
 

 

 

 

Abstract—The challenging problem of stabilizing an 

inverted-pendulum on a cart system at the upright position via 

a nonlinear state feedback controller is analyzed. The proposed 

controller is designed in a manner that can guarantee local 

asymptotic stability for the up position equilibrium and 

instability for the down one. As shown in the paper by a 

stability analysis and verified numerically, a wide range for 

such a controller gains can be easily determined. Simulta-

neously, a systematic qualitative study of the system motion 

provides the required features the input has to fulfill in order to 

act in a unified form: initially with a series of quick cart 

movements and pendulum swings which may result in getting 

the pendulum stick away from the unstable down position, till it 

can be attracted to the upright stable equilibrium. Thus, a 

practically parameter-free and robust design is proposed. The 

overall scheme is examined by detailed simulations. The 

response of the system indicate an excellent performance with a 

fast swing up period following by a convergence to the stable up 

position with the desired displacement; during transient, small 

amplitude oscillations and limited overshoots are observed. 

I. INTRODUCTION 

The inverted-pendulum system on a cart is one of the 

most famous nonlinear dynamical systems and constitutes a 

very attractive problem for many researchers in the area of 

control systems and robotics [1]. Many trends in robotic 

technology and control are directly based on the inverted- 

pendulum stabilization techniques. A characteristic example 

is the mobile wheeled inverted pendulum system that has 

already been a commercial product and has induced a lot of 

attention in research [2,3]. Other examples are on the 

humanoid robots field where many studies are based on the 

analogy between the bipedal gait and the inverted pendulum 

motion [4,5]. In any case, inverted-pendulum is a 

fundamental benchmark in robotics since, among others, it is 

an underdamped and underactuated mechanical system with 

many similarities to the underactuated robotic systems that 

are usually controlled by fewer independent actuators than 

the degrees of freedom.  

It is well-known that the inverted-pendulum system has 

two equilibrium points. For the unforced system the first 

equilibrium point that corresponds to the down position of 

the pendulum can be easily proven by using Lyapunov’s first 
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method, to be asymptotically stable while the second 

equilibrium point that corresponds to the inverted up 

position is proven to be unstable. In contrary to the natural 

situation, the main aim of the design of an appropriate 

control law is to provide asymptotic stability at the upright 

equilibrium point regardless from the accurate knowledge of 

the system parameters. Thus, the main purpose of the design 

of the control input is the inversion and the stabilization of 

the pendulum around the upright position by using a force 

which is applied on the cart [6]. 

The solution to the problem of local stability of the upper 

equilibrium point was first presented in textbook [7]. 

However, the problem of both the inversion and the 

stabilization of the pendulum around the upper equilibrium 

point, appears to have some inherent difficulties caused, for 

example, by the fact that simple feedback controllers cannot 

be designed to ensure global asymptotic stability at the 

upright position, or, the nonlinear model of the inverted-

pendulum system cannot be fully feedback linearizable [8]. 

In [9] and [10], after having used only partial feedback 

linearization techniques, a control scheme based on 

Lyapunov methods is proposed. Also, in [11], after applying 

partial feedback linearization based control, semi-global 

stabilization is proven. As presented in [12-14], partial 

feedback linearization can be avoided by using the passivity 

property. However, all the latter methods need to know the 

exact physical characteristics of the system in order to apply 

stable controls. In other attempts, adaptive fuzzy or some 

combined with robust approaches are proposed and 

examined [15,16]. Besides complexity, the methods can 

guarantee uniform ultimate boundedness of the tracking 

error and a good system performance. 

Another significant endeavor, recently used in inverted-

pendulum applications, is based on a rather heuristic 

method, known in the literature as the swing up technique 

[17]. The basic concept of this method is based on the fact 

that the total kinetic and potential energy of the system is 

smaller in the lower than the upper equilibrium point. Thus, 

the problem is divided into two separate parts. In the first 

part, a control scheme is applied on the cart in order to offer 

an appropriate amount of energy to the system until the 

pendulum reaches a region near the inverted position. 

