a very wide
range of strain rates the elastic modulus increases by about a factor of two. Experimental
analysis revealed that the apparent density is important for elastic modulus estimation and
the following relationship was proposed (Carter & Hayes 1977)

Eaxial = Ecė
0�06

(
�

�c

)3

(10.2.1)

where Eaxial is the elastic modulus of bone of apparent density �, tested at strain rate of
ė
(
s−1
)
; and Ec elastic modulus of bone with an apparent density of �c tested at strain rate

of 1�0 s−1.
With respect to composition and true tissue density, cortical and trabecular bone are

very similar. However, their structural organization is very different. The basic difference of
cortical and trabecular bone tissue is porosity. Cortical bone porosity ranges from 5 to 30 %,
while trabecular bone has porosity from 30 to 90 %. The apparent density of bone tissue for
both cortical and trabecular bones shows approximately linear dependence on bone porosity.

Finite Element Modeling
General principles of FE modeling of structures are applicable here. Therefore, the static or
dynamic equations of balance presented in Chapters 4 and 5 can be used. The bone structure
is usually modeled by 3D finite elements in order to capture the bone geometry, and we here
write the dynamic equation of motion for a 3D finite element (see Sections 4.3 and 5.2)

M n+1Ü + nKU = n+1Fext (10.2.2)

where M and nK are the element mass and stiffness matrices, n+1Ü and U are nodal
acceleration and displacement vectors, and n+1Fext is the external nodal force which includes
structural external forces and action from the surrounding elements. The equation of motion
corresponds to time step ‘n’, where the left upper indices ‘n’ and ‘n+1’ indicate, respectively,
start and end of time step. The stiffness matrix nK can be written as (see (4.3.15))

nK =
∫
V

BT nCBdV (10.2.3)

where B is the strain–displacement matrix (4.3.7) and nC is the constitutive matrix. In the
case of isotropic material, the constitutive matrix is given in (2.2.5); the left upper index ‘n’ is
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used to show that the axial modulus (10.2.1) corresponding to the strain rate nė may be used
when the rate effects are important. Of course, if the bone tissue is considered anisotropic,
the orthotropic constitutive matrix should be employed (see web, Theory – Chapter 2).

10.3 Bone fracture – medical treatment and
computer modeling

Here several procedures of medical treatment of bone fractures and accompanied computer
modeling are presented.

10.3.1 General considerations

A fracture means that the continuity of bone is disrupted. Force transmission through the
bone is no longer possible in any direction. A fracture results in loss of the structural integrity
of bone, and a loss of its weight carrying capacity. A fractured bone becomes mechanically
functionless.

Whether or not a bone fractures due to stresses within the bone tissue depends on both
extrinsic and intrinsic factors. The extrinsic factors important in the production of fractures
are the magnitude, duration and direction of one bone acting on the other. The most important
intrinsic factors in determining the bone fracture resistance are the size and geometry of
the bone and material properties of the bone tissue (energy-absorbing capacity, Young’s
modulus of elasticity and density).

Fracture occurs when the stresses in one region of the bone exceed the ultimate strength
of the bone material. Bone fracture can therefore be thought of as an event which is initiated
at the level of the material. The size and shape of the bone under loading determine the
distribution of stresses throughout the bone. A large bone is more resistant to fracture simply
because it distributes the internal forces over the bone tissue, which are lower than those in
a smaller bone loaded under similar conditions.

In laboratory conditions, specific fractures are produced under various modes of load.
On the other hand, the fractures seen clinically are usually caused by complex loading
conditions, and the resulting fracture patterns are therefore numerous.

Bone fracture occurs both from direct and indirect forces. Fractures produced by direct
application of force to the fracture site can be divided into typing fractures, crush fractures
and penetrating fractures. These are caused, respectively, by a small force acting on a small
area, a large force acting on a large area, and a large force acting on a small area (Harkess
& Ramsey 1991). Fractures produced by a force action at the distance from the fracture site
are said to be caused by an indirect trauma.

When a bone is subjected to tensile forces, a fracture perpendicular to the direction of the
applied loading occurs. This can happen to the patella or olecranon when the knee or elbow
is forcibly flexed while the extensor muscles are contracting. The fracture line in tension
fracture is transverse.

Compressive forces will generally fracture along a plane, which is at an oblique angle to
the direction of the applied loading. Long bones only rarely are fractured by a pure compres-
sion force. A common site of compression fracture in trabecular bone is a vertebral body.

Torsional forces cause a spiral bone fracture. Then the fracture is usually initiated at a
small crack on the surface of the bone that runs parallel to the bone axis, on a plane of high



188 COMPUTER MODELING IN BIOENGINEERING

shear stress. After initiation of the fracture, the crack runs in a spiral manner through the
bone, following the planes of high tensile stresses.

A bone specimen subjected to bending forces will be exposed to high tensile stress on
one side of the long bone and high compressive stress on the other side. Because bone is
stronger in compression than in tension, the fibers over convexity fail first. A transverse
fracture will be present on the tensile side, while an oblique fracture surface may be created
on the compressive side. The compressive side of the specimen may contain two oblique
fracture patterns, creating a loose wedge of bone as the bone is fractured. This fracture
pattern is sometimes referred to as a ‘butterfly’ fracture.

10.3.2 Fracture treatment

The main aim of fracture treatment is to obtain final function as close to pre-fracture
conditions as possible and as soon as possible. In order to achieve this aim, good reposition of
the bone and stable fixation (immobilization) of the fractured fragments have to be obtained.
Different means of treatment exist which result in different degrees of immobilization. The
choice of method depends on the type of fracture, local conditions of soft tissue, patient
expectations and requirements, prognostic criteria etc.

All methods of fracture fixation must provide adequate stability in order to maintain
length and correct joint alignment. Whatever the type of fixation is implemented, the
implants must be sufficiently strong to withstand the early functional forces, and not fail
due to mechanical overload. The repair must also be resilient enough to last until osseous
union is achieved.

External Skeletal Fixation
The first option here is the plaster-of-Paris cast solution. The objective of applying a plaster
cast is to keep the bone ends in apposition and the fracture aligned until the fracture heals.
This type of fracture fixation allows a relatively large interfragmentary movement. It has been
said that immobilization by plaster cast will work only where there is inherent stability of
reduced fracture, and where the cast is properly applied using three-point fixation. Instability
due to bending movements and torque must be limited by a good fit between the plaster
cast and the outer shape of the extremity. The stability of the fixation is influenced by the
circular compression of the plaster cast against the soft tissue under the envelope around the
bone. Soft tissue can act as a hydrodynamic medium, and the compression helps to stabilize
the fragments (Sarmiento & Latta 1981). The displacement under load is decreased steadily,
because of the increasing stiffness of the callus (Sarmiento et al. 1996).

Another solution is by the external fixator. External stabilization of the fracture can be
performed by using an external fixator. This is a system that allows the stabilization of
fragments away from the fracture site with the aid of percutaneous screws or wires that are
connected to one or more bars on the outside of the skin. There are several types of external
fixators: simple pin fixator, clamp fixators and ring fixators. The stability of this fixation is
mainly determined by the stiffness of the fixator design and the quality of the connection
between the screws and bone. The stiffness is described by the interfragmentary movement
occurring under external loads.

This technique is the only one that allows the surgeon to adapt the stability as needed
not only intraoperatively, but also postoperatively.
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Internal Fixation of Fractures
Since the time when Lord Lister used silver wire to repair broken patella, many devices have
been developed for internal fixation of fractures. Here we describe two of the solutions of
internal fixation of fractures: plates and screws, and intramedullary nail.

Plates and screws. In transverse or short oblique fractures of the diaphysis, stabilization
can be performed with a compression plate. The plate has a special hole design with a slope
on which the screw head slides (Müller et al. 1979). When the screw is inserted into the
bone, it moves towards the bone cortex, which is only possible if the slope of the screw
hole is pushed axially (Fig. 10.3.1a). This axial movement of the plate creates a compression
between two fragments fixed by a compression plate (Fig. 10.3.1b).

The plate which conducts all the forces from one fragment to the other and protects
the fracture from the all kind of forces is called the neutralization plate. It is often used
in the cases of comminuted fractures where it is very difficult to achieve a stable fixation of
the bone fragments (Fig. 10.3.2a).

Intramedullary nail. In the long tubular bone very effective fracture stabilization can be
achieved by some intramedullary devices, such as the intramedullary nail (Fig. 10.3.2b).

Fig. 10.3.1 Compression plate (according to Schauwecker 1981)

Fig. 10.3.2 Solutions for fractures of long bones. (a) Neutralization plate; (b) Intramedul-
lary nail
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The stability of fracture fixation by nailing mainly depends on the mechanical properties
of the nail, the nail’s fit in the medullary space, and the mechanical properties of the locking
screws or bolts. The bending and torsional stiffness of the nailed bone mainly depends on
the diameter of the nail. The bending stiffness can be obtained as Kb = E × I , where E is
Young’s modulus of elasticity and I is the second moment of inertia for bending of the nail
cross-section; while the torsional stiffness is Kt = G× It, where G is the shear modulus and
It is the second moment of inertia for torsion.

10.3.3 FE modeling of femur comminuted fracture

Two example solutions of femur fracture are presented: (a) when the neutralization plate is
used; and (b) when the intramedullary nail is implemented.

Example 10.3-1. Fixation by the neutralization plate
During walking humans alternately stand on each leg with the whole weight. Hence, at the
moment of standing on one leg, the axial force in the leg is equal to the human weight. In
this example we consider a patient having diaphysial comminuted fracture, with the mass of
70 kg which produces the axial force of 70 daN in the femur. It is assumed that the fracture
is fixed by a neutralization plate (Fig. E10.3-1A).

In the finite element model the 3D isoparametric finite elements are used (Section 4.3) for
the bone tissue, neutralization plate and screws (Fig. E10.3-1Aa). The bone is approximated
by a hollow straight cylinder with internal and external radii Ri =9 mm and Re =14 mm.
The axial force of 70 daN is applied at the bone top cross-section (Fig. E10.3-1Ab). Nodes
lying at the bone bottom cross-section are restrained in all directions. Also, it is considered
that there is no slip between the screws and plate or bone tissue.

Fig. E10.3-1A (a) Finite element model of femur comminuted fracture fixed by neutral-
ization plate. (b) Boundary condition and load. The load is transferred from the upper bone
fragment to the upper set of screws, then by the plate to the lower set of screws and the
lower bone fragment
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Fig. E10.3-1B FE solution for the femur comminuted fracture. Effective stress field within:
(a) Screws; (b) Neutralization plate; (c) Bone tissue

The bone tissue is modeled using the material model defined by the relation (10.2.1).
The solution is obtained using the following data for the bone tissue: Ec = 22�1×103 MPa�
� = 2�1 × 10−3 g/mm3� �c = 1�8 × 10−3 g/mm3� ė = 0�1 s−1, where it is assumed that the

Fig. E10.3-1C Distribution of the effective stress within the neutralization plate along the
line AB
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strain rate is the same within the tissue. For the neutralization plate and screw materials
stainless steel is used, with Young’s modulus E = 2�1×105 MPa and Poisson’s ratio � = 0�3.

The field of effective stress in the screws, neutralization plate and bone is shown in
Fig. E10.3-1B. Also, distribution of the effective stress within the neutralization plate along
the line AB is shown in Fig. E10.3-1C.

It can be noted from Figs. E10.3-1B,C that a significant stress elevation (stress concen-
tration) appears within the neutralization plate in the region between the second and third
screw. The extreme values of effective stress are below the critical values for stainless steel.
However, the neutralization plate is subjected to the cycling loading during the walk which
leads to the material fatigue. The region between the second and third screw is critical (locus
minoris resistentiae) for the fatigue failure, which is frequently observed in clinical practice
(Bucholz & Brumback 1991).

Example 10.3-2. Fixation by the intramedullary nail
The femoral shaft fracture fixed by an interlocking nail is modeled (Ranković et al. 2007).
In this particular case we assume a comminuted type of fracture. Also, it is taken that the
intramedullary nail is locked by two screws proximally and two screws distally.

In order to compare the values and stress distribution in a femur diaphysial comminuted
fracture fixed by intramedullary nail and neutralization plate, the finite element model is
generated using the same geometric and material parameters, FE type (3D isoparametric
elements) and loading as is in the previous example. For the intramedullary nail material the
stainless steel is taken, with the characteristics as for neutralization plate and screws. The
finite element model is shown in Fig. E10.3-2A.

Fig. E10.3-2A (a) Finite element model of the femur comminuted fracture fixed by
intramedullary nail. (b) Boundary condition and load. The load is transferred from the upper
bone fragment to the upper screw, then by the intramedullary nail to the lower set of screws
and the lower bone fragment
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Fig. E10.3-2B Effective stress field within: (a) Screws; (b) Intramedullary nail; (c) Bone
tissue

Fig. E10.3-2C Distribution of the effective stress within the intramedullary nail along the
line AB

The field of effective stress in the screws, intramedullary nail and bone is shown in
Fig. E10.3-2B. Also, distribution of the effective stress within the intramedullary nail along
the line AB is shown in Fig. E10.3-2C.

Figures E10.3-2B, C show that a notable stress concentration occurs within the
intramedullary nail in the region of the screw holes. But these values are appreciably lower
than the effective stress generated in the neutralization plate for the same loading conditions.
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Hence, the risk of intramedullary nail failure is significantly lower than it is in when using
the neutralization plate, which also is clinically approved (Bucholz & Brumback 1991).

10.4 Internal fixation of hip fracture – two solutions and
computer models

Hip fractures represent certainly the most important orthopaedic-traumatologic problem. This
fracture has specific biomechanical and biological characteristics. In this section we present
two solutions and compare them through the results obtained by FE modeling.

10.4.1 Solutions by parallel screws and by dynamic hip implant

The most important factor in healing of the femoral neck fracture is directly affected by the
surgeon’s achievement of stable fixation. The significance of the fixation stability for the
healing of the fracture can be seen through the fact that the fractures without dislocation,
when there is a good contact between fracture surfaces, result almost always in the fracture
healing (Frandsen et al. 1984, Skinner & Powles 1986, Madsen et al. 1987, Stromqvist et al.
1987). It was proved that, by using instrumentalized intraoperative measuring (Rehnberg &
Olerud 1989), the femoral neck fractures that have healed, had much bigger intraoperative
stability then the fractures that did not heal.

Stability of the fracture depends on the quality of the bone tissue (osteoporosis and
comminution), quality of the reposition of the fracture, the implants’ design and the position
of the fixation device on the femoral neck and the head (Stromqvist et al. 1987, Frandsen &
Andersen 1981, Olerud et al. 1991).

Apart from different opinions, it is obvious that besides the knowledge and skills of the
surgeon, the choice of implants plays the crucial role regarding the fracture stability. Some
implants provide good fracture stability even in inconvenient situations (inappropriate repo-
sition, bad quality of the bone tissue, stressed comminution of the fracture; see Swiontkowski
et al. 1987).

The basic function of the implant is to keep the bone fragments in a reduced relation
until the fracture heals, and on the other hand not to endanger the healing processes and the
vascularization of the femur head (which is most often already damaged). Osteosynthetic
devices have to sustain the stability of the fracture by neutralizing the effect of forces
affecting the hip (load bearing) or redirect the force effect so that a positive impact of the
fracture surfaces and the bone to bone (load sharing) is gained. The implant has to endure
forces that are much larger than the body weight and by which the hip joint is affected
while walking. By using rigid fixation of the fracture surfaces the implant fulfills its main
role. It has to tightly keep reposition on the fracture site until fracture healing, because any
relative movement of the bone surfaces withholds ingrowing of the vascular buds and the
revascularization of the head. A relative movement on the fracture site also causes fibrose
tissue creation in the fracture crack.

The implant should be designed so that an early loosening on the bone–implant connection
does not occur, causing undesired head movement to varus and lateral angulation and rotation.
A certain flexibility level of implant is needed to slow down the process of loosening which
is constantly happening from the moment of the implant application. The difference between
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Fig. 10.4.1 Solutions for the hip fracture. (a) Parallel screws; (b) Dynamic hip implant

the module of elasticity of the bone tissue and the material from which the implant is made
is an important factor in fixation loosening. There has recently been increasing research
concerning the materials that could fulfill the requirements with respect to prevention of
loosening of fixation.

Fixation by parallel screws (Fig. 10.4.1a) and the by the dynamic hip implants
(Fig. 10.4.1b) (Ristic & Bogosavljevic 2004) are the two methods for internal fixation of
intracapsular fractures of the femoral neck. The stability of the osteosynthetic structure is
different for these two solutions due to different biomechanical relations between the bone
and fixator devices. We consider that these solutions provide an insight into the problem of
hip fracture and have generality in medical applications.

10.4.2 Finite element models of intracapsular fractures
of the femoral neck

The finite element solutions for two types of internal fixation of the intracapsular fractures
of femoral neck are presented.

Example 10.4-1. Fracture fixation by parallel screws
The bone and screws are modeled by 3D finite elements as in Section 10.3.3. The bone
shape, FE model and boundary conditions are shown in Fig. E10.4-1A.

The structure is loaded by two forces FA and FR. The force FA is generated by the gluteal
muscles which connect the greater trochanter with the pelvis. Gluteal muscles have the
important role in achieving the moment balance to gravity body forces at the instant when the
human is standing on one leg. The second force �FR� represents the force transferred from
the pelvis to the femur head. The magnitude of these forces depends on the body weight and
geometrical relations between the body mass center and proximal femur. In the FE model,
the gluteal muscles force FA is distributed over the top nodes of the greater trochanter,
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Fig. E10.4-1A Finite element model of the femoral neck fixation by parallel screws.
(a) Schematic view; (b) Anterior aspect; (c) Anterolateral aspect; (d) Anteromedial aspect

while the force FR is distributed over the top nodes of the femur head. The FE nodes lying
at the bottom cross-section of the bone are assumed to be restrained in all directions.

It is considered that the loading is quasi-static and that there is no relative motion between
the screws and the bone. The compact and trabecular bones are modeled using the constitutive
model given in (10.2.1), with the same data as in Example 10.3-1, including the strain rate
ė = 0�1 s−1. The screws are taken to be of stainless steel with the material characteristics as in
Example 10.3-1. The body weight is taken to be 70 daN, and FA =137 daN	FR =199 daN .

The field of effective stress within the cortex bone tissue is shown in Fig. E10.4-1B.
Distribution of the effective stress within the lateral cortex of the proximal femur along the
line AF is given in Fig. E10.4-1C.

Figures E10.4-1B,C show that a significant stress concentration appears within the lateral
cortex of the proximal femur in the region of the screw holes. And this region is critical
(it is said that it is the locus minoris resistentiae) for fixation failure, which is confirmed
in clinical practice. Fixation stability depends on the stiffness of the lateral cortex of the
proximal femur which usually is thin and weak in patients with femur neck fracture.

Example 10.4-2. Fracture fixation by dynamic hip device
The idea of this fixation solution is shown in Fig. 10.4.1b. Here we analyze this solution
by the FE modeling. Figure E10.4-2A shows the finite element model with loading and
boundary conditions.

Using the same material properties and loads as in the previous example, we obtain the
finite element solution for stresses and strains. The effective stress distribution in cortex
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Fig. E10.4-1B Effective stress distribution in lateral cortex of the proximal femur for the
intracapsular fracture of the femoral neck (solution by parallel screws)

Fig. E10.4-1C Distribution of the effective stress within the lateral cortex of the proximal
femur along the line AF (see Fig. E10.4-1B)

bone tissue is shown in Fig. E10.4-2B, while the distribution of the effective stress within
the lateral cortex of the proximal femur along the line AF is given in Fig. E10.4-2C.

As can be seen from Figs. E10.4-2B,C the extreme effective stresses within the bone
tissue appear in the lateral cortex of the proximal femur, in the region of the dynamic hip
device insertion. However, these stresses are appreciably lower than stresses generated when
using the solution by parallel screws (compare maximum stresses in Figs. E10.4-1C and
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Fig. E10.4-2A Finite element model of the femoral neck fixation by dynamic hip device.
(a) Schematic view; (b) Anterior aspect; (c) Anterolateral aspect; (d) Anteromedial aspect

Fig. E10.4-2B Effective stress distribution in the lateral cortex of the proximal femur for
the intracapsular fracture of the femoral neck (solution by dynamic hip device)
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Fig. E10.4-2C Distribution of the effective stress within the lateral cortex of the proximal
femur along the line AF (see Fig. E10.4-2B)

E10.4-2C). This is expected because the larger part of the hip load is carried by the dynamic
hip device and not by the bone only. Finally, the fixation stability in general depends on
the dynamic hip device stiffness. The effective stresses within the screws and dynamic hip
device are low (Fig. E10.4-2D) and are significantly lower than within the parallel screws.
Hence, the risk of the dynamic hip device fixation failure is lower than it is when using
parallel screws; this is confirmed in clinical practice (Ristic & Bogosavljevic 2004).

Fig. E10.4-2D Effective stress distribution within: (a) Screws; (b) Dynamic hip device
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Biological Soft Tissue

This chapter is devoted to modeling of soft biological tissues. We first introduce the basics
about the structure and function of biological tissue and then describe typical mechanical tests
and tissue models. The mechanical models include: uniaxial, biaxial, hysteretic, viscoelastic,
models based on the strain energy function, and models of surfactant. Further, specifics
of the tissue computer modeling are presented within the general finite element analysis.
These specifics are related to the stress integration and calculation of the consistent tangent
constitutive matrix for large strain deformation of biological membranes and 3D tissue
bodies, with use of the tissue models.

The solved examples include spherical and cylindrical membranes and a membrane with
a hole subjected to cyclic loading, blood vessel, and urinary bladder. These examples are
available on the web where the solutions for various model parameters can be obtained using
the Software.

11.1 Introduction to mechanics of biological tissue

In this section we first present the structure of biological soft tissue and then describe
basic experimental testing procedures for determining constitutive relations. Mostly common
expressions for the constitutive laws are given, including both tissue and surfactant which
usually covers the tissue.

11.1.1 Structure and function of biological tissue

The emphasis of this chapter is on connective biological tissue behavior and its modeling
using appropriate constitutive laws. We focus on soft tissues of the planar (membrane) type
which are met in hollow organs such as the lung parenchyma and pleura, stomach, mucous
membranes, bladder, uterus, skin, eye, endocardium and pericardium. These tissues usually
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© 2008 John Wiley & Sons, Ltd



202 COMPUTER MODELING IN BIOENGINEERING

experience very large strains and stretches (stretches can be of order 2, meaning that a tissue
fiber doubles its length) under normal physiological conditions.

Soft tissues display nonlinear mechanical response, i.e. nonlinear interdependence
between the loadings and deformation within the range of the physiological working condi-
tions. These nonlinearities come from shape change and also from the nonlinear constitutive
relationships. Also, the time-dependent constitutive phenomena, such as creep of material
under prolonged loadings, stress relaxation when the strains are held constant over time,
or viscous effects under dynamic deformation. These mechanical characteristics can be
attributed to the tissue constituents which are described next.

The main constituents of these tissues are the extracellular fibrous proteins collagen
and elastin. These two constituents usually go together, as in lung parenchyma where their
mutual ratio varies with location within the tissue (Lee & Hoppin 1972, Oldmixon & Hoppin
1989). Mechanical characteristics of the collagen and elastin are very different. Collagen is
a relatively inextensible protein. It dominates in tendons and ligaments, as well as in bone
and skin. Individual collagen fibers break at around 2% strain. However, within tissue these
fibers have as significant initial slack with no stiffness. In practical applications the collagen
fibers can be modeled by a nonlinear constitutive law shown in Fig. 11.1.1 expressed as
(Kowe et al. 1986, Denny & Schroter 2000)

� = c1 ln
[

1− exp �e�−1
c2

]
+ c3e (11.1.1)

where e = �−1 is the strain and � is the fiber stretch. The graph in the figure is drawn for:
c1 = −22�5×105 Pa� c2 = −1�26� c3 = −17�8×105 Pa.

Elastin is an extensible protein in connective tissues giving them the elastic mechanical
behavior. It consists of polypeptide chains which are elongated and sparsely cross-linked and
can experience large strains. It can be considered that the constitutive law of elastin bundles
is linear even in the domain of large strains. Young’s modulus of an elastin fiber is of order
105 Pa. A graphical representation of the elastin constitutive law is given in Fig. 11.1.1 for
alveolar tissue, together with collagen.

Fig. 11.1.1 The stress–strain relationships for a network of elastin and collagen fiber
bundles (according to Denny & Schroter 2000; see also references therein). The curve for
collagen is obtained using (11.1.1), while the liner stress–strain relationship for elastin is
drawn for E = 0�71 MPa
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11.1.2 Basic experiments and mechanical models

The basic experiments for the determination of tissue constitutive laws, or material models,
are uniaxial and biaxial tests. Here are presented some typical experimental results for
isotropic and orthotropic tissue characteristics and the corresponding material models. Also,
the tissue models which describe the hysteretic, as well as viscoleastic behavior of tissue
are included.

Uniaxial Test and Uniaxial Model
The uniaxial test is the basic mechanical test for biological tissue, as it is in general for
other engineering materials. If a strip of a tissue, dissected from a membrane, is stretched
quasi-statically, a typical stress–strain relationship shown in Fig. 11.1.2b is obtained. The
main characteristic of tissue is that it has hardening behavior, namely the stress nonlinearly
increases with strain. It can be seen that the tissue becomes very stiff at large strains.
Also, tissue displays certain hysteretic behavior. The hysteresis is pronounced when muscle
cells are dominant and we will define a material model when the hysteresis is large (see
text below).

Therefore, the tissue material model for uniaxial loading is mathematically defined as
dependence of the stress on strain, or, more conveniently, as dependence of the stress � on
stretch �, i. e.

� = � ��� (11.1.2)

Biaxial Test and Biaxial Model
The uniaxial constitutive law is not sufficient to describe mechanical behavior of biological
membranes under general loading conditions. If a membrane is loaded in two orthogonal
directions, the stress–strain relationships for these directions are not the same as in the case of

Fig. 11.1.2 Uniaxial constitutive law for tissue. (a) Schematic of uniaxial loading of material
element; (b) Stress–strain relationship of a strip cut from alveolar tissue (according to Fukaya
et al., 1968). The tissue has a small hysteresis when unloaded. The loading and unloading
curves are not smooth because stress relaxations and stress recovery were allowed during
the experiment. Idealized constitutive relationship � = ���� is shown by the solid line as
the idealization of the experiment
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uniaxial loading. Characterization of the membrane mechanical response under stretching in
both directions is obtained by performing biaxial tests: a membrane squared strip is stretched
in two orthogonal directions, as schematically shown in Fig. 11.1.3a.

When the tissue can be considered isotropic, the loadings in two directions are to be the
same (here called biaxial conditions). This loading can be achieved if a circular sample is
fixed along the rim and loading by pressure. Then, in the central region the stress–strain state
is the same in all directions (Hildebrandt et al. 1969). Uniaxial and biaxial experimental data
for cat mesentery are shown in Fig. 11.1.3c. If the material is loaded by keeping the ratio of
the smaller stress �2 to the larger stress �1� r = �2/�1 = const, a curve lying between the
uniaxial and biaxial curves is obtained. Hence, the stress–stretch relationship at a material
point is defined by the ratio of the stresses r. The model can be described by a family of curves

� = � ����r=const � r = �2/�1� �2 ≤ �1 (11.1.3)

In practical application of this model, called further biaxial model, the two curves
corresponding to experimental findings are the uniaxial curve ��2 = 0� r = 0� and biaxial

Fig. 11.1.3 Biaxial stress–strain relationships. (a) Schematics of biaxial test; (b) Experi-
mental procedure for biaxial testing of isotropic membrane according to Hildebrandt et al.
(1969): circular sample is fixed around the rim and subjected to pressure which produces
biaxial stress–strain state (stresses and strains in all directions are the same in the cen-
tral region); (c) Data for uniaxial and biaxial loading and fitted curves for cat mesentery
according to Hildebrandt et al. (1969); (d) Test results and fitted curves (see (11.1.3)) for
in-plane loading of bovine pericardium under several constant ratios of Green–Lagrange
strain, E11 (preferred fiber direction), E22 (orthogonal to direction of E11) – stress is the
second Piola–Kirchhoff stress (according to Sacks 2000)
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curve ��2 = �1� r = 1� are used, while the other curves are obtained by linear interpolation
between these two experimental curves.

Another approach to represent the membrane tissue mechanical behavior is to use models
based on the strain energy function, see Section 2.4.2. The most common functions have
exponential form (Fung’s type) (2.4.21). We cite here a function used for the modeling of
canine pericardium (Choi & Vito 1990)

W = b0

[
exp

(
b1E

2
11

)+ exp
(
b2E

2
22

)+ exp �2b3E11E22�−3
]

(11.1.4)

where b0 −b3 are constants, and E11 and E22 are the Green–Lagrange strains. This function
is also used to fit the experimental data in Fig. 11.1.3d (Sacks 2000). Other forms of
strain energy functions will be given in Section 11.2 within computational procedures and
applications.

Hysteretic Model
It was found experimentally that the connective tissue has hysteretic behavior when subjected
to cyclic loading, which is particularly significant when muscle cells are present (Sasaki &
Hoppin 1979). The experimentally recorded dependence between the tensional force and the
material strip length is shown in Fig. 11.1.4a. The constitutive law for the hysteretic tissue
model is shown in Fig. 11.1.4b. It is represented by two relationships:

�	 = �	 ��� and �u = �u ��� (11.1.5)

where the first one corresponds to the loading part within the cycle, with increase of stretch,
while the second is the unloading. It is assumed here and in Section 11.2 that the hysteretic
curve does not change over time, hence the viscous effects are neglected in this model.

Fig. 11.1.4 Hysteretic response of smooth muscle tissue. (a) Experimental results on airway
dog trachealis muscle strips (according to Sasaki & Hoppin 1979) �1 g = 0�00981 N�; (b)
Constitutive model for tissue histeresis expressed as the stress–stretch relationship: �l��� is
the loading curve and �u��� is the unloading curve for one cycle. Note that the axes in the
graph (b) are used as it is usual in engineering practice, opposite from figure (a)
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Viscoelastic Models
In Section 2.2.2 a linear viscoelastic model was introduced based on the relaxation function
(see (2.2.14) and (2.2.15)). Here, we specify another model, the fiber–fiber kinetics model
(Mijailović 1991, Mijailović et al. 1993, 1994). The connective tissue is modeled by a
system of fibers within an elastic medium (Fig. 11.1.5a, top panel). When the tissue deforms
the force transfers among fibers and relative sliding among fibers occur generating internal
frictional force

T �x� t� = 
sign � �x� t��p �x� t�+bw� �x� t� (11.1.6)

where T �x� t� is the force per unit length, � �x� t� is the relative velocity at a point x
along the fiber, p �x� t� is the compressive stress between the fibers; and  and bw are the
Coulomb and viscous friction coefficients. Due to assumption of symmetry of geometry
and loading, one-half of the force is transferred to the other fiber through the traction
which is generated in the region of sliding (Fig. 11.1.5a). In the case of Coulomb friction
only, the traction is constant within the sliding region (Fig. 11.1.5a, bottom panel, p=p0).
The Coulomb friction contributes to the history-dependent deformation of tissue, while
the viscous friction generates the response corresponding to a relaxation function (see

Fig. 11.1.5 Fiber–fiber kinetics model of connective tissue. (a) Schematics of the model,
from top down: extensional force F transferred among fibers as forces F1 and F2, enlarged
contact between fibers, distribution of force within fibers, distribution of contact traction T ;
(b) Experimental stress–strain hysteretic loops when the tissue is loaded cyclically (according
to Mijailović 1991); (c) Computed hysteresis (according to Mijailović et al. 1993, 1994;
Kojić et al. 1998, 2003)
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Fig. 11.1.6 Hysteretic characteristic of surface tension. (a) Experimentally determined
dependence of surface tension on the surfactant area A (according to Ingenito et al. 1999);
(b) Idealized dependence of surface tension on area ratio (0A is the initial area)

(2.2.14)). The differential equations of force balance can be integrated and the hysteretic
tissue response can be obtained, which is in agreement with experimental observations
(Fig. 11.1.5b,c; see references given in the figure caption).

Models of Surfactant Covering Tissue
Biological membranes within organs are covered by surfactant. The surfactant plays an
important role not only in biophysical processes, but also in biomechanical response of
membranes due to the action of the surface tension of surfactant. This is true in particular
for lung microstructure (e.g. Wilson 1982, Ingenito et al. 1999, Bachofen & Schurch 2001).
Our description of the mechanical behavior of surfactant refers first of all to lung surfactant.

As can be seen from Fig. 11.1.6, surface tension depends on the surfactant area and has
a hysteretic characteristic. This hysteresis plays an important role in lung functioning and
gas exchange deep in the lung. In the mathematical description of surface tension � we will
use the relation

� = �
(
A/0A

)
(11.1.7)

where A/0A is the ratio of the current area and the initial area of the surfactant (at a given
point of the surfactant surface).

11.2 Modeling methods for isotropic tissue

In this section we first present a basic concept of numerical procedures used in the modeling
soft tissue. Then we give specifics related to implementation of the mechanical models
described in Section 11.1 into the finite element method and element-free Galerkin method.

11.2.1 General concept of computational procedures

Mechanical models for soft tissue described in Section 11.1.2 represent the nonlinear consti-
tutive laws. Also, displacements of soft tissue can in general be large, therefore the problems
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of modeling soft tissue deformation are geometrically nonlinear (see Section 6.2.3). We here
give a review of the basic finite element (FE) relations in the form used in tissue modeling.
These relations are also applicable to the element-free Galerkin (EFG) method.

In many physiological conditions, inertial forces can be neglected, therefore the tissue defor-
mation can be considered as a quasi-static problem. Solution is obtained by discretization of the
deformable body using a discrete method, such as FE or EFG methods (Fig. 11.2.1). The basic
equation of balance of forces for a finite element has the form (6.2.18),

(
n+1KL + n+1KNL

)�i−1�

tissue
�U�i� = n+1Fext − n+1Fint�i−1�

tissue (11.2.1)

which corresponds to the step ‘n’ and iteration ‘i’ in an incremental-iterative solution
procedure described in Section 6.2. Here,

(
n+1KL

)
tissue

and
(

n+1KNL

)
tissue

are the linear and
geometrically nonlinear stiffness matrices; n+1Fext and n+1Fint�i−1�

tissue are the external forces
acting to the element, which include the action of the surrounding finite elements, and
internal forces due to stresses within the tissue; �U�i� is the vector of increments of nodal
displacements; and the left upper index ‘n+1’ denotes the end of the incremental step. As is
already indicated, the matrix n+1KNL is the same as for any solid, while the matrix n+1KL and
the internal force vector contain the material tissue characteristics, and we further concentrate
on them. They are

(
n+1KL

)�i−1�

tissue
=
∫
V

n+1
(
BT

LCtissueBL

)�i−1�
dV�

n+1Fint�i−1�
tissue =

∫
V

n+1BT
L

n+1�
�i−1�
tissuedV

(11.2.2)

where n+1B�i−1�
L is the linear strain–displacement matrix, see (6.2.12) ; n+1C�i−1�

tissue is the tangent
constitutive matrix for tissue, defined in (6.2.19); and n+1�

�i−1�
tissue is the stress tensor within

Fig. 11.2.1 Urinary bladder discretized into shell finite elements. Base vectors gr and gs

are tangent to the isoparametric r and s lines. Unit vectors p̄1 and p̄2 (left basis, see (2.4.13))
of the principal stretches in the shell tangential plane, at a material point P; they are rotated
for an angle � with respect to the local shell coordinate system x̄� ȳ
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tissue (written here in a matrix form, see (2.1.13)). Integration is performed over the last
known element volume V �i−1�. In Sections 11.2.2 and 11.2.3 we will show how the stress
n+1�

�i−1�
tissue and the matrix n+1C�i−1�

tissue can be evaluated for several tissue models.
The above expressions in (11.2.2) assume a general 3D body. However, if a biological

membrane, as shown in Fig.11.2.1, is considered, the matrix n+1C�i−1�
tissue and the stresses

n+1�
�i−1�
tissue are calculated in the membrane tangential plane (shell finite elements must be used,

see Section 4.5), and then they must be transformed to the global coordinate system using
the transformation relationships (2.2.17) and (2.1.14). Details about these transformations
are given on the web – Theory, Chapter 4, Section 4.5. Furthermore, if the membrane
deformation is large and logarithmic strains are employed, the principal values and principal
directions of the left Cauchy–Green deformation tensor must be calculated (Section 2.4.1).
Namely, we first calculate the left Cauchy–Green deformation tensor from the displacement
field, as in the case of a general 3D deformation: n+1

0B�i−1� = n+1
0

(
FFT

)�i−1�
, where n+1

0F�i−1�

is the deformation gradient; details are given in Section 2.4.1. Then, the tensor n+1
0B�i−1� is

transformed to the local shell system x̄i according to the tensorial transformation (1.3.4),

n+1
0 B̄�i−1� = (

n+1T n+1
0B n+1TT

)�i−1�
(11.2.3)

where n+1T�i−1� is the transformation matrix containing the cosines between local and global
coordinate systems x̄i and xi. Then, using n+1

0 B̄�i−1�, we calculate the angle n+1��i−1� for the
principal directions n+1p̄�i−1�

1 and n+1p̄�i−1�
2 in the element tangential plane (see Fig. 11.2.1

and Example 2.1-1; also see web – Theory, Chapter 2) as

n+1��i−1� = 1
2

tan−1

(
2 n+1B̄12

n+1B̄11 − n+1B̄22

)�i−1�

(11.2.4)

The principal stretches are determined using these principal vectors and the relation (2.4.6)
from which follows (see also Kojić & Bathe 2005):

n+1
0�

�i−1�
k = 1/

∥∥n+1
0 F−1 n+1pk

∥∥�i−1�
� k = 1� 2 (11.2.5)

From these stretches we calculate the principal stresses in the membrane tangential plane,
neglecting transversal shear stresses (Kojić 2002).

Details about the above transformations and calculation of the principal stretches and
directions are given on the web – Theory, Chapter 11, Section 11.2. We further present the
stress integration within an incremental step and calculation of the tangent constitutive matrix,
following Section 6.2, for most of the tissue material models described in Section 11.1.

The above computational scheme and the form of governing equations is the same when
the element-free Galerkin (EFG) method is employed. This can be seen by inspecting the
governing relations presented in Section 8.5.

11.2.2 Biaxial models of membranes, hardening and hysteretic
behavior, action of surfactant

We here present stress integration, i.e. stress calculation at the end of a load step
n+1� = n+1�tissue (see (6.2.22)), and calculation of the tangent constitutive matrix n+1Ctissue



210 COMPUTER MODELING IN BIOENGINEERING

(further denoted by n+1C) for the membrane biaxial model, without and with surfactant, and
for hysteretic tissue model. In the notation below the iteration counter ‘i−1’ is omitted for
simpler writing, but it is implied.

Biaxial Model
The uniaxial and biaxial constitutive relations for membrane are shown in Fig. 11.2.2 (see
also Fig. 11.1.3c) by the stress–stretch relations in the principal strain directions 1 and 2. In
the case of a shell shape, we consider the stretches n�1 and n�2 and the principal directions
np̄1 and np̄2 in the tangential plane of the shell element, as described above (Section 11.2.1).
If the principal stresses at the start of step ‘n’ are n�1 and n�2, corresponding to stretches
n�1 > n�2, then we introduce the stress ratio nr as (Kojić et al. 2006)

nr =
n�2
n�1

(11.2.6)

The stress ratio is r = 1 for biaxial loading, while for uniaxial case r = 0. All curves
r = const. for 0 < r < 1 lie between the biaxial and uniaxial curves. We assume that stresses
are positive, i.e. n�1 ≥ 1 and n�2 ≥ 1, occurring under usual physiological conditions. In
the case of a stretch less than 1 we use 1/� and the corresponding constitutive curve in
extension, in order to have the same stress in magnitude corresponding to the same ratio of
material length change; this is an approximation which does not usually affect the solutions,
since biological tissues in physiological conditions are subjected to extensional rather than
compressive loadings.

In the stress integration procedure it is assumed that the known quantities at the current
state of deformation are:

n�1�
n�2�

n�1�
n�2�

n+1�1�
n+1�2 (11.2.7)

with n�1 >n�2, hence the stress ratio nr is given by the relation (11.2.6). The stress n+1�1,
corresponding to stretch n+1�1, is obtained as a linear interpolation between stresses at
uniaxial and biaxial curves n+1�u and n+1�b,

n+1�1

(
n+1�1

)= (
1− n+1r

)
n+1�u + n+1r n+1�b (11.2.8)

Fig. 11.2.2 Stress–stretch relations for uniaxial �r = 0�, biaxial �r = 1� and r =
�2/�1 = const conditions. The stress �1�

n+1�1� for stretch n+1�1 is linearly interpolated from
the stresses �b and �u on the biaxial and uniaxial curves. The tangent modulus E� = ��1/��1
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The relation (11.2.8) also follows from a linear interpolation of tangent modulus between the
values E�u and E�b on uniaxial and biaxial curves to obtain n+1E� on the curve with n+1r,

n+1E� = (
1− n+1r

)
n+1E�u + n+1r n+1E�b (11.2.9)

and the stress increment

��1 = n+1E���1 (11.2.10)

Using the secant modulus corresponding to the calculated stress n+1�1 and the plane
stress conditions, the stress n+1�2 is obtained as

n+1�2 = n+1�1

� n+1e1 + n+1e2
n+1e1 +� n+1e2

(11.2.11)

where n+1e1 and n+1e2 are the total strains measured from the undeformed configuration. We
here use the logarithmic strains, hence n+1e1 = ln

(
n+1�1

)
and n+1e2 = ln

(
n+1�2

)
.

The computational steps are summarized in Table 11.2.1. Note that when the values of
t+�tr are (within a numerical tolerance) equal to 0 or 1, a solution check is performed to
keep the solution for stress within the domain bounded by the biaxial and uniaxial curves.

We calculate the tangent constitutive matrix n+1C̄ in the principal directions 1 and 2. In
order to derive the expressions for n+1C̄ij� i� j = 1� 2, we use the elastic matrix for the plane
stress conditions given in (2.2.7) with the tangent elastic modulus n+1ET . From the second
of the constitutive stress–strain relations (2.2.2) it follows

de2 = 1−�2

t+�tET

d�2 −�de1 (11.2.12)

Further, the relation d�2/d�1 = n+1r and the first constitutive relation can be used to obtain

t+�tET = (
1− n+1r�

)
n+1�1

n+1E� (11.2.13)

where n+1E� is the tangent modulus given in (11.2.9); also, the relation de1 = n+1�1d�1 is
used here which follows from the definition of the logarithmic strain. Then, the constitutive
matrix for the shell in-plane terms is

C̄ = n+1�1
n+1E�

1− n+1r�

1−�2

⎡
⎢⎣

1 � 0
� 1 0

0 0
1−�

2

⎤
⎥⎦ (11.2.14)

Table 11.2.1 Computational steps for stress calculation for biaxial model

Calculate the principal stretches and principal directions in the tangential membrane plane.
Calculate stresses n+1�1 and n+1�2 in the principal directions.
Transform the stresses n+1�1 and n+1�2 first to the local membrane coordinate system
x̄1� x̄2 (axes x̄� ȳ in Fig. 11.2.1) and then to the global coordinate system for use in
equation (11.2.1).
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The general form of the shell constitutive matrix is given in (2.2.8) which is the extension
of this matrix. This matrix is isotropic with respect to the rotation around the shell normal
(see web, Examples – Example 2.2-6), and the transformation to the local shell coordinate
system is not needed. Note that the calculated tangent constitutive matrix affects the rate of
convergence during equilibrium iterations, but not the solution (see Section 6.2).

Membranes Covered by Surfactant with Hysteretic Characteristic
We present a computational procedure to model the mechanical response of a biological
membrane covered by surfactant. It is assumed that the surface tension depends on the
change of the surfactant area, in particular with a hysteresis when the surfactant area changes
cyclically. The presented method is applicable to any membrane geometry and will be
illustrated through examples in Section 11.3.

A membrane covered by surfactant is schematically shown in Fig. 11.2.3. We assume that
there is no slip between the surfactant layer and tissue, therefore change of the surfactant area
during membrane deformation is the same as the change of the membrane area. Experiments
show (Wilson 1982, Ingenito et al. 1999) that the surface tension � (N/m) is a function of
the ratio of the current surfactant area A and the initial area, A/0A, see Fig. 11.2.4. At a
membrane point on the surface P, the surface tension can be expressed in the form

� = �

(
dA

d 0A

)
= �

(
det J
det 0J

)
(11.2.15)

where J and 0J are Jacobians of transformation between the Cartesian coordinate system and
the natural coordinate system r� s of the membrane finite element, corresponding respectively,
to the current configuration � and undeformed configuration 0� (see (4.3.9), as well as
(4.5.6) in which t = 0 defines the mid-surface). The det J is

det J =
∥∥∥∥�x

�r
× �x

�s

∥∥∥∥ (11.2.16)

Fig. 11.2.3 Biological membrane covered with surfactant and modeled by shell finite
elements. The surfactant deforms as the shell surface. (a) Geometry of the membrane and
surfactant; (b) Stress in tissue and surfactant (in the first principal strain direction)
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Fig. 11.2.4 Dependence of surface tension � on the surfactant area ratio A/0A for the
surfactant covering alveolar lung miscrostucture during inspiration–expiration cycles (Wilson
1982). Dashed curve (numerical) is obtained by a scaling procedure. Note that the surface
tension is much higher during inspiration

where �x/�r and �x/�s are the base vectors evaluated at a shell point (see Fig 11.2.3), and
�•� represents the vector modulus (see (1.3.10)).

Hence, for a current membrane deformation, the surface tension can be determined. It is
of particular interest to consider a hysteretic characteristic of surface tension, such as shown
in Fig.11.2.4 (Wilson 1982). We have also shown by dashed line a scaled curve �

(
A/0A

)
,

corresponding to a smaller amplitude of deformation. Namely, membrane points have, in
general, a different extent of deformation and therefore may reach the amplitudes of the
ratio

(
A/0A

)
max

which defer from the experimental curve. Then, it is necessary to scale
the experimental curve (Kojić et al. 2006). Details about the curve scaling are given on the
web – Theory, Chapter 11.

Surface tension has the same action on the tissue in all directions within the surface (see
Fig. 11.2.3). In order to simplify calculation of tissue external loading due to surfactant, we
evaluate the stress n+1�� equivalent to the surface tension n+1�, as

n+1�� =
n+1�
n+1 �

(11.2.17)

where n+1 � is the membrane thickness at integration point. Then, according to (11.2.2), the
nodal force due to surfactant (applicable to any equilibrium) is

n+1F� =
∫

n+1V

n+1BT
L

n+1��dV (11.2.18)

Here the stress tensor n+1�� has the non-zero normal components only in the local shell
system, i.e. n+1�̄

�
km = �km

n+1�� where �km is the Kronecker delta-symbol (�km = 1 for k = m
and �km = 0 for k �= m).

Note that the force due to surfactant n+1F� depends on the displacements since the
stress n+1�� depends on n+1�

(
n+1A/0A

)
according to (11.2.15). Hence, using (11.2.17) and

(11.2.15) the nonzero constitutive terms in the local membrane coordinate system are

n+1C̄
�
ij =

n+1E�

n+1 �

det n+1J
det 0J

� i� j = 1� 2 (11.2.19)
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where n+1C̄
�
ij = � n+1�̄

�
ii /� n+1ējj (no sum on i and j), and n+1E� = n+1

[
d�/

(
dA/d 0A

)]
. These

terms are added to the constitutive matrix for tissue. In deriving (11.2.19) the following relation
is used

d �dA�

d 0A
= �dē11 +dē22�

det J
det 0J

(11.2.20)

In Section 11.3 it will be demonstrated how the surfactant affects the mechanical
response of biological membranes.

Tissue with Hysteresis
Here, we present a computational procedure for modeling of biological tissue with hysteretic
mechanical response when subjected to a cyclic loading. It is assumed that the hysteresis
is displayed in the direction of tissue fibers, and described by a uniaxial stress–stretch
relationship (see Section 11.1.2, hysteretic model). Consequently, we use simple 1D finite
elements of Section 4.2.1 and 1D hysteretic constitutive models.

A uniaxial constitutive relationship is schematically shown in Fig. 11.2.5 (see also
Fig. 11.1.4b) as a stress–stretch loop, with the same amplitude ��max�exp over cycles. The
main conditions which must be considered in the stress integration within an incremental-
iterative FE procedure are: (a) to know whether the loading regime is ‘loading’ or ‘unloading’
within the cycle; and (b) to evaluate the stress in a way that the stress–stretch point at the end
of an incremental step lies on the corresponding constitutive curve. The stress integration
procedure to obtain the stress at the end of load step ‘n’, n+1��� ≡ n+1� , in the fiber direction
of the fiber unit vector n+1�0, is summarized in Table 11.2.2.

After the stress n+1� is evaluated, this stress is transformed to the global coordinate
system using the relation (2.1.14), see also web – Theory, Chapter 2, to obtain the components
n+1��f�ij of the fiber stress n+1�f ,

n+1��f �ij = n+1� n+1�0i
n+1�0j (11.2.21)

where n+1�0i and n+1�0j are projections of the unit vector n+1�0 to the global coordinate
axes xi. The stress n+1�f is superimposed to the stress of the surrounding material (see also
Section 12.2 where muscle fibers are considered). If the surrounding material is elastic we
have (as in (12.2.20))

n+1� = n+1�E �1−��+� n+1�f (11.2.22)

Fig. 11.2.5 Experimental and numerical stress–stretch loops
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Table 11.2.2 Iterative scheme for material with hysteretic characteristic

Initial solution (cycle counter l = 0)
We follow the experimental curve in the loading part and reach the amplitude �

�0�
max for

calculation of the scale factor s
�0�
� =

(
�

�0�
max −1

)
/
[
��max�exp −1

]
for each material

(integration) point. The unloading curve is determined using this initial scale factor and
the scaling procedure given on the web – Theory, Chapter 11.

Iteration loop on cycles l = l+1:
Compute the stresses for the entire cycle following the scaled constitutive loops for
each integration point. The scaling has a ‘symmetric’ character (the loop ‘thickness’ is
scaled). The scaled hysteretic characteristic for a material point is determined using the
scale factors s

�l−1�
� and given functional � −� relationship. Also, determine scale

factors for the current loop iteration s
�l�
� .

Convergence check for cycle l:
Difference between two successive amplitudes �

�l−1�
max and �

�l�
max for all material points

must be within a selected numerical tolerance ��, i. e.
∣∣∣��l�

max −�
�l−1�
max

∣∣∣ ≤ ��. If this

convergence criterion is not satisfied go to step 2 for the next cycle iteration.

where � is the volumetric fraction of fibers, and n+1�E is the stress of the elastic material
(= CE n+1e, where CE is elastic matrix and n+1e is the strain). In the case of a biologi-
cal membrane, instead of elastic stress in (11.2.22), the membrane stress obtained by the
stress integration shown above (biaxial model) should be used. The stresses n+1� enter the
equation (11.2.2) for the current equilibrium iteration ‘i’.

The constitutive coefficient ET for the fiber direction follows from the relation

n+1ET = d n+1�

d n+1e
= n+1� n+1E� (11.2.23)

where n+1E� is the slope on the current cyclic curve. The term n+1ET is further used to
perform superposition with the constitutive matrix of the surrounding material (see web –
Theory, Chapter 11).

11.2.3 Use of strain energy functions

General expressions for stress calculation and calculations of the tangent constitutive matrix
are given here for tissue material represented by the use of the strain energy functions. Also,
some details are presented for two specific forms for the strain energy.

Consider the strain energy function for a nonlinear elastic material model (tissue), which
has a general form (Holzapfel 2001):

W = �vol�J�+�iso�I1� I2� (11.2.24)

where the first and the second term on the right-hand side correspond, respectively, to the
volumetric and isochoric deformation of the material; J is the determinant of the deformation
gradient F (see (2.4.2)), i.e. J = det F = �1�2�3; and I1 and I2 are the first and the second
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invariant of the modified Cauchy–Green deformation tensors. The three invariants of these
deformation tensors are (see (1.3.15))

I1 = J−2/3I1 = J−2/3
(
�1

2 +�2
2 +�3

2)
I2 = J−4/3I2 = J−4/3

(
�1

2�2
2 +�2

2�3
2 +�3

2�1
2) (11.2.25)

Ī3 = J−2I3 = J−2
(
�1

2�2
2�3

2)= J−2J 2 = 1

The modified invariants (and modified Cauchy–Green deformation tensors) correspond to
the modified deformation gradient,

F̄ = J−1/3F (11.2.26)

which gives incompressible deformation, since det F̄ = J−1 det F = 1. We consider the defor-
mation in the principal stretch directions defined by the left basis p̄1� p̄2� p̄3 (see (2.4.13))
with the principal stretches �1��2��3. The indices for the configurations used in Section 2.4.2
and above are omitted here for simpler writing.

The stresses follow from the relation (2.4.20). We use from (11.2.24), the definition
of the Green–Lagrange strains (2.4.15) – which in the principal directions are: EGL

i =
0�5

(
�2

i −1
)
� i = 1� 2� 3; and the relationship (2.4.19) between the Piola–Kirchhoff and

Cauchy stresses in the principal direction: Si = �i/�2
i , where it is taken 0�/t� = 1. Then,

from (11.2.24) follows:

�i = �i

��

��i

= �i

��vol�J�

��i

+�i

��iso�I1� I2�

��i

=

= �vol
i +�iso

i � no sum on i

(11.2.27)

where �vol
i and �iso

i are the volumetric and isochoric parts of the Cauchy stress.
The constitutive matrix in the principal stretch directions is obtained from the definition

Cij = ��i/�ej = �j��i/��j . Then, from (11.2.27) we obtain (no sum on i, j)

Cvol
ij = �j

��vol
i

��j

= �i�j

�2�vol�J�

��i��j

� Ciso
ij = �j

��iso
i

��j

= �i�j

�2�iso�I1� I2�

��i��j

(11.2.28)

Note that the above expressions for the stresses and the constitutive matrix can be evaluated
at the end of the incremental step and for the iteration ‘i−1’ by using the stretches n+1�

�i−1�
i .

These expressions (as well the matrix in (11.2.14)) do not take into account change of the
principal stretch directions due to change of strains. The additional ‘kinematic’ terms of Cij

do not depend on the material moduli (derivatives of stresses with respect to strains) and
can be found elsewhere (e.g. Simo & Taylor 1991, Holzapfel 2001).

Potential According to Delfino et al. (1997)
Here, the above general expressions are implemented to the model with the strain energy
function (potential) according to Delfino et al. (1997) used for the tissue of carotid artery.
The potentials are

�iso�I1� = a

b

{
exp

[
b

2
�I1 −3�

]
−1

}
� �vol �J� = 1

2�
ln2 J (11.2.29)
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where a and b are material constants – the first has the dimension of stress, while the second
is dimensionless; and � is a penalty parameter which can be determined.

The principal stresses �iso
i and �vol

i are obtained from (11.2.27) and (11.2.29), with use
of (11.2.25),

�iso
i = aJ−2/3��2

i − 1
3

I1� exp
[

b

2
�I1 −3�

]
� �vol

i = 1
�

ln J (11.2.30)

From (11.2.28) and (11.2.29) follow the terms of the matrix Cij
iso and Cij

vol as

Cij
iso = a J−2/3 exp
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Cij
vol = 1/�

(11.2.31)

where �ij are the Kronecker delta symbols.
Details about the derivation of the expressions (11.2.30) and (11.2.31) and determination

of the penalty parameter � are given on the web – Theory, Chapter 11.

Two-Dimensional Fung’s Potential
The strain energy potential function for 2D problems is given as (Fung et al. 1979, Fung 1990)

W = c

2

[
exp

(
a1E

2
1 +a2E

2
2 +2a4E1E2

)−1
]

(11.2.32)

where c (dimension of stress) and a1� a2� a4 (dimensionless) are material constants; and
E1�E2 are the Green–Lagrange strains (in the principal strain directions). The principal
stresses follow from (2.4.20), (11.2.32) and the relation Si = �i/�2

i , as

�1 = c�2
1 �a1E1 +a4E2� exp

(
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2
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2
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2
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2
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) (11.2.33)

where �1��2 are the stretches. The constitutive matrix Cij = ��i/�ej follows from these
expressions for stresses, with use of the relations: dEi/��i = �i and �ei/��i = �i, no sum on
i. The expressions for the matrix Cij are given on the web – Theory, Chapter 11.

11.3 Examples

Several typical examples are solved where the models’ computational procedures presented
in Section 11.2 are used. For some of these examples the Software is provided on the web
where solutions can be obtained for a range of the problem parameters.

Example 11.3-1. Deformation of spherical biological membrane under cyclic pressure
loading
A spherical biological membrane (Fig. E11.3-1a) is subjected to internal pressure loading
which has a cyclic character (Kojić et al. 2006). The cases when the tissue is not covered
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by surfactant and when it is covered on the internal side are considered. It is assumed that
the membrane tissue behavior is defined by the biaxial model, with the two characteristic
curves shown in Fig. E11.3-1b. Surfactant generates surface tension which depends on the
area ratio and has a hysteretic character (Fig. E11.3-1c).

Fig. E11.3-1 Spherical biological membrane loaded by cyclic internal pressure. (a) Mem-
brane geometry and FE mesh of part of the sphere which is modeled by shell finite elements
(R0 – initial radius, �0 – initial thickness); (b) Constitutive curves for tissue biaxial model
(also shown the curve for the stress ratio r = 0�5); (c) Dependence of the surface tension
of surfactant covering tissue on the area ratio (Wilson 1982); (d) Calculated dependence of
radial displacement on pressure (it has a hysteretic character in case of action of surfactant)
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Part of the membrane in the first quadrant is modeled by shell finite elements (Section 4.5)
due to symmetry in loading and geometry as shown in Fig. E11.3-1a. Computational proce-
dures for stress integration of Section 11.2.2 is applied for the biaxial tissue model and for
surfactant. The pressure is increased to a selected amplitude and then decreased to zero.

The calculated pressure–radial displacement relationship is shown in Fig. E11.3-1d. In
the case with no surfactant action, the loading and unloading paths are along the same
nonlinear curve. However, when the membrane is covered by surfactant, the loading curve
is below the unloading curve and there is an energy loss within the cycle due to hysteresis
in surface tension. This mechanical response can have important effects on the behavior
of membrane-type organs, such as microstructure of the lung (Wilson 1982, Bachofen &
Schurch 2001).

Solutions for various model parameters can be obtained using Software on the web.

Example 11.3-2. Cylindrical membrane without and with rings subjected to internal
cyclic pressure
Here, deformation of a cylindrical biological membrane without and with rings is studied
when subjected to cyclic internal pressure (Kojić et al. 2006), Fig. E11.3-2a. A cylinder
restrained to deform axially (called here closed cylinder) is analyzed in the case when
the tissue is covered from one side by surfactant or when there is no surfactant. Also, an
open cylinder, free to deform axially (and without axial loading) is considered in the case
when there are rings distributed at the same distances, or there are no rings. The tissue
behavior is described by the biaxial model, and surfactant with hysteresis, with data as in
Example E11.3-1. Hysteretic constitutive curve for the rings is given in Fig. E11.3-2c.

Four-node shell elements (Section 4.5) are used for tissue and line elements for rings.
Symmetry boundary conditions are employed for the point lying in the symmetry planes
(zero displacement through symmetry plane, and no rotations around normal to the symmetry
plane). Radial displacements are allowed, while the axial displacements are restrained in the
case of a closed cylinder.

The calculated dependences of radial displacement on the pressure are shown in
Figs. E11.3-2d,e. In the case of a closed cylinder and no surfactant we have that the stress
state is such that the stress ratio is close to 0.5 during the whole cycle (see details in Tutorial
for this example on the web), following the dotted constitutive curve in Fig. E11.3-1b;
while the radial displacement–pressure curve is nonlinear and loading–unloading paths fol-
low the same curve (Fig. E11.3-2d). When surfactant is present, the displacement–pressure
relationship has a pronounced hysteretic character.

When the cylinder is open we have the following solutions (Fig. E11.3-2e). If there is
no surfactant and no rings, the stress state reduces to uniaxial and the loading–unloading
paths follow the same nonlinear curve (top curve, the softest response). When surfactant is
acting and no rings, the cylinder becomes stiffer and has hysteresis in the displacement–
pressure relationship (dashed line). In the case with rings and no surfactant, the cylinder is
stiffer than in the case with action of surfactant only (solid line) and the hysteresis in the
displacement–pressure relationship is due to hysteretic characteristics of the rings. Finally,
the largest stiffness of the cylinder is displayed when both surfactant and rings are present
(the lowest dashed hysteretic curve). The partial hystereses due to actions of surfactant and
rings (which act in the same sense) are not simply summed to obtain the resulting hysteresis
in the last case, because the amplitude in displacement is decreased and the constitutive
loops of surfactant and rings become smaller.
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Fig. E11.3-2 Cylinder loaded by a cyclic internal pressure. (a) Cylinder geometry and
geometrical data; (b) Open cylinder with rings; (c) Constitutive curve for ring (material
model with hysteresis); (d) Dependence of radial displacement on internal pressure (closed
cylinder); (e) Dependence of radial displacement on pressure when there are rings and
surfactant

Example 11.3-3. Deformation of a biological membrane with a hole
In this example we calculate the deformation of squared plane membrane with a hole,
stretched biaxially (Vlastelica et al. 2006). The membrane has a ring at the internal rim of
the hole and is covered by surfactant on both sides and over the ring (Fig. E11.3-3a). It is
assumed that the stretches are the same and uniform in both directions along the external
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boundary of the membrane, given by the cyclic displacement uext �t�. Geometrical data are
shown in the figure and material characteristics of tissue, surfactant and ring are the same
as in the previous two examples.

The membrane is modeled by the four-node shell finite elements, as shown in the figure,
the action of surfactant is calculated as presented in Section 11.2, and the ring is modeled
by the line elements. One-quarter of the plate is modeled, with the symmetry boundary
conditions at the coordinate axes (no displacements through the symmetry lines), with all
rotations for the shell elements excluded. The external displacement increases, reaches a
maximum and decreases. Since the material models used here are time independent and the
inertial forces are neglected, the results presented in Figs. E11.3-3b,c do not depend on the
shape of the loading–unloading functions of time.

