
Abderazek Ben Abdallah

Advanced Multicore
Systems-On-Chip
Architecture, On-Chip Network, Design

123

Abderazek Ben Abdallah
School of Computer Science
and Engineering

The University of Aizu
Aizu-Wakamatsu, Fukushima
Japan

ISBN 978-981-10-6091-5 ISBN 978-981-10-6092-2 (eBook)
DOI 10.1007/978-981-10-6092-2

Library of Congress Control Number: 2017948616

This Springer imprint is published by Springer Nature
The registered company is Springer Nature Singapore Pte Ltd.
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore

© Springer Nature Singapore Pte Ltd. 2017

Preface

Nowadays, the technology has become an essential pawn in our life that is not
restricted anymore to academic research or critical missions; but it is moving away
to provide the simplest and easiest services that we need or desire for our daily life.
With the expanse of technology and the rising of new trends every day, the
necessity to process information anywhere and anytime is becoming the main goal
of developers and manufacturers.

Systems on chip (SoCs) are embedded systems composed of several modules
(processors, memories, input/output peripherals, etc.) on a single chip. With SoCs,
it is now possible to process information and execute critical tasks at higher speed
and lower power on a tiny chip. This is due to the increasing number of transistors
that can be embedded on a single chip, which keeps doubling approximately every
2 years as Intel co-founder Gordon Moore predicted in 1965. This made shrinking
the chip size while maintaining high performance possible. This technology scaling
has allowed SoCs to grow continuously in component count and complexity and
evolve to systems with many processors embedded on a single SoC. With such high
integration level available, the development of multi and many cores on a single die
has become possible.

Historically, the SoCs paradigm has evolved from fairly simple unicore single
memory designs to complex homogeneous/heterogeneous multicore SoC (MCSoC)
systems consisting of a large number of intellectual property (IP) cores on the same
silicon. To meet the challenges arising from high computational demands posed by
latest state-of-the-art embedded and consumer electronic devices, most current
systems are based on such paradigm, which represents a real revolution in many
aspects of computing.

The attraction of multicore processing for power reduction is compelling in
embedded and in general purpose computing. By splitting a set of tasks among
multiple cores, the operating frequency necessary for each core can be reduced,
thereby facilitating a reduction in the voltage on each core. As dynamic power is
proportional to the frequency and to the square of the voltage, we are able to obtain
a sizable gain, even though we may have more cores running.

As more and more cores are integrated into these designs to share the ever
increasing processing load, the primary challenges are geared toward efficient
memory hierarchy, scalable system interconnect, new programming models, and
efficient integration methodology for connecting such heterogeneous cores into a
single system capable of leveraging their individual flexibility.

Current design methods are inclined toward mixed hardware/software (HW/SW)
co-designs, targeting multicore SoCs for application specific domains. To decide on
the lowest cost mix of cores, designers must iteratively map the device’s func-
tionality to a particular HW/SW partition and target architectures. In addition, to
connect the heterogeneous cores, the architecture requires high performance-based
complex communication architectures and efficient communication protocols, such
as hierarchical bus, point-to-point connection, or the recent new interconnection
paradigm—network on chip.

Software development also becomes far more complex due to the difficulties in
breaking a single processing task into multiple parts that could be processed sep-
arately and then reassembled later. This reflects the fact that certain processor jobs
could not possibly be easily parallelized to run concurrently on multiple processing
cores and that load balancing between processing cores—especially heterogeneous
cores—is extremely difficult.

This book is organized into nine chapters. The book stands independent and we
have made every attempt to make each chapter self-contained as well.

Chapter 1 introduces multicore systems on chip (MCSoCs) architectures and
explores SoCs technology and the challenges it presents to organizations and
developers building next-generation multicore SoCs-based systems.

Understanding the technological landscape and design methods in some level of
details are very important. This is because so many design decisions in multicore
architecture today are guided by the impact of the technology. Chapter 2 presents
design challenges and conventional design methods of MCSoCs. It also describes a
so-called scalable core-based method for systematic design environment of appli-
cation specific heterogeneous multicore SoC architectures. The architecture design
used in conventional methods of multicore SoCs and custom multiprocessor
architectures are not flexible enough to meet the requirements of different appli-
cation domains and not scalable enough to meet different computation needs and
different complexities of various applications. Therefore, designers should be aware
of existing design methods and also be ready to innovate or adapt appropriate
design methods for individual target platform.

Understanding the software and hardware building blocks and the computation
power of individual components in these complex MCSoCs is necessary for
designing power-, performance-, and cost-efficient systems. Chapter 3 describes in
details the architectures and functions of the main building blocks that are used to
build such complex multicore SoCs. Readers with a relevant background in mul-
ticore SoC building blocks could effectively skip some of the materials mentioned
in this chapter. The knowledge of these aspects is not an absolute requirement for
understanding the rest of the book, but it does help novice students or beginners to

get a glimpse of the big picture of a heterogeneous or homogeneous MCSoC
organization.

Whether homogeneous, heterogeneous, or hybrid multicore SoCs, IP cores must
be connected in a high-performance, scalable, and flexible manner. The emerging
technology that targets such connections is called an on-chip interconnection net-
work, also known as a network on chip (NoC), and the philosophy behind the
emergence of such innovation has been summarized by William Dally at Stanford
University as route packets, not wires.

Chapters 4–6 presents fundamental and advanced on-chip interconnection net-
work technologies for multi- and many-core SoCs. These three chapters are all very
important part of the book since they allow the reader to understand what needed
microarchitecture for on-chip routers and network interfaces are essential towards
meeting latency, area, and power constraints. Reader will also understand practical
issues about what system architecture (topology, routing, flow control, NI, and 3D
integration) is most suited for these on-chip networks.

With the rise of multicore and many-core systems, concurrency becomes a major
issue in the daily life of a programmer. Thus, compiler and software development
tools will be critical towards helping programmers create high-performance soft-
ware. Programmers should make sure that their parallelized program codes would
not cause race condition, memory-access deadlocks, or other faults that may crash
their entire systems. Chapter 7 describes a novel parallelizing compiler design for
high-performance computing.

Power dissipation continues to be a primary design constraint and concern in
single and multicore systems. Increasing power consumption not only results in
increasing energy costs, but also results in high die temperatures that affect chip
reliability, performance, and packaging cost. Chapter 8 provides a detailed inves-
tigation of power reduction techniques for multicore SoC at components and net-
work levels. Energy conservation has been largely considered in the hardware
design, in general and also in embedded multicore system’s components, such as
CPUs, disks, displays, memories, and so on. Significant additional power savings
could be also achieved by incorporating low power methods into the design of
network protocols used for data communication (audio, video, etc.).

Chapter 9 ties together previous chapters and presents a real embedded multicore
SoC system design targeted for elderly health monitoring. For this book, we used
our experience to illustrate the complete design flow for a multicore SoC running an
electrocardiogram (ECG) application in parallel. Thanks to the recent technological
advances in wireless networking, embedded microelectronics, and the Internet,
computer and biomedical scientists are now capable to fundamentally modernize
and change the way health care services are deployed. Discussions on how to
design the algorithms, architecture, register-transfer level implementation, and
FPGA prototyping and validation for ECG processing are presented in details.

This book took nearly 2 years to complete. It evolved from our first book and is
derived from our teaching experiences in embedded system designs and architecture
to both undergraduate and graduate students. Multicore systems paradigm created
stupendous opportunities to increase overall system performance, but also created

many design challenges that designers must now overcome. Thus we must continue
innovating new algorithms and techniques to solve these challenges.

The author is thankful to numerous colleagues and graduate students for their
lively discussions and their help in preparing the manuscript of this book. Special
thanks are due to the publishers in bringing out this book quickly, yet maintaining
very high quality.

Aizu-Wakamatsu, Japan Abderazek Ben Abdallah

Contents

1 Introduction to Multicore Systems On-Chip . 1
1.1 The Multicore Revolution. 1

1.1.1 The Impact of Moore’s Law . 2
1.1.2 On-Chip Interconnection Schemes 2
1.1.3 Parallelism and Performance . 4
1.1.4 Parallel Hardware Architectures . 6
1.1.5 The Need for Multicore Computing 8
1.1.6 Multicore SoCs Potential Applications 8

1.2 Multicore SoC Basics . 10
1.2.1 Programmability Support. 10
1.2.2 Software Organization. 11
1.2.3 Programming Multicore Systems. 12
1.2.4 Multicore Implementations . 13

1.3 Multicore SoCs Design Challenges. 15
1.3.1 Cache Coherence . 15
1.3.2 Power and Temperature . 16
1.3.3 Multi-threading and Memory Management 16
1.3.4 On-Chip Interconnection Networks 17
1.3.5 Reliability Issues . 17

1.4 Chapter Summary . 17
References. 18

2 Multicore SoCs Design Methods . 19
2.1 Introduction . 19
2.2 Design Space Exploration. 20
2.3 Parallel Software Development Phase. 22

2.3.1 Compiler-Based Schemes . 22
2.3.2 Language Extensions Schemes . 23
2.3.3 Language Extensions with APIs . 24
2.3.4 Model-Based Schemes . 24

2.4 Generic Architecture Template (GAT) for Real Multicore SoC
Design . 25
2.4.1 Target Multicore SoC Platform . 25
2.4.2 Design Method . 26
2.4.3 QueueCore Architecture . 28
2.4.4 Performance Analysis . 33

2.5 Chapter Summary . 35
References. 35

3 Multicore SoC Organization . 39
3.1 Introduction . 39

3.1.1 Heterogeneous MCSoC. 41
3.1.2 Homogeneous MCSoC . 43
3.1.3 Multicore SoC Applications . 44
3.1.4 Applications Mapping . 45

3.2 MCSoC Building Blocks . 46
3.2.1 Processor Core . 48
3.2.2 Memory . 48
3.2.3 Cache . 50
3.2.4 Communication Protocols . 50
3.2.5 Intellectual Property (IP) Cores . 52
3.2.6 IP Cores with Multiple Clock Domains 53
3.2.7 Selection of IP Cores . 54

3.3 MCSoC Memory Hierarchy . 56
3.3.1 Types on On-Chip Memory . 56
3.3.2 Scratchpad Memory . 58
3.3.3 Off-Chip Memory . 58
3.3.4 Memory Power Reduction in SoC Designs 59

3.4 Memory Consistency in Multicore Systems 61
3.4.1 Cache Coherence Problem . 61
3.4.2 Cache Coherence Protocols . 63

3.5 Chapter Summary . 65
References. 65

4 Multicore SoC On-Chip Interconnection Networks 67
4.1 Introduction . 67
4.2 Network-on-Chip Architecture . 69

4.2.1 Topology. 69
4.2.2 Switching . 71
4.2.3 Flow Control. 74
4.2.4 Routing Algorithms. 76

4.3 Hardware Design of On-Chip Network. 82
4.3.1 Topology Design. 82
4.3.2 Pipeline Design . 84
4.3.3 Crossbar Design . 88

4.3.4 Limitations of Regular Mesh Topology. 89
4.3.5 SPL Insertion Algorithm . 90
4.3.6 Network Interface Design . 94

4.4 Chapter Summary . 105
References. 105

5 Advanced Multicore SoC Interconnects . 107
5.1 Introduction . 107
5.2 Three-Dimensional On-Chip Interconnect . 109

5.2.1 3D-NoC Versus 2D-NoC . 109
5.2.2 Routing Algorithms. 111
5.2.3 Topology Design. 113
5.2.4 Switching Policy . 115
5.2.5 3D-NoC Router Architecture Design. 116
5.2.6 Network Interface Architecture . 127
5.2.7 3D-NoC Design Evaluation. 130
5.2.8 Conclusion . 143

5.3 Photonic On-Chip Interconnect for High-Bandwidth Multicore
SoCs. 143
5.3.1 Photonic Communication Building Blocks 144
5.3.2 Design Challenges. 146
5.3.3 Fault Models . 148
5.3.4 Fault-Tolerant Photonic Network-on-Chip Architecture. . . . 150
5.3.5 Evaluation . 160
5.3.6 Related Literature . 166
5.3.7 Chapter Summary . 168

References. 168

6 3D Integration Technology for Multicore Systems On-Chip 175
6.1 3D Integration Technology . 175
6.2 Fault-Tolerant TSV Cluster for 3D Integration 177

6.2.1 Fault-Tolerance for TSV-Clusters . 178
6.3 Adaptive Online TSV Sharing Algorithm . 182

6.3.1 Weight Generation . 185
6.3.2 TSV-Clusters Return . 185
6.3.3 Weight Adjustment . 186
6.3.4 Design Optimization . 187

6.4 Evaluation Results . 189
6.4.1 Defect-Rate Evaluation . 190
6.4.2 Performance Evaluation. 191
6.4.3 Latency Evaluation . 192
6.4.4 Throughput Evaluation . 193
6.4.5 Router Hardware Complexity . 194
6.4.6 Comparison. 195

6.5 Chapter Summary . 197
References. 197

7 Parallelizing Compiler for Single and Multicore Computing 201
7.1 Introduction . 201

7.1.1 Instruction Level Parallelism . 202
7.1.2 Queue Computation Model . 204

7.2 Parallel Queue Compiler. 204
7.2.1 Queue Processor Overview . 204
7.2.2 Compiling for One-Offset QueueCore Instruction Set 205

7.3 Parallelizing Compiler Framework . 208
7.3.1 One-Offset P-Code Generation Phase 209
7.3.2 Offset Calculation Phase . 212
7.3.3 Instruction Scheduling Phase. 213
7.3.4 Natural Instruction Level Parallelism Extraction:

Statement Merging Transformation 214
7.3.5 Assembly Generation Phase . 216

7.4 Parallelizing Compiler Development Results 217
7.4.1 Queue Compiler Evaluation . 218
7.4.2 Comparison of Generated QueueCore Code

with Optimized RISC Code . 220
7.5 Chapter Summary . 221
References. 222

8 Power Optimization Techniques for Multicore SoCs 225
8.1 Introduction . 225
8.2 Power-Aware Technological-Level Design Optimizations. 227

8.2.1 Factors Affecting CMOS Power Consumption 227
8.2.2 Reducing Voltage and Frequency . 228
8.2.3 Reducing Capacitance . 229

8.3 Power-Aware Logic-Level Design Optimizations 230
8.3.1 Clock Gating. 230
8.3.2 Logic Encoding. 231
8.3.3 Data Guarding. 232

8.4 Power-Aware System Level Design Optimizations 232
8.4.1 Hardware System Architecture Power Consumption

Optimizations . 233
8.4.2 Operating System Power Consumption Optimization 236
8.4.3 Application, Compilation Techniques, and Algorithm. 238
8.4.4 Energy Reduction in Network Protocols 238

8.5 Chapter Summary . 242
References. 242

9 Real Deign of Embedded Multicore SoC for Health Monitoring 245
9.1 Introduction . 245

9.1.1 Electrocardiography and Heart Diseases 246

9.2 Application Specific Digital Signal Processing 248
9.2.1 Analog and Digital Signals . 250
9.2.2 Signal Processing . 250
9.2.3 Analog to Digital Conversion . 250

9.3 Period-Peak ECG Detection Algorithm. 251
9.3.1 Period Detection . 253
9.3.2 Peaks Detection. 254

9.4 Multicore SoC Hardware Design . 257
9.4.1 Signal Reading . 257
9.4.2 Filtering . 258
9.4.3 Data Processing. 259
9.4.4 Processor Core . 260

9.5 Real-Time Monitoring Interface Design . 261
9.5.1 Data Capturing . 261
9.5.2 Data Display and Analysis . 262

9.6 System Hardware and Software Design Evaluation 265
9.6.1 Hardware Complexity . 265
9.6.2 Performance Evaluation. 266

9.7 Chapter Summary . 266
References. 267

Index . 269

Fig. 1.1 Scaling of transistor counts and operating frequency in ICs.
The feature size and design abstraction are also shown
in the graph. 3

Fig. 1.2 Different ways for exploiting parallelism over various system
organization: a Single core, b Multicore with separate caches,
c Multicore with shared cache, d Multicore with simultaneous
threading, e Multiprocessor . 6

Fig. 1.3 From PCB to MCSoC. 7
Fig. 1.4 Multicore SoC potential applications . 9
Fig. 1.5 Typical multicore SoC architectural view 10
Fig. 1.6 Software layers on top of the hardware . 12
Fig. 1.7 Sample OpenMP code using section and parallel directives:

a Functional decomposition, b Data decomposition 13
Fig. 1.8 Heterogeneous Multicore CELL Organization 14
Fig. 2.1 SoC typical architecture . 21
Fig. 2.2 Compiler-based scheme. 22
Fig. 2.3 Parallel for loop with OpenMP . 24
Fig. 2.4 Multicore SoC system platform. This is a typical instance

of the architecture, where the addition of a new core will not
change the principle of the methodology. 26

Fig. 2.5 Linked task design flow graph (DFG). a Hardware related
tasks, b Application related tasks . 27

Fig. 2.6 Next QH and QT pointers calculation mechanism. 29
Fig. 2.7 QC-2’s source 2 address calculation . 30
Fig. 2.8 QC-2’s FADD hardware . 31
Fig. 2.9 QC-2’s FMUL hardware . 32
Fig. 2.10 Resource usage and timing for 256*33 bit QREG unit for

different coding and optimization strategies. 33

Figures

Fig. 2.11 Achievable frequency is the instruction throughput for
hardware implementations of the QC-2 processor. Simulation
speeds have been converted to a nominal frequency rating to
facilitate comparison . 34

Fig. 3.1 General organization view of a modern typical MCSoC 40
Fig. 3.2 Example of an embedded multicore system for a typical digital

still camera . 41
Fig. 3.3 Example of MPEG-2 encoder for a heterogeneous

MCSoC system . 42
Fig. 3.4 Heterogeneous MCSoC organization example 42
Fig. 3.5 Homogeneous MCSoC organization example 43
Fig. 3.6 Example of MCSoC application in wireless communication:

Lucent Daytona MCSoC . 45
Fig. 3.7 Simplified view of a typical MCSoC architecture with different

core and memory types . 47
Fig. 3.8 State-of-the-art MCSoC architecture based on network-on-chip

paradigm . 47
Fig. 3.9 Typical 5 pipeline stages of a RISC processor core 48
Fig. 3.10 Example of MCSoC with single external DRAM memory 49
Fig. 3.11 Cache organization in a single node of a typical MCSoC 50
Fig. 3.12 Evolution of on-chip communication interconnect. 51
Fig. 3.13 Open core protocol (OCP) and Network protocol (NP)

interfacing . 52
Fig. 3.14 NoC operation. 52
Fig. 3.15 Intellectual property example. 53
Fig. 3.16 Three clock domains MCSoC . 54
Fig. 3.17 Example of mapping of an MPEG-2 decoder. a Using two

cores, b Using three cores . 55
Fig. 3.18 Simplified view of a MCSoC architecture having different

memories. 57
Fig. 3.19 Example of four cores communicating via FIFOs 58
Fig. 3.20 MCSoC memory subsystem with SPARM (only

interconnection for one node is shown for simplicity). 59
Fig. 3.21 Projection of memory/logic composition of power-constrained

SoC chips [11] . 60
Fig. 3.22 Direct-mapped cache organization . 62
Fig. 3.23 Cache coherence problem example without coherence

protocol . 63
Fig. 4.1 Typical paradigms: a circuit switching, b packet switching. 68
Fig. 4.2 Typical NoC topologies. 69
Fig. 4.3 Example of a 3� 3 NoC based on mesh topology.

R: router/switch, PE: processing element,
NI: network interface. 70

Fig. 4.4 Store-and-forward switching . 72

Fig. 4.5 Wormhole switching . 73
Fig. 4.6 Virtual-cut-through switching . 74
Fig. 4.7 ON/OFF flow control . 75
Fig. 4.8 Credit-based flow control . 76
Fig. 4.9 ACK/NACK flow control . 76
Fig. 4.10 Categorization of routing algorithms according to the number

of destinations: a unicast, b multicast . 77
Fig. 4.11 Categorization of routing algorithms according to decision

locality: a distributed, b source . 78
Fig. 4.12 Categorization of routing algorithms according to adaptivity:

a deterministic, b adaptive . 78
Fig. 4.13 Categorization of routing algorithms according to minimality:

a minimal, b non-minimal. 79
Fig. 4.14 Deadlock example in adaptive NoC systems 80
Fig. 4.15 Virtual-channel-based router architecture. 80
Fig. 4.16 Virtual-output-queue-based router architecture. 81
Fig. 4.17 4� 4 mesh topology . 82
Fig. 4.18 External connections to one router . 83
Fig. 4.19 ONoC router block diagram . 84
Fig. 4.20 Matrix arbitration example . 86
Fig. 4.21 Stall-go block diagram . 87
Fig. 4.22 a State machine design, b Nearly full signal output 87
Fig. 4.23 Arbiter control signals . 88
Fig. 4.24 Short-path-link (SPL) insertion example 90
Fig. 4.25 SPL insertion algorithm. 91
Fig. 4.26 Extra-port insertion . 92
Fig. 4.27 Dimension reversal with 2 SPLs . 93
Fig. 4.28 Hotspot with 2 SPL. 93
Fig. 4.29 JPEG encoder with 3 SPL. 94
Fig. 4.30 Nigh-level view of the network interface 95
Fig. 4.31 Distributed routing NI architecture block diagram. 96
Fig. 4.32 Packet format . 98
Fig. 4.33 Packet HEADER format . 98
Fig. 4.34 BODY and END format . 98
Fig. 4.35 HEADER flit format . 99
Fig. 4.36 BODY flit format . 99
Fig. 4.37 END flit format . 99
Fig. 4.38 Format of packet header after deflitization 100
Fig. 4.39 Format of BODY/END flits after deflitization 100
Fig. 4.40 Internal structure of NI for distributed routing. 101
Fig. 4.41 C2R-buffer . 101
Fig. 4.42 Flitizer module architecture . 102
Fig. 4.43 Core-to-router (C2R) controller architecture 103

Fig. 4.44 Router-to-core (R2C) buffer . 103
Fig. 4.45 Deflitizer module architecture . 104
Fig. 4.46 R2C controller module architecture . 104
Fig. 5.1 SoC interconnection types: a Shared bus, b Point-to-Point,

c NoC . 110
Fig. 5.2 Configuration example of a 4� 4 � 4 3D-ONoC based on

mesh topology. 114
Fig. 5.3 3D-ONOC flit format . 116
Fig. 5.4 3D-ONoC pipeline stages: buffer writing (BW), routing

calculation and switch allocation (RC/SA) and crossbar
traversal stage (CT) . 117

Fig. 5.5 Input-port module architecture. 119
Fig. 5.6 Switch allocator architecture . 122
Fig. 5.7 Stall-Go flow control mechanism . 123
Fig. 5.8 Stall-Go flow control finite state machine 123
Fig. 5.9 Scheduling matrix priority assignment. 124
Fig. 5.10 Crossbar circuit . 126
Fig. 5.11 Network interface architecture: Transmitter side 128
Fig. 5.12 Network interface architecture: Receiver side 130
Fig. 5.13 Task graph of the JPEG encoder . 131
Fig. 5.14 Extended task graph of the JPEG encoder. 132
Fig. 5.15 JPEG encoder mapped on 2� 4 2D-ONoC. 132
Fig. 5.16 JPEG encoder mapped on 2� 2 � 2 3D-ONoC 133
Fig. 5.17 Matrix multiplication example: The multiplication of an i

�k matrix A by a k �j matrix B results in an i �j matrix R 133
Fig. 5.18 Simple example demonstrating the matrix multiplication

calculation . 134
Fig. 5.19 3� 3 matrix multiplication using a optimistic and b pessimistic

mapping approaches . 135
Fig. 5.20 Execution time comparison between 3D- and 2D-ONoC 139
Fig. 5.21 Average number of hops comparison for both pessimistic and

optimistic mappings on 3� 3 network size 140
Fig. 5.22 Average number of hops comparison for both pessimistic

and optimistic mappings on 4� 4 network size. 141
Fig. 5.23 Average number of hops comparison for both pessimistic and

optimistic mappings on 6� 6 network size 141
Fig. 5.24 Stall average count comparison between 3D- and 2D-ONoC . . . 142
Fig. 5.25 Stall average count comparison between 3D- and 2D-ONoC

with different traffic loads . 142
Fig. 5.26 Execution time comparison between 3D- and 2D-ONoC

with different traffic loads . 142
Fig. 5.27 3D-Stacked photonic network-on-chip architecture 145
Fig. 5.28 Photonic link architecture . 145
Fig. 5.29 Gateway organization . 146