Initially, a series of quick cart movements occur that result 

in pendulum swinging, in a fashion that efficiently adds 

energy to the pendulum. As the pendulum swings higher, 

gradually the cart movement amplitude is reduced so that the 

pendulum approaches the inverted up position in small 
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increments and ultimately reaches vertical with small 

angular velocity. After approaching close to the inverted 

position, in the second part, a switching to a different control 

law occurs to stabilize the pendulum around the upper 

equilibrium point. Based on this technique, many researchers 

presented several solutions. One interesting solution based 

on energy control techniques was presented in [18] and 

similar approaches were also followed in [19-21]. Control 

laws combined with pumping-damping energy shaping are 

derived with control signal saturation taken into account. 

The method can ensure global stability, unfortunately only 

for the case of simple inverted pendulum, without a cart, 

where the control is applied directly on the pivot as 

accelerating input [21].  

In this paper, an upper position stabilizing nonlinear state 

feedback smooth controller is proposed that acts as a force 

moving the cart while simultaneously operates as swing up 

driver when the pendulum stick is initially near the rest 

down position. Particularly, an extensive qualitative motion 

analysis of the pendulum rotational movement that takes into 

account the impact of the external force input characteristics, 

enables the successful implementation of such a unified 

closed-loop controller. The feedback control law is thus 

constructed with nonlinear terms contributing on one side to 

the selection of the desired closed-loop equilibriums exactly 

at the vertical up and down positions and on the other hand 

to an increased dissipation performance. Additionally, the 

proposed control scheme is capable to act as negative 

feedback for any angle between −𝜋/2 and  𝜋/2 around the 

upright position wherein local asymptotic stability can also 

be proven by applying Lyapunov indirect method; outside 

this area, that also involves the down position equilibrium, 

the proposed controller represents a positive feedback. The 

analysis, as further confirmed by a numerical example, 

results in easily obtained ranges of appropriate gains that can 

ensure simultaneously asymptotic stability for the upright 

position equilibrium and instability for the down one. 

Finally, the theoretical analysis and the proposed design 

as well as the expected system response are fully verified by 

extensive simulations. 

II. MODEL OF THE INVERTED-PENDULUM SYSTEM 

A. System Dynamics 

The plane model of an inverted-pendulum system is 

shown in Fig.1, where 𝑥 and 𝜃are the carrier’s position and 

the pendulum’s swing angle, respectively. Let 𝑀 be the mass 

of the carrier, 𝑚 the mass of the pendulum, while 𝑔 is the 

gravitational acceleration, 𝑙 the constant length of the 

pendulum and 𝐹 is the external force that moves the carrier 

and the pendulum. 

Now, in order to obtain the dynamic model of the system, 

the following assumptions are considered: i) the pendulum is 

taken as a point mass with or without an additional moment 

of inertia J considered for the pendulum stick, ii) frictional 

elements in pendulum angle rotation are not taken into 

account and iii) the effects of wind and other disturbances 

are not considered. 

  

 
Fig.1. Schematic illustration of inverted-pendulum on a cart 

 

Then, the differential equations of the system may be 

derived by using standard Euler-Lagrange methods or 

applying Newton’s laws, as follows 
 

(𝑀 + 𝑚)�̈� + 𝑚𝑙𝑐𝑜𝑠𝜃�̈� + 𝛽�̇� − 𝑚𝑙𝑠𝑖𝑛𝜃�̇�2 = 𝐹      (1) 
 

𝑚𝑙𝑐𝑜𝑠𝜃�̈� + (𝐽 + 𝑚𝑙2)�̈� − 𝑚𝑔𝑙𝑠𝑖𝑛𝜃 = 0                 (2) 
 

where 𝛽 is the friction coefficient on the cart wheels. 