Fig. E11.3-3 Deformation of plane squared membrane with a hole and ring at the internal
rim of the hole; membrane is covered by surfactant. (a) Geometry of the membrane (one-
quarter) and the FE mesh; (b) Calculated displacement of the point D in terms of the external
prescribed displacement. (c) Dependence of the external stretching force in one direction on
the external displacement
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In order to quantify the important characteristics of the displacement field of the mem-
brane during cyclic stretching, consider displacement of a point D which moves along the
x-axis (Fig. E11.3-3a). Characteristics of the displacement of this point are the same for the
whole membrane and ring (except the external boundary where displacements are prescribed).
When there is no surfactant, the displacement has a hysteretic character due to hysteresis in
the ring material (Fig. E11.3-2c) with the counterclockwise direction (Fig. E11.3-3b). This
loop direction is due to the fact that the resistance to the external stretching is larger in the
period of loading than during unloading. When surfactant is present, it acts outward on the
ring and tissue and increases the displacement. This action is larger in the loading period
since the surface tension is larger during loading (Fig. E11.3-1c). With the data used in this
example we have that the hysteretic action of surfactant is more dominant in the period
of small stretches and the loop in displacement is clockwise, while in the domain of large
stretches (near half of the cycle), hysteresis of ring dominates and the displacement loop
is counterclockwise. Note that in the case of no hysteresis within tissue (no ring in this
example), the hysteresis in displacement under action of surfactant will be clockwise (not
shown in the figure). Therefore, in this example the hystereses of surfactant and tissue have
opposite actions with respect displacements of the tissue.

Dependence of the stretching force (in one direction) on the displacement uext is shown in
Fig. E11.3-3c. The force–displacement loop is clockwise since an energy dissipation occurs
within the cycle due to hysteretic characteristics of tissue and surfactant. The hysteresis is
smaller when there is no surfactant, and is significantly increased when surfactant is present.
Note that here the hystereses due to tissue and due to surfactant have the same direction
(clockwise) with respect to the force–displacement loop.

Solutions for other example parameters can be obtained using Software on the web.

Example 11.3-4. Blood vessel under pressure and extension
Deformation of a blood vessel under pressure and axial loading is modeled using the model of
Delfino et al. (1997) described in Section 11.2.3. We use the strain energy functions defined

Fig. E11.3-4 Blood vessel under pressure and extension. (a) Geometry of blood vessel
(one-quarter of the vessel, dark region, is modeled by 3D finite elements); (b) Dependence
of the internal pressure on the inner radius which changes during pressure increase, for three
values of initial axial stretch �z. Data (lengths in mm): ri = 3�1� r0 = 4� L = 5
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in (11.2.29), with the constants a = 44�2 kPa� b = 16�7. The blood vessel wall is modeled by
3D finite elements (Section 4.3) and one quarter of the vessel is discretized (Fig. E11.3-4a)
due to symmetry in geometry and loading, with symmetry boundary conditions at coordinate
planes x− z and y − z (no displacements through these planes).

The vessel is first stretched axially until a desired axial stretch is reached and then
loaded by internal pressure. The incremental-iterative procedure described in Section 6.2.3 is
implemented, with use of the relations (11.2.30) and (11.2.31) for the stress and constitutive
matrix calculations. Dependence of the internal radius on the pressure is given in Fig. E11.3-
4b for three axial stretches. These results agree with the solutions in Holzapfel et al. (2000).
Solutions for other model parameters can be obtained using the Software on the web.

Example 11.3-5. Modeling of the urinary bladder
Deformation of the urinary bladder under internal pressure during filling is considered.
The geometry and material data of the rabit urinary bladder are obtained from experiments
(Zdravkovic 2000). A simplified shape with axial symmetry shown in Fig. E11.3-5a is

Fig. E11.3-5 A simplified model of rabbit urinary bladder. (a) Original configuration; (b)
Deformed configuration with strain field (equivalent strain); (c) Geometrical data of the
original configuration; (d) Pressure–volume relationship obtained using elastic and Fung’s
nonlinear elastic 2D model. Data: linear elastic material model �E = 0�05 MPa� � = 0�49� and
Fung’s model (equation (11.2.32): c = 3�372×10−3MPa� a1 = 0�6� a2 = 0�43� a4 = 0�49)
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adopted (Vlastelica et al. 2007). Data about shape geometry and thickness are given in
Fig. E11.3-5c.

Due to axial symmetry with respect to geometry and loading we model only one-quarter
of the body. It is considered that the wall is thin, hence the membrane conditions (with zero
stress in the direction to the membrane normal) and we use the four-node shell elements (see
Section 4.5) of the FE model as shown in the figure. Nodes lying in x− z and y − z planes
are constrained according to symmetry conditions: no displacement through the symmetry
planes and no rotation around the axes normal to the symmetry planes. Also, it is taken that
the nodes at the bottom rim have no displacements and rotations. We consider quasi-static
deformation and increase the internal pressure assuming continuous filling.

Two material models are used: linear elastic and the Fung 2D model with the strain
potential given in (11.2.32). The principal strains are in the axial and circumferential direc-
tions due to axial symmetry and Fung’s model with only normal strains is applicable. Note
that this model provides an orthotropic mechanical response which is observed experimen-
tally. Material constants for the models are given in the figure caption. The elastic modulus
is estimated from the stress–strain relationship obtained assuming biaxial stretching by the
same strains in both membrane directions and Fung’s model; also, it is taken that material
is almost incompressible.

Deformed configuration is shown in Fig. 11.3-5b with the field of equivalent
(=(2/3eijeij�

1/2) logarithmic strain. It can be seen that the strains close to 25% occur in
the bottom region. The pressure–volume relationships for the two materials, Fig. 11.3-5d,
show the nonlinear character. Note that, although the elastic modulus is fitted to a biaxial
stretching with use of the Fung model, the elastic solution shows a larger stiffness of the
bladder. Solutions for other parameters of the FE model can be obtained using the Software
on the web.

The constitutive model used here corresponds to the loading (filling) regime. Experiments
show that another constitutive law governs the unloading (voiding) process (Korkmaz &
Rogg 2007).
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Mijailović, S.M. (1991). Elasticity and energy dissipation in lung connective tissue. Ph.D. Thesis, MIT,
Cambridge, MA.
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South-East European Conf. Comp. Mech (pp. 462–8), Kragujevac, Serbia.
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Skeletal Muscles

In this chapter we present fundamentals of skeletal muscle (further called muscle) mechanics
and a numerical algorithms, based on the finite element method, for the determination of
the muscle response. Hill’s three-component phenomenological model is used as a basis for
our analysis. In order to include muscle fatigue, an extension of Hill’s model is introduced.
Considering muscle as a bundle of sarcomeres of various physiological properties, we present
a modification of Hill’s three-component model to take into account different fiber types.
A cylindrical muscle is given as the example, with some representative solutions, for which
the software on the web can be used to investigate muscle mechanical response for various
geometrical and material parameters, as well as loading, activation, fatigue and relaxation
conditions.

12.1 Introduction

12.1.1 Basic physiology of muscle mechanics

A single muscle fiber is a cylindrical, elongated cell. Each fiber is surrounded by a thin layer
of connective tissue called endomysium (Fig. 12.1.1 – see color plate). Organizationally,
thousands of muscle fibers are wrapped by a thin layer of connective tissue called the
perimysium to form the muscle bundle. Groups of muscle bundles that join into a tendon at
each end are called muscle groups, or simply muscles. The entire muscle is surrounded by
a protective sheath called the epimysium.

The muscle cells exhibit a striking banding pattern responsible for their classification
as striated muscle. The striations arise from a highly organized arrangement of subcellular
structures. The muscle cell membrane is called the sarcolemma. Each muscle fiber (muscle
cell) contains several hundred to several thousand myofibrils (Fig. 12.1.1). Each myofibril in
turn has, lying side by side, about 1500 thick filaments and 3000 thin filaments, which are
large polymerized protein molecules that are responsible for muscle contraction. The thick
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Fig. 12.1.1 Schematic representation of muscle macrostructure (Fox 2004, with permission
from The McGraw-Hill Companies, January 14, 2008) From Human physiology, Fox, (2004),
pp. 327 (see Plate 6)

and thin filaments partially interdigitate and thus cause the myofibrils to have alternate light
and dark bands (Fig. 12.1.2 – see color plate). The light bands contain only thin filaments and
are called ‘I’ bands because they are isotropic to polarized light. The dark bands contain the
thick filaments as well as the ends of the thin filaments where they overlap the myosin, and
are called ‘A’ bands because they are anisotropic to polarized light. The thin filaments are
attached to a so-called ‘Z’ disc (or Z line) which itself is composed of filamentous proteins
different from the thin and thick filaments. The myofibrils are suspended inside the muscle
fibers in a matrix called the sarcoplasm, which is composed of usual intracellular constituents.
In the sarcoplasm there are a tremendous number of organelles called mitochondria that lie
between and parallel to the myofibrils. These organelles convert chemical energy contained
in carbohydrate and fat to ATP, the only energy source that can be used directly by the cell
to support contraction. Also in the sarcoplasm is an extensive endoplasmic reticulum, which
in the muscle is called the sarcoplasmic reticulum. This reticulum is a reservoir of calcium
ions and is extremely important in the control of muscle contraction.

The basic contractile unit of a striated muscle cell is the sarcomere (Fig. 12.1.2 – see
color plate), which consists of a centrally located array of thick filaments that interdigitate
with thin filaments attached to the cytoskeleton at each end of the sarcomere (the Z lines).
Myofibrils contain many sarcomeres in series, and muscle cells contain large numbers of
myofibrils in parallel. Thin filaments consist of polymers of actin, tropomyosin and nebulin,
plus the Ca++-binding regulatory protein troponin. Sometimes these filaments are simply
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Fig. 12.1.2 Muscle microstructure (Fox 2004, with permission from The McGraw-Hill
Companies, January 14, 2008) From Human Physiology, Fox, (2004), pp. 331 (see Plate 7)

called ‘actin filaments’. Thick filaments consist mainly of myosin (often referred to as
‘myosin filaments’) and titin. The ‘head’ regions of individual myosin molecules project
laterally from the filament. These projections, called cross-bridges, contain the actin- and
ATP-binding sites. A high free energy state of the cross-bridges occurs after ATP binding and
hydrolysis to form the myosin–ADP–Pi complex, which has a high affinity for actin. Rapid
attachment to the thin filaments in a preferred 90-degree conformation follows. Subsequent
release of bound Pi and ADP leads to a complex whose free energy is minimized after
a conformational change to 45 degrees. This conformational change produces a force on
the thin filament and movement toward the center of the sarcomere. The ATP binding
reduces the affinity of myosin for actin, and the cross-bridges detach from the thin filaments.
ATP hydrolysis regenerates the myosin–ADP–Pi complex in a 90-degree conformation to
complete the cross-bridge cycle.

Muscle contraction is said to be isometric when the muscle does not shorten during
contraction, while it is isotonic when muscle does shorten and the tension on the muscle
remains constant.

The velocity–load relationship shows that muscles shorten more slowly as the load is
increased in isotonic contraction (see Fig. 12.2.1). On the other hand, power output is
maximized at moderate loads at which 40% to 45% of the free energy of ATP hydrolysis is
converted into mechanical work.

Velocity depends on the number of sarcomeres in a muscle cell. Sarcomere–shortening
velocities are a function of cross-bridge cycling rates and load. Maximal cycling rates at
zero load (v0) depend only on the molecular properties of the myosin isoform synthesized
within a striated muscle cell. The direct proportionality between the ATPase activity of
myosin isolated from a cell and v0 for that cell illustrates this molecular diversity, which is
responsible for physiological differences in the speed of contraction of muscle cells from
different sources.

Force generation is a function of the number of cross-bridges that can interact with the
thin filaments. In Fig. 12.2.2 maximum number of cross-bridges corresponds to the region
B–C, where the maximum force is generated. Although the force per one cross-bridge is of
the order of piconewtons, a muscle generates a large force per unit area (around 0�3 N/mm2)
due to the enormous number of cross-bridges.
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Contracting muscles often lengthen when opposing forces are very high. Stresses in
muscle, tendons or skeleton can be very high under such conditions, because cross-bridges
can transiently bear loads that are about 1.6-fold higher than the stresses which they develop
isometrically. Precise studies of the stress–length behavior of the sarcomeres in single skeletal
muscle cells reveal the dependence of stress on the overlap of thick and thin filaments,
because the stress is proportional to the number of cross-bridges that can interact with the
thin filaments (Fig. 12.2.2). Changing the overlap between filaments has minimal effects in
most skeletal muscle because the skeleton constrains changes in lengths to values near the
optimum for force development.

The skeletal muscle fibers are innervated by large, myelinated nerve fibers that originate
in the large alpha motoneurons of the anterior horns of the spinal cord. The nerve fiber
branches at its end to form a complex of branching nerve terminals, which invaginate into
the muscle fiber but lie outside the muscle membrane. The entire structure is called the
motor end plate. A single alpha motoneuron, and all the muscle fibers it activates through
its nerve terminals, is called a motor unit.

Excitation–contraction coupling involves binding of the neurotransmitter acetylcholine
(which is released from the motor nerve endings) to its receptors in the sarcolemma. This
receptor interaction increases the sarcolemma conductance and generates an action potential
that propagates in both directions along the muscle cell followed by:

1. mobilization of Ca++ from sarcoplasmic reticulum;

2. a thin filament conformational change caused by the allosteric binding of Ca++; and

3. cross-bridge attachment and cycling.

The sarcoplasmic reticulum that surrounds each myofibril contains a pool of Ca++ that is
mobilized, when the action potential propagated along the sarcolemma depolarizes transverse
T-tubules. This depolarization briefly opens Ca++ channels in the opposing sarcoplasmic
reticulum membrane. A transient increase in the intracellular Ca++ concentration follows
the action potential.

The binding of four Ca++ ions to troponin induces the conformational change in the thin
filament that enables cross-bridges to bind and cycle. Cycling continues until intracellular
Ca++ is returned to its low resting concentration by active transport into the sarcoplasmic
reticulum. The Ca++ then dissociates from troponin, the thin filament is ‘switched off’, and
relaxation ensues. The mechanical response to a single action potential is a twitch. The force
of a twitch is considerably less than the maximum that can be developed, because the release
of Ca++ is too brief to allow generation of maximal force.

The force of contraction is graded in a skeletal muscle cell by increasing the frequency
of action potentials, and thereby maintaining the thin filaments in a state of prolonged cross-
bridge cycling (tetanus). In a skeletal muscle, force is also increased by the recruitment of
more motor units. The maximum strength of a tetanic contraction for a muscle operating
at a normal muscle length, averages between 3 and 4 kilograms per square centimeter of
muscle. At this tetanized state the muscle is maximally activated, which includes:

1. the thin filaments in a state of prolonged cross-bridge cycling at the level of sarcomere;

2. the highest frequency of action potentials that propagates along the sarcolemma, and
thereby maximal intracellular concentration of Ca++ at the level of muscle fiber;

3. optimal recruitment of all motor units at the level of muscle.
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In the passive (non-activated) state, all events described above are reversed. It is important
to underline that, even when muscles are at rest, a certain amount of tautness usually remains.
This is called muscle tone. The skeletal muscle tone results entirely from a low rate of nerve
impulses coming from the spinal cord.

Skeletal muscles have a high power output when they shorten, and they consume ATP at
a rapid rate. The ATP cost is minimized by the efficient conversion of chemical to mechan-
ical energy. ATP consumption is lower during isometric contractions, but considerable
cycling still occurs. Consequently, the economy of force maintenance is poor in isomet-
ric contractions. The high free energy of the myosin–ADP–Pi complex is never released
when a contracting muscle is stretched. The transformation of an attached cross-bridge
from 90-degree to a 45-degree conformation cannot occur when sarcomeres are lengthening,
therefore, no ATP is consumed by cross-bridge cycling.

All muscles have varying percentages of fast-twitch and slow-twitch muscle fibers. The
basic differences between the fast-twitch and slow-twitch fibers are the following:

1. Fast-twitch fibers are about twice as large in diameter.

2. The enzymes that promote rapid release of energy are two to three times more active in
fast-twitch fibers than in slow-twitch fibers, thus making the maximal power that can be
achieved by fast-twitch fibers twice as large when compared to slow-twitch fibers.

3. Slow-twitch fibers are mainly organized for endurance, especially for generation of aerobic
energy. They have far more mitochondria than the fast-twitch fibers. Also, they contain
considerably more myoglobin, a hemoglobin-like protein that combines with oxygen
within the muscle fiber. In addition, the enzymes of the aerobic metabolic system (which
requires oxygen, but has slower release of energy) are considerably more active in slow-
twitch fibers than in fast-twitch fibers.

4. The number of capillaries per mass of fibers is larger in the vicinity of slow-twitch fibers
than in the vicinity of fast-twitch fibers.

In summary, fast-twitch fibers can deliver extreme amounts of power for a few seconds
to about a minute. On the other hand, slow-twitch fibers provide endurance, delivering
prolonged strength of contraction over many minutes to hours.

12.1.2 Basics of muscle finite element modeling

A muscle is a material body which moves and deforms under external and internal mechanical
action. Thus, the basic mechanical principles of motion of deformable bodies are applicable.
In order to determine the mechanical response of a muscle we can implement methods of
solid mechanics analysis, such as the finite element method.

We here present the fundamental concept of finite element analysis of skeletal muscles,
which in principle is the same as for any deformable solid or structure, and we also emphasize
specifics of muscle modeling.

Fig. 12.1.3a shows a schematic representation of a muscle discretized into 3D finite
elements. Muscle deforms under external loading and internal excitation, and in general
has large displacements and strains. Muscle material has nonlinear constitutive relations
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Fig. 12.1.3 Schematics of muscle FE modeling: from muscle as a deformable body to
Hill’s model. (a) Muscle discretization into finite elements; (b) A 3D finite element with
integration points and muscle fiber; (c) Elongation of muscle fiber under the stress ���;
(d) Hill’s three-component model

(see Section 6.2). Neglecting the inertial forces, an incremental-iterative scheme for deter-
mining muscle motion can be formed. Hence, we have the equilibrium equation of a finite
element (6.2.18) for a load step ‘n’ and iteration ‘i’,

(
n+1KL + n+1KNL

)�i−1�
�U�i� = n+1Fext − n+1Fint�i−1� (12.1.1)

where n+1K�i−1�
L and n+1K�i−1�

NL are the geometrically linear and geometrically nonlinear stiff-
ness matrices for the end of step, �U�i� are the increments of nodal displacements; and n+1Fext

and n+1Fint�i−1� are the external and internal nodal forces. Description of these matrices and
force vectors is given in Section 6.2. We here concentrate on the calculation of the stresses
n+1��i−1� and the tangent constitutive matrix n+1C�i−1� within the finite element, since we
have that (see (6.2.21))

n+1Fint�i−1� =
∫

n+1V �i−1�

(
n+1BT

L
n+1�

)�i−1�
dV �

n+1K�i−1�
L =

∫
n+1V �i−1�

(
n+1BT

L
n+1C n+1BL

)�i−1�
dV

(12.1.2)

Here n+1B�i−1�
L is the linear strain–displacement matrix.

As described in Section 12.1.1, skeletal muscles have a fibrous structure and the muscle
force is generated within the muscle fibers. Therefore, our task is to find the stresses in the
directions of muscle fibers. In Fig. 12.1.3b we have schematically shown a finite element
with a fiber, whose direction in space is defined by the unit vector �0 (axis � in the figure).
This direction corresponds to an integration point used for the numerical evaluation of the
finite element matrices and vectors in equations (12.1.1) and (12.1.2). The stress in the
fiber direction, denoted as ��� (consisting of active part �s and passive elastic part �E ,
see Section 12.2), depends on the elongation �L, or the stretch 	 = 1 + �L/L0, of the
muscle fiber. Here L0 is the initial length of the fiber, when the stress is equal to zero. The
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dependence ��� �	� represents the constitutive law for muscle. This constitutive law can be
defined by a phenomenological (experimentally established) material model, such as Hill’s
model schematically shown in Fig.12.1.3d.

We next present calculation of the stretch in the fiber direction for the current
stage (configuration) of muscle within the incremental-iterative finite element scheme
(equation (12.1.1)), which is needed for the stress determination. The last known configu-
ration for the current step ‘n’ and iteration ‘i’ is specified by the position vectors n+1x�i−1�

of material points. Then, the displacements are n+1u�i−1�. The stretch n+1	�i−1� in the fiber
direction can be calculated as (see Example 2.4-1 of Section 2.4.3)

n+1	�i−1� =
[(

n+1
0Bij

n+1�0i
n+1�0j

)�i−1�
]−1/2

(12.1.3)

where n+1�
�i−1�
0i � n+1�

�i−1�
0j are components of the unit vector n+1�

�i−1�
0 , and n+1

0 B
�i−1�
ij are the

components of the inverse left Cauchy–Green deformation tensor n+1
0 B�i−1�

ij . This tensor can
be computed from the inverse deformation gradient n+1

0 F�i−1� as

n+1
0 B�i−1� = (

n+1
0 FT

n+1
0 F
)�i−1�

(12.1.4)

while the tensor n+1
0 F�i−1� can be evaluated from the displacements n+1u�i−1� (see (2.4.5)),

n+1
0 F�i−1� = I − 
 n+1u�i−1�


 n+1x�i−1�
� or n+1

0 F
�i−1�
ij = �ij − 
 n+1u

�i−1�
i


 n+1x
�i−1�
j

(12.1.5)

The derivatives 
 n+1u
�i−1�
i /
 n+1x

�i−1�
j follow from the interpolation of displacements

(4.3.2), hence

n+1

(

ui


xj

)�i−1�

=
N∑

K=1


NK


 n+1x�i−1�

n+1U
K�i−1�
i � i = 1� 2� 3 (12.1.6)

where NK are the interpolation functions and n+1U
K�i−1�
i are the components of the nodal

displacements.
In summary, for the current configuration we calculate the unit vector n+1�

�i−1�
0 and find

the stretch in the fiber direction n+1	�i−1� from (12.1.3). Then we evaluate the stress n+1��i−1�
s

from the muscle material model, as well as the coefficient n+1C�i−1�
s ≡ 
 n+1��i−1�

s /
 n+1e��

necessary for the tangent constitutive matrix n+1C�i−1�:

n+1��i−1�
s = �s

(
n+1	�i−1�

)
� n+1C�i−1�

s ≡ 
 n+1��i−1�
s


 n+1e
�i−1�
��

=
(

n+1	

 n+1�s


 n+1	

)�i−1�

(12.1.7)

Here, we have used the relation 
 �•� /e�� = 	
 �•� /
	, where e�� = ln �L/L0� is the fiber
strain.

In the section below we present details for calculation of n+1��i−1�
s and n+1C�i−1�

s for Hill’s
model and its modifications.
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12.2 Muscle modeling

12.2.1 Hill’s phenomenological model

The mostly used relation in muscle mechanics is Hill’s equation. It refers to mechanical
behavior of skeletal muscle in the tetanized condition. This equation is given as

�v +b� �S +a� = b �S0 +a� (12.2.1)

where S represents tension (tensional stress) in muscle; v is the velocity of the contraction;
and a� b and S0 are constants (Fung 1993). The constant S0 is the maximum tension that
can be produced under isometric tetanic contraction. The Hill equation can be rewritten in
dimensionless form as

S

S0

= 1− �v/v0�

1+ c �v/v0�
(12.2.2)

in which the maximum velocity is v0 = bS0

a
, and the constant c = S0

a
. A graphical representation

of the equation is given in Fig. 12.2.1.
The maximum tension in the tetanized condition is strongly dependent on the muscle

stretch ratio. The tension–sarcomere length (or stretch) relationship, shown in Fig. 12.2.2,
is due to Gordon (Gordon et al. 1966) and corresponds to the intact skeletal muscle. It can
be noticed that the maximum tension corresponds to the slack muscle length, i.e. to the
extension ratio, or stretch, equal to 1.0. A decrease in stress under shortening and extension
can be explained by a change of the number of cross-bridges between myosin and actin
fibers under nonslack conditions (see also Section 12.1.1).

A simple model which reflects the mechanical behavior of muscle, described by
Fig. 12.2.1 and Fig. 12.2.2, is Hill’s three-component model. A graphical representation of
this model is given in Fig. 12.2.3 (Fung 1993).

The contractile element (CE) has the characteristic that is described by Hill’s equation
and Gordon’s curve, and will be adequately included in the model. The tension–stretch
relationship for the nonlinear elastic element (SEE) is given by

S = �S∗ +��e�	−	∗� −� (12.2.3)

Fig. 12.2.1 Tension–velocity curve corresponding to a muscle in the tetanized condition
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Fig. 12.2.2 Isometric tension–length curve (Gordon et al. 1966)

Fig. 12.2.3 Hill’s functional model of a muscle. CE is the contractile element, SEE is the
serial elastic element and PEE is the parallel elastic element; � is the stress in the muscle
fiber direction

in which S∗ represents the tension corresponding to a stretch 	∗, while  and � are material
constants. The surrounding connective tissue within a muscle is represented by a linear
elastic element that is coupled in parallel to the series of contractile and nonlinear elastic
elements.

12.2.2 Determination of stresses within muscle fiber

We here present a computational procedure for the stress calculation and evaluation of the
tangent constitutive matrix, used in an incremental finite element analysis.

Stress Integration
The main task in stress calculation is to determine stresses in the direction of muscle fibers
(Kojić et al. 1998). We start with the geometry shown in Fig. 12.2.4, corresponding to a
fiber direction and arbitrary muscle state.

The next relation follows from the figure:

Lp0 + 0Up = Lm0 + 0Um +Ls0 + 0Us (12.2.4)
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Fig. 12.2.4 Geometry of the contractile (CE) and nonlinear serial elastic elements (SEE)

where Lp0 is the total initial length, while Lm0 and Ls0 are the initial lengths of the contractile
and serial elastic elements; 0Up�

0Um and 0Us are the initial elongations of the corresponding
elements (here taken to be zero).

We further suppose that the ratio of the initial lengths of serial to the contractile element
is given as

k =
0Ls

0Lm

(12.2.5)

where k is a constant muscle parameter. Dividing equation (12.2.4) by Lm0 and using
Lp0 = Lm0 +Ls0, we obtain a relation for the initial stretches

0	m = �1+k� 0	p −k (12.2.6)

It is usually considered that the initial state corresponds to the undeformed configuration,
hence 0	p = 1, and then 0	m = 1.

At an arbitrary time t we have the following equation for the lengths:

tLp = Lp0 + tUp = Lm0 + 0Um +
t∫

ta

vmdt+Ls0 + tUs (12.2.7)

where vm is the rate of the muscle length change, and ta is the activation time. Dividing this
equation by Lm0 we obtain

�1+k� t	p = 0	m +
t∫

ta

vm

Lm0

dt +k t	s (12.2.8)

Further we write this equation for the end of a time step ‘n’ as

�1+k� n+1	p = n	m +�	m +k n	s +k�	s (12.2.9)

where �	m and �	s are the increments of stretches; and the indices ‘n’ and ‘n+1’ denote
the start and end of time step, respectively.

The stresses �m and �s in the contractile and the serial elastic element must be equal at
any time, hence

n+1�m = n+1�s (12.2.10)
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According to Hill’s equation (12.2.2) we have

n+1�m = n�0
n+1a

1+�	m/�	m0

1− c�	m/�	m0

(12.2.11)

Here, we have taken the contraction velocity to be negative, and v/v0 = �	m/�	m0.
Also, n�0 is the tetanic stress corresponding to the stretch n	m, according to the diagram in
Fig. 12.2.2. Finally, n+1a is the activation function of muscle.

We have introduced a time function a �t� to take into account muscle activation, as a
scaling factor for stress with respect to the tetanized state, 0 ≤ a �t� ≤ 1. Hence, a = 0
corresponds to a passive (non-activated) state, while a = 1 for a tetanized state.

Further, we calculate �	m0 as

�	m0 = �t	̇m0 (12.2.12)

where 	̇m0 is the stretch rate which corresponds to a maximum isometric tetanized force.
The value 	̇m0 is taken as a characteristic of the contractile element, considered known in
our muscle model.

The constitutive equation for the stress t+1�s follows from (12.2.3)

n+1�s = �
[
e�n	s−1+�	s� −1

]= e�	s �n�s +��−� (12.2.13)

where

n�s = �
(
e�n	s−1� −1

)
(12.2.14)

is the stress corresponding start of time step.
From equation (12.2.9) we obtain

�	m = a1 −k�	s (12.2.15)

where

a1 = �1+k� n+1	p − n	m −k n	s (12.2.16)

Finally, from (12.2.10), (12.2.11), (12.2.13), and (12.2.15) we obtain the following
nonlinear equation

f ��	s� = �a2 +a3�	s� e�	s +a4�	s +a5 = 0 (12.2.17)

with one unknown quantity, �	s. The coefficients in this equation are:

a2 = �n�s +��

(
1− a1c

�	m0

)
� a3 = �n�s +��

kc

�	m0

a4 = k
n�0

n+1a −�c

�	m0

� a5 = −n�0
n+1a −�−a1

n�0
n+1a −�c

�	m0

(12.2.18)

We solve this equation numerically by a standard Newton’s method.
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Therefore, the problem of stress calculation within a muscle fiber is reduced to solving the
nonlinear equation (12.2.17) with respect to �	s. In an incremental finite element analysis,
we have that the stresses and stretches at the start of the time step are known. Also, the total
sarcomere stretch n+1	p at the end of the time step can be calculated from the displacements
n+1u (see Section 12.1.2). Hence, all coefficients a1� a2� � � � � a5 are known, and the only
unknown quantity is the stretch increment �	s of the serial elastic element.

We assume that the surrounding connective tissue is a linear elastic isotropic medium.
Then, the stress in the parallel elastic element is calculated as follows

n+1�E = CE n+1e (12.2.19)

where CE is the elastic constitutive matrix, and n+1e is the strain at a material point of
muscle. The strain n+1e is calculated from displacements (see equation 6.2.12).

Finally, the total stress can be expressed as

n+1� = n+1�E �1−��+� n+1�s (12.2.20)

where � is the fraction of the muscle fibers (active part) in the total muscle volume. We
note that the stress n+1�s has only one nonzero component in the direction of the fiber.

Tangent Constitutive Matrix
The tangent constitutive matrix n+1C (Kojić & Bathe 2005; see also (6.2.19)) of the muscle
as a continuum can be calculated by using the expression (12.2.20),

n+1C = 
 n+1�


 n+1e
= �1−�� CE +�


 n+1�s


 n+1e
(12.2.21)

This constitutive matrix corresponds to the global coordinate system. However, we can
determine the derivatives 
 n+1�s/
 n+1e in the local coordinate system ���� � where � is
the fiber direction at the integration point, while � and � are the axes orthogonal to �. This
is because we have the dependence n+1�s

(
n+1	p

)
defined by equations (12.2.13), (12.2.16)

and (12.2.17) corresponding to the local coordinate system. Therefore, we form the local
constitutive matrix n+1C in which the terms are:

n+1C11 = �1−��C11
E +�


 n+1�s


 n+1e��

� n+1Cij = �1−��Cij
E for other i� j (12.2.22)

where CE
ij are the elastic matrix terms (see (2.2.5)) of the surrounding connective tissue.

Finally, we transform the matrix n+1C to the global coordinate system using the relations
(2.2.17) (see also Example 2.2-4). We further present a procedure for determining the
derivative 
 n+1�s/
 n+1e�� = n+1Cs.

We express n+1Cs as

n+1Cs = n+1	p


 n+1�s


 n+1	p

(12.2.23)

where the relationship


 n+1�s


 n+1e��

= 	p


 n+1�s


 n+1	p

(12.2.24)



SKELETAL MUSCLES 239

is used. Next, from (12.2.13) it follows that


 n+1�s


 n+1	p

= �n�s +��e�	s

�	s


 n+1	p

(12.2.25)

In order to calculate 
�	s/
 n+1	p we differentiate the nonlinear equation (12.2.17) with
respect to n+1	p and obtain


f ��	s�


 n+1	p

= �k2 +a3x� e�	s + �a2 +a3�	s�e�	s x+a4x+ 
a5


 n+1	p

= 0 (12.2.26)

with the unknown x = 
�	s


 n+1	p

. From this equation it follows that


�	s


 n+1	p

= − k5 +k2

e�	s �a3 +�a2 +a3�	s��+a4

(12.2.27)

where


a1


 n+1	p

= 1+k

a2


 n+1	p

= − �n�s +��

(
c

�	m0


a1


 n+1	p

)
= k2


a5


 n+1	p

= −a4

k


a1


 n+1	p

= k5

(12.2.28)

Hence, we find 
�	s/
 n+1	p from (12.2.27), substitute into (12.2.25) to obtain

 n+1�s/
 n+1	p, and further substitute into (12.2.23) to determine n+1Cs. Note that we could use
the derivatives 
 n+1�m/
 n+1e�� to obtain n+1Cm = n+1Cs, since n+1�m = n+1�s (see (12.2.10)).

12.2.3 Hill’s model which includes fatigue

There are many daily activities which occur over an extended period of time and during
which the forces generated by muscles may be reduced due to fatigue. However, muscle
fatigue is a complex physiological phenomenon, and the underlying mechanisms are not well
understood. So far, different views on the most important mechanisms for fatigue, as well
as other processes associated with fatigue, have been presented by a number of researchers
(some references are cited below).

When muscle contraction is sustained for a certain period of time, the muscle becomes
fatigued. The force production is affected by the underlying fatigue and recovery effects in
the neuromuscular system. Many investigators have given various definitions of fatigue, and
one of them is that muscle fatigue can be ‘any exercise-induced reduction in the maximal
capacity to generate force or power output’ (Vøllestad 1997).

Several models have been developed to study muscle fatigue, including nonphysiological
analytic models and models based on physiological information or metabolic measurements
to establish fatigue parameters. Hawkins and Hull (1993) considered the fatigue effect and
force output over a long period of time by incorporating several empirical fatigue parameters,
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such as fiber endurance times and fatigue rates, into their muscle fiber-based model. A model
relying on accurate measurements of temporal changes on muscle metabolites was developed
by Giat et al. (1996) and Levin and Mizrahi (1999). A motor unit recruitment function
and a muscle fitness function were included into some models for describing the muscle
fatigue and recovery effects. A dynamic model of muscle fatigue, which is governed by a
fatigue factor, a recovery factor, number of motor units and one input parameter for brain
effort, was developed by Liu et al. (2002). The difference between the course of fatigue in
muscle activated by the CNS (central nervous system) and various types of FES (functional
electrical stimulation) has also been studied. We here give a mathematical formulation of
fatigue based on Hill’s model.

A modification of Hill’s model to include fatigue
Stress developed in the contractile element of intact muscle can be expressed in a form given
in (12.2.11). However, muscle fatigue is not considered in this equation.

Fatigue can be induced in a muscle that is loaded for a long time by a constant or
variable force. Due to a reduction in the capacity of muscle to produce force, tetanic stress
of fatigued muscle �0f �	� t� is always less then tetanic stress of intact, nonfatigued muscle
�0�	� t� (Tang et al. 2005). Assume that F0 �a�	� is the force developed by an intact muscle
under the activation a and the total stretch 	, and Ff �a�	� t� is the force developed by
the fatigued muscle under the same activation a. These forces correspond to the stresses
in the tetanized conditions �0�	� t� and �0f �	� t�, respectively. Now the fitness level can be
defined as

f �t� = Ff �a�	� t�

F0 �a�	�
= �0f �	� t�

�0�	�
(12.2.29)

Thus, the fitness level is the normalized maximal force that muscle can produce, ranging
from 0 to 1. For an intact muscle the fitness level is equal to 1, while for a muscle under
certain loading duration, the fitness level decreases with time.

Using the relation (12.2.29), the stress developed in the contractile element of a fatigued
muscle, analogous to equation (12.2.11), can be written as

n+1�m = n+1a
n�0f

(
	p

) 1+�	m/�	m0

1− c�	m/�	m0

= n+1a
nf

n�0

(
	p

) 1+�	m/�	m0

1− c�	m/�	m0

(12.2.30)

Since the underlying mechanisms of fatigue are still not well understood, there is no
reliable model that can predict fitness level of a muscle subjected to an arbitrary activation
over a long time period. Several models given in the cited references can be used to determine
fitness level f �t� � � � �, which depends on time, activation and other physiological and
nonphysiological parameters.

A time dependency of maximal output force under various sustained constant activations
can be obtained experimentally. Normalizing the recorded force–time curves by the maximal
output force of intact muscle, we find the fitness level under constant activations fca �a� t�.
A typical set of functions fca �a� t� is shown in Fig. 12.2.5. Note that the decrease of the
functions fca �a� t� is sharper for larger activations a = const.
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Fig. 12.2.5 Example of fatigue curves under a sustained constant activations a = const

Let us assume that fatigue rate does not depend on the entire history of loading, but only
on the current fitness level and activation. Consequently, muscle fatigue rate after arbitrary
loading will be equal to the fatigue rate under sustained constant activation for the activation
and fitness level equal to the current ones, which can be written as


f �a�


t

∣∣∣∣
f

= 
fca �a�


t

∣∣∣∣
f

(12.2.31)

or in incremental form

n+1f �a� = nf +�t

fca

(
a� tfca +�t

)

t

(12.2.32)

where the time tfca is obtained from the condition that fca

(
a� tfca

)= nf . For an activation
which is between measured curves fca �a� t�, we use a linear interpolation.

Analogous to the fitness level curves of activated muscles, we can obtain time dependency
of fitness level in the case when there is no activation, i.e. when a muscle is at rest. Such a
curve represents a recovery function r�t� of the resting muscle. A typical recovery curve
is shown in Fig. 12.2.6.

Thus, the incremental form (12.2.32) for the fitness level in a resting state is

n+1f �a� = nf +�t

r �tr +�t�


t
(12.2.33)

where the time tr is obtained from the condition that r �tr� = nf .
In general, we have time periods of muscle loading with activation, followed by resting

periods. Consequently, we use either equation (12.2.32) or (12.2.33) to calculate the fitness
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Fig. 12.2.6 Example of recovery curve

level n+1f �a�, depending on the condition whether the muscle is activated or at rest. In
summary, we have

n+1f �a� =

⎧⎪⎪⎨
⎪⎪⎩

nf +�t

fca

(
tfca +�t

)

t

� a > 0

nf +�t

r �tr +�t�


t
� a = 0

(12.2.34)

12.2.4 An extension of Hill’s model to include different fiber types

Most of the previous muscle models based on Hill’s model were established assuming a
sliding-element theory and a single sarcomere. Muscle is regarded as an assemblage of
identical sarcomeres. However, a number of authors have shown that muscle is a heterogenous
material structure which induces nonuniform stress and strain distributions (Pappas et al.
2002), as well as different fatiguing of muscle regions.

An individual skeletal muscle, as a body organ, represents a collection of different fiber
types. A large range in contractile properties among fiber types enables production of very
diverse mechanical responses, from extremely rapid ballistic to slow sustained motions and
postural support. A classification of skeletal muscle beyond simple fast-twitch and slow
(tonic) fiber types was first proposed over 40 years ago by Lannergren and Smith (1966).
According to these authors, the fast-twitch fibers could further be differentiated into three
distinct types. For the sake of simplicity, but without significantly affecting the basic findings
of muscle behavior, we will here refer to two basic muscle fiber types: fast- and slow-twitch
fibers. Moreover, differences between muscles may be due to the spatial arrangement of
different muscle fiber types, sample sites within a muscle, locations within the fascicle, and
age of the subject.

The essential differentiation between fast- and slow-twitch muscle fibers is that the
contraction time is shorter for fast-twitch muscle fibers, when compared to the slow-twitch
muscle fibers. In determining which types of motor units participate in activation, one
important aspect to be considered is that the two types of motor units have different activation
thresholds. The slow-twitch type has a lower threshold than the fast-twitch one. Also, it
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is known that the fast-twitch fibers fatigue more easily than the slow-twitch ones, so that
a selective recruitment of fast-twitch fibers during intermittent stimulation could explain a
faster decline in the generated force.

Maximal force produced by a muscle depends, in general, on the percentage of slow
and fast muscle fibers in the muscle volume. This seems to be determined almost entirely
by genetic inheritance. Some people appear to be born for marathons, while others are born
to be sprinters and jumpers. This could determine to some extent the athletic capabilities
of different individuals. For example, marathoners have only 18% of the fast muscle fibers,
while sprinters have up to 65% of fast fibers and therefore much larger output force then
marathoners (Guyton 2005). Also, due to a large percentage of fast muscle fibers (also
fast fatigued), sprinters can produce maximal force for several seconds to a minute only.
According to these physiological facts, it follows that a modification of Hill’s model is
needed, in order to predict the total output force dependent on the participation of various
fibers within the muscle (Stojanović 2007, Stojanović et al. 2007).

An extension of Hill’s three-component model is here introduced to take into
account different fiber types. This extended Hill’s model consists of a number of sar-
comeres of different types coupled in parallel with the connective tissue. Practically,
we introduce a multi-fiber material model at the level of a material point of the
continuum.

The Extended Hill’s Model
The extended Hill’s model consists of a number of series of contractile and serial elements,
corresponding to various types of sarcomeres (active part of a muscle), coupled in parallel
to the linear elastic element representing the connective tissue (passive part), as shown in
Fig. 12.2.7. In this schematic, CEi and SEEi are, respectively, the contractile and serial elastic
elements of the i-th type of muscle fiber, while PEE is the common parallel elastic element.

Fig. 12.2.7 Extended Hill’s model of muscle
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At a considered muscle point, all these fibers have the same spatial direction (which is the
fiber direction) and the same fiber stretch 	p.

Analogous to relations �12�2�11� and (12.2.13), we express the stresses in contractile and
serial elements representing a sarcomere of the i-th fiber type as (with the upper index ‘i’ to
all quantities)

n+1�i
m = n�i

0
n+1i

a

1+�	i
m/�	i

m0

1− ci�	i
m/�	i

m0

(12.2.35)

n+1�i
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n�i
s +�i

)
ei�	i

s −�i (12.2.36)

Following the computational procedure for stress integration of the basic Hill’s model in
Section 12.2.2, we find that the stress calculation for the i-th fiber type reduces to finding
the stretch increment �	i

s. The governing equation is now (see (12.2.17))
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Therefore, for a given stretch in the muscle fiber direction, n+1	p (calculated from
displacements n+1u at a muscle material point), we solve equation (12.2.37) with respect to
�	i

s, and obtain the stress n+1�i
s from equation (12.2.36); therefore, we have the stress n+1�i

m

at a material point.
Now, the component of stress in the fiber direction, n+1�s, defined in equation (12.2.20),

can be written as

n+1�s =
N∑

i=1

�i n+1�i
s (12.2.39)

where �i is the fraction of the i-th fiber type in the active part of muscle.
Since the fraction of the specific fiber type is nonuniform over the muscle volume, we

have to take into account material heterogeneity. If the fraction of a specific fiber type in
the active part is known at the finite element nodal points, we can interpolate these values
over the entire finite element domain. The interpolation functions, used for displacements
and geometry, can also be used for the material parameters. Hence, the interpolation of the
fraction �i for the i-th fiber type is given by

�i =
m∑

J=1

NJ�
i
J (12.2.40)
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Here, NJ is the interpolation function and �i
J is the i-th fiber fraction, at J -th node of the

element; also, m is the number of finite element nodes. It should be noted that the following
equation is satisfied (by definition of the fractions �i)

N∑
i=1

�i = 1 (12.2.41)

Tangent Constitutive Matrix
The tangent constitutive matrix of the extended Hill’s model can be obtained in the same
manner as in the case of the basic Hill’s model, with some minor modifications. Here, we
can write the derivative of stretch increment �	i

s with respect to the total stretch n+1	p, as
(see (12.2.27))
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where
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Further, the derivative of n+1�i
s with respect to the sarcomere stretch n+1	p is (see

(12.2.25))
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and then
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(12.2.45)

12.3 Examples

Example 12.3-1. Modeling of a cylindrical muscle
Figure E12.3-1A shows a simplification of a typical cylindrical muscle. The muscle is
represented by a cylinder with variable cross section, defined by three diameters (Dorig, Dins

and Dmax� and a cubic Bezier spline between these diameters. The muscle is fixed at the
top (origin), while the other end (insertion) can be free to move or it can be fixed. At the
insertion we can have a force (Fig. E12.3-1Aa), a spring (Fig. E12.3-1Ab), or isometric
conditions (Fig. E12.3-1Ac).

The above description of the cylindrical muscle model is used in the Software on the
web (Example 12.1), where the solutions can be obtained for various geometric parameters,
distribution of fast and slow fibers over the cross-section, and activation and time functions.

We here give some typical results as an illustration of the solutions. Fiber parameters
are given in Fig. E12.3-1Ba, while the activation functions of slow and fast fibers are
shown in Fig. E12.3-1Bb. Figure E12.3-1Bc shows muscle shortening over time depending
of percentage of slow and fast fibers. It can be seen from the figure that muscles with higher
percentage of the fast fibers have fast and strong response to the activation, while muscles
consisting predominantly of slow fibers exhibit slower and minor response.
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Fig. E12.3-1A A simplified model of cylindrical muscle, with geometry defined by three
diameters �Dorig� Dins� Dmax� and lengths L and Lmax. (a) Muscle loaded by a force F ;
(b) Muscle attached to a spring with stiffness ks; (c) Isometric conditions; (d) Activation
function a�t� increasing linearly to a value max in activation time period tact, then remains
constant within the period tcon, and linearly decreases to zero within the relaxation period
trel; (e) Fatigue and recovery functions fca and r defined as multilinear curves

Fig. E12.3-1B Muscle response to single twitch activation depending on percentage of
slow and fast fibers. (a) Constants for Hill’s model (a is the constant in (12.2.1) and �0 is
maximal tetanic stress); (b) Activation function for slow and fast fibers; (c) Shortening of
the muscle depending of percentage of slow and fast fibers. (Continued on page 247)

Example 12.3-2. Modeling of the frog gastrocnemius muscle
Here, we present numerical and experimental results for frog gastrocnemius muscle. A
simplified geometry of the muscle is defined by setting the geometric parameters as follows:

L = 45 mm� Lmax = 23 mm� Dorig = 6�4 mm� Dins = 6 mm� Dmax = 11�6 mm
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Fig. E12.3-1B (continued from page 246)

Fig. E12.3-2 Simplified finite element model of frog gastrocnemius muscle. a) Finite ele-
ment mesh, constraints and load; b) Left panel: undeformed configuration (zero displacement
field) and real muscle without activation (right panel); c) Displacement field under full
activation (left panel) and real deformed muscle (right panel) (see Plate 8)
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Due to symmetry, only one quarter of the muscle is considered as shown in Fig. E12.3-2a.
A small concentrated load of 0.025 N (i.e. 1/4 x 0.1N� was added to the bottom end of the
quarter model to simulate the load weight of 0.1 N (10 grams) attached to the muscle in the
experiment.

Figure E12.3-2b shows original configuration of the finite element model (left panel)
and real frog gastrocnemius muscle with its slack length (right panel). These are undeformed
configurations (zero displacement field) corresponding to non-activated muscle without load.
Calculated deformation of fully activated muscle is shown in Fig. E12.3-2c (left panel), with
the muscle shortening of 11.4 mm. As can be seen from the figure, numerical results give
satisfactory prediction of the experimental observation (Fig. E12.3-3c – right panel).
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13

Blood Flow and Blood Vessels

Cardiovascular diseases are considered a leading cause of death in the developed world and
are now becoming more prevalent in developing countries. The main objective of this chapter
is to present finite element (FE) computer modeling for an insight into blood flow and
deformation of blood vessels. An introduction to cardiovascular system with basic description
of blood and blood vessels is given first. Then, the FE method described in Chapter 7 is
further extended in order to simulate blood flow in large blood vessels including specific
calculation of shear stress and interaction of blood flow with deformable blood vessels.
Finally, we present some of the results for blood flow through rigid and deformable blood
vessels in human aorta, abdominal aortic aneurysm, carotid artery bifurcation, femoral artery
with stent, veins including compression therapy, and human heart.

13.1 Introduction to the cardiovascular system

In this section we introduce basic notions used to define the cardiovascular system, blood
and blood vessels. The emphasis is on the mechanical characteristics which are further used
in computer modeling.

13.1.1 The circulatory system

The circulatory system consists of blood vessels whose main role is transport by blood of
nutrients and oxygen to periphery tissues, and elimination of harmful metabolites. Anatom-
ically it is composed of two elements:

1. systemic circulation, transporting nutrients; and

2. pulmonary circulation, with main role in oxygenation of blood hemoglobin.

Computer Modeling in Bioengineering Edited by M. Kojić, N. Filipović, B. Stojanović, N. Kojić
© 2008 John Wiley & Sons, Ltd
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Fig. 13.1.1 Schematic representation of the cardiovascular system (adapted from
Mohr 2006) (see Plate 9)

These two systems are connected via the heart acting as a pump of the circulatory system
(Fig. 13.1.1 – see color plate).

Systemic circulation starts with the major blood vessel, the aorta, followed by large blood
vessels with similar histological and biomechanical characteristics rich in elastic fibers. After
division into smaller vessels, there is a gradual change in structure forming medium size ves-
sels with different biomechanical characteristics, with rise of thick nonelastic fibers and more
developed vascular muscle tissue. Finally, there are small arteries and a capillary system, with
predominant vascular muscle tissue acting with post-capillary vessels as a valve controlling
the volume of blood entering the peripheral tissue. Post-capillary vessels are called the venula
(the smallest veins), and have their own structural characteristics. After the venula, blood is
collected via veins with predominant fibrous tissue and valve systems, returning the blood into
heart through two major venous vessels, the superior and inferior vena cava.

Pulmonary circulation begins with the pulmonary trunk, divided into two pulmonary
arteries which enter the lung and after branching into multiple smaller vessels become in
close contact with the respiratory system, resulting in oxygenation of deoxygenated blood
from peripheral tissues. Oxygenized blood is collected via a system of pulmonary veins
ending as four large pulmonary veins with their ostium in the left atrium. Both systemic
and pulmonary circulation systems have their arterial and venous parts, determined not by
the type of blood they carry, but by their structural characteristics. Arterial blood in the
systemic circulation is oxygenized, while venous blood is deoxygenized and vice versa in
the pulmonary circulation.

The structure of vessels is dependent on the role they have. Large vessels are conductive,
with the role of distributing blood, and their elastic structure allows stretching in systole and
contracting in diastole, thus making continuous flow of the blood possible. While systole
blood flow is the result of the heart contraction, perfusion in diastole is retained by the elastic
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pressure of the vessels. The result is continuous and variable blood flow throughout the
heart cycle. Resistance to the blood flow is also variable and in proportion to the diameter
of the vessel and to the percentage of muscular tissue in vessel, with the peak at the level
of small arteries (arteriola) that causes significant drop in the velocity of the blood flow.
Approximately 50% of all resistance is due to the resistance in arteriola, 20% in large arteries
and capillaries and only 10% in veins. Flow velocity depends on the phase of heart cycle
and of the diameter of the vessel and varies from values < 100 cm per second in ascending
aorta to < 1 cm per second at capillary level. The change in the tonus of the muscular layer
of vessels results in the elevated resistance and it is related to the decrease in the perfusion.
This mechanism is controlled by the sympathic nervous system.

The critical pressure is the perfusion pressure, essential to allow continuous perfusion,
and is different from the mechanical model of nonelastic pipes and from the model of ideal
fluid, where the minimal pressure elicits fluid movement. Blood pressure is the measure
of the blood energy as the fluid flows in various segments of the circulatory system.
Arterial pressure has its maximum at systole and its value is known as systolic, and its
minimum at diastole, named diastolic pressure. Average pressure is the mid-value of pressure
throughout the heart cycle, and its value is smaller than the arithmetic average because of the
longer duration of the diastole. In large vessels average value of pressure is 120/80 mmHg
systolic/diastolic, respectively. With the decrease of the vessel size and at the end of the
vascular bed in capillary system mid-pressure is 17 mmHg. In pulmonary circulation values
of the pressure are significantly smaller due to the less potent right ventricle contraction and
somewhat different structure of vessels which have a higher amount of nonelastic fibers.

Distributions of cross-sectional area, velocity, pressure and blood volume in the circula-
tory system (aretial system, veins and capillaries) are shown in Fig. 13.1.2.

13.1.2 Blood

Blood represents a two-component system which consists of cells (formed cellular elements)
and plasma. There are several blood cell types which are present in blood in a form of
functional mature cells such as erythrocytes, leucocytes and platelets. In adult humans all of
the cell types are formed in the bone marrow (except B-lymphocytes which are formed in
lymphatic nodes) from pluripotent cells named stem cells or CFU-S (colony forming unit
spleen).

Red blood cells (RBCs) or erythrocytes (Fig. 13.1.3a – see color plate) are mature,
highly differentiated cells which consist of plasma membrane and citosol, an inner fluid
with dissociated protein hemoglobin. Hemoglobin colors erythrocytes red and since 99% of
total cell residue (hematocrit) are red blood cells, it gives the origin to the blood color. Red
blood cells are of biconcave shape, diameter 6.7–7.7 �m, average thickness 1.7–2.5 �m and
volume 76–96 fL. The shape of these cells is adjusted to pass through the smallest blood
vessel (capillary vessel) without changing their original volume or surface area. Hemoglobin
is the most important red cell protein and is placed adjacent to the cell membrane, with
a major role in oxygen binding, transport and exchange with peripheral tissues. Normal
hemoglobin concentration ranges 120–180 g/L and concentration of red blood cell varies
from 3.7 to 5�8×1012/L. Percentage of volume occupied by red blood cells (predominantly)
is named hematocrit �H� and represents the ratio between the volume of RBC cellular part
of the blood and total blood volume. It ranges between 0�4±0�04 in females and 0�43±0�04
in males. The major influence on hematocrit value comes (besides sex) from the vessel size
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Fig. 13.1.2 Velocities, pressure and blood volume within blood circulatory system. (a)
Cross-sectional areas of various segments of the systemic circulation computed for a 13 kg
dog. The enormous area belongs to small blood vessels: arterioles, capillaries and venules; (b)
The velocity of blood flow is inversely proportional to the cross-sectional area; it decreases
from valuse of around 50 cm/s in large vessels to about 0.07 cm/s in the capillaries; (c) The
pressure in the arterial system is high and pulsatile. The mean arterial pressure decreases
gradually from the main branches toward the arterial tree. The pressure is small in small
vessels and oscillations are damped out due to high resistance to flow. The pressure and
pressure gradient are small in the major veins; (d) The blood volume distribution: around
20% in arteries, 75% in veins and only 5% in the capillaries (adapted from Rushmer 1976)

Fig. 13.1.3 Basic blood cells. (a) Erythocytes (http://www.mast.queensu.ca/∼julia/sgc.html);
(b) Leukocyte; (http://www.funsci.com/fun3_en/blood/blood.htm); (c) Activated platelet
(according to Loscalzo & Schafer 2003) (see Plate 10)

and the type of motion within the vessel. The World Health Organization defines anemia as
the value of hemoglobin under 120 g/L in females and under 130 g/L in males.

Since the the RBCs are the dominant cells within plasma, total blood volume can be
expressed as

Vblood = Vplasma/ �1−H� (13.1.1)
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where H is the number of hematocrit. Total blood volume is 4–6 L or 6–8% of total body
weight. The increase of blood volume is called ‘hypervolemia’, while the decrease is called
‘hypovolemia’ and is mainly due to bleeding.

Leukocytes are the only fully morphologically complete cells, because they contain all
cell elements (nucleus, cytosol and cell organelles) (Fig. 13.1.3b – see color plate). They
represent the base of the immune system. The basic division is into polymorph nuclears
(containing cell granules) and mono nuclears (without granules and also divided into two
large divisions: monocytes and lymphocytes). The number of leukocytes varies between
4�1–10 × 109/L. Their number in a particular part of the body depends not only on the
cell turnover (number of produced and depleted cells), but also on the presence of local or
systemic infection. The condition of total number of reduced white blood cells is leucopenia,
and the increased total number of these is leucocytosis.

Platelets (Fig. 13.1.3c – see color plate) are cell fragments produced from giant precursor
cells called megakariocytes during differentiation. Physiological concentration varies from
150 to 350 × 109/L. They are disc-shaped, enabling adherention to vessel walls as well
to each other when activated. There is an abundance of various receptors imbedded in the
surface of the membrane, participating in the interactions between vessel wall (endothelia),
platelets and different coagulation factors. The integrity of the vessels is preserved and
dependent on those interactions. Impaired function causes excessive bleeding or pathologic
thrombosis within vessels. More details about platelets and platelet-mediated thrombosis are
given in Chapter 14.

Plasma is liquid constituent of blood. It contains water, various electrolytes, small
organic molecules (glucoses and amino acids) and also large proteins and lipids. Roughly, in
blood per liter there is 70 g of proteins, 9 g of nonorganic electrolytes and 250 mg of lipids.
Average density of plasma is 1.025–1.034 kg/L (1.050–1.060 kg/L in blood). Viscosity of
plasma is two times the viscosity of plain water (in blood it is up to four times).

Blood Flow in Large Blood Vessels
In most arteries, blood behaves in a Newtonian fashion, and the viscosity can be taken as
a constant of about 4 centipoise (cP) for a normal hematocrit. However, non-Newtonian
mechanical behavior of blood is pronounced in smaller blood vessels, such as capillary
systems, where the viscosity depends on the flow conditions. Various phenomenological
mechanical models for blood, based on experimental biorheological investigations, have been
introduced. A review of these models is given in, for example, Chien (1970) and Rodkiewicz
et al. (1990). We here describe one of these models further used in modeling of blood flow.

In the case when the shear strain rates (Dij� i �= j, see eq. (2.1.27) in Chapter 2) of blood
flow are not too low, as in medium size arteries and veins, the blood viscosity � can be
expressed as a function of the hematocrit H and shear strain rate. This functional relationship
is called the Cason relation:

� = 1

2
√

DII

(
k0 �H�+k1 �H�

√
2
√

DII

)2

(13.1.2)

k0 �H� and k1 �H� are the functions determined experimentally (Perktold et al. 1998); and
DII is the second invariant of the strain rate (see web – Theory, Chapter 2) which can be
written as

DII = 1
2

DijDij (13.1.3)
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Fig. 13.1.4 Motion of RBCs in microvessels. (a) RBCs flow in a single file form when the
vessel diameter (D) is around the RBC size; (b) With increasing vessel diameter, RBCs tend
to form multiple file flow (according to Pries & Secomb 2005) (see Plate 11)

Blood Flow in Capillaries
In capillaries of a small diameter, of around RBC size, the red cells form the so-called
single file flow in their motion, as shown in Fig. 13.1.4a (see color plate). With increasing
diameter and hematocrit, RBCs form multi-file flow, Fig. 13.1.4b – see color plate (Pries &
Secomb 2005).

In order to quantify the mechanical behavior of blood in flow through microvessels,
an equivalent or apparent viscosity is introduced. Namely, for a steady laminar flow of a
non-Newtonian fluid through a circular tube, the viscosity of a Newtonian fluid with the
viscosity �app (apparent or equivalent viscosity) can be expressed as

�app = �

128
�p

Q

D4

L
(13.1.4)

where D and L are the tube diameter and length, respectively; Q is the volumetric flow
rate induced by the pressure drop �p between the tube ends. This relation follows from
calculation of the flow resistance due to viscous stress along the tube surface caused by the
fluid. Further, the relative blood viscosity �rel with respect to the plasma viscosity �p is
defined as

�rel = �app

�p

(13.1.5)

Experimental investigations reveal the phenomenon known as Fähraeus–Lindquist effect
(Fähraeus & Lindquist 1931) about the dependence of the blood relative viscosity on the
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Fig. 13.1.5 Dependence of the relative apparent viscosity of blood on the microvessel
diameter (according to Pries & Secomb 2005): solid line is for blood vessels in vivo measure-
ment on rat mesentery; dashed line is for glass tube. The hematocrit is 45. Large differences
between the results for blood vessels and tube are due to effects of the endothelial surface
layer present in blood vessels. The existence of a pick value for the vessel diameter around
10 	m can be explained by a change of the endothelial surface layer thickness (detailed
discussion is given in Pries & Secomb 2005)

vessel diameter (Fig. 13.1.5). It can be seen from the figure that the relative viscosity
decreases and then increases with a decrease of the vessel diameter reaching two minima.
In the case of a glass tube, the viscosity change is monotonic with the minimum at diameter
around 7 �m. The viscosity changes can be explained by different RBC flow patterns, from
multiple to single file flows. The notable discrepancy between viscosities for flow within
blood vessels and glass tube is due to the existence of the endothelial surface layer whose
thickness also depends on the microvessel diameter (Pries & Secomb 2005).

13.1.3 Blood vessels

As already described in Section 13.1.1, the circulatory system of blood vessels may be
divided into those vessels that deliver oxygenated blood to tissues: the arteries, arterioles,
and capillaries; and those vessels that return blood with carbon dioxide for gas exchange: the
veins and venules. It can be considered that the basic structure of all these vessels consists
of three layers: (a) the intima; (b) the media; and (c) the adventia (Fig. 13.1.6).

Comparing wall structures of arteries and veins, the following differences are notable.
Arteries have a larger media layer than veins. Since smooth muscles are generally found in
the media layer, this means that arteries have more smooth muscle to produce contraction
than do the veins. Arteries have a higher amount of elastin than veins. Thus, the ratio of
collagen to elastin is larger in veins than in arteries. In addition, veins have a thicker adventia
layer (in proportion to the media layer) when compared with this layer in arteries.

The media is the middle layer of the artery, composed of smooth muscle cells, a network
of elastic and collagen fibrils and elastic laminae which separate the media into a number of
fiber-reinforced layers. The media consists of a highly organized three-dimensional network
of elastin, vascular smooth muscle cells and collagen with extracelluar matrix protoglycans.
As was found recently (Dobrin 1999), the media behaves mechanically as if its material
properties were homogenous.
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Fig. 13.1.6 The structure of the arterial wall. The major components of a healthy elas-
tic artery consists of three layers: intima, media and adventitia (according to Holzapfel
et al. 2000)

The adventitia is the outer layer composed primarily of thick bundles of collagen fibrils
arranged in helical structures and fibroblast cells.

A significant amount of studies has been performed to elucidate the mechanical prop-
erties of the arterial wall. The general consensus of these studies is that the artery exhibits
the following behavior: nonlinearly inelastic, anisotropic, radially heterogenous, load-rate
insensitive, expansion upon cooling and shrinkage upon heating. A transient response of
blood vessels was measured and dynamic mechanical properties of the vessel tissue were
proposed in Rosic et al. (2007).