Fig. 5.30 FT-PHENIC system architecture. a 3� 3 mesh-based system,
b 5� 5 non-blocking photonic switch, c Unified tile including
PE, NI, and control modules . 150

Fig. 5.31 Microring fault-resilient photonic router (MRPR):
a Non-blocking fault-tolerant photonic switch, b Light-weight
control router. 152

Fig. 5.32 Example of how a non-redundant MR’s functionality can be
mimicked by redundant ones. 153

Fig. 5.33 Microring fault-resilient path configuration: a Path setup,
b Path-blocked, c Faulty MR with recovery. GW0: Gateway for
data, GW1: Gateway for acknowledgment signals, PS: photonic
switch, MRCT: Microring Configuration Table, MRST:
Microring State Table. 00 ¼ Not faulty, Not blocked, 01 ¼ Not
faulty, Blocked, 10 ¼ Faulty. 157

Fig. 5.34 Fault-tolerant path-configuration algorithm 158
Fig. 5.35 Latency comparison results under random uniform traffic:

a Overall Latency, b Latency near saturation 163
Fig. 5.36 Latency results of each system as faults are introduced. 164
Fig. 5.37 Bandwidth comparison results under random uniform traffic. . . . 164
Fig. 5.38 Bandwidth comparison results as faults are introduced 164
Fig. 5.39 Total energy and energy efficiency comparison results under

random uniform traffic near saturation. 165
Fig. 5.40 Total energy and energy efficiency comparison results under

random uniform traffic with 4% of MRs acting faulty. 165
Fig. 5.41 Example of photonic switches. From left to right: PHENIC’s

original [9], crossbar, and crux [104] . 167
Fig. 6.1 Reducing footprint and wire length in 3D-stack structure 176
Fig. 6.2 3D integration schemes: a Wire bonding; b Solder balls;

c Through silicon vias; d Wireless stacking 176
Fig. 6.3 TSV fault-tolerance schemes: a Redundancy technique;

b Double TSV; c Network TSV . 178
Fig. 6.4 High-level view of the system architecture with 3� 3� 3

configuration . 180
Fig. 6.5 TSV sharing area placement and connectivity between two

neighboring routers . 180
Fig. 6.6 The TSV fault-tolerance architecture: a Router wrapper;

b Connection between two layers. Red rectangles represent
TSVs. S-UP and S-DOWN are the sharing arbitrators which
manage the proposed mechanism. CR stands for configuration
register and W is the flit width . 181

Fig. 6.7 Adaptive online TSV sharing algorithm 183

Fig. 6.8 An example of the sharing algorithm on a 4� 4 layer: a Initial
state with ten defected TSV clusters; b Best candidates
selection; c Borrowing chain creating and selection refining.
d Final result with six disabled routers . 184

Fig. 6.9 Example of the weight adjustment performed to disable routers’
sharing: a Before weight update; b After weight update. 186

Fig. 6.10 Examples of virtual TSV: a return the TSV cluster to the
original router; b borrow a cluster from a higher
weight router . 188

Fig. 6.11 Circuit of 1:4 serialization . 189
Fig. 6.12 Defect-rate evaluation: a Layer size: 2� 2 (4 routers, 16 TSV

clusters); b Layer size: 4� 4 (16 routers, 64 TSV clusters);
c Layer size: 8� 8 (64 routers, 256 TSV clusters); d Layer
size: 16� 16 (256 routers, 1024 TSV clusters); e Layer size:
32� 32 (1024 routers, 4096 TSV clusters); f Layer size:
64� 64 (4096 routers, 16384 TSV clusters) 191

Fig. 6.13 Evaluation result: a Average packet latency; b Throughput 193
Fig. 6.14 Single layer layout illustrating the TSV sharing areas

(red boxes). The layout size is 865 lm� 865 lm 195
Fig. 7.1 Instruction sequence generation from the parse tree of

expression x ¼ aþ b
b�c . 205

Fig. 7.2 Instruction sequence generation from DAG of expression
x ¼ aþ b

b�c . 207
Fig. 7.3 Parallelizing compiler infrastructure . 209
Fig. 7.4 QIR code fragment . 214
Fig. 7.5 Statement merging transformation . 215
Fig. 7.6 Assembly output for QueueCore processor 216
Fig. 7.7 Effect on ILP of statement merging transformation in the queue

compiler . 218
Fig. 7.8 Instruction level parallelism improvement of queue compiler

over optimizing compiler for a RISC machine 220
Fig. 7.9 Normalized code size for two embedded RISC processors

and QueueCore . 221
Fig. 8.1 Clock gating example . 231
Fig. 8.2 Dual operation ALU with guard logic. The multiplexer does

the selection only after both units have completed their
evaluation. The evaluation of one of the two units is avoided by
using a guard logic; two latches (L1 and L2) are placed with
enable signals (s1 and s2) at the inputs of the shifter and the
adder respectively . 232

Fig. 8.3 Power consumption in typical processor core 235
Fig. 8.4 Protocol stack of a generic wireless network, and

corresponding areas of energy-efficient possible research 240
Fig. 9.1 A typical ECG wave . 247

Fig. 9.2 Faulty ECG Analysis. 252
Fig. 9.3 PPD algorithm processing flow . 252
Fig. 9.4 Period detection computation details . 254
Fig. 9.5 Peaks detection computation details . 254
Fig. 9.6 Period detection: finding maximum value algorithm. The

autocorrelation step ACF STEP is set 256 255
Fig. 9.7 Period detection: reduce negative value algorithm. 255
Fig. 9.8 Period detection: find base points . 256
Fig. 9.9 Period detection: sort base points . 256
Fig. 9.10 High-level view of the BANSMOM system architecture 257
Fig. 9.11 Prototyped multicore SoC block diagram 260
Fig. 9.12 Nios II core architecture block diagram. 260
Fig. 9.13 Software simulation output . 262
Fig. 9.14 (a) Get live-data, (b) Get previous-data. 263
Fig. 9.15 Multicore SoC system running snapshot 264
Fig. 9.16 Interactive RTI tool displaying ECG waves 264

Table 2.1 Linked task description . 27
Table 2.2 QC-2 processor design results: modules complexity as LE

(logic elements) and TCF (total combinational functions) when
synthesized for FPGA (with Stratix device) and
Structured ASIC (HardCopy II) families 34

Table 3.1 Cache coherence states . 64
Table 4.1 Area utilization for a 5-ports router . 91
Table 4.2 Area utilization for 6-port router . 92
Table 4.3 Flit Types and Coding. 98
Table 4.4 Summary of decisions for distributed routing NI. 100
Table 5.1 Simulation parameters . 136
Table 5.2 3D-ONoC hardware complexity compared with 2D-ONoC. 137
Table 5.3 Microring configuration for normal data transmission 153
Table 5.4 Microring backup configuration for data transmission 154
Table 5.5 Wavelength assignment for acknowledgment signal

(Mod: Modulator, and Det: Photodetector) 154
Table 5.6 Various switches and their estimated losses. AL: Average Loss,

WL: Worst Loss . 155
Table 5.7 Insertion loss parameters for 22 nm process 155
Table 5.8 Configuration parameters. 160
Table 5.9 Photonic communication network energy parameters 161
Table 5.10 MR requirement comparison results for 64 cores systems 161
Table 5.11 MRs requirement comparison results for 256-core systems 162
Table 6.1 Configuration register (CR) description . 182
Table 6.2 Technology parameters . 189
Table 6.3 System configurations . 190
Table 6.4 Simulation configurations . 192
Table 6.5 Hardware complexity of a single router. 194
Table 6.6 Comparison results between the proposed approach

and the existing works . 196

Tables

Table 7.1 Lines of C code for each phase of the queue
compiler’s back end . 218

Table 7.2 Instruction category percentages for the compiled benchmarks
for the QueueCore. 219

Table 7.3 QueueCore’s program maximum offset reference value. 219
Table 8.1 Operating system functionality and corresponding techniques

for optimizing energy utilization . 236
Table 9.1 Hardware complexity . 265
Table 9.2 Performance evaluation . 265

Chapter 1
Introduction to Multicore Systems On-Chip

Abstract Systems On-Chip (SoCs) designs have evolved from fairly simple
unicore, single memory designs to complex heterogeneous multicore SoC archi-
tectures consisting of large number of IP blocks on the same silicon. To meet high
computational demands posed by latest consumer electronic devices, most current
systems are based on such paradigm, which represents a real revolution in many
aspects in computing. This chapter presents a general introduction to the multicore
System-On-Chip (MCSoCs). We start this chapter by describing the needs for mul-
ticore systems by today’s general and embedded application domains. Design chal-
lenges and basics multicore SoCs hardware and software design are also described.

1.1 The Multicore Revolution

The major chip manufacturers and processor architects have historically invested
time and money in micro-architectural and performance enhancements. Many of
these efforts such as deep pipelining, increased large cache size, and sophisticated
dynamic ILP (Instruction Level Parallelism) extraction exhibit diminishing returns
due to increased area and power consumption. When considering the limitations
associated with voltage supply scaling, threshold scaling, and clock frequency scal-
ing, along with the above design complexity, architects were already looking for
an alternative to the single-core approach. Multicore was therefore the natural next
revolution in staying on the ever increasing performance driven curve. But, was it
really the good timing to switch from uni-processor approach to the more complex
parallel structure of multiprocessor/multicore platforms? The direct answer from
major hardware companies was very clear: yes; it is time for revolution and not for
evolution! This important decision was fueled by the shift that started from around
2004 when market leaders in the production of general purpose computer systems
and embedded devices started offering an increasing number of cores (processors),
in which multiple cores communicate directly through shared hardware caches, pro-
viding high concurrency instead of high clock speed. This shift contributed to an
unprecedented paradigm that has led to what is know today as multicore revolution.

2 1 Introduction to Multicore Systems On-Chip

The main reason behind this shift can be simply explained by the limits of process
technologies. As the computing needs of each processor type grew year by year,
the traditional response by the semiconductor industries was to increase the clock
frequency of the processor core. However, as processor frequencies increase, other
issues such as power consumption, thermal power, the inability to find sufficient
parallelism in the program and lagging memory bandwidth become real obstacles to
further advancements.

In a typical multicore SoC system, a single physical chip integrates various com-
ponents together. The single chip may contains digital, analog, mixed-signal, and
often radio-frequency functions. Further, each individual core can run at a lower
speed, which reduces overall power consumption as well as heat generation. For
example, Intel Polaris multicore chip contains 80 cores, each containing two pro-
grammable floating point engines and one five-port messaging passing router [1].
This integration approach offers significant price, performance, and flexibility over
higher speed single-core processor design.

1.1.1 The Impact of Moore’s Law

One of the guiding principles of computer architecture is known as Moore’s Law. In
April 1965, Gordon Moore wrote an article for Electronics magazine titled [Cram-
ming more components onto integrated circuits] [2]. He predicted that the number
of transistors on a chip would double every 12 months into the near future. Although
this exponential trend has gradually lessen to doubling transistors every 18 months,
it remains the driving force behind the integrated circuits industry. This law over the
years has provided a road-map for product designers as they plan efficient and better
usage of the transistors at their disposal. Figure 1.1 shows the scaling of transistor
count and operating frequency in ICs [3].

1.1.2 On-Chip Interconnection Schemes

Shared bus was is still the dominant interconnect structure for simple SoC systems.
Most buses are bidirectional and devices can send or receive information. The good
benefit in bus is that it allows to add new devices easily and facilitates portabilities
of peripheral devices between different systems. However, if too many cores are
connected to the same bus, the bandwidth of the bus, clock skew and delay can
become the bottlenecks.

A new interconnection scheme, known as on-chip network, or NoC, based on
packet switching approach was proposed [4–6]. NoCs are becoming an attractive
option for solving shared bus problems. NoC is a scalable architectural platform with
huge potential to handle growing complexity (dozens of cores) and can provide easy
reconfigurability, and scalability. The basic idea of NoC is that cores are connected

1.1 The Multicore Revolution 3

Fig. 1.1 Scaling of transistor counts and operating frequency in ICs. The feature size and design
abstraction are also shown in the graph

via a packet switching communication on a single chip—similar to the way computers
are connected to Internet.

The packet switching scheme supports asynchronous transfer of information. Yet,
it provides extremely high bandwidth by distributing the propagation delay across
multiple switches; thus pipelining the signal transmission. In addition, NoC offers
several promising features. First, it transmits packets instead of words. Thus, dedi-
cated address line like in bus systems are not necessary since the destination address
of a packet is part of the packet itself. Second, transmission can be conducted in par-
allel if the network provides more than one transmission channel between a sender
and a receiver. Thus, unlike bus-based system, NoC presents theoretical infinite scal-
ability, facilitate IP core reusing, and higher parallelism.

During the last few years, several research groups adopted various concepts from
conventional parallel and distributed (Internet) computing world and investigated
various design issues related to NoCs. Chapters 4, 5, and 6 will present architecture
and design details of such promising interconnects.

http://dx.doi.org/10.1007/978-981-10-6092-2_4
http://dx.doi.org/10.1007/978-981-10-6092-2_5
http://dx.doi.org/10.1007/978-981-10-6092-2_6

4 1 Introduction to Multicore Systems On-Chip

1.1.3 Parallelism and Performance

The prevalence of multicore and many-core technologies has brought ubiquitous
parallelism and a huge theoretical potential for intensive tasks. Parallelism issue is
now affecting all kinds of software development processes. Further, as software,
hardware, and applications have evolved, there is a real need to run multiple such
tasks simultaneously to benefit from the available hardware capability in multicore
and many-core based systems. Thus, a good multicore programming model should
be developed and should exploit all types of available parallelism (ILP, DLP, TLP,
CLP, etc.) to maximize performance. For example, multimedia applications today
often consist of multiple threads or processes. Recall that a thread can be defined as
a basic unit of CPU utilization. It consists of a program counter register (PC), CPU
state information for the current thread, and other resources such as a Stack (last-
in-first-out data structure). However, finding and scheduling parallel instructions or
threads is not an easy task since most applications and algorithms are not yet ready
to utilize available multicore capabilities.

Most embedded applications are computation-intensive or/and data-intensive
types and can only benefit from the full multicore SoC hardware potential if all
features on the system level are taken into account. In addition, programmer should
exploit different level of parallelisms which are found at several levels in the system.
Existing approaches require the programmer/compiler to identify the parallelism in
the program and statically create a parallel program using a programming model
such as Pthreads (POSIX Threads) [7], MPI (Message Passing Interface) [8], or task
programming, expressed in an a high-level language such as C. There are different
types of parallelism that a programmer can exploit

• Bit-Level Parallelism (BLP): Bit-Level Parallelism extends the hardware architec-
ture to operate simultaneously on larger data. However, by extending the word
length from, for example 8–16, the operation can now be executed by a single
operation. This is of course good for performance. Thus, word length has doubled
from 4-bit processors through 8, 16, and even 64-bit in advanced processor cores.

• Instruction-Level Parallelism (ILP): ILP is a well known and is (was) an efficient
technique for identifying independent instructions and executing them in paral-
lel. Generally, the compiler takes care about finding independent instructions and
schedule them for execution by the hardware. Other known techniques are spec-
ulative and out-of-order (OoO) execution which are implemented in hardware.
Because programs are written in sequential manner, finding independent instruc-
tions is not always possible. Some applications, such as for signal processing, can
function efficiently and several existing DSP cores can execute eight or even more
instructions per cycle and per core (inst/cycle/core).

• Thread-Level Parallelism (TLP): TLP is a software capability that enables a pro-
gram, often a high-end program to work with multiple threads at the same time
instead of having to wait on other threads. TLP can be exploited in single core or
also in multicore systems. If used in multicore system, it allows closely coupled
cores that share the same memory to run in parallel on shared data structures.

1.1 The Multicore Revolution 5

• Task-Level Parallelism (TaLP): TaLP (also known as function parallelism and
control parallelism) focuses on distributing execution processes (or threads) across
different parallel cores on the same or different data. Most real programs fall some-
where on a continuum between task parallelism and data parallelism. The difficulty
with task parallelism is not on how to efficiently distribute the threads, rather is
with how to divide the application program into multiple tasks. TaLP approach
allows more independent processes to run in parallel, occasionally exchanging
messages.

• Data-Level Parallelism (DLP): DLP (also known as loop-level parallelism) allows
multiple units to process data concurrently. One such technique implemented in
hardware is SIMD (single instruction multiple data). In multiprocessor/multicore
system, data parallelism is achieved when each core performs the same task on
different pieces of distributed data. Data parallelism is where multicore plays an
important role. Performance improvement depends on how many cores are able to
work on the data at the same time. For example, consider adding two matrices using
two cores (core0 and core1). In a data parallel implementation, core0 could add
all elements from the top half of the matrices, while core1 could add all elements
from the bottom half of the matrices. Since the two cores work in parallel, the
job of performing matrix addition would take one half the time of performing the
same operation in serial using one single core.

Since multicore-based systems mainly exploit TLP approach (of course ILP can be
also exploited within a single core in a given multicore-based system), we will only
focus on this parallelization technique. In order to support TLP, there are several
software and hardware approaches that can be used. One approach involves using a
preemptive multitasking operating system (OS). This approach involves the use of
an interrupt mechanism which suspends the currently executing process and invokes
the OS scheduler to determine which process should be executed next. As a result,
all processes will get some amount of CPU time at any given time. The OS kernel
can also initiate a context switch to satisfy the scheduling policy’s priority constraint,
thus preempting the active task. The other known approach to address TLP is called
Time-slice multi-threading. This approach allows software developers to hide the
latency associated with I/Os by interleaving the execution of multiple threads. But
the main problem of this approach is that it does not allow for parallel execution,
because only one instruction stream can run on a processor at a time.

A more efficient approach for TLP is called simultaneous multi-threading (SMT),
or hyper-threading (HT) as called by Intel [9]. The goal of this approach is to effi-
ciently utilize system’s resources. SMP makes a single processor appears, from the
programmer’s view, as multiple logical processor cores. This means, instructions
from more than one thread can be executing in any given pipeline stage at a time.
This is done without great changes to the main basic building blocks of a processor.

The modern approach for SMP programming is to increase the number of physical
processor cores in a computer system or the number of cores in a single die (mul-
ticore). As we earlier said, this shift becomes now possible due to the advance of
semiconductor technology, which allows the integration of several cores in a single

6 1 Introduction to Multicore Systems On-Chip

CPU State

EXE Units

Cache

CPU State

EXE Units

Cache

CPU State

EXE Units

Cache

CPU State

EXE Units

Cache

CPU State

EXE Units

CPU State

EXE Units

Cache

CPU State CPU State

EXE Units

Cache

CPU State

(d)

CPU State

EXE Units

Cache

CPU State

EXE Units

Cache

(e)

(b) (c)(a)

Fig. 1.2 Different ways for exploiting parallelism over various system organization: a Single core,
b Multicore with separate caches, c Multicore with shared cache, d Multicore with simultaneous
threading, e Multiprocessor

chip. Integrated cores have their own set of execution and architectural resources and
may or may not share a large on-chip cache for better program locality exploitation.
For application with large number of threads, individual cores may be implemented
with SMP support (see Fig. 1.2d).

1.1.4 Parallel Hardware Architectures

Parallel hardware is becoming an important component in computer processing tech-
nology. Recently, there are many dual or quad-core CPUs and graphics processing
units (GPUs) on the desktop computer market, and many MCSoC solutions are also
in the embedded computing markets. Before we start discussing about multicore SoC
architectures, let us first review the different types of parallel hardware architectures,
including multiprocessor, dual-core, multicore, SoCs and FPGAs.

Multiprocessors: Multiprocessor systems contain multiple CPU cores that are not on
the same chip. These systems were made common in the 1990 s for the purpose of
IT servers. Today, multiprocessors are commonly found on the same physical board
and connected through a high-speed communication interface.

1.1 The Multicore Revolution 7

time

Off-chip
On-chip

PCB
ASIC

SoC
MCSoC

Fig. 1.3 From PCB to MCSoC

Dual-Core andMulticore Processors: Dual-core processors are two CPUs on a single
chip (see Fig. 1.2b). Multicore processors are a family of processors that contain any
number of multiple CPUs on a single chip, such as 2, 4, and 8. The challenge with
multicore processors is in the area of porting existing sequential software (or writing
new parallel model) so that it can benefit from the large number of available cores.

FPGAs: A Field Programmable Gate Arrays (FPGAs) is a device that contains a
matrix of reconfigurable gate array logic circuitry. When a FPGA is configured, the
internal circuitry is connected in a way that creates a hardware implementation of
the software application. Unlike ASIC processors, FPGAs use dedicated hardware
for processing logic and generally do not have an operating system.

SoC: A system-on-chip (SoC) is an integrated circuit (IC) that integrates all compo-
nents of a system (generally embedded system) into a single chip. SoC consists of
several building blocks including analog, digital, mixed-signal, and radio-frequency
functions. These blocks are connected by either a custom or an industry-standard
bus such as AMBA [10].

A SoC is quite different from the so called microcontroller. Microcontrollers (i.e.,
8051) typically have small RAM memory and are based on low performance proces-
sors, whereas an SoC is typically used with more powerful cores, and reconfigurable
modules such as a FPGA device. Early SoCs used an interconnect paradigm inspired
by the rack-based microprocessor systems of earlier days. Current SoCs use more
advanced and scalable interconnects, such as network-on-chip approach (discussed
later in Chaps. 4 and 5). Figure 1.3 illustrates the evolution of electronic circuits
from simple PCB circuit of earlier days to a state-of-the-art complex multicore SoC
system.

http://dx.doi.org/10.1007/978-981-10-6092-2_4
http://dx.doi.org/10.1007/978-981-10-6092-2_5

8 1 Introduction to Multicore Systems On-Chip

1.1.5 The Need for Multicore Computing

As the computing needs of each processor type grew rapidly, the first response of the
computer architects and semiconductor companies was to increase the speed of the
CPU. Higher performance was mainly achieved by refining manufacturing processes
to improve the operating speed. However, this method requires finding solutions for
increased leakage power and other problems, making it unable to keep pace with the
current rate of evolution or revolution.

After several decades of single-core processor devices production, major CPU
makers, such as Intel and AMD, decided to switch to multicore processor chips
because it was found that several smaller cores running at a lower frequency can per-
form the same amount of work without consuming as much energy and power. More
precisely, this shift started when Intel’s hardware engineers lunched the Pentium 4;
at that time, they expected single processor chip to scale up to 10 GHz or even more
using advanced process technologies below 90 nm. However, they did not achieve
their expectation since the fastest processor never exceeded 4 GHz. As a result, the
trends followed by all major hardware makers is to use a higher number of slower
cores, building parallel devices made with denser chips that work at low clock speed.

Of course, this revolution could not be achieved without an enormous progress
in the semiconductor technologies. That is, the exponential increase in the number
of transistors on a die is made possible by the progressive reduction in the char-
acteristic dimensions of the integrating process, from the micrometer resolutions
of past decades (with tens of thousands transistors/chip in the 80s, until the recent
achievement below hundred manometers (with more than a hundred millions tran-
sistor/chip).

Nowadays, semiconductor and hardware companies are fabricating devices real-
ized with technologies down to 45 nm and even less. The merit of reducing dimen-
sions of a chip lies not only in the higher number of gates that can fit on the chip, but
also in the higher working frequency at which these devices can be operated. If the
distance among every gate becomes small, propagation signals have a lower path to
cover, and the transitory time for a state transition decreases, allowing a higher clock
speed.

1.1.6 Multicore SoCs Potential Applications

To simplify the discussion, we summarize the potential multicore SoCs applica-
tions in Fig. 1.4. The above applications are mainly attractive for embedded sys-
tems market. Some of them are also attractive for desktop applications. To meet
the requirements of low cost, high performance, and small size, multicore approach
plays an important role for system architecture and development. For embedded sys-
tems segment, virtually most semiconductor houses are developing systems based
on multicore SoC approach. Such multicore SoCs are growing day-after-day and are

1.1 The Multicore Revolution 9

Multicore
SoC

Information

Recognition

Video

Still Image
DISC
DVD
HDD

Flash

Graphics

Audio

Security

Media

Browser
XML
Java

Data Base

Audio
Voice

Image-
Biometrics

MPEG
MPEG2
MPEG4
H.264

JPEG
JEPG2000

MotionJPEG

AES
RSA
DES
DRM

2D
3D

Image base
Mulit path
Rendering

MP3
AAC
WMA

AAC Plus
RealAudio

Fig. 1.4 Multicore SoC potential applications

starting to find acceptance in various applications including, real-time mission criti-
cal, industrial automation, medical equipment, consumer electronic devices (PDAs,
cellphones, laptops, cameras, etc.) and high-performance computing as shown in
Fig. 1.4.

