MEDICAL ROBOTICS EXAM (February 2017)

Consider the daVinci surgical manipulator, with its simplified kinematic diagram and its kinematic configuration

Let its last five Degrees of Freedom $\bar{q}=\left[q_{8}, \ldots, q_{12}\right]^{T}=\left[\theta_{8}, d_{9}, \theta_{10}, \theta_{11}, \theta_{12}\right]^{T}$

1. Compute in symbolic form the matrix $A_{8}^{12}\left(\bar{q}^{T}\right)$
2. Given the bounds of $\left[\begin{array}{c}0^{\circ} \\ 0 \\ 0^{\circ} \\ 0^{\circ} \\ 0^{\circ}\end{array}\right] \leq \bar{q} \leq\left[\begin{array}{c}60^{\circ} \\ 200 \mathrm{~mm} \\ 60^{\circ} \\ 45^{\circ} \\ 30^{\circ}\end{array}\right]$ compute points of the 3D-working space
from $\bar{p}_{3 \times 1}(\bar{q})$, where $A_{8}^{12}=\left[\begin{array}{c|c}R_{3 \times 3} & \bar{p}_{3 \times 1} \\ \hline 0_{3 \times 1} & 1\end{array}\right]$
3. Solve the inverse kinematics problem, or given compatible values with the kinematic configuration of matrix $T_{8}^{12}=\left[\begin{array}{c|c}\tilde{R}_{3 \times 3} & \tilde{\bar{p}}_{3 \times 1} \\ \hline 0_{3 \times 1} & 1\end{array}\right]$, compute \bar{q}
4. Select any spiral trajectory within your working space

$$
x(t)-x_{c}=r \cos \left(\frac{2 \pi t}{T}\right), y(t)-y_{c}=r \sin \left(\frac{2 \pi t}{T}\right), z(t)-z_{c}=d\left(\frac{2 \pi t}{T}\right), r \neq 0, d \neq 0
$$ where the coordinates $x(t), y(t), z(t)$ are not expressed necessarily with respect to the coordinate system $O_{8} x_{8} y_{8} z_{8}$. Approximate two circular motions of this spiral with at least 36×2 points under the assumption that $T=1$. Solve for these 72 points the inverse kinematics problem by computing $\bar{q}\left(0: \frac{1}{36}: 2\right)$.

5. Under the assumption that two successive points $q_{i}(t), q_{i}\left(t+\frac{1}{36}\right), i=8, \ldots, 12$, $t=0, \frac{1}{36}, \frac{2}{36}, \ldots$ are connected by a third order polynomial with a stop-and-go trajectory, or $\dot{q}_{i}(t)=\dot{q}_{i}\left(t+\frac{1}{36}\right)=0, t=0, \frac{1}{36}, \frac{2}{36}, \ldots$ plot the joint trajectories $\bar{q}(t), t \in \mathfrak{R}$ and the resulting end-effector trajectory $\bar{p}(t)$.