In modeling of the most arterial walls it is assumed that the wall material is homogenous
and that the artery is a cylindrical membrane or a thick-walled tube. Associated material
parameters are given for each layer based on a Fung-type strain–energy function (Fung,
1993), see Sections 2.4 and 11.1. Briefly, these results show that the media and adventitia
are anisotropic; that the media is stiffer, and more nonlinear and both layers are stiffer in the
axial than in the circumferential direction. Modeling of the arterial wall is very important
also for mass transfer analysis and thrombosis processes (see Chapter 14).

13.2 Methods of modeling blood flow and blood vessels

13.2.1 Introduction

In recent years, computational techniques have been increasingly used as a support in
understanding hemodynamics and mechanical behavior of blood vessels. Computer models
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are employed in research, but have also been used in medical practice. In research, modeling
has become a necessary tool in supporting in vitro and in vivo experimental investigations,
from the macro to micro and nano levels. Regarding the medical practice, use of computer
models is continually being enhanced due to tremendous advances in computer technology,
with the goal of establishing a direct coupling of imaging between a patient’s organs and
computer models, followed by the ‘online’ feedback of modeling results to a medical doctor
(see Section 9.2). Computer simulations can be used to obtain detailed flow information
including wall shear stress, pressure drops, stagnation and recirculations regions, particle
residence times, turbulence; as well as the stress–strain states within the blood vessel walls,
epithelial layers and RBCs.

We here summarize methods which are used in modeling blood flow and blood vessels.
Basically, two types of physical conditions of blood flow can be considered as distinct: macro-
circulation (blood flow in large vessels), and microcirculation (flow within capillaries).
Accordingly, we distinguish two groups of computational methods for these two types of
physical conditions: continuum and discrete particle methods.

Blood flow in the heart and large arteries has been investigated for decades. Dean (1928)
made the first prediction of helical blood flow in a curved tube. Rotational blood flow in vivo
was detected early by Doby and Lowman (1961), who used a radiopaque streamer tech-
nique. They presented detailed results on the velocity, pressure and wall shear stress. Lei
et al. (1995) described the hemodynamic conditions in a model of a rabbit aorto–celiac junc-
tion and postulated a role of the wall shear stress gradient in atherogenesis. A large body of
references is available in this field, for example Perktold et al. (1991a, 1998), Perktold &
Rappitsch (1995). Recently, computational models have been generated directly from medical
imaging data, most notably magnetic resonance imaging (Milner et al. 1998, Moore et al. 1998).

In many cases blood flow is affected by vessel wall and epithelial layer deformability,
which depend on the tissue characteristics. A summary of material models for arterial walls
is presented in Holzapfel et al. (2000). Some of these models, which will be used in
the simulation of blood flow coupled with the biosolid boundary deformation, are already
described in Chapter 11 and will be further discussed in Section 13.2.3. Under physiological
conditions of the human arterial system, the equations which describe blood flow through
elastic arteries are only weakly nonlinear. Two-dimensional equations for flow in straight
circular elastic tubes can be linearized and the wave solution by Fourier techniques can be
obtained (Womersley 1957). This linear model has become a standard model of waves in the
arteries. However, this approach does not match many aspects of physiological waveforms.
Also, the wall does have linear elastic properties. An alternative approach is to use the
full fluid–structure interaction analysis for a particular zone of interest because there is a
limit in computer power technology to simulate the entire human arterial system (Collins
et al. 2004).

In microcirculation, the dominant effects are due to motion and deformation of red blood
cells (RBCs). We described the main characteristics of microcirculation in Section 13.1.2,
while computational procedures for modeling deformation of RBCs as living cells are given
in Section 16.3 (Example 16.3-2).

13.2.2 Methods of blood flow modeling in large blood vessels

The basic description of blood as a complex fluid is given Section 13.1.2. As stated there,
blood can be considered as an incompressible homogenous viscous fluid for flow in large
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blood vessels. Also, the laminar flow is dominant in the physiological flow environment.
Therefore, the fundamental laws of physics, which include balance of mass and balance of lin-
ear momentum, are applicable here. These laws are expressed by continuity equation (3.3.3)
and the Navier–Stokes equations (3.3.7) in Section 3.3.1.

If a mass transport by blood is considered, such as transport of gases �O2� CO2� or
macromolecules (albumin, globumin), the process can be represented by diffusion with
convection. Then, the fundamental law of mass balance is described by the diffusion–
convection transport equation (3.3.9).

Continuum-based numerical methods, such as the finite element method (FE), described
in Chapters 4 to 7, or the element-free Galerkin (EFG) method of Section 8.5, are applicable.
We present the final form of these equations to emphasize some specifics related to blood
flow. The incremental-iterative balance equation of a finite element for a time step ‘n’ and
equilibrium iteration ‘i’ has a form (see equation (7.4.13))
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where n+1V�i−1� and n+1 P�i−1� are the nodal vectors of blood velocity and pressure, with
the increments in time step �V�i� and �P�i� (the index ‘blood’ is used to emphasize that
we are considering blood as the fluid); �t is the time step size and the left upper indices
‘n’ and ‘n+ 1’ denote start and end of time step; and the matrices and vectors are defined
in (7.4.5)–(7.4.13). Note that the vector n+1F�i−1�

ext of external forces includes the volumetric
and surface forces. In the assembling of these equations, as described in Section 4.2.2, the
system of equations of the form (13.2.1) is obtained, with the volumetric external forces,
and the surface forces acting only on the fluid domain boundary (the surface forces among
the internal element boundaries cancel). The balance equations (13.2.1) can also be formed
when the EFG method is employed, with the matrices and vectors corresponding to the ‘free’
points (see Section 8.5).

The specifics for the blood flow are that the matrix n+1K�i−1� may include variability of
the viscosity if non-Newtonian behavior of blood is considered. According to (7.4.10) we
have that

[
K

�i−1�
KJ

]
kk

=
[
K̂

�i−1�
KJ

]
kk

+
∫
V

��i−1�NK�jNJ�jdV� sum on j� no sum on k (13.2.2)

where ��i−1� corresponds to the constitutive law for the last known conditions (at iteration
‘i−1’). In the case of use of the Cason relation (13.1.2), the second invariant of the strain
rate D

�i−1�
II is to be evaluated when computing ��i−1�.

We note here that the penalty method can also be used, as well as the ALE formulation
for large displacements of blood vessel walls (e.g. aneurism, or heart), see Sections 7.4
and 7.5.
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Shear Stress Distribution
In addition to the velocity and pressure fields of the blood, the distribution of stresses
within the blood can be evaluated. The stresses t
ij at time ‘t’ follow from equations (3.3.4)
and (3.3.5) of Section 3.3,

t
ij = − tp�ij + t

�
ij (13.2.3)

(where we here use 

�
ij instead �ij since � denotes the wall shear stress)

t

�
ij = t�t

(
vi�j + vj�i

)
(13.2.4)

is the viscous stress. Here, t� is the viscosity corresponding to the velocity vector tv at a
spatial point within the blood domain. The field of the viscous stresses is given by (13.2.4).

Further, the wall shear stress at the blood vessel wall is calculated as:

t� = t�
t vt

n
(13.2.5)

where tvt denotes the tangential velocity, and n is the normal direction at the vessel wall.
Practically, we first calculate the tangential velocity at the integration points (see Section 7.4.1
for the interpolation of velocities) near the wall surface, and then numerically evaluate the
velocity gradient t vt/n; finally, we determine the viscosity coefficient t� using the average
velocity at these integration points. In essence, the wall shear stress is proportional to the
shear rate � at the wall, and the blood dynamic viscosity �.

For a pulsatile flow the mean wall shear stress within a time interval T can be calculated
as (Taylor et al. 1998)

T�mean =
∣∣∣∣∣∣

1
T

T∫
0

t�ndt

∣∣∣∣∣∣ (13.2.6)

Another scalar quantity is a time-averaged magnitude of the surface traction vector, calcu-
lated as

T�mag = 1
T

T∫
0

�tt�dt (13.2.7)

where the stress vector tt is given by the Cauchy formula (2.1.6). Also, a very important
scalar in the quantification of unsteady blood flow is the oscillatory shear index (OSI)
defined as (He & Ku 1996)

TOSI = 1
2

(
1−

T �mean

T �mag

)
(13.2.8)

The shear stress action has very important effects in the circulatory system. For example,
it was found that arteries adapt to long-term increases or decreases in wall shear stress. A
decreased flow rate causes a thickening of the intimal layer to reestablish a normal wall
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shear stress. On the other hand, increased wall shear stress is a response to remodeling of
arteries to large diameters.

Endothelial cells respond to shear stress. At the lumenal surface, the shear stress can be
sensed directly as a force on an endothelial cell. Measurement of the velocity gradient near
the wall, needed for the shear stress evaluation, is technically difficult. The velocity gradient
depends highly on the shape of the velocity profile and on the measurement accuracy of
distance from the wall (Zarins et al. 1983, Ku et al. 1985). Numerical calculation could be
a good alternative to complex, invasive and expensive measurement techniques.

13.2.3 Modeling the deformation of blood vessels

In modeling blood flow in large blood vessels we will consider two distinct cases: (a)
walls are rigid, and (b) walls are deformable. The assumption (a) will be mainly adopted
in practical applications within Sections 13.3 to 13.7. Also, some of these examples will
be solved assuming deformable walls, in order to get an insight into the stress–strain field
within the wall tissue and to elucidate the coupling effects between the blood flow and wall
deformation. In studying blood and blood vessel system, it is important to determine the
stress-strain state in tissue, as well as the effects of the wall deformation on the blood flow
characteristics and blood mechanical action (first of all the shear stress) on the epithelial layer.

As described in Section 13.1.3, blood vessel tissue has complex mechanical character-
istics. The tissue can be modeled by using various material models, from linear elastic to
nonlinear viscoelastic. We here summarize the governing finite element equations used in
modeling wall tissue deformation with emphasis on implementation of nonlinear constitutive
models.

The finite element equation of balance of linear momentum is derived from the funda-
mental differential equations (2.1.11) of balance of forces acting at an elementary material
volume. In dynamic analysis we include the inertial forces in this equation according to
(2.1.12). Then, by applying the principle of virtual work (see, for example, equation (4.2.20))
the differential equations of motion of a finite element are obtained as (see (5.3.7))

MÜ +Bw U̇ +KU = Fext (13.2.9)

Here the element matrices are: M is mass matrix; Bw is the damping matrix, in case when
the material has a viscous resistance; K is the stiffness matrix; and Fext is the external
nodal force vector which includes body and surface forces acting on the element. By the
standard assembling procedure, described in Section 4.2.2, the dynamic differential equations
of motion (5.2.7) are obtained. These differential equations can further be integrated in a
way described in Section 5.3, with a selected time step size �t. The nodal displacements
n+1U at end of time step are finally obtained according to equation (5.3.8):

K̂tissue
n+1U = n+1F̂ (13.2.10)

where the tissue stiffness matrix K̂tissue and vector n+1F̂ are expressed in terms of the matrices
and vector in (13.2.9), according to equations (5.3.9) and (5.3.10). Note that this equation
is obtained under the assumption that the problem is linear: displacements are small, the
viscous resistance is constant, and the material is linear elastic.
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In many circumstances of blood flow the wall displacements can be large, as in the case
of aneurism, hence the problem becomes geometrically nonlinear, see Section 6.2.3. Also, the
tissue of blood vessels has nonlinear constitutive laws, as described in Sections 2.4.2, 6.2, 11.1
and 13.1.3, leading to materially nonlinear FE formulation. Therefore, the approximations
adopted to obtain equation (13.2.10) may not be appropriate. For a nonlinear problem, instead
of (13.2.10) we have the incremental-iterative equation

n+1K̂�i−1�
tissue�U�i� = n+1F̂�i−1� − n+1 Fint�i−1� (13.2.11)

where �U�i� are the nodal displacement increments for the iteration ‘i’, and the system matrix
n+1K̂�i−1�

tissue, the force vector n+1F̂�i−1� and the vector of internal forces n+1Fint�i−1� correspond
to the previous iteration (see Section 6.2.3 for details).

We here emphasize the material nonlinearity of blood vessels which is used in further
applications. As presented in Section 6.2.3, the geometrically linear part of the stiffness
matrix,

(
n+1KL

)�i−1�

tissue
, and nodal force vector, n+1Fint�i−1�, are defined in equation (6.2.21):
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where the consistent tangent constitutive matrix n+1C�i−1�
tissue of tissue and the stresses at the

end of time step n+1��i−1� depend on the material model used. Calculation of the matrix
n+1C�i−1�

tissue and the stresses n+1��i−1� for the tissue material models used in further applications
are given in Section 11.2. In each of the subsequent sections we will give the basic data
about the models used in the analysis.

13.2.4 Blood–blood vessel interaction

In all models of blood flow where deformation of blood vessel walls is taken into
account, we will implement the loose coupling approach for the fluid–structure interaction,
see Section 7.6. The overall strategy adopted here consists of the following steps (see
Table 7.6.1):

(a) For the current geometry of the blood vessel, determine blood flow (with use of the ALE
formulation of Section 7.5 when the wall displacements are large). Wall velocities at the
common blood–blood vessel surface are taken as the boundary condition for the fluid.

(b) Calculate the loads, arising from the blood, which act on the walls.

(c) Determine deformation of the walls taking the current loads from the blood.

(d) Check for the overall convergence which includes fluid and solid. If convergence is
reached, go to the next time step. Otherwise go to step (a).

(e) Update blood domain geometry and velocities at the common solid-fluid boundary for
the new calculation of the blood flow. In case of large wall displacements, update the
FE mesh for the blood flow domain. Go to step (a).
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13.3 Human aorta

Some basic data about the human aorta are introduced first and then the FE model for
simulation of blood flow through a deformable and rigid aorta is described. At the end of
this section we present some typical results.

13.3.1 Introduction

The aorta is large vessel originating from the heart that traverses the middle of the abdomen
and bifurcates into two arteries supplying the legs with blood. The aorta arises from the
left ventricle of the heart, forms an arch, and then extends down to the abdomen. Two
smaller arteries, called renal arteries, which branch from aorta, have the low resistance so
that two-thirds of the entering flow leaves the abdominal aorta through the arteries at the
diaphragm. The aorta carries and distributes oxygen rich blood to all arteries. Most of the
major arteries branch off from the aorta, with the exception of the main pulmonary artery
(Vander et al. 1998).

The walls of the aorta consist of three layers as described in Section 13.1.3. They are
the tunica adventitia, tunica media and tunica intima (Holzapfel & Weizsacker 1998). The
structure of the aorta and coronary arteries is shown in Fig. 13.3.1 (see color plate). The blood
is pumped from the left ventricule of heart directly to the aorta root for a short time period
approximately 0.2–0.3 s. The coronary arteries are positioned immediately after the valves
and they are the left main coronary artery, which consists of the left circumflex and the
left anterior descending artery, and the right coronary artery. The ascending aorta goes to

Fig. 13.3.1 The structure of the aorta and coronary arteries. The aorta consists of the aorta
root, the aorta arch, the ascending and descending parts, and aortic branches. The coronary
arteries exit from the aorta root and lead to a branching network of small arteries, arterioles,
capillaries, venules and veins (see Plate 12)
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the aorta arch and then to the descending aorta. Usually, under physiological normal human
conditions, there are three aorta branches: brachiocephalic trunk, left common carotid artery,
and subclavian artery.

Blood flow in the ascending aorta is complex pulsatile and three-dimensional. It also
has rotational flow components at certain locations, as recorded by Segadal and Matre
(1987). Motion and deformation of the aorta play an important role in the wall shear stress
magnitudes, particularly at regions of stasis and flow reversals. A considerable number of
numerical studies have been performed on blood flow in the aorta, initially assuming rigid
walls and later with deformable walls (e.g. Liu et al. 2001).

In the presented solutions of blood flow within a human aorta, we consider the full
fluid–structure interaction with walls deforming due to blood action (Kojić et al. 2003). The
aorta model considered here assumes normal physiological healthy subjects.

13.3.2 Finite element model of the aorta

The finite element model of the aorta with arteries is shown in Fig. 13.3.2a. An overset
grid approach is used, together with the body-fitted meshes, to generate separate meshes
for the five distinct regions (objects). Blood flow domain is discretized by 3D eight-node
finite elements for fluid, with velocities calculated at all nodes and pressure at the center
(see Section 7.4). Blood is taken as an incompressible Newtonian fluid, appropriate for
larger arteries. The blood density is � = 1�05 g/cm3, and the kinematics viscosity is � =
0�035 cm2/s.

The wall is modeled by the four-node shell elements (Slavković et al. 1994) assum-
ing linear elastic isotropic material. A fluid–structure interaction algorithm is implemented
(Filipović et al. 2006, Kojić et al. 1998; see Section 7.6). Boundary conditions for the blood
are: prescribed inlet velocity profile which simulates cardiac cycle and zero surface traction
at the outlet of the model. The flow rate time function for the input aorta profile is shown
in Fig. 13.3.2b.

The geometric data used here correspond to a human aorta and are as follows: the inner
aorta diameter is 2.4 cm and the arterial wall thickness is 0.2 cm; the inner diameters of

Fig. 13.3.2 FE model of the aorta with main artery branches. (a) Finite element mesh; (b)
Input flow rate vs. time (pulsatile flow), T is the heart cycle
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the brachiocephalic trunk, left common carotid artery, subclavian artery and left and right
coronary artery, are (in cm) 1, 0.6, 0.8, 0.4, respectively.

Besides this example we provide on the web (see Software) a simplified model with
rigid walls and without artery branches for which the finite element model can be generated
parametrically.

13.3.3 Results and discussion

The contour slice of velocity magnitude and shear stress are shown in Figs. 13.3.3 (see color
plate) and 13.3.4 (see color plate) for early systolic flow t = 0�05 s, in the case of deformable
and rigid walls.

As expected, the region along the outer wall of the aorta arch distal from the branches
has low velocities relative to those in the region in the ascending aorta and other parts of

Fig. 13.3.3 The velocity magnitude field in the human aorta for early systolic flow t =
0�05 s. (a) Rigid walls; (b) Deformable walls (note that diameters are smaller with respect
to rigid aorta shown in (a)) (see Plate 13)

Fig. 13.3.4 The wall shear stress in the human aorta for early systolic flow t = 0�05 s;
(a) Rigid walls; (b) Deformable walls (see Plate 14)
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the aorta (the ascending aorta arch and the descending aorta). Also, the velocities are larger
when deformation of the aorta wall is taken into account due to wall elasticity (see Fig.13.3 –
color plate, where diameters of deformable aorta are smaller with respect to the rigid aorta
due to inertial effect from the previous cycle).

The results for shear stress in Fig. 13.3.4 (see color plate) show generally lower shear
stresses for deformable walls in comparison to rigid walls. This is probably due to more con-
tinuous changes of the velocities near the walls (smaller velocity gradient) under pulsatility
conditions when the walls are considered deformable then rigid. The maximal shear stresses
for the early systolic flow are observed in the aortic branches.

Comparing the solutions obtained using rigid and deformable walls, it is found that there
is a difference of less than 2% in velocities, and about 22% in the wall shear stresses.

13.4 Abdominal aortic aneurysm (AAA)

An abdominal aortic aneurysm (AAA) is introduced in this section. Several types of AAA
are modeled using rigid and deformable walls. Velocity and shear stress distribution inside
the AAA are presented and discussed.

13.4.1 Introduction

In general, an aneurysm is a localized abnormal berry-like or gradual dilatation of any
vessel, usually at or near a branch, which is caused by a localized damage or weakness
of the vessel wall (Fig. 13.4.1 – see color plate). An abdominal aortic aneurysm (AAA)
is an enlargement in the lining of the abdominal aorta which is the largest blood vessel in
the body. A consensus definition of an aneurysm was defined in 1991 by the Society of
Vascular Surgery and the International Society for Cardiovascular Surgery as: a permanent
localized dilatation of an artery having at least 50% increase in diameter compared with

Fig. 13.4.1 Normal physiological abdominal aorta and aorta with large abdominal aneurysm
(http://www.lifelinescreening.com/Disease/AAA/Pages/Index.aspx) (see Plate 15)
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Table 13.4.1 Characteristics of true aneurysms

Shape of
dilatation

Diameter Parts of vessel
affected

Features

Berry-like Small
spherical

1.0–1.5 cm Sidelong Occurring in
the brain
arteries

Saccular Spherical 5.0–20.0 cm Sidelong Often filled by
thrombus

Fusiform Gradual &
progressive

Up to 20 cm Circumferential Frequently
occurring in all
parts of aorta

Dissecting No
dilatation

— Blood dissecting
between the layers
of the vessel wall

Blood-filled
channel within
aortic wall

the expected normal diameter of the artery, or of the diameter of the segment proximal to
the dilatation (Fukushima et al. 1989). It is considered that an aorta with a diameter of
3 cm and more is defined as aneurysmal, since the maximal diameter of a normal aorta is
about 2 cm.

Aneurysms are classified as true and false. In a true aneurism, the blood remains in the
circulatory system, while in a false aneurysm an expanding hematoma emerges from a hole
on the artery wall. Hence, in the case of a false aneurysm the aorta wall is ruptured, not
expanded. The true aneurysms are classified according to their shape: berry-like, saccular,
fusiform and dissecting aneurysms. Characteristics of these aneurism shapes are given in
Table 13.4.1 (Thompson & Bell, 2000).

The main causes of aneurysm are arteriosclerosis and cystic medial degeneration, but
also genetic disorder, malfunction of the aorta, mycotic infections or arthritis (Cotran et al.
1994). Also, the cause of aneurysmal disorders is a loss of vessel distensibility, i.e. an
increase of stiffness of the vessel wall. This stiffness change is due to the loss of elastin
and increase in collagen content in the aortic wall, which in general occurs as a result
of aging. Approximately 5% of men above the age of 60 develop an aneurysm. There is
a risk that the aorta may rupture at the aneurism (Thompson & Bell 2000). The danger
of rupture is directly related to the aneurysm size. The risk of rupture for a small AAA
(with a diameter less than 4 cm) is about 2%, while an aneurysm larger than 5 cm has a
risk of rupture of 5% to 10% per year (Cotran et al. 1994). Aneurysm has to be repaired
because the death rate from ruptured AAA is almost 90%. About 80% of patients die
before reaching the hospital and about 50% die during the rupture-repair surgery (Vliet &
Boll 1997). Among those who died due to an aneurysm rupture are Albert Einstein and
Lucille Ball.

We model here a few typical AAA with symmetric position related to the cen-
tral axis. Deformable wall is modeled by applying fluid–structure interaction algorithm
(see Section 7.6). Computer-generated simulations, and patient-specific computer simula-
tions in particular, promise to become a very powerful tool in the clinical treatment of
the AAA.
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13.4.2 Modeling of blood flow within the AAA

The shape of AAA is very important. The severity of AAA is commonly estimated in
clinical practice by considering the AAA maximal diameter. However, from the mechanical
point of view, the hemodynamic effects and the mechanical stresses within the AAA tissue
certinly are important in the process of the AAA rupture. Bulge diameter alone may not
be a sufficient criterion for determination of rupure risk, therefore an insight into the
hemodynamic effects and the stress–strain quantification and distribution within the vessel
wall are of great significance even in medical practice.

Generation of the Finite Element Model
A simplified geometry of an aneurism is shown in Fig. 13.4.2. With the web software
(Software – Section 13.4) a 3D finite element model for the blood flow domain can be
parametrically generated. A transition smoothness between the surfaces is achieved by using
Bezier’s curves. Also, the results can be displayed with a user-friendly menu in a way suitable
for an insight into medical aspects of the blood flow conditions. A detailed description of the
software use is given on the web (within Tutorial of each example), while the description of
geometric parameters is given in the caption of Fig. 13.4.2.

The theoretical background for the blood flow is given in Sections 3.3, 7.4 and 13.2.2.

Boundary Conditions
At the inflow aorta cross-section a fully developed parabolic flow is assumed, determined
by a selected volume flux. The normal stress and tangential stress are set to be equal to zero
(stress-free condition), or they are prescribed, at the outlet cross-section.

Fig. 13.4.2 Geometrical parameters of AAA: ‘Length’ is the parameter which defines the
total horizontal projection of the generated aneurysm model; ‘A’ is the height of the arc of
central line; ‘Aorta diameter’ is the abdominal aorta diameter; ‘B’ is the radius from the
central line to the inner wall of the aneurysm; ‘C’ is the radius from the central line to the
outer wall of the aneurysm; ‘Aneurysm length’ is an average length of the AAA
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Fig. 13.4.3 A typical in-flow waveform at the aorta entry. Q is the volumetric in-flux and
t/T is the relative time with respect to the cycle period T

It is assumed that the entering flow is pulsatile, with a typical waveform shown in
Fig.13.4.3 (Ku 1997). As described in the software menu, the waveform can be changed.

13.4.3 Results

Results for two examples of the symmetric AAA are given here: (a) case with rigid walls,
and (b) AAA with deformable walls. Results not shown here and solutions for other model
parameters can be obtained using Software on the web.

Modeling of AAA Assuming Rigid Walls
We analyze an aneurism at the straight aorta domain, where aorta proximal and distal to the
AAA bulge are idealized as straight rigid tube and branching arteries are excluded. The model
has ratio D/d = 2�75 (Peattie et al. 2004) and geometry generated according to Fig. 13.4.2
(D and d are diameters of the bulge and aorta, respectively). The data are: blood density is
� = 1�05 g/cm3; kinematic viscosity (Newtonian fluid) � = 0�035 cm2/s� d = 12�7 mm. The
inflow velocity is defined by the flux function given in Fig. 13.4.3. The FE mesh consisted
of approximately 8000 3D eight-node brick elements.

The results for the velocity and pressure at peak systole t/T = 0�16 are shown in
Fig. 13.4.4 (see color plate). The velocity disturbance in the region of the aneurism is
notable. Also, the region of maximum pressure is located inside AAA.

Modeling AAA with Deformable Walls
Here, an aneurysm of the straight aorta with deformable walls is modeled according to
the fluid–structure interaction algorithm (Section 7.6). Blood flow is calculated using 2112
eight-node 3D elements, and 264 four-node shell elements used to model the aorta wall,
with the wall thickness � = 0�2 cm. The material constants for blood are as in the previous
example, while data for the vessel wall are: Young’s modulus E = 2�7 MPa, Poisson’s ratio
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Fig. 13.4.4 Velocity field (left panel) and pressure distribution (right panel) for peak systole
t/T = 0�16 of AAA for the model with D/d = 2/75� d = 12�7 mm (Peattie et al. 2004) (see
Plate 16)

Fig. 13.4.5 Input velocity and output pressure profiles for the AAA on a straight vessel.
Inlet peak systolic flow is at t = 0�305 s and outlet peak systolic pressure is at t = 0�4 s. (a)
Velocity waveform; (b) Pressure waveform (Scotti et al. 2005)

v = 0�45, wall thickness � = 0�2 cm, tissue density � = 1�1 g/cm3. Boundary conditions for
the model are prescribed velocity profile (see Fig. 13.4.5a) and output pressure profile as
given in Fig. 13.4.5b.

The results for velocity magnitude distribution at t = 0�305 s are shown in Fig. 13.4.6a
(see color plate). The von Mises wall stress (see web – Theory, Chapter 2) distributions at
t = 0�4 s is given in Fig. 13.4.6b (see color plate). It can be seen that the velocities are low
in the domain of the aneurism, while the larger values of the wall stress are at the proximal
and distal aneurism zones.
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Fig. 13.4.6 Velocity magnitude field and von Mises wall stress distribution for symmetric
AAA on a straight vessel. (a) Velocity field distribution for peak at t = 0�305 s; (b) von
Mises wall stress distributions for blood pressure peak at t = 0�4 s (see Plate 17)

13.5 Blood flow through the carotid artery bifurcation

The topic addressed in this section is modeling of the carotid artery bifurcation which
includes: (a) model generation: definition of geometry, automatic mesh generation, boundary
and initial conditions, calculation of three-dimensional blood flow and deformable wall; (b)
display of results for velocity, pressure and shear stress distribution for fluid domain, and
von Mises stress distribution within the vessel wall.

13.5.1 Introduction

The common carotid arteries are two of several arteries that supply blood to the head. The
right common carotid artery branches from the brachiocephalic artery and extends up the
right side of the neck. The left common carotid artery branches from the aorta and extends up
to the left side of the neck (Fig. 13.5.1a – see color plate). Each carotid artery branches into
internal and external vessels near the top of the thyroid. A typical carotid artery bifurcation
is shown in Fig. 13.5.1b (see color plate). The blood flows from the common carotid artery
(CCA) into the internal carotid artery (ICA) and external carotid artery (ECA).

After heart disease and cancer, the third most common cause of death is stroke. Probably
the most frequent stroke is of the embolic type with a heart disease as the source. The
carotid bifurcation stenosis is also a significant cause of stroke, producing the infarction
in the carotid region by embolization or thrombosis at the site of narrowing (Strandness &
Eikelboom 1998). The thrombosis development and embolization is conditioned by the local
hemodynamics which can be investigated experimentally and/or by computer modeling.
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Fig. 13.5.1 Carotid artery bifurcation. (a) Position of carotid arteries in the arterial system;
(b) Typical carotid artery bifurcation. CCA – common carotid artery, ICA – internal carotid
artery, ECA – external carotid artery (see Plate 18)

The carotid artery stenosis has a number of risk factors in common with other atheroscle-
rotic diseases. In general, increase of stroke risk is induced by many factors: age, systolic and
diastolic hypertension, diabetes, cigarette smoking, etc. Changes of the geometrical vessel
dimensions in the region of the carotid artery bifurcation certainly affect the blood flow and
may lead to stenosis process. It has been shown that the vessel diameter at the carotid artery
bifurcation changes considerably with age.

There is a number of references on experimental investigations of flow in the carotid
artery, e.g. Ku et al. (1985), Perktold et al. (1991b), Zarins et al. (1983). We will use some
of the results from these references to compare with our FE solutions.

13.5.2 Finite element model of the carotid artery bifurcation

Here we describe the basic concept of generation of the carotid artery bifurcation finite
element (FE) models, with appropriate boundary conditions. A 3D finite element model
with 3D fluid finite elements (eight-node isoparametric elements with velocity calculation at
all nodes and pressure calculated at the element level, see Section 7.4) is generated for the
carotid artery geometry as described below (see also web, Software). The wall is modeled
with four-node shell elements (Section 4.5). The post-processing of results gives an insight
into the local hemodynamics, as well as the blood mechanical action on the vessel walls,
such as distributions of pressure and shear stress on the wall surfaces.

Model Geometry and FE Mesh for the Blood Flow Domain and Wall
A simplified carotid artery bifurcation geometry is shown in Fig. 13.5.2. The geometric
parameters are used for the generation of the blood vessel internal surfaces, which are
the boundaries for the blood flow domain. It is assumed that the cross-sections of all
arteries are circular, with a transitional region at the branching. With the use of these
geometric parameters, a 3D finite element model for the blood flow domain is gener-
ated; such an FE model is shown in Fig. 13.5.3a. It is assumed that the bifurcation
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Fig. 13.5.2 Geometrical data for the carotid artery model. CCA – common carotid artery,
CBR – carotid bifurcation region, CBRE – carotid bifurcation region external, ECA – external
carotid artery, CBRI – carotid bifurcation region internal, ICA – internal carotid artery,
ICB – internal carotid bulbus

Fig. 13.5.3 An FE model of the carotid artery bifurcation. (a) FE mesh generated using
the parameters shown in Fig. 13.5.2. The blood flow domain is modeled by 3D fluid
finite elements; (b) Flow rate of the blood entering CCA in terms of the relative time
t/T , where T is the cycle period (see web – Software, Section 13.5 Carotid Artery
Bifurcation)

has the symmetry plane (the plane shown in Fig. 13.5.2), hence the FE model is gener-
ated for the half of the entire domain (part in front of the symmetry plane). A detailed
description of the FE model generation, including material data for blood and range for
all FE model parameters, is given on the web – Software (Section 13.5 Carotid Artery
Bifurcation).
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Boundary Conditions
At the inflow of CCA a fully developed flow is assumed. The inflow is pulsatile in character
and is defined by volumetric blood flow rate Q (mL/s) at the common artery entering cross-
section. The flow rate is specified by a waveform as shown in Fig. 13.5.3b (Perktold et al.
1991b). The waveform can be specified using the Software on the web.

At the fixed walls all velocity components are set to be zero. Also, the velocity
components at the plane of symmetry in the direction normal to the plane are set to zero.
It is assumed that the end cross-sections of the internal and external carotid arteries are
stress-free, i.e. normal and tangential stresses are set to zero. This boundary condition does
not represent the real flow conditions at the outflow boundaries, but, by varying the artery
lengths, the physiological resistance to the blood flow in the region close to the bifurcation
can be matched.

FE Model for Artery Wall
In the case of modeling deformation of the vessel wall, an FE mesh of four-node shell
elements is generated to be compatible with the fluid 3D finite element surfaces bounding
the blood flow domain. Details about this modeling are given in the menu of the Software
on the web.

13.5.3 Example solutions

We first analyze blood flow through the carotid artery bifurcation with rigid walls and then
with deformable walls. The first example, the case with the rigid walls, is also available on
the web (see Software – Section 13.5 Carotid Artery Bifurcation).

Carotid Artery Bifurcation with Rigid Walls
The FE model is generated using the Software (see Fig. 13.5.2). Data are as follows:
blood density is � = 1�05 g/cm3; kinematic viscosity is � = 0�035 cm2/s; (geometrical
data – lengths in mm) diameter of the CCA = 6�2, length of the CCA = 7�44, diameter
of the ICA = 6�5, length of the ICA = 26�04, diameter of the ECA = 3�658, length of the
ECA = 18�6, diameter to the ICB = 6�5, distance to the ICB = 5�39, diameter at end of
ICA = 4�34; angle between ICA and CCA = 25�, angle between ECA and CCA = 25�. The
normal physiological pulsatile waveform form given in Fig. 13.5.3b is used for the input
velocity profile.

The results for the velocity field at diastolic flow are shown in Fig. 13.5.4 (see color
plate). A stagnation zone of flow is observed at the carotid bulbus distal to the bifurcation
region along the internal carotid artery. The atherosclerosis appears in this region in more
then 90% cases (Strandness & Eikelboom 1998), therefore determination of the stagnation
regions within the flow field can be of use in clinical practice.

Carotid Artery Bifurcation with Deformable Walls
Here, we model blood flow within the bifurcation, including deformation of the vessel
walls. The walls are modeled by the four-node shell finite elements (Section 4.5). Typ-
ical geometrical and material data, and flow conditions are used (Perktold & Rappitsch
1995). Geometrical data, with lengths in (mm) (according to Fig. 13.5.2), are: diameter
of CCA = 6�0, length of the CCA = 7�0, diameter of ICA = 6�5, length of ICA = 26,
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Fig. 13.5.4 3D field of velocity magnitude at the maximum systolic flow (at relative time
t/T = 0�11 within the period T ); see also web – Software for solutions for the entire period
of the cycle (see Plate 19)

Fig. 13.5.5 Distribution of von Mises stress (Pa) within the artery walls of the carotid
artery bifurcation due to action of blood, for systolic deceleration flow �t/T = 0�125� and
diastolic minimum flow �t/T = 0�325� (see Plate 20)

diameter of ECA = 3�6, length of the ECA = 18�0, diameter to ICB = 6�5, distance to
ICB = 5�3, diameter at end of ICA = 4�0; angle between ICA and CCA = 25�, angle
between ECA and CCA = 25�. Material data for the blood are: density � = 1�05 g/cm3

and dynamic viscosity � = 0�0365 P. Material data for the vessel walls are: Young’s
modulus E = 0�361 MPa, Poisson’s coefficient v = 0�45, tissue density � = 1�1 g/cm3.
Wall thicknesses (in cm) of: CCA = 0�031, distal part (inner carotid wall) = 0�022, outer
carotid = 0�02.
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We here present some of the results, which are commonly given in the literature (e.g.
Perktold et al. 1991b), and for certain pulse phase angles during the cycle. These phase angles
(relative times) are: systolic peak flow, t/T = 0�11; systolic deceleration flow, t/T = 0�125;
diastolic minimum flow, t/T = 0�325; diastolic flow, t/T = 0�775 (see Figs. 13.5.4–13.5.6).

The von Mises (effective) wall stress distribution at two relative times is shown in
Fig. 13.5.5 – see color plate (Filipović 1999, Filipović & Kojić 2004, Filipović et al. 2006a,
Kojić et al. 1998). It can be seen that the maximum stresses occur in the region of the
bifurcation and are larger during systole.

The shear stress fields are shown in Fig. 13.5.6 (see color plate). As can be seen from
the figure, the shear stresses are much higher at carotid branch than in the common, external
and internal carotid artery. Also, shear stresses are much larger during systole than during
diastole.

Fig. 13.5.6 Wall shear stress field at two relative times (left panel – systole; right panel –
diastole). Systolic shear stresses are much larger than diastolic (see Plate 21)

Fig. 13.5.7 Axial velocity component at the outer sinus wall position during a cycle
period, with rigid and deformable walls (Filipović 1999, Perktold et al. 1991b, Perktold &
Rappitsch 1995 – denoted as ‘Reference’ in the figure)
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Change of the axial velocity component at the outer sinus wall position within the cycle
is shown in Fig. 13.5.7. The solutions are obtained assuming rigid and deformable walls.
It can be seen that wall deformation has an influence on velocity, but differences are form
around 5% to 10%.

13.6 Femoral artery with stent

In this section the human femoral artery is analyzed. The basic anatomy and function of this
artery is presented first, followed by the FE model description and results.

13.6.1 Femoral artery anatomical and physiological considerations
and endovascular solutions

The purpose of this section is not to detail through the thorough network of the anatomical
relationships, but to provide a short overview of the femoral artery anatomy with regard to
important facts for its biomechanical behavior.

The common femoral artery (Fig. 13.6.1), after its pass beneath the inguinal ligament,
courses through the so-called Scarpa’s triangle (triangular space with muscles at the bound-
aries). A couple of centimeters below the inguinal ligament, the common femoral artery
gives off its deep branch, responsible for almost all collateral supply, then continuing as

Fig. 13.6.1 The femoral artery (according to Hollinshead 1982)
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a superficial femoral artery enters the aponeurotic canal (known as the adductor canal or
Hunter’s canal) at the caudal apex of the Scarpa’s triangle. This canal is bounded by mus-
cles at anterolateral and posterior surfaces, and by stiff aponeurosis between muscles at the
anteromedial surface.

Symptomatic disease of the femoral, precisely the superficial femoral artery (SFA),
usually arises at the so-called typical location, adductor canal. This part of the artery trajectory
is important for several reasons. Passing through the tendon of the adductor magnus muscle,
the artery is fixed in that region and is less viable than in its other segments. Multiple
repetitive microtrauma to the vessel wall fixed to the canal could be stressed as a major
potential stimulus for the atherosclerotic process. The artery is entrapped within the canal by
the tendon itself. Therefore, the artery’s ability to undergo the process of so-called positive
remodeling, dilating and enlargement as a response to the plaque formation, is limited
comparing to the rest of it (Blair 1990).

The SFA is a frequent target of atherosclerotic disease predominantly in the proximal
section near the bifurcation into the deep femoral artery and in the distal section where
the adductor muscles tend to compress the artery. In the past, the SFA revascularization
was the domain of vascular surgery (femoropopliteal and femorodistal bypasses). However,
with the development of endovascular treatment and advanced techniques as well as more
sophisticated metallic endoprosthesis (stent) material, endovascular treatment is nowadays not
just a treatment option but in most cases is preferable, at least as an initial revascularization
procedure in the treatment of peripheral artery vascular disease.

Since the SFA is a unique vessel in terms of its anatomy, function and interventional
requirements, it has no comparison with any other arterial vascular bed. It is a long conduction
vessel with a high flow resistance underlying several different hemodynamic conditions.

The well-known factors influencing difficulties in any kind of treatment of
femoropopliteal arterial segment include different external and internal forces, proximity
of major flexing points, large muscle masses surrounding, lack of high diastolic flow, etc.
Having relatively recent phylogenetic origin, there are also no collateral vessels along the
entire course of the artery. From the very beginning of the endovascular approach to this
territory, since Charles Dotter’s pioneering angioplasty procedures (Dotter & Judkins 1964),
there have been many controversies about the issue of their true clinical benefit. Shortly
after the initial enthusiasm of every new device or procedure improvement, there followed
discouraging facts that favored the opponents of endovascular therapies in this region. Even
more extensive use of balloon expandable or self-expandable stainless steel stents did not
approve itself as a method much better than angioplasty alone. Only recently, have clini-
cal trials using nitinol self-expandable stents in femoropopliteal region showed a dramatic
improvement in the mid- and long-term results (a description of the nitinol material is given
on the web – Theory, Chapter 13).

However, stent fracture has emerged as a new problem in the percutaneous transluminal
angioplasty of the superficial femoral artery. Walking more than 5000 steps per day was
the strongest independent determinant variable associated with stent fracture by discrimi-
nant analysis (p = 0�0027, Osamu et al. 2006). Vigorous exercise adversely affected stent
fracture in the group of 40 patients implanted with a nitinol stent in the SFA. Yet, the
incidence of stent fracture is not equal for all nitinol stents currently in use for human
superficial femoral arteries. This raises the question of possible causes and induces a
search for explanation in biomechanical properties and different stent design. Computer
modeling can be of help to gain insight into the mechanical working loads carried by
the stent.
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13.6.2 Analysis of the combined effects of the surrounding muscle
tissue and inner blood pressure to the arterial wall with
implanted stent

In an anatomical sense, the geometrical relationship between femoral artery and surrounding
muscle tissue is very complex. In its spreading throughout the muscle structure of the
thigh, the femoral artery is surrounded by adductor muscles. While walking, these muscles
contract, inducing the pressure effect on the wall of the femoral artery. The goal of
the analysis presented here is to reconstruct the appropriate geometrical and anatomical
relationships of the femoral artery and muscle tissue in adductor canal, and then to reveal
their interaction.

FE Model
In order to perform computer modeling of the combined effects of the surrounding muscle
tissue and inner forces of blood against the arterial wall with implanted stent, a simplified
finite element model (in the geometrical sense) is generated (Ranković 2007). We only
consider part of the artery surrounded by the stent and segments within the region of 10 mm
above and 10 mm below the stent. It is approximated that the arterial diameter and wall
thickness are constant in the entire model and are taken to be 8 mm and 0.5 mm, respectively
(Schmidt et al. 2000).

The FE model consists of the solid domain and the fluid domain (Fig. 13.6.2). The solid
domain consists of stent, arterial wall and muscle bundle surrounding the arterial wall. The
stent is modeled using 3D eight-node finite elements, arterial wall by using four-node shell
elements, while muscle bundles are modeled using 3D eight-node elements with muscle
fibers (see Sections 4.3, 4.5, 12.1 and 12.2 for the description of these elements). Fluid is
modeled using 3D eight-node finite elements (Section 7.4). The thickness of the muscle tissue

Fig. 13.6.2 Finite element model of femoral artery with stent, including the muscle sur-
rounding (Ranković 2007)
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Fig. 13.6.3 Boundary conditions for blood flow and muscle activation within a heart cycle
period T used in the femoral artery FE model. (a) Mean velocity at the inlet cross-section
(according to Woodcock et al. 1975); (b) Blood pressure at the outlet (according to Patel
et al. 1965); (c) Muscle activation function

is adopted to be 1 cm, with the muscle fibers in the circumferential direction. The results
are presented for the extreme loading conditions of the artery wall arising from blood and
muscle mechanical actions. They correspond to the moment of peak systole and maximum
muscle activation.

The process of numerical analysis consists of two phases. In the first phase blood flow is
computed until the systole peak is reached (maximal pressure and velocity values), impos-
ing the boundary conditions shown in Figs. 13.6.3a,b. During this phase muscle tissue
is assumed to be relaxed. In the second phase, starting immediately after the peak sys-
tole, activation of muscles with muscle contraction is assumed. The activation occurs in a
short time period and muscles remain activated as shown in Fig. 13.6.3c. Therefore, the
extreme mechanical loadings of the artery wall arising form the blood and muscle actions are
modeled.

Boundary conditions for the solid surrounding the artery are as follows. It is assumed
that the first and last cross-sections do not move axially, hence all FE element nodes in
these cross-sections are axially restrained.

Material Characteristics
It is assumed that the wall material is orthotropic nonlinear elastic, and the Fung material
model is adopted (Fung 1979). The strain energy function is defined in (11.2.32). The material
parameters c� a1� a2� a4 are determined using a data-fitting procedure, with data obtained
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experimentally (the experimental investigation of the arterial wall, Ranković 2007). Material
parameters obtained from the fitting procedure are:

c = 0�7565 MPa�a1 = 0�166� a2 = 0�084� a4 = 0�045 (13.6.1)

For the stent material, the alloy of nitinol is adopted (for the definition of this material see
web, Theory – Chapter 13). Material parameters characterizing this alloy are (Auricchio &
Taylor 1997):

E = 60000 MPa � = 0�3


AS
s = 520 
AS

f = 750 
SA
s = 550 
SA

f = 200

�AS = 250 �SA = 20 �L = 7�5% C = 0

(13.6.2)

where all 
 and � parameters are in (MPa). Material parameters of blood are: density
� = 1�05×10−3 g/mm3 and dynamic viscosity � = 3�675×10−3Pa s.

Results
According to the boundary conditions and loads mentioned above, the numerical analy-
sis of the material behavior of this complex model is performed. The extreme loading
conditions are taken to be as described above, which correspond to the peak of sys-
tole and the muscle contraction activation according to diagram in Fig. 13.6.3. Transver-
sal muscle contraction induces loading on the compound consisting of arterial wall
and stent.

Figures 13.6.4a and 13.6.4b show the numerical solution for the hoop and longitudinal
(axial) stresses in the arterial wall at a time corresponding to the maximal muscle contraction.
The shell FE model of the stent and field of the effective stress within stent (see web,
Theory – Chapter 2 for definition of the effective stress) at this time are shown in Fig. 13.6.5.
In Fig. 13.6.6 we present the diagram of axial stress distribution in the arterial wall along
the longitudinal line AB shown in Fig. 13.6.4b.

Fig. 13.6.4 Fields of hoop and axial stresses within arterial wall. (a) Hoop stress; (b) Axial
stress (Pa)
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Fig. 13.6.5 The field of effective stress within stent at maximum muscle contraction (note
that these stresses are much larger than within tissue)

Fig. 13.6.6 Axial stress distribution in the arterial wall along the longitudinal line AB (see
Fig. 13.6.4b) at maximum muscle contraction

It can be seen from the solutions shown above, that due to the pressure action of
the surrounding muscle tissue, significant deformation occurs in the arterial wall regions
localized distally with respect to stent. Because of large difference in stiffness between
the arterial wall regions with and without stent, the concentration of axial stresses and
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deformations occurs in the zone around the stent boundary. In this zone the axial stress
reaches the value between 120 and 130 kPa, which is around 30 kPa larger than within
the rest of arterial wall. These large stress concentrations indicate a potential danger of the
arterial wall endothelium injury in the zone of stent boundary.

Since an arterial wall endothelium injury leads to the endothelium prothrombotic behav-
ior, the above result about the stress concentration suggests a possible cause of the repeated
atherosclerotic changes.

13.7 Blood flow in venous system

In this section we present the basic information about the venous blood flow and introduce
an FE model for flow in the straight lower leg vein without and with bandaging. Modeling of
blood flow through the venous system in the leg could help the design compression therapy.

13.7.1 Introduction

In the human, the return of venous blood from the lower limbs to the heart requires the
assistance of a pump structure equipped with nonreturn valves, since the force generated by
the heart alone cannot overcome gravity to drive the blood from the toes to the brain. The
pumping action in the deep veins is provided by the muscles. Muscle contractions, acting
within the strict confines of the encircling deep facia, squeeze the blood, at high pressure,
towards the heart. On the way to the heart, the blood also travels through the long and the
short saphenous veins in the superficial system embedded in the fatty tissue surrounding the
muscles and therefore at much lower pressure (Fig. 13.7.1) (Benbow et al. 1999). Provided

Fig. 13.7.1 Venous system in the leg (according to Benbow et al. 1999)
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Fig. 13.7.2 Blood flow through the vein with the muscle interaction. (a) Resting condition;
(b) Muscle contraction; (c) Muscle relaxation

the venous valves are working efficiently, and the muscle pump performs effectively, the
return of the blood to the heart is assured (Fig. 13.7.2).

If the valves in the large veins become incompetent due to primary degeneration or post-
thrombotic damage, blood will oscillate up and down in those segments lacking functional
valves. The resulting retrograde flow in the veins of the lower leg leads to a reduced fall
in venous pressure during walking (ambulatory venous hypertension). This causes fluid
loss into the tissues and the formation of oedema. Compression of veins with incompetent
valves produces an increase in orthograde (towards the heart) flow and a reduction in
venous reflux.

13.7.2 Modeling blood flow through the veins

In order to help patients with problems in valves in large veins, the bilateral banding of
the thighs and lower legs is implemented. This has the effect of reducing local blood
volume, by redistributing blood towards central parts of the body (Nelzen et al. 1991), see
Fig. 13.7.3.

We first analyze a simple example of an axisymmetric vein with the rigid walls and
then a vein with compression therapy. The computational procedures include FE models of
blood flow (Section 7.4) and solid–fluid interaction (Section 7.6).

Blood Flow in a Vein with Rigid Walls
Geometry of the straight axisymmetric vein and data are shown in Fig. 13.7.4a. The diameter
D, length L, position and geometry of the valves define the basic geometry of the blood flow

Fig. 13.7.3 Compression of the leg increases the blood flow in the preload of the heart
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Fig. 13.7.4 Basic data for blood flow through a simple axisymmetric vein with rigid walls.
The valves are modeled with a specific algorithm for the valves’ position. The mean velocity
calculated in the free region determines position of the valves: if the mean velocity is in
the positive y direction the valves are open, otherwise the valves are closed according to
the value of percentage parameter. (a) Geometrical data, FE mesh and boundary conditions
(prescribed velocity on the top and traction free surface at the bottom); (b) Prescribed velocity
during one cycle T

domain. Material data are blood density � as well as dynamics viscosity �. The parabolic
velocity profile is prescribed on the top of the model as a time function v�t�, see Fig. 13.7.4b.

Valves move within the cycles and represent a time-dependent boundary for the blood
flow. A valve is completely open when the mean velocity near the valve is in the positive y
direction, otherwise it is closed. Under normal physiological conditions the closure is com-
plete (100%) and the blood cannot move down. In the case of disease the valves do not close
completely and a gap which remains within the cross-section allows downward blood flow.
In our model we introduce the percentage parameter which determines part of the closed
cross-section when the valve is in the closed position.

The valve boundary condition is realized through a specific algorithm for the position of
the valves. Also, in the ‘Valve Data Dialog’ of the Software on the web, the vertical position
of the valve center, as well as its axial width, can be specified.

The velocity profiles which follow from the input waveform (Fig. 13.7.4b) is shown
in Fig. 13.7.5 at times t = 0�15 s� t = 0�35 s� t = 0�45 s and t = 0�60 s (Kojić et al. 1998,
Filipović et al. 2006c).

It can be seen from Fig. 13.7.5 that during systolic acceleration phase �t = 0�15 s� all
velocity profiles inside the vein are upward to the heart. The retrograde flow appears during
systolic deceleration phase �t = 0�35 s�. In the early diastolic phase the valves are activated
to block blood flow downward, but the failed valves (the percentage parameter of the closed
cross-section by the valve = 50%) allow blood to move downwards �t = 0�45 s�. A small
retrograde flow even appears during late diastolic phase �t = 0�60 s� in the zone near the
valves. At the end of cycle �T = 1 s� the valves start to open and the blood velocities reach
uniform distribution along the vein (not shown in the figure).
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Fig. 13.7.5 Velocity profiles for blood flow through simple axisymmetric vein model
with the rigid walls. Geometrical data (in mm): vein diameter D = 5, length L = 100. The
percentage parameter of the closed cross-section by the valve = 50%

Blood Flow through a Deformable Vein with Compression Therapy
We consider the same example as above, but now with deformable walls and compression
therapy. Hence, the vein walls are subjected to mechanical action of blood and compression by
bandages. Additional parameters (with respect to the model with rigid walls) to take into account
vein wall deformability are the wall thickness �, Young’s modulus E, Poisson’s ratio v and wall
density �w. The compression therapy is modeled by prescribing the force along the wall which
is produced by the multilayer bandage system (Fig. 13.7.3). The compression forces vary along
the domain of action.

Fig. 13.7.6 Velocity distribution at t = 0�15 s (peak velocity) for blood flow through
deformable vein with prescribed compression therapy force. Entering velocity profile is given
in Fig. 13.7.4b
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Fluid and solid are modeled by 2D axisymmetric finite elements and shell elements,
respectively (see Sections 4.4 and 4.5). Tissue is assumed to be elastic and the fluid-structure
interaction algorithm is implemented (see Section 7.6), with an incremental-iterative procedure.

The field of velocity magnitude at t = 0�15 s is shown in Fig. 13.7.6 for the follow-
ing parameters: (lengths in mm) D = 5�L = 100� � = 0�5�E = 3�61N/mm2� v = 0�49� �w =
1�1g/cm3� domain of force action = 30−70 mm� compression forces = 0−100 N .

Velocities are around 20% larger than in case when the compression therapy is not used
(Fig. 13.7.5, t = 0�15 s).

Both examples (rigid and deformable case) are available on the web Software where
model parameters can be changed and influence of these changes can be explored.

13.8 Heart model

We first introduce some basic data about human heart functions, and then present solutions
for an FE model of the left ventricular flow during filling phase.

13.8.1 Description of heart functioning

The heart is a potent biological pump consisting of two synchronized systems, the right
and left heart (Fig. 13.8.1). The right heart receives blood from large veins and delivers it
to the lung, and the left heart collects oxygenized blood from the lung and pumps it to a
system circulation (Guyton 1991). The base of the heart structure is made of the fiber frame,
which is composed of four fiber rings that are built of dense collagen fibers connected by
conjunctive tissue to form trigonum fibrosum. Muscle tissues of atriums and ventricles make
two anatomically and functionally independent complexes. Four fiber openings are attached
with valves that along with left and right trigonum make the heart frame. A little bridge,
which is built of specialized muscle tissue, is placed between atriums and ventricles. That

Fig. 13.8.1 Chambers of the heart (according to Mohr 2006)
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specialized muscle tissue participates in conductivity of heart currents, known as Hiss’s
bundle, which is the only communication between heart cavities (Douglas et al. 2001).
The functional tissue is composed of cardiocyte, the one-side densely packed contractile
myofibrils arranged by groups.

The heart is reacting by synchronous contracting to any stimuli (electric impulse) that is
above the threshold needed for depolarization, according to the rule ‘all or nothing’. Between
atria and ventricles are valves, needed to insure that blood flows only in one direction from
atria to the ventricle. They are attached to the fibrous ring and are different anatomically.
Between right atrium and ventricle is tricuspidal valve (with three cuspises) and in the
left ventricle valve are bicuspidal (called mitral) valves. Retraction of the valves into the
vantricule is prevented by contraction of papillary muscles in the initial part of the systole.
Valves are shut passively because of increased pressure in the ventricules (Brandenburg
et al. 1989).

Valves are also situated between ventricles and two major vessels: the aorta and pul-
monary artery, preventing the regurgitation of the blood during diastole, when the pressure
is higher in the arteries. Structurally, there are three symmetric, semilunar duplictures of the
endothelia. Approximately, valve opening is repeated up to 100 000 times in a single day.

Energy for contraction is extracted by biochemical reactions, the predominant fuel is glu-
coses whose energy is transferred by the high energy compound adenosine triphosphate (ATP).
Transformation of chemical into mechanical energy occurs during interactions of actin and
myosin. Due to elastic fibers in the arteries, the energy is transferred in the systole part into
potential energy needed to maintain continuous blood flow. In healthy individuals the heart
approximately pumps out the blood 5–6 l/min. The heart cycle is divided into two phases:

(a) systole – during this phase blood is pumped out;

(b) diastole – during this phase blood is entering the heart.

In systole ventricles contract. Contraction of ventricles is separated in two phases:

(a) Isovolumetric contraction, with increasing pressure within ventricles and closed AV
valves.

(b) Ejection phase – during which the blood is pushed out of the ventricle. During this phase,
because of the higher pressure in the ventricles then in arteries, blood rushes through.
Pressure reaches maximum values (normally 120 mmHg in the left and 25 mmHg in the
right ventricle). After this period pressure drops and blood continues to move into large
vessels due to inertia.

The pressure–volume (P–V) diagram of the left ventricle is given in Fig. 13.8.2. The start-
ing point of the cycle is along the end-diastolic pressure, where a small preload of the resting
heart exists. From this point the systole begins. After the mitral valve closes the isovolumic
contraction (A) proceeds until the ventricle encounters its afterload, the aortic pressure.

The pressure first rises after the aortic valve opens and then drops during ejection
(B). When the systole ends, the ventricular pressure and volume come to the end-systolic
pressure–volume values. After the aortic valve closure removes the load (aortic pressure)
from the ventricle, the relaxation begins under isovolumetric conditions (C) because blood
can neither enter nor leave the ventricle. When the left ventricular pressure drops below that
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Fig. 13.8.2 Schematics of the pressure–volume loop of the left ventricle

in the left atrium, the mitral valve opens and the atrium empties into the ventricle during the
phase of filling (D). The cycle is completed when ventricular relaxation is completed and
ventricular pressure and volume again lie on the end-diastolic P–V values (Cheng et al. 2005).

Volume at the end of systole is called endsystolic (normally 60 mL), and the volume of
the blood pumped out in a single cycle is the strike volume. Duration of systole is dependent
on the heart frequency and with the frequency of 75/min it lasts 0.3 s. Amount of blood
pumped out is dependent on the three factors: level of the stretching of heart, strength of the
muscle contraction and the heart frequency.

To explain the conduction system of heart excitation we have to consider in more detail
the following processes. First of all, there is the sinoatrial node (SAN) (see Fig. 13.8.3)
(primary pacemaker cells) responsible for the initial electrical stimulus. These cells have the
ability to depolarize and generate an action potential automatically. The electrical stimulus
reaches the atrioventricular node and conductive tissue delays the excitation to the ventricles
in order to provide temporal synchronization of contraction. After Tawara bundle and His

Fig. 13.8.3 Specialized excitation propagation tissues within the heart. Action potential
curves are given at the right panel, with their temporal progression (adapted from Mohr 2006)
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Fig. 13.8.4 FE model of the left ventricle. (a) Finite element mesh of the fluid and solid
domains; (b) The outlet pressure at the valvular plane; (c) Activation function for the muscle
fibers

bundle split, there are three branches. Two of these three branches conduct the excitation to
the left, the third to the right ventricle. Further, the braches are splitting into a subendocardial
network of Purkinje fibers which connects myocytes and activates muscle contraction. The
atrioventricular node is called the secondary pacemaker. It also has the ability to self-
depolarize, but with a lower frequency than the sinoatrial node. The action potential curves
for each tissue type shown in Fig. 13.8.3 (right panel) vary in length and shape. This is due
to the cell structure, amount of channels, pumps and exchangers.

13.8.2 Computational model

A simple FE model of the left ventricle is presented with some characteristic results.

Two-Dimensional Axisymmetric FE Model of Left Ventricle
The left ventricle is represented by an axisymmetric deformable body shown in Fig. 13.8.4.
We model blood flow during filling phase by applying the fluid–solid interaction method of
Section 7.6. Half of the radial plane is discretized using 2D axisymmetric four-node fluid
elements with four velocites and pressure constant over the element (see Section 7.4) for the
fluid domain. The ventricle wall is modeled by 2D axisymmetric four-node solid elements
(Section 4.4), with fibers which have 3D direction. The finite element mesh of fluid and
solid domain is shown in Fig. 13.8.4a.

The fluid mesh consists of 2000 elements with 2091 nodes. The Navier–Stokes equa-
tions (7.4.13) are solved using the ALE formulation for fluid with large displacements of the
boundary (see Section 7.5). Also, a remeshing procedure is employed for the fluid domain
in accordance with the motion of the ventricle wall. Boundary conditions for blood flow are:
impermeable walls; no slip at the wall; valvular plane is not moving during the ejection phase;
the aortic pressure is prescribed at the outlet section (Fig. 13.8.4b) according to the integrated
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lumped parameter model of systemic net (Redaelli & Montevecchi 1996). It is considered
that blood behaves as a Newtonian fluid �� = 1�05×103 kg/m3� � = 3�65×10−3 kg/ms�.
The time step used in the calculation is �t = 0�005 s.

The ventricle wall model is simulated by muscle material model (see Section 12.2).
Muscle fiber orientation is defined by direction vector in 3D space prescribed through input
data. It has two components: in radial plane and circumferential direction. In this way we
approximate in our axisymmetric FE model the real counter-rotating fibers within the heart
wall (Redaelli & Montevecchi 1996). The inertial forces of the tissue are neglected.

It is assumed that initially the blood is at rest. The outlet blood pressure (Fig. 13.8.4b)
is used as the boundary condition. At the same time the wall muscle fibers are activated
according to the activation function shown in Fig. 13.8.4c (see Section 12.2).

Intraventricular pressure distribution pattern in systolic phase up to the pressure peak
of 18 kPa (time t = 0�12 s) is shown in Fig. 13.8.5 (see color plate) for five characteristic
times. The field of blood velocity magnitude is shown in Fig. 13.8.6 (see color plate) for
the same times. The velocity propagates from the valve toward the heart apex. This velocity
propagation shows that the blood inertial effects are dominant in this time interval.

Fig. 13.8.5 Intraventricular pressure distribution pattern in systolic phase for five times.
Intravascular pressure peak of 18 kPa is reached at t = 0�12 s (see Plate 22)

Fig. 13.8.6 Velocity field at the five characteristic times. The blood velocity propagates
from the aortic valve to the heart apex, from 0 mm/s to Vmax = 2600 mm/s at time t = 0�12 s
(see Plate 23)
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Fig. 13.8.7 Intraventricular pressure drop pvalv�t�−papex �t� calculated during blood ejec-
tion phase (period between aortic valve opening and closure)

The intraventricular pressure drop between valvular (outlet) pressure pvalv and pressure
at the apex papex inside the ventricle is given in Fig. 13.8.7. This result is in agreement with
physiological data (Cheng et al. 2005).

The presented results show that even with a simple 2D axisymmetric model the realistic
intraventricular pressure oscillations and blood velocity field within the ventricle can be
obtained (see Software on the web).