High-end smartphones already contain a plethora of micro-processors (MPUs)
and digital signal processors (DSPs) to provide advanced modem and application
processing, as well as WiFi, GPS, and Bluetooth functionality.

Another important application is the multimedia domain. Multimedia applica-
tions with high-definition audio and video are being provided by embedded systems
such as car navigation, cellular phones, and digital televisions. Multimedia schemes
in general can be partitioned in stream-oriented, block-oriented, and DSP-oriented
functions, which can all run in parallel on different cores. Each core can be used to

10 1 Introduction to Multicore Systems On-Chip

run a specific class algorithms, and individual tasks can be mapped efficiently to the
appropriate core.

1.2 Multicore SoC Basics

Multicore SoCs are generally constructed with homogeneous or heterogeneous cores.
Homogeneous cores are all exactly the same: equivalent frequencies, cache sizes,
functions, etc. However, each core in a heterogeneous system may have a different
function, frequency, memory model, etc. Homogeneous cores are easier to produce
since the same instruction set is used across all cores and each core contains the
same hardware. Each core in a heterogeneous multicore SoC, such as the case of
CELL processor [11], could have a specific function and run its own specialized
instruction set. This model could also have a large centralized core built for generic
processing and running a Real-time Operating System (RTOS), a core for graphics,
a communications core, an audio core, a cryptography core, etc.

A heterogeneous multicore SoC system is generally more complex to design, but
may have better performance, and thermal power benefits that outweigh its com-
plexity. A key difference with classic processor architecture is that the SoC model
distinguishes two kinds of processor cores: (1) those used to run the end application,
and (2) those dedicated to execute specific functions that could have been designed
in hardware. The instruction set architectures (ISAs), programming, and interfacing
of these two kinds of processor cores are quite different. Figure 1.5 shows typical
multicore SoC architectural view.

1.2.1 Programmability Support

General applications usually consist of several tasks that can be executed on different
cores in parallel or concurrently. For example, a multimedia application includes two

Dedicated CPU
(DSP)

IP
(Memory, HW
accelerators)

CPU core
(Master, Slave)

Communication Interconnect (shared bus, point-to-point, packet-switched, etc.)

Fig. 1.5 Typical multicore SoC architectural view

1.2 Multicore SoC Basics 11

concurrent tasks: an audio decoder task and a video decoder task. The task itself may
consist of two types of parallelism: (1) functional parallelism and (2) loop-level
parallelism. Therefore a multicore platform is needed for such application, and the
main design challenge is how to exploit parallelism.

Programmability is also needed for supporting multiple standards and algorithms.
For example, some digital video applications require support for multiple video
standards, resolutions, and quality. It is easier to implement these on a programmable
system. A programmable system can provide the designer the ability to customize a
specific algorithm as necessary. This flexibility provides the application’s developer
with more control of the application.

A multicore SoC may have special instructions to speed up some applications. For
example special instructions are implemented on a DSP core to accelerate operations
such as: 32-bit multiply instructions (for extended precision computation), expanded
arithmetic functions (to support FFT and DCT algorithms), double dot product
instructions (for improving throughput of FIR loops), parallel packing instructions,
and Enhanced Galois Field Multiply (EGFM).

1.2.1.1 Hardware Accelerators

Hardware accelerator is used on multicore SoCs as a way to efficiently execute some
classes of algorithms. There are many applications that have algorithmic functions
that do not map very well to a given architecture. Hardware accelerators can be used
to solve this problem. Also, a conventional storage model may not be appropriate
to execute these algorithms effectively. A specialized hardware accelerator can be
built and performs bit manipulation efficiently which sits next to the CPU for bit
manipulation operations.

Fast I/O operations are another area where a dedicated accelerator with an attached
I/O peripheral will perform better. Finally, applications that are required to process
streams of data do not map well to the traditional CPU architecture, especially those
that implement caching systems. A specialized hardware accelerator with special
fetch logic can be implemented to provide dedicated support to these data streams.

1.2.2 Software Organization

Each kind of multicore SoC employs different software organization. The applica-
tion software generally consists of several layers on top of the hardware as shown
in Fig. 1.6. For software designers, multicore SoC approach presents the interest-
ing challenge of enabling applications to obtain all the processing power available
from these multicore environments. How can developers make sure their applica-
tions scale linearly with the available cores, as well as fully utilize the other SoC
hardware building blocks ? The scalability question is still a real science issue for
many applications.

12 1 Introduction to Multicore Systems On-Chip

Fig. 1.6 Software layers on
top of the hardware

Application
Software

Programming
APIs

OS
Services

Drivers
Software

Hardware

1.2.3 Programming Multicore Systems

Given the various available multicore platforms, choosing the classical programming
approach (i.e., OpenMP, MPI) is not always a good decision. The biggest hurdle is
the non-deterministic nature of concurrent threads. Thus, to effectively exploit the
full power of embedded multicore systems, a more efficient programming model is
needed. The standard sequential programming approach cannot be used as it is and
should be optimized or extended for such concurrent systems.

Software development for multicore SoCs involves partitioning a given applica-
tion among the available PEs based on the most efficient computational model. The
programmer also has to implement efficient static or dynamic techniques to syn-
chronize between processes. The trend towards multicore systems is motivated by
the performance gain compared to single-core systems when a budget on power or
temperature or both is given. The performance is expected to further increase with
the increasing number of cores if TLP can be fully exploited. The typical goal of
threading is to improve the application performance by either increasing the num-
ber of work items processed per unit of time (also called throughput) or reducing
turnaround time (also called latency).

In order to effectively use thread to parallelize a given application, programmer
needs a good plan for the overall partitioning of the system and the mapping of
the algorithms to the respective processing elements. This may require a lot of trial
and error to establish the proper partitioning. There are two main known categories
used to do this partitioning: (1) Functional Decomposition—division based on the
function of the work, and (2) Data decomposition. In Fig. 1.7, we show two simple
examples with functional and data decomposition methods.

1.2 Multicore SoC Basics 13

Fig. 1.7 Sample OpenMP
code using section and
parallel directives:
a Functional decomposition,
b Data decomposition

#pragma omp parallel sections
{
#pragma omp section
 check_scan_attacks();

pragma omp
 check_denial_service_attacks();

#pragma omp section
 check_penetration_attacks
}

#pragma omp parallel for
{
for (j=0; j<1000 ; j++) {
 process_image(j);
}

(a)

(b)

1.2.4 Multicore Implementations

There are several manufacturers of multicore SoCs. Below, we will describe two
well-known multicore systems as an example. Since the target applications of these
multicore SoC systems are different, the number of cores, interconnection types, and
memory configurations vary widely.

1.2.4.1 CELL Processor

A Sony-Toshiba-IBM partnership built the so-called CELL processor for use in
Sony’s PlayStation 3 [11]. The CELL system is highly customized for gam-
ing/graphics rendering which means superior processing power for gaming applica-
tions. The CELL architecture is a heterogeneous multicore processor that combines
a dual-threaded, dual-issue, 64-bit Power-Architecture compliant Power processor
element (PPE) with eight newly architected synergistic processor elements (SPEs)
an on-chip memory controller, and a controller for a configurable I/O interface [11].
These units are interconnected with a coherent on-chip element interconnect bus
(EIB). Extensive support for pervasive functions such as power-on, test, on-chip

14 1 Introduction to Multicore Systems On-Chip

LS

DMA

SXU

LS

DMA

SXU

LS

DMA

SXU

LS

DMA

SXU

LS

DMA

SXU

LS

DMA

SXU

LS

DMA

SXU

LS

DMA

SXU

On-Chip Coherent Bus

L2

L1
Power
Core

Memory
Controller

Bus Interface
Controller

Rambus
Flex IO

Dual
Rambus
XDR

SPE

PPE

Fig. 1.8 Heterogeneous Multicore CELL Organization

hardware debug, and performance-monitoring functions are also included. With
CELL’s real-time broadband architecture, 128 concurrent transactions to memory
per processor are possible.

In CELL architecture (see Fig. 1.8), Direct Memory Access (DMA) is used to
transfer data between local storage and main memory which allows for the high
number of concurrent memory transactions. Other interesting features of this archi-
tecture are the Power Management Unit (PMU) and Thermal Management Unit
(TMU). The PMU allows for power reduction in the form of slowing, pausing, or
completely stopping a unit. The TMU consists of one linear sensor and ten digital
thermal sensors used to monitor temperature throughout the chip and provide an
early warning if temperatures are rising in a certain area of the chip [11].

1.2.4.2 Tilera TILE64

Tilera has developed a multicore chip with 64 homogeneous cores set up in a
grid [12, 13]. The family of multicore processors delivers high computing perfor-
mance and targeted for embedded applications. The processor features 64 identical
processor cores (tiles) interconnected with a so-called iMESH on-chip network. Each
tile works as a full-featured processor, including integrated L1 and L2 caches and a
non-blocking switch that connects the tile into the mesh. Each tile can independently
run a full OS, or a group of multiple tiles can run a multi-processing OS such as SMP
Linux. An application that is written to take advantage of these additional cores will
run far faster than if it were run on a single core.

1.2 Multicore SoC Basics 15

The TILE64 also includes on-chip memory and I/O controllers. Like the CELL
processor, unused tiles (cores) can be put into a sleep mode to further decrease power
consumption. The TILE64 uses a three-way VLIW pipeline to deliver 12 times the
instructions as a single-issue, single-core processor. When VLIW is combined with
the MIMD processors, multiple operating systems can be run simultaneously and
advanced multimedia applications such as video conferencing and video-on-demand
can be run efficiently [14]

1.3 Multicore SoCs Design Challenges

The introduction of multicore processors signals a major shift in the structure and
design ways of all computing platforms. Before this shift, almost all embedded
software could be written with the assumption that there is only a single processor
core and where multiple processors were involved, they were either relatively loosely
coupled or were used in easily parallelized applications.

While multicore systems will change this model somewhat, there is a real expecta-
tion that the number of cores will grow rapidly, roughly doubling with each processor
generation (Moore’s Law still valid). This growth will create unique challenges for
run-time systems and compilers. If multiple cores on a processor share a cache,
contention for the shared cache memory and cache coherence are major issues.

Power and temperature management are also two concerns that can increase expo-
nentially with the addition of multiple cores. The other issue is the problem of using
a multicore processor to its full potential. Applications should be written in a good
manner so that different parts of the program runs concurrently. Finally the necessity
to move beyond parallel computing paradigm and towards heterogeneous embedded
multicore distributed systems will likely drive changes in how embedded software
will be created.

1.3.1 Cache Coherence

Allowing multiple processors to share memory complicates the design of the memory
hierarchy in a multicore system. Cache coherency, or cache consistency, is a big
concern in this multicore environment. Since each core has its own cache, the copy
of the data in that cache may not always be the most up-to-date version. For example,
imagine a processor with two cores where each core brought a block of memory into
its private cache. One core writes a value to a specific location. When the second
core attempts to read that value from its cache, it will not have the updated copy
unless its cache entry is invalidated and a cache miss occurs. This cache miss forces
the second core’s cache entry to be updated. This is a real trouble for the correctness
of the application being executed.

16 1 Introduction to Multicore Systems On-Chip

A system is said to be coherent if all copies of the main memory location in
multiple caches remain consistent when the contents of that memory location are
modified. A cache coherency protocol (discussed later in Chap. 3) is the mechanism
by which the coherency of the caches is maintained. Maintaining coherency means
taking special actions when one core writes to a block of data that exists is other
caches.

1.3.2 Power and Temperature

While multicore systems may limit power consumption in some areas, they present
real challenges to energy management paradigms optimized for single chip systems.
In particular, multicore limits the scope and capability of DVFS (dynamic voltage and
frequency scaling) because most SoC subsystems share power supplies and clocks.
As a result, scaling the operating voltage of one of several SoC subsystems may limit
its ability to use local buses to communicate with other subsystems, and to access
shared memory. Clock frequency scaling of a single SoC subsystem also presents a
big challenges especially for synchronous buses.

To lessen the heat generated by multiple cores on a single chip, the chip is archi-
tected so that the number of hot spots does not grow too large and the heat is spread
out across the chip. For example, the majority of the heat in the CELL processor is dis-
sipated in the Power Processing Element and the rest is spread across the Synergistic
Processing Elements. We will discuss in Chap. 8 in more details power optimization
techniques.

1.3.3 Multi-threading and Memory Management

The other important challenge is in using multi-threading or other parallel processing
techniques to get the most performance out of the multicore system. Except Java,
there are no widely used commercial development languages with multi-threaded
extensions [15]. To use multi-threading technique in a given multicore system, pro-
grammers have to write applications with subroutines able to be run in different cores,
meaning that data dependencies will have to be resolved and applications should be
balanced. If one core is being used much more than another, the programmer is
not taking full advantage of the multicore system. Microsoft and Apple’s newest
operating systems can run on up to 4 cores, for example [15, 16].

On multicore SoC system, actual computing is not a problem since there are
many processing elements. But, memory bandwidth remains the bottleneck because
typical systems use a common bus which is shared by all processor cores. Therefore,
efficient memory management is very critical for a scalable application on multicore
SoCs.

http://dx.doi.org/10.1007/978-981-10-6092-2_3
http://dx.doi.org/10.1007/978-981-10-6092-2_8

1.3 Multicore SoCs Design Challenges 17

1.3.4 On-Chip Interconnection Networks

Extra memory will be useless if the amount of time required for memory requests
does not improve as well. Currently, on-chip interconnection networks are mostly
implemented using buses, where several masters and slaves can be connected to a
shared bus. However, an arbiter is needed with a bus to manage multiple requests.
A bus arbiter periodically examines accumulated requests from the multiple master
interfaces and grants access to a master using arbitration mechanisms specified by
the bus protocol. Bus has simple topology, low area, low cost, and easy to build.
The disadvantages of shared bus architecture are larger load per data bus line, longer
delay for data transfer, large power consumption, and lower bandwidth. To this end,
redesigning the interconnection network between cores is a major focus of chip
manufacturers.

1.3.5 Reliability Issues

Emerging embedded applications running on multicore SoCs are getting more and
more complex, demanding good architectures to ensure sufficient bandwidth for
any transaction between memories and cores as well as communication between
different cores on the same chip. The significant heterogeneity in multicore SoCs
which are likely to mix logic layers with memory layers and even more complex
technologies increases the fault’s probability in a system. As a result, multicore
systems are becoming susceptible to a variety of faults caused by crosstalk, impact of
radiations, oxide breakdown, and so on. A simple failure in a single transistor caused
by one of these factors may compromise the entire system reliability where the failure
can be illustrated in corrupted message delivery, time requirements unsatisfactory,
or even sometimes the entire system collapse.

To ensure their correct functionality and reliability, multicore SoCs systems must
be fault-tolerant to any short-term malfunction or permanent physical damage to
ensure correct functionality while minimizing the performance degradation as much
as possible.

1.4 Chapter Summary

Multicore SoCs are architected to adhere to reasonable power consumption, heat
dissipation, and cache coherence protocols. In order to use a multicore system at
full capacity, the applications must be multi-threaded. However, the difficult task is
how to write parallel programs to exploit multicore systems. In addition, the memory
systems and interconnection networks also should be carefully designed. This chapter
introduced fundamental concepts about multicore SoCs and their design challenges.

18 1 Introduction to Multicore Systems On-Chip

References

1. S.R. Vangal et al., An 80-tile sub-100-w teraflops processor in 65-nm CMOS. IEEE J. Solid-State
Circuits 43(1), 29–41 (2008)

2. G. Moore, Cramming more components onto integrated circuits. Electronics Magazine. p. 4.
Retrieved 11 Nov. 2006

3. A. Ben Abdallah, Multicore Systems-on-Chip: Practical Hardware/Software Design, 2nd edn.
(Atlantis, 2013). ISBN-13: 978-9491216916

4. A. Ben Abdallah, M. Sowa, Basic network-on-chip interconnection for future gigascale MCSoCs
applications: communication and computation orthogonalization, in Proceedings of Tunisia-
Japan Symposium on Society, Science and Technology (TJASSST), 4–9 December 2006

5. W.J. Dally et al., Route packets, not wires: on-chip interconnection networks, in Proceedings of
the DAC, (2001) pp. 684–689

6. A. Habibi, M. Arjomand, H. Sarbazi-Azad, Multicast-aware mapping algorithm for on-chip
networks, 19th International Euromicro Conference on Parallel, Distributed and Network-Based
Processing, (2011), pp. 455–462

7. Pthread Standard: http://standards.ieee.org/findstds/
8. The Message Passing Interface (MPI) Standard, http://www.mcs.anl.gov/research/projects/mpi/
9. D. Koufaty, D.T. Marr, Hyperthreading technology in the netburst microarchitecture, Micro

IEEE. 23(2), 56–65 (2003)
10. ARM, AMBA Overview, http://www.arm.com (2007)
11. B. Flachs et al., The microarchitecture of the streaming processor for a cell processor, in
Proceedings of the IEEE International Solid-State Circuits Symposium, (2005), pp. 184–185

12. S. Bell, B. Edwards, J. Amann, Tile64-processor: A 64-core soc with mesh interconnect, Solid-
State Circuits, (2008)

13. Tilera, TILE64 Processor Family, http://www.tilera.com/products/processors.php
14. Tilera, Tile 64 Product Brief, Tilera, (2008)
15. M. Creeger, Multicore CPUs for the masses. QUEUE. (2005)
16. D. Geer, For Programmers, Multicore Chips Mean Multiple Challenges. Computer. (2007)

http://standards.ieee.org/findstds/
http://www.mcs.anl.gov/research/projects/mpi/
http://www.arm.com
http://www.tilera.com/products/processors.php

Chapter 2
Multicore SoCs Design Methods

Abstract The strong demand for low-power and high-performance multicore
systems on chip (MCSoCs) requires quick turn around design methodology. Thus,
there is a clear need for efficient methodology for the design of these systems on plat-
forms implementing both hardware and software modules. This chapter describes
conventional multicore SoC design methods in details. It also describes a so-called
scalable core-based methodology for systematic design environment of application-
specific heterogeneous multicore SoC architectures. Although the methodology pre-
sented here is general and not limited to special architecture, we will consider a real
synthesizable core as a case study to make the discussion easy.

2.1 Introduction

Systems-on-chip designs have evolved from fairly simple uni-core, single memory
designs to complex multicore SoCs consisting of tens or hundreds of cores in a single
chip. Asmore andmore cores are integrated into these chips to share the ever increas-
ing processing load, themain challenges lie in how to efficiently and quickly integrate
these cores together into a single system capable of leveraging their individual flexi-
bility. Moreover, for better inter-core communication, the multicore system requires
high-performance communication architectures and efficient communication pro-
tocols, such as hierarchical bus [1, 2], point-to-point connection [3], time division
multiplexed access (TDMA) based bus [4], or packet-switching networks [5].

Recently, SoC design methods tend toward mixed hardware/software codesigns
targeting multicore SoCs for specific applications [6–8]. To decide on the lowest cost
mix of cores, designers must iteratively map the device’s functionality to a particu-
lar hardware/software partition and target architecture (platform). When a designer
wants to explore different system architectures, the interfaces must be redesigned.
This method may lead to a narrow application domain. In addition, managing all
these details is time-consuming that designers typically cannot afford to evaluate
several different implementations.

Automating the interface generation is an alternative solution and a critical part
of the development of embedded system’ synthesis tools. Most existing automation

20 2 Multicore SoCs Design Methods

algorithms implement the systembasedona standardbus protocol (input/output inter-
face) or based on a standard component (processing) protocol. Recent works have
used a more generalize model consisting of heterogeneous multicore with arbitrary
communication links. The SOS algorithm [9] uses an integer linear programming
approach. The co-synthesis algorithm, developed in [10], can handle multiple objec-
tives such as cost, performance, power, and fault tolerance. Such design methods
allow only limited automation and designers resort to manual architecture design
which is time-consuming and error-prone.

There are two fundamental steps needed for MCSoC design: (1) selection and
construction of a targetmulticore platform, known as design space exploration phase,
and (2) development of the parallel software for exploiting the application parallelism
on the selected platform, known as parallel software development phase. We will
describe these hardware and software design phases in the following two sections.

2.2 Design Space Exploration

There are various design axes that define the design space of multicore platforms,
which include processor architectures and numbers, memory configuration, com-
munication architectures, hardware accelerators, and so on. To determine the target
platform, we need a technique that quickly evaluates the expected performance of
each candidate and explores the wide design space without actual hardware imple-
mentation. Further, the gate densities achieved in current ASIC and FPGA devices
give designers enough logic elements to implement all functionalities on the same
chip by mixing self-design modules with third party ones [4, 7, 11]. This possibility
opens new horizons especially for embedded systems where space constraints are as
important as performance. Themost fundamental characteristic of a SoC is complex-
ity. The SoC is generally tailored to the application rather than general-purpose chip,
and may contain memory, one or several specialized cores, buses, and several other
digital functions.Therefore, embedded applications cannot use general-purpose com-
puters (GPPs) either because a GPPmachine is not cost effective or because it cannot
provide the necessary requirements and performance. In addition, a GPP machine
cannot provide reliable real-time performance.

In Fig. 2.1, a typical multicore SoC architecture block diagram is shown. This
typical model is made of a set of cores communicating through an AMBA commu-
nication architecture [1]. The communication architecture constitutes the hardware
links that support the communication between cores. It also provides the systemwith
the required support for the general data transfer with external devices common to
most applications. Inter-component link is often in the critical path of such a system
and is a very common source of performance bottlenecks [12]. Thus, it becomes
imperative for system designers to focus on exploring the communication design
space.

2.2 Design Space Exploration 21

ARM/QC-2 DMA
A/V

Encoder MEM2

MEM1
SDRAM

controllerUSB T imer

UART1 IT C

UART 2MEM3

AHB/
APB

Bridge
system AHB bus peripheral APB bus

Fig. 2.1 SoC typical architecture

Conventional SoC architectures are generally classified into two types: single-
core-based andmulticore-based systems. Single-core architecture consists of a single
CPU core and one or several ASICs. A master–slave synchronization pattern is
adopted in this type. The single-core SoC type can only offer a restricted performance
capability in many applications because of the lack of true parallelism.

A multicore SoC architecture is a system that contains multiple CPU cores and
also one or several ASICs. In term of performance, multicore SoCs perform better
for several embedded applications. However, these systems generally introduce new
challenges: first, the inter-processor communication may require more sophisticated
networks than a simple shared bus, and second, the architecture may include more
than one master processor. In both types, high processing performance is required
because most of the applications for which SoCs are used have precise performance
requirements deadlines; this is different from conventional general-purpose comput-
ing.

In general, the architectures used in conventionalmethods ofmulticore SoCdesign
and custom multicore architectures are not flexible enough to meet the requirements
of different application domains (e.g., only point-to-point or shared bus communi-
cation is supported) and not scalable enough to meet different computation needs
and different complexity of various applications. A promising approach was pro-
posed in [10]. This method is a core-based solution, which enables integration of
heterogeneous processors and communications protocols by using abstract intercon-
nections. Behavior and communicationmust be separated in the system specification.
Hence, system communication can be described at a higher level and refined indepen-
dently of the behavior of the system. There are two known component-based design
approaches: (1) usage of a standard bus (i.e., IBM CoreConnect) protocol, and (2)
usage of a standard component protocol [6–8]. For the first approach, a wrapper is
designed to adapt the protocol of each component to CoreConnect protocol. For the
second case, the designer can choose a bus protocol and then design wrappers to
interconnect components using the above protocol.

22 2 Multicore SoCs Design Methods

2.3 Parallel Software Development Phase

Embedded parallel software development for multicore platforms involves paral-
lel programming for homogeneous and heterogeneous multicore SoC architectures
under several design constraints such as power, area, cost, and timeliness.

The sequential Von Neumann programming model is not a good option for the
multicore-based systems because it simply cannot exploit the huge parallelismwhich
is available in different forms in multicore platforms. Thus, it is clear that we now
need new programming models and corresponding software development tools that
are capable of exploiting all forms of available parallelism. Recently, big efforts have
been made to develop methods and tools that solve the design problems of multicore
SoCs targeted for various applications and under several design constraints. Below,
we will describe these methods in details.