Dynamic equations (1), (2) of the inverted-pendulum 

system can be rewritten as: 
 

𝐷(𝑞)�̈� + 𝐶(𝑞, �̇�)�̇� + 𝑅(𝑞)�̇� + 𝑣(𝑞) = 𝑓            (3) 
 

where the generalized coordinate is 𝑞(𝑡) = [𝑥(𝑡)  𝜃(𝑡)]𝑇  

and 
 

𝐷(𝑞) = [
𝑀 + 𝑚 𝑚𝑙𝑐𝑜𝑠𝜃
𝑚𝑙𝑐𝑜𝑠𝜃 𝐽 + 𝑚𝑙2

] , 𝐶(𝑞, �̇�) = [0 −𝑚𝑙𝑠𝑖𝑛𝜃�̇�
0 0

] 

 

𝑅(𝑞) = [
𝛽 0
0 0

] , 𝑣(𝑞) = [
0

−𝑚𝑔𝑙𝑠𝑖𝑛𝜃
] , 𝑓 = [

𝐹
0
] 

 

Notice that system (3) is an underactuated Euler-Lagrange 

system and 𝐷(𝑞) is symmetric and positive definite, since 

the parameters  𝐽,𝑀,𝑚, 𝑙 are positive and 
 

det[𝐷(𝑞)] = (𝑀 + 𝑚) (𝐽 + 𝑚𝑙2) − (𝑚𝑙𝑐𝑜𝑠𝜃)2 = 

= 𝑀𝑚𝑙2 + (𝑀 + 𝑚)𝐽 + 𝑚2𝑙2𝑠𝑖𝑛2𝜃 > 0 
 

Another well-known property of Euler-Lagrange systems 

is that the parameters of the model are such as the matrix: 

�̇�(𝑞) − 2𝐶(𝑞, �̇�), is indeed skew-symmetric, where �̇�(𝑞) 

represents the time derivative of 𝐷(𝑞). 

Finally, the potential energy associated to the pendulum 

may be defined as 𝑃(𝜃) = 𝑚𝑔𝑙(𝑐𝑜𝑠𝜃 − 1) such as 𝑃(𝜃) =
0 when the pendulum is in the inverted position. Also, the 

term 𝑣(𝑞) is related to 𝑃 as follows:  

 
𝜕𝑃

𝜕𝜃
= −𝑚𝑔𝑙𝑠𝑖𝑛𝜃 

 

i.e. through the second term of 𝑣(𝑞). 
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B. State Space Representation 

The system dynamics as described by (3) can be easily 

represented in state space. Toward this end, without loss of 

generality, it is assumed that the pendulum stick moment of 

inertia J equals 
1

3
𝑚𝑙2, as has been adopted in [1]. Also, 

defining 𝑎 = 1/(𝑚 + 𝑀), equation (3) can be rewritten in 

state space, in the following 4th-order nonlinear form  

 

[

�̇�1

�̇�2

�̇�3

�̇�4

] =

[
 
 
 
 
 
 
 

𝑥3

𝑥4

𝑎(
4

3
𝑚𝑙𝑥4

2𝑠𝑖𝑛𝑥2 −
1

2
𝑚𝑔𝑠𝑖𝑛2𝑥2 − 𝛽𝑥3)

4

3
− 𝑎𝑚𝑐𝑜𝑠2𝑥2

𝑔𝑠𝑖𝑛𝑥2 −
𝑙

2
𝑎𝑚𝑥4

2𝑠𝑖𝑛2𝑥2 + 𝑎𝛽𝑥3𝑐𝑜𝑠𝑥2

4

3
𝑙 − 𝑙𝑎𝑚𝑐𝑜𝑠2𝑥2 ]

 
 
 
 
 
 
 

+ 

 

+

[
 
 
 
 
 
 
 

0
0

4

3
𝑎

4

3
− 𝑎𝑚𝑐𝑜𝑠2𝑥2

−𝑎𝑐𝑜𝑠𝑥2

4

3
𝑙 − 𝑙𝑎𝑚𝑐𝑜𝑠2𝑥2]

 
 
 
 
 
 
 

𝑢                             (4) 

 

where input u stands for the external force F and the state 

vector is[𝑥1𝑥2𝑥3𝑥4]
𝛵 = [𝑥 𝜃 �̇��̇�]𝑇 . 