References
Auricchio, F. & Taylor, R. (1997). Shape-memory alloys: modelling and numerical simulations of the

finite-strain superelastic behavior, Comp. Meth. Appl. Mech. Eng., 143, 175–94.
Benbow, M., Burg, G., Camacho Martinez, F. et al. (eds.) (1999). Compliance Network Physicians/HFL.

Guidelines for the Outpatient Treatment of Chronic Wounds and Burns, Blackwell Science, Berlin.
Blair, J.M., Glagov, S. & Zarins, C.K. (1990). Mechanism of superficial femoral artery adductor canal

stenosis, Surg. Forum, 41, 359–60.
Brandenburg, I., Robert, O.,Valentini, F. & Giuliani, E.R. (1989). In D.C. McGoon (ed.), Cardiology

Fundamentals and Practice (pp. 45–164), Year Book Medical Publishers, Inc.
Brooks, A.N. & Hughes, T.J.R. (1982). Streamline upwind/Petrov–Galerkin formulations for convection

dominated flows with particular emphasis on the incompressible Navier–Stokes equations, Comp.
Meth. Appl. Mech. Eng., 32, 199–259.

Cheng, Y., Oertel, H. & Schenkel, T. (2005). Fluid–structure coupled CFD simulation of the left
ventricular flow during filling phase, Ann. Biomed. Eng., 33(5), 567–76.

Chien, S. (1970). Shear dependence of effective cell volume as a determinant of blood viscosity,
Science, 168, 977–9.

Collins, M.W., Pontrelli, G. & Atherton, M.A. (2004). Wall–Fluid Interactions in Physiological Flows
6, WIT Press.

Cotran, R.S., Kumar, V. & Robbins, S.L. (1994). Robbins Pathologic Basis of Decease (Chapter 11,
pp. 499–504), Saunders, London.

Dean, W.R., (1928). The streamline motion of fluid in a curved pipe, Philosoph. Mag., 5, 673–95.
Dobrin, P.B. (1999). Distribution of lamellar deformation implications for properties of the arterial

media, Hypertension, 33, 806–10.



292 COMPUTER MODELING IN BIOENGINEERING

Doby, T. & Lowman, R.M. (1961). Demonstration of blood currents with radiopaque streamers, Acta.
Radio., 55, 272–5.

Dotter, C.T. & Judkins, M.P. (1964). Transluminal treatment of arteriosclerotic obstruction. Description
of a new technique and a preliminary report of its application. Circulation, 30, 654–70.

Douglas, P.Z., Libby, P., Bonow, R.O. & Braunwald, E. (eds.) (2001). Braunwald’s Heart Disease: A
Textbook of Cardiovascular Medicine, 7th edition (pp. 360–94), FRCP Elsevier Saunders.

Fähraeus, R. & Lindquist, T. (1931). The viscosity of the blood in narrow capillary tubes, Am.
J. Physiol., 96, 562–8.
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Slavković, R., Živković, M. & Kojić, M. (1994). Enhanced 8-node three-dimensional solid and 4-node

shell elements with incompatible displacements, Comm. J. Num. Meth. Eng., 10, 699–709.
Strandness, D.E. & Eikelboom, B.C. (1998). Carotid artery stenosis – where do we go from here?,

European J. Ultrasound, 7, 17–26.



294 COMPUTER MODELING IN BIOENGINEERING

Taylor, C.A., Hughes, T.J.R. & Zarins, C.K. (1998). Finite element modeling of blood flow in arteries,
Comp. Meth. Appl. Mech. Eng., 158, 155–96.

Thompson, M.M. & Bell, R.P.F. (2000). ABC of arterial and venous disease: arterial aneurysm,
B. Med. J., 320, 1193–6.

Vander, A., Sherman, J. & Luciano, D. (1998). Human Physiology: The Mechanism of Body Function,
7th edition, WCB McGraw-Hill, New York.

Vliet, J.A.V.D. & Boll, A.P.M. (1997). Abdominal aortic aneurysm, The Lancet, 349, 863–6.
Womersley, J. (1957). An elastic tube theory of pulse transmission and oscillatory flow in mam-

malian arteries, Tehnical Report WADC, Technical Report TR 56-614, Wright Air Development
Center.

Woodcock, J.P., Morris, S.J. & Wells, P.N.T. (1975). Significance of the velocity impulse response
and cross-correlation of the femoral and popliteal blood velocity time waveforms in disease of the
superficial femoral artery, Med. Biolog. Eng. Comp., 13, 813–18.

Zarins, C.K., Giddens, D.P., Bharadvej, B.K., Sottiurai, V.S., Mabon, R.F. & Glagov, S. (1983). Carotid
bifurcation ahterosclerosis: quantitative correlation of plaque localization with low velocity profiles
and wall shear stress, Circ. Res., 53, 502–14.



14

Modeling Mass Transport and
Thrombosis in Arteries

In this chapter we first give an introduction to thrombosis process in large arteries. Then
we present modeling the albumin and low density lipoprotein (LDL) transport as large
molecules. A platelet mediated thrombosis is modeled using the continuum based approach
(finite element method) as well as Dissipative Particle Dynamics (DPD) method. Numerical
examples are given at the end of sections and the solutions are compared with experimental
and analytical results from literature.

14.1 Introduction

Here, we present the basic information about platelet mediated thrombosis as the process
which involves mass transport, platelet aggregation and accumulation on the vessel wall;
while the description of the albumin and LDL transport is given in Section 14.2.1.

Atherosclerosis was thought to be a degenerative disease that was an inevitable con-
sequence of aging. But research in the last two decades has shown that atherosclerosis is
neither a degenerative disease nor inevitable. On the contrary, atherosclerosis seems to be a
chronic inflammatory condition that is converted to an acute clinical event by the induction
of plaque rupture, which in turn leads to thrombosis (Caro et al. 1971, Berliner et al. 1995).
The basic mechanisms that induce the thrombosis are shown in Fig. 14.1.1, which depicts
the sequence of changes in the artery wall that lead to a clinical event.

Platelets as blood constituent circulate through the blood, surveying the integrity of the
vascular system (Ruggeri 2000). Platelets act in response to traumatic injuries in which the
continuity of a vessel wall is interrupted and blood begins to pour outside (Hoff et al. 1975a,b,
Ruggeri 2000). However, the process of platelet accumulation may lead to development of
thrombus which narrows the vessel volume and produces severe constrictions in blood flow
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Fig. 14.1.1 Model showing the sequence of events from fatty streak to clinical event
(according to Berliner et al. 1995)

and decease. The thrombus can even rupture, with embolization that can be of fatal outcome.
A huge body of references is available about various aspects of thrombosis (Loscalzo &
Schafer 2003).

Under normal conditions, platelets circulate in the blood flow with a disc shape and in a
nonadherent state. If the circulating platelets contact the damaged wall they may be induced
to begin an activation process in which the platelets change shape to a spherical spiny cell
(see Fig. 13.1.3c), and then release chemicals into blood which can activate other platelets.
Platelet activation can be described as the process of conversion of the smooth, nonadheret
platelet into a sticky particle that releases and expresses chemicals with the ability to bind
the plasma protein fibrinogen (Verstraete et al. 1998).

In a cylindrical vessel, the velocity profile of particles contained in circulating blood is
parabolic; the shear rate decreases from the wall to the center of the lumen inversely to the
flow velocity. In a flow field with high shear rate, only GP Ib � interaction with immobilized
vWF multimers can initiate the tethering of circulating platelets to the vessel wall and to
already adherent platelets (Ruggeri 2000). Each platelet has approximately 50 000 GPIIb/IIIa
receptors which provide numerous possibilities for fibrinogen bridge connections (Fogelson
& Guy 2004), Fig. 14.1.2.

It is common in modeling platelet-mediated thrombosis to adopt a continuum-based
approach. Namely, the distribution of platelets within the blood is determined by calculating
the field of platelet distribution within the blood as the carrying fluid. The fundamental
equations rely on the convection–diffusion laws described in Section 3.3.1, and include the
process of the platelet activation, as well as the boundary conditions specific for the throm-
bosis development. The continuum-based model of thrombosis is presented in Section 14.3.
This method can be applied to stenotic flow in the coronary arteries, carotid bifurcation and
other arteries.

Another approach of thrombosis modeling is to use a discrete particle method, such as
dissipative particle dynamics (DPD) method described in Section 8.2. By employing this
method, it is possible to track an individual platelet in the sequence of the process, including
platelet activation, aggregation and adhesion to the wall. Application of the DPD method to
model thrombosis within simple flowing conditions is given in Section 14.4.
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Fig. 14.1.2 Schematic representation of the mechanisms of platelet adhesion and aggrega-
tion in flowing blood (according to Fogelson & Guy 2004)

14.2 Modeling mass transport in arteries by
continuum-based methods

In this section we give the fundamental relations of mass transport within a blood vessel,
followed by the finite element formulation and solved examples.

14.2.1 The basic relations for mass transport in arteries

The metabolism of the artery wall is critically dependent upon its nutrient supply governed by
transport processes within the blood. We here address two different mass transport processes
in large arteries. One of them is the oxygen transport and the other is LDL transport. In
Chapter 13 blood flow through the arteries is described as motion of a fluid-type continuum,
with the wall surfaces treated as impermeable (hard) boundaries. However, transport of
gases (e.g. O2, CO2� or macromolecules (albumin, globumin, LDL) represents a convection–
diffusion physical process (see Section 3.3) with permeable boundaries through which the
diffusion occurs. In the analysis presented further, the assumption is that the concentration
of the transported matter does not affect the blood flow (i.e. a diluted mixture is considered).
The mass transport process is governed by convection–diffusion equation (3.3.9),
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�c
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+ vy

�c

�y
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�c

�z
= D

(
�2c

�x2
+ �2c

�y2
+ �2c

�z2

)
(14.2.1)

where c denotes the macromolecule or gas concentration; vx, vy and vz are the blood velocity
components in the coordinate system x, y, z; and D is the diffusion coefficient, assumed
constant, of the transported material.

Transport of Oxygen
Oxygen as probably the most critical metabolite is supplied to the cells of the avascular
tissue layer by diffusion. The arterial blood flowing within the vessel lumen and within the
vasa vosurum are two sources of oxygen for the entire body.
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Abnormalities in arterial wall oxygen implicate the formation of atherosclerotic lesions.
There are two forms of oxygen in blood: (i) free oxygen dissolved in plasma, and (ii) bound
to hemoglobin within red cells. Oxygen transport is a strongly nonlinear mass transport
problem because of the nonlinear dependence of oxyhemoglobin concentration on plasma
oxygen partial pressure.

In order to model the oxygen transport, it is necessary to specify the boundary conditions
for the blood flow and for the oxygen concentration. The blood flow boundary conditions
are described in Chapter 13 (Sections 13.2–13.8). The boundary condition specific for the
oxygen transport is related to the oxygen flux through the vessel wall. Oxygen wall fluxes
are frequently expressed in terms of the local Sherwood number, ShD, which is defined as
(Moore & Etheir 1997)

ShD = qwDv

Db

(
PO2in −PO2ref

) (14.2.2)

where qw is the local wall oxygen flux, Dv is the arterial diameter, PO2in and PO2ref are the
specified inlet and reference oxygen tensions (concentration of dissolved oxygen at which
its partial pressure is in equilibrium with the solvent), respectively; and Db is the oxygen
diffusion coefficient. Relatively large Sherwood numbers are observed at the stenosis sites,
consistent with high shear rates there.

Transport of the LDL
Another macromolecule directly responsible for the process of atherosclerosis is the low
density lipoprotein (LDL) which is well known as atherogenic molecule. It is also known
that LDL can go through the endothelium at least by three different mechanisms, namely,
receptor-mediated endocytosis, pinocytotic vesicular transport, and phagocitosis (Goldstein
et al. 1979). The permeability coefficient of an intact arterial wall to LDL has been reported
to be of the order of 10−8 cm/s (Bratzler et al. 1977). The conversion of the LDL mass
through a semipermeable wall, with the mass moving toward the vessel wall by a filtration
flow and diffusing back to the mainstream at the wall, is described by the relation

cwvw −k
�c

�n
= Kcw (14.2.3)

where cw is the surface concentration of LDL, vw is the filtration velocity of LDL transport
through the wall, n is the coordinate normal to the wall, k is the diffusivity of LDL and K
is the overall mass transfer coefficient of LDL at the vessel wall.

14.2.2 Finite element modeling of diffusion–transport equations

The basic FE equations for mass transport are presented in Section 7.4. In the case of blood
flow with mass transport we have domination of the convection terms due to the low diffusion
coefficient. Then it is necessary to have special stabilizing techniques in order to obtain a
stable numerical solution. Here we have implemented the streamline upwind/Petrov–Galerkin
stabilizing procedure (SUPG) (Brooks & Hughes 1982) within the numerical integration
scheme described in Section 7.4. The incremental-iterative form of FE equations of balance
are obtained through an extension of the system (7.4.9) by the diffusion equations (7.4.20),
followed by the transformation of these additional equations into the incremental form
(7.4.13). The final equations are
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where the matrices are (no sum on j and sum on k; j�k�l=1�2�3)
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and the vectors are

n+1F�i−1�
c = n+1Fq + n+1F�i−1�

sc − 1
�t

Mc

{
n+1C�i−1� − nC

}−
n+1K�i−1�

cv

{
n+1V�i−1�

}− n+1K�i−1�
cc

{
n+1C�i−1�

}
(

n+1Fq

)
K

=
∫
V

NKqBdV n+1F�i−1�
sc =

∫
S

DNK
n+1c�i−1� ·ndS

(14.2.6)

Here, the matrix Mv stands for M in (7.4.13); the matrices Mcc and Kcc are the ‘mass’ and
convection matrices; Kcv and Jcc correspond to the convective terms of equation (14.2.1);
and Fc is the force vector which follows from the convection-diffusion equation in (14.2.1).
Also, equations (14.2.2) and (14.2.3) are used for the mass surface flux calculation at the
wall boundary (see Theory, Chapter 14 on the web).

14.2.3 Examples

Solutions for two typical examples of mass transport are presented, for which also the
Software on the web is provided.

Example 14.2-1. Modeling albumin transport in a large artery
The stenosed artery is shown in Fig. E14.2-1A. Due to axial symmetry, only a half is
modeled and the blood is considered to be a Newtonian fluid. Two-dimensional axisymmetric
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Fig. E14.2-1A Geometrical and material data for artery with stenosis

elements (see Section 4.4) are used. Data for blood density 	, dynamic viscosity �, diffusion
coefficient for albumin transport D, the inflow mean velocity V0, and geometry are given in
the figure. It is assumed that the flow is steady.

Since the distance between the entrance and the stenosis position is large, it can be
considered that the entering velocity profile is parabolic (see also Example (3.3-1):

v�r� = 2V0

(
1−

(
2r

L0

)2
)

(E14.2-1.1)

where r is the radial coordinate. At the wall velocities are equal to zero, while at the axis of
symmetry only the radial velocity is equal to zero. At the outflow the zero traction stress is
applied (see Example 7.4-2),

−p+�
�vz

�z
= 0 (E14.2-1.2)

The boundary conditions for the concentration are: (a) at the inlet, c = c0 = 2�58 ×
10−3 mL/cm3; and (b) �c/�z = 0 at the axis of symmetry. Note that to mean velocity
V0 = 10�52 cm/s corresponds the Reynolds number Re = 448, while the Pecklet number is
Pe = 9�34×105 (defined as Pe = L0V0/D).

The velocity field is shown in Fig. E14.2-1Ba (see color plate), where the field of dis-
turbed flow is noticeable after the stenosis. Albumin concentration at the wall cw normalized
with respect to the inlet concentration c0 is given in Fig. E14.2-1Bb (see color plate). A sig-
nificant concentration increase in the domain of stenosis can be seen, with the peak at the
distal region.

Other results, and dependence of the solutions on the geometric and material parameters,
can be explored using Software on the web.

Example 14.2-2. Modeling the LDL transport through a straight artery with the filtra-
tion through the wall
The LDL transport through a straight artery is modeled in this example. The tube, rep-
resenting the artery, has the diameter d0 = 0�6 cm (Fig E14.2-2a). The filtration velocity
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Fig. E14.2-1B Albumin transport in stenosed artery, the stenotic artery part: (a) Velocity
field; (b) Normalized concentration at the wall cw/c0 (see Plate 24)

Fig. E14.2-2 Transport of the LDL through straight artery with semipermeable wall.
(a) Schematic representation of velocity profiles (note that the profile changes in the flow
direction since the wall is permeable), � = 4vwz/V0d0; (b) Normalized surface concentration
of LDL, cw/co, in terms of the normalized distance from the entrance z/d0 (analytical and FE
solutions)
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through the vessel wall is vw = 4 × 10−6 cm/s and the overall mass transfer coefficient of
lipoproteins at the arterial wall, K = 2 ×10−8 cm/s (see (14.2.3)). Blood was modeled as a
Newtonian fluid with density 	 = 1�0 g/cm3 and viscosity � = 0�0334 P. The steady-state
conditions for fluid flow and mass transport are assumed. The entering blood velocity is
defined by the Reynolds number Re (calculated using the mean blood velocity and the artery
diameter, see web – Theory, Chapter 3).

The 2D axisymmetric elements are used (see Section 4.4). The boundary conditions
include prescribed parabolic velocity profile (see (E14.2-1.1)) and concentration c0 at the
inlet, zero stress at the outlet (see (E14.2-1.2)); and filtration at the walls according to
(14.2.3).

The analytical solution for the axial and radial velocities, as well as for the concentration,
is given in Yuan and Finkelstein (1956); details are given on the web – Examples, Chapter 14
(see also Software on the web).

Figure E14.2-2b shows distribution of the surface concentration of LDL along the axis
of the artery for three Reynolds numbers. It can be seen that the concentration of LDL at the
wall boundary layer increases with the axial distance from the entrance of the artery due the
decrease of the fluid velocity (see the velocity profile in E14.2-2a, where � = 4vW z/V0d0�.

Solutions for other parameters of the model can be obtained using Software (see web-
Software).

14.3 Modeling thrombosis by continuum-based methods

The focus of this section is modeling mechanical aspects of thrombosis by continuum-based
methods assuming activated platelets which are aggregating to the wall.

14.3.1 Model description

There are numerous computational approaches of modeling platelet transport and deposition
relying on the convection–diffusion equation (14.2.1). These studies have typically required
simplifying assumptions, such as diffusion-limited rates of platelet–surface adhesion, simple
(Poiseuille or Couette) velocity fields, and constant platelet–surface reactivity (see e.g.
Basmadjian 1990). Platelet activation, agonist transport, and bulk aggregation within a
continuum model were also included in Fogelson (1984). Further, fictitious fluid-dynamic
body forces were added to simulate flow disturbances due to platelet aggregation, with a
discrete model of platelet–surface adhesion and bulk aggregation (Fogelson & Kuharsky
1998).

The simplest continuum-based model of thrombosis is to consider transport of platelets by
convection and shear enhanced diffusion, treating platelets and blood as a dilute mixture with
the governing equation (14.3.1) (Wootton et al. 2001, Bluestein et al. 1999). The diffusion
coefficient is the effective diffusivity of platelets De. Usually, the effective diffusivity is
expressed as a function of the maximum local shear rate, for example as

De = �̇max +Dth (14.3.1)

where  is a coefficient fitted with experiments, Dth is the thermal diffusivity, and �̇max is
the maximum shear strain rate.
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The platelet flux represents the rate of platelet accumulation per unit surface area, which
depends on the axial location x along the blood vessel,

j�x� = ktcw�x� (14.3.2)

where j�x� is the flux (volume per unit area), cw is the concentration of free platelets at
the surface, and kt is the kinetic rate of aggregation of platelets to the wall. The rate of
accumulation is coupled to the platelet transport through the boundary condition:

D
�c

�n

∣∣∣∣
wall

= j�x� (14.3.3)

where n is the direction normal to the wall.
More complex continuum models of platelet mediated thrombosis were introduced by

Fogelson (1984), Sorensen et al. (1999a,b) and Sorensen (2002). The thrombosis process
is described by a coupled set of convection–diffusion–reaction equations similar to (14.2.1)
(see also (3.3.9)),
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where Di represents the diffusivity of species i in the blood, ci is concentration and Si is a
source term for species i.

In Sorensen et al. (1999a) seven different species are considered: (i) normal, resting
platelets; (ii) activated platelets; (iii) platelet-granule released; (iv) platelet-synthesized ago-
nists; (v) prothrombin; (vi) thrombin; and (vii) ATIII. There is also a very complex list of
relationships for the source terms Si for each species of the model. The rate of activation
of resting platelets kpa and the amount �j of agonist j released per platelet are introduced.
For example, �j · kpa · �RP� represents the rate at which agonist j is generated from newly
activated platelets, where �RP� is the concentration of resting platelets. Since very little
quantitative information is available about the kinetics of platelet activation, a simplistic
linear rate equation for kpa with activation threshold is assumed:

kpa =
⎧⎨
⎩

0� � < 1�0
�

tact

� � ≥ 1�0

⎫⎬
⎭ (14.3.5)

where � is the activation function which depends on the concentration of the j-th agonist
and tact is a characteristic time for platelet activation. Usually this time is assumed to
be 1s (Sorensen et al. 1999a). Although many of the coefficients in this model are not
explicitly known (they were estimated), good results in comparison with simple experiments
for platelet adhesion were obtained. There is also a model with four species (Fogelson 1992):
(i) normal-resting platelets; (ii) active platelets; (iii) chemical agonist; (iv) concentration of
platelet-platelet links.

We here describe in more detail a model with three species: (i) normal-resting platelets;
(ii) active platelets; and (iii) chemical agonist. This model is used further in one example
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(Example 14.3-2). The model represents the reduced Fogelson’s model (Fogelson 1992) in
which we neglected concentration of the platelet–platelet links. The governing equations of
mass balance for this reduced model are:

��n

�t
+v ·
�n = Dn��n −R�c��n

��a

�t
+v ·
�a = R�c��n (14.3.6)
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�t
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where �n is concentration of normal-resting platelets, v is blood flow velocity, Dn is diffusion
coefficient for resting platelets, R�c� is the conversion rate of the resting into activate
platelets, �a is concentration of activated platelets, c is concentration of ADP, Dc is diffusion
coefficient of signaling chemical ADP, and A is the rate of creation of ADP (assumed to be
constant). It can be seen from (14.3.6) that the diffusion coefficient of activated platelets is
assumed to be zero.

14.3.2 Examples

Example 14.3-1. Modeling platelet accumulation on collagen-coated wall of a tube with
narrowing (stenosis)
We here model platelet deposition in a thrombogenic stenosis within a straight tube. The tube
has a 75% reduction in diameter in the middle of the stenosis, as shown in Fig. E14.3-1A
(Wootton et al. 2001). Blood is considered to be a Newtonian fluid with density 1.06
g/mL and viscosity 0.035 P. The Reynolds number based on the upstream diameter (see
web-Theory, Chapter 3) is 160. Steady flow is assumed.

Platelet concentration is modeled using the governing equation for transport of a dilute
mixture (14.3.1) which in the case of axisymmetric conditions is (see web – Theory,
Chapter 3; u and v are axial and radial velocities of fluid, respectively):
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(E14.3-1.1)

Fig. E14.3-1A Stenosis geometry for 75% reduction (lengths are in mm). One half of the
radial plane x−r (r ≥ 0) is modeled by axisymmetric finite elements. The finite element
mesh is shown schematically



MODELING MASS TRANSPORT AND THROMBOSIS IN ARTERIES 305

It is assumed that the platelet concentration at the tube inlet is constant, with c = c0 = 5×108

platelet/mL for x = 0 as the boundary condition. The effective diffusivity D is taken to be
dependent on the maximum local shear rate �̇max according to (14.3.1), with  = 7 × 10−9

cm2 and thermal diffusivity Dth = 1�6×10−9 cm2/s. The platelet flux j is taken to be of the
form (14.3.2), hence the relation (14.3.3) is applicable to the boundary condition at the wall
surface.

Calculated velocity and concentration fields are shown in Fig. E14.3-1B (see color plate).
The steady-state solution for the velocity (Fig. E14.3-1Ba – see color plate) shows that
the flow disturbance occurs in the stenotic tube part. Due to the existence of a significant
stagnation zone near the stenosis, the streamlines contours form a large vortex behind that
narrowing, as expected (Fig. E14.3-1Bb).

The solution for wall shear strain rate is shown in Fig. E14.3-1Bc (see color plate). The
shear rate at the wall has a peak just upstream of the stenosis throat. In Fig. E14.3-1Bd (see
color plate) is shown the rate of platelet accumulation along the wall. It can be seen that a
sharp decrease of platelet wall concentration rate occurs at the maximum narrowing region,
which is consistent with results of Wootton et al. (2001).

Fig. E14.3-1B A straight artery with 75% stenosis. (a) Intensity of blood velocity field
(in cm/s); (b) Streamline contours; (c) Wall shear strain rate along the wall; (d) Platelet
accumulation rate along the wall (j∗ = j�x�/c0, j�x� = ktcw�x�, see (14.3.2); kt = 5 × 10−3

cm/s; Wootton et al. 2001) (see Plate 25)
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Fig. E14.3-2 Axial distribution of deposited platelets on collagen wall, as predicted by the
three-species continuum model (see Section 14.3.1), and experimental results of Hubbell and
McIntire (1986); after 120 s with wall shear rate = 500 s−1

Example 14.3-2. Platelet aggregation in blood flow between two parallel plates
A simple experiment of determining platelet accumulation distribution along the collagen-
coated plate after perfusion for two minutes at controlled wall shear rates is presented in
Hubbell and McIntire (1986). A steady flow condition was maintained during the experiment.
Red blood cells were disposed from the system. The lower surface exposed to the blood
was coated with collagen, thus providing deposition along the entire lower plate. The gap
between the two parallel plates was 200 �m. The flow is characterized by the wall shear rate
of 500 s−1, while the entrance platelet concentration was 2�0×108/mL.

Our FE model of simple blood flow consists of 2D finite elements (see Sections 4.4
and 7.4). We used a three-species continuum model described in Section 14.3.1. The constants
in (14.3.6) employed in this example are: Dn = 1�6×10−7 cm2s−1, Dc = 8�0×10−7 cm2s−1,
A = 1� R�c� = const = 1.

The experimental and computed results for the adhered platelet distribution after
120 s for the shear rates of 500 s−1 are shown in Fig. E14.3-2; and they compare
reasonably well.

14.4 Modeling of thrombosis by DPD

14.4.1 General considerations

To study the fundamental nature of platelet activation, aggregation and adhesion, it would
be desirable to use the so-called ‘Lagrangian’ approach, tracking individual platelets in the
sequence of the process. Although the obvious advantages of this discrete-type approach over
the traditional continuum methods may have long been recognized, it was not technically
feasible until recently. Facilitated by rapid increases in computer power, however, Lagrangian
computational approaches have recently been the subject of intensive research with advances
such that they are now becoming more applicable to real problems (see Chapter 8 and
reference therein, e.g. Liu et al. 2004a, Espanol 1998).
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The objective in this section is to apply one of these new computational methods, the
dissipative particle dynamics (DPD) method, to simulate platelet-mediated thrombosis.
In a simplified model, where presence of RBCs is neglected, blood is discretized into
mesoscale particles representing plasma and platelets. Each platelet is modeled by one
DPD particle. Besides the interaction repulsive, viscous and random forces among DPD
particles, in a form described in Section 8.2, the attractive forces among activated platelets
and with the wall, are included. These attractive forces represent the action of the proteins
connecting the activated platelet, as schematically shown in Fig. 14.4.1. Namely, when a
platelet is activated, its surface becomes sticky due to the expression of surface receptors
(GP-IIb/IIIa) interacting with the plasma protein fibrinogen (see Fig. 14.1.2). Fibrinogen
binds to these receptors of two activated platelets and forms a molecular bond between
platelets.

Basic Equations
The basic equations of the DPD model of a fluid are presented in Section 8.2. These equations
are also applicable to the modeling of platelet-mediated thrombosis. Taking each platelet

Fig. 14.4.1 Schematics of platelet aggregation and adhesion. Activated platelets in the
vicinity of a injured wall epithelium and binding of platelets at the walls using springs.
Interaction forces for two aggregated platelets (Filipović et al. 2008). The domain of the
interaction between platelets is denoted by rmax
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as a DPD particle, we have, besides the repulsive, dissipative and random forces, also the
attractive force between the activated platelets. Then the equation (8.2.1) for a particle ‘i’
can be written as

miv̇i =∑
j

�fC
ij + fD

ij + fR
ij + fa

ij�+ fext
i (14.4.1)

where mi is the particle mass; v̇i is particle acceleration as the time derivative of velocity; fC
ij ,

fD
ij , fR

ij and fa
ij are the conservative (repulsive), dissipative, random and attractive interaction

forces, that particle ‘j’ exerts on particle ‘i’, respectively, provided that particle ‘j’ is within
the radius of influence rc of particle ‘i’; and fext

i is the external force acting on particle ‘i’.
Note that the attractive force exists between the activated platelet and the vessel wall, while it
is equal to zero when either platelet ‘i’ or ‘j’ is not activated. Also, fa

ij = 0 between platelets
and plasma DPD particles, as well as between the plasma particles.

When an activated platelet and a vessel wall are in proximity, they bind. However, when
adhered platelets are exposed simultaneously to other forces stronger than the binding force,
the bond breaks. To model platelet adhesion to vessel walls, we adopt as an approximation
that the attractive forces are represented by springs, schematically shown in Fig. 14.4.1. The
effective spring constant for platelet adhesion on the vessel wall, or to another stationary
activated platelet, is denoted by kbw.

An additional parameter involved in the model is the size of the domain from the
collagen-coated wall (Lwall

max ) in which the action of attractive force needs to be considered.
Assuming a linear decrease of this force with the distance from the wall, we have that

fa
w = kbw

(
1−Lw/Lwall

max

)
(14.4.2)

where Lw is the distance of the activated platelet from the wall.
In the examples given in next section we illustrate application of the DPD method to

modeling of thrombosis.

14.4.2 Examples

In this section we first present modeling of blood flow in a microchannel with narrowing
(stenosis) by two discrete particle methods, DPD and SPH (see Sections 8.2 and 8.4);
and we also include the multiscale method (MBS) of Section 8.3. Then, computation of
platelet accumulation on a collagen surface by using the DPD method is given as the second
example.

Example 14.4-1. Blood flow in a microchannel with narrowing
Consider a steady blood flow between two parallel plates with narrowing, Fig. E14.4-1a. We
solve this example using the DPD and SPH, as well as the multiscale (DPD+FE) method to
demonstrate applicability of these methods to modeling of microcirculation.

Parameters used in the DPD and SPH models are the same as in Examples 8.2-1 and
8.4-1 (see also data in the figure caption). For comparison, the finite element (FE) solution
is shown.

In the FE-DPD multiscale MBS model (see Section 8.3) the local DPD+FE domain, as
well as the global FE domain are shown in Fig. E14.4-1b (Kojić 2008). At the common
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Fig. E14.4-1 Steady blood flow in a channel with narrowing. (a) Geometry of the channel
and SPH initial particle positions; (b) Local (DPD+FE) and global (FE only) domains
used for the multiscale MBS method; (c) Velocity profiles (FE, DPD, SPH and DPD-FE
multiscale solutions). Data: kinematic viscosity � = 10−6 m2s−1, fluid density 	 = 103 kgm−3,
lengths (m) H = 2�14×10−3m�L = 1×10−3m�R = 2�5×10−4m� acceleration a = 10−3 ms−2,
pressure gradient �p/�x = 	a = 1 kgm−2s−2

boundary between the local and global domains the mesoscale DPD particle velocities are
equal to the coarse scale FE velocities. The periodic boundary conditions are imposed at the
common boundary to keep the number of particles constant.

Velocity profiles are shown in Fig. E14.4-1c, where a significant velocity increase in
the domain of narrowing (stenosis) is notable. The solutions using the DPD, SPH and FE-
DPD multiscale MBS methods compare well with the FE solution. Results for other model
parameters can be obtained using the Software on the web.

Example 14.4-2. Platelet deposition in a perfusion chamber
To test application of the DPD method and the assumption about the wall attractive force,
platelet deposition in a perfusion chamber is modeled. The model corresponds to the exper-
iment of Hubbell and McIntire (1986), which is described in Example 14.3-2.
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In the DPD model, a constant inflow flux of blood and the entering platelet concentration
are imposed, as in the experiments. The flow domain is represented as a simple lattice with
10000×100 particles and periodic boundary conditions (see Section 8.2) along the direction
of fluid flow. The external body force is used, necessary to reach the wall shear rates of
the experiment. The conservative force parameter was taken as aij = 25, and the friction
coefficient � = 4�5 (see (8.2.3)). It is taken that Lwall

max be the whole chamber gap (190 �m) for
calculation of the wall attractive force (14.4.2). The attractive forces between the activated
moving platelets are neglected in the model. The solid walls are modeled by freezing the
DPD particles at the wall surface, without possibility of breaking the bond. We also used
the specular reflection boundary conditions where the velocity component tangential to the
wall does not change while the normal component is reversed (see Section 8.2, eq. (8.2.8)).

The snapshot in Fig. E14.4-2Ab shows the platelet distribution within the blood and
platelets adhered to the vessel wall. The experimental results and the computed results for the
adhered platelet distribution after 120 s for the shear rates of 500 s−1 and 1500 s−1 are shown
in Fig. E14.4-2B. It was found that the best fit of the numerical solution and experiment is
achieved for the value of spring constant kbw = 50 N/m (Filipović et al. 2008).

Fig. E14.4-2A Platelet adhesion to the wall. (a) Schematics of the attraction between
activated platelets and vessel wall; (b) Snapshot of DPD particles after 120 s of platelet
deposition. Flow is from left to right

Fig. E14.4-2B Axial platelet deposition distribution on collagen as predicted by computer
solution using the DPD method, and experimental results of Hubbell and McIntire (1986);
after 120 s. (a) Wall shear rate = 500 s−1; (b) Wall shear rate = 1500 s−1
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It can be seen from the above that the computed results match the results experimentally
recorded by Hubbell and McIntire. These results are also in agreement with the continuum-
based solution of a diffusion-controlled transport of platelets over a reactive surface (Example
14.2-3).
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15

Cartilage Mechanics

Cartilage is the main part of joints associated to protect bone rubbing on bone while our
skeleton is moving. In this chapter we first describe cartilage and the spine. In order to
develop a computational model, we present differential equations of balance in cartilage
mechanics with additional effects of swelling pressure and electrokinetic coupling. Then
we give finite element balance equations and some typical numerical examples for cartilage
and spine deformation. Solved examples include electromechanical coupling of cartilage,
the free-swelling problem, as well as one-dimensional and three-dimensional spinal motion
segment modeling.

15.1 Introduction

General Properties of Cartilage
In general, joints are designed to prevent bone rubbing on bone in the moving parts of
skeletons, and protect and cushion the bones from damage. Articular cartilage is the dense
connective tissue that covers the bone (Fig. 15.1.1a).

The cartilage is a multiphasic, nonlinear permeable viscoelastic material, consisting
of two principal phases: a solid and fluid. The solid phase is comprised primarily from
collagen arranged in a specific fibrillar network (Ghadially 1978), proteoglycans, nonspecific
glycoproteins and chondrocytes in the aggregated form (Mow et al. 1980). A movable
interstitial fluid phase, which is predominantly water, contains approximately 78% of wet
weight. Inside the solid phase we recognize the cellular–chondrocyte (2% of total volume),
and acellular–extracellular matrix (20%).

The collagen fibres give tensile stiffness and proteoglycans from fluid phase give com-
pressive stiffness to the cartilage. The exterior part of cartilage is covered by a dense fibrous
membrane called the perichondrium. If cartilage is damaged, the healing is very difficult
because there are no nerves or blood vessels in cartilage.

Computer Modeling in Bioengineering Edited by M. Kojić, N. Filipović, B. Stojanović, N. Kojić
© 2008 John Wiley & Sons, Ltd
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Fig. 15.1.1 The role of cartilage and cartilage structure. (a) Articular cartilage in a
joint protects the bones from damage; (b) Cartilage structure (adapted from http://www.
engin.umich.edu/class/bme456/cartilage/cart.htm)

Cartilage is classified histologically as elastic, fibrocartilagenous or hyaline which
depends on its molecular composition. The ear and the larynx are composed of elastic car-
tilage, while fibrocartilage is associated with the menisci of the knee and the intervertebral
discs. Hyaline cartilage is the predominant form of cartilage, and is most commonly asso-
ciated with the skeletal system. Figure 15.1.1a represents the composite structure of joints
which consists of bone, articular cartilage, ligaments, tendons, muscle and the joint capsule.
The more detailed actual bearing surface of the joint is shown in Fig. 15.1.1b.

Both solid and fluid phases are considered to be incompressible (Mow et al. 1980).
A fundamental observation in cartilage is fluid exuding when cartilage is compressed. It is
known that interstitial fluid pressure supports almost 95% of applied load and the rest is
supported by a solid matrix. There is also a phenomenon addressed as creep where due
to fluid exudation, fluid loss increases the swelling pressure enough to support the applied
external pressure. During compression fluid exudation causes the stress to rise above the
elastic equilibrium value which is associated with stress relaxation. It is assumed that the
stress relaxation is caused by fluid redistribution within the extracellular matrix (Armstrong
et al. 1984).

Experimental investigations show that swelling pressure is generated (or electrical poten-
tial is created) within the cartilage during cartilage deformation, as a consequence of chemical
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diffusion processes. These specific effects are very important for cartilage mechanical behav-
ior and will be described in a mathematical form in Section 15.2 for further use in computer
modeling.

Today, the two main diseases caused by damage of the collagen network within cartilage
are arthritis and osteoporosis. These diseases are directly related to change in cartilage
permeability as the mechanical property. If permeability is increased fluid can be easily
exuded and consequently the fluid pressure becomes lower. This significantly decreases
the load supported by the fluid phase, leading to higher stresses in the solid phase and its
damage.

The Spine Anatomy
Numerical solutions for deformation of cartilage between vertebrae of the spine will be
presented in Section 15.4, and we here give a brief description of the spine anatomy. The spine
is one of the most important parts of the body because it gives the body structure and support.
A column of nerves that connects the brain to the rest of the body, allowing the control of
the movements, is called the spinal cord. Ligaments and muscles as addition to the spinal
column also give stability of the body. The spinal column has three main sections: the
cervical spine, the thoracic spine and the lumbar spine. The first seven vertebrae is called the
cervical spine. The mid-back, called the thoracic spine, consists of 12 vertebrae. The lower
portion of the spine, the lumbar spine, is usually made up of five vertebrae (Yoganandan
et al. 1987). Cartilage situated between two more rigid body vertebrae (Fig. 15.1.2 – see
color plate) represents the spinal motion segment (SMS) – a repeating unit from which the
spine is composed (Simon et al. 1985).

The vertebrae protect and support the spinal cord. They also bear the majority of the
weight carried by the spine. Vertebrae, like all bones, have an outer shell, called cortical
bone, which is hard and strong. The inside is made of a soft, spongy type of bone, called
cancellous bone. Interverterbal disc has a strong outer ring of fibers named the annulus,

Fig. 15.1.2 Spine anatomy. There are L1 to L5 spinal motion segments (SMS) which
consist of vertebrae and intervertebral discs. The annulus and nucleus pulposus are two main
materials of disc, while vertebrae have inside a soft spongy type of bone, called cancellous
bone, and an outer shell called cortical bone which is much stronger to support the spinal
cord (see Plate 26)
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and a soft, jelly-like center called the nucleus pulposus (Fig. 15.1.2 – see color plate). The
annulus as the strongest area of the disc keeps the disc’s center intact. The facet joints are
the real joints inside the spinal column. They link the vertebrae together and give them the
flexibility to move against each other (Bogduk et al. 1992).

15.2 Differential equations of balance
in cartilage mechanics

As described in Section 15.1, cartilage represents a porous medium containing fluid that fills
the pore space. Therefore, we have a mixture of two phases: solid as a supporting matrix,
and fluid. Under loading the solid matrix deforms changing its size and shape. The pore
space is also changing. Deformation of the solid induces motion of the fluid within the pore
space. On the other hand, the fluid acts on the solid by shear due to relative motion with
respect to the microstructural solid architecture and by the pressure. Considering this mixture
of the two phases we see that these two phases are mechanically coupled when subjected to
mechanical and/or biochemical action.

We further describe the basic quantities used in the cartilage mechanical model, which
includes additional effects expressed by the swelling pressure or electrokinetic coupling.
Then, the governing equations for this model are derived (Kojić et al. 2001): the balance of
linear momentum and mass balance equations.

15.2.1 Basic physical quantities, swelling pressure
and electrokinetic coupling

Definition of Stress, Strain and Fluid Velocity
These quantities are defined in Section 3.4 for a solid–fluid mixture. A short summary of
these definitions is given here for the completeness of this section.

The total stress �, as a force per unit surface of the solid–fluid mixture, can be
expressed in terms of the stress carried by the solid, �s, and the fluid pressure, p, as (3.4.6):
� = �1−n��s −nmp, where m is a constant vector defined as m = �1 1 1 0 0 0�, and ‘n’ is
porosity. The effective stress, � ′, is given in (3.4.9), � ′ = � +mp. The one-index notation
is used as in Section 3.4.

The cartilage is considered as a deformable continuum (deformable mixture), hence the
strains e are calculated from displacements u. The displacements and strains of the mixture
refer to the solid phase. In the case of small deformations, we use the small strains defined
in (2.1.25), eij = 0�5

(
�ui/�xj + �uj/�xi

)
. When the cartilage undergoes large deformations,

various strain measures may be employed, as given in (2.4.15)–(2.4.17). For example, the

logarithmic strains for the configuration are given in (2.4.17), teij = 3∑
�=1

lnt
0 	� �tp��i �

tp��j

where the t
0	� are the stretches in the principal directions tp� of the left Cauchy–Green

deformation tensor t
0B.

There are two types of fluid velocities: microvelocity and macrovelocity. The
microvelocity vf is the true velocity of fluid particles passing through the pores. On the other
hand, the macrovelocity q, called Darcy’s velocity in general flows through porous media,
is defined as the volume of fluid passing in a unit time through a unit area of the mixture.
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The relationship between the fluid velocities vf and q is given in (3.4.3): q = n
(
vf − u̇

)
,

where u̇ is the velocity of a point of the mixture. Therefore, Darcy’s velocity is the relative
velocity of fluid with respect to the solid.

We will employ a simple isotropic elastic material model for the solid and the effective
stress principle, therefore the constitutive relations are given in (3.4.7): � ′ = CE �e − ep�,
where CE is the elastic constitutive matrix of the solid material, given in (2.2.5); and ep is
the strain in the solid due to pressure, ep = −mp/ �3Ks�, where Ks is the bulk modulus of
the solid material, see (2.2.11).

Swelling Pressure
Two approaches in the mathematical description of the swelling pressure are presented. First,
according to Laible et al. (1993), the total pressure at a point, ptot, can be written as the sum
of the fluid pressure p and the swelling pressure pc,

ptot = p+pc (15.2.1)

Further, the swelling pressure can be expressed as a nonlinear function of change in the
water content 
,

pc = pco +kc���� (15.2.2)

where pco is the initial swelling pressure, and kc�
� is a function determined empirically.
The variable 
 can be expressed by the divergence of the relative displacement of the fluid
uf , i.e.

� = �Tuf (15.2.3)

The fluid displacement, on the other hand, can be obtained from Darcy’s velocity q = u̇f ,
hence the parameter 
 is related to the fluid compressibility.

Another approach for defining the swelling pressure is given in Simon and Gaballa
(1988). There, a concentration strain ec is introduced,

ec = m�cc (15.2.4)

where c is the local ion concentration, and c is the coefficient of chemical contraction. This
strain enters the constitutive relation (3.4.7) for solid, hence we have

� ′ = CE �e − ep − ec� (15.2.5)

On the other hand, the concentration is governed by Fick’s law (see (3.2.5)),

qc = −�c�c (15.2.6)

where qc is the ionic flux, and �c is the ionic diffusion coefficient. The governing equation
for the ion concentration follows from the mass balance (see (3.2.8)),

�T��c�c�− �c

�t
= 0 (15.2.7)
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The ionic diffusion rate is large when compared with the relative fluid velocity, so that the
field of concentration can be considered stationary in the analysis. Then, taking that �c can
be considered constant, the last equation reduces to the Laplace equation �2c = 0.

Electrokinetic Coupling
The swelling pressure effects can be interpreted through the electrokinetic coupling (Frank &
Grodzinsky 1987a,b; Sachs & Grodzinsky 1989). It was experimentally found that the
following relation can be established (which encompasses Ohm’s and Darcy’s laws as special
cases):

{
q
j

}
=
[−k11 k12

k21 −k22

]{
�p
��

}
(15.2.8)

where j is the current density, � is the electrical potential, k11 is (short-circuit) Darcy’s
hydraulic permeability, k22 is the electrical conductivity, and k12 and k21 are the electrokinetic
coupling coefficients that are mutually equal according to the Onsager reciprocity.

15.2.2 Equations of balance

After the above definitions of the basic quantities, we here present the governing equations
for the cartilage model. As in Section 3.4, the cartilage is considered as a continuum
schematically shown in Fig. 15.2.1. According to the description of the cartilage model
in Section 15.2.1, the variables at a material point P of the mixture are: displacement of
the mixture (displacement of the solid), u; relative fluid velocity with respect to the solid
(Darcy’s velocity), q; the fluid pressure, p; swelling pressure pc – used when the water
content approach according to Laible et al. (1993) is used; electrical potential, �, if the
swelling pressure effects are defined by the electrokinetic coupling.

Fig. 15.2.1 Configuration tB of cartilage at time t, considered as a continuous medium
(mixture), and variables at a material point P whose position vector is tr. The variables are:
u – displacement of the mixture, q – relative fluid velocity with respect to the solid (Darcy’s
velocity), p – fluid pressure, pc – swelling pressure used according to Laible et al. (1993);
� – electrical potential, if the swelling pressure effects are interpreted by electrokinetic
coupling
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Differential Equations of Motion
First, we have that the differential equation of motion (3.4.5) remains the same,

�T� +�b−�ü +�f q̇ = 0 (15.2.9)

where � = �1−n��s +n�f is the mixture density, and b is body force per unit mass. Deriva-
tion of this equation of balance of linear momentum is presented in detail in Section 3.4.
Next, the equation of balance of linear momentum for the fluid is given in (3.4.4) if the
swelling effects are neglected,

−�p+�f b−k−1q −�f ü − �f

n
q̇ = 0 (15.2.10)

However, if the swelling pressure according to Laible et al. (1993) is used, then the total
pressure ptot given in (15.2.1) must be used in (15.2.10) and in the expression (3.4.9):
� ′ = � +mp, instead of the pressure p.

If the electrokinetic coupling is employed, then the governing equation (15.2.10) is
modified as follows (Kojić et al. 2001). First, we see that the resistance force per unit volume
of the mixture, Fw, acting on the fluid, follows from the first equation of the system (15.2.8),

Fw = −k−1
11 q +k−1

11 k12�� (15.2.11)

Then, (15.2.10) changes to

−�p+�f b−k−1
11 q +k−1

11 k12��−�f ü − �f

n
q̇ = 0 (15.2.12)

Further, the continuity equation for the current density must be satisfied,

�Tj = 0 (15.2.13)

Substituting the current density j from the second equation of the system (15.2.8) into
(15.2.13), the following equation is obtained:

k21�
T�p−k22�

T�� = 0 (15.2.14)

This equation is solved together with other governing equations of the model.

Continuity Equation
The continuity equation for the fluid is given in (3.4.10), according to Lewis and Schrefler
(1987):

�Tq +
(

mT − mTCE

3Ks

)
ė +

(
1−n

Ks

+ n

Kf

− mTCEm
9K2

s

)
ṗ = 0 (15.2.15)

when the swelling pressure effects are neglected, or when these effects are expressed by
electrokinetic coupling. However, when these effects are expressed according to (15.2.1)
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or by ionic concentration, additional terms appear in (15.2.15), as presented on the web –
Theory, Chapter 15. Detailed derivation of (15.2.15) is given in web – Theory, Chapter 3.

Change of porosity is described by (3.4.12) and remains the same in the case when
swelling pressure effects are taken into account.

15.3 Finite element modeling of cartilage deformation

In this section we present the equations of balance of a finite element which are obtained
by transforming the fundamental relations given in Section 15.2 into the finite element
equations. The derivation is analogous to that given in Section 7.7. Part of the derivations
which is the same as in Section 7.7 is omitted, while details are given for the swelling
effects. It is assumed that the displacements and strains of the solid matrix are small and
that the material is elastic with the constitutive relations given in Section 15.2.1.

15.3.1 Finite element balance equations

Model with Electrokinetic Coupling
In this case the nodal variables are: displacements of solid, U; fluid pressure, P; Darcy’s
velocity, Q; and electrical potential, �. The equations corresponding to U and P are the
same as in the system of equations (7.7.4) and are obtained from (15.2.9) and (15.2.15) as
described in Section 7.7: applying the principle of virtual work and the Galerkin method.

Further, as in Section 7.7, we multiply (15.2.12) by the interpolation matrix NT
q for the

relative velocity of fluid q, and integrate over the finite element volume V . The resulting
equation is

−
∫
V

NT
q �pdV −k−1

11 k12

∫
V

NT
q ��dV +

∫
V

NT
q �f bdV −k−1

11

∫
V

NT
q qdV−

∫
V

NT
q �f üdV −

∫
V

NT
q

�f

n
q̇dV = 0

(15.3.1)

The second system of equations follows from (15.2.15) and is given by (7.7.3).
Finally, we multiply the continuity equation (15.2.14) by the interpolation matrix NT

� for
the electrical potential and integrate over the volume, V

k21

∫
V

NT
��T �pdV −k22

∫
V

NT
��T ��dV = 0 (15.3.2)

The interpolation matrices Nq and N� are the N ×1 vector-column matrices, where N is
the number of finite element nodes used in the interpolation. Note that (usually) in practical
applications the interpolation matrices for the displacements Nu and for the relative velocities
Nq are quadratic, with respect to the natural coordinates, while Np for the pressure and N�

for the electrical potential are linear.
A standard procedure of integration over the element volume is performed and the Gauss

theorem is employed (see Section 7.1). An implicit time integration scheme is adopted, hence
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the condition that the balance equations are satisfied at the end of each time step is imposed.
The system of differential equations for a finite element is:

⎡
⎢⎢⎢⎣

Muu 0 0 0

0 0 0 0

Mqu 0 0 0

0 0 0 0

⎤
⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

n+1Ü
n+1P
n+1Q̈
n+1�̈

⎫⎪⎪⎪⎪⎬
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The matrices and vectors in this equation, which do not refer to the electrokinetc coupling,
are given in (7.7.5). The matrices and vectors not given in (7.7.5) are:

Kq� = −k−1
11 k12

∫
V

NT
q N��xdV K�p = k21

∫
V

NT
��xNp�xdV

K�� = −k22

∫
V

NT
��xN��xdV

n+1Fq =
∫
V

NT
q �f

n+1bdV −Kqp
nP −Kqq

nQ−Kq�
n�

n+1F� =
∫
A

NT
�nT jdA−K�p

nP −K��
n�

(15.3.4)

In these expressions n is the normal vector to the boundary, and A is the boundary area.
The above equations are further assembled (see Section 4.2) and the resulting FE system

of equations is integrated incrementally, with a time step �t, transforming this system
into a system of algebraic equations. A Newmark integration method, such as described in
Section 5.3, may be implemented for the time integration. The unknowns in this algebraic
system of equations are increments of the nodal variables.

Note that in the case of nonlinear behavior of the solid material, and/or large displace-
ments of solid, an incremental-iterative scheme must be used as given according to (7.1.11).
Also, change of porosity can be taken into account according to (7.7.6). Details about the proce
dure for solving nonlinear problems are given on the web – Theory, Chapter 7, and Chapter 15.

Model with Water Content
If the swelling pressure effects are taken through the equations (15.2.1)–(15.2.3), the system
of equations (15.3.3) will have U, P and Q as the nodal point variables, and the force n+1Fq

(with omission of the term −Kq�
n�� will have an additional term nFc

q,

nFc
q = −

∫
V

NT
q �npcdV (15.3.5)

where npc is evaluated according to (15.2.2), and n
 follows from (15.2.3),

n� = �T nuf (15.3.6)
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Model with Ion Concentration
Finally, if the swelling pressure effect is described by (15.2.4), there is no electrical potential
terms in the system (15.3.3) and in the expressions (15.3.4), but then the force n+1Fu in
(7.7.5) is

n+1Fu =
∫
V

NT
u � n+1bdV +

∫
A

NT
u

n+1tdA−
∫
V

BT n�dV −Kup
nP + �cE

1−2�

∫
V

Bm ncdV

(15.3.7)

Here, the last term corresponds to swelling pressure effects expressed by ion concentration.

15.4 Examples

We here give five examples with selected set of parameters. Solutions for a range of the
parameters can be obtained using the Software on the web.

Example 15.4-1. One-dimensional mechanical-to-electrical transduction of soft
biological tissue
We analyze the electrokinetic transduction in charged, homogenous, isotropic, hydrated
material with a platen on the top (Fig. E15.4-1a). An imposed displacement of amplitude u0

elicits a stress and electrokinetic response. The sinusoidal dynamic stiffness and streaming
potential are calculated in response to a sinusoidal displacement under open circuit conditions
(j = 0), and the predictions of the analytical and FEM (finite element method) are compared
with the experimental results (Frank& Grodzinsky 1987a,b).

The displacement of the top surface is given as

u�t� = u0 cos �t (E15.4-1.1)

where w is the circular frequency, w = 2�f , with f being the frequency. The conditions at
z = 0 are: fluid can flow freely through the porous platen so that fluid pressure p = 0, and
the displacement is given in (E15.4-1.1).

The analytical solution for the cartilage stiffness is (Frank & Grodzinsky 1987a,b)

�c = E�L coth ��L� (E15.4-1.2)

where �2 = jw/�Ek�, E is the aggregate modulus of elasticity, k is permeability coefficient,
and j is the imaginary unit. If the platen spring stiffness is �s, which is in series with the
cartilage stiffness, then the total dynamic stiffness of the system, �, is

� = �sE�L coth ��L�

�s +E�L coth ��L�
(E15.4-1.3)

The analytical solution for the streaming potential is

V = ke

⎛
⎜⎝

�sE�L tanh
�L

2
�s +E�L coth ��L�

⎞
⎟⎠ u0

L
(E15.4-1.4)
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Fig. E15.4-1 Mechanical-to-electrical transduction. (a) Schematics of the model; (b) Ampli-
tude of the dynamic stiffness in terms of the excitation frequency, with material constants
given in Frank and Grodzinsky (1987a,b), (solutions: ANAL-1, FEM-1 are analytical and by
FEM; EXP – experimental); (c) Amplitude of the dynamic stiffness with adjusted material
constants (solutions: ANAL-2, FEM-2, Kojić et al. 2001); (d) Amplitude of the streaming
potential under open circuit conditions (constants as in ANAL-2 and FEM-2), Data common
for all solutions: � =0.1, L=680×10−6m, ke =−2.18×10−8 V/Pa, ki =−2.07×10−8 V /Pa,
u0 =10×10−6m

where ke is the material constant ke = k21/k22 defined in (15.2.8). The material constants,
corresponding to the cartilage and common for all solutions, are given in Fig. 15.4.1,
according to Frank and Grodzinsky (1987a,b).

Amplitudes of the dynamic stiffness obtained analytically, experimentally and by FE
analysis are shown in Fig. E15.4-1b. The FE model assumes the plane strain conditions,
small displacement formulation (geometrical linearity, Kojić et al. 2001), with material
constants given in the figure caption and E =1 MPa, k=3×10−15m4/Ns. The FEM and
analytical solutions are denoted in the figure as FEM-1 and ANAL-1. A notable devia-
tion of these solutions from the experimental results (EXP) can be seen in the domain
of higher frequencies. On the other hand, this deviation is reduced if the values E =0.91
MPa and k=2.6×10−15m4/Ns are used (Kojić et al. 2001), as shown in Fig. E15.4-1c
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(numerical solution denoted as FEM-2). The analytical and FEM (corresponding to constants
used in FEM-2) solutions for the streaming potential are given in Fig. E15.4-1d and agree
well with experiments.

Example 15.4-2. One-dimensional electrical-to-mechancial transduction of soft
biological tissue
Here, Example 15.4-1 is considered, but the tissue is now subjected to electrical excitation
on the top in order to analyze the electrical-to-mechanical transduction. In experimental
investigation, mechanical stresses within the tissue are generated by a sinusoidal current
applied to the electrodes (Frank & Grodzinsky 1987a). The boundary conditions are as shown
in Fig. E15.4-2a. At z = 0 and z = L: u = 0 (restrained displacements), q = 0 (impermeable
walls); at z = 0: J = J0 cos��t�, where J0 and � are amplitude of the current density and
circular frequency, respectively. The same FE model is used as in the previous example.

The analytical solution for mechanical stress � (in the complex domain) is given by
(Frank & Grodzinsky, 1987a)

� = − kiJ0

jwL

⎛
⎜⎝

�sE�L tanh
�L

2
�s +E�L coth ��L�

⎞
⎟⎠ (E15.4-2.1)

where the definition of all quantities is given in the previous example.
Amplitudes of the mechanical stress are obtained analytically (ANAL-2) and by FEM

analysis (FEM-2) (constants corresponding to the FEM-2, geometrical linearity and constant
porosity) are shown in Fig. E15.4-2b for a range of the current frequency. The FEM solution
compares well with the experimentally recorded stress. Averaging of the stress along the
tissue depth is performed for the FEM solution representation.

Fig. E15.4-2 Electrical-to-mechanical transduction. (a) Schematics of the model;
(b) Dependence of amplitude of the mechanical stress on the excitation frequency generated
by the electric current (material constants correspond to FEM-2 solution in Example 15.4-1).
Data: E =0.91MPa, � = 0�1, L = 680 × 10−6 m, k = 2�6 × 10−15m4/Ns, ke = −2�18 × 10−8

V/Pa, ki = −2�07×10−8 V/Pa, J0 = 3�8 A/m2



CARTILAGE MECHANICS 325

Example 15.4-3. One-dimensional free-swelling problem
The model consists of a vertical column of cartilage tissue open at the top and closed at
the base, with geometrical and material data given in Fig. E15.4-3A (Laible et al. 1993).
Free swelling is analyzed in time period from t = 0 to t = 20 000 s. All three approaches for
the description of swelling pressure effects (see Section 15.2) are used.

At time t = 0 the swelling pressure is 300 kPa. As the material swells, the fluid is imbibed
and the swelling pressure drops. During this process a nonzero stress develops in the fluid
and the opposite stress develops in the solid, until at the equilibrium stage these stresses
become equal and opposite, with the value of the swelling pressure. At the equilibrium, the
state represents the end of the free swelling process (here at time t = 2 × 104 s), when the
fluid velocity becomes equal to zero.

In the first approach (change in water content), the swelling pressure is discribed by a
function of time (Laible et al. 1993):

pc = ��fcdtotal�
2

(
twc

twc− �A+ eBpc �

)2

(E15.4-3.1)

where �=20.65, A=0.8, B=0.3, fcdtotal =0.12 are empirical coefficients; twc is total
water content, twc = �T uf , uf is the fluid ‘displacement’ – with increment in time step �t
equal to �uf = �tq� Figure 15.4-3Ba shows the history of swelling pressure, obtained by
using the expression (E15.4-3.1) and the FE model; the initial condition ptot = pc = 300 kPa
was used.

In the ionic diffusion approach, the coefficient of chemical contraction is taken as
�c =0.093 (1/molar) (Simon and Gaballa 1988). To determine the same response obtained
by the change in water content approach we fitted ionic concentration c, and found that
c = 2�1 (Filipović 1999, Kojić et al. 2001).

In the third approach the electrical potential as boundary condition on the top of the col-
umn is used. The material constants in (15.2.8) are used from Sachs and Grodzinsky (1989),

k−1 = b =
(

b11 b12

b21 b22

)
=
⎛
⎜⎝

1015 Ns

m4
107 Vs

m2

107 N

Am
1 �m

⎞
⎟⎠ (E15.4-3.2)

and the change of electrical potential with time is obtained as shown in Fig. E15.4-3Bb.

Fig. E15.4-3A Geometrical and material data for free swelling of a column (E is Young’s
modulus, � is Poisson’s ratio, n is porosity, k is permeability, and Ks and Kf are the bulk
moduli of solid and fluid)
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Fig. E15.4-3B Swelling pressure and electrical potential versus time which give the same
column response when using the water content approach or electrokinetic coupling. (a)
Swelling pressure; (b) Electric potential at the top of the column

Fig. E15.4-3C Solid and fluid displacements versus time during free swelling (all three
approaches)

Solutions for the displacement of solid and fluid, obtained by the three approaches are
shown in Fig. E15.4-3C. It can be seen that the solid expands (positive displacement) while
the water moves in the opposite direction and displacements of both phases diminish over
time.

The swelling pressure pc (obtained from (E15.4-3.1)) and fluid pressure p changes with
time are shown in Fig. E15.4-3D. Both pressures approach to limiting values with time.
Note that at the final stage of free swelling the total pressure ptot = p + pc (see (15.2.1))
tends to zero. Also, when using the ionic diffusion approach, we cannot distinguish the
swelling from the fluid pressure; which represents a shortcoming of this approach. This
example also demonstrates that the electrokinetic coupling and swelling pressure effects are
equivalent.
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Fig. E15.4-3D Swelling pressure (pc) and fluid pressure (p) versus time during free
swelling. Total pressure ptot = p+pc tends to zero with time

Example 15.4-4. One-dimensional model of creep response of human spinal motion
segment (SMS)
Various FE procedures have been developed for the study of SMS. These procedures are
based on the elastic or viscoelastic material models (Simon et al. 1985, Laible et al. 1993).
Also, a simplified one-dimensional analytical model (Simon et al. 1985) was proposed to
interpret the experimental results (Kazarian 1975).

Here, a one-dimensional model of the SMS is represented by the cylindrical column,
constrained laterally and under the condition that no fluid flow is allowed through the sides
and the bottom of the cylinder (see also Examples 3.4-1 and 7.7-1). The column is subjected
to a step load and free drainage is allowed at the top surface of the cylinder (Fig. E15.4-4a).
The applied total stress at the free top surface is p0 = 1 MPa.