2.3.1 Compiler-Based Schemes

In compiler-based schemes, the sequential Von Neumann program is used as input,
where all specifications are defined (Phase 1). Then, a parallelizing compiler auto-
matically parallelizes (Phase 2) the source code (or binary) as illustrated in Fig. 2.2.
Using several parallelizing techniques, this phase (Phase 2) analyzes the input code
and finds parallel regions. More specifically, Phase 2 parallelizes the serial code. A
well-known technique is to identify all loops and examine their dependencies by
analyzing indexes. The mapper, then, transforms each parallel region into a set of
concurrent tasks and maps them onto multiple cores (Phase 3).

Architecture

Parallelization

SW for
Master Core(s)

SW for
Accelerator(s)

Source code

Application

Target MCSoC

Architecture

Mapping

Fig. 2.2 Compiler-based scheme

2.3 Parallel Software Development Phase 23

2.3.2 Language Extensions Schemes

The language extension schemes require that application programmer provides all
parallelism information as well as where and how to parallelize the code with lan-
guage extension that has annotations and/or additional application programming
interfaces (APIs). As a result, compilers in language extension schemes can focus
on exploiting the specified parallelism according to the the target platform.

2.3.2.1 Language Extension with Annotations

The main merit of the language extension with annotations approach is simplicity.
That is, it simplifies the compiler’s job by relieving the burden of extracting paral-
lelism while it gives only a little overhead of annotations to the software developer.

TheOpenMultiprocessingStandard [13] is an example of language extensionwith
annotations. OpenMP is a widely usedAPI for parallel programming and is attractive
because programmers can continue using their familiar programming model while
reusing their existing codes.

As an example, suppose a programmer is writing a ray tracing program, which
goes through each pixel of the screen, and using lighting, texture, and geometry
information, the color of that pixel is determined. The program goes on to the next
pixel and repeats (loops) the process. The calculation for each pixel is completely
separate from the calculation of any other pixel, therefore making this program
highly suitable for OpenMP. The code for the above example is shown in Fig. 2.3.
This piece of code simply goes through each pixel of the screen, and calls a function,
RenderPixel, to determine the final color of that pixel. Note that the results are simply
stored in an array. Because each pixel is independent of all other pixels, and because
RenderPixel is expected to take a noticeable amount of time, this small snippet of code
is a prime candidate for parallelization and can be simply annotated with OpenMP
directive: #pragma omp parallel f or .

We have to note here that OpenMP standardwas originally developed for symmet-
ric multiprocessor (SMP) computers with shared memory. Recently, it was ported to
heterogeneous multicore platforms, such as in IBM Cell processor [14]. GNU GCC
also adopted the GOMP OpenMP implementation. Thus, many GCC-enabled mul-
ticore processors now support OpenMP [15]. The cell processor is a heterogeneous
multicore processor with one Power Processing Engine (PPE) core and eight Syner-
gistic Processing Engine (SPE) cores. Each SPE has a directly accessible small local
memory (256K), and it can access the system memory through DMA operations.
Programming cell system is difficult since an SPE core has a small local memory
and accesses the system memory only through DMA operations. The other diffi-
culty comes from the availability of several layers of parallelism in the architecture,
including heterogeneous cores, multiple SPE cores, multi-threading. Cell compiler
is built upon an IBM XL compiler therefore translates the parallel region into a set
of concurrent tasks that run on the SPE cores with a control task that schedules the
SPE tasks [14].

24 2 Multicore SoCs Design Methods

Fig. 2.3 Parallel for loop
with OpenMP for(int x=0; x < width; x++)

{
 for(int y=0; y < height; y++)
 {
 finalImage[x][y] = RenderPixel(x,y, &sceneData);
 }
}

(a) Before parallelization

#pragma omp parallel for
for(int x=0; x < width; x++)
{
 for(int y=0; y < height; y++)
 {
 finalImage[x][y] = RenderPixel(x,y, &sceneData);
 }
}

(b) After parallelization

2.3.3 Language Extensions with APIs

In this scheme, a software developer writes a parallel program with specifically
defined APIs for parallel execution. Compared with the annotation scheme, the
APIs-based approach allows more low-level control of parallelism by the software
developer. Although this scheme has better performance, it requires that the pro-
grammer manually discovers the parallel regions, distributes the code and data to the
processors, and restructures the code using the APIs.

Message passing interface [16] is an example of the language extension with APIs
since it started to find its use in embedded heterogeneous multicore SoCs.

2.3.4 Model-Based Schemes

Model-based schemes are advocated for multicore and MCSoC design since they
simplify the application behavior and reveals the top-level structure of the behav-
ior; this eliminates the complex low-level implementation details. In this scheme,
the software developer determines which model of computation is used to capture
application algorithms. For example, the actor based models are used to specify
the computation-oriented applications and the FSM (finite state machine) model for
control-oriented applications.

2.4 Generic Architecture Template (GAT) for Real Multicore SoC Design 25

2.4 Generic Architecture Template (GAT) for Real
Multicore SoC Design

In this section, we will describe a design method based on a so-called generic archi-
tecture template (GAT), where both processing and input/output interface may be
customized to fit the specific needs of the application. GAT design method enables
a designer to make a basic architecture design without detailed knowledge of the
architecture.

A high-performance synthesizable soft-core architecture, called QueueCore, is
also presented here and is used as a task-distributor-core (TDC) in the a multicore
SoC systemdesign. The systemmay consist, then, ofmultiple processing cores of var-
ious types (i.e., QueueCore(s), general-purpose processor(s), domain specific DSPs,
and custom hardware), and communication links. The ultimate goal of the above
systematic design automation and architecture generation is to improve performance
and the design efficiency of large-scale heterogeneous multicore SoC.

2.4.1 Target Multicore SoC Platform

The target model of the architecture consists of CPUs (i.e., QueueCore (QC-2),
GPPs), hardware blocks, memories, and communication interfaces. The addition of
new core will not change the main principle of the proposed methodology. The core
is connected to the shared communication architecture via communication network,
which maybe of whatever complexity from a single bus to a network with complex
protocols. However, to ensure modularity, standard and specific interfaces to link
cores to the communication architecture should be used. This gives the possibility to
design separately each part of the application.Reader can refer to [17] formore details
about a modular design methodology. One important feature of the above method
is that the generic assembling scheme largely increases the architecture modularity.
Figure2.4 shows a typical instance of the platformmade of four cores (2*QC-2 cores
and 2*SH cores). The QC-2 core is a special purpose synthesizable core (described
in details in Sect. 2.4.3).

The designer can configure: the number of CPUs, I/O ports for each processor
and interconnections between cores, the communication protocol and the external
peripherals. The communication interface depends on the core attributes and on the
application-specific parameters. The communication interface connects a given core
to the communication architecture and consists of two parts: the first part specific
to the core’s bus and the second part is generic and depends on communication
protocols and on the number of communication channels used. This structure allows
the isolation of the cores from the communication network.

Each interfacemodule acts as a coprocessor for the corresponding core. The appli-
cation dependent part may include several communication channels. The arbitration
is done by the CPU-dependent part and the overhead induced by this communication

26 2 Multicore SoCs Design Methods

QC-2memory

communication network

comm. interface

SHmemory

comm. interface

memoryQC-2

comm. interface

memorySH

comm. interface

p_in

p_out

Fig. 2.4 Multicore SoC system platform. This is a typical instance of the architecture, where the
addition of a new core will not change the principle of the methodology

coprocessor depends on the design of the basic components and may be very low.
The use of this architecture for interfaces provides huge flexibility and allows for
modularity and scalability.

2.4.2 Design Method

In this methodology, the application-specific parameters should be used to configure
the architecture platform and an application-specific architecture is produced. These
parameters are determined from an analysis of the application to be designed. The
design flow graph (DFG) is divided into 14 linked tasks as shown in Fig. 2.5a, b and
summarized in Table2.1. The first task (node T1) defines the architecture platform
using all fixed architectural parameters: (1) Network type, (2) Memory architec-
ture, (3) CPU types, and (4) other HW modules. Using the application system level
description (second task) and the architectural fixed parameters, the selection of the
actual design parameters (number of CPUs, thememory sizes for each core, I/O ports
for each core and interconnections, between cores, the communication protocols and
the external peripherals) is performed in task 3 (node T3). The outputs of task 3
are: an abstract architecture description (node T7) and a mapping table (node T6).
Node T7 is the internal structure of the target system architecture. It contains all the
application-specific parameters. The mapping table (T7) contains the addresses allo-
cation and memory map for each core. The complete architecture design task (T8) is

2.4 Generic Architecture Template (GAT) for Real Multicore SoC Design 27

Fig. 2.5 Linked task design
flow graph (DFG).
a Hardware related tasks,
b Application related tasks

(a)

T6

T1 T2

T3

T7

T8

T10

T9

T5

T4

T11

T2

T12

T14

T8 T13

T8T6

(b)

Table 2.1 Linked task
description

Task Description

T1 Define architecture platform

T2 Describe application system level

T3 Select design parameters

T4 Instantiate Pr. att.

T5 Instantiate communication

T6 Mapping table

T7 Describe abstract architecture

T8 Design architecture

T9 Inst. IP cores (Pr.and Mem)

T10 H-SoC synthesis

T11 Software adaptation

T12 Binary code

T13 Pr. and memory emulators

T14 H-SoC validation

linked to the abstract architecture and themapping table nodes (tasks). Finally, binary
programs that will run on the target processors are produced in task 11 (node T11).
For validation, cycle accurate simulation for CPUs and HDL (Verilog or VHDL)
modeling for other cores/modules can be used for the whole architecture.

28 2 Multicore SoCs Design Methods

2.4.3 QueueCore Architecture

The key idea of the produced order queue computation model is the operands and
results manipulation schemes [18, 19]. The queue computing scheme stores inter-
mediate results into a circular queue register (QREG).

A given instruction implicitly reads its first operand from the head of the QREG,
its second operand from a location explicitly addressed with an offset from the first
operand location. The computed result is finally written into the QREG at a position
pointed by a queue tail pointer (QT). An important feature of this scheme is that
write-after-read false data dependency does not occur [17, 20–24]. Furthermore,
since there is no explicit referencing to the QREG, it is easy to add extra storage
locations to the QREG when needed. The other feature of this computing model is
its important affect on the instruction issue hardware.

The QC-1 core [18] exploits ILP without considerable effort for heavy run time
data dependence analysis, resulting in a simple hardware organization when com-
pared with conventional super scalar processors. This also allows the inclusion of a
large number of functional units into a single chip, increasing parallelism exploita-
tion. Since the operands and result addresses of a given static instruction (compiler
generated) are implicitly computed during run time, an efficient and fast hardware
mechanism is needed for parallel execution of instructions. The queue processor
implements a so-named queue computation mechanism that calculates operands and
result addresses for each instruction (discussed later). The QC-2 core implements all
hardware features found in QC-1 core and also supports single precision floating-
point accelerator.

2.4.3.1 Hardware Pipeline Structure

The QC-2 supports a subset of the produced order queue processor instruction set
architecture [18]. All instructions are 16-bit wide, allowing simple instructions fetch
and decode stages and facilitate instructions pipelining. The pipeline’s regular struc-
ture allows instructions fetching, data memory references, and instruction execution
to proceed in parallel. Data dependencies between instructions are automatically
handled by hardware interlocks. Below, we describe the salient characteristics of the
QueueCore architecture.

(1) Fetch (FU): The instruction pipeline begins with the fetch stage, which delivers
four instructions to the decode unit each cycle. This is the same bandwidth as the
maximum execution rate of the functional units. At the beginning of each cycle,
assuming no pipeline stalls or memory wait states occur, the address pointer hard-
ware of the fetched instructions issues a new address to the data/instruction memory
system. This address is either the previous address plus 8 bytes or the target address
of the currently executing flow-control instruction.
(2) Decode (DU): The QC-2 decodes four instructions in parallel during the second
phase and writes them into the decode buffer. This stage also calculates the number

2.4 Generic Architecture Template (GAT) for Real Multicore SoC Design 29

of consumed (CNBR) and produced (PNBR) data for each instruction. The CNBR
and PNBR are used by the next pipeline stage to calculate source and destination
locations for each instruction. Decoding stops if a queue becomes full.
(3)Queue computation (QCU): The QCU calculates the first operand (source1) and
destination addresses for each instruction. The QCU unit keeps track on the current
value of the QH and QT pointers. Four instructions arrive to the QCU unit each
cycle. To execute instructions in parallel, the QC-2 core must calculate the operands
addresses (source1, source2 and destination) for each instruction. Figure2.6 illus-
trates QC-2’s next QH and QT pointers calculation mechanism. To calculate the
source1 address, the consumed operands (CNBR) field (port field) is added to the
current QH value (QH0). The second operand address in calculated as shown in
Fig. 2.7. Similar mechanism is used for the other three instructions. Because the next
QH and QT values are dependent on the current QH and QT values, the calculation
is performed sequentially. Each QREG entry is written exactly once and it is busy
until it is written. If a subsequent instruction needs its value, that instructions must
wait until it is written. After QREG entry is written, it is ready.
(4) Barrier: The major goal of this unit/stage is to insert barrier flags for all barrier
type instructions.
(5) Issue: Four instructions are issued for execution each cycle. In this stage, the
second operand (source2) of a given instruction is first calculated by adding the
address source1 to the displacement that comes with the instruction. The second

Fig. 2.6 Next QH and QT
pointers calculation
mechanism

QH1 QT1

CNBR
++

PNBR

QH0 QT0

CNBR
++

PNBR

QHn+1

QTn+1

PNBR :number of produced data
CNBR :number of consumed data
QH0 :initial queue head value
QT0 :initial queue tail value
NQH : next queue head value
NQT : next queue teail value
QHn+1:next queue head value
 QTn+1: next queue tail value

NQT

NQH

30 2 Multicore SoCs Design Methods

Fig. 2.7 QC-2’s source 2
address calculation

OFFSET(n) +
SRS2n

SRC1n

DESTn
QTn

OFFSET: positive/negative integer value that indiactes
the location of SRC2(n-1) from the QH(n-1)
QTn : queue tail value of instruction n
DESTn : destination location of instruction n
SRC1(n-1): source data 1 of instruction (n-1)
SRC2(n-1): source data 2 of instruction (n-1)

QHn

OFFSET(n-1) +
SRS2(n-1)

SRC1(n-1)

DEST(n-1)
QTn-1

QHn-1

operand’s address calculation could be earlier calculated in the QCU stage. However,
for a balanced pipeline consideration, the source2 is calculated in this stage.

An instruction is ready to be issued if its data operands and its corresponding
functional unit are available. The processor reads the operands from the QREG in
the second half of stage 5 and execution begins in stage 6.
(6) Execution (EXE): The macro-data flow execution core consists of 1 integer ALU
unit, 1 floating-point accelerator unit, 1 branch unit, 1 multiply unit, 4 set units, and
2 load/store units.

The load and store units share a 16-entry address window (AW), while the integer
unit and the branch unit share a 16-entry integer window (IW). The FPA has its own
16-entries floating-point window (FW). The load/store units have their own address
generation logic. Stores are executed to memory in-order.

2.4.3.2 Floating-Point Organization

The QC-2 floating-point accelerator (FPA) is a pipelined structure and implements
a subset of the IEEE-754 single-precision floating-point standard [25, 26]. The FPA
consists of a floating-point ALU (FALU), floating-point multiplier (FMUL), and
floating-point divider (FDIV). TheFALU,FMUL,FDIV, and thefloating-point queue
register (FQREG) employ 32-wide data paths. Most FPA operations are completed
within three execution cycles. The FPA’s execution pipelines are simple in design for
high speeds that the QC-2 core requires. All frequently used operations are directly
implemented in the hardware. The FPA unit supports the four rounding modes spec-
ified in the IEEE 754 floating-point standard: round toward-to-nearest-even, round
toward positive infinity, round toward negative infinity, and round toward zero.

2.4 Generic Architecture Template (GAT) for Real Multicore SoC Design 31

Floating-point ALU implementation: The FALU does floating-point addition, sub-
traction, compare and conversion operations. Its first stage subtracts the operands
exponents (for comparison), selects the larger operand, and aligns the smaller man-
tissa. The second stage adds or subtracts the mantissas depending on the operation
and the signs of the operands. The result of this operation may overflow by a maxi-
mum of 1-bit position. Logic embedded in the mantissa adder is used to detect this
case, allowing 1-bit normalization of the result on the fly. The exponent data path
computes (E + 1). If the 1-bit overflow occurred, (E + 1) is chosen as the expo-
nent of stage 3; otherwise, E is chosen. The third stage performs either rounding
or normalization because these operations are not required at the same time. This
may also result in a 1-bit overflow. Mantissa and exponent corrections, if needed,
are implemented exactly in this stage, using instantiations of the mantissa adder and
exponent blocks.

The area efficient FADD hardware is shown in Fig. 2.8. The exponents of the two
inputs (Exponent A and Exponent B) are fed into the exponent comparator, which is
implemented with a subtractor and a multiplexer. In the pre-shifter, a new mantissa
in created by right shifting the mantissa corresponding to the smaller exponent by the
difference of the exponents so that the resulting twomantissas are aligned and can be
added. The size of the pre-shifter is aboutm∗ log(m)LUT s, wherem is the bit-width
of the mantissa. If the mantissa adder generates a carry output, the resulting mantissa
is shifted one bit to the right and the exponent is increased by one. The normalizer
transforms the mantissa and exponent into normalized format. It first uses a leading-
one detector (LD) circuit to locate the position of the most significant one in the
mantissa. Based on the position of the LD, the resulting mantissa is left shifted by an
amount subsequently deducted from the exponent. If there is an exponent overflow
(during normalization), the result is saturated in the direction of overflow and the

Fig. 2.8 QC-2’s FADD
hardware Exponent

A (8-bit)
Mantissa
A (23-bit)

Exponent
B (8-bit)

Exponent
comparator

Mantissa
B (23-bit)

pre-shifter

Result
 mantissa

Result
exponent

LD

shiftersub

adder

sa
tg

e
1

st
ag

e
2

st
ag

e
3

normalizer/
rounding

exponent
difference

larger
exponent

Sign
A (1-bit)

Sign
B (1-bit)

32 2 Multicore SoCs Design Methods

overflow flag is set. Underflows are handled by setting the result to zero and setting
an underflow flag.

We have to notice that the LD anticipator can be also predicted directly from the
input to the adder. This determination of the leading digit position is performed in
parallel with the addition step so as to enable the normalization shift to start as soon
as the addition completes. This scheme requires more area than a standard adder,
but exhibits reduced latency. For hardware simplicity and logic limitation, our FPA
hardware does not support earlier LD prediction.

Floating-point multiplier implementation: The data path of the FMUL hardware is
shown in Fig. 2.9. As with other conventional architectures, QC-2’s FMUL operation
is much like integer multiplication. Because floating-point numbers are stored in sign
magnitude form, themultiplier needs only to deal with unsigned integer numbers and
normalization. Similar to the FALU, the FMUL unit is a three stages pipeline that
produces a result on every clock cycle. The bottleneck of this unit was the 24 ∗ 24
integer multiplications.

The first stage of the floating-point multiplier is the same denormalization module
used in addition to insert the implied 1 to the mantissa of the operands. In the second
stage, the mantissas are multiplied and the exponents are added. The output of the
module is registered. In the third stage, the result is normalized or rounded.

The multiplication hardware implements the radix-8 modified Booth [27] algo-
rithm. Recoding in a higher radix was necessary to speed up the standard Booth
multiplications algorithm since greater numbers of bits are inspected and eliminated
during each cycle, effectively reduces the total number of cycles necessary to obtain
the product. In addition, the radix-8 version was implemented instead of the radix-4
version because it reduces the multiply array in stage 2.

Fig. 2.9 QC-2’s FMUL
hardware Exponent

A (8-bit)
Mantissa
A (23-bit)

Exponent
B (8-bit)

Mantissa
B (23-bit)

Sign
A (1-bit)

Sign
B (1-bit)

Exponent
Adder

Denorm

Mantissa
Multiplier

Normalise &
Rounding

Result
mantissa

Result
exponent

Result
sign

XOR

2.4 Generic Architecture Template (GAT) for Real Multicore SoC Design 33

2.4.4 Performance Analysis

In order to estimate the impact of the description style on the target FPGAs efficiency,
logic synthesis for FPGAs is explored. The idea of this experiment was to optimize
critical design parts for speed or resource optimizations.

Optimizing the HDL description to exploit the strengths of the target technology
is of paramount importance to achieve an efficient implementation. This is partic-
ularly true for FPGAs targets, where a fixed amount of each resource is available
and choosing the appropriate description style can have a high impact on the final
resources efficiently [28, 29]. For typical FPGAs features, choosing the right imple-
mentation style can cause a difference in resource utilization of more than an order
of magnitude [30, 31]. Synthesis efficiency is influenced significantly by the match
of resource implied by the HDL and resources present in a particular FPGAs archi-
tecture. When an HDL description implies resources not found in a given FPGAs
architecture, those elements have to be emulated using other resources at signifi-
cant cost. Such emulation can be performed automatically by EDA tools in some
cases, but may require changes in the HDL description in the worst case, counter-
acting aim of a common HDL source code base. In this work, our experiments and
the results described are based on the Altera Stratix architecture [32]. We selected
Stratix FPGAs device because it has a good trade-offs between routability and logic
capacity. In addition it has an internal embedded memory that eliminates the need for
external memory module and offers up to 10 Mbits of embedded memory through
the TriMatrix TM memory feature. We also used Altera Quartus II professional edi-
tion for simulation, placement, and routing. Simulations were also performed with
Cadence Verilog-XL tool [33].

Figure2.10 compares two different target implantations for 256× 33 QREG for
various optimizations. Depending on the target implementations device, either logic
elements (LEs) or total combinational functions (TCF) are generated as storage ele-

Fig. 2.10 Resource usage and timing for 256*33 bit QREG unit for different coding and optimiza-
tion strategies

34 2 Multicore SoCs Design Methods

Table 2.2 QC-2 processor design results: modules complexity as LE (logic elements) and TCF
(total combinational functions) when synthesized for FPGA (with Stratix device) and Structured
ASIC (HardCopy II) families

Descriptions Modules LE TCF

Instruction fetch unit IF 633 414

Instruction decode unit ID 2573 1564

Queue compute unit QCU 1949 1304

Barrier queue unit BQU 9450 4348

Issue unit IS 15,476 7065

Execution unit EXE 7868 3241

Queue registers unit QREG 35,541 21,190

Memory access MEM 4158 3436

Control unit CTR 171 152

Queue processor core QC-2 77,819 42,714

Fig. 2.11 Achievable frequency is the instruction throughput for hardware implementations of the
QC-2 processor. Simulation speeds have been converted to a nominal frequency rating to facilitate
comparison

ments. Implementations based on HardCopy device, which generates TCF functions
give almost similar complexity for the three used optimizations—area (ARA), speed
(SPD), and balanced (BLD). For FPGA implementation, the complexity for SPD
optimization is about 17 and 18% higher than that for ARA and BLD optimizations,
respectively. Table2.2 summarizes the synthesis results of the QC-2 for the Stratix
FPGA and HardCopy targets. The complexity of each core module as well as the
whole QC-2 core are given as the number of logic elements (LEs) for the Stratix
FPGA device and as the TCF cell count for the HardCopy device (Structured ASIC).
The design was optimized for BLD optimization guided by a properly implemented

2.4 Generic Architecture Template (GAT) for Real Multicore SoC Design 35

constraint table. We also found that the processor consumes about 80.4% of the total
logical elements of the target device.

The achievable throughput of the 32-bit QC-2 core on different execution plat-
forms is shown in Fig. 2.11. For the hardware platforms, we show the processor
frequency. For comparison purposes, the Verilog HDL simulator performance has
been converted to an artificial frequency rating by dividing the simulator throughput
by a cycle count of 1 CPI. This chart shows the benefits which can be derived from
direct hardware execution using a prototype when compared to processor simulation.
The data used for this simulation are based on event-driven functional Verilog HDL
simulation.

2.5 Chapter Summary

SoC designs have evolved from fairly simple single-core designs to complex multi-
core SoCs consisting of hundreds of PEs in a single chip. As more and more cores
are integrated into these chips, the main challenges lie in how to efficiently and
quickly integrate these cores together into a single system capable of leveraging
their individual flexibility.