III. CONTROL DESIGN BASED ON SYSTEM PROPERTIES AND 

STABILITY CONCEPTS 

A. Analysis of the Inverted-Pendulum System Motion 

From the 4
th

 state equation of (4), repeated here for the 

reader’s convenience,  
 

�̈� =
𝑔𝑠𝑖𝑛𝜃 −

𝑙

2
𝑎𝑚�̇�2𝑠𝑖𝑛2𝜃

4

3
𝑙 − 𝑙𝑎𝑚𝑐𝑜𝑠2𝜃

+
−𝑎𝑐𝑜𝑠𝜃

4

3
𝑙 − 𝑙𝑎𝑚𝑐𝑜𝑠2𝜃

𝑢 

≡ 𝜑(𝜃, �̇�) + 𝑏(𝜃)𝑢                               (5) 
 

wherein it is considered that the influence of the friction 

terms can be practically neglected, one can conclude the 

following: Input coefficient function 𝑏(𝜃) takes negative 

values and is bounded away from zero for all −𝜋/2 < 𝜃 <
𝜋/2 while it takes positive values outside this area; also for  

𝜃 = 𝜋/2  or −𝜋/2  the system is uncontrollable. Therefore, 

a positive input may act on pendulum acceleration and 

rotation as negative feedback when the pendulum is around 

the upright position (𝜃 = 0𝑜), and as a positive one when the 

pendulum is around the down position (𝜃 = 180𝑜).  

Similar comments can be made by considering the 3
rd

 state 

equation of (4). In that equation it is observed that in all 

cases a positive input may act on cart acceleration and 

motion as positive feedback. 

On the other hand, from (2) with J as previously 

considered and the friction term negligible again, we obtain  

�̈� =
3

4

𝑔

𝑙
𝑠𝑖𝑛𝜃 −

3

4

�̈�

𝑙
𝑐𝑜𝑠𝜃                          (6) 

 

From (6), a qualitative analysis of the inverted-pendulum 

motion can be conducted. Without cart acceleration, only 

gravity causes pendulum rotational acceleration at a 

magnitude increasing with swing angle. Particularly, starting 

from an initial angle 𝜃 = 180𝑜 (pendulum down), obviously 

no rotational acceleration is produced. Clearly, as it can be 

seen from (6), cart acceleration causes pendulum rotation in 

addition to the effects of gravity. Specifically, it can be 

observed that the direction of pendulum rotational 

acceleration is opposite to the direction of the cart 

acceleration for all −𝜋/2 < 𝜃 < 𝜋/2 while is acting on the 

same direction outside this area. The effect of cart 

acceleration on pendulum rotation is negative greatest when 

the pendulum is in up position (𝜃 = 0𝑜), and is positive 

greatest when the pendulum is in down position (𝜃 = 180𝑜). 

Therefore, if one applies positive cart acceleration (by 

applying a positive input) when pendulum is in an initial 

down position, then 𝜃 is positively accelerated and as 𝜃 

becomes greater than 180𝑜 it moves toward the −90𝑜 angle 

with the effect of cart acceleration to be continuously 

decreased. Simultaneously, the gravity effect causes an 

additional reduction on the rotational acceleration since it 

acts on the opposite direction of that of the cart acceleration. 