Fig. E15.4-4 One-dimensional model for creep response of SMS. (a) Geometrical and
material data; (b) Displacement of the top surface without (Linear) and with (Linear-E)
electrokinetic coupling (geometrically linear model), EXP – experimental
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From a fitting procedure with respect to the analytical solution, the following values for
material constants are obtained: E =4.6×105 N/m2and k=0.5×10−14 m4/Ns. The constants
for electrokinetic coupling are as in Example 15.4-3. The FE solutions using the plane strain
finite elements are obtained employing these constants and others given in Fig. E15.4-4a and
assuming geometric linearity (change of column height is neglected). The FE solutions for
the column settlement, without and with electrokinetic coupling, are shown in Fig. E15.4-4b.
It can be seen that the electrokinetic coupling plays a significant role in the mechanical
response, and that solution for the displacement (when the electrokinetic coupling is taken
into account) is in a good agreement with experimental results (Kazarian 1975).

Example 15.4-5. Static response of human spinal motion segment (SMS)
In this example we analyze the static response of human SMS based on the poroelastic
model, subjected to axial loading, F = 400 N. The geometry of half of the SMS is shown in
Fig. E15.4-5a (see color plate). Three-dimensional finite elements are employed and half of

Property Annulus Nucleus Cortical bone Cartilaginous
end plate

Cancellous bone

E [N/m2] 4.55 × 105 4.55 × 105 2.41 × 107 2.41 × 108 2.41 × 107

v 0.45 0.45 0.25 0.25 0.25

� [kg/m3] 1.061 × 103 1.342 × 103 4.184 × 102 4.184 × 102 4.184 × 102

�f[kg/m3] 1 × 103 1 × 103 – – –

n 0.7 0.7 1.0 1.0 1.0

k [m4/Ns] 1 × 10−14 1 × 10−14 – – –

Ks [N/m2] 1.01 × 107 1.01 × 105 1 × 1035 1 × 1035 1 × 1035

Kf [N/m2] 2.21 × 109 2.21 × 109 – – –

Fig. E15.4-5 Dynamic response of human spinal motion segment (SMS). (a) Human SMS
(intervertebral disk) and one-half of the model; (b) Geometrical data (length in mm) and
material properties used for the FE model; (c) von Mises stress distribution (MPa); (d)
Relative fluid velocity distribution (m/s) (see Plate 27) (Continued on page 329)
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Fig. E15.4-5 (continued from page 328)

the SMS (shown in Fig. E15.4-5a, left panel – see color plate) is modeled due to symmetry,
with the appropriate boundary conditions at the symmetry plane (no displacements and
no velocities through the symmetry plane). Five different materials are employed, for the
annulus, nucleus, cortical bones, cartilaginous end plates and cancellous bone. The elastic
material constants are given in Fig. E15.4-5b (see Plate 27). The constants are taken from
Argoubi and Shirazi-Adl (1996).

The fields of the effective (von Mises) stress and fluid velocity magnitude are shown
in Figs. E15.4-5c,d, respectively (see color plate). The locations of maximum von Mises
stress and relative velocity between annulus and cancellous bone are in agreement with
experimental results (Argoubi & Shirazi-Adl 1996).
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Filipović, N. (1999). Numerical Analysis of Coupled Problem: Deformable Body and Fluid Flow,

Ph.D. Thesis, Faculty of Mechanical Engineering, University of Kragujevac, Serbia.
Frank, E.H. & Grodzinsky, A.J. (1987a). Cartilage electromechanics – I. Electrokinetic transduction

and the effects of electrolyte pH and ionic strength, J. Biomech., 20, 615–27.
Frank, E.H. & Grodzinsky, A.J. (1987b). Cartilage electromechanics – II. A continuum model of

cartilage electrokinetics and correlation with experiments, J. Biomech., 20, 629–39.
Ghadially, F.N. (1978). Fine structure of joints. In L. Sokoloff (ed.), The Joints and Synovial Fluid, 1

(pp. 105–76). Academic Press, New York.
Kazarian, L.E. (1975). Creep characteristics of human spinal column, Orth. Clin. N. Am., 6, 3–18.
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16

Cell Mechanics

In this chapter we consider mechanical behavior of cells. In order to introduce mechanical
models of cells, we first describe the architectural organization and microstructural mechanics
of the cell cytoskeleton (CSK) and how they determine mechanical responses and functions
of adherent cells. In particular, the cellular tensegrity model is defined which has emerged
as a leading model of cytoskeletal mechanics. A simple tensegrity model illustrates key
mechanisms by which the CSK develops resistance to mechanical distortion and governs
cell deformability.

The biphasic cell model is further introduced, where the cell is considered as a deformable
continuum composed of an elastic cortical membrane surrounding a cytoplasmic solid–fluid
mixture. Within the mixture, the solid phase represents the CSK and the fluid phase is the
cytosol.

Using these two models, several examples illustrate mechanical behavior of cells. We
also provide the software on the web for further exercises in modeling mechanical response
of cells.

16.1 Introduction to mechanics of cells

Mechanical stress, including gravity, pressure, tension, compression, hemodynamic stress
and motions, plays a critical role in living tissue development and extends to the cell level.
Cell differentiation, growth, secretion, gene expression and signal transduction – all can be
modified due to mechanical stress acting on living cells. Yet, little is known about how
cells convert these mechanical signals into biochemical and biological responses. In order to
elucidate this process, it is necessary to understand mechanisms by which cells develop and
transmit mechanical stress that oppose cell deformation. A growing body of evidence shows
that deformability of adherent cells is governed by the cytoskeleton (CSK), an intracellular
molecular network that mechanically stabilizes the cell and actively generates mechanical
stress.

Computer Modeling in Bioengineering Edited by M. Kojić, N. Filipović, B. Stojanović, N. Kojić
© 2008 John Wiley & Sons, Ltd
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Mechanical distortion of cell shape can impact many cell behaviors, including motil-
ity, contractility, growth, differentiation and apoptosis (e.g. Folkman & Moscona 1978).
Mechanical forces produce changes in cell function by inducing restructuring of the intracel-
lular CSK and thereby impacting cellular biochemistry (e.g. Ingber 1993). Through largely
unknown mechanisms, mechanical signals are transduced into biochemical signals that lead
to changes in gene expression and protein synthesis (e.g. Ingber 1997). Motile cells also
can sense the mechanical stiffness of their extracellular matrix (ECM), and preferentially
move toward areas of greater rigidity (Lo et al. 2000). The changes in cell extension and
movement that make cell migration possible depend on the ability of the substrate to resist
cell tractional forces. Changes in the cellular force balance (e.g. Sheetz 2001), in turn, alters
cellular biochemistry which further strengthens the cell’s ability to resist to applied loads
(e.g. Sheetz 2001). Even at the nuclear and cytoplasmic levels, a key role for mechanical
distension is evident in the control of subcellular structure and function (e.g. Ingber 1993).

The above-cited observations suggest that regulation of many vital cellular behaviors is
centered around cell adhesion, spreading and a mechanical distending stress borne by the
CSK. We must therefore search for a model of the cell that will allow us to relate cytoskeletal
mechanics to biochemistry at the molecular level, and to translate this description into
quantitative, mathematical terms. The former will permit us to define how specific molecular
components contribute to cell behaviors. The latter will allow development of computational
approaches to address levels of complexity and multicomponent interactions that exist in
cells.

Mechanical Properties and Role of Biopolymers of the Cytoskeleton
Major stress-bearing components of the CSK are filamentous actin (F-actin), microtubules
and intermediate filaments, and each of them has its specific mechanical role within the CSK
(Ingber 2003). Actin filaments are semi-flexible polymers of high tensile stiffness (elastic
modulus E ∼ 100 GPa) and persistence length Lp ∼ 101 �m (Gittes et al. 1993); Lp is a
measure of filament flexibility and is roughly the minimum length at which the filament
ends become uncorrelated to Brownian motion (Lp = EI/kT , where E is the elastic modulus
of the filament, I is its cross-sectional moment of inertia, k is Botzmann’s constant and T is
absolute temperature; see Table 16.1.1). However, within the CSK, actin filaments are much
shorter (< 1 �m) then their Lp and thus they appear as straight-line segments (Fig. 16.1.1 –
see color plate).

Table 16.1.1 Mechanical properties of actin filaments, stress fibers, microtubules and
intermediate filaments obtained from in vitro measurements: d is filament diameter, Lp is
persistence length, E is elastic modulus, Fmax is tensile force at which the filament breaks,
Emax is elastic modulus corresponding to Fmax, and �max is strain corresponding to Fmax.
Data for microtubules include the inner and outer diameters

Filament type d �nm� Lp ��m� E �MPa� Fmax �nN� Emax �MPa� �max �%�

Actin filaments 5–10 10–20 2600 0.4 — 0.9
Stress fibers 200–500 — 1.45 380 100 275
Microtubules 12/25 5000 1200 — — —
Intermediate

filaments
10 1 6.4 14 80 220
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Fig. 16.1.1 The immuno-fluorescent images of the principal stress-bearing components of
the cytoskeleton: actin filaments, intermediate filaments and microtubules. The blue oval in
the left panel is the nucleus. The artistic depiction of molecular structure of each filament is
shown above the corresponding image (from Ingber 1998) (see Plate 28)

Cytoskeletal actin filaments are often crosslinked with myosin crossbridges. Myosins
are molecular motors which are capable of generating tensile force in the actin filaments
(see Chapter 12 for details). As a result of this action, the CSK becomes prestressed. Actin
filaments are also grouped together with myosin and other actin-binding proteins to form
200–500 nm diameter bundles known as the actin stress fibers.

Stress fibers are less stiff (E ∼ 100 MPa) and much more extensible than individual actin
filaments (Deguchi et al. 2006). However, while actin filaments appear linearly elastic, stress
fibers exhibit stiffening under sustained tension (Table 16.1.1). Within the CSK, stress fibers
carry both tensile and compressive loads.

Isolated microtubules appear straight, as rigid tubes of nearly the same stiffness as actin
filaments; but of much greater persistence length, Lp ∼ 103 �m, see Table 16.1.1 (Gittes
et al. 1993). Based on this high Lp, microtubules should appear straight on the whole cell
level if they were not mechanically loaded. However, immunofluorescent images of the CSK
of living cells show that microtubules appear curved (e.g. Ingber 2003), see Fig. 16.1.1. It
follows therefore that some type of mechanical force must act on microtubules; conceivably
compression in microtubules lead to their buckling.

Intermediate filaments are much more flexible (Lp ∼ 100 �m) and less stiff (E ∼ 100–
101 MPa) than actin filaments and microtubules. They are extensible and exhibit stiffening
similar to stress fibers, see Table 16.1.1 (Fudge et al. 2003). Since within the CSK the typical
length of intermediate filaments (10–20 �m) is much greater than their Lp, they appear to
provide very soft elasticity to the cell. Within the CSK of living cells, intermediate filaments
appear slack (Fig. 16.1.1); however, during large deformation of the cell they become
tensed and provide structural stability to the CSK at high strains (Wang & Stamenović
2000). Intermediate filaments also provide lateral elastic support to microtubules and thereby
effectively increase the critical buckling force of microtubules (Brodland & Gordon 1990).

While all three filamentous biopolymer systems are important for mechanical function
of the cell, experimental studies in which these systems were selectively disrupted show
that the cytoskeletal actin has the major contribution to the overall mechanical response;
whereas the contributions of microtubules and intermediate filaments are relatively smaller
(Wang et al. 1993). However, this contribution may change. For example, with increasing of
cell spreading on the ECM, the fraction of the cytoskeletal prestress that is balanced by the
ECM increases at the expense of microtubules (Hu et al. 2004). With increasing distortion
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of the cell, the contribution of intermediate filaments becomes more important (Wang &
Stamenović 2000).

Besides the described complexity of the load bearing within the cell, mechanical models
have been introduced which to a certain extent can describe the mechanical behavior of cells.

16.2 Cell mechanical models

In this section we present two basic models commonly used in cell mechanics: tensegrity
model of cytoskeleton, and biphasic continuum model.

16.2.1 Stabilizing influence of CSK prestress – cellular
tensegrity model

As described in Section 16.1, the cytoskeleton is a molecular network composed of filamen-
tous biopolymers including actin microfilaments, microtubules, intermediate filaments and
a number of crosslinking proteins (Fig. 16.1.1). Experiments on cultured living cells have
shown that the CSK is a prestressed structure and that the cytoskeletal prestress appears to
play a central role in determining and possibly regulating cell mechanical properties. These
properties impact cell biochemical activities, including movement and growth as well as
contractility (Wang et al. 2001). Cytoskeletal prestress is generated: (a) actively by the
cell’s contractile apparatus (molecular myosin motors); and (b) passively by mechanical
distension of the cell as it adheres to the ECM, as well as by swelling pressure (turgor) of
the cytoplasm.

Tensegrity Model
The idea that mechanical prestress may determine cell shape stability was initially explored
in a model that depicts the cell as a tensed membrane surrounding a viscous cytoplasm
(e.g. Evans & Yeung 1989). This idea was further advanced by the hypothesis that prestress
in the tensed intracellular cytoskeletal lattice, rather than the cortical membrane, is primarily
responsible for shape stability in adherent mammalian cells (e.g. Ingber 2003). A special
class of reticulated mechanical structures, known as ‘tensegrity’ structures, describe these
mechanical conditions within the CSK (Wang et al. 1993, Fig. 16.2.1).

Tensegrity architecture represents a class of prestressed structures which maintain their
structural integrity, even before application of external loading, because of prestress in their
cable-like structural members.1 A hallmark property that stems from this feature is that
structural stiffness of the network is proportional to the level of the prestress that it supports
(e.g. Volokh & Vilnay 1997). In tensegrity architecture the prestress in the cable network is
balanced by compression of internal elements that are called struts (Fig. 16.2.1).

According to the cellular tensegrity model, actin filaments and intermediate filaments
are envisioned as tensile elements, whereas microtubules (stabilized by lateral guy wire-like
connections) and thick crosslinked actin bundles (e.g. within filopodia) act as compression

1Tensegrity architecture is a building principle introduced by Fuller (1961) and is defined as a system through
which structures are stabilized by continuous tension (i.e., prestress) carried by the structural members. Fuller
referred to this architecture as ‘tensional integrity’, or ‘tensegrity’.
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Fig. 16.2.1 A tensegrity cell model under different mechanical loads. The model consists
of struts (stiff elements, thick lines) and elastic cables (thin lines). The model is suspended
from above and loaded by increased force downward, from zero at the left panel to a maximal
force at the right panel (Wang et al. 1993, with permission)

elements. In addition to these compression elements within the CSK, the cell’s tethers to the
ECM (which is physically connected to the CSK and critical for cell shape stability), known
as focal adhesions, also balance a portion of the prestress.

The central mechanism by which prestressed structures, including tensegrities, develop
restoring stress in the presence of external loading is primarily by geometrical rearrangement
of their pre-tensed members. The greater the pre-tension carried by these elements, the less
geometrical rearrangement they undergo under an applied load, and thus, the less deformable
(more rigid) the structure will be. This explains why structural stiffness increases in propor-
tion with the level of the prestress. This property is independent of whether this prestress
is balanced by internal compression-bearing struts, by the ECM or by cytoplasmic swelling
pressure. Results obtained from mechanical measurements of cultured cells are consistent
with this a priori prediction for prestressed structures (Fig. 16.2.2). Namely, at steady state,
cell stiffness (elastic modulus) increases in proportion with increasing cytoskeletal prestress
(Wang et al. 2001, 2002).

In summary, in the cellular tensegrity model, the CSK and ECM are assumed to form
a single, synergetic, mechanically stabilized system. Two key premises of the model are:
(i) the prestress, carried by the actin network and intermediate filaments, confers shape
stability to the cell; and (ii) this prestress is partly balanced by CSK-based microtubules and
partly by the ECM (Stamenović 2006). Thus, a disturbance of this complementary force
balance would cause load transfer between these three distinct systems that would, in turn,
affect cell deformability and alter stress-sensitive biochemical activities at the molecular
level.

Alternative Prestressed Models
There are different prestressed structural models of the CSK in the literature, most notably
models based on a cortical membrane (Discher et al. 1998) and tensed cable networks
(Coughlin & Stamenović 2003). These models have been successful at explaining some
aspects of cellular mechanics, but lack the ability to describe many other mechanical behav-
iors that are important for cell function. In particular, the cortical membrane model ignores
the contribution of the ECM to cellular mechanics, and it cannot explain the observed trans-
mission of mechanical signals from cell surface to the nucleus, as well as to basal focal
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Fig. 16.2.2 Cytoskeletal stiffness of human airway smooth muscle cells increases linearly
with increasing cytoskeletal prestress, consistent with the a priori prediction of the tensegrity
model. Data are obtained from magnetic cytometry measurements (stiffness) and traction
microscopy measurements (prestress) in cultured human airway smooth muscle cells. Dots
are data ±SE; line is linear regression (according to Wang et al. 2002)

adhesions (‘action at a distance’) (Wang et al. 2001). On the other hand, all of these fea-
tures (and many others) can be explained by models that depict the CSK as a prestressed
tensegrity structure (e.g. Stamenović & Ingber 2002). Moreover, other models cannot explain
how mechanical stresses applied to the cell surface result in force-dependent changes in
biochemistry at discrete sites inside the cell (e.g. focal adhesions, microtubules), whereas
the tensegrity can (Ingber 1997).

The cortical membrane model and the tensed cable network model also fall into the
category of stress-supported structures. In fact, according to the definition based on structural
stability (Connelly & Back 1998), all prestressed structures are tensegrity structures. They
differ from each other only in the manner by which they balance the prestress. However, in the
structural mechanics literature, distinction is made between tensed cable nets, and tensegrity
structures with cables and internal struts (Volokh & Vilnay 1997). A key distinction is that
in cable-and-strut structures at each free node one compression strut balances tensile forces
in the remaining cables, whereas in other prestressed cable structures at each free node force
balance only includes cable tensile forces.

16.2.2 Mathematical model of a six-strut tensegrity structure

A six-strut tensegrity structure (Fig. 16.2.3a) has been used in the past as a conceptual model
of the CSK (e.g. Stamenović et al. 1996, Volokh et al. 2000, Wang & Stamenović 2000,
Wendling et al. 1999). It is composed of six compression-bearing struts interconnected by
24 tension bearing cables. At the reference state, before application of an external load, the
cables are under tension. This pre-tension confers the shape stability to the structure and
modulates its structural rigidity (e.g. Stamenović et al. 1996).

Geometrical Description
At the reference configuration, all the struts are of length L0. It is shown below that the
corresponding length of the cable segment l0 = √

3/8 L0 and the corresponding distance
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Fig. 16.2.3 Six-strut tensegrity model. (a) Model geometry. Stretching force of magnitude
T /2 is applied at the nodes A, A′, F and F′; (b) Portion of the model inside the first quadrant
of the x, y, z coordinate system (Ax, By, Cz are points of struts at the coordinate axes
x, y, z)

of the pairs of parallel struts is s0 = L0/2. The coordinate system xyz is placed at the
geometrical center of the structure such that the coordinate axes are parallel with the pairs
of parallel struts (Fig. 16.2.3a). The structure is stretched uniaxially, in the x-direction, by
forces of magnitude T /2 applied at the endpoints of the struts AA′ and FF′. This causes:
(a) changes in the strut length from L0 to LI (struts AA′ and FF′), LII (struts BB′ and
DD′), and LIII (struts CC′ and EE′�; (b) changes in the distance between the pairs of parallel
struts from s0 to sx (struts AA′ and FF′), sy (struts BB′ and DD′), and sZ (struts CC′ and
EE′); and (c) changes in length of cable segments from l0 to l1 (segments AB, A′B, AD,
A′D, FB′, F′B′, FD′, F′D′), l2 (AC, AC′, A′E, A′E′, FC, FC′, F′E, F′E′) and l3 (BC, B′C,
DC′, D′C′, BE, B′E, DE′, D′E′). Changes in the distances between a pair of parallel strut,
�s� ≡ s� −s0 (� = x� y� z), are referred to as extensions. Coordinates of the nodal points at the
reference state are: A = �L0/4� 0�L0/2�, A′ = �L0/4� 0�−L0/2�, B = �L0/2�L0/4� 0�, B′ =
�−L0/2�L0/4� 0�, C = �0�L0/2�L0/4�, C′ = �0�−L0/2�L0/4�, D = �L0/2�−L0/4� 0�, D′ =
�−L0/2�−L0/4� 0�, E = �0�L0/2�−L0/4�, E′ = �0�−L0/2�−L0/4�, F = �−L0/4� 0�L0/2�,
F′ = �−L0/4� 0�−L0/2�. Relationships between LI, LII, LIII, sx, sy, sz� l1, l2 and l3 are
derived below.

Consider the portion of the structure in the first quadrant of the x, y, z coordinate system
(Fig. 16.2.3b). Let Ax and By denote middle points of AA′ and BB′ struts, respectively.
Then, AB = l1, OAx = sx/2, OBy = sy/2, AAx = LI/2, and BBy = LII/2. Thus,

l1 =
√

�BBy −OAx�
2 +OB2

y +AA2
x = 1

2

√
�LII − sx�

2 + s2
y +L2

I 	 (16.2.1)

Expressions for l2 and l3 are obtained in a similar manner

l2 = 1
2

√
s2
x +L2

III + �LI − sz�
2� l3 = 1

2

√
L2

II + �LIII − sy�
2 + s2

z � (16.2.2)
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Equilibrium Equations
Equilibrium equations are obtained by considering balance of forces in x-, y- and z-directions
at each node. These include forces F1, F2 and F3 in the cables of corresponding lengths l1,
l2 and l3, respectively; the compression in the struts PI, PII and PIII corresponding to lengths
LI, LII and LIII, respectively; and the external force T /2. The following relationships are
obtained

T = 2F1

sx −LII

l1

+2F2

sx

l2

� F1

sy

l1

= F3

LIII − sy

l3

� (16.2.3a,b)

F2

LI − sz

l2

= F3

sz

l3

� PI = F1

LI

l1

+F2

LI − sz

l2

� (16.2.4a,b)

PII = F1

LII − sx

l1

+F3

LII

l3

� PIII = F2

LIII

l2

+F3

LIII − sy

l3

(16.2.5a,b)

Equations (16.2.3a) and (16.2.4b) represent the balance of forces at nodes A and F in the
x- and z-directions, respectively; equations (16.2.3b) and (16.2.5a) reperesent balance of
forces at B and D in the y- and x-directions; and equations (16.2.4a) and (16.2.5b) represent
balance of forces at C and E in the z- and y-directions. Balance of forces in other nodes is
satisfied by the symmetry of the structure.

There are altogether 15 unknown variables (l1, l2, l3, LI, LII, LIII, sx, sy, sz, F1, F2, F3,
PI, PII, PIII� and nine equations. Six additional equations are obtained from the constitutive
equations for cables and struts. We assume that cables and struts are two-force members and
that cables support only tension. In past studies, the cables were usually viewed as linear
elastic (Stamenović et al. 1996, Volokh et al. 2000, Wang & Stamenović 2000, Wendling
et al. 1999), whereas the struts were considered either rigid (Stamenović et al. 1996, Wang &
Stamenović 2000, Wendling et al. 1999) or elastic such that they buckle under compression
(Volokh et al. 2000).2 Since the models with rigid struts yielded qualitatively similar results
as models with buckling strut, for simplicity we here consider the case with rigid struts.
In that case, LI, LII and LIII are all equal to L0 and equations (16.2.4b)–(16.2.5b) become
redundant. Thus the number of unknowns is nine and the number of equations is six. Three
additional equations represent the constitutive equations of linearly elastic cables and are
given as:

Fi =
⎧⎨
⎩

EA
li − lR

lR

∀ li > lR

0 ∀ li ≤ lR

i = 1� 2� 3 (16.2.6)

where E and A are Young’s modulus and cross-sectional area of the cable, respectively;
and lR is the resting length. Values of E and A are selected based on experimental data
(Table 16.1.1), whereas lR is selected according to a desired pre-tension in the cables.

The response of the model under the uniaxial load, shown in Fig. 16.2.3, is given in
Example 16.3-1.

2It is noteworthy that the six-strut tensegrity model also can be modified for studying cell viscoelasticity by
assuming that the cables are linear viscoelastic (Voigt) elements (e.g., Cañadas et al., 2002; Sultan et al., 2004).
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16.2.3 Biphasic models

It is observed experimentally that cells have elastic and viscous response when subjected to
loading. This response can be modeled by a solid continuum with viscoelastic constitutive
laws. For a recent review of these models see Mofrad and Kamm. (2006). On the other hand,
from the description of living cell in Section 16.1 it can be seen that cells are very complex
structures, with water, charged or uncharged micromolecules, ions and other molecules, and
it is hard to find a phenomenological constitutive relationships which can represent cell
behavior under complex mechanical and other actions (as osmotic or electric). It is natural to
investigate models which are close to the real physical composition of the cell, and biphasic,
fluid–solid mixture, models are along this line.

According to biphasic models, a cell can be considered as a solid–fluid mixture contin-
uum, with cytoplasm as the fluid and cytoskeleton as the solid. In the solid–fluid mixture
formulation the viscous response comes from the solid–fluid interaction. Furthermore, the
viscoelasticity can also be included in the solid–phase constitutive law. These models can
further be extended to three-phasic (fluid–solid–ion) models to include coupling of mechan-
ical, chemical and electrical events. A review of multiphasic cell models is given by Guilak
et al. (2006).

We use here the cartilage model of Section 15.2 as the basis for the biphasic model of
a cell. For simplicity, the additional effects arising due to action of osmotic pressure will
be neglected. But, in order to model biochemical processes within the cell which result in
mechanical internal mechanical stresses, we include activation within the continuum model
(Kojić et al. 2007), as in the case of muscle modeling (Chapter 12).

Schematics of the biphasic model is shown in Fig. 16.2.4. The field variables at a material
point of the continuum are: displacement of solid u, relative fluid velocity with respect to
solid (Darcy’s velocity) q, and fluid pressure p. The total stress within the solid includes the

Fig. 16.2.4 Biphasic model of cell. Stresses at a material point P within the solid phase
include the passive and active parts �s and �a (2D representation of stresses in the figure).
The stress �a is acting along the fibers (direction �0) and depend on the fiber stretch 
� . The
field variables of the model are: displacement of solid u, relative fluid velocity with respect
to solid (Darcy’s velocity) q, and fluid pressure p
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passive part �s; and active part �a, acting along the skeleton fiber direction �0 at a material
point. The stress �s can be determined from the constitutive law (e.g. elastic as for cartilage
model in Section 15.2). On the other hand, the stress �a can be expressed in terms of the
fiber stretch 
� and the activation level (expressed for example by an activation function
�a �t�, see (12.2.11) in Section 12.2).

The governing equations of the model have the same form as in Sections 3.4 and 15.2.
The balance of linear momentum (3.4.5) remains the same,

T� +�b−�ü +�f q̇ = 0 (16.2.7)

where � is the total stress which can be expressed in terms of �s, �a and p, as

� = �1−n� ��s +�a�−nmp (16.2.8)

n is porosity; � = �1−n��s +n�f is the mixture density; and m is a constant vector defined
as mT = �1 1 1 0 0 0� which provides that the pressure component contributes to the normal
stresses only. Assuming elastic behavior of the solid skeleton, the continuity equation can
be written as (see (3.4.10))

Tq +
(

mT − mTCE

3Ks

)
ė +

(
1−n

Ks

+ n

Kf

− mTCEm
9K2

s

)
ṗ = 0 (16.2.9)

where CE is the elastic constitutive matrix, and Ks and Kf are bulk moduli for the solid
skeleton material and fluid, respectively.

The finite element equations are as (see (7.7.4))
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(16.2.10)

The matrices and vectors are given in (7.7.5). We note here that the nodal force n+1Fu

includes the total stress n+1� given in (16.2.8). These equations can be further written in
incremental-iterative form (see web – Theory, Chapter 7). Other computational details are
presented in Section 7.7.1, such as change of the porosity n and others.

In several examples we illustrate application of the above equations (see also web,
Software).

16.3 Examples: modeling of cell in various mechanical
conditions

Examples presented here illustrate responses of the cell subjected to external loading and
internal excitation. The calculated responses give some of the characteristic mechanical
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properties of cells in a qualitative sense, when the mechanical models of Section 16.2 are
used. Additional information about how these models may help to elucidate mechanical
behavior of the cell can be gained using the Software (see web – Software).

Example 16.3-1. Modeling the cytoskeleton using tensegrity architecture
In this example, some of the cell mechanical characteristics are obtained from the six-strut
tensegrity model of the cytoskeleton, shown in Fig. 16.2.3.

It is found that the force–extension behavior of the model is nonlinear and that it
depends on the pre-strain (and thereby pre-stress) in the cables (Fig. E16.3-1a). It is impor-
tant that this nonlinearity is the result of geometrical rearrangements of the cables and
not of material properties of individual cables which are assumed to be linearly elastic.

Fig. E16.3-1 Mechanical characteristics of cell cytoskeleton obtained by tensegrity model
(FE model of cables and struts, see Fig. 16.2.3 for the model description). (a) Dependence
of axial force T on the extension �sx for the pre-strain of cables e0 ≡ l0/lR − 1 = 0	0� 0	1
and 0.5; (b) Stiffness K = T/�sx vs. �sx for e0 = 0	0� 0	1 and 0.5; (c) Dependence of
lateral extensions �sy and �sz on the axial extension �sx for e0 = 0	1; (d) Cable strains
�li/l0 = li/l0 −1 (i = 1� 2� 3) vs. structural axial strain �sx/s0 for e0 = 0	1
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Structural stiffness increases with the pre-strain, moreover, the structure exhibits stiffen-
ing with increasing extension. Taken together, these results are consistent with experi-
mental data obtained from measurements on living cells (Wang et al., 1993; Wang &
Ingber, 1994). Another interesting feature is that for small axial extensions �sx, lat-
eral extensions in the y- and z-directions �sy and �sz, respectively, increase and are
of similar magnitude (Fig. E16.3-1c). However, for large values of �sx, we have that
�sz continues to increase while �sy peaks and decreases (Fig. E16.3-1c). This asymme-
try indicates that the model is anisotropic. Cells also exhibit anisotropic behavior (Hu
et al. 2004) and fractional change in the axial displacement �sx/s0 (i.e. axial strain, see
Fig. 16.2.3 and the model description) is greater than fractional changes of length of
each cable (Fig. E16.3-1d). In other words, the entire structure deforms much more than
its individual cables. This is consistent with behavior of cells where the cells undergo
much larger strains than the individual components of the cytoskeleton. Note that these
results obtained by the FE method also agree with results obtained previously by directly
solving the governing equations numerically (using Mathematica software, Stamenović
et al. 1996).

Example 16.3-2. Deformation of red blood cells subjected to action of optical tweezers
The deformation of red blood cells (RBCs) has been the subject of many investigations. The
RBC deformation is particularly very large during blood flow through capillaries. There,
an RBC of a biconcave shape with diameter of around 8 �m passes through capillaries
of diameter as small as of 3 �m, changing to a bullet shape with large strains, and then
recovers its initial shape after leaving the capillaries. This deformability is necessary for
mass exchange and normal function of blood. Loss of deformability occurs in severe diseases
such as malaria.

Various experimental techniques have been introduced to investigate mechanical char-
acteristics of RBCs, one of which is extension by optical tweezers (Dao et al. 2003, Mills
et al. 2004). Also, a number of mechanical models have been used for calculating the RBC
mechanical response when subjected to loading. One of them consists of a shell for the mem-
brane, with neo-Hookean material model, and fluid for cytosol surrounded by the membrane
(Dao et al. 2003, Mills et al. 2004).

In this example we use elastic material for the membrane and the biphasic model
described in Section 16.2.3 for the cytosol. Isoparametric 3D finite elements for bipha-
sic medium (Section 7.7) are used for both the membrane and the cytosol, with the
zero-porosity for the membrane (Kojić et al. 2007). It is assumed that the RBC has ini-
tially a biconcave shape (Fig. E16.3-2Aa – see color plate). We model one-eighth part
of the cell (in the first coordinate quadrant) loaded by 1/4F , due to symmetry in geom-
etry and loading. The force is distributed on a part of the surface, as it is in the exper-
iment, and increases slowly so that the quasi-static deformation is assumed. The data
used in the model are: membrane thickness � = 90 nm; Young’s moduli for membrane
and biphasic model (pN/�m2) : 1	772 × 102 and 4 × 101; porosities: n = 0 and n = 0	7;
bulk moduli (for cytosol) (pN/�m2) : Ks = 1	54 × 101, Kf = 1	0 × 109; permeability k =
1×102 �m4/pN s.

When the RBC is subjected to axial forces, it deforms into the direction of force action
and contracts in the direction normal to the action of forces. The deformed configuration with
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Fig. E16.3-2A A biphasic FE model of RBC subjected to uniaxial extension
forces. One-eighth of the cell is modeled due to symmetry (3D biphasic finite
elements). (a) Initial biconcave shape; (b) Deformed shape at force of 300 pN ;
(c) Deformed shape (top view) experimentally recorded and computed; (d) Change of
axial and transverse diameters in terms of extensional force for three initial diam-
eters d (computed results are represented by lines, and experimental by bars) (see
Plate 29)

the displacement field is shown in Fig. E16.3-2Ab (see color plate). Experimentally recorded
and computed shapes (top view) of the deformed cell agree reasonably well (Fig. E16.3-2Ac –
see color plate).

Change of the cell diameters in terms of the extension force F (computed for
three values of initial diameters, and experimentally recorded – Dao et al. 2003) in
the direction of force action (axial) and in direction orthogonal to this one (Trans-
verse in the figure) in terms of the axial force F is shown in Fig. E16.3-2Ad. The
axial diameter increases and the transverse diameter decreases nonlinearly with the force
increase.

Deformation of RBCs assuming cylindrical shape and change of the axial and trans-
verse diameters with the force increase is shown in Fig. E16.3-2B. It can be seen that, as
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Fig. E16.3-2B Computed change of RBC diameters for initial biconcave, cylindrical and
elliptical shape. The softest is the biconcave RBC

expected, the RBCs of cylindrical and elliptical shape are stiffer with respect to the RBCs
of biconcave shape.

The computational results agree reasonably well with experiments and show that the
biphasic model can be used for modeling the RBC mechanical response.

Example 16.3-3. Cell deformation induced by magnetic bead twisting
The method of magnetic twisting cytometry is used to probe mechanical properties
of adherent cells (e.g. Maksym et al. 2000). A study of cell deformation during
this experiment using a finite element model is given in Mijailović et al. (2002).
Here, we model this experiment by representing the cell as a 2D biphasic contin-
uum of Section 16.2.3. The material data for this cell model are as for cytosol in
Example 16.3-2. The radius of the bead is R = 4	5 �m, and the depth of bead indentation
is h = 0	45 �m.

The field of effective stress (see web – Theory, Chapter 2) within the cell is shown in
Fig. E16.3-3a (see color plate) when the bead is subjected to the force F = 800 pN parallel
to the cell surface. The maximum stresses are in the domains around the edges of the contact
between the cell and bead. Distribution of the tangential and normal stresses on the cell
contact surface with the bead is shown in Fig. E16.3-3b (see color plate). These results
agree with those reported in Mijailović et al. (2002) obtained by FE modeling with the cell
represented by an isotropic elastic body.

Detailed analysis of cell deformation under the force or moment and for various model
parameters can be performed using Software on the web.
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Fig. E16.3-3 Cell deformation due to action of bead tightly bound to the cell surface. The
bead is subjected to a force. (a) Field of effective stress within the cell represented by a 2D
biphasic continuum; (b) Tangential and normal tractions along the contact surface between
the cell and bead (see Plate 30)

Example 16.3-4. Modeling of cell crawling
In this example we model motion of a cell over a plane surface. The cell consists of
membrane, interior, nucleus and skeleton (Kojić et al. 2007). The plane strain 2D model is
considered. Initial dimensions, shape and the FE mesh of the cell are shown in Fig. E16.3-4b
(position 1) – see color plate. Data for the membrane and the biphasic medium characteristics
are given in the caption of Fig. E16.3-4. Cytoskeleton is modeled by a set of fibers (truss finite
elements) connecting the nodes parallel to the surface and around the nucleus. It is assumed
that the nucleus is stiffer than the cell cytoplasm, with no fibers. We use the constitutive
law of the fibers shown in Fig. E16.3-4a (right panel) – see color plate, with the activation
function shown in Fig. E16.3-4a (left panel). Computational procedure is analogous to that
presented in Chapter 12.

It is assumed that the cell has the protrusion and that it is attached at the front part to the
surface (McGrath & Dewey 2006) at the position 1. Then, due to activation the cell deforms
and slides over the surface. It is assumed that the activation function is linear (Fig. E16.3-4a
left panel – see color plate) reaching maximum at time equal to 5 s. The deformed cell shape
and the displacement field within the cell are shown in the position 2 of the figure. It is
then assumed that the cell attaches to the surface at its rear region, with detachment of the
protrusion end. Activation decreases to zero and the cell further moves due to relaxation,
reaching the initial shape at the position 3.

Modeling of the cell crawling with changing the model parameters can be performed
using the Software on the web.
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Fig. E16.3-4 Crawling of cell over a flat surface (2D plane strain conditions in plane
x–y). Biphasic model includes: cytoplasm with cytoskeleton and nucleus, and membrane.
(a) Activation function of skeleton structure (left panel) and constitutive law for the active
stress �a (right panel); (b) Three positions of the cell during crawling (1 – initial, after
first step; 2 – middle, when detachment of the front and attachment of the rear part occur;
3-after relaxation) with the displacement field. Data: Young’s moduli (MPa) for solid within
solid-fluid mixture, and within nucleus E = 0	1 and E = 0	3, respectively; initial porosity
n = 0	7; permeability k = 102 �m4/pN s; solid and fluid density � = 10−9 mg/�m3; bulk
moduli of solid and fluid Ks = 8	3333×10−2 MPa, Kf = 109 pN /�m2 (see Plate 31)
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Stamenović, D., Fredberg, J.J., Wang, N., Butler, J.P. & Ingber, D.E. (1996). A microstructural approach
to cytoskeletal mechanics based on tensegrity, J. Theor. Biol., 181, 125–36.
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17

Extracellular
Mechanotransduction: Modeling
Ligand Concentration Dynamics
in the Lateral Intercellular
Space of Compressed Airway
Epithelial Cells

Cellular mechanotransduction, i.e. the transduction of mechanical stimuli into cellular signals,
can occur through autocrine signaling in a dynamically changing extracellular space. We
developed computational models to analyze how alterations in the geometry of an epithelial
lateral intercellular space (LIS) affect the concentrations of constitutively shed ligands inside
and below the LIS of cultured airway epithelial cells. The two presented models, based on
pure diffusion and diffusion–convection, utilize the finite element method to solve for the
concentration of ligands inside and outside of the LIS. Using these models, we examined
the temporal relationship between geometric changes and ligand concentration, and the
dependence of this relationship on system characteristics such as ligand diffusivity, shedding
rate and rate of deformation. Our results reveal how the kinetics of mechanical deformation
can be translated into varying rates of ligand accumulation, a potentially important mechanism
for cellular discrimination of varying rate-mechanical processes. Furthermore, our results
demonstrate that rapid changes in LIS geometry can transiently increase ligand concentrations
in underlying media or tissues, suggesting a mechanism for communication of mechanical
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state between epithelial and subepithelial cells. All of these results underscore the insight
gained by employing numerical modeling to explore the complex process of extracellular
mechanotransduction.

Most of the text and figures presented in this chapter are based on references Kojić
(2007) and Kojić et al. (2006) (adapted with permission from Biophysical Journal 2006).

17.1 Autocrine signaling in airway epithelial cells

17.1.1 Introduction

The Role of the Airway Epithelium in Asthma
The epithelial cells that line the human airway serve as the body’s natural barrier against
a wide range of unwanted gases and particulate matter. But they are more than a simple
barrier. In disease states, such as asthma, the structural organization of the airway epithelium
may change. For example, depending on the severity of their disease, an asthmatic can
have pronouncedly thickened epithelium, thickening of the collagen layer just below the
true basement membrane, smooth muscle cell proliferation, and other structural changes
that together decrease the airway luminal area. Furthermore, mast cells in the asthmatic
epithelium can serve as a sensor for allergens, thus recruiting an immune response that can
ultimately lead to progression of the disease.

Recently, another role for the epithelium has emerged whereby the epithelium is
involved in mechanotransduction of forces that accompany airway constriction. Elucidating
the mechanism by which the epithelium transduces mechanical stimuli, such as compressive
stress, could lead to a better understanding of the role played by the epithelium in a
complex disease such as asthma. Ultimately one could envision new drugs that could
help break the vicious cycle involving the epithelium, the immune system and the
subepithelial tissue that contributes to the progression of asthma. Also, it is likely that the
mechanotransduction mechanism involved in airway epithelial cells could be applicable to
other epithelial cells or tissues in the body, increasing the need to uncover the underlying
processes.

The Lateral Intercellular Space (LIS) of Airway Epithelial Cells
Neighboring airway epithelial cells are connected at the apical surface via tight junctions that
are impermeable to larger molecules, such as proteins (Tschumperlin et al. 2004, Willumsen
1994). These tight junctions serve as the natural barrier from the outside world and their
intactness is crucial for normal function. Below the tight junctions, on the lateral side of
neighboring cells, lies an extracellular area termed the lateral intercellular space (LIS). The
LIS is thus defined on the apical side by the tight junction, the lateral surfaces of neighboring
cells, and basally by the basement membrane in vivo, or porous substrate on which cells are
grown in vitro (see Fig. 17.1.1).

On the lateral surface of the cells there is a host of different membrane-bound ligands
and their corresponding receptors. The bound ligands are released from the cell surface into
the LIS via the action of a sheddase that cleaves the connecting bond (Harris et al. 2003). If
a ligand is released into a collapsing LIS, its local concentration will increase. If the process
occurs uniformly along the lateral surface, this establishes a concentration gradient in the
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Fig. 17.1.1 Scanning electron micrograph (left panel) of airway epithelium (according
to Evans et al. 2001) and schematic (right panel) of the LIS separating two neighboring
epithelial cells

apico-basal direction of the LIS, whereby the highest concentration is near the tight junction
and the lowest, essentially zero, concentration is at the basal surface.

In the LIS, glycoprotein projections from the lateral cell surface form a mesh called
the glycocalyx. The dense network of the glycocalyx could play a crucial role in hindering
the diffusion of large molecules (Kovbasnjuk et al. 2000). Furthermore, being charged
the glycocalyx could also provide significant chemical impedance to positively charged
ligands thus hindering movement down their concentration gradient to the area below the
basal surface of the cell where their concentration is likely to be quite small. The effect
of the glycocalyx on the diffusion coefficient of large molecules has been studied in the
LIS of canine epithelial cells, showing a several fold decrease in diffusion coefficient
and thus effectively a corresponding increase in resistance to diffusion, since diffusion
coefficient ∼ 1 / (diffusion resistance) (Kovbasnjuk et al. 2000). Although the apical surface
is also rich in ligand secretion activity and glycocalyx, the presence of a large reservoir of
apical fluid will keep effective concentrations low, making the most important changes that
occur during prolonged bronchoconstriction in the LIS.

17.1.2 The EGF–receptor autocrine loop in the LIS

As mentioned above, numerous receptors extend into the LIS from the cellular surface. One
type of receptor that plays a crucial role in mechanotransduction is the epidermal growth
factor (EGF) receptor (Tschumperlin et al. 2002). We have previously shown that the EGF
receptor (EGFR) functions as part of an autocrine loop in normal human bronchial epithelial
(NHBE) cells (see Fig. 17.1.2). An activating signal can be an increase in the number of
ligands bound through an increase in local ligand concentration.

There are at least four known members of the EGF receptor family (erbB1-4) and our
main focus will be on erbB1, also known as the classical EGF receptor (referred to as
EGFR) (Yarden & Sliwkowski 2001). The EGFR contains three domains: an intrinsic kinase
domain in the cytoplasm, a membrane-spanning domain, and an ectodomain that binds
EGFR ligands. When the ligand binds to the receptor, the monomeric receptors dimerize
and phosphorylate specific cytoplasmic tyrosine residues. The phosphorylated residues then
serve as a site of attachment for effector molecules that further activate signal transduction
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Fig. 17.1.2 Schematic of the epidermal growth factor receptor (EGFR) autocrine loop. Light
gray indicates antibodies that block various sites (GM6001 blocks metalloprotease activity,
ligand and receptor antibodies are labeled with an �, AG1478 blocks EGFR phosphorylation).
Phosphorylated mitogen-activated protein kinase ERK was the outcome measure

pathways (Raab & Klagsbrun 1997). Downstream from receptor activation phosphorylation
of the mitogen-activated protein kinase ERK occurs (Tschumperlin et al. 2002). The next
step in the pathway is translocation of p-ERK to the nucleus (see Fig. 17.1.2) where it
helps activate various transcription factors such as cfos and jun, hence forming the loop:
ligand–EGFR–ERK–transcription-ligand.

Phosphorylated ERK can also signal to metalloproteases to cleave the membrane
bound ligand (Harris et al. 2003) forming another autocrine loop: ligand–EGFR–ERK–
metalloprotease–ligand. It should be noted that the two loops mentioned above could be
interconnected and part of other, broader feedback mechanisms utilized by the cell to sense
and appropriately respond to changes in the local environment.

17.1.3 Modeling the effects of compressive stress on epithelial cells
in vitro

During bronchoconstriction, because the basement membrane is relatively inelastic, the
epithelium buckles under the influence of contracting smooth muscle. The pattern of
buckling depends on the mechanical properties of the airway components as well as the
thickness of the epithelium. Previous numerical modeling studies and experiments have
shown that a thicker epithelium needs smaller luminal pressures to cause airway closure
(Hrousis et al. 2002, Wiggs et al. 1997). Depending on the ‘state’ of the epithelium the
cells will thus fold in different patterns (by state we mean the degree of airway remodeling
that has occurred as a result of disease).

In an asthmatic airway the effect of airway remodeling is the classic rosette folding
pattern (see Fig. 17.1.3) in which neighboring cells located in the cleft areas get squeezed
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Fig. 17.1.3 A constricted remodeled airway. The box indicates an area where cells get
pushed against each other

against each other during bronchoconstriction. Thus they experience a compressive stress,
whose magnitude is ∼ 30 cm H2O (Wiggs et al. 1997).

To test the effects of this compressive stress in vitro we use a system that can apply
a pneumatic pressure gradient across cultured normal human bronchial epithelial (NHBE)
cells (Ressler et al. 2000, Swartz et al. 2001). The cells (obtained from Clonetics) are grown
on microporous polyester substrates (pore size 0.4 microns, Transwell-Clear). Initially, for
the first week, the cells are fed from the top and bottom. After this, for the next two weeks
the cells are only fed through the bottom pores, and a cell–air interface is established at
the top. This interface is a signal for the cells to polarize and differentiate into the NHBE
phenotype. Once the cells are fully differentiated, the pressure device is used to apply
compressive stress (see Fig. 17.1.4). The device consists of a plug for the transwell and a
pressure tank that supplies compressed air (with 5% CO2) through a tube going through
the plug to the apical surface of the cells. The media bath below the substrate remains at
atmospheric pressure, hence a pressure gradient can be established across the cells.

Previous Experimental Findings
Earlier experiments with this pressure device provided several key findings about the effects
of compressive stress (Tschumperlin et al. 2004):

1. The EGFR via signaling through one of its ligands, heparin-binding epidermal growth
factor (HB-EGF), plays a key role in transducing the mechanical stimulus.

2. ERK phosphorylation occurs downstream of the EGFR.



354 COMPUTER MODELING IN BIOENGINEERING

3. Metalloproteases involved in shedding of ligand into the LIS are an integral part of the
mechanotransduction pathway.

4. The LIS collapses, decreasing its volume substantially due to compression.

In order to have a more accurate picture of how the collapsing LIS results in increased
signaling through the EGFR a 1D LIS model based on diffusion has been put forth
(Tschumperlin et al. 2004). The proposed mechanism functions as follows. Under compres-
sion, the LIS width (and thus volume) decreases pushing out the intercellular fluid basally
through the porous substrate (since tight junctions form an impermeable barrier on the apical
surface). HB-EGF, a large, charged protein, known to be released into the LIS remains there
due to its size and charge, hence the LIS concentration of HB-EGF increases. In other words,
the HB-EGF in the LIS finds itself in a smaller volume and thus the concentration increases.
This increase in turn causes a greater number of HB-EGF molecules to be bound to EGFR
than before the LIS collapse, effectively activating the mechanotransduction loop described
above.

The model can be expressed in mathematical form assuming that diffusion of HB-
EGF occurs in the apical-to-basal direction down its concentration gradient, where the
highest concentration is immediately below the impermeable tight junctions and the lowest
(essentially zero) concentration is in the media bath. Hence, the balance equation of diffusion
(3.2.8) is now

�C

�t
= D

�2C

�x2
+ 2q

w
(17.1.1)

where C is the ligand (HB-EGF) concentration, t is time, x is the apico-basal direction,
D is the diffusion coefficient of ligand through the LIS/glycocalyx matrix, q is the rate of
shedding of ligand from the cell surface into the LIS and w is the LIS width. Here we assume
that the LIS collapse can be regarded as two parallel plates coming closer together. From
(17.1.1), the steady-state solution

C = q

wD
�h2 −x2� (17.1.2)

Fig. 17.1.4 The pressure device supplies a pressure gradient p1–p2 across the cells
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Fig. 17.1.5 Schematic of the initial LIS model (left panel) and the corresponding
steady-state solutions (right panel)

indicates that the concentration is inversely proportional to the width, thus C increases as
w decreases; here h is the LIS height (see Fig. 17.1.5). Such a deduction could be viewed
as satisfactory from a qualitative standpoint, but for deeper engineering insight the LIS
dynamics must be taken into account.

Rationale for a Focus on HB-EGF
Previous experiments (Tschumperlin et al. 2004, Tschumperlin & Drazen 2001,
Tschumperlin et al. 2002) have shown that HB-EGF is the key EGFR ligand in the mechan-
otransduction pathway. These experiments revealed that if antibodies were used against other
common EGFR ligands, such as EGF or TGF-�, there was no measurable deterioration of
ERK phosphorylation, whereas an HB-EGF antibody substantially downgraded the signal.
This begs the question why HB-EGF, and not one or all of the other ligands?

We believe that two major characteristics distinguish HB-EGF, namely its size and
charge. For example, HB-EGF has a molecular weight of about 22 kDa, whereas TGF-�
and EGF are both only about 5.5 kDa. In experiments performed in Spring’s laboratory
(Kovbasnjuk et al. 2000), the diffusion coefficient in a similar LIS architecture decreased by
an order of magnitude as the size of the molecule probed increased from 3 kDa to 10 kDa.
Thus it is conceivable that just due to size alone HB-EGF would have a much smaller
diffusion coefficient and would be ‘left behind’ relative to the other ligands during the
‘washout’ phase of an LIS collapse where fluid is squeezed out. Furthermore, HB-EGF is
more likely to get trapped or hindered in the glycocalyx due to its positively charged domains
(Raab & Klagsbrun 1997) that could interact with negatively charged areas of the glycocalyx.

The end result would be a relatively higher increase in concentration of HB-EGF com-
pared to other ligands in the collapsing LIS. In other words, the concentration of HB-
EGF would increase drastically (while the concentration of other ligands would be mostly
unchanged) and hence would provide a new input signal to the cell, initiating the mechan-
otransduction pathway. Further experimental evidence for such a mechanism comes from
exogenously adding a bolus of HB-EGF and seeing a similar response in ERK phospho-
rylation as in the case of compressive stress (Tschumperlin et al. 2004). Therefore, since
an increase in HB-EGF can cause the same cellular response as compressive stress, it is
feasible that the collapsing LIS does just that: increases local HB-EGF concentration via the
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mechanism described above. In following chapters we explore these possibilities in more
detail through the use of computer models.

Role of Computer Modeling
The established system of epithelial stress by pneumatic pressure was used to examine
mechanotransduction in cultured human airway epithelial cells (Tschumperlin et al. 2004).
However, the experiments performed can only provide a partial view of the system. To
have a more complete and general understanding, mathematical and computer models are
necessary (Kojić 2007, Kojić et al. 2006). Specifically, not every quantity can be measured
experimentally in real time, and even if such measures were possible, one would still have
to determine the relative importance of various ligand–receptor pairs in signal transduction.
Computer models therefore become a valuable tool in this selection process and can also
provide insight that was not initially apparent. When coupled to experiments, these models
allow for a more complete understanding of observed phenomena.

Different generations of the computer model presented in subsequent sections reflect
higher levels of complexity, all aimed at not only having a deeper understanding of the
experimental results, but also elucidating the mechanisms involved in mechanotransduction
of compressed airway epithelial cells.

17.2 The dynamic diffusion model

17.2.1 Introduction

In the previous section, we described a 1D steady-state (i.e. time independent) model of
LIS ligand concentration, developed by Tschumperlin and colleagues (Tschumperlin et al.
2004). This model yielded the parabolic concentration profiles (see Fig. 17.1.5) in the LIS for
HB-EGF ligand for only two time points: first for the steady-state pre-collapse condition, and
then, depending on the change in LIS width w, the final post-collapse steady-state condition.
The implicit assumption was that after the collapse occurs, the LIS width stays constant and
equal to the width at the end of the collapse.

The key result of the steady-state model was that the ligand concentration was inversely
proportional to the LIS width. Thus, during a pressure-induced collapse the LIS width would
decrease and the final, steady-state concentration would proportionally increase. This was an
important first step in establishing the plausibility of the mechanotransduction mechanism
via an increase in LIS concentration. However, the steady-state model could not address how
the concentration changes during a collapse because all of the time-dependent terms were
set to zero. Since ligand dynamics can dominate signal transduction (Sasagawa et al. 2005),
we present in this chapter a dynamic diffusion model that outputs LIS ligand concentration
as a function of both time and space. We then explore the parameter space of the model by
varying the rate of width decrease, the diffusion coefficient and the shedding rate of ligand
into the LIS.

The Dynamic Diffusion Equation
The steady-state model was based on removing the time dependence from the concentration,
effectively making the concentration a function of only the spatial coordinate x. Hence the
basic diffusion equation becomes (17.1.1)
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�C

�t
= 0 = D

�2C

�x2
+ 2q

w
(17.2.1)

where C is the ligand (HB-EGF) concentration, x is the apico-basal direction, D is the
diffusion coefficient of ligand through the LIS/glycocalyx matrix, q is the rate of shedding
of ligand from the cell surface into the LIS and w is the LIS width. Solving (17.2.1), the
steady-state concentration profile becomes

C�x� = q

wD
�h2 −x2� (17.2.2)

Here h is the total apical-basal height of the LIS. From this equation we see how for a given
w we can obtain a steady-state concentration profile. Obviously, a smaller width results in a
greater concentration.

Although this was an important initial step in linking geometric changes of the LIS to
extracellular ligand concentration, many important issues could not be addressed from this
simple model. One such issue is the time dependence of changes in ligand concentration
as the LIS collapses. In other words, the key question becomes: how does the LIS ligand
concentration change over time during and after the collapse?

To answer this question we needed to employ numerical methods to solve the diffusion
equation in which C and w are considered to be a function of time:

�C�x� t�

�t
= D

�2C

�x2
+ 2q

w�t�
(17.2.3)

17.2.2 Finite element model of dynamic diffusion

In order to solve (17.2.3) we first discretize the LIS space into 1D finite elements (see
Fig. 17.2.1). Then, using the Galerkin weighted method (Huebner 1975) we transform
(17.2.3) into the following form (see equation (7.1.2)):

∫
L

��x�

[
�C

�t
+ �

�x

(
D

�C

�x

)
+qV = 0

]
dL (17.2.4)

where ��x� is a weighted function, qV = 2q/w is the source term due to the shedding, and
L is the selected domain. Equation (17.2.4) represents the so-called weak form (Bathe 1996,
Hughes 1987) of the differential equation (17.2.3) since (17.2.3) is not necessarily satisfied
at each point of the domain.

In the isoparametric formulation of a 1D finite element of the length L we use inter-
polation functions NK as the weighted functions (where the subscript K refers to the node
number) (Huebner 1975). The nodes of the finite elements are represented with circles in
Fig. 17.2.1. Therefore, we obtain N weak-form equations for a finite element,

∫
L

NK

[
−�C

�t
+ �

�x

(
D

�C

�x

)
+qV = 0

]
dL K = 1� 2� � � � �N (17.2.5)
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Fig. 17.2.1 Schematic of the 1D LIS finite element (FE) model. At the apical surface of the
LIS �x = 0� there is an impermeable wall (tight junction) and at the basal surface �x = h� we
assume the ligand concentration is zero. Each finite element consists of two nodes (depicted
as circles); note: FE model not drawn to scale

where N is the number of nodes per element. In our case there are two nodes per element,
thus K = 1� 2. Applying Gauss’ theorem (see (1.4.11) in Section 1.4) to the diffusion term
within the integral we obtain

∫
NK

�

�x

(
D

�C

�x

)
dL =

∫
S

NKD
�C

�x
dS −

∫
L

D
�NK

�x

�C

�x
dL (17.2.6)

where S is the element surface and the term D �C
�x

represents the flux qs of C through the
element surface, which in our case are the two cross-sectional areas (one at each of the
element nodes and equal to w × �unit depth�). The surface integral can then be written as

QS
K =

∫
S

NKD
�C

�x
dS =

∫
S

NK qs dS (17.2.7)

where QS
K �t� is the surface flux corresponding to the node ‘K’.

Next we perform the interpolation of the variable C within the element as

C = NKCK = N1C
1 +N2C

2 + � � � +NN CN (17.2.8)

where CK are the nodal values of C. Now, we substitute (17.2.6) and (17.2.8) into (17.2.5)
and also use (17.2.7), to obtain

MĊ+KCK = QS +QV� or

MKJĊ
J +KKJC

J = QS
K +QV

K� K�J = 1� 2� � � � �N
(17.2.9)

Here C is the vector of nodal values CK� Ċ is the vector of time derivatives at nodal points,
and the matrices and vectors are:
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MKJ =
∫
L

NKNJ dL� KKJ =
∫
L

D
�NK

�x

�NJ

�x
dL�

QS
K =

∫
S

NKqSdS� QV
K =

∫
S

NKqV dS

(17.2.10)

The system of equations (17.2.9) represents the equations of balance for a finite element.
Assemblage of the element equations is then performed and appropriate boundary conditions
must be implemented prior to solving the equations of the whole system (see Section 4.1).
The equation of balance for the finite element assemblage retains the form of (17.2.9). Note
that the surface fluxes QS

K cancel over the internal surfaces of the finite elements, i.e. the
flux leaving one node of the finite element is equal to the flux going into the same node
of the neighboring finite element which shares that node. Therefore, the contribution to the
system surface vector QS comes only from the flux through the surface of the whole domain.

The incremental form for time integration of (17.2.9) can be written as

(
1
	t

M+K
)

n+1C = n+1QS + n+1QV + 1
	t

M nC (17.2.11)

where 	t is the time step, and the upper left indices n and n+ 1 denote values at the start
and end of the n-th time step (see (7.1.9)).

17.2.3 Exploring the parameter space of the diffusion equation

Based on the diffusion equation (17.2.3), the ligand concentration C depends on three
parameters: the diffusion coefficient D, the shedding rate q, and the LIS width w. To
investigate the effect of these parameters on the changes in concentration we employed our
finite element (FE) model to see the interdependence of the three parameters and thus get a
sense of the relative importance of experimentally determining each/all of them.

The LIS geometry was regarded as a 1D rod (see Fig. 17.2.1), consisting of 50 finite
elements. The boundary conditions were: no flux through the top, apical surface; and zero
concentration at the bottom, basal surface. The diffusion equation (17.2.3) was then trans-
formed to the appropriate 1D finite element form (see (17.2.11)) and solved using the PAK
software package (Kojić et al. 1998). We define x as the depth coordinate, being 0 at the
most apical (tight junction) surface (Fig. 17.2.1).

To explore the effect on concentration, the parameters D� w and q were changed. We
first assume constant D and q, while the width w changes. We further assume that the
LIS width w decreases linearly during the prescribed time of collapse. For example, in
previous work (Tschumperlin et al. 2004) it was established that the LIS width shrinks
to close to 90% in a time that is less than 20 minutes. Exactly how fast the LIS shrinks
was unclear since the imaging technique only allowed measurements at 20-minute intervals.
Thus, we first solved the ligand concentration profiles for a very rapid (1 s) LIS collapse
from w = 2 to 0.6 microns (see Fig. 17.2.2a). The diffusion coefficient was taken from the
literature and estimated to be 18 
m2/s (Kovbasnjuk et al. 2000), whereas the shedding rate
was roughly approximated to be 12�6 �ng�
m�/�mL�s� (based on personal communication
with Dr. Ivan Maly, unpublished results). The height h of the LIS was taken from pre-
vious experiments (Tschumperlin et al. 2004) to be h = 17 
m. The circles (Fig. 17.2.2a)
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Fig. 17.2.2 Case for w = 2 → 0�6 
m in 1 s, D = 18 
m2/s� q = 12�6 �ng�
m�/�mL�s�. (a)
Numerical solution for concentration profiles along the LIS depth; (b) Corresponding fold
increase in mean LIS concentration

represent the analytical solution (see (17.1.2)) for w = 2 
m, which is in agreement with our
numerical solution. The curves to the right of initial t = 0 curve represent the time evolution
of concentration increase as the LIS collapses from w = 2 to 0�6 
m in 1 s. The curve at
t = 50 s is the new steady-state concentration profile corresponding to w = 0�6 
m.

In addition to looking at the concentration profile along the depth of the LIS it is
worthwhile to examine the relative fold increase of the mean LIS concentration defined as:

Cmean = 1
h

h∫
0

C dx (17.2.12)

The ratio of Cmean over the initial Cmean, i.e. the fold increase in mean LIS ligand concen-
tration, for the same conditions of LIS collapse as described above, indicates an initial rapid
increase followed by a steady-state plateau (see Fig. 17.2.2b).

Previously we have stated that we observed a change in LIS volume of about 90% in
< 20 min and we show the effects of a rapid 1 second collapse in Fig. 17.2.2. Next we
show how the LIS concentration dynamics change when the time of collapse increases.
Specifically, we examine four cases: tcollapse = 1, 100, 500, 1000 seconds, and assume that
LIS width changes from w = 2 to 0�2 
m during the prescribed time of collapse, with all
other parameters being the same as above in Fig. 17.2.2. The results for these four cases are
shown in Fig. 17.2.3. As the figure indicates, the varying time-of-collapse has a profound
effect on the dynamics, where the longer tcollapse results in a slower approach to steady state.