There are two fundamental issues for MCSoC design: (1) design space explo-
ration, and (2) parallel software development. This chapter focused on these two
schemes. The chapter also presented a scalable core-based methodology for generic
architecturemodel and a synthesizable 32-bit soft core suitable for high-performance
multicore SoC architectures. The presented GATmethod should permit a systematic
generation of multicore architecture for embedded multicore SoCs.

References

1. K. Diefendorff, K. Dubey, How multimedia workloads will change processor design. IEEE
Comput. 30(9), 43–45 (1997)

2. Y. Liu, S. Chakraborty, W.T. Ooi, A. Gupta, S. Mohan, Workload characterization and cost-
quality tradeoffs inMPEG-4decodingon resource-constraineddevices, inWorkshoponEmbed-
ded Systems for Real-Time Multimedia (2005), pp. 129–134

3. M. Loghi, F. Angiolini, D. Bertozzi, L. Benini, R. Zafalon, Analyzing on-chip communication
in a mpsoc environment. Proceedings of the Conference on Design, Design Automation and
Test in Europe 2, 16–20 (2004)

4. D. Kulkarani, W.A. Najjar, R. Rinker, F.J. Kurdahi, Fast area estimation to support com-
piler optimization in FPGA-based reconfigurable systems, in IEEE Symposium on Field-
Programmable Custom Computing Machines (California, Napa, 2002)

5. A. BenAbdallah,M. Sowa, Basic network-on-chip interconnection for future gigascalemcsocs
applications: communication and computation orthogonalization, in Proceedings of Tunisia-
Japan Symposium on Society, Science and Technology (TJASSST), 4–9 Dec 2006

6. R. Ernst, J. Henkel, T. Benner, Hardware-software co synthesis for microcontrollers. IEEE
Des. Test 64–75 (1993)

36 2 Multicore SoCs Design Methods

7. A. Jerraya, Multiprocessor System-on-Chip, (Morgan Kaufman Publishers, 2005) ISBN:0-
12385-251-X

8. C.K. Lennard, P. Schaumont, G. de Jong, A. Haverinen, P. Hardee, Standards for system-level
design: practical reality or solution in search of a question?, in Proceedings of the Design
Automation and Test in Europe, (2000), pp. 576–585

9. S. Prakash, A. Parker, SoS: Synthesis of application-specific heterogeneous multiprocessor
systems. J. Parellel Distrib. Comput. 16, 338–351 (1992)

10. B. Dave, G. Lakshminarayama, N. Jha, COSFA: Hardware-software co-synthesis of heteroge-
neous distributed embedded system architectures for low overhead fault tolerance, in Proceed-
ings IEEE Fault-Tolerant Computing Symposium, (1997), pp. 339–348

11. M. Sheliga, E.H. Sha, Hardware/software co-design with the hms framework. J. VLSI Signal
Process. Systems 13(1), 37–56 (1996)

12. S. Pasricha, N. Dutt, M. Ben-Romdhane, Constraint-driven bus matrix synthesis for mpsoc,
Asia and South Pacific Design Automation Conference (ASPDAC 2006) (Japan, Yokohama,
2006), pp. 30–35

13. OpenMP: API Specification for Parallel Programming: http://openmp.org
14. K. Obrien, Z. Sura, T. Chen, T. Zhang, Supporting OpenMP on cell. J. Parallel Program. 36(3),

289–311 (2008)
15. GOMP: An OpenMP Implementation for GCC, Available: http://gcc.gnu.org/projects/gomp
16. The Message Passing Interface (MPI) Standard: http://www.mcs.anl.gov/research/projects/

mpi/
17. A. Ben Abdallah, S. Kawata, T. Yoshinaga, M. Sowa, Modular design structure and high-level

prototyping for novel embedded processor core, Proceedings of the 2005 IFIP International
Conference on Embedded And Ubiquitous Computing (EUC’2005), (Nagasaki, Japan, Dec.
6–9, 2005), pp. 340–349

18. A. Ben Abdallah, M. Arsenji, S. Shigeta, T. Yoshinaga, M. Sowa, Queue processor for novel
queue computing paradigm based on produced order scheme, in Proceedings of HPC, IEEE
CS, July 2004, pp. 169–177

19. A. Ben Abdallah, A. Canedo, T. Yoshinaga, M. Sowa, The QC-2 parallel queue processor
architecture. J. Parallel Distrib. Comput. 68(2), 235–245 (2008)

20. A. Ben Abdallah, M. Masuda, A. Canedo, K. Kuroda, Natural instruction level parallelism-
aware compiler for high-performance queuecore processor architecture. J. Supercomput. 57(3),
314–338 (2011)

21. A. Canedo, A.B. Abdallah, M. Sowa, compiler support for code size reduction using a queue-
based processor. Transactions on High-Performance Embedded Architectures and Compilers
2(4), 269–285 (2009)

22. A. Canedo, A.B. Abdallah, M. Sowa, Compiling for reduced bit-width queue processors. J.
Signal Process. Syst. 59(1), 45–55 (2010)

23. A. Canedo, A.B. Abdallah, M. Sowa, Efficient compilation for queue size-constrained queue
processors. J. Parallel Comput. 35, 213–225 (2009)

24. A. Canedo, A.B. Abdallah, M. Sowa, Design and implementation of a queue compiler. J.
Microprocess. Microsyst. 33(2), 29–138 (2009)

25. IEEE standard for binary floating-point arithmetic, ANSI/IEEE standard 754, (1985)
26. IEEE task P754, A proposed standard for binary floating-point arithmetic, IEEEComp. 14(12),

pp. 51–62, (1981)
27. A.D. Booth, A signed binary multiplication technique. Quart. J. Mech. Appl. Math. 4, 23–40

(1951)
28. G. De Micheli, R. Ernst, W. Wolf, Readings in Hardware/Software co-design, (Morka Kauf-

mann Publishers, ISBN: 1-55860-702-1, 2001)
29. D. Gohringer, M. Hubner, V. Schatz, J. Becker, Runtime adaptive multi-processor system-on-

chip: RAMPSoC, in International Symposium on Parallel and Distributed Processing, 1–7
April 2008

30. A. Alsolaim, J. Becker, M. Glesner, J. Starzyk, Architecture and application of a dynamically
reconfigurable hardware array for futuremobile communication systems, in IEEE International
Conference on Field-Programmable Custom Computing Machines, (2000), pp. 205–214

http://openmp.org
http://gcc.gnu.org/projects/gomp
http://www.mcs.anl.gov/research/projects/mpi/
http://www.mcs.anl.gov/research/projects/mpi/

References 37

31. Xilinx, Virtex-5 Family Overview, (February 2009)
32. Altera Design Software, http://www.altera.com/
33. Cadence Design Systems, http://www.cadence.com/

http://www.altera.com/
http://www.cadence.com/

Chapter 3
Multicore SoC Organization

Abstract Increasing processing power demand for new embedded consumer appli-
cations such as mobile multimedia devices, cell phones, and high definition televi-
sions made convectional single-core SoC-based designs no longer suitable to sat-
isfy high performance and low power consumption demands. Moreover, continuous
advancements in semiconductor technology enable us to designmore complexmulti-
core systems-on-chip (MCSoCs) composedof tens or evenhundreds of IP cores.Gen-
eral purpose CPUs, ASICs, DSPs, memory blocks, and I/O and networking devices
on a single MCSoC chip are now possible and necessary for current and future com-
plex applications. Understanding the software and hardware building blocks and the
computation power of individual components in these complex MCSoCs are nec-
essary for designing power, performance, and cost-efficient systems. This chapter
describes in details the architectures and functions of the main building blocks that
are used to build such complex MCSoCs.

3.1 Introduction

With increasing processing power demands of embedded applications and technol-
ogy advances, MCSoCs become prevalent in embedded systems. A typical MCSoC
includes several optimized components integrated together to execute a specific
application. Applications range from digital cameras, cellular phones, set-top boxes,
PDAs, to biomedical and military instruments.

Different functions in these embedded MCSoCs are typically implemented with
software running on a RISC, digital signal processors, or with dedicated hardware IP
(Intellectual Property) blocks. These blocks are available from vendors as hard or soft
cores. We will discuss later in this chapter how to select these IP cores to build power
and performance-efficient multicore systems. The availability of various IP cores
with different performance and complexity from many existing providers makes the
selection not easy. In addition, selecting suitable cores depends also on the available
power, area, and cost budgets. Therefore, designer must be careful and aware about
all these factors before even thinking about higher level organization of the target
system.

40 3 Multicore SoC Organization

Organization of a MCSoC architecture means the software and hardware rela-
tionships between different IP blocks (including on-chip/off-chip memory) and the
interconnection network which links these IP cores together in an efficient manner,
such that several design and performance constraints are satisfied. The hardware
and software design teams should be also aware about the real-time performance
requirement of the system being designed. This is very important because generally
a real-time system hasmore design constraints than a general multicore system. Con-
sequently, the design of real-time MCSoCs is much more complex that the design of
a general embedded systems.

ModernMCSoC organization guidelines include separation between computation
and communication and between functions and architectures. The applications that
need to run on these MCSoCs have become increasingly complex and have very
tight power and performance requirements. Thus, achieving a satisfactory design
quality under these circumstances is only possible when both communication and
computation refinements are performed efficiently.

As we stated earlier, MCSoCs can be homogeneous or heterogeneous systems.
The organization of each category is of course not similar. The main difference is in
the type and computation power of integrated IP cores. Figure3.1 shows a general
view of a typical modern MCSoC organization and Fig. 3.2 shows an example of
an embedded multicore system of a typical digital still camera device. The reader
should be also aware that a number of programmable MCSoC platforms are now
commercially available, such as Cell from IBM, Nomadik from STMicroelectronics,
and many others.

T1 T2 T3 Tm Tn

Middleware
HW/SH Layer

Core 0 Core 1 MEM DSPFPGA

Interconnection Network

Hardware Module

Softwre Module

Fig. 3.1 General organization view of a modern typical MCSoC

3.1 Introduction 41

Motor Motor Drivers LCD Display Buttons

Audio Codec Processor Core

Image Sensor

Internal Memory

Digital Image
Processor Core

External Memory

Lens

Fig. 3.2 Example of an embedded multicore system for a typical digital still camera

To let the reader first get the “big picture” of suchMCSoC system, we will explain
in the next part of this section the two main MCSoC categories—homogeneous
and heterogeneous. In this chapter, we only focus on the main building blocks of
MCSoC system. The system which we assume here is generic and not restricted to
a specific kind of embedded applications. The reason is that most building blocks,
such as on-chip memory, microprocessor(s), peripheral interfaces, I/O logic control,
data converters, and other components are found in most embedded applications. For
example, the single chip phone, which has been introduced by several semiconductor
vendors, is an example; it includes a modem, radio transceiver, a multimedia engine,
security features, and power management functionality all on the same chip.

3.1.1 Heterogeneous MCSoC

A heterogeneousMCSoC is a single chip which combines different cores having dif-
ferent instruction set architectures (ISAs) and computing power interconnected with
a sophisticated network or simple shared medium to efficiently link all components
together.

Application designers or high-level compilers can choose the most efficient IP
cores for the type of processing needed for a given application task.

The main motivation of these systems is that many applications, such as MPEG-
2 encoder (see Fig. 3.3), have more than one algorithm during their execution life.
This means, a given application has different operations, different memory access
patterns, and different communication bandwidth at different execution periods.

42 3 Multicore SoC Organization

Motion
Estimator

(ME)

Discrete Cosine Transform
(DCT) Q Codec Buffer

Q-1

DCT-1+Predictor

+

Two most computation
intensive modules

Fig. 3.3 Example of MPEG-2 encoder for a heterogeneous MCSoC system

Another example is in the advanced safety automobile devices, where multiple
applications, consisting of several tasks, are executed simultaneously. Each task,
invoked by applications, such as image processing, recognition, control or measure-
ment, is assigned to a single processor core. Heterogeneous MCSoCs provide the
best performance/power efficiency trade-offs and are a natural choice for embedded
systems. The heterogeneous cores increase performance by dividing the work among
well-matched cores. This requires many CPU cores for general purpose processing
as well as several SIMD processor cores to accelerate specific performance-critical
processing. The heterogeneous SoC also can save energy almost at all levels (device,
circuit, and logic) of abstraction. In addition, these systems generally use irregular
memory and irregular interconnection networks that also save power by reducing the
loads in the whole network.

Figure3.4 shows an example of a heterogeneousMCSoC organization. The above
system integrates several typical cores (RISC, accelerators,VLIW,SIMD, etc.)which
are found in most modern heterogeneous MCSoC systems. The different cores are

Master CPU
(RISC)

Embedded
Control

Shared L2
Cache DSP VLIW VLIW DSP

Memory subsystem with scheduler and controller

Semaphore
&

Interupts

Peripheral Peripheral

bridge

bridge

off-chip memories
(SDRAM, ROM, RAM)

Peripheral

Fig. 3.4 Heterogeneous MCSoC organization example

3.1 Introduction 43

generally connected to a common pipelined bus (single or multi-layer) with a cache
coherence mechanism (discussed later), such as the well-knownmodified, exclusive,
shared or invalid (MESI) protocol [1].

The embedded L2 cache, internal I/O, synchronous dynamic random accessmem-
ory (SDRAM) are all connected to the bus. The SIMD core is generally a highly
specialized parallel processor and is used to process large amount of data, such as
images. Additionally, a cache memory is shared by the CPU cores to reduce internal
bus traffic and access to the main slow DRAM memory.

3.1.2 Homogeneous MCSoC

An alternative to the previously discussed system is called homogeneous MCSoC.
This system is typically built with the same programmable building blocks instan-
tiated several times. This alternative model is often referred in the literature to as
parallel architecture model. Parallel architectures were particularly studied in com-
puter science and engineering during the past 40 years. Nowadays, there is a growing
interest for such approaches in embedded systems. Figure3.5 illustrates an exam-
ple of a typical homogeneous MCSoC organization example. The basic principle of
an architecture that exhibits parallel processing capabilities relies on increasing the
number of physical resource in order to divide the execution time of each resource.

Master CPU
(RISC)

Memory subsystem with scheduler and controller

Semaphore
&

Interupts

bridge

off-chip memories
(SDARM, ROM, RAM)

Peripheral Peripheral Peripheral

CPU CPU

CPU CPU
Shared

L2 Cache

Fig. 3.5 Homogeneous MCSoC organization example

44 3 Multicore SoC Organization

3.1.3 Multicore SoC Applications

As with general architectures, MCSoCs are mainly driven by performance require-
ments of applications. Therefore, knowing the target application(s) of the system
before starting the design is important not only for the selection of appropriate PEs,
but also for reducing the overall cost of the system.

There are four well-known applications for MCSoC systems: (1) wireless (2)
network, (3) multimedia, and (4) mobile applications. The remaining of this section
describes these applications and give some examples forMCSoCs designed for these
applications.

Wireless Applications: In this class of applications, MCSoCs are mainly used as
wireless base stations (i.e., Luceny Daytona [2]) in which identical signal processing
is performed on a number of data channels. Daytona is a homogeneous system with
four SPARCV8 CPU cores attached to a high-speed split-transaction. Each CPU has
an 8-KB 16-bank cache and each bank can be configured as instruction cache, data
cache or scratchpad. The cores share a common address space (see Fig. 3.6).

Network Applications: In this second class,MCSoC can be used as a network proces-
sor for packet processing in off-chip networks. The C-5 processor is an example of
network processor [3]. In this system, packets are handled by channel cores that are
grouped into four clusters of four units each. The traffic of all cores is handled by
three buses. In addition to the channel cores, there are also several specialized cores.
The executive processor core is a RISC architecture.

Multimedia Applications: Multimedia applications implemented on consumer elec-
tronics devices span a vast range of functionality, from audio decoder such as MP3
via video decoder such as H.264 up to advanced picture quality processing such as
frame rate up-conversion and motion accurate picture processing (MAPP). Hybrid
TV solutions are a very good example because they are virtually capable of executing
any of these multimedia applications.

Mobile Applications: The fourth class of MCSoCs application is in the mobile cell
phone. Earlier cell phone processors performed base-band operations, including both
communication and multimedia operations. As an example, the Texas Instruments’
OMAP architecture has several implementations. The OMAP 5912 has two CPU
cores: an ARM9 and a TMS320C55x digital signal processor (DSP). The ARM core
acts as a master and the DSP core acts as a slave that performs signal processing
operations. Another example was implemented by STMicroelectronics and is called
Nomadik [4]. It uses an ARM926EJ as its host processor. The ARM926EJ-S proces-
sor core runs at up to 350MHz in 130nmCMOS process and up to 500MHz in 90nm
CMOS. The core includes on-board cache, Java acceleration in hardware, and strong
real-time debug support Namdik systems are aimed at 2.5 and 3G mobile phones,
personal digital assistants, and other portable wireless products with multimedia
capability.

3.1 Introduction 45

RISC
+

SIMD

L1
Cache

RISC
+

SIMD

L1
Cache

RISC
+

SIMD

L1
Cache

RISC
+

SIMD

L1
Cache

I/O and memory subsystem

Fig. 3.6 Example of MCSoC application in wireless communication: Lucent Daytona MCSoC

3.1.4 Applications Mapping

As discussed above, today’s MCSoC architectures are composed of commercially
of-the-shelf available IP blocks. Ultimately, we would like to design a generic het-
erogeneous MCSoC architecture that is flexible enough to run different applications.
However, mapping an application to such heterogeneous SoC is more difficult com-
pared to mapping to a homogeneous one. Today, general practice is to map appli-
cations to the architecture at design-time or run-time. Run-time mapping offers a
number of advantages over design-time mapping. It mainly offers the following pos-
sibilities:

46 3 Multicore SoC Organization

• To avoid defective parts of a SoC. Larger chip area means lower yield. The yield
can be improved when the mapper is able to avoid faulty parts of the chip. Also
aging can lead to faulty parts that are unforeseeable at design-time.

• To adapt to the available resources. Only at runtime the available resources are
known to the mapping algorithm. In addition, the available resources may vary
over time for example due to applications running simultaneously or adaptation
of algorithms to the environment.

• To enable upgrades of the system.

The objective of the runtime mapping is to determine at runtime a near-optimal map-
pingof the application to the architecture using the library of process implementations
and the current status of the system.

The mapping of the functional subsystems onto SoC hardware resources maybe
based on a number of considerations:

• Support: support of industry standards. This is very important for processor cores
that are programmed by the designers. Generally, industry standard CPU cores
have extensive tool chain and library support that eases the application design and
debug.

• Performance: computationally intensive algorithms such as HD H.264 decoder
cannot be implemented effectively on a general purpose processor because of the
computational complexity. Instead a function-specific HW core is needed.

• Flexibility: evolving standards require flexibility in implementations so that new
codecs can be added without the need for a new SoC. This reduces cost and time.

• Re-usability: implementation, integration implementation and verification are time
consuming tasks and sometimes it is appropriate not to implement a function on
the most optimum SoC HW resource in order to make it reusable in future SoCs0.

3.2 MCSoC Building Blocks

As we mentioned in Chap.1, a typical MCSoC is composed of several components:
memories, processing elements, input/output subsystem, and communication subsys-
tem. In most of theseMCSoC systems, the cores have separate L1 caches, but share a
L2 cache, memory subsystem, interrupt subsystem, and peripherals. Figure3.7 illus-
trates a simplified block diagram of a typical MCSoC architecture having different
building blocks.

Figure3.8 shows a general view of a state-of-the-art MCSoC system based on
NoC interconnection. In NoC interconnection, PEs communicate with each other
using packets and not messages as with shared bus. We will explain this important
interconnection paradigm in more detail in Chaps. 4 and 5.

Although systems which are built with NoC approach are scalable and power
efficient, the design of such systems is not easy when compared with the design of
systems based on shared buses. The reason for such complexity is that the designer
must care not only about the computational (PEs) part, but also hemust care about the

http://dx.doi.org/10.1007/978-981-10-6092-2_1
http://dx.doi.org/10.1007/978-981-10-6092-2_4
http://dx.doi.org/10.1007/978-981-10-6092-2_5

3.2 MCSoC Building Blocks 47

Hardware
Accelerator

Hardware
Accelerator

DSP core

On-chip
SRAM,
SPRAM
ROM

RISC core

I/O I/O

Analog front end

Programmable
Core

I/O

Memory
(DRAM,
SRAM,
SPRAM,
ROM)

Pow
er

M
anagem

ent

Fig. 3.7 Simplified view of a typical MCSoC architecture with different core and memory types

Network Interface (NI)

Processing
Element

 (PE)

Router

S
en

sors

MCSoC

Tile (Vol/Fre islnand)

bidirectional link

(0,0) (n,0)

(n,m)

Fig. 3.8 State-of-the-art MCSoC architecture based on network-on-chip paradigm

communication part (how to route packets). In particular, designers must carefully
select appropriate topology, routing scheme, control flow, and network interface (NI).
Among these blocks, the NI is complex and very important component which must
be carefully designed.

The PEs type and computation power depend on the application context and
requirements. As we explained in Sect. 3.1, we distinguish two types of architec-
tures: (1) heterogeneous MCSoCs and (2) homogeneous MCSoCs. Heterogeneous
systems are composed of different IPs, such as processors, memories, accelerators,
and peripherals.

48 3 Multicore SoC Organization

Homogeneous system is a systemwhere the same tile is instantiated several times.
Beyond its hardware architecture, MCSoC is generally running a set of software
applications divided into tasks and an operating system devoted to manage both
hardware and software through a middle-ware layer. Figure3.1 shows a general
view of a MCSoC and the interfacing between the software and hardware modules.

3.2.1 Processor Core

The type and the computation power of the processor core which is embedded in a
given MCSoC depend on the target application and whether the core is used for con-
trol purpose (master) or computation purpose (slave). Figure3.9 shows the pipeline
stages of a typical RISC processor core. The stages are: fetch, decode, execute,
memory access, and write-back stages.

3.2.2 Memory

In a MCSoC, several masters communicate with a single or at most few DRAM
(dynamic RAM)memory slaves. The DRAMmemory subsystem consists of a mem-
ory scheduler, amemory controller, and theDRAMmemory. The scheduler arbitrates
between multiple requests, whereas controller takes care of bit-level protocol of the
DRAM device and activates refreshes, etc. In some design, a sophisticated sched-
uler reorder the requests such that the DRAM’s efficiency is maximized by means
of high page hit rate, and low read–write direction turnaround. Figure3.10 shows
an example of a MCSoC based on network-on-chip interconnection network with a
single external DRAMmemory [5, 6]. In this example, the additional latency added
by the router may become a real problem if the memory is highly utilized. That is,

Fetch
Stage

Decode
Stage

Execute
Stage

Memory
Stage

Writeback
Stage

Instruction
Cache Data

Cache

Register File

Fig. 3.9 Typical 5 pipeline stages of a RISC processor core

3.2 MCSoC Building Blocks 49

NI

PE

NI

PE

NI

PE

NI

PE

NI

PE

NI

PE

NI

PE

NI

PE

Controller

Scheduler

External DRAM

R R R

RR R

R R R

Fig. 3.10 Example of MCSoC with single external DRAM memory

there is a high traffic between the external DRAM and one or more PEs within the
system. Such traffic scenario is called traffic hotspot, which affects large portion of
the network because blocked traffic reserves many routers and links.

In addition, the requirement to refresh the DRAM at some regular periods reduces
the total achievable bandwidth. Moreover, the efficiency is dependent upon the type
of transactions, and the address patterns that are presented to the DRAM.

50 3 Multicore SoC Organization

N
et

w
or

k/
B

us
 In

te
rf

ac
e

PE
(core)

Level 1
Cache

Level 2
Cache

shared Level 3
Cache

(last level cache)

one single PE with private L1 and L2 caches in a typical multicore SoC

Fig. 3.11 Cache organization in a single node of a typical MCSoC

3.2.3 Cache

Most multicore systems today have one or two levels of dedicated private caches,
backed up with a shared last level cache (LLC). The performance and power con-
sumption of a MCSoC is strongly dependent on the performance of the LLC because
the LLC can help reduce off-chip memory traffic and contention for memory band-
width. Figure3.11 shows three levels of caches in a single node of a typical MCSoC.
Cache is efficient because of a program property called Locali t y. The locality says
that if a program accesses a particular memory address, it is likely that the next few
accesses will be to nearby addresses (spatial locality), and also that the same address
is likely to be accessed again within a short time (temporal locality). This is true for
instruction fetches, and also for data reads and writes.