B. Controller Design 

Taking into account the above remarks, a cart motion 

strategy is considered and implemented by suitably selecting 

the feedback control. The main task is to incorporate in a 

unified and as possible simple formula, both, the swing up 

process and the stabilization of the pendulum at the inverted 

up position, 𝜃 = 0𝑜. Particularly, our aim is to apply a 

feedback law in order to force cart in such a way that 

starting from the down position (𝜃 = 180𝑜) with all other 

state initial conditions zero, to achieve after a limited swing 

period, convergence to the upright equilibrium where the 

pendulum will be stabilized thereafter. In accordance to the 

previously presented analysis, the following simple linear 

positive feedback control law may be examined: 
 

𝑢 = 𝑘1𝑥 + 𝑘2𝜃 + 𝑘3�̇� + 𝑘4�̇�                      (7) 
 

where 𝑘1, 𝑘2, 𝑘3 and 𝑘4 are positive constant gains. 

For the full state feedback controller (7), our aim is the 

positive values of the gains to be selected in a manner that 

interchanges the nature of the upright and down equilibria of 

the pendulum from locally unstable and stable to become 

locally stable and unstable, respectively. This is expected to 

be satisfied for gains lying on specific ranges coming from 

the system local analysis around both the equilibria. In any 

case, the attempt is the permitted ranges to be independent 

from an accurate knowledge of the system parameters, as for 

example feedback linearization techniques require. 

By applying this type of feedback control, one can easily 
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see that the closed-loop equilibria are given as 
 

[𝑥∗𝜃∗�̇�∗�̇�∗] = [−
𝑘2

𝑘1

𝑝𝜋  𝑝𝜋  0  0]                (8) 

with 𝑝 any integer number. 

Nevertheless, it is obvious from (8), that, a necessary 

condition for the proposed control law to be effective is all 

the equilibrium points with 𝑝 zero or any integer even 

number to be stable, while the rest equilibrium points with 𝑝 

any integer odd number to be unstable. Moreover, as one can 

see from (8), 𝑥∗ element cannot be zero for any nonzero 𝑝. 

This is an undesirable fact that can be eliminated by 

modifying the second term of the control law (7) from 𝑘2𝜃 

into  𝑘2𝑠𝑖𝑛𝜃.  

It is worth noting that usually, track length is limited and 

therefore, the cart position displacement during transients 

should be suppressed. To this end, the coupled dissipation 

technique is adopted as described in [22, 23] by considering 

the gain 𝑘3 to include a time-varying quadratic function of 

the angle derivative, i.e., 𝑘3 is substituted by  𝑘3 − 𝑐�̇�2, with 

some 𝑐 > 0. Hence, the finally proposed feedback control 

law takes on the form: 
 

𝑢 = 𝑘1𝑥 + 𝑘2𝑠𝑖𝑛𝜃 + (𝑘3 − 𝑐�̇�2)�̇� + 𝑘4�̇�           (9) 
 

where all the equilibria are now calculated to be 
 

[𝑥∗𝜃∗�̇�∗�̇�∗] = [0  𝑝𝜋  0  0]                      (10) 

C. Controller Gains Selection based on Stability 

Concepts 

It is again worth noting that in order to apply the control 

law (9), it is necessary all the equilibrium points (10) with 𝑝 

zero or integer even number to be stable, while the rest 

equilibrium points with 𝑝 integer odd number to be unstable. 

Therefore, to proceed with our analysis, it is required to 

determine if such a condition can be met by selecting 

suitably the range where the gains 𝑘1, 𝑘2, 𝑘3 and 𝑘4 can take 

their values. Particularly, we incorporate the proposed 

control law (9) into the original system model (4) wherein it 

is assumed  𝛽 = 0 and 𝑐 = 0 in order to relax the calculation 

effort. Our aim is to apply the indirect Lyapunov’s method 

in order to examine the local stability or instability of both 

the equilibria of the closed-loop system. To this end, a linear 

approximation of the closed-loop system is obtained by 

applying Taylor expansion around the up and the down 

equilibrium, i.e. 
 