In all of the above calculations, both the diffusion coefficient and the shedding rate
were assumed to be constant during and after the LIS collapse. We next explore what are
the effects of variable diffusion coefficient D on the diffusion process in the LIS. Namely,
it is likely that the ligand diffusion coefficient through the LIS can change as a result of
structural changes in the LIS glycocalyx. In effect, the glycocalyx matrix becomes ‘denser’
and further hinders diffusion of a large molecule like HB-EGF (molecular weight of 22 kDa)
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Fig. 17.2.3 Variable tcollapse (number next to each curve indicates duration of collapse) for
w = 2 → 0�2 
m� D = 18 
m2/s� q = 12�6 �ng�
m�/�mL�s�

Fig. 17.2.4 Variable diffusion coefficient and variable tcollapse for: w = 2 → 0�2 
m�
D = 18 → 1�8 
m2/s� q = 12�6 �ng�
m�/�mL�s�. Dashed line represents Fig. 17.2.3, with
constant D = 18 
m2/s

(Kovbasnjuk et al. 2000, Xia et al. 1998). To see how a changing diffusion coefficient affects
the mean concentration, we assume that the diffusion coefficient D decreases linearly with
LIS collapse. In other words, D is a linear function of w � D = 18 
m2/s for w = 2 
m and
D = 1�8 
m2/s for w = 0�2 
m. The results are displayed in Fig. 17.2.4. For comparison,
we also plot the previously determined case of constant D = 18 
m2/s (dashed line). The
decreasing diffusion coefficient has a retarding effect on the concentration increase toward
the new steady state for each of the four tcollapse cases.

The third, final parameter that could be variable (and was until now assumed constant)
is the shedding rate q. It is conceivable that the LIS autocrine loop involving the EGFR-
ERK-metalloprotease mechanism (see Fig. 17.1.2) could change due to increased ligand
binding to the EGFR. We examine two cases of changing q: one being a linear and sustained
five-fold increase (top dashed line in Fig. 17.2.5); and the other being a transient five-fold
increase followed by a symmetric, linear decrease to the initial value of q (solid line in
Fig. 17.2.5). For clarity, we only consider one time of collapse: tcollapse = 1 s. The resulting
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Fig. 17.2.5 Variable q� w� D � w = 2 → 0�2 
m in 1 second, D = 18 → 1�8 
m2/s. Top
dashed line: change in q = 12�6 → 63 �ng 
m�/�mL s� during 50 → 150 s. Solid line:
q = 12�6 → 63 during 50 → 150 s followed by q = 63 → 12�6 during 150 → 250 s. Bottom
dashed line represents Fig.17.2.2b where q = const = 12�6 �ng 
m�/�mL s�

concentration curves differ in shape and character, prompting the need to further investigate
and experimentally determine not only how q might change, but also how all of the parameters
in the diffusion equation behave in the in vitro pressure system.

The modeling results presented in this section were based on dynamic diffusion and hence
yielded LIS ligand concentrations as a function of time and space. By varying parameters
in the diffusion equation we were able to gain insight into ligand dynamics for a range of
conditions (e.g. fast vs. slow change in LIS geometry). The dynamic diffusion model was
built upon the steady-state model and represented an important step forward in understanding
how LIS collapse affects ligand concentration. However, the effect of convection, i.e. fluid
flow, was completely neglected. The assumption of a purely diffusive process meant that
the fluid squeezed out of the LIS did not carry any concentration with it (or it carried such
a small amount that it was negligible). Such an assumption may not be valid, especially for
a rapid collapse, where most of the fluid in LIS flows into the underlying reservoir in a
short period of time. Another issue that the pure-diffusion model could not address was what
happens in the underlying reservoir close to the LIS boundary. To adequately examine these
and other convection-related issues, we had to develop a more complete transport model,
which coupled diffusion and convection, and also included the underlying media reservoir.
We present this diffusion–convection model next.

17.3 The dynamic diffusion and convection model

17.3.1 Introduction

In the previous section we examined dynamic diffusion in the lateral intercellular space of
two neighboring airway epithelial cells. The model presented above established only the
steady-state LIS ligand concentration profiles. Furthermore, the dynamic diffusion model
was based on pure diffusion and neglected potentially important effects of convection.

In this section we develop a generalized finite element solution of the coupled 1D
diffusion–convection equation to evaluate the temporal changes in ligand concentration
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occurring in a dynamically collapsing interstitial space between epithelial cells (Kojić et al.
2006). We introduce a new geometry for the model that accommodates diffusion and con-
vection of ligands that are shed into a lateral intercellular space that is continuous with an
underlying media reservoir (Kojić et al. 2006). Employing the model, we explore the param-
eter space of the governing equations, examining the effect of ligand diffusivity, shedding
rate and rate of extracellular space change on the kinetics of ligand accumulation. The new
model geometry reveals the transient effect of convection on ligand concentration changes
in the underlying space (e.g media for the in vitro case or tissues in vivo), suggesting a
potential mechanism for communication of a change in the mechanical state of the epithelium
to underlying tissues. Moreover, the diffusion–convection model offers a novel explanation
for how cells could discriminate between mechanical processes occurring over a range of
rates in different physiological scenarios. We use insights gained from the model to propose
two explanations for a selective contribution of the EGF family-ligand heparin-binding EGF
(HB-EGF) to the transduction of mechanical stress via autocrine signaling in a collapsing
extracellular space.

17.3.2 Finite element model of coupled diffusion and convection

We modeled the lateral intercellular space (LIS) separating neighboring cells as idealized
parallel plates and assumed free diffusion of ligand into the media reservoir below the
LIS. Boundary conditions to represent the special case of an epithelial layer were imposed:
impermeable tight junction at the apical surface; open to a large reservoir (e.g. the underlying
media) such that sufficiently far below the basal surface the ligand concentration is assumed
to be zero (see Fig. 17.3.1). Previously we solved the 1D diffusion equation (Fick’s law)
analytically, with a source term included to account for the constitutive shedding of ligand
into the LIS, to obtain the steady-state ligand concentration profile within the LIS:

�C

�t
= DLIS

�2C

�x2
+ 2q

w
(17.3.1)

Here the ligand shedding rate q (distributed uniformly along the lateral cell boundary) and
ligand diffusion coefficient in the LIS DLIS are assumed to be constants, and w is the LIS
width. Solving for the steady-state ligand concentration C�x� yields:

C�x� = Ch + q

wD

(
h2 −x2

)
(17.3.2)

where Ch is the ligand concentration at the LIS boundary x = h.
To account for convective effects, as well as to determine how the concentration at and

below the LIS boundary changes during a collapse, we now introduce an extended model
geometry with three domains: LIS, transitional and radial (see Fig. 17.3.1). The LIS domain
includes the LIS space, from the tight junction to the basal boundary. The transitional domain
corresponds to the space between LIS and radial domains, where we numerically switch
from a Cartesian to a cylindrical coordinate system. The radial domain represents the outside
space (i.e. underlying media or tissues) and allows for radial diffusion of ligand once it
leaves the LIS. The governing transport equations for each domain are:

LIS:
�C

�t
= DLIS

�2C

�x2
+ 2q

w
−Vx

�C

�x
(17.3.3a)



364 COMPUTER MODELING IN BIOENGINEERING

Fig. 17.3.1 Schematic of LIS finite element (FE) model. Neighboring cells are separated
by the LIS. Ligands are constitutively shed into LIS from the cell surface at a rate q. In the
space below the LIS it is assumed that at a radial distance R0 = h/2 (where h is the LIS
height) the ligand concentration is zero. The second boundary condition is an impermeable
wall at the top due to the tight junctions (no flux at x = 0). Using 1D isoparametric finite
elements we discretize the space into three domains: LIS (for 0 < x < h), transitional (for
h < x < h+Rt) and radial (for Rt < r < R0). Note that the finite elements are not to scale.
Each of the domains has its own governing diffusion–convection equation. In the three
domains the corresponding bulk fluid velocities are Vx in the LIS, Vt in the transitional,
and Vr in the radial domain. The diffusivities DLIS and Dout (inside and outside the LIS,
respectively) may be different. The transitional domain extends Rt = w/ below the LIS

Transitional:
�C

�t
= Dout

�2C

�x2
−Vt

�C

�x
(17.3.3b)

Radial:
�C

�t
= Dout

�2C

�r2
+Dout

1
r

�C

�r
−Vr

�C

�r
(17.3.3c)

where DLIS and Dout are the ligand diffusivities in the LIS and outside space, respectively,
Vx is the bulk fluid velocity in the LIS caused by changes in LIS dimensions, Vt is the
fluid velocity in the transitional domain (assumed to be uniform), and Vr is the radial fluid
velocity at a radius r measured from the LIS boundary. Note that in (17.3.3b,c) there is no q
(ligand shedding) term because shedding is assumed to occur only from the lateral surfaces
of the LIS.

By conservation of mass and fluid incompressibility it can be shown that in the LIS:

Vx = ẇ

w
x (17.3.4a)

where ẇ = dw
/

dt is the rate of change of LIS width, while in the radial domain:

Vrr = const (17.3.4b)

The transitional regime was included to avoid numerical difficulties that can occur when
switching from Cartesian to cylindrical coordinate systems. The transitional region begins
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at the LIS boundary and extends to a distance Rt = w/ below the LIS. This distance was
determined by matching the fluxes corresponding to Cartesian �w� and radial �Rt� lengths,
through which the flux passes. We further approximate the velocity field in this domain as
uniform, being equal to the bulk velocity at the LIS exit Vt = Vx�x = h�. The approximations
made in this domain have little impact on the overall concentration profile inside and outside
of the LIS.

The radial domain encompasses the region between Rt (end of the transitional domain)
and R0 = h

/
2 (where we assume the ligand concentration to be zero). Mathematically,

the zero-concentration boundary would be infinitely far away from the LIS (i.e. R0 → �),
but for efficient numerical simulations we determined that for an LIS height h = 15 
m
(Tschumperlin et al. 2004), R0 = 7�5 
m is sufficiently far away from the LIS boundary
such that further increasing R0 had little effect on the overall concentration profile (data not
shown). Hence, for all of the simulations we fixed the value of R0 = 7�5 
m to be half of
the previously measured LIS height h = 15 
m (Tschumperlin et al. 2004).

The diffusion–convection equations, along with the boundary conditions of no flux at
the most apical point (impermeable tight junction) and zero concentration at R0, were solved
using the PAK finite element method software package (Kojić et al. 1998). The LIS and
outside space were discretized by 1D isoparametric finite elements (see Fig. 17.3.1). The
governing differential equations (17.3.3a–c) were first converted to the appropriate finite
element system of first-order nonlinear differential equations, which were further linearized
and integrated in time using a time step 	t. A Newton–Raphson iterative scheme was
employed for each time step 	t. The final system of incremental-iterative equilibrium
equations for a time step n and iteration i is (see (7.1.11))

K̂	C�i� = n+1Q�i−1� − n+1F�i−1� (17.3.5)

where 	C�i� is the vector of concentration increments at the finite element nodal points, K̂
is the system matrix, n+1Q�i−1� is the convection and shedding vector, and n+1F�i−1� is the
out-of-balance vector. In component form, the terms of (17.3.5) are

K̂KS = MKS +KKS = 1
	t

∫
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NKNSdx+D
∫
L

�NK
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dx (17.3.6a)
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n+1F
�i−1�
K = KKS

n+1C
�i−1�
S + 1

	t
MKS�

n+1C
�i−1�
S −n CS� (17.3.6c)

where NK are interpolation functions, L is the length of the finite element, CS is concentration
at node S of the finite element, while V and C are the velocity and concentration within the
finite element.

In the radial domain below the LIS axially symmetric 1D finite elements were used. From
the equation of balance in cylindrical coordinates (see (17.3.3c)) and integration over rdr
instead of dx we obtain the finite element equations for the axially symmetric 1D elements
in the form of (17.3.5).

A time series of the concentration profiles C�x� t� during a linear decrease in w by 85%,
from 1.5 to 0�225 
m (based on previous experimental results (Tschumperlin et al. 2004))
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Fig. 17.3.2 Solutions obtained by solving for the ligand concentration from the governing
diffusion–convection equations. (a) Evolution of the time-dependent concentration profile
during an LIS collapse to 15% of its original width (from 1.5 to 0�225 
m) over 60 seconds.
Concentration is plotted vs. the apico-basal depth coordinate, where x = 0 at the apical tight
junction, x = 15 at the LIS boundary, and at a depth of 22�5 
m the concentration is zero.
For comparison the open circles represent the analytical steady-state solution prior to LIS
collapse and upon reaching the new, post-collapse steady state. The numbers next to the
curves indicate seconds after onset of collapse; (b) Concentration profiles from (a) plotted
as fold-mean concentrations: Cmean�t�/Cmean�t = 0�. Here, Cmean�t� = 1

h

∫ h

0 C�x� t�dx, where
h is the LIS depth equal to 15 
m, and Cmean�t = 0� is the mean LIS ligand concentration
just prior to the change in LIS width

over a 60-second duration is shown in Fig. 17.3.2a. The circles correspond to the analytical,
pre- and post-collapse steady-state solutions (see (17.3.2)). Each of the solid-line curves
represents a solution of (17.3.3a–c) at different time points. The height of the LIS was chosen
to be 15 
m and the LIS width w to be initially 1�5 
m (Tschumperlin et al. 2004) (thus the
outside space extended to R0 = h/2 = 5w0 = 7�5 
m below the LIS). For this example the
ligand diffusivity and shedding rate were arbitrarily selected (DLIS = Dout = 75 
m2/s and
q = 10 molecules/cell/minute).

Another way to represent the same time series of ligand concentration profiles is to calcu-
late the fold change in the mean ligand concentration: Cmean�t�/Cmean�t = 0� (Fig. 17.3.2b).
Here, Cmean�t� = 1/h

∫ h

0 C�x� t�dx and Cmean�t = 0� is the mean LIS ligand concentration
just prior to the change in LIS width.

17.3.3 Exploring the parameter space of the governing equations

Cells express a variety of autocrine mediators with a range of diffusivities dependent on
molecular size and charge characteristics (Kovbasnjuk et al. 2000, Xia et al. 1998). These
mediators are likely released at various rates, further influencing their kinetics within the
LIS. We therefore explored the parameter space of the governing equations to characterize
the relative importance of ligand properties by varying the diffusion coefficient D and the
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shedding rate q over several orders of magnitude. In all these simulations, the LIS width was
decreased to 15% of its initial, pre-collapse value (from 1.5 to 0�225 
m) linearly over 60
seconds. The magnitude of this change was selected to correspond to previous experimental
results in bronchial epithelial cells compressed by an apical to basal pressure gradient of
30 cm H2O (Tschumperlin et al. 2004). The rate of LIS width change was arbitrarily selected;
we address the importance of this parameter later.

The diffusion–convection equations (17.3.3a–c) were first solved for a constant q of
10 molecules per cell per minute (DeWitt et al. 2001) (evenly distributed along the cell
boundary), with diffusion coefficients of 100, 10, 1 and 0�1 
m2/s (Fig. 17.3.3). Diffusivities
on the order of 100 
m2/s characterize free diffusion of smaller molecules whose molecular
weight ranges from about 0.1–10 kDa, whereas D on the order of 10 
m2/s corresponds to
free diffusion of larger molecules 10–1000 kDa. The cases of D = 0�1 and 1 
m2/s represent
hindered diffusion of large molecules (Kovbasnjuk et al. 2000). We further assumed equal
diffusivities inside and outside of the LIS, DLIS = Dout (this assumption will be addressed
later). The results of these simulations are plotted alongside each other in Fig. 17.3.3a. The
case of D = 0�1 
m2/s is shown in Fig. 17.3.3b due to the difference in the time scale. In
general, the smaller the ligand diffusivity (or conversely the larger the ligand), the slower
the increase in the normalized mean concentration during LIS width change.

A similar order-of-magnitude analysis was performed for shedding rates from 0.1 to 1000
molecules/cell/min (DeWitt et al. 2001) (data not shown). While the shedding rate affected
the absolute value of ligand concentration, it did not alter the normalized fold change in
concentration induced by LIS collapse; this was true both at steady state and during the
dynamic changes in LIS dimensions. Hence, the influence of shedding rate was limited to
effects on the absolute ligand concentrations in our system.

Estimating the HB-EGF Diffusion Coefficient in the LIS
In the LIS of MDCK epithelial cells, which share a generally similar architecture with human
bronchial epithelial cells, large molecules experience hindered diffusion due to the protrusion

Fig. 17.3.3 Effect of diffusion coefficient on concentration. (a) A 60-second collapse was
examined for cases of D = 1� 10� 100 
m2/s, where the LIS width decreases linearly
to 15% of its original value (from 1.5 to 0�225 
m) over a 60-second interval. Diffusion
coefficient units are 
m2/s. (b) The case of D = 0�1 
m2/s (time scale goes to 5000 s). All
cases assume a constant shedding rate of q = 10 molecules/cell/min
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of a glycocalyx into the LIS (Kovbasnjuk et al. 2000). Specifically, while a 3 kDa molecule
diffuses in the LIS of MDCK cells as if in free solution, a significant decrease in diffusion
coefficient is observed for a 10 kDa molecule relative to that for free diffusion (Fig. 17.3.4).
Because our previous work in human bronchial epithelial cells suggested a key role for
HB-EGF in mechanotransduction (Tschumperlin et al. 2004, Tschumperlin et al. 2002), we
used these existing diffusion data to estimate the diffusivity of HB-EGF in a typical LIS.
HB-EGF that is proteolytically processed and shed into the LIS has a molecular weight of
about 22 kDa (Harris et al. 2003, Raab & Klagsbrun 1997) and is heavily charged (Raab &
Klagsbrun 1997). Previous studies have shown that interactions between a charged molecule
and the extracellular glycocalyx can hinder diffusion (Dowd et al. 1999). Therefore, we
assumed that HB-EGF diffusion in the LIS would be significantly hindered, due to both
charge interactions and given that this effect is readily apparent for a smaller 10 kDa molecule
(Kovbasnjuk et al. 2000) (Fig. 17.3.4). Based on these data we approximated the HB-EGF
diffusion coefficient in the LIS as DLIS = 1�8 
m2/s, while outside the LIS it was assumed
to be an unhindered (free solution) value of Dout = 75 
m2/s. The choice of the hindered
LIS diffusion coefficient is only an order-of-magnitude estimate based on hindered diffusion
of large molecules in the LIS.

17.3.4 Rate sensitivity of extracellular mechanotransduction

Biomechanical forces develop on a range of time scales, from milliseconds for traumatic
injury, to days to weeks or months for cellular proliferation and tissue morphogenesis.
We have previously shown that the relevant time scale for compression of the LIS of

Fig. 17.3.4 Diffusion coefficients for 524 kDa HPTS, and for 3 and 10 kDa dextran
molecules measured by Kovbasnjuk et al. (∗indicates Kovbasnjuk et al. 2000) in the LIS
of MDCK cells (squares connected by dashed line), and in free solution (circles). For a
10 kDa dextran with Dout = DFREE = 98 
m2/s, hindered diffusion in the LIS was observed
�DLIS = 18 
m2/s�. For HB-EGF of size 22 kDa we estimated a LIS diffusion coefficient of
DLIS = 1�8 
m2/s (triangle pointing down), an order of magnitude less than that measured
for a 10 kDa dextran; outside the LIS the HB-EGF free solution value was estimated as
Dout = DFREE = 75 
m2/s (triangle pointing up), based on extrapolation of the measured free
solution values assuming DFREE� �mol�wt��

−1/3
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airway epithelial cells and subsequent cellular signaling is on the order of seconds to min-
utes (Tschumperlin et al. 2004). Specifically, we know that at 20 minutes after the onset
of 30 cm H2O of transcellular compressive stress a new steady state in LIS geometry is
established, whereby the LIS width shrinks to 15% of its original value (Tschumperlin
et al. 2004). However, due to limitations in the system available for imaging a few years
ago we did not know the temporal behavior of the LIS width during this 20-minute
span. We thus modeled a range of different rates of collapse of the LIS width occur-
ring linearly over durations from 1 to 1200 seconds (Figs. 17.3.5a,b). We incorporated
our estimates for hindered diffusion of HB-EGF inside the LIS, and free diffusion outside
of the LIS. For clarity, the 60-second case is illustrated in both panels. As the figures
indicate, the rate of change in LIS dimension plays a dominant role in defining both the
rate of ligand accumulation, and the shape of relationship between ligand concentration
and time.

In order to illustrate the localized variation in concentration induced by dynamic changes
in LIS geometry, we calculated the HB-EGF concentration profiles in the LIS at several
times during (solid lines) and after (dashed lines) LIS collapse for the 1 and 10 s cases
(Figs. 17.3.6a,b). These two cases are identical to those shown in Fig. 17.3.5b, but now
represent concentration profiles as functions of depth and time.

Fig. 17.3.5 (a) Incorporating the estimated HB-EGF diffusion coefficients (see Fig. 17.3.4),
we examined three cases of LIS collapse when the LIS width decreased linearly to 15%
of its initial, pre-collapse value (from 1.5 to 0�225 
m) over tcollapse = 60, 600, 1200 s.
(b) Additional cases, where the same LIS collapse (to 15% of the initial width) occurred
in tcollapse = 1 and 10 s (solid lines). The 60-second collapse case from (a) (dashed line) is
shown for comparison. For all cases we assumed that the shedding rate is constant and equal
to q = 10 molecules/cell/min
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Fig. 17.3.6 (a) Evolution of concentration profiles for a 1 s linear collapse (see Fig. 17.3.5b)
for the in vitro case where: DLIS = 1�8 
m2/s and Dout = 75 
m2/s, LIS height h = 15 
m
(boundary between LIS and underlying media), and concentration is assumed zero at 7�5 
m
below the LIS boundary. Solid lines indicate times when the LIS width is changing (number
next to curve represents the time in seconds corresponding to the profile), broken lines
represent times after the LIS has reached its new steady-state geometry; (b) Concentration
profiles for a 10 s linear collapse (see Fig. 17.3.5b) for the in vitro case with the same
parameters as in part (a); (c) Evolution of concentration profiles for a 1 s linear collapse for
the in vivo case where: DLIS = Dout = 1�8 
m2/s. The geometry is the same as that described
in part (a); (d) Velocity profiles corresponding to case (a)

Considering first the case where the LIS collapse occurs over 1 s, we see that due to the
rapid decrease in LIS width the concentration within the LIS becomes uniform, reaching a
level equal to the most apical concentration (Fig. 17.3.6a). In the space immediately below
the LIS the concentration tends to increase during the collapse due to convection, since
velocities increase with width decrease (see (17.3.4a)). This increase in extra-LIS concen-
tration (equaling about one-quarter of the most apical LIS concentration at the end of the
collapse) permeates several microns into the underlying media. After the collapse has ended,
convection stops and diffusion alone becomes the governing process. This transition from a
diffusive–convective to a purely diffusive regime results in a change in slope (at the end of
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the collapse) of the normalized mean concentration curve (Fig. 17.3.5b). After the conclusion
of the LIS collapse the concentration profile transitions to a parabolic shape (Fig. 17.3.6a).
Soon thereafter the effect of shedding ligand into a now much smaller space causes the
concentration to increase until the new steady state is reached after 300 s (Fig. 17.3.6a).

In the case of a 10 s collapse (Fig. 17.3.6b) the concentration at the end of the collapse
also tends to be uniform throughout the LIS and equal to the concentration at position x = 0,
however the x = 0 concentration is greater at 10 s than at the start of collapse. Another
difference between the 1 and 10 s cases is that much less increase in concentration below the
LIS boundary is observed for the 10 s collapse (diminished convective effects for the 10 s
case). The new steady state is reached some 200 s after the onset of collapse (Fig. 17.3.6b).

The previous two cases were intended to approximate the in vitro situation, where airway
epithelial cells were grown on a porous substrate below which lies an essentially infinite
reservoir of media. The HB-EGF diffusion coefficients inside and outside the LIS were
assumed to be different based on the hindered diffusion in the LIS and free diffusion outside
of the LIS. We modified these assumptions to simulate a scenario potentially encountered
in vivo: instead of media below the cells, we assumed that sub-LIS tissues would hinder
diffusion by the same amount as seen in the LIS �DLIS = Dout = 1�8 
m2/s�. For a very rapid
1 s collapse, where again the LIS width decreases linearly to 15% of its initial, pre-collapse
value, we determined the evolution of the concentration profiles (Fig. 17.3.6c). As in the
1 s in vitro case there is a tendency toward uniform x = 0 concentration throughout the LIS
during the collapse. Here though, the concentration changes permeate much deeper below
the cells. For instance, just prior to the end of collapse the ligand concentration 3 
m below
the LIS reaches 40% of the LIS value, representing a 10-fold increase from an initial pre-
collapse value of 0.04 to 0.4 ng/ml in one second. These results highlight the fact that a rapid
in vivo LIS collapse could transiently signal to underlying cells via a convective increase in
ligand concentration that permeates into the surrounding tissues. This suggests a potential
mechanism for communicating events that affect the epithelium to subepithelial tissues.

To see how the LIS collapse affects bulk velocity profiles inside and outside of the
LIS, we examined the 1 s in vitro case from above (see Figs. 17.3.6a,d). The bulk velocity
profile inside the LIS is linear (starting from zero at the impermeable tight junction x = 0),
whereas outside the LIS the velocity decreases proportionally to the inverse of the radius
(Fig. 17.3.6d and Fig. 17.3.1). Both the linear and 1/r dependence follow from conservation
of mass (see (17.3.4a,b)). For the 1 s in vitro case the corresponding local Peclet numbers
along the depth of the LIS �Pe = Vxh

/
DLIS� can be calculated to range from 0 at x = 0 to

> 700 at the LIS boundary. Thus, since Pe >> 1 for most of the LIS, convection dominates
during rapid collapse. Furthermore, a Peclet number can be obtained across the LIS width
w, ranging from Pe = ẇ�w/2�

/
DLIS = 0�5 at the LIS wall to 0 at a distance w/2 from

the wall. Here ẇ represents the rate of change of the width w, i.e. the velocity of the LIS
wall. The small values of the Peclet number over the LIS width, combined with the large
height-to-width ratio of the LIS geometry, justify our use of a 1D model in which we
assume uniform concentrations across the LIS width.

Determining Maximum Rate of Ligand Concentration Change During LIS Collapse
Computational and experimental studies have demonstrated that receptor activation and
downstream signaling are influenced not only by the magnitude, but also by the rate of
ligand concentration change in the cellular microenvironment (Sasagawa et al. 2005). To
explore this facet of transduction in our model, we first differentiated the normalized Cmean

curves shown in Figs. 17.3.5a,b with respect to time and then found the maximum rate of
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Fig. 17.3.7 Maximum rate of change of the fold-mean concentration as a function of the
corresponding rate of LIS collapse for five cases from Figs. 17.3.5a,b. Individual squares
represent the maximum rate of concentration change for a given rate of collapse. For example,
in the case of tcollapse = 10 s the LIS collapses by 85% linearly over 10 s and thus the rate of
collapse is constant and equal to 0�085 s−1. For this 10 s collapse, the maximum rate of change
of concentration was obtained by finding the largest slope of the Cmean �t� /Cmean �t = 0�
curve (see 10 s curve in Fig. 17.3.5b)

concentration change. In Fig. 17.3.7, the maximum rate of concentration change (i.e. the
maximum slope of the fold-mean curves of Figs. 17.3.5a,b) is plotted versus the time
derivative of the corresponding collapse of LIS width (see Figs. 17.3.5a,b w/winitial linear
relationships). In our simulations the LIS width decreased linearly over time and the resulting
time derivatives (i.e. rate of collapse) were constant for each case. The largest rate of
concentration change was for the fastest collapsing LIS, i.e. the 1 s collapse. A four-fold
decrease in the maximum rate of ligand accumulation was observed when comparing the 10 s
case to the 1 s case, with a small further decrement of 10% occurring between the 10 s and
60 s cases. The slower collapsing LIS cases (such as 600 s and 1200 s) exhibited maximum
rates of ligand concentration change that were lower by more than an order of magnitude
when compared to the 1 s case. Thus, the rate of LIS geometry change profoundly affects
the peak rate of LIS ligand concentration change.

The results of our analysis demonstrate that while the magnitude of ligand concentration
change depends on the change in w, the kinetics of ligand accumulation depend predominately
on ẇ and D. Strikingly, these results suggest that all other parameters being equal, the fastest
change in ligand concentration will occur for the highest diffusivity (and hence, smallest)
molecules. How then can we explain the selective role for HB-EGF in transducing mechanical
stress in human airway epithelial cells exposed to compressive stress (Tschumperlin et al.
2004, Tschumperlin & Drazen 2001, Tschumperlin et al. 2002) when it is known that these
cells can shed other ligands that bind to the same receptor (e.g. TGF-alpha) and exhibit
higher diffusivities?

17.3.5 HB-EGF vs. TGF-alpha concentration dynamics

While proteolytically processed and shed HB-EGF is ∼ 22 kDa in size, shed TGF-alpha (and
EGF) is about four times smaller, being ∼ 5�5 kDa (Harris et al. 2003, Raab & Klagsbrun
1997). If we were to assume free diffusion of each ligand, the difference in ligand size would
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predict a ∼ 35% difference in the expected free diffusion coefficient for these two ligands
(Fig. 17.3.4). However, returning to the diffusivity measurements made in the LIS of MDCK
cells, it was found that these two ligands straddle the molecular size range over which
diffusion becomes significantly hindered in the LIS (Kovbasnjuk et al. 2000). Thus, the dif-
fusivity in the LIS can be approximated as DLIS = 1�8 
m2/s for HB-EGF (22 kDa), while for
TGF-alpha (5.5 kDa) the DLIS = 120 
m2/s is the same as for free diffusion (see Fig. 17.3.4).
If we further assume both ligands are shed at the same rate q = 10 molecules/cell/min, the
solution of the governing diffusion–convection equations during a 60-second collapse yields
the absolute mean concentration curves (not normalized) for HB-EGF and TGF-alpha shown
in Fig. 17.3.8a. For comparison, the case assuming free diffusion for HB-EGF both inside and
outside the LIS �DLIS = Dout = 75 
m2/s� is also shown (dashed line in Fig. 17.3.8a). Note
that the units here are picoM; thus while the mass concentration of free-diffusing HB-EGF is
higher than for TGF-alpha, its molar concentration is lower due to its larger molecular weight.

Fig. 17.3.8 (a) Mean molar LIS concentration for HB-EGF (top solid and bottom dashed
curves) and TGF-alpha (solid middle curve) for a 60 s LIS collapse when the LIS width
decreases to 15% of its initial, pre-collapse value (from 1.5 to 0�225 
m). For HB-EGF, we
examined two cases: free solution inside and outside of LIS with DLIS = Dout = 75 
m2/s
(bottom dashed curve), and hindered diffusion in the LIS with DLIS = 1�8 
m2/s and free
diffusion outside of the LIS with Dout = 75 
m2/s (top solid curve). For TGF-alpha, free
diffusion was assumed both inside and outside of LIS with DLIS = Dout = 120 
m2/s (middle
solid curve). In all cases shedding rate was constant and equal to q = 10 molecules/cell/min.
The open circles represent hindered HB-EGF mean concentration at the start and after
collapse, while crosses and triangles represent free diffusion of TGF-alpha and HB-EGF mean
concentrations, respectively pre- and post-collapse. (b) EGFR–ligand binding curve (dashed
line) based on fitting the experimental values (solid squares) (∗ indicates Lauffenburger et al.
1998). A portion of the curve (relevant to our concentration ranges) was used. The final
point on the actual curve was 20×103 pM and the corresponding bound ligand was 11×104

per cell (Lauffenburger et al. 1998). The mean concentrations for HB-EGF and TGF-alpha
for pre- and after-collapse are represented by the symbols shown in panel (a). TGF-alpha
concentration increases due to the collapse, but (like free-diffusion HB-EGF) remains on
the flat part of the curve, whereas hindered HB-EGF concentration increases along the steep
part of the curve, rendering it a more effective molecule for receptor activation
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We observe that for hindered HB-EGF in the LIS, the mean absolute concentrations are
an order of magnitude higher those of TGF-alpha (Fig. 17.3.8a). A corollary to this result
is that in order to have a similar LIS concentration for both ligands, with the assumption
of hindered diffusion in the LIS for HB-EGF, the cell must shed TGF-alpha at a rate ∼ 10
times higher than that of HB-EGF. Furthermore, this result reveals two potential explanations
for a selective role for HB-EGF in extracellular mechanotransduction. In the first case, the
different mean concentrations that arise in the LIS as a consequence of different ligand
diffusivities could place HB-EGF and TGF-alpha on different parts of an EGFR–ligand
binding curve (Lauffenburger et al. 1998) (see Fig. 17.3.8b). Assuming a constant and
equivalent shedding rate for each ligand, and equivalent ligand–receptor affinities (Jones
et al. 1999) and signaling properties, the absolute concentrations of each of the ligands
at the start and end of collapse correspond to the values of Fig. 17.3.8a. Therefore, the
differences in HB-EGF and TGF-alpha concentrations could result in HB-EGF shifting up
the EGFR–ligand binding curve. On the other hand, the low concentration of TGF-alpha (as
well as free-diffusing HB-EGF) could place it on the flat portion of the curve, rendering it
an ineffective activator of the EGFR in response to mechanical deformation (Fig. 17.3.8b).

A second potential explanation is that the molecular sieving properties of the LIS might
become amplified by the geometric decrease in LIS space (Fig. 17.3.9). While we have thus

Fig. 17.3.9 Fold change in mean concentrations for various geometry-dependent changes
in diffusion coefficients during LIS collapse. All cases are for a 60 s LIS collapse where
the LIS width decreases to 15% of its initial, pre-collapse value (from 1.5 to 0�225 
m,
Fig. 17.3.5b). The case of constant HB-EGF diffusion coefficient DLIS = 1�8 
m2/s is shown
as the bottom curve. In the other four cases we assume that the collapsing LIS causes a linear
decrease (following LIS geometry) in HB-EGF diffusion coefficient during the 60 s collapse.
For example, the top curve DLIS = 1�8 → 0�18 
m2/s indicates the case where the diffusion
coefficient changes linearly over 60 seconds from the initial value of 1�8 
m2/s to the final
value of 0�18 
m2/s (see side panel). In the other three cases of decreasing DLIS , the diffusion
coefficient linearly decreases over 60 seconds from 1.8 to 0.25, 0.5, and 1 
m2/s. The side
schematics illustrate how the shrinking volume of the LIS could considerably amplify the
effect of hindered diffusion



EXTRACELLULAR MECHANOTRANSDUCTION 375

far assumed that during the LIS collapse the shrinking of the intercellular space does not
affect ligand diffusivity, the decrease in LIS width could form a more tightly packed space
and a greater barrier to diffusion, especially for large, highly charged molecules like HB-EGF,
while leaving smaller ligands like TGF-alpha relatively unaffected. We modeled this putative
effect by assuming that the size/charge interactions (Dowd et al. 1999, Kovbasnjuk et al.
2000) would decrease the HB-EGF diffusion coefficient during the course of an LIS collapse.
In Fig. 17.3.9 we illustrate several scenarios in which the HB-EGF diffusivity decreases
linearly along with the linear LIS width decrease over 60 s (see Figs 17.3.5 and 17.3.9).
A decrease in DLIS during collapse could amplify the increase in HB-EGF concentration,
potentially mediating or magnifying cellular mechanotransduction.

17.3.6 Discussion

In this chapter we developed a computational framework to help understand how the con-
centration of constitutively shed ligands changes as a result of simple geometric changes in
the spaces separating cells. Our computational model includes both diffusive and convective
effects, allowing us to study the temporal relationship between deformation and ligand accu-
mulation, and the dependence of this relationship on system characteristics such as ligand
diffusivity, shedding rate and rate of deformation. The model geometry is expanded over
previous efforts (Tschumperlin et al. 2004) to include both the LIS and the underlying space,
thereby also providing an assessment of the effect of convection and diffusion on ligand
concentration in the basal space underlying the LIS.

The modeling results reveal several key facets of extracellular mechanotransduction.
How fast the local ligand concentration changes depends primarily on the rate of change
of the extracellular geometry (Figs. 17.3.5a,b); on the other hand, the magnitude of the
change in concentration (at steady state) is entirely determined by the magnitude of the
geometry change. While the fold-change in ligand concentration that occurs with LIS collapse
is independent of the ligand shedding rate, the absolute concentration of ligand is not
(Fig. 17.3.8a). Thus, ligands with different shedding rates could occupy different regimes
on a receptor dose–response curve (Fig. 17.3.8b). Similarly, the absolute concentration of
a ligand depends on its diffusivity; low diffusivity molecules accumulate at higher baseline
concentrations when shed into the LIS, and vice versa (see (17.3.2) and Fig. 17.3.8a). We
used these system properties to propose two explanations for the selective role of HB-EGF
as a key mechanotransduction ligand in bronchial epithelial cells (Tschumperlin et al. 2004,
Tschumperlin et al. 2002); both mechanisms are based on the large size of HB-EGF relative
to other EGF-family ligands (Harris et al. 2003), and the assumption that HB-EGF diffusion
will be hindered in the LIS (Kovbasnjuk et al. 2000).

By including convection and expanding the model geometry, we were able to examine
how dynamic changes in LIS geometry alter the ligand concentration in the underlying space
(which we chose to be either a media reservoir or subepithelial tissues, Figs. 17.3.6a–c). We
showed that for low diffusivity molecules and fast geometric changes, convection leads to
large but transient increases in ligand concentration that permeate several microns below the
cellular layer. This convective effect could allow nearly immediate communication of the
mechanical state of epithelial cells to underlying cells, which frequently share responsibility
for management of tissue architecture (Swartz et al. 2001).

The modeling results demonstrate how the varying kinetics of geometric changes in
the extracellular space are translated into varying rates of change of ligand concentration
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(Fig. 17.3.6). Recent experimental and computational studies have clearly demonstrated that
the rate of ligand concentration change encodes important signaling information (Sasagawa
et al. 2005, Schoeberl et al. 2002). Together these observations raise the possibility that
cellular mechanotransduction through the proposed extracellular mechanism could discrim-
inate between different rate processes, based on the velocity of ligand accumulation and
subsequent receptor activation.

Our results raise other questions. For example, what are the effects of varying the
magnitude or rate of loading on geometric changes, and how do these loading conditions relate
to various physiological scenarios? While not available when this model was first developed,
dynamic measures of the geometric response of the interstitium to loading, as detailed in
Kojić (2007), can be coupled to the model described here to predict the overall relationship
between mechanical loading and local autocrine ligand concentration (Kojić 2007).

Computational modeling of the EGFR system, from autocrine activity (Maheshwari et al.
2001, Monine et al. 2005, Shvartsman et al. 2002a, Shvartsman et al. 2002b, Shvartsman
et al. 2001) to receptor trafficking (Lauffenburger & Linderman 1993, Resat et al. 2003,
Wiley et al. 2003) and downstream signal pathways (Kholodenko et al. 1999, Sasagawa et al.
2005, Schoeberl et al. 2002, Wiley et al. 2003), has been essential to our understanding of
this important biological pathway. The model described here explores a previously ignored
idea in which changes in the concentration of shed ligands in an extracellular compartment,
occur based solely on geometric changes. If linked together with previously developed cell
membrane and intracellular compartmental models of ligand kinetics, receptor trafficking
and intracellular signaling, the combined models could provide a comprehensive framework
for understanding how mechanical or architectural changes in cells and tissues that modulate
extracellular geometry are converted into biological signaling responses.
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18

Spider Silk: Modeling Solvent
Removal during Synthetic and
Nephila clavipes Fiber Spinning

The process by which spiders make their mechanically superior fiber involves removal
of solvent (water) from a concentrated protein solution while the solution flows through
a progressively smaller diameter spinning canal. To probe the effects of solvent removal
during elongational flow, which is exhibited in the spinning canal of the spider, on fiber
mechanical properties a study using synthetic materials was first conducted (Section 18.1).
The study establishes in Section 18.2 a model for solvent removal during dry spinning of
synthetic fibers. Central to the synthetic model is the determination of the dependence of the
solvent diffusion coefficient on the solvent concentration. The procedures used to obtain the
variable synthetic diffusion coefficient, and the subsequent model of solvent removal during
synthetic fiber spinning, were then applied (Section 18.3) to the Nephila clavipes (golden
orb) spider. As for the synthetic case, it was assumed that internal diffusion governs solvent
(water) removal in the spinning canal of the spider during fiber formation. The modeling
results provide the key spinning parameters which suggest that simple diffusion, along with
the dry wall boundary condition, is a viable mechanism for water removal during typical
Nephila fiber spinning.

Most of the text and figures presented in this chapter are based on references Kojić et al.
(2006) and Kojić et al. (2004) (adapted with permission from Biomacromolecules 2004, 5,
1698–1707. Copyright 2004 American Society).
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18.1 Determination of the solvent diffusion coefficient in a
concentrated polymer solution

18.1.1 Introduction

Diffusion is one of the governing processes in many chemical engineering applications, such
as solvent removal during dry spinning of fibers out of a concentrated polymer solution.
Neglecting non-Fickian effects (El Afif & Grmela 2002), the internal diffusion of solvent
molecules through the polymer solution can be modeled by Fick’s law, in which the diffusion
coefficient is the material parameter (Deen 1998, Incropera & DeWitt 1996, Middleman 1998,
Mills 1995). When polymer solutions experience significant changes in solvent concentration
due to mass transfer, the diffusion coefficient can vary considerably as a function of solvent
concentration (Kobuchi & Arai 2002, Mills 1995). Therefore, the essential problem becomes
establishing the dependence of the diffusion coefficient on solvent concentration.

In this section we describe how to obtain such a dependence by finite element modeling
of a simple evaporation experiment (Kojić et al. 2006). A small amount of the solution was
placed in a pan and allowed to evaporate into air, while measuring mass loss over time. The
governing process occurring within the polymer solution is diffusion, while convection dom-
inates on the vapor (air) side. We model this process by imposing the appropriate boundary
conditions and present a computational procedure to numerically determine the diffusion
coefficient of solvent through the polymer solution as a function of solvent concentration.
Subsequently, the dependence of the diffusion coefficient on concentration enables the cal-
culation of the time evolution of solvent concentration profiles along the depth of the pan.

The results for the diffusion coefficient obtained in this section were then directly applied
to the practical application of spinning synthetic silk-like fibers (see Section 18.2), where
solvent removal during spinning becomes important. Furthermore, the general experimental
and numerical procedures described in this section were also utilized in Section 18.3 in order
to determine the diffusion coefficient of water through the native spider silk spinning material.

Experimental Procedure
The polymer solution described in this chapter consists of 35% polymer and 65% solvent
by weight (Table 18.1.1). We will further refer to the THF/DMAc system as solvent, and
the Elasthane/PTMO system as polymer. The solution was placed in a Seiko TG/DTA–320

Table 18.1.1 Composition of polymer solution

35% Polymer∗ 65% Solvent

20% Elasthane 80A∗∗ 90% THF
15% PTMO-2900 10% DMAc

Notes: ∗All percentages in weight percent. ∗∗ElasthaneTM 80A
polyurethane is a thermoplastic elastomer formed as the reaction product
of a polyol, an aromatic diisocyanate, and a low molecular weight glycol
used as a chain extender. Polytetramethylene oxide (PTMO) is reacted
in the bulk with aromatic isocyanate, 4� 4′-methylene bisphenyl diiso-
cyanate (MDI), and chain extended with 1,4-butanediol. The Polymer
Technology Group, Berkeley, California. http://www.polymertech.com/
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Fig. 18.1.1 Mass change over time of the polymer solution used in the pan experiment

(Thermogravimetric and Differential Thermal Analyzer) machine, which was used to record
mass as a function of time for 12240 seconds (3.4 hours). A 5 mm diameter aluminum pan
was used to hold an initial amount of 18.912 mg of the solution. The TG/DTA provided a
closed environment at a temperature of T = 25 �C, while blowing air at a rate of 150 mL/min.
Mass loss was recorded on the computer using the standard Seiko TG/DTA software and is
shown in Fig. 18.1.1.

Determining the Governing Process
In order to leave the polymer solution, the solvent molecules must first migrate to the
surface and then evaporate into the air. The migration to the surface corresponds to internal
diffusion, while the evaporation from the surface is related to convective mass transfer.
For rapid convective removal, as is the case in our experiment, there is a much greater
resistance encountered on the internal (solution) side than on the convective (vapor/air)
side. The ratio of the resistances is commonly referred to as the mass transfer Biot number
(Middleman 1998):

Bim = hm�L

Dss

(18.1.1)

where DSS is the internal solvent diffusion coefficient mm2/s� hm is the convective mass
transfer coefficient [mm/s], L is the characteristic length mm, and � is the partition coefficient
between the two phases at the interface. For our case, an order of magnitude estimate gives:

Dss ∼ 10−5 mm2

s
� hm ∼ 1

mm

s

L ∼ 1 mm� � ∼ 10−3

(18.1.2)

The corresponding Biot number then becomes Bim ∼ 100. This high value of the Biot number
implies that the governing process is internal diffusion (Middleman 1998, Mills 1995).

18.1.2 Numerical procedure

Here, we first give the fundamental diffusion equation for the pan experiment conditions, then
summarize the relevant finite element equations, and present the computational procedure.
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The diffusion of solvent through a polymer solution is governed by the general form of
Fick’s law (Mills 1995) (see also (3.2.7) in Section 3.2)

��s

�t
= �

[
�T Dss�

(
�s

�T

)]
(18.1.3)

where �s is the partial mass density (further referred to as concentration) of the solvent, �T

is the total mass density (mass per unit volume of solution),

�T = �s +�p (18.1.4)

with �p being the concentration (partial mass density) of the polymer. As stated above, it is
assumed that

Dss = Dss��s� (18.1.5)

The diffusion of solvent in the pan experiment can be considered a one-dimensional
process, for which the model is shown in Fig. 18.1.2. The spatial derivatives in (18.1.3) then
reduce to the partial derivatives with respect the x-coordinate, hence

��s

�t
− �

�x

[
�T DSS

�

�x

(
�s

�T

)]
= 0 (18.1.6)

In order to transform the expression in brackets to a more suitable form, we use the
following relation

�T =
(

1− �̄p

�̄s

)
�s + �̄p = a1�s +a2 (18.1.7)

where �̄s and �̄p are the material densities (mass per unit volume of pure substance) of the
solvent and polymer, respectively. The material densities are constant, hence the coefficients

Fig. 18.1.2 Finite element model of the pan experiment
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a1 and a2 are two constants depending on the material characteristics. Therefore, (18.1.6)
takes on the form

��s

�t
− �

�x

(
�m

��s

�x

)
= 0 (18.1.8)

with no heat (here mass) volumetric source, where

�m = a2

Dss

a1�s +a2

(18.1.9)

is the coefficient depending on �s.
The usual Galerkin procedure (Huebner 1975, Hughes 1987, Kojić et al. 1998) (see

Section 7.1) is employed to transform (18.1.8) into the finite element balance equations.
Thus, integration over finite element volume V of (18.1.8) gives

∫
V

NK

��s

�t
dV −

∫
V

NK

�

�x

(
�m

��s

�x

)
dV = 0 (18.1.10)

where NK are finite element interpolation functions (K = 1� 2� 	 	 	 
 �N , where N is number of
element nodes), and dV = Adx with A being the element cross-section area. By linearization
around the time t (start of time step) a system of algebraic incremental equations is obtained.
An incremental-iterative form of these equations, assuming an implicit integration scheme
(i.e. the equilibrium is sought iteratively for the end of the time step), can be written as
(Bathe 1996, Kojić & Bathe 2005, Kojić et al. 1998) (see (7.1.11) and (17.3.5))

n+1K̂�i−1����i�
s = n+1F�i−1� − n+1K̂�i−1� n+1��i−1�

s + 1
�t

n+1M�i−1� n�s (18.1.11)

where i denotes the iteration counter, and the index n + 1 indicates that the evaluation is
performed at the end of the time step n. The vectors n+1��i−1�

s and ���i�
s are the nodal vectors

for the concentrations and concentration increments. The matrix n+1K̂�i−1� is

n+1K̂�i−1� = 1
�t

n+1M�i−1� + n+1K�i−1� (18.1.12)

where the components of the finite element matrices are

n+1M
e�i−1�
KL = A�i−1�

∫
n+1L�i−1�

NKNLdx (18.1.13)

n+1K
e�i−1�
KL = A�i−1�

∫
n+1L�i−1�

�̄p

�
�i−1�
T

D�i−1�
ss

�NK

�x

�NL

�x
dx (18.1.14)

The vector n+1F�i−1� in (18.1.11) is the mass flux through the boundary, i.e.

F
�i−1�
K =

∫
A�i−1�

NKqAdA (18.1.15)
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where qA is the mass flux through current area A�i−1�. In practical application of (18.1.11)
we impose zero concentration boundary condition at the free solvent surface, and the flux
terms n+1F�i−1� cancel at the internal nodes in the FE assemblage process (see Section 4.1).
In our case the element area A is constant, equal to the cross-sectional area of the pan, while
the element lengths changes. Hence, the line integrals are evaluated over the last known
element length, calculated as

n+1L�i−1� = Lp + 1
�̄s

∫
t+�tL�i−2�

t+�t��i−1�
s dx (18.1.16)

where Lp = (
0�p

/
�̄p

)0
L is the length of the finite element occupied by the polymer, which

does not change; 0�p and 0L are the initial polymer concentration and element length,
respectively. The iterations in (18.1.11) continue until a selected numerical tolerance is
reached, e.g.

∥∥���i�
s

∥∥≤ �, where � is a small number.
In order to obtain the relationship between the solvent diffusion coefficient and solvent

concentration we propose the following two procedures:

(a) calculation of the dependence �Dss�mean on ��s�mean

(b) determination of Dss��s� that matches the experimental results.

Computational steps used in procedure (a) are given in Fig. 18.1.3. As shown in the
figure, a value of Dss, denoted here as �Dss�mean, is assumed for the current time step and
this value is the same for all material points. We then iterate on �Dss�mean until the total mass
of the polymer solution t+�tmcalc matches the experimental value t+�tmexp at the end of the
time step. The corresponding mean solvent concentration ��s�mean is defined as

��s�mean =
∑

elements

∫
Lelement

�sdx

∑
elements

Lelement

(18.1.17)

The iterations continue until the equation

n+1f = n+1mcalc − n+1mexp = 0 (18.1.18)

Fig. 18.1.3 Computational steps to determine dependence �Dss�mean on ��s�mean
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is satisfied, where

n+1mcalc = A
∑

elements

∫
n+1L

n+1�sdx+mp (18.1.19)

Here, mp is the total mass of polymer. The iterations according to (18.1.11) are performed
for each trial value of �Dss�mean.

In order to find the Dss��s� relationship, denoted above as the procedure (b), we perform
the following computational procedure. We form the error function as the difference between
the calculated and experimentally recorded mass,

n+1e �D1�D2� 	 	 	 
�Dm tn+1� = A

n+1Ltot∫
0

n+1�s �D1�D2� 	 	 	 
�Dmx�dx+mp −n+1 mexp

(18.1.20)

where D1� D2� 	 	 	 
 �Dm are values of the diffusion coefficient Dss on a multilinear curve
Dss��s� with pairs ��s1� D1�� ��s2� D2�� 	 	 	 
 
 � ��sm, Dm�; tn+1 is the time at end of n-th time
step, i.e. tn+1 = n�t; n+1��Dk� x� and nmexp are the solvent concentration and experimentally
determined mass at time tn+1 mp is mass of polymer; and n+1Ltot is the total height of mass
within the pan at time tn+1. We assume an initial multilinear curve based on the relationship
�Dss�mean − ��s�mean in Fig. 18.1.4 (see Example in Section 18.1.3).

In an iteration scheme we then calculate new values of the parameters D
�j�
k as

D
�j�
k = D

�j−1�
k −

(
�n+1e

�Dk

)�j−1�

�D
�j−1�
k � k = 1� 2� 	 	 	 
 
 �m (18.1.21)

where j is the iteration counter in iterations on the parameters Dk. Since there is no analytical
form for dependence n+1e �Dk�, we calculate derivatives �n+1e/�Dk numerically by a pertur-
bation procedure. In evaluating the vector �n+1e/�Dk we perform a weighting of �n+1e/�Dk

with weighting coefficients being proportional to the gradients ��s/�x for each parameter
Dk. Also, we normalize the vector �n+1e/�Dk. Increments �D

�j−1�
k in (18.1.21) are taken as

�D
�j−1�
k = 0
05D

�j−1�
k . Further, we impose the condition that the slope �Dss/��s increases

for a concentration range 0 ≤ �s ≤ ��s�incr , and then decreases for ��s�incr ≤ �s ≤0�s, where
0�s is the initial concentration in the pan experiment. These conditions are imposed in order
to obtain an ‘S’-curve for Dss ��s� observed experimentally for some polymer solutions
(Kobuchi & Arai 2002). In our analysis we found that error was not significantly sensitive
on the value ��s�incr .

For current values of parameters D
�j�
k obtained within the iteration scheme (18.1.21), we

calculate the total error per time step as

etot = 1
ntot

ntot∑
n=1

∣∣n+1e
∣∣ (18.1.22)

where ntot is the total number of steps in the analysis. We stop iterations when we reach a
value �etot�min after which there was no further decrease of etot.
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18.1.3 Example

We show the following example as an illustration of the proposed computational scheme. The
basic FE code PAK-T (Kojić et al. 1998) for heat conduction, with necessary modifications,
is employed. A simple bisection method with an acceleration scheme is used to determine
the trial values of �Dss�mean for solving (18.1.18). The materials used in the experiment are
described in Section 18.1.1. The data are as follows (densities in g/cm3 and length in cm)

�̄s = 0
894 �̄p = 1
0�s = 0
609 0�p = 0
325 0Ltot = 0
112

(18.1.23)

The experimental mass loss mexp�t� is shown in Fig. 18.1.1. The finite element model,
along with the appropriate boundary conditions, is depicted in Fig. 18.1.2. The boundary
conditions are:

1� ��S�surface = 0� 2�
��S

�x

∣∣∣∣
x=0

= 0 (18.1.24)

The first boundary condition follows from the high value of the Biot number, while the
second boundary condition comes from the impermeability of the pan.

Figure 18.1.4 displays the dependence �Dss�mean on ��s�mean as the result of the compu-
tational procedure (a). The decrease of the diffusion coefficient with decreasing solvent con-
centration implies that the resistance to solvent diffusion increases as the polymer becomes
more concentrated and experiences conformational changes. The dependence seems almost
linear for a wide range of solvent concentrations. This linear relationship is then used as a
starting relationship for the procedure (b), i.e. determination of Dss��s�.

In calculation of Dss��s� we used ntot = 104 with �t = 1 s to cover the whole time interval
of our experiments. We found that the best convergence etot → 0 was obtained when the
error n+1e and derivatives �n+1e/�Dk were calculated for time tn in (18.1.20) and (18.1.21)
which corresponds to the maximum error n+1e in the whole time interval. We mention
here that we have performed evaluation of the coefficients Dk using the error according
to (18.1.22) and found difficulties in convergence to the experimental curve mexp�t�. If we

Fig. 18.1.4 Dependence of �Dss�mean on ��s�mean according to procedure (a)
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used error measure (18.1.22), but without the absolute values of n+1e, we found that we
could obtain convergence of the error to a small value. In our final procedure we assumed
an initial multilinear curve with number of points m = 6 (dashed line Fig. 18.1.5), based
on the relationship �Dss�mean − ��s�mean in Fig. 18.1.4, with 20 iterations. Then we used 20
iterations with 41 parameters to obtain the final Dss��s� relationship (solid line Fig. 18.1.5)
that matched the experimental results (see Fig. 18.1.6). We stopped calculation of parameters
Dk after 20 iterations for both curves since further iterations on Dk did not lessen the
deviation of the calculated curve m�t� from the experimental curve mexp�t� (measured also
by error (18.1.22)). The division of the interval of ��s�max along the �s-axis was always into
equal segments.

Figure 18.1.6 shows the calculated curves m�t� for three constant values of diffusion
coefficient, and two curves corresponding to the initial and final relationships Dss ��s� (see
Fig. 18.1.5). From the results shown in Figs. 18.1.5 and 18.1.6 we see that: (i) diffusion
coefficients depends on concentration, since constant values of Dss give very large deviation
of calculated mass m�t� with respect to the experimentally measured mass change mexp�t�;
(ii) the initial relationship Dss ��s� leads to a significant difference between the calculated
and measured mass over time; the final relationship Dss ��s�, which is notably different from
the initial one, gives the solution m�t� close to the experimental curve mexp�t�.

Finally, Fig. 18.1.7 displays several profiles of the solvent concentration �s in the pan
for different times. These profiles were calculated by using the Dss��s� relationship of
Fig. 18.1.5. The x-coordinate corresponds to Fig. 18.1.2 and is essentially the pan depth
coordinate, where x = 0 is the bottom of the pan. As Fig. 18.1.7 indicates, during the process
of diffusion �s decreases from an initial (t = 0) uniform distribution, defined as 100% initial,
to smaller and smaller values as more solvent is lost. For example, after t=104seconds the
concentration of solvent varies from 41% at the bottom of the pan to zero at the free surface.
The shaded area under the t = 1.3×106s curve represents the mass of the solvent (per unit
pan cross-sectional area) left in the pan at that time relative to initial. It is also worth noting
that the gradient ��s

/
�x has a high value in the vicinity of the free surface in the initial

period, and then decreases over time.

Fig. 18.1.5 Solvent diffusion coefficient Dss vs. solvent concentration �s obtained using
procedure (b) (solid line). Dashed line represents the initial multilinear Dss curve used in
procedure (b)
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Fig. 18.1.6 Computed mass curves obtained with constant and variable (from Fig. 18.1.5)
diffusion coefficients, and experimental curve

Fig. 18.1.7 Distribution of the solvent concentration (relative to initial) along the depth of
the pan (x = 0 is the bottom of the pan, Fig. 18.1.2) for several times, with variable diffusion
coefficient obtained from procedure (b) (Fig. 18.1.5)

18.2 Modeling solvent removal during synthetic fiber
spinning

18.2.1 Introduction

In the previous section we proposed a computational procedure for the determination of
Dss��s� based on a simple pan-weighing experiment. This dependence of solvent diffusion
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coefficient on concentration is a material characteristic of the polymer solution. The pro-
posed procedure can be implemented in chemical engineering practice where diffusion is
the governing process. One such application involves modeling of solvent removal during
spinning of a synthetic silk-like fiber (Kojić et al. 2004) from the polymer solution described
in Table 18.1.1. The obtained relationship Dss��s� facilitates the determination of the corre-
lation between the solvent removal process and the mechanical properties of the spun fiber
(Kojić et al. 2004).

The impetus for this kind of synthetic study was to probe the effects of solvent removal
during elongational flow, which is exhibited in the spinning canal of the spider, on fiber
mechanical properties. Spiders produce fibers that are mechanically superior to essentially
any known material, but the specifics of the spinning process still remain a mystery. The
modeling of solvent removal during spinning of synthetic fibers presented in this section
was then applied to an actual spinning canal of a Nephila clavipes spider (Section 18.3).

Synthetic Materials and Experimental Procedure
A synthetic solution out of which fibers were spun consisted of three major components:
polymer, resin and solvent. The polymer used was commercial polyurethane Elasthane 80A,
while the resin was PTMO-2900 (see Table 18.1.1). The resin’s main function was to act as a
plasticizer, giving a more robust spinning solution. For the solvent component, a combination
of THF and DMAc was used. The recipe for the Elasthane solution is given in Table 18.1.1.
Percentages of polymer and solvent reflect those of spider protein (spidroin) and water in the
spider spinning dope (Chen et al. 2002). The final recipe was obtained based on ‘spinnability’
of small diameter fibers in an effort to approach those of spider silk, which are ∼ 1 �m.

A schematic diagram of the experimental setup is given in Fig. 18.2.1. The Elasthane
solution was placed into a Becton–Dickinson plastic syringe (fitted with a 32-gage
1/4 inch EFD dispensing needle tip) and pushed out by a KD Scientific (KDS100) syringe

Fig. 18.2.1 Schematic diagram of the experimental setup used for fiber spinning. The
horizontal stage moves in a direction perpendicular to the page in order to ensure that the
fiber does not wind on top of itself on the take-up roll (spool)
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pump. The viscous solution was then scooped from the needle tip, stretched and placed
onto the rotating collection spool. The spool consisted of a Pakon plastic slide mount
(34
5 mm ×23 mm open area) connected to a rotating motor shaft. The spool system stands
on a mobile stage, whose movement prevents fibers from folding on top of each other. In
other words, the stage moves the spool in a direction perpendicular to the fiber and thus
enables collection of a continuous, single fiber.

In any one experiment, the key adjustable parameters are: the exit velocity of the
spinning solution at the needle dispensing tip (the flow rate of the solution out of the
syringe divided by the cross-sectional area of the needle); the velocity of the take-up roll
(spool); and the length of the spin line. We define the spin line as the path taken by
the solution from its exit at the needle tip to the first point of contact with the rotating
spool. The spin line represents the axial coordinate of the fiber where a velocity gradient
exists, since the velocity at the spool point of contact is always greater than the needle
exit velocity. Thus, the spinning solution experiences an elongational flow while on the
spin line.

18.2.2 Governing process during synthetic solvent removal

In order for the solvent to evaporate into the surrounding air, the solvent molecules must
first move through the solution and then evaporate at the air/fiber interface. The movement
through the solution is a diffusive process, further referred to as internal diffusion, while the
evaporation into air corresponds to external convection. To determine the relative importance
of each of these two processes it is useful to look at resistances, a standard procedure in
heat and mass transfer analysis (Mills 1995). A ratio of the internal diffusion resistance
to external convection resistance is defined as the mass transfer Biot number (Deen 1998,
Middleman 1998) (see Section 18.1):

Bim = hmdfiber�

Dss

(18.2.1)

where DSS is the internal solvent diffusion coefficient mm2/s� hm is the convective mass
transfer coefficient mm/s, dfiber is the fiber diameter mm, and � is the partition coefficient
between the two phases at the interface.

In order to determine an order of magnitude estimate of the Biot number all of the four
quantities in (18.2.1) must be approximated. We first focus on the convective (vapor) side,
and then examine the diffusion part.