System designer can take advantage of the locality of references, to create a
hierarchical memory with multiple levels of memory of different speed and size.
At the top of this hierarchy, we have a fast, but small memory, which is directly
connected to the processor core. The memory sizes increase as we move to lower
levels of the hierarchy further away from the processor core. In contrary, the speed
drops as we move to lower levels of the hierarchy further away from the processor
core.

The minimum amount of data transfered between two adjacent memory levels
is called a block or line. Although this could be as small as one word, the spatial
locality principle suggests that designer should design caches with larger blocks. If
the data requested by a given core is found at a memory level, we say that we have a
hit at that level. If not, we have a miss and the request is sent to the next level down
and the block containing the requested data is copied at this level when the data is
found. The reason for copying the missed block containing the requested data to the
cache is that we want to ensure that next time this (or nearby) data is accessed there
will be a hit at this level. The memory system in a MCSoC architecture generally
consists of a four-level hierarchy: registers, scratchpad, cache, and main memory.

3.2.4 Communication Protocols

For, a given number of cores, the most appropriate interconnection network depends
on a combination of factors, including area/power budget, technology, performance

3.2 MCSoC Building Blocks 51

objectives and bandwidth requirements.Wehave to note here that unlike conventional
multiprocessors, performance is not necessary maximized by the highest bandwidth
interconnect available.

The traditional form of functional interconnect between different cores in a simple
SoC is the on-chip bus which is an array of wires with multiple writers under a
mutual-exclusion control scheme. Buses are very simple to design and permits the
implementation of efficient hardware mechanisms to enforce cache consistency. In
addition, bus-based systems have fair throughput as long as the system is small and
there are fewmasters that initiate data transfers. This is the case with single-core SoC
devices, where typically only the core and some advanced peripherals can function
as bus masters. Typically, IPs are connected to the bus via standardized protocols,
such as advanced extensible interface (AXI), device transaction level (DTL), and
open core protocol (OCP).

Using large caches, it is possible to reduce the bus traffic produced by each core,
thus allowing systems with greater numbers of cores to be built. Unfortunately,
capacitive loading on the bus increases as the number of cores is increased. This
effect increases the minimum time required for a bus operation; thus reducing the
maximum bus bandwidth.

Multi-bus solutions have provided a temporary solution for small scale systems.
However, for large-scale systems, a better solution is still needed. NoC is the promis-
ing interconnection paradigm (discussed in Chaps. 4 and 5) for these complex multi-
and many core SoCs. Figure3.12 shows the evolution chart of on-chip communica-
tion interconnects for single and MCSoCs.

3.2.4.1 Packet-Switched On-Chip Interconnects

The PEs integrated within modern and future MCSoC are (will be) mostly intercon-
nected by a packet-switched network also called network-on-chip (NoC) [5]. NoC
consists of a network of shared communication links and routers, which connect to
the various cores through network interfaces (NIs). These NIs convert between the
internal NoC protocol on one side and the core’s protocol on the other side. For
reasons of compatibility and reuse, the latter is typically one of the standardized bus
protocols, such as AXI, DTL, and OCP (Fig. 3.13).

1980 1995 2000 2005 2009 2020

??NoCMatrixHierarchicalSharedCustom

Fig. 3.12 Evolution of on-chip communication interconnect

http://dx.doi.org/10.1007/978-981-10-6092-2_4
http://dx.doi.org/10.1007/978-981-10-6092-2_5

52 3 Multicore SoC Organization

Core Network Interface

Network

Open Core Protocol (OCP) Network Protocol

Fig. 3.13 Open core protocol (OCP) and Network protocol (NP) interfacing

Router

N
etw

ork
 Interface

Router

Router

N
et

w
or

k
 In

te
rf

ac
e

(1) Core 1 Request
(2) Packetization and transmission
(3) Routing
(4) Receipt and unpacketization (AHB, OCP,)
(5) Device Response (if needed)
(6) Packetization and Transmission
(7) Routing
(8) Core 2 Receipt and unpacketization

Core 1

Core 2

Example: NoC Operation

Fig. 3.14 NoC operation

The NI module decouples computation from communication functions. Routers
are in charge or routing and are arbitrating the date between the source and des-
tinations PEs through links. Several network topologies have been studied [7, 8].
The NoCs facilitate the design of Globally Asynchronous Locally Synchronous
(GALS) property by implementing asynchronous–synchronous interfaces in the NIs.
Figure3.14 shows an example of NoC operation.

3.2.5 Intellectual Property (IP) Cores

An IP core is a block of logic or a software library that we use to design a SoC based
on single or multicore. These software and hardware IPs are designed and highly
optimized in advance (time to market consideration) by specialized companies and
area ready to be integrated with our new design. For example, we may buy a software
library to perform some complex graphic operations and integrate that library with

3.2 MCSoC Building Blocks 53

our existing code. We may also obtain the above code freely from an open-source
site online.Universal asynchronous receiver/transmitter (UARTs), central processing
units (CPUs), ethernet controllers, and PCI interfaces are all examples of hardware
IP cores.

As essential elements of design reuse, IP cores are part of the growing electronic
design automation (EDA) industry trend toward repeated use of previously designed
components. Ideally, an IP core should be entirely portable. This means the core
must be able to easily be integrated (plug-and-play style) into any vendor technology
or design methodology. Of course there are some IPs that are not standard and may
need some kind of interface (called wrapper) before integrating it into our design. IP
cores fall into one of two main categories: soft cores and hard cores:

(1) Soft IP Core: Soft IP cores refer to circuits which are available at a higher level
of abstraction, such as register-transfer level (RTL). These type of cores can be
customized by the user for specific applications.

(2) Hard IP Core: A hard IP core is one where the circuit is available at a lower level
of abstraction such as the layout-level. For this type of core, it is impossible
to customize it to suit the requirements of the embedded system. As a result,
there are limited opportunities in optimizing the cost functions by modifying the
hard IP.

A good IP core should be configurable so that it can meet the needs of many different
designs. It also should have a standard interface so that it can be integrated easily.
Finally, a good IP core should come in forms of complete set of deliverables: syn-
thesizable RTL, complete test benches, synthesis scripts, and documentation. The
example shown in Fig. 3.15 is for a hardware IP core fromAltera FPGA provider [9].

3.2.6 IP Cores with Multiple Clock Domains

The IP cores integrated within a given MCSoC may work at different clock rates.
For example, some SoC may have more than three clock domains. In addition, many

The Altera IP core site (http://www.altera.com/products/ip/ip-index.jsp)
Altera IP site provides access to a wide variety of IP blocks of different
size and complexity:

- basic arithmetic blocks to transceivers,
- memory controllers,
- microprocessors,
- signal processing, and
- protocol interfaces

Example: Altera Intellectual Property

Fig. 3.15 Intellectual property example

54 3 Multicore SoC Organization

Core 4Core 3

RAMROMEPROMI/O

Shared Bus

FIFOFIFO

Core 2

FIFO

PLL

CLK1 100 MHz
CLK2 150 MHz

CLK3 66 MHz

CLK4 300 MHz

Core 1

clk Gen

f2f3

f1

Fig. 3.16 Three clock domains MCSoC

embedded cores operate internally using multiple frequencies. Figure3.16 shows a
simple design that comprises three cores with three different physical clocks. In this
example, Core 2 consists of three modules operating at different frequencies (f1, f2,
and f3). A physical clock is a chip-level clock; for example, it can come from an
oscillator, or a phase-locked loop (PILL). All the internal clocks generated from the
same physical clock are considered to be a part of the same physical clock domain.

In a MCSoC system, the multi-frequency blocks communicate one with each
other through synchronization logic and/or FIFO memory blocks. Such design has
the advantage of low power and low silicon area. However, the main design difficul-
ties with multi-frequency embedded cores are the clock skew, and synchronization
problems.

3.2.7 Selection of IP Cores

This section investigates the classification and selection of processor cores and con-
siders theMCSoC infrastructure that allows an efficientmix of different types of cores
and function-specific hardware cores to access shared resources in the SoC. Selection
of appropriate IP cores depends on the application mapping output. Depending of
the target application, mapping of the functional subsystems to a MCSoC hardware
resources generally involves the following cores:

• Host CPU: The host CPU is generally an industry standard core such as,MIPS and
ARM CPUs. Typically, these cores have a large application code and thus need to
access code and data in an external SDRAM memory.

• VLIW processor: Generally, this core provides scalability and processing power.
This processor core exploits fine-grained data parallelism. Code and data segments
are typically large, so the VLIW processor core also needs access to SDRAM.

3.2 MCSoC Building Blocks 55

Header
Decoder VLD

IDCT
IQ

Buffer

+ Recovery
Unit

MC
UnitBuffer

Baseline Unit

Decoded
Video

MPEG
codec
video

core 1 core 2

Header
Decoder VLD

IDCT
IQ + Recovery

Unit

MC
Unit

Baseline Unit

Decoded
Video

MPEG
codec
video

core 1 core 2core 3

Buffer

Buffer

(a)

(b)

Fig. 3.17 Example of mapping of an MPEG-2 decoder. a Using two cores, b Using three cores

• Embedded control CPU: Small to medium sized code base. Architectural and
commercial reasons often use processor core from the same processor provider as
the host CPU. For architectural consistency, such core is connected to the same
bus structures as the host CPU or VLIW processor cores.

• Fixed point DSP: generally deeply embedded into theMCSoC architecture. Often,
DSP cores are connected into the SoC infrastructure via HW semaphore mecha-
nisms.

• Function-specific HW core: massively parallel computation core that makes use
of fine-grained parallelism as well as coarser parallelism and typically processes
large data sets. Some cores are connected to external real-time interfaces, and
therefore need real-time performance.

56 3 Multicore SoC Organization

As an example of mapping, a given application to different cores within a MCSoC
system, consider an example of an MPEG-2 decoder application which consists of
a baseline unit, a motion compensation (MC) unit, a recovery unit, and the asso-
ciated buffers. The baseline unit consists of a VLD (variable length decoder), an
IQ/ IZZ (inverse quantization/inverse zigzag) module, IDCT (inverse discrete cosine
transform) modules, and the buffer. Figure3.17 shows this application running on a
multicore system with two or three cores.

3.3 MCSoC Memory Hierarchy

The memory architecture of an embedded MCSoCs strongly influences area, power,
and performance of the entire system. In these systems, more on-chip silicon is
devoted to memory than to anything else on the chip. This requires special attention
that must be dedicated to the on-chip memory organization.

The memory organization of embedded MCSoC systems varies widely from one
to another, depending on the application and market segment for which the SoC is
targeted. Broadly speaking, program memories for MCSoCs are classified into (1)
primary memory and (2) secondary memory.

The primary memory is the memory that is addressed by core(s) and holds current
data set that is being processed as well as the program (text) code. This memory may
consist ofmainmemory typically implemented inDRAMtechnology, and ahierarchy
of smaller and faster caches (SRAMs) or Scratchpad memories (SPRAMs), that hold
the copies of some of the data from the main memory.

The secondary memory maybe also used for long-term storage. Embedded
MCSoC systems often include flash memory as the secondary storage, e.g., for stor-
ing pictures in a digital camera.

In the remaining part of this section, we will discuss in a fair amount of details the
many alternatives for on-chip and off-chip memory usage that SoC designers must
understand.

3.3.1 Types on On-Chip Memory

There are three broad categories of on-chip memories that system designer can use.
The first type is called static random access memory (SRAM). This is quite known
memory architecture and is found in almost all type of computers and not only
embedded multicore systems. SRAM is very common in SoC designs because it is
fast and is built from the same transistors used to build all of the logic on the SoC,
so no process changes are required. Further, due to its good characteristics (mainly
speed), SRAMs are generally used for caches to solve the processor–memory speed
mismatches.

3.3 MCSoC Memory Hierarchy 57

Most SRAM bit-cells require at least four transistors and some require as many as
ten; so on-chip dynamic RAM or DRAM is becoming increasingly popular. DRAM
stores bits as capacitive charge, so each DRAM bit cell requires only one transistor
and a capacitor. DRAM’s main advantage is density. But, DARM is slower than
SRAM and has some particular requirements that affect system design such as the
need for periodic refresh. Further, the capacitors in the DRAM bit-cells require
specialized processing,which increases die cost. This is of course not a good situation
for strictly cost constrained embedded MCSoC systems.

Every SoC needs memory that remembers code and data even when the power is
off. Thus, the cheapest and the least flexible memory is ROM and so is our second
type of memory in this discussion. ROMs are not flexible since their contents cannot
be changed after the system is fabricated. Fortunately, EPROM and flashmemory are
good alternatives. Figure3.18 illustrates a simplified view of a MCSoC architecture
with different core and memory types.

A given memory bank can be organized as a single-access RAM or a dual-access
RAM to provide single or dual access to the memory bank in a single cycle. Also
the on-chip memory banks can be of different sizes.

The good thing for smaller banks is that they consume less power per access than
the larger memories. Embeddedmulticore systemsmay also be interfaced to off-chip
memory, which can include SRAM and DRAM. If the system is targeted for low to
mediumcomplex embedded applications, purelySPRAMbasedon-chip organization
is recommended. FIFOmemories canbe also used to inter-core communication inside
the MCSoC chip as shown in Fig. 3.19.

Core 1 Core 2 Core 3

on-chip interconnect

shared L2 $

L1 $ L1 $L1 $

External Memory (DRAM, ROM, Flash, Disk)

Fig. 3.18 Simplified view of a MCSoC architecture having different memories

58 3 Multicore SoC Organization

Core 4Core 3

RAMROMEPROMI/O

Shared Bus

FIFOCore 1 FIFOCore 2FIFO

Fig. 3.19 Example of four cores communicating via FIFOs

3.3.2 Scratchpad Memory

Scratchpad memory (SPRAM) is a high-speed internal memory directly connected
to the CPU core and used for temporary storage to hold very small items of data for
rapid retrieval. Scratchpads are employed for simplification of caching logic, and to
guarantee a unit can work without main memory contention in a system employing
multiple cores, especially in embedded MCSoC systems. They are suited for storing
temporary results.

While a cachememory uses a complex hardware controller to decidewhich data to
keep in cachememories (L1 or L2) and which data to prefetch, the SPRAM approach
does not require any hardware support in addition to the memory itself, but requires
software to take control of all data transfers to and from Scratchpad memories. That
is, it is the responsibility of the programmer to identify data section that should be
placed in SPRAM or place code in the program to appropriately move data from on-
chip memory to SPRAM. For this reason, SPRAMs are sometimes called “software
controlled caches.” Figure3.20 illustrates the memory subsystem architecture with
2 SPARMs (level 1 and level 2).

3.3.3 Off-Chip Memory

When embedded system designers need a large amount of RAM storage, then off-
chip DDR (double-data-rate) SDRAM is likely to be the good choice. Even if an
embedded design only requires a small fraction of the capacity of a DDR memory
chip ormodule, itmay still bemore economical to pay for the excess capacity because
the system price will still be lower.

Adding a DDR memory port to a MCSoC design creates the need for an on-chip
DDR memory controller. In the same way, system design considerations may make

3.3 MCSoC Memory Hierarchy 59

D $ L2 SPRAM
(e.g. 32K)

L1 SPRAM
(e.g. 2K)

Main memory (off-chip RAM)

Processor Core

Fig. 3.20 MCSoC memory subsystem with SPARM (only interconnection for one node is shown
for simplicity)

it more desirable to have nonvolatile memory reside off-chip. Again, this option is
adopted when a large nonvolatile memory is needed or when the manufacturing costs
needed to add EEPROM to theMCSoC are expensive due to limited available budget.
In this case, the hardware design team should add a Flash memory controller which
of course will add some extra hardware and cost to the system.

3.3.4 Memory Power Reduction in SoC Designs

Due to recent increases in VLSI density, SoC designers have exploited the additional
silicon available on chips to integrate embedded memories such as SPRAMs, FIFOs,
and caches to store data for a large number of cores.

Since these embeddedmemories are implemented inside the chip, the communica-
tion latency is low or even negligible. Thus, they allow for significantly better system
performance and lower power compared to a solution where off-chip memories are
used.

60 3 Multicore SoC Organization

It was found by several researchers that the memory subsystem accounts for up
to 50–70% of the total power consumption of the system [10]. This reflects the
importance of limiting the energy consumption of memory subsystem. One possible
architectural approach for memory energy reduction is the replacement of traditional
cache-based memory subsystem by customized SPRAM based one.

The energy savings from this solution comes from the fact that SRPARM con-
sumes less energy per access than a cache due to the absence of additional hardware
(e.g., tag memory) present in a cache.

With more transistors becoming available on chip, the percentage of area taken
by memory is increasing. In addition to the power projection, the ITRS 2003 report
projects that in 2012 memory will occupy about 90% of a chip. This means that only
about 10% will be left for the processor’s computing blocks. Figure3.21 shows the
projection of memory/logic composition of a power-constrained SoC chips.

As we mentioned earlier, most memories embedded in MCSoCs use SRAM tech-
nology. The key sources of power consumption in such memories are:

• Static or leakage power dissipated by the logic in the periphery and memory array.
• Dynamic or switching power dissipated when read or write operations are per-
formed.

The dynamic power consumed by a memory when a read or write operation occurs,
can be divided into the power consumed by the following components:

• Toggling of the clock network
• Registers for data/address latching on memory I/Os
• Bit-lines in the memory array
• Peripheral logic to decode the address
• Core memory cells changing state.

Fig. 3.21 Projection of memory/logic composition of power-constrained SoC chips [11]

3.4 Memory Consistency in Multicore Systems 61

3.4 Memory Consistency in Multicore Systems

In the traditional Von Neumann machines, instructions appear to execute in the
order specified by the programmer or compiler regardless if the implementation
of the machine actually executes them in a different order. For example, a load
instruction should return the last value written to the memory location. Likewise,
a store instruction to a memory location determines the value of the next load. All
sequential programs assume this strict rulewhen they are executed on a uni-processor.

Multithreaded programs running on multicore systems complicate both the pro-
gramming model and the implementation to enforce a given model. More precisely,
the value returned by a given load is not clear because the most recent store instruc-
tion may have occurred on a different core. Thus, system designers generally define
memory consistency models to specify how a processor core can observe memory
accesses from other cores in the same system. Serial consistency is a model defined
such that the result of any execution is the same as if the operations of all processor
cores were executed in some serial order, and the operations of each individual core
behave in this sequence in the order specified by its program. The addition of cache
memories to these systems affects how such consistency is implemented.

A cache memory allows processor speed to increase at a greater rate than the main
memory speed by exploiting what is known as “time” and “space” localities.

The process of connectingmemory locationswith cache lines is called “mapping.”
Since cache is smaller than the main memory, the same cache lines are shared for
different memory locations. Each cache line has a record of the memory address
called tag. This tag is used to track which area of memory is stored in a particular
cache line.

The way these tags are mapped to cache lines can have a beneficial effect on the
way a program runs. Caches can be organized in one of several ways: direct mapped,
fully associative, and set associative. Figure3.22 shows an example of direct-mapped
cache organization.Cache operations aremainly done in hardware and their operation
is all hardware-based and automatic from a programmer’s point-of-view. In other
words, details of the cache hierarchy do not affect the instruction set architecture of
the processor. While caches do not present a real problem in a uni-processor system,
they considerably complicate memory consistency for systems designed with multi-
andmany cores. This problem is known in the literature as cache coherence problem.

3.4.1 Cache Coherence Problem

In a single-core system, the coherence problem appears when an I/O peripheral
bypasses the cache on the system bus and flows directly to and from themainmemory
(DRAM). This problem can be easily solved by software (compiler) because the
single-thread context imposes a well-defined thread order and the software is always
informed on each trap and interrupt caused by a given I/O. The compiler, then, tags

62 3 Multicore SoC Organization

valid tag data
Hit Data

20 32

index
0

1

2

3

4
.
.
1023

31 3012 112 1 0

20

32-bit Address

and

indextag Byte offset

-

Fig. 3.22 Direct-mapped cache organization

data as cacheable and non-cacheable. Only read-only data is considered cacheable
and put in private cache. All other data are non-cacheable, and can be put in a global
cache, if available.

In multicore-based systems things are quite different and more serious because it
is difficult to keep record about the order of instructions in different threads running
in simultaneously and in different processor cores.

This “coherence” problem comes from the multiple copies of the same mem-
ory location, not only in the cache hierarchy, but also in more low-level hardware
buffers for memory accesses inside the processor core. The coherence problem here
is more difficult to solve than in single core system because the software is not always
informed and on-chip communication patterns are not clearly seen by the system’s
software.

Figure3.23, illustrates an example of cache coherence problem. As shown in the
above figure, the value returned by a given load is not clear because the most recent
store may have occurred on a different core. We have to note here that this problem
is not very different from multiprocessor (multiple chips) cache coherence problem.
Thus, system designers generally define memory consistency models to specify how

3.4 Memory Consistency in Multicore Systems 63

core 1

x = 0

core 2 core3

x = 0 -> 1

Main Memory

x=0
load x
(x=0)

load x
(x=0)

1

2

store 1 in x
(x=1)

3

load x 4

load x
5

? D $ D $D $

shared bus

Fig. 3.23 Cache coherence problem example without coherence protocol

a processor core can observe memory accesses from other processor cores in the
system.

A multicore system is said to be cache coherent if the execution of a given
program leads in a valid ordering of reads and writes to a memory location.

3.4.2 Cache Coherence Protocols

We have to note first that the solution for cache coherence problem is a general
problem with multiprocessors and only limited to multicore systems or MCSoCs.
There exist many coherence algorithms and protocols.

For a small-scale bus-based system, snooping bus is generally used. There are two
basic methods to utilize the inter-core bus to notify other cores when a core changes
something in its cache. One method is referred to as update. In the update method,
if core 1 modifies variable ‘y’ it sends the updated value of ‘y’ onto the inter-core
bus. Each cache is always listening (snooping) to the inter-core bus so that if a cache
sees a variable on the bus which it has a copy of, it will read the updated value. This
ensures that all caches have the most up-to-date value of the variable.

Another method which utilizes the inter-core bus is called invalidation. This
method sends an invalidation message onto the inter-core bus when a variable is
changed. The other caches will read this invalidation signal and if its core tries to
access that variable, it will result in a cache miss and the variable will be read from
main memory.

The update method causes a significant amount of traffic on the inter-core bus
because the update signal has to be sent onto the bus every time the variable is
updated. However, the invalidation method only requires that an invalidation signal
is sent for the first time a variable is altered; this is why the invalidation method is
the preferred method. Table3.1 shows all cache coherence states.

64 3 Multicore SoC Organization

Table 3.1 Cache coherence states

State Permission Definition

Modified (M) Read, write All other caches in I or NP

Exclusive (E) Read, write The addressed line is in this
cache only.

Owned (O) Read All other caches in S, I, or NP

Shared (S) Read All other caches in M or E

Invalid (I) None None

Not Present (NP) None None

MSI (Modified, Shared, and Invalid) Protocol: MSI is a basic but well-known cache
coherency protocol. These are the three states that a line of cache can be in. The
Modi f ied state means that a variable in the cache has been modified, and therefore
has a different value than that found in main memory. The cache is responsible for
writing the variable back to main memory. The Shared state means that the variable
exists in at least one cache and is not modified. The cache can evict the variable
without writing it back to the main memory. The I nvalid state means that the value
of the variable has been modified by another cache and this value is invalid.

MESI (Modified, Exclusive, Shared, and Invalid) Protocol: Another well-known
cache coherency protocol is the MESI protocol. The modified and invalid states
are the same for this protocol as they are for the MSI protocol. This protocol intro-
duces a new state; the exclusive state. The exclusive state means that the variable is
in only this cache and the value of it matches the value within the main memory.
This now means that the Shared state indicates that the variable is contained in more
than one cache.

MOSI (Modified, Owned, Shared, and Invalid) Protocol): The MOSI protocol is
identical to the MSI protocol except that it adds an Owned state. The Owned state
means that the processor “Owns” the variable and will provide the current value to
other caches when requested (or at least it will decide if it will provide it when asked).

3.4.2.1 Directory-Based Cache Coherency

The snooping protocol works well with system based on shared bus (natural broad-
cast medium). However, large-scale MCSoC (and multiprocessors) may connect
cores/processors with memories using switches or some other kind of complex inter-
connects. Thus, a new method is needed.