�̇�𝑐𝑙 = 𝐴𝑖𝑥𝑐𝑙               𝑖 = 1,2                           (11) 
 

where 𝐴𝑖 = 

 

[
 
 
 
 
 
 

0                        0                               1               0   
0                        0                               0               1   

4𝑘1

4𝑀 + 𝑚
    

(−1)𝑖+14𝑘2 − 3𝑚𝑔

4𝑀 + 𝑚
     

4𝑘3

4𝑀 + 𝑚
    

4𝑘4

4𝑀 + 𝑚
    

(−1)𝑖3𝑘1

𝑙(4𝑀 + 𝑚)

(−1)𝑖+13𝑔/𝑎 − 3𝑘2

𝑙(4𝑀 + 𝑚)
 

(−1)𝑖3𝑘3

𝑙(4𝑀 + 𝑚)

(−1)𝑖3𝑘4

𝑙(4𝑀 + 𝑚)]
 
 
 
 
 
 

 

 

and 𝑥𝑐𝑙  is the closed-loop state vector and matrix 𝐴1 

corresponds to the upright equilibrium point and 𝐴2 to the 

down one. 

In accordance to the indirect Lyapunov’s method [24], 

asymptotic stability of the up equilibrium is guaranteed if 

there exist gains 𝑘1, 𝑘2, 𝑘3 and 𝑘4 such that all the 

eigenvalues of matrix 𝐴1 have negative real parts; 

simultaneously, if for these gains, at least one of the 

eigenvalues of matrix 𝐴2 has positive real part, the down 

equilibriun is unstable. In practice, the above eigenvalue 

limits is expected to impose the ranges (if any) wherein the 

gains 𝑘1, 𝑘2, 𝑘3 and 𝑘4 should be lying instead of 

determining exact values for them. Therefore, in the 

procedure of selecting suitable gains, a direct dependence 

from the system parameters is avoided, thus contributing to 

the robustness of the inverted pendulum performance, 

against its natural characteristics. 

Furthermore, recalling (6) with �̈� taken as input, and 

following the analysis presented in [19], it can be ensured 

that after swinging, the pendulum will insert in the upper 

region −𝜋/2 < 𝜃 < 𝜋/2. It is expected that as larger 𝑘2, 𝑘4, 

are, as faster the pendulum starts swinging from the rest 

down position and continuous to move on the down 

semicircle towards on the inverted up range. Inside the upper 

semicircle the controller creates a negative feedback and it is 

expected that suitable conditions can be found such that the 

pendulum to converge at the stable region of attraction. 

Simultaneously, the small values of 𝑘1, 𝑘3 may keep the cart 

displacement close enough to the final equilibrium. 

 Certainly, the overall qualitative analysis presented is a 

necessary supplementary tool for practical design solutions 

in sight of the fact that only local stability can be proved.  

IV. THE SYSTEM UNDER CONSIDERATION 

An inverted pendulum system with the proposed nonlinear 

state feedback controller, and parameters 𝑀 = 𝑚 = 1, 𝑙 =
0.3, 𝛽 = 0.0001 (𝑔 = 9.81) is considered and simulated. 

To examine if there exist suitable ranges wherein the gains 

𝑘1, 𝑘2, 𝑘3 and 𝑘4 are lying, the corresponding characteristic 

polynomials of 𝐴1 and 𝐴2 are calculated as functions of the 

controller gains. Clearly, to determine the suitable gains and 

their values’ ranges is a cumbersome task. Towards this end, 

the Descartes’ rule of signs [25] is used as guidance and an 

algorithmic procedure based on the trial and error concept is 

developed. This is due to the fact that Descartes’ rule 

provides only necessary conditions for the signs of the roots 

of a polynomial. Therefore, one cannot be a priori ensured 

that all the roots of matrix 𝐴1 have negative real parts and 

simultaneously at least one root of 𝐴2 lies for sure on the 

right half-plane, ensuring the stability of the up and the 

instability of the down equilibrium point, respectively.  