The Convective Mass Transfer Coefficient
On the vapor side, for flow across a cylinder the following empirical relation holds
(Mills 1995):

ShRe→0 = hm dfiber

Dsair

≈ 0
3 ⇒ hm = 0
3Dsair

dfiber

(18.2.2)

where the dimensionless Sherwood number, Sh, is the mass transfer equivalent of the Nus-
selt number for heat transfer, hm is the convective mass transfer coefficient mm/s, dfib is
the fiber diameter mm, and Dsair is the solvent vapor diffusion coefficient through the air
mm2/s. Also the assumption of a very small Reynolds number, Re, is justified since
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the air velocity �Vair� is small �< 1 m/s� and the diameter of the fiber is on the order of
microns. Hence,

Re = Vair dfiber

vair

∼ �1m/s�
(
10−6 m

)
1
6×10−5 m2

/
s

= 0
06 (18.2.3)

where vair is the kinematic viscosity for air at room temperature of 25 �C.
To find the diffusion coefficient of solvent through the air, Dsair , in (18.2.2), we employ

the kinetic theory of gases, which gives (Poling et al. 2001):

Dsair = 0
00143 T 1
75

PM0
5
sair

[
��v�

1/3
solvent + ��v�

1/3
air

]2 (18.2.4)

Here, Dsair is in cm/s2� P is the pressure in bars, T is the temperature in Kelvin,
Msair is a combination of the molecular weights g/mol of the solvent and air Msair =

2
�1/Msolvent�+ �1/Mair�

, and ��v�solvent and ��v�air are the sum of the atomic diffusion

volumes according to Fuller (Fuller et al. 1969, Poling et al. 2001) for the solvent and
air, respectively. For our case, after substitution of the appropriate values, (18.2.4) gives
Dsair = 10 mm2/s. This value can then be substituted into (18.2.2) to give the convective

mass transfer coefficient of hm = 0
3 Dsair

dfiber

∼ 1000 mm/s, since the diameter of the fiber is

on the order of a micron.

The Internal Solvent Diffusion Coefficient
To determine the diffusion coefficient of the solvent through the solution (on the fiber side)
we applied the procedures described in Section 18.1. Briefly, a small amount of the spinning
solution was placed in a pan surrounded by a controlled environment, and the corresponding
mass loss due to solvent evaporation was recorded. This mass loss was then modeled by
numerical methods, which yielded the dependence of the solvent diffusion coefficient on
solvent concentration (Fig. 18.2.2) (Kojić et al. 2006).

Fig. 18.2.2 Solvent diffusion coefficient Dss vs. solvent concentration �s used in synthetic
fiber spinning calculations
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Returning to the Biot number, all of the quantities in (18.2.1) can now be approximated,
with the partition coefficient estimated as the ratio of the partial densities of the solvent on
the liquid and vapor side �� ∼ 10−3�. Hence,

Bim = hmdfiber�

Dss

∼ 103 ·10−3 ·10−3

10−5
= 100 (18.2.5)

Thus, the high value of the Biot number indicates that the internal diffusive resistance is
much greater than the convective resistance. This, in turn, implies that internal diffusion of
solvent through the fiber solution is the governing process in solvent removal on the spin
line and the convective (vapor) side can be neglected.

18.2.3 Numerical modeling of synthetic internal solvent diffusion

The diffusion of solvent in the case of fiber spinning can be considered an axially symmetric
process. Namely, there is axially symmetric diffusion within a fiber cross-section, with axial
motion of the cross-section. The size of the cross-section decreases with time due to the
solvent evaporation and due to the axial velocity gradient, as described below. We further
use the notation and general equations for the polymer solution depicted in Section 18.1 (see
equations (18.1.3–10)).

In the case of axially symmetric in-plane diffusion, the system of differential equations
reduces to the differential equation (see Example 1.5-5)

��s

�t
− 1

r

�

�r

[
r�T DSS

�

�r

(
�s

�T

)]
= 0 (18.2.6)

where r is the radial coordinate of the fiber. This equation can also be written in the form

��s

�t
− 1

r

�

�r

(
r�m

��s

�r

)
= 0 (18.2.7)

where

�m = �̄p

Dss

a1�s + �̄p

(18.2.8)

with

a1 = �1− �̄p

�̄s

� (18.2.9)

and �̄s and �̄p are the material densities (mass per unit volume of pure substance) of the
solvent and polymer, respectively. The material densities are constant and represent the
material characteristics.

The finite element equilibrium equations are given in (18.1.11), with the components of
the finite element matrices, comprising the matrix t+�tK̂�i−1� (see equations (18.1.12)), are

n+1M
e�i−1�
KL = Lx

∫
n+1L�i−1�

NKNLrdr (18.2.10)

n+1K
e�i−1�
KL = Lx

∫
n+1L�i−1�

�̄p

�
�i−1�
T

D�i−1�
ss

�NK

�r

�NL

�r
rdr (18.2.11)
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where n+1L�i−1� is the element length in the radial direction corresponding to the iteration
i − 1 (for the first iteration, i = 1, we use n+1L�0� =0L, the initial radial length), and Lx is
the element length in the axial direction x. The vector n+1F�i−1� is the mass flux through the
element boundary at the node K,

F
�i−1�
K = RK

∫
Lx

qAdx (18.2.12)

where qA is the mass flux through the current area, and RK is the radial coordinate cor-
responding to the finite element node K. Since only in-plane diffusion is considered, then
Lx = 1. The iterations in the incremental-iterative system of algebraic equations for the
assemblage of the finite elements (see (18.1.11)) continue until a selected numerical tolerance
is reached, e.g.

∥∥���i�
s

∥∥≤ �, where � is a small number.
The line integrals in (18.2.10) and (18.2.11) are evaluated over the last known element

length t+�tL�i−1�. This length is calculated from the element volume n+1V �i−1� (with unit axial
length Lx) corresponding to the solvent concentration n+1��i−1�

s ,

n+1V �i−1� =nVp + 2�

�̄s

∫
n+1L�i−2�

n+1��i−1�
s rdr (18.2.13)

where nVp is volume of the polymer that corresponds to the start of n-th time step, calculated
as nVp = nV − nVs, with nV and nVs being the total volume of the finite element and the
volume occupied by the solvent, respectively. It is assumed that Vp does not change within
the time step �t.

Now we consider the element lengths change, and hence the change of the fiber radius
due to axial motion. In the case when the axial velocity is uniform along the fiber axis,
the axial motion has no effect on the fiber radius change and the radius decrease occurs
only due to solvent evaporation. However, if at a considered time and at a considered axial
position of the cross-section, the axial velocity has a non-zero axial gradient kax = �v

/
�x 
= 0

(kax > 0 for the spin line), the cross-section size changes also due to the axial motion. The
fiber material can be considered incompressible, and in the case of no evaporation the mass
continuity equation for two cross-sections at a distance �x can be written as

v1A1 − �v1 +kax�x�A2 = 0 (18.2.14)

where v1 and A1 are velocity and size of the first cross-section (at position x) and A2 is the
area of the cross-section 2, at position x+�x. The radius R2 follows from this equation,

R2 = R1 exp
(

−kax�x

2v1

)
(18.2.15)

and the increment �x is

�x = v1

k
�1− exp�−kax�t�� (18.2.16)

The evaporation and the axial motion occur at the same time, and the diffusion depends
on the current fiber radius, therefore both incompressibility and diffusion must be accounted
for in a time step. We adopt the following procedure:
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Fig. 18.2.3 Graphical representation of the numerical procedure that takes into account
both diffusion and incompressibility effects during fiber spinning. The middle vertical from
R1/2 to n+1Rd indicates diffusive loss, while the parallel diagonal lines from R1 to R1/2 and
from n+1Rd to R2 depict changes due to incompressibility

1. Determine the radius R1/2 from (18.2.15) by using �x/2 for �x, discretize this cross-
section into the finite elements, and calculate the polymer volumes nVp for each element.

2. Calculate mass loss due to diffusion in the time step, starting from the radius R1/2 and
using the polymer volumes nVp. Determine the radius n+1Rd corresponding to the end of
the diffusion calculations.

3. Apply the incompressibility condition (18.2.14) for the second half of the time step (i.e.
in (18.2.15) substitute n+1Rd for R1 and �x/2 for �x).

A graphical representation of the above steps is shown in Fig. 18.2.3. Note that the fiber
radius at the equilibrium iteration i is

n+1R�i� = ∑
elements

n+1L�i� (18.2.17)

where n+1L�i� correspond to the current element volume n+1V �i� according to (18.2.13). The
radius n+1Rd represents the final value of n+1R�i�.

18.2.4 Example: Synthetic fiber spinning

The general numerical procedures described in the previous section were applied to two
cases of fiber spinning from the same material (Table 18.1.1), and then used to predict
their corresponding mechanical properties. The material and partial densities g/cm3 used in
(18.2.10–11) are

�̄s = 0
894� �̄p = 1� 0�s = 0
603� 0�p = 0
325 (18.2.18)

where the bar indicates the pure substance density, and the zero indicates the initial partial
density (concentration).

The first case examined was that of relatively thick fiber and shorter spin line, while the
second case models a thin fiber with a longer spin line. Specifically, the relevant data was:

Case 1) vexit = 4
7 cm/s� 0Rfiber = 40 �m� Lspin = 7
5 cm� vspool = 10 cm/s

Case 2) vexit = 4
7 cm/s� 0Rfiber = 15 �m� Lspin = 9
5 cm� vspool = 68 cm/s
(18.2.19)
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Here, vexit is the exit velocity out of the syringe tip, 0Rfiber is the initial fiber diameter at a
short distance from the tip �< 1 mm�� Lspin is the length of the spin line (the distance from
the syringe tip to the spool), and vspool is the spool speed at the point of contact of the spool
and fiber (the end of the spin line).

In order to solve for the radius and concentration profiles along the spin line, an assump-
tion that the fiber velocity increases linearly from the syringe tip to the spool was made.

Thus, in (18.2.14) kax = �v

�x
= vspool − vexit

Lspin

= const. Also needed was the solvent concentra-

tion boundary condition on the fiber surface ��S�surface = 0, based on the large Biot number
(see (18.2.5)).

Following the numerical procedure described in the previous section, the modified finite
element code PAK-T (Kojić et al. 1997) for nonlinear heat conduction was employed for the
two fiber spinning cases. The main goal was to determine how the radius and solvent concen-
tration profiles along the spin line change under different spinning conditions. Figures 18.2.4
and 18.2.5 show the results for the two cases, which differ in the length of the spin line and
spool velocity.

The radius change and the concentration profiles (shaded) at several axial positions are
shown for the two cases. Also, the ratio of �mean/�s0

is given for each profile as an indication
of how much solvent is left, where �s0

is the initial solvent concentration from (18.42), and

�mean =
∑

elements

∫
Lelement

�srdr

R2�
(18.2.20)

Here R is the current radius (at the end of the considered time step) of the fiber cross-section.
As Figs. 18.2.4 and 18.2.5 indicate, at the end of the spin line the thicker fiber (case

1 has relatively almost twice as much solvent than the thinner fiber (case 2)). Thus, we
expect significant differences in the mechanical properties of these two fibers, since in

Fig. 18.2.4 Case 1: radius and concentration profiles along the spin line. Ratios of �mean/�s0

are given at x = 3 cm, and at the end of the spin line, x = 7 cm
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Fig. 18.2.5 Case 2: radius and concentration profiles along the spin line. Ratios of �mean/�s0

are given at x = 2
5 cm� x = 4
75 cm, and at the end of the spin line, x = 9
5 cm

the thinner fiber case more solvent was removed during the elongational flow experienced
on the spin line. While on the spin line, the individual chains were stretched along the
fiber axis and, with the simultaneous removal of solvent, able to interact with each other.
The end result is an ordered structure along the fiber axis (as with a spider silk fiber)
that should give good mechanical properties. It should be noted that once on the spool
the fiber does not experience any change in velocity. Therefore, in the seconds subse-
quent to attaching to the spool the remaining solvent evaporates and essentially ‘freezes’
the configuration formed at the end of the spin line. In other words, since there is no
more elongational flow on the spool, no further stretching of the fiber polymer chains
occurs.

The fibers spun under the spinning conditions for case 2 described above are shown in
Fig. 18.2.6, where a human hair is shown for size comparison. The thicker fibers of case 1
looked the same and are omitted for clarity.

Fig. 18.2.6 Left: a human hair between spun fibers. Bar is 80 microns. Right: enlarged
image of the spun fiber. Bar is 7 microns
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Fig. 18.2.7 Engineering stress–strain curves for the two cases of spun fibers. The black
line drawn in for case 2 corresponds to unloading the sample in the linear regime and the
slope of this line is the elastic modulus E. The same graphic modulus representation for
case 1 was omitted for clarity

Mechanical Properties of Spun Synthetic Fibers
To determine the mechanical properties of the fibers, a uniaxial testing machine developed
by Sauri Gudlavalleti and Lallit Anand of MIT was used (Gudlavalleti et al. 2005). This
device is capable of testing small diameter fibers and as such was used for our purposes.
The engineering stress–strain curves for the two different fibers are shown in Fig. 18.2.7.

The smaller diameter fibers had considerably better mechanical properties, with an elastic
modulus �E� of 100 MPa and a toughness (area under the stress–strain curve, equivalent to
the energy to break) of 15 MJ/m3. In contrast, the thicker fibers had an elastic modulus of
20 MPa and a toughness of only 3 MJ/m3. For comparison purposes, the native spider silk
dragline fiber (from which the spider hangs from) has an elastic modulus of 10 GPa and
toughness of 150 MJ/m3 (Gosline et al. 1999), and thus is vastly superior to the synthetic
fibers spun in this experiment.

Nonetheless, the fiber of case 2 showed five-fold better mechanical properties than the
thicker case 1 fiber, which had roughly twice as much solvent at the end of the spin line.
Therefore, the mechanical tests verify that more solvent removal on the spin line along with
a correspondingly smaller diameter leads to a fiber with better mechanical properties.

A similar principle is employed by the spider, whereby most of the water is removed
as the spinning solution flows through the spinning canal. The numerical modeling of this
water removal process is presented in the next section, starting with obtaining the water
diffusion coefficient through the spinning dope.

18.3 Modeling solvent removal during Nephila clavipes
fiber spinning

18.3.1 Introduction

The practice of spinning a solid protein fiber out of a concentrated water solution has been
utilized by spiders for millions of years (Selden 1989, Shear & Palmer 1989). The resulting
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spider-silk fiber has mechanical properties that are superior to any known material (Gosline
et al. 1999). Although the chemical composition and genetic basis of the proteins have been
established (Vollrath & Knight 2001), the spinning process by which the fiber is formed
remains a mystery (Kaplan et al. 1994, Vollrath & Knight 1999). During this process most
of the solvent (water) is removed and simultaneously the stretched protein chains are aligned
due to the elongational flow. The flow, i.e. movement of the silk solution through the
progressively tapered spinning canal, forces the protein chains to extend along the long axis
of the canal. The end result is a fiber with exceptional mechanical properties along the fiber
axis (Gosline et al. 1999).

By learning how the spider makes its fiber, one could conceive new processing techniques
(Kaplan et al. 1994) that would yield novel materials, such as a synthetic spider silk analog.
In particular, the spinning conditions experienced in the spider’s spinning canal, i.e. velocity
and water concentration profiles, could give new insight into the spider spinning process.
Here we apply the procedures presented in the previous sections of this chapter to examine
the spinning conditions in the canal of the Nephila clavipes (golden orb) spider.

18.3.2 Nephila water diffusion coefficient

In order to explore the spinning conditions within the Nephila canal, the major ampullate
gland was dissected out of a female Nephila clavipes (golden orb) spider provided by the
Miami MetroZoo (Fig. 18.3.1 – see color plate). The major ampullate gland contains a
reservoir used for dope storage and a progressively narrowing spinning canal, or S-duct.
This gland is used for spinning dragline (from which the spider hangs from) and spoke-like
web-frame fibers. While the dope flows through the canal it loses water, and modeling of
this process requires obtaining the diffusion coefficient of water through the dope.

Fig. 18.3.1 Major ampullate gland of a female Nephila clavipes spider. A: Ampulla, dope
reservoir; B: A blob of dope used in the pan weighing experiment; C: Spinning canal, S-duct
(see Plate 32)
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To this end the pan-weighing experiment was employed (Kojić et al. 2006), where a
small amount, such as the protruding blob of dope in Fig. 18.3.1B (see color plate), was
collected and placed in a pan in a controlled environment. The evaporation of water was
monitored and this mass–time curve was modeled by using numerical methods, as described
in Section 18.2.3. Specifically, 12.3 mg of Nephila dope was placed in a 5-mm-diameter
aluminum pan that sat in a in a Seiko TG/DTA-320 machine. The TG/DTA provided a
closed environment at a temperature of T = 25 �C, while blowing air at a rate of 150 mL /min.
Mass loss was recorded for 9480 seconds (2.6 hours) using the standard Seiko TG/DTA
software (dashed curve in Fig. 18.3.2). The experimental mass–time Nephila curve indicates
that the dope is an aqueous protein solution consisting of about 70 wt. % of water, which is
in agreement with measurements made by Chen et al. (2002).

After performing the numerical procedure described previously in Section 18.3.2, where
internal diffusion of water was assumed to be the governing process, a diffusion coefficient
was obtained which gave a numerical mass–time curve that best matched the experimental
one (solid line in Fig. 18.3.2). This water diffusion coefficient through the Nephila dope was
determined to be

Dwater−dope = 2
15×10−5 mm2/s (18.3.1)

further abbreviated as Dwd. Unlike the synthetic material (Fig. 18.2.2), the water diffusion
coefficient was a constant, i.e. it was independent of the water concentration. A possible
benefit to the spider of the constant diffusion coefficient could be seen in the constant relative
resistance seen by the water as it travels from the inside of the fiber to the surface. In other
words, as the fiber becomes more and more dry the resistance seen by the escaping water
remains constant and does not increase as in the synthetic case.

Once the key material parameter, i.e. the water diffusion coefficient, was obtained, the
spider spinning process could be more closely examined. Thus, the rest of this section focuses
on the spinning canal, starting with the governing process for water removal.

Fig. 18.3.2 Results of the pan-weighing experiment. The dashed curve represents the
experimentally measured mass change over time for a blob of Nephila dope (Fig. 18.3.1B).
The solid line indicates the numerical curve obtained by using a constant water diffusion
coefficient of Dwater-dope= 2
15×10−5 mm2/s



400 COMPUTER MODELING IN BIOENGINEERING

Governing Process in the Spinning Canal: Internal Water Diffusion
The spinning canal can be approximated as a progressively narrowing tapered tube through
which dope (stored in the gland ampulla) flows (Fig. 18.3.1). A measurement of the canal
geometry is shown in Fig. 18.3.3. The measurements obtained were in agreement with those
previously published by Knight and Vollrath (1999). An assumption of rapid convective
removal of water from the wall, yielded a high value of the Biot number (see (18.2.5)).
Thus, the governing process of water removal is diffusion of water through the fiber (termed
internal diffusion). The concentration on the canal wall surface was therefore assumed to be
zero (i.e. dry-wall boundary condition). A possible mechanism by which the spider could
achieve this includes specialized epithelial cells acting as an ion pump (Vollrath & Knight
2001). Regardless of the specific mechanism, the analyses presented in this chapter assume
a diffusion dominated scenario, by which internal diffusion is the limiting factor for water
removal. In other words, water must ‘fight’ its way through the fiber and is quickly removed
upon reaching the wall. The rationale for the above assumptions was to probe whether simple
diffusion (along with rapid removal from the wall) could be a viable mechanism for water
loss during fiber formation in the spinning canal. Other possible ways of water removal
could be osmotic pressure effects that could drive water to leave the fiber.

With the assumptions about diffusion being the key process, a general numerical scheme
was developed in order to model water removal in the spinning canal and is presented in the
following section.

18.3.3 Modeling of internal water diffusion

Here we present the numerical procedure for modeling water diffusion, assuming that the
internal diffusion of water is the governing process. The diffusion occurs while the material
is traveling through the canal, which can be considered as an axisymmetric tube with variable
cross-section. The model which will be introduced relies on the following physical conditions
(assumptions):

1. A set of material particles lying initially at the entering tube cross-section travels to the
exit, remaining in the plane orthogonal to the canal axis and with a decrease of the radius
according to the canal size (the canal is filled with the spinning material).

2. The diffusion is an axisymmetric process and occurs in radial directions.

The diffusion of a solvent through a concentrated solution is governed by Fick’s law (see
3.2.3 in Section 3.2), which in the case of in-plane axisymmetric conditions is expressed by
the differential equation of the form (18.2.6) (Mills 1995),

��w

�t
− 1

r

�

�r

[
r�T Dwd

�

�r

(
�w

�T

)]
= 0 (18.3.2)

where �w is the water partial mass density (concentration), r is the radial coordinate of the
canal, �T is the total mass concentration (total mass per unit volume of solution),

�T = �w +�p (18.3.3)

where �p is the concentration of protein.
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Comparing to (18.3.2) and (18.3.3) to (18.2.6) and (18.1.3), we have that here the
diffusion coefficient of water through the dope, Dwd, is constant as opposed to being variable
for the synthetic case (Sections 18.1 and 18.2). It should be noted that we assume that
the constant diffusion coefficient does not change in the canal when the dope experiences
elongational and shear flow.

The finite element method was used to model the diffusion as in Section 18.2.3 since
here we also have an axisymmertic diffusion–convection problem. The differential equa-
tion (18.3.2) is transformed into the finite element balance equations. The cross-section size
changes in time and the water content changes in each finite element, therefore the problem
is nonlinear. The finite element equations of mass balance are (see (18.1.11))

n+1K̂�i−1����i�
w = n+1F�i−1� − n+1K̂�i−1� n+1��i−1�

w (18.3.4)

The vectors n+1��i−1�
w and ���i�

w are the nodal vectors for the water concentrations and
concentration increments. The matrix n+1K̂�i−1� and the vector n+1F�i−1� correspond to the
equilibrium iteration i−1, and are evaluated over the last known volumes of the elements.

The boundary conditions used in the finite element model include the axial symmetry
condition and the assumption that the water concentration at the external boundary of the fiber
is equal to zero. The condition that the canal is filled with the spinning material is achieved
in the model by using the continuity equation. Namely, considering two cross-sections
(1 and 2) at the axial distance �x, the following equation can be written

�tv1A1 −�tv2A2 −�x
�md

�̄w

= 0 (18.3.5)

where v1 and v2, and A1 and A2 are the velocities and cross-sectional areas at the first and
second cross-section (Fig. 18.3.3), respectively; �md is mass of water left the silk in time
period �t for which the particles move from the section 1 to section 2; and �̄w is the pure
water mass density ��̄w = 1�. The sizes of the cross-sections are known from the canal profile
(Fig. 18.3.3).

In the computational procedure we follow ‘a cross-section’ from the entering position,
assuming an entering velocity ventering and calculate the water diffusion for that cross-section
using the finite element model, with satisfying the continuity equation (18.3.5) for each time
step. Practically, with the known velocity v1 = vt (time at start of time step) we calculate
diffusion (the mass loss �md) using the iteration scheme in (18.3.4), and repeat the calculation
until the continuity equation (18.3.5) is satisfied. The computational steps are as follows:

1. Assume velocity at end of time step vt+�t

2. Calculate the distance �x and the mean radius Rmean to model the diffusion

3. Solve for the diffusion using the iterative scheme, (18.3.4). Repeat the computational
steps 1–3 until the continuity equation (18.3.5) is satisfied

The mean radius is calculated from the canal geometry and the value �x using the
velocities vt and vt+�t. When the iterations on the velocity vt+�t are completed, we start with
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Fig. 18.3.3 Measured radius profile of the Nephila spinning canal (Fig. 18.3.1). A dry-wall
boundary condition is assumed along the canal wall. The gray symbolizes the spinning
material in the canal, whereas the bounding thick vertical lines indicate cross-sections at the
canal entrance and exit

the new cross-section position, with the velocity vt+�t as the starting velocity for the next
time step, and so on.

The Nephila analysis differs from the synthetic due to the prescribed geometry of the
canal and unknown velocity profile. Thus, similar basic equations, such as Fick’s law,
were solved for both synthetic and Nephila fiber spinning, taking into account the different
prescribed conditions and the finite element code was adapted accordingly for both cases.
The results for Nephila obtained from the procedure described above are presented next.

18.3.4 Example: The Nephila spinning canal

To examine how water is removed during a typical Nephila spinning process, the following
assumptions were made:

1. The fiber is being pulled out at a speed of 10–20 mm/s.

2. The fiber exiting the canal is nearly dry.

The first assumption represents a typical exit velocity during normal web making (Shao &
Vollrath 2002, Vollrath & Knight 2001), while the second attempts to evaluate the complete
diffusive water loss.

With the above assumptions in place, the numerical procedure of Section 18.3.3 was
employed in order to determine the velocity and concentration profiles of cross-section of
spinning material moving from the beginning to the end of the spinning canal.

The material densities used were (in g/cm3)

�̄W = 1� �̄p = 1�

0�W = 0
7� 0�p = 0
3
(18.3.6)
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where the bar represents pure substance density and the superscript zero indicates the initial
partial density (concentration) of water and protein.

The adjustable parameter in the model was the entering velocity, and for ventering =
0
2 mm/s the obtained velocity profile of the cross-section as it traverses down the spinning
canal is shown in Fig.18.3.4. As the figure indicates the velocity slowly increases in the first
half of the canal, reaching only 1.6 mm/s at the halfway point, and then drastically increases
as the fiber diameter further narrows. Such a velocity profile is well suited for optimizing
water loss, since in the first sections of the canal the fiber is thicker and thus more time
is needed for water to reach the surface of the fiber. Therefore, a relatively small velocity
assures longer diffusion times for the large diameter cross-sections. As the fiber cross-section
becomes smaller the water has a shorter distance to overcome and thus shorter diffusion
times enable greater cross-sectional velocities. The fiber exit velocity (at a distance of 21 mm
from the canal entrance) of 16 mm/s was within the range of assumption 1.

For the above velocity conditions, the corresponding cross-section position in the canal
over time was determined (Fig. 18.3.5). The graph indicates that a cross-section traveling
from the canal entrance needs to flow 20 seconds in the canal if most of the water is to be
removed. In other words, in 20 seconds the cross-section has traveled 21 mm through the

Fig. 18.3.4 Velocity profile of a cross-section that travels through the spinning canal

Fig. 18.3.5 Position in the canal of a traveling cross-section as function of spinning time
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Fig. 18.3.6 Relative water concentration (expressed as % of initial) of a cross section
traversing the spinning canal. The relative concentration is obtained by dividing the mean
concentration (see equation (18.3.7)), by the initial water concentration (see equation (18.3.6))

entire length of the canal. Also, the moving cross-section spends more than 50% of the total
spinning time in the first 25% of the canal, for reasons described above. Interestingly, the
final 5 mm of the canal are traversed in less than one second.

The corresponding water concentration profile of the cross-section as it travels through
the canal is shown in Fig. 18.3.6. As a relative measure of the water content in the cross-
section a ratio of mean concentration to initial concentration, expressed in percent, is used.

�mean =
∑

elements

∫
Lelement

�wr dr

R2�
(18.3.7)

A gradual water loss in the cross-section is observed, suggesting that the spinning con-
ditions, i.e. velocity and canal geometry, are optimized in such a way to provide continuous
water removal. Our model shows that most of the water (about 60%) is removed in the first
quarter of the canal. Furthermore, the relative concentration ratio already drops to 15% at the
halfway point, suggesting that most of the water has already been removed in the first half
of the spinning canal. At the canal exit, the ratio of the mean to initial water concentration
is only 2%, which implies an essentially dry fiber, in accordance to assumption 2.

The results indicate that a cross-section traveling from the entrance to the canal exit
must spend 20 seconds in the canal, while its velocity increases from 0.2 to 16 mm/s, if
nearly all of the water is to be removed. These findings thus suggest that simple diffusion,
along with the dry wall boundary condition, is a viable mechanism for water removal during
Nephila fiber spinning.

The exact boundary condition at the wall, presently unknown, may vary due to the
different types of epithelium encountered in the spinning canal (Vollrath & Knight 2001).
These variable boundary conditions could then alter water removal. Once determined, these
new parameters could be incorporated into the numerical model presented above. The results
of the model would thus yield a more accurate description of water loss during fiber spinning
and provide further insight into the 400 million-year-old mechanism by which the spider
makes its mechanically superior fiber.
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Kojić, N., Kojić, M., Gudlavalleti, S. & McKinley, G.H. (2004). Solvent removal during synthetic and
Nephila fiber spinning, Biomacromolecules, 5, 1698–707.
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Modeling in Cancer
Nanotechnology

The strategy currently followed to deliver nano-sized particulates to solid tumors is based
on the well-known enhanced permeability and retention effect where particles sufficiently
small to spontaneously extravasate through the fenestrated tumor vessels can be transported
from the vascular compartment to the inner region of the tumor mass and from there
release their payload. An alternative active strategy is gaining consensus and is based on the
targeting of the tumor vasculature through ligand–receptor specific interactions exploiting
the biological and biophysical differences between normal and tumor vessel walls. Such
an active strategy requires a detailed analysis of the transport and adhesive interaction
of nano-sized particulate systems within the tumor vasculature which is characterized
by permeable walls, high interstitial fluid pressure, and expression of specific receptor
molecules.

In this chapter, the analysis of the transport of solute molecules resembling nano-sized
particles under laminar flow is presented solving the classical diffusion–advection equation in
a straight capillary. The effect of vessel wall permeability as well as the complex rheological
behavior of blood are considered explicitly keeping the formulation tractable. Possible future
directions of research are then presented in the closing paragraph where a finite element
approach is described to treat the transport of nonconventional particulate systems having a
nonspherical shape.

19.1 Introduction

Small-molecule agents and monoclonal antibodies (mAbs) as well as particulate formula-
tions have been developed, subjected to clinical trials and some are already employed in
the clinics to cure cancer by targeting receptor molecules expressed specifically within the
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diseased cells. Despite this, the vast majority of malignancies have proven to be resistant
to such interventions, partially due to the requisite dose limitations for preventing adverse
effects on normal tissues but largely due to the barriers of different nature that these sys-
temically administered agents should avoid before reaching their biological target (tumor
microenvironment) (Minchinton & Tannock 2006, Ferrari, 2005a,b).

It is reported that small molecules and therapeutic antibodies reach the desired biological
target only in one part per 10 000–100 000 molecules (Li et al. 2004). Most of these molecules
are lost within the body, in that for their small size �< 1–5 nm� they can easily cross the
endothelial barrier and diffuse through the extracellular matrix of almost any normal tissue.
Others are eliminated from the blood pool through the action of the immune system. And
those that reach the tumor vasculature are prevented from penetrating deep in the tumor mass
by the adverse interstitial fluid pressure and by the composition and highly intricate structure
of the extracellular matrix of tumors (Heldin et al. 2004). In addition to this, it is now well
accepted that the progression of a tumor mass cannot be retarded or inhibited by targeting
a single molecule due to the great heterogeneity of most tumors. Instead multi-targeted
therapies should be employed with a combination of agents targeted to several distinct
molecules, that for instance could be delivered simultaneously at the same site through the
use of particulate systems (Imai & Takaoka 2006).

In the delivery of nano-sized particulates to solid tumors, the strategy that has been tradi-
tionally considered and is currently employed by the few particulate formulations available
in the clinics is based on the well-known effect of enhanced permeability and retention effect
(EPR): nanoparticles sufficiently small to spontaneously extravasate through fenestrations
found in the tumor vasculature can be entrapped in the extracellular matrix and transported
from the vascular compartment to the inner region of the tumor mass. However, the high
interstitial fluid pressure and the composition and structure of the extracellular matrix adverse
even more the extravasation and subsequent transport of these nanometer particles towards
the tumor cells.

As an alternative to the passive strategy based on the EPR effect, an active delivery
strategy based on the targeting of the tumor vasculature through ligand–receptor spe-
cific interactions is currently gaining more and more consensus. There are striking bio-
logical differences between normal and tumor endotheliums, which provide a scientific
rationale for vascular targeting (Neri & Bicknell 2005). The use of microarrays, phage
display and SAGE libraries (Trepel et al. 2002) has led to the identification of several
tumor endothelial markers (TEMs) that are almost exclusively expressed on abnormal
rather then normal endothelial cells. And all these molecules constitute good candidates
as ‘docking sites’ for the circulating nanoparticles. In vascular targeting, nanoparticles
should be able to recognize specific molecular markers expressed over the cells lining
the diseased blood vessels (tumor endothelium) and adhere firmly to the vessels with-
standing the dislodging hydrodynamic forces. From there, the nanoparticles can release
their payload, drug molecules or smaller particulate formulations specifically designed to
efficiently be transported within the tumor mass. Consequently, the transport of nano-
sized molecules and particulate systems within capillaries with permeable walls, as is the
case of tumors, and in the presence of blood cells altering significantly the rheological
properties of the hosting fluid is of vital importance in the design and development of
such particulate systems, and this is one of the most active field of research in cancer
nanotechnology.
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19.2 The transport of particulates in capillaries

The longitudinal dispersion of a bolus of solute in a solvent flowing in a channel is of
broad interest within several fields, including chemical and biomedical engineering, fluid
dynamics and environmental sciences.

General
Taylor (1953) first studied the effect of shear on axial dispersion in fully developed laminar
flow of a Newtonian fluid in a circular tube. A similar solution is readily obtained for the
flow between plates. To introduce the concept of shear-augmented dispersion, consider a
bolus of a passive species in a fully developed incompressible laminar Newtonian flow in
a straight channel (Fig. 19.2.1). The bolus is carried downstream by the Poiseuille flow. At
the leading edge of the bolus, the solute diffuses from the high concentration region near the
center of the tube toward the low concentration region at the wall. In doing so, the amount
of material traveling at a speed greater than the average is reduced, thereby reducing the rate
of axial spread of the bolus relative to its axial center, which moves with the cross-sectional
average velocity. At the trailing edge, diffusion is inward, again reducing the variance of the
velocity of the bolus. In particular, a cylindrical frame of reference �r� z� is considered with
the z-axis along the tube’s axis of symmetry (Fig. 19.2.1). Assuming that the particulates
constituting the solute have the same velocity as that of the fluid they are displacing (this
implies that the particles are sufficiently small), the governing advection–diffusion equation
is given by (see Eq. (3.3.9) and Example 1.5-5)
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+ v�r�

�c

�z
= Dm
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�r
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�2c

�z2
(19.2.1)

where v(r) is the non-uniform axial velocity and c(r, z; t) is the nanovector concentra-
tion; Dm is the diffusion coefficient considered constant along the capillary. Taylor’s first
approximation was that of neglecting the Brownian diffusion in favour of pure convective
diffusion along z, thus cancelling out the term Dm ·�2c/�z2 in (19.2.1). Furthermore, consid-
ering an auxiliary frame of reference ��� r� moving at the mean velocity V along z, so that
z = � +V × t, Equation (19.2.1) results in
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= Dm
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(
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)
(19.2.2)

being v̆ �r� = v �r�−V the velocity deviation from the mean value V . Similarly, Taylor
introduced č�r� z� t� = c�r� z� t�−Cm�z� t� as the deviation of concentration from the
mean value Cm, and assumed that transverse variations in concentration, lumped in the term

Fig. 19.2.1 Shear augmented dispersion mechanisms in a straight capillary
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č�r� z� t�, were much smaller than the longitudinal variations, lumped in the term Cm�z� t�.
This second Taylor’s approximation leads to the fundamental equation

v̆ �r�
�Cm
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�r

)
(19.2.3)

stating that molecular diffusion along the radial direction (right-hand-side term) induces
longitudinal diffusion (left-hand-side term) owing to the nonuniform radial velocity profile
v̆ �r� (convective diffusion). The nonuniform flow stretches the species concentration profile
along the capillary generating transverse variations in concentration, which are destroyed by
transverse molecular diffusion reshaping the concentration profile.

The rate of transfer J� (the mass flux qm in (3.2.5)) of particulates across the plane
� = const owing to pure convection can be expressed, recalling Fick’s law (3.2.5), as

J� = −ADapp

�Cm

��
(19.2.4)

or alternatively, based on the definition of J� , as

J� =
∫
A

c �r� z� t� v̆ �r� dS =
∫
A

c̆ �r� z� t� v̆ �r�dS (19.2.5)

being

∫
A

Cm �r� z� t� v̆ �r�dS = 0 (19.2.6)

by definition; where A is the cross-sectional area. Thus, the apparent diffusion coefficient
Dapp can be introduced as

Dapp = −
∫
A

c̆ �r� z� t� v̆ �r� dS

/
A
�Cm

� �
(19.2.7)

As a consequence, the whole problem of determining the convective contribution to the
effective longitudinal diffusion is reduced to evaluating the concentration deviation from
the mean value. The effective diffusion is obtained introducing the Brownian contribution
to diffusion Deff = Dm +Dapp. For a laminar flow in a circular pipe of radius Re with
nonpermeable walls, an explicit expression for Deff is derived as:

Deff = Dm + VRe

48Dm

(19.2.8)

Dispersion is maximized as the molecular diffusivity goes to zero since any lateral
diffusion reduces the axial spread of the material: Equation (19.2.8) predicts that Deff goes
to zero as Dm ∼ 0, but in this limit the assumption of small lateral concentration gradients
breaks down and the result is no longer valid. In contrast to the basis for the Taylor results,
the transport becomes purely convective.
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Assumptions implicit in this analysis are: (i) the dispersion is quasi-steady, thereby
eliminating the temporal term from the species transport equation; (ii) an assumption of
unidirectional, usually fully developed, flow eliminates all convective terms except the axial
one; (iii) axial convection is dominant over axial diffusion; and (iv) lateral variations in con-
centration are small compared with those in the longitudinal direction. Considerable effort
has been expended in attempts to relax Taylor’s assumptions. The first assumption can be
particularly troublesome, since in a problem involving the spread of a tracer introduced into
the flow stream in some arbitrary configuration, the analysis is restricted to the limit of large
time. Specifically, the Taylor (1953) and Aris (1956) analysis is valid for t >> 1/2 Re

2/Dm

that, given particular values of diffusivity and outer diameter describing common physiolog-
ical conditions, can be also significantly big (considering the dispersion of submicrometric
particles, with a molecular diffusivity Dm typically ranging between 10−11 and 10−9 m2/s,
it follows that the Taylor–Aris asymptotic solution is strictly valid in large vessels (arter-
ies) with Re ∼ 10−2 m at times larger than 105–107 s, whereas in small capillaries with
Re ∼ 10−6 m at times larger than 10−3 to 10−1 s). Observing that blood in large vessels has
a mean velocity V of about 102 mm/s, the Taylor–Aris regime would be fully developed
in arteries only after 104 m. In small capillaries with V of about 1 mm/s, the asymptotic
solution would hold true after 10−3 to 10−1 mm, which is smaller than the characteristic
length of normal capillaries typically ranging between 100 �m and few millimetres). The
analysis carried so far is incomplete to the extent that: (i) the permeability of the ves-
sels where dispersion takes place is not considered; (ii) blood is treated as a Newtonian
fluid, whereas more sophisticated and reliable (and realistic) rheological models exist (for
instance, the Casson model, see Section 13.1.2) that may describe blood more accurately;
and (iii) the transient time of dispersion is disregarded, and the solution is given in terms
of mean concentration (the radial distribution of concentration cannot be deducted from the
mono-dimensional analysis of Taylor/Aris).

Ananthakrishnan et al. (1965) solved numerically the complete convective–diffusion
equation describing the dispersion of the solute within a cylindrical steady laminar flow and
observed a perfect agreement with the approximate results of the Taylor and Aris theory in the
limit of sufficiently large times t �t >> 1/2 Re

2/Dm�, as widely reported above. Gill (1967)
extended Taylor’s framework to obtain the local concentration distribution, by means of a
series expansion about the mean concentration, while Gill and Sankarasubramanian (1970)
established that the above-mentioned method of series solution (known as the generalized
dispersion model) could exactly reproduce the centroid and the width of the concentration
for all times, by solving the following simplified convective–diffusive equation

�Cm

�t
=

�∑
i=1

Ki �t�
�iCm

�zi
(19.2.9)

provided that the coefficients of the models Ki�t� are chosen as suitable functions of time.
Also, they showed that the series in (19.2.9) may be truncated to the second order as

�Cm

�t
= K1 �t�

�Cm

�z
+K2 �t�

�2Cm

�z2
(19.2.10)

where

K3 �	� = − 1
23040

(19.2.11)
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Sankarasubramanian and Gill (1973) elaborated the generalized dispersion model (GDM)
by including the effects of interphase mass transfer (i.e. by removing the hypothesis of
impermeability of the walls to the solute; in such a circumstance, summation in (19.2.9)
would start from i = 0).

Biomedical Applications
In biomedical applications, macromolecules and nanoparticles are systemically administered
and transported within capillaries with different radii, lengths and properties. Depending on
the organ, the capillary walls can be impermeable, as for the blood–brain endothelium, or
can be highly permeable, as for the capillary of the kidney or those of developing tumor
masses. In addition to this, the velocity profile in capillaries can be significantly different
from parabolic (Poiseuille flow), because of the presence of red blood cells, which tend to
accumulate in a central ‘core’ region of the capillary leaving a marginal ‘cell free layer’.
In arterioles and venules, the blood velocity profile follows quite accurately the Casson law
with a central plug region (zero radial velocity gradient) of radius rc (plug radius) and an
outer region with a parabolic velocity profile.

The velocity profile as well as the wall permeability have a significant effect on the
convective transport of a solute. In 1993, Sharp derived explicit expressions for Deff consid-
ering non-Newtonian fluids with different rheological laws, namely for a Casson, Bingham
plastic, and power-law fluid. In particular, for a Casson fluid, it was determined

Deff = Dm

[
1+ Pe
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and depending on the rheological parameter 
c = rc/Re, the ratio between the plug radius rc
and the capillary radius Re.

This solution asymptotes to the Taylor’s results as 
c goes to zero, differently approaches
0 as 
c approaches 1: in these limits, the flow becomes more and more plug-like and the area
over which shear may augment dispersion disappears. The factor E/A2 (shown in Fig. 19.2.2)
gives the reduction in dispersion due to non-Newtonian rheology at equivalent flow. It is
worth revisiting an assumption implicit in these solutions since it may have a great impact
on the application of the results to blood. While it has been assumed that the medium is
homogenous, blood is actually a concentrated mixture of elastic particles (red blood cells).
The tumbling and deformation of individual cells and aggregates will obviously affect the
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Fig. 19.2.2 The factor E/A2 giving the reduction in dispersion due to non-Newtonian
rheology (Sharp’s model of dispersion, equation (19.2.12))

lateral mixing of any solute introduced into blood and will, therefore, modify the rate of
axial dispersion.

Dash et al. (2000) and Nagarani et al. (2004) used the Sharp model in conjunction
with the GDM to investigate the effects of yield stress (or equivalently the plug radius)
and of the irreversible solute-reaction mechanism at the flow boundaries on the dispersion
in a Casson fluid through a conduit. In this scenario, the entire phenomenon of solute
propagation was described in terms of three effective transport coefficients: exchange (K0,
which arises due to adsorption mechanisms at the walls, that is null in Dash et al. (2000) in
that no adsorption reactions are therein considered); convection (K1, due to the velocity of
the solute); and dispersion (K2, which can be related to the Taylor’s effective diffusivity as
Deff = R2

ew
2
0K2/Dm�. While in Dash et al. (2000) a closed form solution was provided, in

Nagarani et al. (2004), due to the complexity of the equations involved, an exact solution
was found for K0 solely, whereas for K1 and K2 the asymptotic values were derived. It
was seen that the asymptotic dispersion coefficient decreases with increase in the wall
solute-absorption parameter �, and yield stress of the fluid.

The discussed methods and solutions strongly depend on the assumption that the trans-
verse concentration distribution can be expanded in terms of eigenfunctions (Bessel functions
for a circular pipe), which is properly verified only in the limit of complete transverse mixing.
When the solute has not yet strongly interacted with the boundary, a free space expansion
would be more suitable in describing the problem. Lighthill (1966) first studied this tran-
sient and anomalous regime and found a solution for the concentration (which accounts for
the transverse diffusion, but neglects longitudinal diffusion and interactions with the pipe’s
boundary) in terms of a Fourier transform, and showed that the tracer distribution, for small
times, spreads longitudinally proportional to t (which is properly a superdiffusive behavior).
Latini and Bernoff (2001), more recently, have revisited the problem of dispersion of a point
discharge of tracer in laminar pipe Poiseuille flow. Assuming a �-function initial condition
at the center of the pipe, and by means of a Fourier transform of the advection–diffusion
equation, they fully modelled the three initial stages of dispersion, that is: (i) at small times,
when diffusion dominates advection yielding a spherically symmetric Gaussian dispersion
cloud; (ii) at large times, in correspondence of which the flow is in the classical Taylor
regime; and (iii) at an intermediate regime, where the longitudinal mean concentration profile
is either asymmetric and anomalous.
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Most recently, Decuzzi et al. (2006a,b; 2007a,b) have extended the Taylor and Aris
theory including the permeability of the walls to the sole solvent and leading to a new and
more general expression for Deff being

Deff = Dm + v2
0R

2
e

192Dm

[(
1+ e2�

)− e
(
1+ e2��−1�

)
�

2− e �1+ e−2��
e−�
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(19.2.15)

with � the dimensionless longitudinal coordinate �= Dmz/�R
2
ev0�, where v0 is the initial

centerline velocity),  the permeability parameter

 = �
l

√
2Lp/� (19.2.16)

related to Lp – the vascular hydraulic conductivity, and � – the pressure parameter

� = �p0/�i −1� / �p1/�i −1� (19.2.17)

related to the inlet p0, outlet p1 and the interstitial fluid �i pressures, respectively. Whereas
the model proposed from Sharp has been subsequently refined by Gentile et al. (2007a,b,c),
to introduce the effect of permeability of the channel to the solvent, inducing a reduction of
velocity along the longitudinal coordinate as broadly discussed in Decuzzi et al. (2006a,b).

In the following, the generalized dispersion model re-proposed by Dash et al. (2000)
and Nagarani et al. (2004) is combined with the steady-state solution given in Decuzzi
et al. (2006a,b) to analyze the unsteady dispersion of nanoparticles in permeable capillaries
(Gentile et al. 2007).

19.3 The mathematical model

A straight circular capillary with radius Re and length l is considered (Fig. 19.3.1), the
flow being described by a Newtonian fluid law. The capillary walls may be permeable or
impermeable to the fluid, but are impermeable and not adsorbent for the solute.

In the following the generalized dispersion model is recalled and revised to consider
the effective perfusion of the solvent through the walls. The dimensionless coefficients
constituting the model are deducted and given in terms of the time and spatial variables,
and of the permeability and pressure parameters  and �, respectively. The relationship
between the above cited coefficients and the effective diffusion coefficient Deff is shown.

Fig. 19.3.1 The geometry of the channel where the nanoparticles are dislodged
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19.3.1 The governing equations

Following an approach firstly proposed by Sankarasubramanian and Gill (1973), and more
recently employed also by Dash et al. (2000) and Nagarani et al. (2004), the dispersion of
a passive tracer or particles in a Poiseuille flow may be described in a dimensionless form
by the advection–diffusion equation

��

�t
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�z
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expressed in terms of nondimensional physical quantities defined as
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� 	 = Dmt
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where C and � are the dimensional and nondimensional concentration of the passive species
respectively, C0 is a concentration of reference, v0 is the initial centerline velocity, and v
is the velocity distribution within the pipe given explicitly in the following paragraph, Re

is the radius of the capillary, Dm is the molecular diffusivity, r and z are the radial and
longitudinal coordinates as from the frame of reference in Fig. 19.3, and 	 is the dimensional
time variable. In (19.3.1) we used Pe �= Rev0/Dm� as the characteristic Peclet number. It is
assumed that the particles are sufficiently small to have the same velocity of the dislodging
fluid so that the diffusion/advection problem and the fluid-dynamic problem may be treated
separately.

The solution for � may be derived as (Gill 1967, Dash et al. 2000)

� =
�∑
i=0

fi��� �� 	�
�i�m

��i
(19.3.3)

where the parameters fi are weight functions relating the local concentration � to the
derivative of order i of the mean concentration �m with respect to the spatial variable
� (Notice that for i = 0, (19.3.3) gives �m, with f0 = 1). The mean concentration �m is
averaged over the cross-section as

�m = 2
∫ 1

0
��d� (19.3.4)

and must obey the condition
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where the auxiliary functions Ki��� 	� are given by
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f−1 = 0
(19.3.6)

Here, �ij denotes the Kronecker delta symbol.
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Solving (19.3.5), with the appropriate initial and boundary conditions, the mean con-
centration �m��� 	� is derived and the local concentration ������ 	� is eventually obtained
using (19.3.3). Thus, the problem is basically reduced to estimating fi����� 	� and Ki��� 	�
for each i. For the weight functions fi����� 	� a set of differential equations may be derived
in a general form

�fn
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e

fn−2 −
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f−1 = f−2 = 0
(19.3.7)

which relates Ki��� 	� and fi����� 	�. The equations (19.3.6) and (19.3.7) together with the
initial and boundary conditions completely define the dispersion problem under analysis. It
has also been shown by Sankarasubramanian and Gill that sufficiently accurate results are
obtained by limiting the summation in (19.22) to the first three terms �i = 2�, that is
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��2
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��3

)
(19.3.8)

and in the sequel higher order terms are neglected.

19.3.2 The initial and boundary conditions

It is assumed that a bolus of particles at the time 	 = 0 is introduced instantaneously and
uniformly along the radius �, thus to satisfy the initial condition

�m ���0� = �m0 ��� (19.3.9)

Note that no particular restrictions apply to the initial distribution profile of �m, i.e. the
mean concentration at the initial time 	 = 0 may be the most general. On the other hand,
since for 	 = 0 the solute is uniformly spread along every cross-section of the channel, the
local concentration has to satisfy the condition:

���� ��0� ≡ �m���0� (19.3.10)

It is further assumed that the pipe walls are impermeable to the particles constituting the
solute,

��

��
�1� �� 	� = 0 (19.3.11)

while, due to the conservation of mass of the species diffusing in the channel, infinitely far
away from the inlet section, the concentration as well as the derivatives of concentrations
up to a generic order i go to zero

� ����� 	� = �i�

��i
����� 	� = 0��m��� 	� = �i�

��i
��� 	� = 0 (19.3.12)

and on the center line the symmetry condition imposes that

� �0� �� 	� = finite and
��

��
�0� �� 	� = 0 (19.3.13)
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Considering (19.3.5) and (19.3.9)–(19.3.13), the initial and boundary conditions on � and
�m can be rephrased in terms of the weight functions fi, leading to a new set of conditions
which may be effective within the governing equations to derive explicit relations for Ki

and fi. In particular, from the definition of the average concentration (19.3.4), the solvability
condition is straightforwardly derived as

∫ 1

0
fn ��� �� 	��d� = �0n

2
� n ≥ 0 (19.3.14)

where �0n is the Kronecker delta.
The initial condition of uniformity on � can be analytically expressed through

��

��

∣∣∣∣
	=0

= 0 (19.3.15)

and, substituting (19.3.3) into (19.3.15):

fn��� ��0� ≡ fn���0�� n ≥ 0 (19.3.16)

From (19.3.16), (19.3.14) and (19.3.10) the initial conditions on the fi are deducted as

fn���0� = �0n� (19.3.17)

while the boundary conditions are derived from (19.3.4), (19.3.11) and (19.3.13) as

�fn

��
�1� �� 	� = 0� n ≥ 0� (19.3.18)

and

fn �0� �� 	� = finite and
�fn

��
�0� �� 	� = 0� n ≥ 0� (19.3.19)

19.3.3 Solution for K0 and f0

The function f0 and the exchange coefficient K0 do not depend on the velocity field and can
be solved directly. For n = 0, equation (19.3.6) reduces to

K0��� 	� = 2
�f0

��
�1� �� 	�� (19.3.20)

that, through (19.3.18) allows for the determination of the exchange coefficient K0 as

K0��� 	� = 0� (19.3.21)

Note that the coefficient K0 is zero, therefore there are no absorption effects at the walls.
The function f0 dictates the deviation of the local concentration � from the mean

concentration �m, due to solute absorption at the walls mechanisms. When there are no
depletion effects of solute at the border, f0 is set to one

f0 = 1 (19.3.22)
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which is the sole solution of (19.3.7), which satisfies both the boundary conditions (19.3.18)
and (19.3.19) and the initial condition (19.3.17). This may be proved as follows: from
(19.3.7), imposing n = 0, the expression

�f0

�	
= 1

�

�

��

(
�
�f0

��

)
(19.3.23)

is obtained. Using the solvability condition (19.3.14) in (19.3.23), the expressions

�f0

��
= 0� ∀	� (19.3.24)

�f0

�	
= 0� ∀� (19.3.25)

may be derived, which, together with (19.3.17), allow for the deconvolution of f0 as f0 = 1.1

19.3.4 Solution for K1 and f1

For n = 1, Equation (19.3.7) becomes

�f1

�	
= 1

�

�

��

(
�
�f1

��

)
− v��� ��−K1� (19.3.26)

recalling that f1 = 0. Multiplying (19.3.26) by � and integrating from 0 to 1 with respect
to �, along with the solvability condition (19.3.14), it follows that

K1��� = −2
∫ 1

0
v̄��� ���d� ≡ −v̄m���� (19.3.27)

If the conduit is impermeable then the velocity profile depends on the radius solely and
it may be described by the classical Poiseuille parabolic velocity distribution. It follows that
K1��� = −v̄m��� ≡ −0�5 (as obtained in Dash et al. 2000).

The distribution function f1 is a solution for the partial differential equation (19.3.26);
that can be decomposed (Dash et al. 2000; see also Gill & d Sankarasabrumanian 1970,
Nagarani et al. 2004) as

f1��� �� 	� = f1s��� ��+f1t��� �� 	�� (19.3.28)

1Notice that in Dash et al. (2000), K0 is null and f0 = 1 in that no reaction mechanisms at the walls are
considered. In Sankarasubramanian and Gill (1973), and Nagarani et al. (2004), on the other hand, given that

the heterogenous reaction mechanism occurs at the wall described by
��

��
��� 1� 	� = −�� ��� 1� 	� where � is

the nondimensional wall absorption parameter, f0 and K0 are in general not constant and are derived as

f0 �	��� =
∑�

0 AnJ0 ��n�� e
−�2

n	

2
∑�

0

(
An
�n

)
J1 ��n� e

−�2
n	

� K0 �	��� = −
∑�

0 An�nJ1 ��n� e
−�2

n	

∑�
0

(
An
�n

)
J1 ��n� e

−�2
n	

�

.
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where f1s��� �� is the steady-state solution, whereas f1t��� �� �� is the transient, time-
dependent solution. Following an approach as in Dash et al. (2000), the expressions for f1s

and f1t may be derived as

f1s����� = v̄0���

(
1
8
�2 − 1

16
�4 − 1

24

)
� (19.3.29)

where v̄0��� is the nondimensional center-line velocity of the flow and

f1t��� �� 	� =
�∑

n=0

−2∫1
0 J0��n��f1s��� ���d�

�J0��n��
2 e−�2

n	J0��n�� =

=
�∑

n=0

−2∫1
0 J0��n��v̄0���

(
1
8�

2 − 1
16�

4 − 1
24

)
�d�

�J0��n��
2 e−�2

n	J0��n���

(19.3.30)

are the eigenvalues �n as the roots of the equation J1��� = 0. Note that for impermeable
channels (where the nondimensional centerline velocity is constant and given by v̄0��� ≡ 1
equations (19.3.29) and (19.3.30) are deducted as

f1s
��� = 1

8
�2 − 1

16
�4 − 1

24
� (19.3.31)

f1t��� 	� =
�∑

n=0

−2
∫ 1

0J0��n��
(

1
8�

2 − 1
16�

4 − 1
24

)
�d�

�J0��n��
2 e−�2

n	J0��n�� (19.3.32)

These results coincide with those derived by Dash et al. (2000), provided that the plug radius
rp is null (meaning that the Casson fluid degenerates into Newtonian).

19.3.5 Solution for K2

To derive the expression for K2, the same approach as for K0 and K1 is used. Imposing
n = 2 within (19.3.7), multiplying by � and integrating from 0 to 1, after some algebra the
expression for K2 is obtained as

K2��� 	� = 1
Pe

2
−2

∫ 1

0
f1v̄��� ���d�� (19.3.33)

which may be simplified in

K2��� 	� = 1
Pe

2
+ v̄0���

192
−2

∫ 1

0
f1t v̄��� ���d�� (19.3.34)

Note that in the limit of � → � �� > 0�5×Re
2/Dm� the classical solution by Taylor and Aris

can be recalled, where the effective longitudinal diffusion coefficient Deff is given as

Deff = R2
ev

2
0���

Dm

K2 (19.3.35)

whereas in general Deff would depend also on time �.
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It is important to note that, in the original formulation by Gill and Sankarasubramanian
(1970), where for the first time the idea of a time-dependent effective diffusion was intro-
duced, the auxiliary functions Ki were only depending on time �. In the present formulation,
the fluid velocity is no longer constant along the capillary because of its lateral permeability
which induces a continuous reduction in flow velocity with �. Consequently, the auxiliary
functions Ki would in general depend on � too. And, in particular, the problem would be
determined if the velocity field in the capillary is known.

19.3.6 The velocity distribution (effect of boundary depletion of the
solvent)

Recalling the dimensionless variables (19.3.2) and introducing the nondimensional pressure

p = pDm/
(
4�v2

0

)
(19.3.36)

the classical governing equation for the laminar flow in a circular pipe of radius Re is
given by

�
�p

��
= 1

4
�

��

(
�
�v̄

��

)
� (19.3.37)

with � being the dynamic viscosity of the fluid and p the dimensional pressure within the
capillary. Imposing the no-slip condition at the wall �v�1� �� = 0 and the symmetry condition
at the center line ��w�0� ��/�� = 0�, with the assumption that the gradient of pressure along
the longitudinal direction is constant, the classical Poiseuille parabolic velocity distribution
is readily recovered as

v̄ ��� �� = − (1−�2
) dp
d�

� (19.3.38)

from which the nondimensional centerline velocity v0��� is derived:

v̄0��� = v̄ �0� �� = −dp

d�
� (19.3.39)

while the dimensional mean velocity vm is given by

V = 1
�R2

e

∫ Re

0
v�r� z� 2�rdr = 2

R2
e

∫ Re

0
v�r� z�rdr (19.3.40)

and the nondimensional mean velocity v̄m

v̄m = 2
∫ 1

0
v̄��� ���d� = 2

∫ 1

0
−�1−�2�

dp

d�
�d� = 1

2
dp

d�
� (19.3.41)

If the walls of the capillary are permeable to the solvent, there would be fluid leaking
across the walls leading to a continuous reduction of the flow rate along the channel.
Still assuming that the fluid lateral flux does not modify the velocity profile within the
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channel which still obeys to the Poiseuille parabolic distribution, i.e. the hypothesis of mono-
dimensional flow still holds true. Mass continuity for an incompressible flow imposes that

�Q

�z
+ vp�p = 0� (19.3.42)

where Q is the volume flow rate, defined as

Q =
∫ Re

0
v 2�rdr = V�R2

e� (19.3.43)

that, in nondimensional terms, has the form:

� =
∫ 1

0
v̄ 2��d� = �

2
dp

d�
� (19.3.44)

while �p = 2�Re is the lateral profile of the wall, and vp the perfusing velocity derived from
Darcy’s law as

vp = −Lp��i −p�� Lp = k

��
� (19.3.45)

where Lp is the vascular hydraulic conductivity expressed as a function of the lateral thickness
� and the permeability k of the capillary wall; �i is the interstitial fluid pressure (IFP). The
mass continuity can be then rephrased in nondimensional terms as

��

��
−Lp��i −p� = 0 (19.3.46)

which, through (19.3.44), obtains the partial differential equation that dictates the change in
pressure along the channel (whose length is l)

�2p

��2
+
(


�l

)2

�1−p� = 0� p = p

�i

� �l = l×Dm

R2
ev0

�  = �l

√
2L̂p

�
� (19.3.47)

provided that the following holds true

� = Q

v0Re
2
� (19.3.48)

L̂p = 8�Re
2 Lp

D2
m

v2
0�� (19.3.49)

Solving with the boundary conditions

p �0� =p0 inlet pressure

p ��l� =p1 outlet pressure
(19.3.50)

the pressure distribution along the channel is finally derived as

p ��� = 1
2

[(−e��l−��/�l + e��+�l�/�l
)
�p1 −1�+

+ (e2��l−��/�l − e�/�l
)
�p0 −1�+ e2 −1

]
�coth ��−1� �

(19.3.51)
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The effective velocity distribution may be finally obtained as

v̄ ��� �� = −�i
dp

d�

(
1−�2

)
−�i

dp

d�

∣∣∣
�=0

= e−z/�l×

×
[
e�p1 −1�+ e��l+2��/�l �p1 −1�− e2�p0 −1�− e2�/�l �p0 −1�

]
2e�p1 −1�− �p0 −1��1+ e2�

× �1−�2�

= e−�/�l

[
1+ e2�/�l −�

(
1+ e2��−�l�/�l

)
e
]

2− e�e−2 +1��
�1−�2��

(19.3.52)

where � = �p0 −�i�/ �p1 −�i� is the pressure parameter, while  is the permeability
parameter as defined in (19.3.47). From (19.3.52) it appears that the permeability of the
walls does not modify the Poiseuille characteristic velocity profile along the cross-section
of the capillary; nevertheless it induces a reduction in velocity along � . In consideration of
these results, the variables of the model of diffusion can be determined, and are shown in
Section 19.4.

19.4 The concentration profile

As shown in (19.3.35), the diffusive term K2 is proportional to the effective diffusion
coefficient. In an impermeable capillary, the diffusive term K2 grows with time along the
capillary as shown by Gill and Sankarasubramanian (1970). This is shown in Fig. 19.4.1,
which gives the contour plot of K2 as a function of time 	�0�0�5� and position along
the capillary ��0� 1�. Note that as time increases, the solution for K2 tends to a constant
asymptotic value coinciding with that of Taylor and Aris.

In Fig. 19.4.2 the same contour plot is shown for a nonzero capillary wall permeability
� = 2�. As predicted in Decuzzi et al. (2006a,b), the effective diffusion coefficient Deff ,
and thus K2 is not uniform along the capillary: it reduces from the inlet of the capillary,

Fig. 19.4.1 K2 contour plot �� ∈ �0�1�� � ∈ �0�0�5��  = 0� � = −2�
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Fig. 19.4.2 K2 contour Plot �� ∈ �0�1�� � ∈ �0�0�5��  = 2� � = −2�

reaches a minimum value and then increases again as the outlet of the capillary is approached
(see also (19.2.15) and the discussion in Section 19.1). And this same behavior is shown at
each time interval. Again it is verified that the asymptotic solution, in this case coinciding
with that derived in Decuzzi et al. (2006a,b), is reached after a sufficiently large time
	 > 0�5. As  increases, the variation of K2 along the capillary becomes steeper and a central
area of the capillary can be identified where the beneficial effect of the convection on the
longitudinal dispersion of the solute particles is null.