The alternative for the “snoopy-bus” scheme is a protocol known as “directory”
protocol [12, 13]. The basic idea in this scheme is to keep track ofwhat is being shared
in one centralized place called directory. This method scales better than snoopy-bus.
In this approach, each cache can communicate the state of its variables with a single
directory instead of broadcasting the state to all cores.

3.4 Memory Consistency in Multicore Systems 65

Cache coherence protocols guarantee that eventually all copies are updated.
Depending on how and when these updates are performed, a read operation may
sometimes return unexpected values. Consistency deals with what values can be
returned to the user by a read operation (may return unexpected values if the update
is not complete). Consistency model is a contract that defines what a programmer
can expect from the system.

3.5 Chapter Summary

Increasing processing power demand for new embedded consumer applicationsmade
the convectional single-core-based designs no longer suitable to satisfy high perfor-
mance and low power consumption demands. In addition, continuous advancements
in semiconductor technology enable us to design a complex multicore systems-on-
chip (MCSoCs) composed of tens or even hundreds of IP cores.

Integratingmultiple cores on a single chip has enabled embedded systemhardware
designers to provide more features and higher processing speeds using less power,
thus solving many design problems. However, no thing is really free! The designer
of these embeddedMCSoCs is no longer dealing with the familiar homogeneous and
symmetric multiprocessing (SMP) model of large computer systems. Rather, he may
have dozens or hundreds of processor core to program and debug, a heterogeneous
and unbalanced mix of DSP, RISC, IPs and complex on-chip network architectures,
operating asymmetrically. This is not an easy task.

In this chapter, we tried to explain the main components of a typical MCSoC
system. The goal is to give a clear idea about the architecture and function of the
main buildingblocks. In the next twochapters,wewill describe in details the network-
on-chip interconnection which is a promising on-chip interconnection paradigm for
future multi- and many core SoCs.

References

1. M.S. Papamarcos, J.H. Patel, A low-overhead coherence solution for multiprocessors with
private cache memories, in ISCA ’84 Proceedings of the 11th Annual International Symposium
on Computer Architecture (1984), pp. 348–354

2. J. Knobloch, E.Micca,M.Moturi, C.J. Nicol, J.H. O’Neill, J. Othmer, E. Sackinger, K.J. Singh,
J. Sweet, C.J. Terman, J.Williams, A single-chip, 1.6-billion, 16-bMAC/smultiprocessor DSP.
IEEE J. Solid-State Circuits 35(3), 412–424 (2000)

3. C-5 Network Processor Architecture Guide, C-Port Corp., North Andover, MA, 31 May 2001
4. STMicroelectronics: http://www.st.com/internet/com/home/home.jsp
5. A. Ben Abdallah, M. Sowa, Basic network-on-chip interconnection for future gigascale

MCSoCs applications: communication and computation orthogonalization, in Proceedings of
the Joint Symposium on Science, Society and Technology (JASSST2006) (2006), pp. 1–7, 4–9
December 2006

http://www.st.com/internet/com/home/home.jsp

66 3 Multicore SoC Organization

6. A. Ben Abdallah, T. Yoshinaga, M. Sowa, Scalable core-based methodology and synthesizable
core for systematic design environment in multicore SoC (MCSoC), in Proceedings IEEE
35th International Conference on Parallel Processing Workshops (2006), pp. 345–352, 14–18
August 2006

7. A.B. Ahmed, A. Ben Abdallah, Graceful deadlock-free fault-tolerant routing algorithm for 3D
network-on-chip architectures. J. Parallel Distrib. Comput. 74(4), 2229–2240 (2014)

8. A.B. Ahmed, A. Ben Abdallah, Adaptive fault-tolerant architecture and routing algorithm for
reliable many-core 3D-NoC systems. J. Parallel Distrib. Comput. 9394, 30–43 (2016)

9. Altera: http://www.altera.com/
10. International Technology Roadmap for Semiconductors, 2005 Edition
11. International Technology Roadmap for Semiconductors, 2003 Edition, System Drivers
12. L.M. Censier, P. Feautrier, A new solution to coherence problems in multicache systems. IEEE

Trans. Comput. c–20(12), 1112–1118 (1978)
13. D.Chaiken, C. Fields, K.Kurihara,A.Agarwal, Directory-based cache coherence in large-scale

multiprocessors. Computer 23(6), 49–58 (1990)

http://www.altera.com/

Chapter 4
Multicore SoC On-Chip Interconnection
Networks

Abstract Global interconnects are becoming the principal performance bottleneck
for high-performance multicore SoCs. Since one of the main purposes of SoC design
is to shrink the size of the chip as smaller as possible while seeking at the same time
for more scalability, higher bandwidth and lower latency. Conventional bus-based
systems are no longer reliable architecture for SoC due to a lack of scalability and
parallelism integration. During this last decade, network-on-chip (NoC) has been
proposed as a promising solution for future systems on chip design. It offers more
scalability than the shared bus-based interconnection, and allows more processors/-
cores to operate concurrently. This chapter presents architecture and design of a
two-dimensional NoC system suitable for medium scale multicore SoCs.

4.1 Introduction

Future high-performance embedded SoCs will be based on multi- and manycore
approaches with nanoscale technology consisting of hundreds of processing and
storage elements. These new paradigms are emerging as a key design solution for
today’s nanoelectronics design problems. The interconnection structure supporting
such systems will be closer to a sophisticated network than to current bus-based
solutions. Such networkmust provide high throughput and low latencywhile keeping
area and power consumption low.

Network-On-Chips (NoCs) [1–4] provide a good way of realizing intercon-
nections on silicon and largely alleviate the limitations of bus-based solutions.
Deep submicron processing technologies have enabled the implementation of new
application-specific architectures that integrate multiple software programmable
cores and dedicated hardware components together onto a single chip. Recently,
this kind of architecture has emerged as key design solutions for today’s design
challenges, which are being driven by various emerging applications, such as wire-
less communication, broadband/distributed networking, distributed computing, and
multimedia computing.

68 4 Multicore SoC On-Chip Interconnection Networks

Fig. 4.1 Typical paradigms: a circuit switching, b packet switching

NoC is a scalable interconnect with a huge potential to handle the increasing com-
plexity of current and future multicore SoCs. In such paradigm, cores are connected
via a packet-switching communication network on a single chip. This scheme is simi-
lar to the way that computers are connected to the Internet. The packet-switching net-
work routes information between network clients (e.g., PEs, memories, and custom
logic devices). Figure4.1 illustrates a point-to-point network and aNetwork-on-Chip
model.

Packet switching approach supports asynchronous data transfer and provides
extremely high bandwidth by distributing the propagation delay across multiple
switches and effectively pipelining the packet transmission. In addition, it offers
several other promising features. First, it transmits packets instead of words. As a
result, dedicated address lines, like those used in bus-based systems, are not nec-
essary since the destination address of a given packet is included in the packet’s
header. Second, transmission can be conducted in parallel if the network provides
more than one transmission channel between a sender and a receiver. Thus, unlike
bus-based systems, NoC presents theoretical infinite scalability, facilitates IP cores
reusing, and has higher level of parallelism. A NoC architecture, named OASIS NoC
(ONoC), was developed in [5–9]. The above network is based on mesh topology [10]
and uses wormhole like switching, a first-come-first-served (FCFS) scheduler, and
retransmission flow control similar to conventional ACK/NACK flow control.

NoC research issues include a lot of trade-offs such as topology, routing, switch-
ing, scheduling, flow control, buffer size, packet size, and any optimization tech-
niques. It is difficult to analyze these parameters using only high-level simulations.
Therefore, NoC prototype is an essential design phase for evaluating the performance
of the NoC architectures under real applications [11].

The remaining of this chapter presents architecture and design details of a 2D-
mesh NoC architecture. The chapter also describes a so called short pass link (SPL)
to optimize mesh topology by reducing (in some cases) the number of hopes between
nodes experiencing heavy traffic.

4.2 Network-on-Chip Architecture 69

4.2 Network-on-Chip Architecture

As we earlier stated, an NoC architecture is generally characterized by its topology,
routing, switching, flow control, and arbiter techniques. There are various trade-
offs when selecting these parameters. So, designers need to take care and deeply
understand about all the design choices.

4.2.1 Topology

The topology defines the way routers and links are interconnected. Topology is an
important design choice as it defines the communication distance and its uniformity.
Some of the most used topologies are depicted in Fig. 4.2.

The choice of a topology depends on its advantages and drawbacks. Usually,
regular topologies (Fig. 4.2a–e) are preferred over irregular ones (Fig. 4.2f), because
of their scalability and reusable pattern. Otherwise, irregular or mixed topologies can
be more conveniently be adapted to specific needs of the application. This depends
on the target application which may require some area, power, or timing constraints
that need to be strictly satisfied. In this case, regular topologies might not be the
right approach to implement such special applications, and custom irregular ones
offer better flexibility to meet the desired requirements. On the other hand, one of

Fig. 4.2 Typical NoC topologies

70 4 Multicore SoC On-Chip Interconnection Networks

the main problems that irregular topologies suffer from is the design time needed to
profile the application and decide the best topology layout that satisfies these design
requirements.

The mesh and torus-based topologies are considered as the most commonly used
on-chip network topologies. Together they constitute over 60% of 2D-NOC topol-
ogy cases [12]. Mesh and Torus are depicted in Fig. 4.2a, b respectively. Both of
them can have four neighboring connections; but, only Torus has wraparound links
connecting the nodes on network edges. Other topologies like butterfly, fat-tree, and
ring (depicted in Fig. 4.2c–e, respectively) have roughly even proportion.

Compared with other on-chip network topologies, the mesh topology in particular
can achieve better application scalability. The implementation of routing functions
in mesh topology is also simpler and can be characterized well. In the on-chip in-
terconnection networks for on-chip multiprocessor systems, the mesh architecture is
widely used and preferable. An example of on-chip multicore system that uses mesh
topology is Intel-Teraflops system. The 80 homogeneous computing elements are
interconnected through NoC routers in the 2D mesh 8×10 network topology.

The routing methods are selected depending on the topology [13, 14]. Routing
algorithm can be easily implemented in a standard topology (e.g., Mesh, Torus, Star)
because each router sends the same routing path to its neighboring nodes. However,
for customized topology, routing is generally more difficult and it is necessary to
design specific routing mechanism. Thus, the design time may be longer than stan-
dard [15, 16]. Figure4.3 illustrates an example of a 3 × 3 mesh-based NoC system.

Fig. 4.3 Example of a 3 × 3
NoC based on mesh
topology. R: router/switch,
PE: processing element, NI:
network interface

4.2 Network-on-Chip Architecture 71

4.2.2 Switching

There exist two main types of switching methods in NoC interconnects: (1) circuit
switching and (2) packet (or flit) switching. In the first method, the path between
a given source and destination pair should be first established and reserved before
starting to send the actual data. This offers some performance guarantees as the
message is sure to be transferred to its destination without the need for buffering,
repeating, or regenerating. Moreover, if during the establishment of the path a prob-
lem is detected (such as failure or high congestion), the source node can recompute
another safer path to be reserved again. However, the path setup required for each
message increases the latency overhead, in addition to the extra congestion caused
by the different control data traveling the network and competing with the actual
data for the network resources. Therefore, it is best suited for predictable transfers
that are long enough to amortize the setup latency.

Packet-switching is more common and it is widely used in NoC systems. In
packet switching, routers communicate through transmitting packets/flits through the
network. The transmission of a given packet should not block the communication of
other ones in the network. To solve this problem, a forwarding method (switching
policy) can be selected to define how the network resources (link and switched) are
reserved and how they are torn down after the transfer completion. The forwarding
methods have a big impact on the NoC performance and each one of them has its
advantages and drawbacks. In packet switching, store-and-forward (SF), wormhole
(WH), and virtual-cut-through (VCT) are considered as the main switchingmethods.

4.2.2.1 Store-and-Forward (SF)

In this switching method, each message should be divided into several packets. As
depicted in Fig. 4.4, each packet is completely stored in a FIFO buffer before it is
forwarded to the next router. Therefore, the size (depth) of FIFO buffers in the router
is set similar to the size of the packet in order to be able to completely store the
packet. This represents the main drawback of this switching policy since it requires
a significant amount of buffer resources which increases as we increase the packet
size. This amount of allocated buffer slots has a huge impact on the area and power
consumption of the NoC system. Moreover, as can be seen in Fig. 4.4, node (0,2)
has two empty slots since the first two flits of Packet-4 (P4F1 and P4F2) have been
already transmitted. Despite the available two slots, Packet-5 (P5) in node (0,1) is
still stalled. This is because in order to be forwarded, all the four slots in node (0,2)
should be freed; therefore, P5 can be forwarded only when P4 is forwarded as well
and the buffer slots are freed. Store-and-Forward was the first switching method that
has been used in many parallel machines [17–19]. It was also in the first prototypes
and designs of NoC [20–24].

72 4 Multicore SoC On-Chip Interconnection Networks

Fig. 4.4 Store-and-forward switching

4.2.2.2 Wormhole (WH)

Wormhole switching (WH) is one of the most popular, well-used and well suited for
NoC systems. In WH switching method, represented in Fig. 4.5, packets are divided
into a number of flits. As can be seen in Fig. 4.5, the four flits of Packet-1 (P1F1,
P1F2, P1F3, and P1F4) are dispersed in four different routers. Therefore, no need
for buffer resources to host the entire packet. The main advantage of the wormhole
switching is that the buffer size can be set as small as possible to reduce the buffering
area cost. This responds to the area and power overhead of SF. However, blocking
is one of its major drawbacks. As depicted in Fig. 4.5, the last flit of P1 is located in
the head of the south input-buffer of node (1,0).

In the tail of the same input-buffer, the first flit of Packet-2 (P2) is requesting
the grant to be forwarded to the north output-port (heading for node (2,0)). In this
scenario there is a tight dependency between the first P1F4 and the second P2F1.
In other words, if P1F4 is forwarded then P2F1 can be forwarded as well; however,
in case where P1F4 is blocked for congestion or failure reasons in the downstream
nodes, then P2F1 is blocked too. Consequently, the remaining flits of P2 and the
dependent other flits will be blocked as well. This will lead to the partial or entire
system deadlock and a significant performance degradation. One of the solutions, to
solve this problem in WH switching, Virtual-channels [25] can be used. This will be
discussed later in this chapter (Sect. 2.1.5).

http://dx.doi.org/10.1007/978-981-10-6092-2_2

4.2 Network-on-Chip Architecture 73

Fig. 4.5 Wormhole switching

The wormhole switching method was first introduced in [26]. The work in [27]
has presented also the performance of the wormhole switching in k-ary n-cube in-
terconnection networks.

4.2.2.3 Virtual-Cut-Through (VCT)

Figure4.6 demonstrates Virtual-Cut-Through (VCT) switching. VCT is an interme-
diate forwarding method that has the properties of both SF and WH. As represented
in Fig. 4.6, with VCT it is possible to forward flits one after another. So, flits from
different packets can share the same input-buffer eliminating the stalling caused by
SF. In order to solve the blocking problem found in WH switching, VCT requires
that the buffer depth should be equal to the packet size (number of flits in the packet).
This buffer size is needed to store blocked flits.

When blocking happens, flits are stored in a router next to the blocked one. The
buffer size is larger than WH switching since the entire packet is stored. However,
the forwarding latency is much smaller than SF switching. This is because in the
Store-and-Forward packet switching method the packet is completely stored before
it is forwarded to the next router and the delay to wait for the complete packet storing
is very long.

74 4 Multicore SoC On-Chip Interconnection Networks

Fig. 4.6 Virtual-cut-through switching

4.2.3 Flow Control

Flow control determines how resources, such as buffers and channels bandwidth
are allocated, and how packet collisions are resolved [1]. Whenever the packet is
buffered, blocked, dropped, or misrouted, this depends on the flow control strategy.
A good flow control strategy should avoid channel congestion while reducing the
latency. ON/OFF, credit-based, and ACK/NACK are commonly used control flows
used in NoC and are explained in this subsection.

4.2.3.1 ON/OFF Flow Control

ON/OFF flow control [28] has protocols which can manage data flow from upstream
routers while issuing aminimal amount of control signals. It is able to do this because
it has only two states: ON or OFF. This control flow has threshold values, which are
dependent on the number of free buffers in downstream routers. The threshold values
are used to decide the states of the control signals. When the number of free buffers
is over the threshold, downstream routers emit an OFF signal to upstream routers,
stopping theflowofflits.Meanwhile, the downstream routers sendflits to other nodes,
and the number of free buffers becomes less than the threshold value, downstream
routers emit an ON signal to upstream routers, restarting the flow of flits. Since the
ON/OFF signal is just only sent to switch, there is a low calculation time. Figure4.7
indicates one transmission example with ON/OFF flow control.

4.2 Network-on-Chip Architecture 75

Fig. 4.7 ON/OFF flow control

4.2.3.2 Credit-Based Flow Control

In Credit-based flow control (CB), upstream nodes have information about the num-
ber of empty slots in downstream buffers. We call this information CN (Credit Num-
ber). Each time an upstream node sends a flit to downstream buffers, the number is
decremented by one. When downstream buffers send some flits to other nodes, they
also send a credit control signal to upstream routers, and when the upstream router
receives the signal, the CN associated with the path is incremented appropriately.
Figure4.8 illustrates the data flow and an example of transmission. In this example,
initially Router 2 is blocked, and CN is decremented. Next Router 2 starts sending
flits and credit signals are emitted to Router 1, which receives the signal and restarts
sending flits to Router 2.

4.2.3.3 ACK/NACK Flow Control

The above flow controls send signals from the downstream buffers to upstream ones
and decide whether or not to send flits. On the other hand, ACK/NACK flow control
[28] does not need to wait and calculate such signals from downstream buffers. In
this flow control model, as flits are sent from source to destination, a copy is kept
in each of the node buffers to resend it, if necessary, in case where some flits are
dropped. An ACK signal is sent from a downstream node when a flit is received.
When the upstream node receives this signal, it deletes its copy from its buffers.
If the downstream node cannot or does not receive the correct flits, it sends NACK
signal to the upstream node, and upstream node rewinds its output queue and starts
resending a copy of the corrupted flit. Figure4.9 depicts an example of this flow
control.

76 4 Multicore SoC On-Chip Interconnection Networks

Fig. 4.8 Credit-based flow control

Fig. 4.9 ACK/NACK flow control

4.2.4 Routing Algorithms

This section will present some basic backgrounds and concept about routing algo-
rithms. In general, the selected routing algorithm for a network is topology depen-
dent. This section will give only a brief description about routing algorithms and
their taxonomy. Routing algorithms can be classified according to several criteria:

4.2 Network-on-Chip Architecture 77

Fig. 4.10 Categorization of routing algorithms according to the number of destinations: a unicast,
b multicast

• Number of destinations:According to the number of destination nodes, to which
packets will be routed, routing algorithms can be classified into unicast routing
and multicast routing as shown in Fig. 4.10. The unicast routing sends the packets
from a single source node to single a destination node. Themulticast routing sends
the packets from a single node to multiple destination nodes. Themulticast routing
algorithm can be divided further into Tree-based multicast routing and Path-based
multicast routing.

• Routing Decision Locality: According to the place where the routing decisions
are made, routing algorithms (unicast or multicast routing) can be classified into
source routing and distributed routing.
As depicted in Fig. 4.11, in the distributed routing, there will be one header probe
(for unicast routing case) containing the address of the destination node (probably
also the source node). The routing information is locally computed each time the
header probe enters a switch node. In the source routing, paths are computed at the
source node. The precomputed routing information for every intermediate node, to
where a message will travel, will be written in a routing probe. All routing probes
that represent the routing paths from the source to destination node will then be
assembled as packet headers for the message.

• Adaptivity: In all cases of the routing implementation seen so far, the routing
algorithm can be either deterministic or adaptive (as represented in Fig. 4.12). In
deterministic routing, the computed paths from a source and destination pair are
statically computed and will always be similar. In adaptive routing algorithms,
the paths from source to destination can be different, because the adaptive routing
selects adaptively the alternative output ports. An output channel is selected based
on the congestion information or the channel status of the alternative output ports.
The adaptive routing algorithms generally guide messages away from congested
or faulty regions in the network. Adaptive routing algorithms can be further clas-

78 4 Multicore SoC On-Chip Interconnection Networks

Fig. 4.11 Categorization of routing algorithms according to decision locality: a distributed, b
source

Fig. 4.12 Categorization of routing algorithms according to adaptivity: a deterministic, b adaptive

sified according to the number of alternative adaptive turns as Fully adaptive and
Partially adaptive routing algorithms.

• Minimality: According to the minimality of the routing path, routing algorithms
can be classified into minimal or non-minimal algorithm (see Fig. 4.13). The min-
imal adaptive routing algorithm will not allow a message to move away from its
destination node. In other words, the message will always be routed closer to its
destination node traversing the minimal number of hops to reach its destination.
In the non-minimal algorithm which is also called as the detour routing algorithm,

4.2 Network-on-Chip Architecture 79

Fig. 4.13 Categorization of routing algorithms according to minimality: aminimal, b non-minimal

the message can be routed away from its destination node. This can be performed
randomly or following some rules and restrictions usually found in adaptive rout-
ing [29].

4.2.4.1 Deadlock and Livelock Avoidance

Deadlock is caused by the cyclic dependency between packets in the network. It is
one of the major issues in NoC systems which is caused when packets in different
buffers are unable to progress because they are dependent on each other forming
a dependency cycle. It can occur because packets are allowed to make all turns in
clockwise and counterclockwise turn directions. Figure4.14 illustrates a deadlock
example in an adaptive NoC system. The dependency is caused by the flits exchange
between R02 and R01. Due to the presence of faults, the choices for a minimal routing
is limited and both communications are dependent on each other; thus, none of them
canmake progress along the network. On the same figure, we can see that flitsDest10
and Dest00, stored in the input-ports of R11 and R01 respectively, are victims of this
deadlock; i.e., even their output-channel is free, they have to wait in the buffer until
the blocking is resolved.

Virtual-Channel (VC) [25] is one of the most well-used techniques for deadlock
avoidance. As illustrated in Fig. 4.15, VC divides the input-buffer in smaller queues
which are independent of each other and managed by an arbiter. When a blockage
happens in one VC, the other ones are not affected and they continue asking requests
for their corresponding output-channels. In this fashion, non-blocked requests are
served and their slots are freed to host other incoming flits.

Another technique used for deadlock-avoidance is called virtual-output-queue
(VOQ) [30]. In VOQ, as shown in Fig. 4.16, the input-buffer is divided into different

80 4 Multicore SoC On-Chip Interconnection Networks

Fig. 4.14 Deadlock example in adaptive NoC systems

Fig. 4.15 Virtual-channel-based router architecture

queues to host incoming flits which are stored depending on their corresponding
output-channel; i.e., VOQ (i,j) stores flits coming from input-port iwishing to access
output-port j. For each output-channel, a 7× 1 crossbar(i) is dedicated to handle the
traversal of flits coming from the different input-channels and asking the grant for
the output-channel(j).

Both VC and VOQ ensure deadlock-freedom; however, the employment of such
techniques is costly in terms of hardware and implementation complexity. This is
caused by the arbitration needed to handle the different requests coming from the

4.2 Network-on-Chip Architecture 81

Fig. 4.16 Virtual-output-queue-based router architecture

multiple VCs/VOQs at each input-port. To solve this overhead, another solution for
deadlock avoidance can be achieved by applying allowed turns and prohibiting one
turn in every clock-wise and counter clock-wise turn direction. The prohibited turns
will avoid cyclic dependency between packets in the network.

Some routing algorithms are solving the deadlock problem based on these pro-
hibitions which are called turn models. The design of adaptive routing algorithms
based on turn models has been introduced in [31]. The work has presented examples
of turn models for adaptive routing algorithms in 2D mesh-based interconnection
network.

If the packets are allowed to make non-minimal adaptive routing, then a problem
called livelock configuration may occur. The livelock is a situation where a packet
moves around a destination node but it never reaches the destination node. The
livelock can be avoided by only allowing the packets to make minimal routing.
However, if the non-minimal routing is allowed, then themechanism todetect livelock
must be implemented.

82 4 Multicore SoC On-Chip Interconnection Networks

4.3 Hardware Design of On-Chip Network

After describing the architecture of the multicore on-chip network in the previous
section, we now delicate this section to the actual hardware design of a mesh-based
on-chip network using Verilog hardware description language. For simplicity, we
only focus on the main building blocks of the on-chip network.