Nevertheless, the practical implementation of the 

calculation procedure seems to easily result in appropriate 

values for the controller gains, perhaps due to a correct 

qualitative analysis used for designing the controller and 
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studying stability. In this frame, a possible set of gains for 

the proposed controller are chosen to be 𝑘1 = 2, 𝑘2 =
140,  𝑘3 = 6 and  𝑘4 = 60. Also, a value of  𝑐 = 3 is chosen 

in an endeavor to further improve the system performance. 

Two different cases are simulated. In the first case the 

control law is applied when the inverted-pendulum system is 

initially near its natural down position equilibrium point, 

with task to swing up the stick and stabilize the pendulum at 

the upright position with the final displacement on x to be 

zero, i.e. the system returns exactly to the initial position 

with the stick up inverted. In the second case, the only 

difference is that the final displacement on x is arbitrarily 

selected at a desired value different to zero (then obviously 

the first term of the control law (𝑘1𝑥) is substituted by 

𝑘1(𝑥 − 𝑥𝑟𝑒𝑓), where now it is selected 𝑥𝑟𝑒𝑓=3m). It is noting 

that for the first case, for practical reasons, the actual initial 

conditions of the inverted-pendulum system are taken to be 

𝑥(0) = 0.01, 𝜃(0) = 180𝑜 , �̇�(0) = �̇�(0) = 0; a very small 

nonzero 𝑥(0) is chosen since otherwise, the control input is 

zero and the system remains unforced at the initial rest point 

for all future time. 

Figure 2(a) represents the carrier’s position and Figure 

2(b) the pendulum’s angle response. Figures 2(c) and 2(d) 

represent the carrier’s velocity and the pendulum’s angular 

velocity, respectively for the first case. The corresponding 

responses for the second case are shown in Figs. 3(a) to 3(d). 

In both cases, one can observe the swing up period that is 

quickly finished in less than 2s, as shown in Figures 2(a) and 

3(a). The system response appears at most two oscillations 

(see Figures 2(b) and 3(b), respectively) before its slower 

convergence to the inverted upright position. This indicates a 

clear improvement with respect to other methods where 

usually more oscillations are observed [17-21]. As seen in 

Figures 2(a) and 3(a), small overshoots are observed after 

swing up while the final displacements are on the command 

values, at the origin or at 𝑥𝑟𝑒𝑓=3m, respectively. 

Finally, Figures 2(c)-(d) and 3(c)-(d), respectively, 

represent the cart and pendulum angular velocities for each 

case. It is again verified the excellent system performance 

and the effective unified manner in which the controller acts 

on the system, with the velocities to take feasible values.  

V. CONCLUSION 

A novel controller design for inverted-pendulum systems 

has been developed in the basis of a careful motion and 

stability analysis. As it is theoretically analyzed and 

confirmed by simulations, the proposed nonlinear state 

feedback controller can effectively act in a twofold 

sequential mode: Firstly, a quick swing up processing is 

actuated which is followed by an asymptotic convergence at 

the inverted position in the stable region of attraction. 

Though the theoretical analysis is based on local stability 

studies and qualitative concepts, both the design and the 

system response appear to be very satisfactory. 
 

 

 
(a) Carrier’s position 

 

 
(b) Pendulum’s angle 

 

 
(c) Carrier’s velocity 

 

 
(d) Pendulum’s angular velocity 

 

Fig. 2. System  response for case 1: (a) carrier’s position,  

(b) pendulum’s angle, (c) carrier’s velocity, and (d) 

pendulum’s angular velocity. 
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(a) Carrier’s position 

 

 
(b) Pendulum’s angle 

 

 
(c) Carrier’s velocity 

 

 
(d) Pendulum’s angular velocity 

 

Fig. 3. System response for case 2: (a) carrier’s position,   

(b) pendulum’s angle, (c) carrier’s velocity, and (d) 

pendulum’s angular velocity. 
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