19.4.1 The mean dimensionless concentration �m

In Fig. 19.4.3 the mean concentration profile is shown versus the nondimensional longitudinal
coordinate � and for different values of the nondimensional time, namely 	 = 0, 0.1, 0.5, 1,
while the permeability and pressure parameters are held constant as  = 1 and � = −2.
As time increases, the centroid of the distribution gradually moves to the right, while the

Fig. 19.4.3 Mean concentration profile at different time steps �� ∈ �0�1� � =
�0�0�1�0�5�1  = 1� � = −2�
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Fig. 19.4.4 Mean concentration profile at different values of the permeability parameter
�� ∈ �0�1�� � = 1�� = −2�

concentration flattens more and more, meaning that the bolus of solute is progressively
transported downstream with time, experiencing a dispersion along � due to the nonuniform
velocity profile of the flow, and described in nondimensional terms by K2. Notably, the peak
of concentration at the release �� = 0� is located at �1 = 0�127, whereas after one unit time
it moves to �2 = 0�610, with the difference �2 −�1 ∼ 0�483 less than 0.5, that would instead
have been predicted using the Taylor and Aris model (in that, according to the mentioned
model, the peak of mean concentration would move, in the time 	 = 1, of !� = 	 vm = 0�5).
Evidently, this is due to permeability of the capillary, that induces an overall delay on the
convection–diffusion of the solute.

To illustrate the effect of the permeability of the capillary on the overall dispersion
properties, the mean concentration �m is shown in Fig. 19.4.4 at different values of  � =
1� 2� 5� and at fixed � = −2. Although the traces are derived at the same time 	 = 1,
they clearly do not coincide: the larger the value of permeability, the more the dispersion is
retarded or, in other words, the concentration is closer to the point of release, and less spread
out. The same effects, but far less pronounced, can be ascribed to the pressure parameter �,
as shown in Fig. 19.4.5 �� = −2� −12�  = 1� � = 1�.

19.4.2 The local dimensionless concentration �

The local concentration � is derived according to (19.3.3) truncated at the first order and
is shown in Fig. 19.4.6 (see color plate) as a function of the dimensionless radius � and
longitudinal coordinate �, at the time 	 = 0�4. The permeability parameter  and the pressure
parameter � are hold constant as  = 1 and � = −2. To some extent the concentration
resembles a wave with its front traveling faster downstream along the centerline of the
capillary, and its tails following the peak of concentration with some delay. This is due to the
nonuniform velocity profile along � showing a maximum at � = 0 (center of the capillary)
and being instead zero at � = 1 (boundary of the capillary). As a consequence, the bolus of
nanoparticles either (i) cluster around the centerline or (ii) aggregate near the borders of the
channel, depending on the particular cross-section under study (downstream with respect to
the peak of concentration ��m�max� the first behavior is observed, 19.4.6). Notice that this
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Fig. 19.4.5 Mean concentration profile at different values of the pressure parameter ��� ∈
�0�1�� � = 1� � = �−2 = solid line�−12 = dashed line �  = 1�

Fig. 19.4.6 The local concentration � �	 = 0�4�  = 1� � = −2� (see Plate 33)
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mechanism is mathematically described within (19.20) by the term f1 times ��m/��: when
the mean concentration has a maximum, that is ��m/�� = 0, then � ≡ �m regardless of the
transverse coordinate �; elsewhere the function f1 dominates, and � would be in general
different from �m.

The function f1 depends, among others, on the centerline velocity v0 along � , which
means that a change in  or � would locally affect the concentration as well. In Fig. 19.4.7
a comparison is made between two different conditions of permeability, namely (i)  = 1
and � = −2, and (ii)  = 5 and � = −2. In the first case, the local concentration �1 is
derived at the time 	1 = 0�8 and is shown in Fig. 19.4.7 versus the radial coordinate � (solid
line); in the second case, the concentration �2 (dashed line) is determined for 	2 = 0�91,
and the time at which the centroids of the distributions �m1 and �m2 along � coincide
(notice that 	1 
= 	2 necessarily, and in particular 	2 > 	1 – due to the increased values
of permeability, �m2 experiences a delay in dispersion). In both cases the longitudinal
coordinate is chosen as � = 0�47; that is the section where ��m2/�� attains a maximum
(�2�m2/��

2��=0�47 = 0 and �3�m2/��
3��=0�47 > 0) meaning that, according to (19.3.3), within

that section the local concentration �2 would most deviate from the mean. Although �2 is
higher than �1 everywhere within the section (and this well agrees with the above derived
results for the diffusion coefficient K2, which decreases as  increases), the concentration
�2 is more uniformly distributed along � than �1, and the deviations from the mean are less
important and significant. This is evidently due to the increased effects of permeability –
the perfusion of the solvent through the walls redistribute the concentration, reshaping the
distribution of solute in the capillary and reducing the gradients of concentration along the
radius �. This effect is also clear from Fig. 19.4.8 that illustrates the function f1 versus �
at different values of permeability � = 0� 2� 5� � = −2�, and different cross-sections
�� = 0� 0�2� 0�5� 0�8�, while the time being held constant as 	 = 0�5. The higher the values
of permeability, the lower the modulus of f1 everywhere in the channel, and less sensible
the differences between the local and average concentration. Notice that at the center of the
channel (where the fluid is most likely stagnant) these effects are more dramatic, whereas in
the close proximity of the inlet they are negligible, up to be null at the limit � → 0 (at the
entrance of the channel the function f1 is invariant whatever the value of permeability ).

Fig. 19.4.7 The local concentration profile versus the radius � (solid line: � = 0�8�  = 1;
dashed line: � = 0�91�  = 5; both curves: � = −2 and � = 0�47)



MODELING IN CANCER NANOTECHNOLOGY 427

Fig. 19.4.8 The shape function f1 versus the radius � at different cross-sections (� = 0�5�
� = −2; solid lines:  = 0; dashed lines:  = 2; dashed-dotted lines:  = 5)

19.5 Comments and discussions of the analytical models
and solutions

Stemming from the generalized dispersion model (Gill 1967, Dash et al. 2000, Nagarani
et al. 2004), the unsteady dispersion of a solute in a permeable channel was derived in terms
of the dimensionless effective diffusion coefficient K2. It was found that for a given set
of permeability parameters different from zero, K2 increases with time up to a value that
depends on the position � within the channel, and that can never be higher than the theoretical
limit K2�max = Deff0 ×Dm/R

2
ev

2
0 where Deff0 is the Taylor and Aris diffusion coefficient

derived at the entrance of the channel. In general, K2 would be lower in the central regions
of the capillary, where the velocity of the fluid dramatically reduces, and the higher the
permeability, the smaller the dimensionless diffusion coefficient. Nevertheless, whatever the
longitudinal coordinate � , or the permeability parameters  and �, the time employed to
reach the steady-state regime is the same �	steady = 0�5×R2

e/Dm�, meaning that an increased
leakage would not modify the coefficients K1 and K2 in time (but through K1 and K2 the
bolus of solute would experience different histories of dispersion). Most important, it is found
that the perfusion of the solvent at the walls would uniformly redistribute the concentration
along the radius of the channel.

As discussed in Decuzzi et al. (2006a,b), and Gentile et al. (2007a,b,c), in a network
of capillaries a solute would most likely follow the path presenting the largest effective
diffusivity. Based on these theoretical findings it may be concluded that a bolus of nanovec-
tors would preferentially move in larger vessels (where high Reynolds number flows occur,
V = O�1 mm/s�) rather than in small, leaky capillaries of the tumor districts (with small
blood velocities, V = O�100�m/s� or less). Also, the quasi-uniform radial distribution of
the solute in permeable capillaries represents a novel biological barrier. Margination and
extravasation of nanovectors is in fact hindered (or, at least, it is not favorable), and only a
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small amount of such nanocarriers (those in close proximity of the walls) would be candidate
to sediment on the surface and extravasate.

However, the analysis presented so far is approximate in that it relies on the strong
assumption that the particles are sufficiently small to have the same velocity of water
molecules: as it stands, this approach completely disregards the physical, chemical and
geometrical properties of the nanovectors constituting the solute. Considering the above-
mentioned properties is equivalent to introducing into the problem more degrees of freedom
that may be suitably tailored to enhance the performance of these nanocarriers. For instance,
in recent experiments (Gentile et al., 2007a,b,c) it is shown that in a flow chamber system
and under the influence of a gravitational field, the number of marginating particles over
time increases if discoidal or quasi-hemispherical particles are used in place of silica spheres.
And that would demonstrate that nonspherical inertial particles would perform better than
classical spherical particles, pertaining to drug delivery and bio-imaging.

19.6 Numerical modeling of particle motion within
capillary

In this section we present computer modeling of particle motion of circular and elliptical
particles in microchannels. A brief description of the loose coupling procedure is given,
assuming the finite element (FE) method (Section 7.6) or element-free Galerkin method
(Section 8.5). Trajectories of these two particle types are shown as examples.

19.6.1 Computational procedure

The motion of a solid particle within a fluid is considered. It is assumed that fluid flow and
particle motion occur within a plane x−y, that the solid has high rigidity (practically unde-
formable under the action of the fluid) and that the fluid is Newtonian and incompressible.
Fluid flow within a 2D channel with rigid walls is driven by a difference in pressure between
the inlet and outlet of the channel, Fig. 19.6.1a. A particle moves due to fluid mechanical
forces acting on its surface.

The fluid and solid (particle) domains are discretized by generating two independent
meshes for either FE or EFG models, as symbolically shown in Fig. 19.6.1a. Then, according
to the loose coupling concept, we solve fluid flow for the current time step, i.e. calculate
fluid velocities and pressures at the end of the time step using the position and velocities on
the particle surface at the start of the time step. With the forces at the fluid FE nodes (or
EFG free points) along the polygon surrounding the particle, the forces acting in the particle
surface are evaluated. As shown in Fig. 19.6.1b, for each segment of the fluid polygon we
calculate the distributed load. For example, for fluid nodes 1 and 2 and the segment LF12 we
have the continuous load qF12:

qF12 = �FF1 +FF2� /LF12 (19.6.1)

where FF1 and FF2 are nodal point fluid forces at nodes 1 and 2. On the other hand, we have
the polygon at the particle surface and for node 2 of the solid let the closest two nodes at
the fluid polygon be nodes 1 and 2. Then, the force Fs2 at node 2 of the solid is:

Fs2 = qF12 �ls1 + ls2� /2 (19.6.2)
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Fig. 19.6.1 Fluid flow within a 2D channel with motion of a stiff particle due to action of
fluid. (a) FE model; (b) Forces of fluid acting on the particle

where ls1 and ls2 are lengths of the segments belonging to node 2 of the solid. With nodal
forces acting on the particle nodes we determine increments of displacements of the particle
by solving a system of differential equations of motion of the form (5.2.7) (see Section 5.3).

The new position of the particle and velocities at the particle surface are used as the
boundary conditions for the fluid and a new solution for the fluid is calculated for the current
time step. The process of transferring boundary data from fluid to solid and then from solid
to fluid continues until the difference between the two solutions in the solid–fluid loop
is small.

19.6.2 Example – trajectories of spherical and elliptical particles

Using the above described procedure we calculated trajectories of spherical (i.e. circular
in 2D) and elliptical particles for steady-state conditions at the inlet and outlet boundaries
of a channel. It is assumed that initially the fluid flow field is uniform and corresponds to a
steady solution. Initial velocities of the particle are equal to zero.

The data used in this example are: channel diameter D = 10�m, fluid density � =
1050 kg/m3, fluid viscosity � = 3�675 × 10−3 Pa s, maximal fluid velocity at inlet v0 =
150�m/s, circle diameter d = 2�m, ellipse diameters a = 2�39�m and b = 1�33�m.

The shape of the trajectory for the circular particle corresponds to the analytical solutions
(e.g. Goldman et al. 1967a,b). The circular particle rotates and its center moves along the
channel. In this example the rotation is in the clockwise direction since velocities of points
on the surface closer to the channel axis have larger velocities. The trajectory is ultimately
parallel to the channel axis with an offset which does not depend on the initial particle
position (see Fig. 19.6.2a).

On the other hand, the elliptical particle has an oscillatory trajectory and crosses
the central line of the channel, with rotation which changes the direction during motion
(Fig. 19.6.2b). This shape of the particle trajectory is of particular interest in the process of
particle margination, since it can provide good conditions for drug delivery within tumor
blood vessels (see discussion in Section 19.5; also Decuzzi et al. 2005).
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Fig. 19.6.2 Trajectories of particles in a microchannel (and fluid velocity field, velocity in
�m/s). (a) Circular particle; (b) Elliptical particle
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A-bands, 228
abdominal aorta aneurism (AAA), 265
acceleration; vector, 18, 100, 103
accuracy of the solution, 117
acetylcholine, 230
actin; filament, 228–229, 334
action of surfactant, 218–219
action potential, 230, 289
activation; function, 237, 281, 291, 305, 341,

342, 347
activation threshold, 242
adductor canal, 279
adherent cell, 333, 346
ADP, 229
advancements in bioengineering, 174
advancements in computer

modeling, 177
advection–diffusion equation,

413, 415
adventia, 255
agonist; transport, 302, 303
airway epithelium, 350
airway remodeling, 352
albumin, 297
albumin concentration, 300
albumin transport, 299, 301
Almansi strain, 43
alpha motoneurons, 230
alveolar tissue, 202, 203
amplitude vector, 104
analytical solution, 57, 63, 168
angular frequency, 103
annulus, 315, 328

aorta arch, 262
apparent (equivalent) viscosity, 256
apparent density, 185, 186
apparent diffusion coefficient, 412
arbitrary Lagrangian–Eulerian (ALE)

formulation, 135, 136
area ratio, 207, 213, 218
arterial system, 252
arterial wall, 256, 278, 280
arterioles, 252
artery; bifurcation, 38, 296
arthritis, 315
articular cartilage, 313
assemblage of finite elements, 77
asthma, 350, 352
asthmatic airway, 352
atherosclerosis, 273, 295
ATP, 228
atrium, 288
attachment, 346
attractive force, 309, 310
autocrine ligand concentration, 376
autocrine loop, 351, 352, 361
average velocity, 409
axial extension, 343
axial force, 110, 190
axial stress, 33, 34, 282
axial stretch, 222
axial symmetry, 28
axial velocity, 139, 275
axisymmetric conditions, 400
axisymmetric element, 87, 89, 139, 291,

299, 304
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balance equation of diffusion, 354
balance of linear momentum, 18, 58, 163,

319, 340
balance of mass, 56, 163, 304
bar; structure, 73, 110
barrier to diffusion, 375
basal boundary, 363
base vectors, 166, 208
basis size, 166
bead; indentation, 344
bending; of cantilever, 85, 118
bending stiffness, 190
biaxial curve, 204, 210, 211
biaxial loading, 204
biaxial model, 203, 209, 218, 219
biaxial stress–strain state, 204
biaxial test, 203, 204
biconcave RBC, 344
biconcave shape, 343, 344
binding force, 308
binding sites, 229
bioengineering models, 175
bioinformatics, 175
bioinstrumentation, 175
biological barriers, 178
biological fluids, 58
biological membrane, 46, 203, 207, 209, 220
biological pathway, 376
biological soft tissue, 201
biomaterials, 175
biomechanics, 175, 176
biomedical applications, 412
bionics, 176
Biot number, 381, 390, 392, 395, 400
biphasic FE model, 343
biphasic finite element, 343
biphasic medium, 345
biphasic model, 339, 342
bisection method, 386
bladder, 201
blood, 251, 253
blood density, 263, 300
blood flow, 254
blood pressure, 38, 251, 279
blood velocity; field, 258, 305
blood vessel, 222, 255
blood vessel deformation, 260
blood viscosity, 253
blood volume, 251
body force, 18, 64
Boltzmann constant, 153

bolus, 409
bone: lamellar; fiborous; cortical; trabecular;

tubular; woven, 182, 183, 185
bone density, 184, 185
bone fracture, 187
bone mechanical properties, 185
bone structure, 181
bone tissue, 181, 185, 190
bounce-back reflections boundary

conditions, 153
boundary conditions, 37, 79, 159, 418
boundary conditions in DPD, 153
bovine pericardium, 204
bridging scale (BS) method, 155
bronchoconstriction, 352
B-spline function, 163
bulk modulus, 29, 65, 342, 346
bulk modulus of solid; of fluid, 317, 325, 340
bulk modulus of solid skeleton, 340
Burger’s viscous equation, 63

cable, 336, 338
calcium ions, 228
cancellous bone, 315, 328
cancer cells, 178
cancer nanotechnology, 407
cantilever, 118
capillary; straight circular, 257, 409, 414, 422
capillary radius, 412
capillary system, 252
capillary wall, 421
carbohydrate, 228
cardiac cycle, 263
cardiovascular system, 250
carotid artery bifurcation, 272, 273
carotid artery model, 272
Cartesian coordinate system, 6, 14
cartilage; hyaline, 314, 315
cartilage deformation, 320
cartilage model, 318, 320
cartilage permeability, 315
cartilage stiffness, 322
cartilage structure, 314, 315
cartilaginous end plate, 329
Casson fluid; relation; law, 255, 412, 413, 419
cat mesentery, 204
Cauchy formula, 17, 259
Cauchy stress; true stress, 17, 45, 114, 216
Cauchy–Green deformation tensor; left; right;

modified, 42, 43, 118, 209, 216, 233
cavity flow, 160
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cell adhesion, 332
cell crawling, 345
cell cytoplasm, 345
cell cytoskeleton, 341
cell mechanics, 331
cell membrane, 342
centerline velocity, 419, 420, 426
channel section, 118, 119
characteristic equation, 48, 104
characteristic length, 381
chemical energy, 228
circular frequency, 324
circular pipe, 410, 420
circular stress, 33
circulatory system, 249, 266
circumferential strain, 89
clamped plate, 96
closed cylinder, 219
coarse-scale; velocity, 155, 156
coarse graining, 151
coefficient of chemical contraction, 317
coefficient of convection, 52
coefficients in EFG, 166
collagen, 182, 186, 202, 306, 308, 310
collagen fiber; bundles, 202
collagen wall, 306
collapse of tube, 142
column; settlement, 66, 67
comminuted fracture, 190
common boundary, 159
common carotid artery, 263
common coordinate system, 118
compliance matrix, 29
component form, 11
compressibility modulus, 66
compression therapy, 282, 285
compressive stress, 350, 352, 353, 355, 369, 372
computed hysteresis, 206
computer models, 356
concentrated solution, 56
concentration at node, 365
concentration average; mean; initial, 57, 373,

413, 417
concentration dimennsional; dimensionless;

nondimensional, 415, 423, 424
concentration distribution, 57, 135
concentration gradient, 410
concentration local, 411, 415, 416, 424,

425, 426
concentration of mass total, 400
concentration of polymer, 382

concentration of protein, 400
concentration of solvent, 382
concentration profile; profiles, 359, 362, 366,

370, 371, 395, 398, 410, 422, 423, 426
concentration strain, 317
conductivity matrix, 125
configuration initial; current; deformed;

reference; stress-free, 41, 45, 47, 64, 114,
118, 119, 212, 223

conjugate stress, 45
connective tissue; biological, 181, 202, 205,

227, 235
conservation of mass, 364
conservative force, 310
consistent mass matrix, 100
consistent tangent constitutive matrix, 117, 261
constitutive coefficient, 215
constitutive curve; uniaxial; biaxial, 46, 218
constitutive equation, 35, 60
constitutive law; uniaxial, 233, 345
constitutive matrix, 114, 186, 211, 212, 216, 217
constitutive relation; relations; relationships;

tensor, 26, 59, 65, 114, 116, 185
contact traction, 206
continuity equation, 58, 59, 65, 131, 143,

319, 340
continuity of mass, 393, 421
continuous load, 428
continuum model, 296, 306
continuum-based method; methods, 258, 302
contour plot, 422
contractile element, 235
contractile unit, 228
control volume, 58
convection, 60, 413
convection and shedding vector, 365
convection external, 390
convection flux, 52, 125
convection matrix, 299
convection resistance, 390
convection–diffusion equation, 63, 134,

299, 424
convection–diffusion–reaction equations, 303
convective derivative, 11
convective mass transfer coefficient, 381, 390
convective transport, 412
convergence check, 211
convergence criteria, 141
convergence rate, 112, 117
conversion rate, 304
coordinate transformations, 18
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coronary artery, 264
cortical bone, 182, 185, 186, 315, 329
conservative (repulsive) force, 152
Coulomb friction coefficient, 206
coupling DPD-FE, 155
coupling EFG and FE, 168
creep; deformation; response, 38, 64, 145,

201, 324
cross-bridges, 229, 234
CSK prestress, 334
curl of vector field, 9
current area, 384
current density, 318, 319, 324
cycle period, 272
cyclic displacement; internal pressure;loading;

stretching, 217, 219, 221
cycling rate, 229
cylindrical biological membrane, 219
cylindrical coordinate system, 13, 14, 19, 20
cytoplasm, 334
cytoskeletal mechanics; actin; prestress;

stiffness, 332, 335, 336
cytoskeleton (CSK), 228, 332, 334
cytosol, 342

damping; coefficient; matrix, 35, 100, 101, 260
Darcy’s law; velocity, 64, 66, 318, 319, 339,

421
daughter branches, 38
decomposition of deformation; of kinetic

energy, 44, 157
deflection, 118
deformable body, 232
deformable wall, 266, 275
deformation gradient; modified, 41, 47, 118,

209, 215
deformed shape, 96
Delfino tissue model, 216
density of material; of substance; of solid; of

mixture; total, 55, 56, 64, 65, 66, 100, 145,
322, 342; 384

depletion; effects, 417, 420
detachment, 345, 346
deviatoric stress; strains, 18, 29
dextran molecules, 368
diastole, 287
diastolic; flow; pressure, 251, 273, 275
discretized domain, 168
differential equation; of motion, 99, 121,

157, 321
differential operator; ‘nabla’, 9, 13, 64

diffusion; and convection; axially symmetric,
51, 55, 127, 362, 363, 392

diffusion Brownian, 409
diffusion coefficient, 56, 57, 302, 351, 361, 363,

368, 369, 371, 374, 375, 410
diffusion coefficient constant; variable, 388
diffusion coefficient of water, 380, 398, 40
diffusion convective, 411
diffusion equation; equations, 60, 127, 365
diffusion internal; lateral ; with convection, 60,

380, 392, 410
diffusion resistance, 390
diffusion–transport equation, 298
diffusive regime; -convective, 370
diluted species; solution; mixture, 56, 60, 304
discrete particle method, 147
discrete system, 113
discretization; of fluid, 72, 156, 165
dispersion; longitudinal, 411, 414, 423
displacement field, 23
displacement increment, 109, 110, 112, 114, 115
displacement of solid; of fluid; of mixture, 64,

320, 328
displacement vector, 72, 77, 113
dissipative force, 152, 308
dissipative particle dynamics (DPD), 151
distortion of material, 20
distribution function, 418
divergence of vector field; of tensor field; of

velocity, 9, 59
divergence theorem, 10
domain of influence; in DPD, 152, 165, 166
DPD method; equations; particle, 158, 296,

308, 310
drug delivery, 429
dummy index, 5, 53
duration of collapse, 361
dyadic notation; multiplication; product, 5, 9, 12
dynamic analysis, 99
dynamic diffusion; equation, 356, 357, 362
dynamic equations of motion, 18
dynamic hip; device; implant, 194, 195,

197, 199
dynamic response, 106, 328
dynamic stiffness, 322, 323
dynamic viscosity, 59, 259, 300, 420

effective diffusion; coefficient; diffusivity, 304,
305, 414, 419, 422, 427

effective longitudinal diffusion, 410
effective spring constant, 308
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effective stress, 65, 191, 196, 345
EFG cell; point, 168
EGF receptor, 351, 352
eigenvalue analysis, 104
eigenvalues; eigenvector, 8, 12, 104
Einstein summation convention, 5
ejection phase, 289
elastic constitutive matrix, 26, 317, 340
elastic matrix, 27, 39, 215
elastic modulus, 27, 186, 324, 332, 397
elastin; bundles; fiber, 202
electrical conductivity, 318
electrical potential, 318, 320, 325
electrical-to-mechanical transduction, 324
electrokinetic coupling, 316, 318, 319, 320,

327, 328
electrokinetic coupling coefficient, 318
electrokinetic transduction, 322
element balance equation for diffusion, 127
element forces, 78
element geometry interpolation, 81
element resistance force, 76
element stiffness matrix; mass matrix, 76, 88,

100, 101
element surface flux, 128
element-free Galerkin (EFG) method, 164
element-free points, 165
elongational flow, 379, 389, 390, 396, 398
embolization, 270
endocardium, 201
endomysium, 227
endoplasmic reticulum, 228
endoprosthesis, 277
endurance, 240
energy loss within cycle, 219
energy source, 228
engineering shear strains, 20
epimysium, 227
equation of balance for heat conduction, 124
equation of motion, 61, 186, 260
equilibrium equation; of finite element, 18, 64,

77, 78, 232, 338
equilibrium iteration, 117, 258
error function, 385
Euclidean norm, 7
Eulerian description, 55, 60
evaporation; experiment, 380, 381, 391
exchange coefficient, 417
excitation, 230
expanding pipe, 138
expansion in plane, 23

extended Hill’s model, 243
extensible protein, 202
extension force, 206, 343
external fixator, 188
external force; body force; force increment;

loading, 38, 73, 101, 109, 110, 113, 143,
157, 231

external nodal force, 186, 260, 261
external pressure, 89
external skeletal fixation, 188
external virtual work, 38, 76, 113
extracellular fibrous proteins, 202
extracellular matrix, 314, 332, 408
extracellular mechanism, 376
extracellular mechanotransduction, 351, 368,

374, 376
extravasation, 408

Fähraeus–Lindquist effect, 254
fast-twitch, 231, 242
fatigue curve; factor; rate, 240, 241
FE equations of balance, 320, 359
FE equilibrium equations, 392
FE matrices, 383, 392
FE model of diffusion and convection, 362
FE model of dynamic diffusion, 357
FE model of pan experiment, 382
FE volume, 393
femoral artery, 276
femoral neck, 195
femur; comminuted fracture, 189, 190, 192
FES, 240
fiber diameter, 395
fiber direction; unit vector, 214, 340
fiber spinning, 379, 388, 389, 392, 394, 397,

402, 404
fiber strain; stretch, 233, 339
fiber–fiber kinetics model, 206
fibrocartilagenous cartilage, 314
fibrous bone, 182
Fick’s law, 55, 56, 317, 363, 382, 410
fictitious elastic configuration, 118
field problems, 121
filaments overlap, 230
filtration velocity, 300
fine scale, 157
Finger deformation tensor, 43
finite element; 3D, 71, 278, 342
finite element description, 41
finite element equations, 340
finite element node, 72
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finite element stiffness matrix, 78, 88
fitness function; level, 240
flat bone, 183, 184
flow resistance, 254
flow through porous deformable

media, 143
fluid compressibility, 317
fluid density, 58, 164
fluid domain, 140
fluid flow; with heat transfer; with mass

transfer, 51, 129, 132
fluid polygon, 428
fluid pressure, 64, 318, 326, 339
fluid–structure interaction, 263, 268
fold-mean concentration, 372, 374
force development, 230
force function, 36
force generation, 229
force–displacement loop, 222
Fourier’s law, 52, 56
four-node shell elements, 118
fracture treatment, 188
free point, 165, 166, 167
free-diffusion, 373
free-swelling, 325
frequency, 324
friction coefficient, 152
frictional force, 206
full Newton iteration, 112
Fung tissue model, 217

Galerkin method; procedure, 121, 136, 143,
258, 320, 357, 383

Gauss quadrature, 167
Gauss’ theorem, 10, 123, 143, 320, 358
Gauss–Ostrogradskii theorem, 10
generalized Darcy’s law, 64
generalized dispersion model, 414, 427
geometric nonlinearity, 40, 116
geometrically nonlinear only, 40, 116
geometrically nonlinear stiffness

matrix, 208
global coordinate system, 78, 209
global domain, 159
gluteal muscles, 195
glycocalyx, 351, 354, 355, 357, 360, 368
Gordon curve, 234
gradient of function; of vector field, 9
gradient to mid-surface, 92
Green–Lagrange strain, 43, 45, 114, 204,

216, 217

hardening behavior, 203
Haversian canal, 182
HB-EGF, 353, 360, 368, 371, 373, 375
heart chambers, 286
heart cycle, 279
heart model, 286
heat and mass transfer, 129
heat conduction, 51, 124
heat conduction coefficient, 53, 54, 127
heat conduction governing equation, 127
heat conduction matrix, 53
heat flux; through surface, 52, 125
heat source, 52
heat transfer, 51, 60
hematocrit, 251, 253, 255
Hencky (logarithmic) strain, 118
Hill’s muscle model, 234, 235
hindered diffusion; HB-EGF, 371, 373, 374
hip fracture, 194, 195
homogenous deformation, 23
Hooke’s law, 26, 32, 39
hoop strain, 34
hoop stress, 39, 90, 280
human aorta, 262, 263
human bronchial epithelial cells, 351, 356,

367, 368
hydraulic permeability, 318
hyperelastic models, 45
hysteresis; of ring; resulting, 202, 203, 206,

219, 220
hysteretic action of surfactant, 222
hysteretic behavior; character; characteristic,

203, 205, 212, 215
hysteretic curve; constitutive, 205, 219
hysteretic model, 205

I-bands, 228
identity matrix, 5
imaging agents, 178
impermeable; wall, 358, 412, 416, 418
implant, 194
implicit method, 103
in vitro, 350, 352, 353, 362, 363, 370, 371
in vivo, 355, 363, 370, 371
incompressibility, 60, 364, 394
incompressible fluid; flow, 56, 59, 257, 421
incremental: analysis; equations; form; solution,

109, 116, 124, 359
incremental-iterative equations, 124, 261, 298,

383, 365
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incremental-iterative procedure; scheme;
solution, 113, 208, 232

inelastic large strain, 118
inertial force, 99, 100, 117
initial conditions, 416, 417
in-plane stresses, 28
integral theorems, 8
integrated bioengineering science, 174
integration of differential equations, 101
integration of DPD equations, 154
integration parameter, 102
interaction force, 148, 151, 152, 156, 308
intermediate filament, 332, 333
internal energy, 52
internal excitation, 231
internal finite element forces, 158
internal fixation, 189
internal force, 15, 110, 111, 157, 208
internal nodal force, 76, 116, 158
internal pressure, 33, 89, 222
internal rim, 220
internal virtual work, 38, 76, 113, 114
interphase mass transfer, 412
interpolation by EFG, 165
interpolation function, 71, 74, 75, 82, 94, 123,

129, 155, 167, 357, 383
interpolation functions for pressure; for

velocity, 301
interpolation matrix, 75, 82, 143, 320
interpolation of displacement field, 81
interstitial: fluid; fluid pressure, 408, 414, 421
intervertebral disc, 314, 328
intima, 255, 256
intracapsular fracture, 195, 197
intracellular substance, 181
intramedullary nail, 189, 190, 192, 193
intraventricular pressure, 290
invariants of deformation tensors, 216
inverse deformation gradient, 42, 233
inverse matrix, 5
ion concentration, 317, 322, 325
ionic diffusion; coefficient, 325, 326
Irving–Kirkwood model, 158
isochoric deformation, 215
isometric contraction, 229, 234
isoparametric element (3D), 117
isoparametric finite element, 190
isoparametric formulation, 75, 357
isoparametric function, 74
isotonic contraction, 229
isotropic: material, medium, 26, 53

isotropic membrane, 204
isotropy, 30
isovolumetric contraction, 287
iteration counter, 383
iteration loop on cycles, 215
iteration scheme; procedure, 112, 385
iterations, 140
iterative scheme, 131, 215

Jacobian matrix, 95
Jacobian of transformation, 75, 83, 212

Kelvin model; Kelvin-Voigt model, 29, 35
kernel approximation, 161
kernel support domain, 162
kinematic viscosity, 164, 391
kinematically admissible, 39
kinematics of deformation, 19, 20
kinetic energy, 157
kinetics of geometric changes, 375
Kronecker symbols, 5

Lagrangian description, 15, 58
laminar flow, 410, 411, 420
Laplacian of: scalar field; vector field, 9
Laplacian operator, 9
large blood vessel, 250, 253
large displacements, 118, 231
large strain deformation, 41
large strains, 47, 231
lateral heat conduction, 53
lateral intercellular space, 349, 362, 363
LDL concentration, 298, 301
LDL transport, 295, 298, 300, 301
leapfrog method, 150
Lees–Edwards method, 153
left basis, 43, 47, 48, 118, 216
length of finite element, 365
Lennard-Jones (LJ) potential, 148
leukocyte, 252
ligaments, 202
ligand, 178
ligand accumulation, 375
ligand concentration; concentration profile, 349,

350, 358, 365, 371, 375
ligand diffusivity, 363
ligand–receptor affinities, 374
ligand–receptor specific interactions, 408
line integrals, 384
linear base, 166, 168
linear collapse, 370
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linear elastic; constitutive law; model, 26,
185, 223

linear finite element, 82, 86
linear interpolation, 210
linear stiffness matrices, 208
linear strain–displacement matrix, 115, 144, 208
linear stress–strain relationship, 202
linear viscoelasticity, 29
linearization, 137
linearized form of virtual work, 114
LIS collapse, 354, 359, 369, 375
LIS concentration; dynamics, 360
LIS domain, 363, 364
LIS model; finite element model, 355, 358, 364
LIS width, 354, 359, 363, 364, 366, 369,

371, 375
living cell, 331
loading; curve; part; regime, 203, 215, 219
local buckling, 118, 119
local coordinate system, 77
local derivative, 11, 59
local domain, 159
local membrane coordinate system, 209, 211
local shell plane, 93
logarithmic strain, 43, 117, 209, 316
long bone, 183, 187
long column, 53, 125
longitudinal diffusion; coefficient, 413, 421
loop direction, 222
loose coupling; method, 139, 140, 261, 428
low density lipoprotein (LDL), 295
lumped mass matrix, 100
lung tissue, 46

macromolecule, 412
macromolecule concentration, 297
magnetic twisting cytometry, 344
main artery, 38
margination, 429
marrow core, 184
mass concentration, 55
mass curves, 388
mass density; initial; current, 18, 45, 52, 54, 127
mass flux, 58, 383, 393, 410
mass matrix, 117, 186, 260, 299
mass transport, 297
material body, 15
material coordinates, 41
material derivative; of volume integral, 10, 59,

60, 136
material description, 58

material element, 19, 47, 92, 203
material ellipsoid;sphere; line; plane, 25, 26
material model with hysteresis, 219
material models, 26
material nonlinearity, 40, 116
material particle, 10
material point, 15, 165, 166, 167
material rotation, 43
material volume, 52
materially nonlinear only (MNO), 116
materials with memory, 29
mathematical model, 414
matrix; two-dimensional; square; diagonal,

3, 4, 13
matrix algebra; addition; multiplication;

subtraction; summation, 4, 5
matrix determinant; cofactor; inverse, 5, 11
maximum force, 229
maximum rate of ligand accumulation, 371
maximum shear strain rate, 302
maximum shear stresses, 17
Maxwell model, 29, 35
Maxwellian reflection method, 153
MD algorithm, 149
MD limitation, 149, 151
MD particle, 148, 152
mean LIS concentration; molar, 360, 373
mean strain, 29
mean stress, 18
mean velocity, 279, 284, 300, 420
mean wall shear stress, 259
mechanical model, 175
mechanical power, 45
mechanical properties, 379, 389, 394, 395,

397, 398
mechanical response, 231
mechanically superior fiber, 404
mechanical-to-electrical transduction, 322, 323
mechanobiology, 176
membrane conditions, 224
membrane covered with surfactant, 212
membrane stress, 215
membrane tangential plane, 209
membrane with a hole, 220
mesh fixed in space, 129
mesh-referential time derivative, 136, 137
mesoscale particle, 151, 156
mesoscopic bridging scale method (MBS), 155
microchannel, 308, 428, 430
microtubules, 334, 335
microvelocity, 316
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microvessel, 254
mid-surface, 92, 94
Mindlin’s plate theory, 92
mineral salt, 182
mitochondria, 228
mixture formulation, 339
modal shape, 99, 103, 104, 105
modeling field problems, 121
modified Newton iteration, 112
Mohr circle, 17, 21
molar concentration, 373
molecular diffusion, 410
molecular diffusivity, 410, 415
molecular dynamics (MD), 147
molecular size; small, 373; 407
molecular weight, 355, 360, 367, 368, 373, 391
monoclonal antibody, 407
motor unit, 230
mucous membranes, 201
multi-fiber model, 243
multi-file flow, 254
multilinear curve, 385
multiphasic material, 313
multiscale biomechanics, 177
multiscale MBS method, 160
multiscale method, 308
multiscale modeling, 155
multistage nanodevice, 178
multi-targeted therapy, 408
muscle; skeletal; striated, 227; 228, 231
muscle activation, 237, 279
muscle cell, 203, 228
muscle contraction; shortening; extension, 228,

234, 279, 282
muscle fatigue, 239
muscle fiber; bundle, 227, 242, 278
muscle material; tissue; structure, 227, 231, 279
muscle model, 290
muscle modeling, 231, 234
muscle physiology, 227
muscle recovery; relaxation, 239; 285
muscle stress; tension; force, 230, 232, 234,

235, 239
muscle tone, 231
myofibrils, 228
myosin; crossbridge, 229, 333

nanoparticle, 408, 412, 414
nanoparticle delivery, 178
nanovector concentration, 409

natural coordinates; coordinate space, 41, 82,
83, 86, 156

natural frequencies, 104, 105
Navier–Stokes equations; for a finite element,

60, 131, 135, 159
nebulin, 228
neighbor-list method, 154
Nephila clavipes spider, 379, 389, 397–398
Nephila spinning: canal, process, 402
neurotransmitter, 230
neutralization plate, 189, 190, 191–194
Newmark method, 99, 101, 103, 321
Newtonian fluid, 263, 290, 299, 409, 414428
Newton’s method, 237
Nitinol; stent, 277, 280
nodal acceleration vector, 100–101, 117, 186
nodal blood pressure; velocity, 258
nodal concentration, 128
nodal coordinate vector, 82
nodal displacement; vector, 73, 74, 82, 94, 103,

144, 186
nodal flux, 128
nodal force; vector, 74, 84, 101, 130,

141, 429
nodal force due to surfactant, 209
nodal point, 72
nodal pressure vector, 129
nodal relative velocity vector, 143
nodal rotation vector, 94
nodal surface flux vector, 123
nodal temperatures, 125
nodal velocity vector, 117, 129, 156, 158
nodal volume flux vector, 125
node numbering, 80
nonlamellar bone, 182
nonlinear constitutive law; constitutive relations,

45, 116, 201, 233
nonlinear continuum mechanics, 40
nonlinear elastic material model, 45, 215
nonlinear finite element analysis, 109
nonlinear incremental analysis, 113
nonlinear strain–displacement matrix, 115,

117, 144
nonlinear strains, 114
non-Newtonian, 258, 412
normal stress; components, 17
no-slip boundary condition, 153
nucleus, 315, 328, 345, 346
number density of particles, 158
numerical tolerance, 393
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one-dimensional diffusion, 57, 129
one-dimensional matrix, 18
one-dimensional model, 327
one-dimensional relationship, 30
optical tweezers, 342
orthogonal; bases; matrix, 5, 12, 13
orthogonality; condition; property; relation, 12,

13, 33, 48, 155
orthonormal, 13
orthotropic medium, 53
oscillatory shear index, 259
osteoporosis; assessment, 184, 185, 315
outlet pressure, 289
out-of-balance vector, 365
oxygen transport, 297

PAK; PAK-T, 107, 386
pan experiment, 382, 399
parabolic finite element, 86
parallel elastic element, 235
parallel screws, 194, 195
parameter space, 356, 359, 363, 366
partial density, 55, 382
particle circular; elliptical, 428, 429
particle in SPH, 162
particle mass, 158
particle motion, 428
particle surface, 428
particulate formulation, 407
partition coefficient, 381
passive state, 231
Peclet number, 371, 415
penalty method; parameter, 131
perfusing velocity, 421
perfussion chamber, 309
pericardium, 201
perimysium, 227
periodic boundary conditions, 149, 154
permeability, 325, 342, 346, 411, 414, 420, 421,

423, 426
permeability coefficient, 66, 298
permeability matrix, 64
permeability parameter, 414, 422, 424
permeable, 412, 414
permutation symbol, 5, 93
persistence length, 332
phase, 103
phosphorylation, 352, 353, 355
physical quantity, 11
physical space, 82, 86
Piola–Kirchhoff stress, 45, 204, 216

plane strain; element, 27, 28, 87
plane stress conditions; element, 30, 31, 88, 211
plaque; rupture, 295
plasma, 251, 252
plaster cast, 188
plate with hole, 89, 168
platelet accumulation; rate, 295, 303, 304, 305
platelet; activated; resting; deposited, 252, 295,

303, 307, 310
platelet activation; adhesion; aggregation, 296,

302, 306, 310
platelet concentration; deposition, 304, 306, 310
platelet flux, 303, 305
platelet mediated thrombosis, 303
plates and screws fixation, 189
plug radius, 412
Poiseuille flow, 61, 150, 154, 409, 412, 415
Poiseuille parabolic distribution, 420
Poisson’s ratio; coefficient, 27, 39, 96, 325
polar decomposition theorem, 43
pole of the Mohr circle, 21, 22
polymer solution, 380, 381, 384, 389, 392
pore fluid pressure, 64
poroelastic material, 66
porosity, 64, 66, 145, 316, 321, 325, 346
porous deformable media, 51, 63
position vector, 92, 93
post-collapse steady-state solution, 366
potential function, 148
pre-collapse solution, 367
prescribed displacement, 118
prescribed temperature, 52
pressure; dimensional, 59, 420
pressure distribution, 142, 269, 421
pressure drop, 254
pressure field, 133
pressure inlet; outlet, 421
pressure parameter, 414, 422, 424
pressure profile, 269
pressure total, 317, 319, 326
pre-strain, 341
prestress; cytoskeletal, 334
prestressed structure, 334, 336
principal basis; vectors; right, 8, 12, 43, 47,

48, 118
principal direction; directions, 8, 21, 47, 49,

209, 211, 316
principal plane; planes, 17, 22
principal strain directions, 217
principal stresses, 17, 21, 118, 209, 217
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principal stretch; stretches, 43, 47, 49, 118, 208,
209, 211, 316

principal value; values, 8, 48
principle of virtual work; for continuum, 37, 76,

113, 114, 143
profile of the spinning canal, 400
projection operator, 155, 157
protrusion, 345
proximal femur, 195, 197
pulmonary circulation, 249
pulsatile flow, 259, 268
pure shear; in plane, 23, 47
pure stretch, 43
pure-diffusion model, 362

quadratic base, 166
quadratic convergence rate, 112
quasi-static problem, 208
quintic spline, 163

radial displacement, 106, 218, 219
radial domain, 363, 364
radial stress, 90
radiation flux, 125
random force, 152
rate of change, 10
rate of deformation tensor, 49
rate of LIS collapse, 373
rate of shedding, 354
rate sensitivity, 368
ratio of the stresses, 204
receptor; receptors, 230, 408
receptor activation; trafficking, 376
recovery curve, 242
recovery factor, 240
recruitment, 230
red blood cell (RBC) or erythrocyte,

251, 342
relative viscosity; apparent, 254, 255
relative fluid velocity, 143, 328
relaxation; function, 29, 203, 346
renal arteries, 262
resistance force, 117, 319
resistance matrix, 117
resonant regime, 104
retrograde flow, 283
Reynolds number, 300, 390
rheological parameter, 412
rigid body displacement, 79
rigid strut, 338
rigid walls, 273, 283

rings, 219, 220
rotated coordinate system, 30
rotation displacement, 92
rotation tensor, 7, 11, 12, 43, 48
rupture risk, 266

sarcolemma, 227
sarcomere, 242
sarcoplasm, 228
sarcoplasmic reticulum, 228
scalar, 3
scaling procedure, 213
scope of bioengineering, 173
second invariant of the strain rate, 253
second moment of inertia, 190
second Piola–Kirchhoff stress, 114
semi-infinite medium, 54
semipermeable wall, 301
serial elastic element, 235
settlement, 145
shape function, 427
shear modulus, 29, 190
shear rate, 253, 305, 306, 310
shear strain, 20
shear stress, 17, 259, 263, 275
shear-augmented dispersion, 409
shedding, 357
shedding rate, 349, 356, 359, 363, 366, 367,

369, 373, 374, 37
shell conditions, 30, 31
shell constitutive matrix, 28, 32, 95
shell finite element, 91, 263, 268, 278
shell in-plane terms, 211
shell surface, 212
shell tangential plane, 92–93, 208
Sherwood number, 298, 390
short bone, 183, 184
signaling properties, 374
single file flow, 254
singular stiffness matrix, 79
six-strut tensegrity model; structure, 336,

337, 341
skew-symmetric, 21
slow-twitch, 231, 242
smooth muscle tissue, 205
smoothed particle hydrodynamics (SPH), 161
smoothing kernel function, 161
solid matrix, 314, 316
solid skeleton, 340
solid tumor, 408
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solid–fluid interaction; algorithm, 139, 140,
141, 339

solid–fluid mixture, 64, 316, 346
solute, 412
solute-absorption parameter, 413
solvability condition, 417, 418
solvent, 56, 414, 42
solvent concentration; distribution; mean, 379,

380, 384, 387, 388, 391, 393, 395
solvent diffusion coefficient, 379, 380, 381,

384, 387, 390, 391
solvent removal, 379, 380, 388, 389, 390,

392, 397
solvent removal modeling, 388, 397
source term, 357
space cell, 165
space membrane, 28
space volume, 10
spatial description, 58
spatial field, 11, 58
spatial gradient, 56
spatial point, 58
species concentration, 56
specific heat, 52, 127
specific interactions, 408
spectral decomposition, 13
specular boundary conditions, 153
SPH interpolation, 162
SPH method, 308
spherical biological membrane, 217, 218
spider spinning process, 398
spin line, 390, 392, 393, 394, 395, 397
spin tensor, 21, 49
spinal cord, 315
spinal motion segment (SMS), 66, 145, 315,

327, 328
spine anatomy, 315
spinning canal, 379, 389, 397, 398, 399, 400,

402, 403
spinning dope, 389, 397
spring constant, 35
squared membrane, 221
static condensation, 27, 32
steady flow, 60
steady heat conduction, 125
steady state solution, 53, 150, 354, 355
steady-state, 357, 363, 370, 414
stenosis, 270, 300, 304, 305, 308
stent, 276, 278, 280, 281
step pressure, 106
stiffness matrix, 73, 84, 103, 113, 186, 260

straight aorta, 268
strain; small (linear), 19, 20, 114
strain energy function, 45, 201, 215
strain field, 20
strain measures, 43
strain rate, 19, 21, 30, 59, 186, 187
strains; strain tensor, 20, 95
strain-displacement matrix, 83
strains-axial components; circumferential, 21
streaming potential, 322, 323
streamline contours, 305
stress; tensor; vector; components, 15, 16,

17, 208
stress active; passive, 339, 346
stress concentration, 90, 196
stress distribution, 168, 270
stress effective; total, 316, 344
stress fiber, 332
stress in the solid phase, 64
stress increment, 211
stress integration, 116, 117, 235
stress matrix, 117
stress measures, 45
stress ratio, 210
stress recovery; relaxation, 203
stress–strain curves; relationship, 202, 397
stress–strain hysteretic loops, 206
stress–stretch curves; relations; relationships,

46, 205, 209, 210
stress–stretch loop, 214
stretch, 118, 210, 233
stretch ratio, 234
stretch tensor left; right, 43, 48
stretched biaxially, 220
strong coupling method, 139
structural axial strain, 341
structural stiffness, 79, 110, 342
structure of biological tissue, 201
strut, 338, 340
subdomain, 167
surface flux; heat, 54, 123, 358
surface integral, 10
surface tension, 207, 2012, 213, 218
surface traction vector, 259
surfactant; with hysteresis, 201, 207, 211,

218, 219
surfactant area, 207
surrounding material, 214
surrounding temperature, 52
swelling of column, 325
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swelling pressure, 316, 317, 318, 321, 322, 326,
327, 334

symmetric AAA, 268
symmetric matrix; tensor, 4, 12
symmetry conditions, 224, 416
symmetry of structure, 80
synthetic fiber, 379, 388, 389, 394, 397
system configuration, 113
system frequencies, 99, 103
system matrix, 365
system stiffness matrix, 79, 110
systemic circulation, 250, 252
systole, 287
systolic; flow; phase; pressure, 269, 266, 276,

292

tangent constitutive matrix, 208, 211, 232, 238
tangent modulus, 210, 211
tangential stress; components, 16
tangential velocity, 259
Taylor series, 110
Taylor’s approximation, 410
temperature distribution; field, 53, 126
temperature gradient, 51
temperature profile, 54
tendon, 202, 227
tensile stiffness, 186
tensegrity architecture, 334, 341
tensegrity model, 334, 337, 343
tensile element, 334
tensile force, 332
tension–length relationship, 235
tension–stretch relationship, 234
tension–velocity relation, 234
tensor, 6
tensor - cross product; dot product; scalar

product, 7
tensorial shear strains, 20
tensorial transformation, 6, 17
tetanic contraction, 230, 234
tetanic stress, 237
tetanized condition; state, 234, 240
TGF-alpha, 372, 373, 374, 375
therapeutic antibody, 408
thermal diffusivity, 302, 305
thick filaments, 227
thick-walled cylinder, 89
thin filaments, 227
three-dimensional (3D) finite element, 81, 126,

127, 327
thrombosis, 295

tight junction, 365
time integration, 359
time step, 124
tissue; soft, 201
tissue density, 186
tissue histeresis, 205
titin, 229
torsional force, 187
total derivative, 59
total mass of polymer solution, 384
total strain; stress, 65
total water content, 325
traction normal; tangential, 345
trajectory, 429, 430
transformation matrix, 6, 12, 32, 209
transformation of constitutive: matrix; relations,

30, 95
transformation of stiffness matrix, 75
transformation of : strains; stresses, 18, 31, 32
transformation rule, 13
transitional domain, 363, 364
transport equation, 363, 411
transposed matrix, 4
transverse concentration, 413
transverse diffusion, 413
traveling cross section, 403
tropomyosin, 228
troponin, 230
truss finite element, 73, 74
T-tubules, 230
tumor, 408
tumor cell, 178, 408
tumor vasculature, 408
twitch, 230
two-dimensional finite element, 85
two-dimensional steady flow, 133

unbalanced force, 112
undeformed configuration, 212
uniaxial curve, 204, 210, 211
uniaxial deformation; extension, 23, 343
uniaxial loading; load, 203, 204, 343
uniaxial model, 203
uniaxial tension, 89, 168
uniaxial test, 203
uniqueness theorem, 37
unit normal, 92
unit step force, 36
unit vectors, 13
unloading, 205, 221
unloading curve, 205
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unloading regime, 214
unsteady diffusion, 57, 128, 129
unsteady fluid flow, 62, 134,

138, 164
unsteady heat conduction, 54, 126, 127
urinary bladder, 208, 223
uterus, 201

valve aortic, 287
valvular plane, 289
valvular pressure, 289
vascular hydraulic conductivity, 414, 421
vector; components, 3, 6
vein; deformable, 285, 286
vein valve, 283
velocity deviation, 409
velocity distribution, 134, 422
velocity field, 269, 290, 300, 420
velocity fluctuation, 155
velocity gradient, 259
velocity of contraction, 234
velocity profile, 61, 133, 155, 161, 164, 269,

284, 285, 301, 309, 403, 410, 412
velocity vector; field, 61, 103
velocity–load relationship, 229
velocity–pressure interpolation, 129
venous system, 282
ventricle left; right, 287, 289
ventricle valve, 287
ventricular pressure, 290
venula, 250
Verlet algorithm, 154
vertebrae, 315
vessel wall, 271
virtual displacements, 37
virtual strain, 37, 38, 40, 76
virtual vascular surgery, 177
virtual work, 37
viscoelastic; constitutive law, 29, 186, 313
viscoelastic materials, 29
viscoelastic models, 206
viscoelastic response, 36

viscoelasticity, 29, 201, 339
viscosity, 259
viscosity (viscous) coefficient, 35, 59
viscous constitutive law, 30
viscous friction coefficients, 206
viscous nodal force, 159
viscous resistance, 260
viscous stress, 30, 59, 130, 158, 254, 259
virtual displacement, 76
Voigt model, 35
volume flow rate, 421
volume integral, 10, 123
volumetric concentration, 55, 128
volumetric deformation, 215
volumetric force; nodal, 60, 84
volumetric fraction, 215
volumetric source, 383
volumetric strain; strain rate, 29, 30
von Mises stress, 118, 119, 270, 274, 328
Voronoi cell, 151

wall permeability, 422
wall reactions, 34
water concentration ratio, 404
water content, 321, 325
water diffusion coefficient, 398, 399
water diffusion internal, 400
water diffusion modeling, 400
wave equation, 62
waveform, 268
weak form, 122, 131, 357
weighted (weight, weighting) function, 122,

152, 165, 166, 167, 357, 415, 417
weighted quadratic form, 166
weighting method, 122

Young’s modulus, 27, 39, 66, 202, 325,
338, 346

zero traction stress, 300
Z-line, 228



Plate 1 Discretization into finite elements of the blood velocity field and displacement
field of blood vessel deformation. The velocity v and displacement u at a material point
within a finite element are obtained, respectively, by interpolations from the nodal points
vectors VK and UK (see Figure 4.1.1)

Plate 2 The American Institute for Medical and Biological Engineering ‘Hall of Fame’
gives a perspective on the most significant technological advancements in bioengineering in
the twentieth century (http://www.aimbe.org/content/index.php?pid=127) (see Figure 9.1.1)



Plate 3 Virtual vascular surgery on the grid: from the MRI or CT scan recording of the patient
vascular surgery region, to automatic generation of the computational model and analysis of results,
yielding options for the surgical procedure (Reproduced with permission from P.M.A. Sloot and
A.G. Hoekstra: Virtual Vascular Surgery on the Grid, ERCIM news, October 2004) (see Figure E9.2-1)

Plate 4 A vision of a future multistage nanodevice. A nanoparticle selectively binds to the cancer
neovascular endothelium releasing multiple agents that enable the drug to pass through biological
barriers and reach the targeted tumor cell (Reprinted by permission from Macmillan Publishers Ltd:
Cancer nanotechnology: opportunities and challenges, Mauro Ferrari, 2005.) (see Figure E9.2-2)



Plate 5 Structure of a long bone (according to Remagen 1989) (see Figure 10.1.1)

Plate 6 Schematic representation of muscle macrostructure (Fox 2004, with permission
from The McGraw-Hill Companies, January 14, 2008) From Human Physiology, Fox, (2004),
pp. 327 (see Figure 12.1.1)



Plate 7 Muscle microstructure (Fox 2004, with permission from The McGraw-Hill
Companies, January 14, 2008) From Human Physiology, Fox, (2004), pp. 331 (see Figure
12.1.2)

Plate 8 Simplified finite element model of frog gastrocnemius muscle. a) Finite element
mesh, constraints and load; b) Left panel: undeformed configuration (zero displacement field)
and real muscle without activation (right panel); c) Displacement field under full activation
(left panel) and real deformed muscle (right panel) (see Figure E12.3-2)



Plate 9 Schematic representation of the cardiovascular system (adapted from Mohr 2006)
(see Figure 13.1.1)

Plate 10 Basic blood cells. (a) Erythocytes (http://www.mast.queensu.ca/∼julia/sgc.html);
(b) Leukocyte; (http://www.funsci.com/fun3_en/blood/blood.htm); (c) Activated platelet
(according to Loscalzo & Schafer 2003) (see Figure 13.1.3)



Plate 11 Motion of RBCs in microvessels. (a) RBCs flow in a single file form when the
vessel diameter (D) is around the RBC size; (b) With increasing vessel diameter, RBCs tend
to form multiple file flow (according to Pries & Secomb 2005) (see Figure 13.1.4)

Plate 12 The structure of the aorta and coronary arteries. The aorta consists of the aorta
root, the aorta arch, the ascending and descending parts, and aortic branches. The coronary
arteries exit from the aorta root and lead to a branching network of small arteries, arterioles,
capillaries, venules and veins (see Figure 13.3.1)



Plate 13 The velocity magnitude field in the human aorta for early systolic flow t = 0�05 s.
(a) Rigid walls; (b) Deformable walls (note that diameters are smaller with respect to rigid
aorta shown in (a)) (see Figure 13.3.3)

Plate 14 The wall shear stress in the human aorta for early systolic flow t = 0�05 s;
(a) Rigid walls; (b) Deformable walls (see Figure 13.3.4)

Plate 15 Normal physiological abdominal aorta and aorta with large abdominal aneurysm
(http://www.lifelinescreening.com/Disease/AAA/Pages/Index.aspx) (see Figure 13.4.1)



Plate 16 Velocity field (left panel) and pressure distribution (right panel) for peak systole
t/T = 0�16 of AAA for the model with D/d = 2/75� d = 12�7 mm (Peattie et al. 2004) (see
Figure 13.4.4)

Plate 17 Velocity magnitude field and von Mises wall stress distribution for symmetric
AAA on a straight vessel. (a) Velocity field distribution for peak at t = 0�305 s; (b) von
Mises wall stress distributions for blood pressure peak at t = 0�4 s (see Figure 13.4.6)



Plate 18 Carotid artery bifurcation. (a) Position of carotid arteries in the arterial system;
(b) Typical carotid artery bifurcation. CCA – common carotid artery, ICA – internal carotid
artery, ECA – external carotid artery (see Figure 13.5.1)

Plate 19 3D field of velocity magnitude at the maximum systolic flow (at relative time
t/T = 0�11 within the period T ); see also web – Software for solutions for the entire period
of the cycle (see Figure 13.5.4)



Plate 20 Distribution of von Mises stress (Pa) within the artery walls of the carotid artery
bifurcation due to action of blood, for systolic deceleration flow �t/T = 0�125� and diastolic
minimum flow �t/T = 0�325� (see Figure 13.5.5)

Plate 21 Wall shear stress field at two relative times (left panel – systole; right panel –
diastole). Systolic shear stresses are much larger than diastolic (see Figure 13.5.6)

Plate 22 Intraventricular pressure distribution pattern in systolic phase for five times.
Intravascular pressure peak of 18 kPa is reached at t = 0�12 s (see Figure 13.8.5)



Plate 23 Velocity field at the five characteristic times. The blood velocity propagates from
the aortic valve to the heart apex, from 0 mm/s to Vmax = 2600 mm/s at time t = 0�12 s (see
Figure 13.8.6)

Plate 24 Albumin transport in stenosed artery, the stenotic artery part: (a) Velocity field;
(b) Normalized concentration at the wall cw/c0 (see Figure E14.2-1B)



Plate 25 A straight artery with 75% stenosis. (a) Intensity of blood velocity field (in cm/s);
(b) Streamline contours; (c) Wall shear strain rate along the wall; (d) Platelet accumulation
rate along the wall (j∗ = j�x�/c0, j�x� = kIcw�x�, see (14.3.2); kt = 5×10−3 cm/s; Wootton
et al. 2001) (see Figure E14.3-1B)

Plate 26 Spine anatomy. There are L1 to L5 spinal motion segments (SMS) which consist of
vertebrae and intervertebral discs. The annulus and nucleus pulposus are two main materials
of disc, while vertebrae have inside a soft spongy type of bone, called cancellous bone, and
an outer shell called cortical bone which is much stronger to support the spinal cord (see
Figure 15.1.2)



Plate 27 Dynamic response of human spinal motion segment (SMS). (a) Human SMS
(intervertebral disk) and one-half of the model; (b) Geometrical data and material properties
used for the FE model; (c) von Mises stress distribution (MPa); (d) Relative fluid velocity
distribution (m/s) (see Figure E15.4-5)

Plate 28 The immuno-fluorescent images of the principal stress-bearing components of the
cytoskeleton: actin filaments, intermediate filaments and microtubules. The blue oval in the
left panel is the nucleus. The artistic depiction of molecular structure of each filament is
shown above the corresponding image (from Ingber 1998) (see Figure 16.1.1)



Plate 29 A biphasic FE model of RBC subjected to uniaxial extension forces. One-eighth
of the cell is modeled due to symmetry (3D biphasic finite elements). (a) Initial biconcave
shape; (b) Deformed shape at force of 300 pN; (c) Deformed shape (top view) experimentally
recorded and computed; (d) Change of axial and transverse diameters in terms of extensional
force for three initial diameters d (computed results are represented by lines, and experimental
by bars) (see Figure E16.3-2A)

Plate 30 Cell deformation due to action of bead tightly bound to the cell surface. The
bead is subjected to a force. (a) Field of effective stress within the cell represented by a 2D
biphasic continuum; (b) Tangential and normal tractions along the contact surface between
the cell and bead (see Figure E16.3-3)



Plate 31 Crawling of cell over a flat surface (2D plane strain conditions in plane x–y).
Biphasic model includes: cytoplasm with cytoskeleton and nucleus, and membrane. (a) Acti-
vation function of skeleton structure (left panel) and constitutive law for the active stress
�a (right panel); (b) Three positions of the cell during crawling (1 – initial, after first
step; 2 – middle, when detachment of the front and attachment of the rear part occur;
3-after relaxation) with the displacement field. Data: Young’s moduli (MPa) for solid within
solid-fluid mixture, and within nucleus E = 0�1 and E = 0�3, respectively; initial porosity n =
0�7; permeability k = 102 �m4/pN s; solid and fluid density � = 10−9 mg/�m3; bulk moduli of
solid and fluid Ks = 8�3333×10−2 MPa, Kf = 1�0×109 pN/�m2 (see Figure E16.3-4)

Plate 32 Major ampullate gland of a female Nephila clavipes spider. A: Ampulla, dope
reservoir; B: A blob of dope used in the pan weighing experiment; C: Spinning canal, S-duct
(see Figure 18.3.1)



Plate 33 The local concentration 	 �
 = 0�4� � = 1�  = −2� (see Figure 19.4.6)
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