4.3.1 Topology Design

Figure4.17 illustrates a mesh-based topology of a so called OASISNoC (ONoC) and
Fig. 4.18 illustrates the external connections to a router (i = 0 is Local port, i = 1 is
“North” port, i = 2 is “East” port, i = 3 is “South” port and i = 4 is “West” port).

The Verilog RTL coding for a mesh topology design is shown in Listing4.1. The
parameters X −WIDTH and Y −W I DT H means network size, when i == 1, each
router’s north input port receives data from south port of currentx, currenty + 1
router. (y − pos == Y −W I DT H − 1) indicates the router position is north edge,
so there are no input data from north port. All ports connections can be written using
the same method.

Fig. 4.17 4× 4 mesh topology

4.3 Hardware Design of On-Chip Network 83

Fig. 4.18 External
connections to one router

Listing 4.1 Verilog RTL coding for a mesh topology
1 //y loop
2 for (y_pos =0; y_pos <Y_WIDTH; y_pos=y_pos +1) begin:y_loop
3 //x loop
4 for (x_pos =0; x_pos <X_WIDTH; x_pos=x_pos +1) begin:x_loop
5

6 router #(NOUT , FIFO_DEPTH , FIFO_LOG2D , FIFO_FULL_LVL)
7 rtr(.clk(clk), .reset(reset),
8 .data_in(net_data_in[x_pos][y_pos]),
9 .data_out(net_data_out[x_pos][y_pos]),

10 .stop_in(net_stop_in[x_pos][y_pos]),
11 .stop_out(net_stop_out[x_pos][y_pos]),
12 .xaddr(x_pos[‘L2NET_SIZE -1:0]), .yaddr(y_pos[‘L2NET_SIZE

-1:0]));
13

14 for (i=0; i<NOUT; i=i+1) begin:i0
15 //tile interface of router
16 if(i==0) begin
17 assign net_data_in[x_pos][y_pos][‘WIDTH *(i+1) -1:‘WIDTH*i] =

data_in[(‘WIDTH*X_WIDTH
18 *y_pos)+(‘WIDTH *(x_pos +1)) -1:(‘WIDTH*X_WIDTH*y_pos)+(‘

WIDTH*x_pos)];
19 assign data_out[(‘WIDTH*X_WIDTH*y_pos)+(‘WIDTH *(x_pos +1))

-1:(‘WIDTH*X_WIDTH*y_pos)
20 +(‘WIDTH*x_pos)] = net_data_out[x_pos][y_pos][‘WIDTH *(i

+1) -1:‘WIDTH*i];
21 assign net_stop_in[x_pos][y_pos][i] = stop_in [(X_WIDTH*y_pos

)+x_pos];
22 assign stop_out [(X_WIDTH*y_pos)+x_pos] = net_stop_out[x_pos

][y_pos][i];
23 end
24 // north edge of router
25 if(i==1) begin
26 if(y_pos ==Y_WIDTH -1) begin
27 assign net_data_in [x_pos][y_pos][‘WIDTH *(i+1) -1:‘

WIDTH*i] = 0;
28 assign net_stop_in [x_pos][y_pos][i] = 1’b1;
29 end else begin
30 assign net_data_in [x_pos][y_pos][‘WIDTH *(i+1) -1:‘

WIDTH*i] = net_data_out[x_pos

84 4 Multicore SoC On-Chip Interconnection Networks

31][y_pos +1][‘ WIDTH *(3+1) -1:‘WIDTH *3];
32 assign net_stop_in [x_pos][y_pos][i] = net_stop_out[

x_pos][y_pos +1] [3];
33 end
34 end
35 //east edge of router
36 if(i==2) begin
37 ...

4.3.2 Pipeline Design

ONoCarchitecture has three pipeline stages. Thefirst stagemainly includes theBuffer
module. The second stage includes the Routing module, buffer overflow module, and
scheduling module. The last stage includes the Crossbar module.

Figure4.19 illustrates the router micro-architecture. The five modules in the left
side of the figure are the input port modules with buffers and routing modules. The
other important module is the switch allocation (sw-alloc) module which mainly
implements the scheduler and flow control modules. Finally, the crossbar module
implements the crossbar circuitry and has an array of data input and output paths.

4.3.2.1 Input Port Design

A router in mesh-based NoC system has 5 input ports. Each input port has two main
functions: buffering, and routing calculation. The buffering task design is shown in
Listing4.2. This module manages the FIFO pointers (lines 2–9 in Listing4.2), and
the stop_out signal (lines 11–22) for upstream router’s flow control.

Fig. 4.19 ONoC router block diagram

4.3 Hardware Design of On-Chip Network 85

TheRTLcode for theRouting calculation task is shown inListing4.3.As shown in
the above code, a look-aheadXY routingmethod is performed. The next port address,
which is used in routing calculation phase, is computed (lines 2–8 in Listing4.3).

Listing 4.2 Verilog RTL coding for manging FIFO.
1 always @(posedge clk) begin
2 if (!reset) begin //If out of reset
3 if (enqueue) begin //Write a flit to the buffer
4 fifo[tail_ptr] <= data_in;
5 tail_ptr <= tail_ptr + 1;
6 end
7 if (dequeue) begin //Read a flit from the buffer
8 head_ptr <= head_ptr + 1;
9 end

10

11 // nearly full signal = stop_out ,
12 if (((tail_ptr + FULL_LVL[LOG2D -1:0] + 1’b1)== head_ptr

) && enqueue && !dequeue)begin
13 stop_out <= 1’b1;
14 end
15 if (((tail_ptr + FULL_LVL[LOG2D -1:0]) ==(head_ptr+1’b1)

) && !enqueue && dequeue)begin
16 stop_out <= 1’b1;
17 end
18 if ((tail_ptr + FULL_LVL[LOG2D -1:0]) == head_ptr)begin
19 if ((enqueue && !dequeue) || (! enqueue && dequeue)

)begin
20 stop_out <= 1’b0;
21 end
22 end
23 end
24 else ...
25 end

Listing 4.3 Verilog coding for XY routing
1 // assign next addresses
2 if (nextport == ‘EAST) next_xaddr = xaddr + 1’b1;
3 else if (nextport == ‘WEST) next_xaddr = xaddr - 1’b1;
4 else next_xaddr = xaddr;
5

6 if (nextport == ‘NORTH) next_yaddr = yaddr + 1’b1;
7 else if (nextport == ‘SOUTH) next_yaddr = yaddr - 1’b1;
8 else next_yaddr = yaddr;
9

10 // evaluate next port
11 if (next_xaddr == xdest) begin
12 if (next_yaddr == ydest) route = ‘SELF;
13 else if(next_yaddr < ydest) route = ‘NORTH;
14 else route = ‘SOUTH;
15 end else begin
16 if (next_xaddr < xdest) route = ‘EAST;
17 else route = ‘WEST;
18 end

4.3.2.2 Switch Allocator Design

The block diagram of the arbiter is shown in Fig. 4.20. Each row of the matrix means
competitive inputs and has priority level. After the highest priority input is served, the

86 4 Multicore SoC On-Chip Interconnection Networks

Fig. 4.20 Matrix arbitration
example

priority will be changed to lowest by inversing one’s row and column. Figure4.20a
shows an example of how the matrix arbitration works.

The Switch Allocator includes a Scheduler, Matrix Arbiter, and a Stop Go flow
control modules. Listing4.4 shows part of the Matrix Arbiter module. Lines 1–15
generate grant i , and lines 17–23 calculate next state of all matrix elements. Finally,
lines 25–30 update these states (Fig. 4.21).

Listing 4.4 Verilog coding for Matrix Arbiter
1 // Matrix Arbiter
2 generate
3 for (i=0; i<SIZE; i=i+1) begin:ol1
4 for (j=0; j<SIZE; j=j+1) begin:il1
5 if (j==i)
6 assign pri[i][j]= request[i];
7 else
8 if (j>i)
9 assign pri[i][j]=!(request[j]&& state[j*SIZE+i]);

10 else
11 assign pri[i][j]=!(request[j]&&! state[i*SIZE+j]);
12 end
13 assign grant[i]=&pri[i];
14 end
15 endgenerate
16

17 generate
18 for (i=0; i<SIZE; i=i+1) begin:ol2
19 for (j=0; j<SIZE; j=j+1) begin:il2
20 assign new_state[j*SIZE+i]=(success &&((state[j*SIZE+i

]&&! grant[j])||(grant[i])))
21 ||(! success && state[j*SIZE+i]);
22 end
23 end
24 endgenerate
25

26 always@(posedge clk) begin
27 if (reset) state <=-1;
28 else begin
29 if (| request) state <= new_state;
30 end
31 end

4.3 Hardware Design of On-Chip Network 87

Fig. 4.21 Stall-go block diagram

For the flow control, ONoC employs stop-go scheme. This technique ovoids buffers
overflow. Data transfer is controlled by signals indicating the buffers condition. In
the absence of stall-go function, the receiver cores need to judge whether there are
dropped packets or not. If so, the transmitter must resend the dropped packets using
a receiving request signal from master cores. In addition, stall-go scheme reduces
blocking, but at the same time itmay increase latency in some situations. Figure4.22a
illustrates the state machine of this approach and Fig. 4.22b shows the input FIFO
state of nearly full signal output.

Code4.5 shows the RTL code of the state machine. State Go indicates that the
receiving FIFO can store more than two flits. State Sent means that it can store one
flit and state Stop means that it cannot store any more flits. Figure4.21 shows the
stop-go control flow scheme.

Fig. 4.22 a State machine design, b Nearly full signal output

88 4 Multicore SoC On-Chip Interconnection Networks

Fig. 4.23 Arbiter control
signals

Listing 4.5 Verilog coding for the stall-go state machine
1 //Stall -go state machine.
2 always @ (posedge clk) begin
3

4 if (!reset) begin
5 if ((state==‘GO) && stop_in && data_sent)
6 state <= ‘SENT1;
7 if (state==‘SENT1) begin
8 if (stop_in && !data_sent)
9 state <= ‘GO;

10 if (! stop_in && data_sent)
11 state <= ‘STOP;
12 end
13

14 if ((state==‘STOP) && stop_in) // stop_in = nearly_full
15 state <= ‘GO;
16 end else
17 state <= ‘GO;
18 end
19

20 assign blocked = (((state==‘STOP) && !stop_in) || ((state==‘
SENT1) && !stop_in &&

21 data_sent));

4.3.3 Crossbar Design

The crossbar in ONoC architecture is a an important module that connects multiple
inputs to multiple outputs. It is basically an assembly of single switches between
multiple inputs and multiple outputs. Code4.6 shows the Verilog RTL code for the
crossbar (Fig. 4.23).

4.3 Hardware Design of On-Chip Network 89

Listing 4.6 Verilog RTL code for the crossbar
1 // Crossbar
2 generate
3 for (i=0;i<NOUT;i=i+1) begin:output_loop
4 mux_out #(NIN , WIDTH) cbar_mux (. cntrl(cntrl_reg[NIN*(i+1)

-1:NIN*i]),
5 .data_in(data_in), .data_out(data_out[WIDTH *(i+1) -1:WIDTH*i]));
6 end
7 endgenerate
8

9 // mux_out
10 generate
11 //loop over each bit of data
12 for (i=0;i<WIDTH;i=i+1) begin:bit_loop
13 assign data_out[i] = mux(cntrl , data_bits[i]);
14 //loop over each input channel
15 for (j=0;j<n_in;j=j+1) begin:input_loop
16 assign data_bits[i][j] = data_in[WIDTH*j+i];
17 end
18 end
19 endgenerate
20

21 function mux;
22 input [n_in -1:0] cntrl;
23 input [n_in -1:0] data_in;
24 integer i;
25

26 begin
27 mux = 0;
28 for (i=0; i<n_in; i=i+1) begin
29 if(cntrl[i] == 1’b1) mux = data_in[i];
30 end
31 end
32 endfunction // mux

4.3.4 Limitations of Regular Mesh Topology

The ONoC communication architecture considered so far is based on regular mesh
topology. This provides well-controlled electrical parameters and reduced power
consumption across the links. However, because of the nonexistence of short (fast)
paths between remotely situated nodes, such architectures may suffer from long
packet latencies. To solve this problem, a so called short-path-link (SPL) is used [32]
to shorten the path; thus, decreasing the latency.

Figure4.24 shows a simple example showing SPL insertion between two remote
nodes. To support optimization with SPL insertion, a new port should be added to
the five ports in each router. Consequently, each router will have six ports instead of
only five ports in fully regular mesh topology.

90 4 Multicore SoC On-Chip Interconnection Networks

Fig. 4.24 Short-path-link
(SPL) insertion example

4.3.5 SPL Insertion Algorithm

The SPL algorithm selects communication paths that need optimization. The avail-
ableSPL resources should bedecidedfirst so that the power and area are not increased.
Then, the communication costs for all communication patters are calculated using
the communication frequencies and the distance between different nodes. Depending
on the output of this computation, the SPL is inserted to the highest communication
cost. After adding an SPL, the algorithm loops until the available SPL budget is
exhausted.

fi j = max
Vi j

∑
p
∑

p �=qVpq
(4.1)

dM(i, j) = |ix − jx | + |iy − jy | (4.2)

Ci j = fi j × dM(i, j) (4.3)

where S is the available resource, i is the target sender router, j is the target receiver
router, fi j is the target communication frequency, andCi j is the target communication
total cost.

Figure4.25 shows the SPL insertion algorithm. Equation4.1 is used tomeasure the
communication frequency by calculating thewhole communicationwith all neighbor
nodes and the target communication for the whole neighbor nodes usability volume.

The whole communication volume is expressed by
∑

p
∑

p �=qVpq ; where p indi-
cates the sender node, q indicates the receiver node. Notice that p and q are always
neighbors. Then, the target communication frequency is expressed by Vi j ; where i
indicates the sender node, and j indicates the receiver node.

To calculate the distance (number of hops) of communications, Manhattan dis-
tance is employed (Eq.4.2). The address of i node is expressed by (ix , iy), and the
address of j node is expressed by (jx , jy). Finally, the total cost calculation is com-
puted using Eq.4.3 with computed values from the previous two equations.

4.3 Hardware Design of On-Chip Network 91

Fig. 4.25 SPL insertion
algorithm

4.3.5.1 SPL Complexity

Tables4.1 and 4.2 show the area utilization of 5-port and 6-port routers respectively.
From these results, we can see that the 6-port router’s ALUTs utilization is increased
by 33.2% and the registers utilization is increased by 56.6% when compared with
5-port router.

Table 4.1 Area utilization for a 5-ports router

Parameters Input port Switch
allocator

Crossbar Total

ALUTs 1-port 71(7.4%) 300(31%) 310(32.1%) 965

5-ports 355(36.8%)

Registers 1-port 72(15.2%) 90(18.9%) 25(5.3%) 475

5-ports 360(75.8%)

92 4 Multicore SoC On-Chip Interconnection Networks

Table 4.2 Area utilization for 6-port router

Parameters Input port Switch
allocator

Crossbar Total

ALUTs 1-port 75(5.8%) 469(36.5%) 366(28.5%) 1285

6-ports 450(35%)

Registers 1-port 99(13.3%) 144(19.4%) 36(4.8%) 744

6-ports 594(79.8%)

Fig. 4.26 Extra-port insertion

4.3.5.2 Hardware Modification for SPL Support

Initially, each router has 5 in/out ports: Local,North, East, South, andWest. In order to
optimize the systemwith SPL approach, it is essential to add another port. Figure4.26
shows the extra-port addition for both sender and receiver nodes. Flit structure also
needs to bemodified to support SPL. Initially, ONoC has 5 bits dedicated used for the
next-port field direction. To support SPL, it is also necessary to modify the network
connection between routers and also extend the next-port field by 1 bit. That is, from
5 to 6 bits. Figures4.27, 4.28 and 4.29 illustrate the application mapping with SPL
links. We assume here that the resource budget is 5% of the original area utilization.
Code4.7 shows the modified code for SPLs insertion.

We mainly modified the loop function for the mesh topology because it is neces-
sary to simplify the connection of all routers (lines 1–4). After that, designers can
easily insert one or more SPLs. For example, lines 15–17 show the address (0,3)
north output connects to (1,0) south input port, and the address (1,0) south port has
no connections. Thus, the south port can use SPL without adding an extra port.

As we mentioned, ONoC router employs look-ahead XY routing, so the routing
stage calculates next router’s output direction. The SPL is inserted from source node
to destination node directly. Lines 6–13 in code4.8 shows routing calculation for
(0,3) to (1,0) communications.

4.3 Hardware Design of On-Chip Network 93

Fig. 4.27 Dimension
reversal with 2 SPLs

Fig. 4.28 Hotspot with 2
SPL

Listing 4.7 Code Modification for NoC architecture
1 // code Modification for SPL.
2 //y loop
3 for (y_pos =0; y_pos <Y_WIDTH; y_pos=y_pos +1) begin:y_loop2
4 //x loop
5 for (x_pos =0; x_pos <X_WIDTH; x_pos=x_pos +1) begin:x_loop2
6 ...
7 ///(1 ,0)
8 if (x_pos == 1)begin
9 if (y_pos == 0)begin

10 //tile interface of router , x_pos = 1, y_pos = 0,
i = 0

11

94 4 Multicore SoC On-Chip Interconnection Networks

12 // north edge of router , x_pos = 1, y_pos = 0, i =
1

13
14 //east edge of router , x_pos = 1, y_pos = 0, i = 2
15
16 // south edge of router , x_pos = 1, y_pos = 0, i =

3
17 assign net_data_in [x_pos][y_pos][‘WIDTH *(3+1) -1:‘

WIDTH *3] = net_data_out [0] [3] [‘
18 WIDTH *(1+1) -1:‘WIDTH *1];
19 assign net_stop_in [x_pos][y_pos] [3] =

net_stop_out [0] [3] [1];
20

21 //west edge of router , x_pos = 1, y_pos = 0, i = 4
22 ...
23 end
24 ...

Listing 4.8 Code Modification for the look-ahead routing
1 if(nextport == ‘WEST) begin
2 next_xaddr = xaddr - 1’b1;
3 end else if (nextport == ‘EAST) next_xaddr = xaddr + 1’b1;
4 else next_xaddr = xaddr;
5

6 if(nextport == ‘NORTH)begin
7 if((xaddr ==0&& yaddr ==3) &&(xdest ==1&& ydest ==0))begin
8 next_xaddr = 1;
9 next_yaddr = 0;

10 end
11 else next_yaddr = yaddr + 1’b1;
12 end else if (nextport == ‘SOUTH) next_yaddr = yaddr - 1’b1;
13 else next_yaddr = yaddr;

4.3.6 Network Interface Design

In Network-on-Chip architectures, the network interface (NI) plays an important
role of acting as interface between IP cores and the communication infrastructure.

Fig. 4.29 JPEG encoder with 3 SPL

4.3 Hardware Design of On-Chip Network 95

In general, a NI includes a front-end and a back-end submodules. The front-end
module implements the communication protocol adopted by the core and the back-
end module is in charge of implementing basic communication services, such as
packetization/depacketization, control flow, and routing-related functions.

The NI must provide low area overhead because NoC designs are generally con-
strained by area and power. In addition, a good NI design must provide throughput
and/or latency guarantees, which are essential for the design of NoC-based complex
multicore SoCs.

Whether it is used in on-chip network on off-chip network, the NI’s main job is
to convert messages to packets and packets to messages. In NoC architecture, a core
is connected to router through the NI and it communicates within the network using
packets. Design of the NI needs to consider the I/O structure of the core and the
protocols used in the NoC at physical, data link and network layers.

The NI functionality can be divided into two parts: theCore part, and theNetwork
part as illustrated in Fig. 4.30. The Network part handles interface to the router; wile
theCore part is connected with core and it deals with the data and address bus width,
and control signals.

There are two main types of NIs: (1) Network interface for source routing, and
(2)Network interface for distributed routing. This chapter only focuses on the design
of the distributed routing NI type.

Source Routing Network Interface: As the name indicates, in source routing the
information about packet route is embedded in the packet’s header at the source
end. In this way, the source node makes all routing decisions before the packet
is transmitted into the network (NoC). The NI contains a routing table filled with
routing information. The sender’s NI selects route path from its table and places this
information in the packet header. Then, packet is transmitted in the network through
the NI. When a given packet reaches an intermediate router, the route path is read
from the packet’s header and forwarded to the corresponding neighbor router until
it reaches its destination.

Fig. 4.30 Nigh-level view
of the network interface

Router

Network
Part

Core
Part

Core

local port NI

96 4 Multicore SoC On-Chip Interconnection Networks

Distributed Routing Network Interface: In distributed routing NI, a destination
address is added in the packet’s header. Unlike source routing NI, it does not have
a path information table. So, the circuit size is relatively smaller than the source
routing NI’s one.

In distributed routing protocol, the routing functions are implemented in eachNoC
router. The header, which is generally compact, carries the destination address and
some control bits. In this way, each router contains information about the neighbor
routers. When the packet arrives at the input port of the downstream router, the route
path is selected either by looking up the routing table or calculating the routing path
in hardware.

The advantage of the distributed routing is that it can be easily expanded to support
adaptive routing. The disadvantage is the large additional hardware for execution of
routing logic, and the extra memory unit used to store routing tables. Distributed
routing is suitable for regular topologies, such as mesh topology.

4.3.6.1 Design Decisions of Distributed Routing NI

The block diagram of the designed NI is given in Fig. 4.31. FPGA and Quartus
II software design tools [33] were used for the prototyping of this interface. The
used core is a Nios II processor [34], which is a configurable 32-bit RISC soft core
processor.

As shown in Fig. 4.31, the NI has different internal blocks, including buffers,
flitizer, deflitizer, and controllers. The controller is the main module of the NI and
it controls packet transmission from core to router and from router to core. When a
core wants to send a packet to another core, it first stores the packet in the buffer of
the NI. When the router is ready to receive the packet, the NI converts the packet
into flits and sends the flits to the router. Similarly, when the NI receives flit(s) from
the router, the NI converts them/it into a packet and stores it/them in the buffer. Then
when the core is ready to receive the packet, the NI transfers the packet to the core.
Some control signals are used for the communication between core and NI and NI
and router. A wormhole switching technique is used in the packet transmission from
NI to router and from router to NI.

Fig. 4.31 Distributed routing NI architecture block diagram

4.3 Hardware Design of On-Chip Network 97

Before we start talking about the actual design of the NI, we need first to make
several design decisions.Wemainly need to decide: (1) network size, (2) packet size,
(3) buffer size, (4) communication Protocol, (5) packet buffering, and (6) packet/flit
format.

Network Size Decision: Network (NoC) size is a very important decision which we
need to make. The network size depends mainly on the target application and on how
much parallelize we have. In other words, after mapping the application (task-graph)
to the NoC architecture (refer to Chap.3), we are able to know the number of needed
cores. If, for example, after several simulations and profiling, we found that we need
62 cores to run a given application, the network size should be, then, 8×8 (64 cores).
Notice that with this size, there will be unused routers since we have only 62 cores
(1 router for each core).

For our network interface,we assumed theNoCsize of 8×8.Thus, 6-bit are needed
to represent one destination address direction. Since we have two directions (X-Y
coordinates) we need 12-bit for the complete address. The 12-bit will be embedded
in the header of the packet.

Packet Size Decision: Packets in a given NoC system can be of different sizes. The
size depends on the application, target platform, and available hardware resources.
Therefore, we need to decide the packet size so that we can decide the maximum
buffer size. This is also very important because NoC design is area and power con-
strained.

In this design and in order to keep the design simple, we assume that themaximum
size of the packet will be 512-bit, i.e., 16× 32-bit flits. In distributed routing, a packet
can have, then, 1 flit minimum and 16 flit maximum.

Buffer Size Decision: The role of a buffer in the NI is to temporarily store the packets
while they are transferred from the source core to the destination core. The size of
the buffer in the NI should be equal or larger than the packet size. The idea is to have
the maximum size of the buffer at least equal to the maximum size of a packet. Since
our packet size is fixed to 512-bit, the buffer size is also 512-bit.

CommunicationProtocol andFlowControlDecisions:We usedReady-to-Receive
(RTR)-based scheme as a communication protocol between core and NI and between
NI and router. In this scheme, two 1-bit signals and 1 WR signal are used for hand-
shaking signals. We assume that phit size is the same as flit size.

This NI design will be tested with Altera Nios II core which can be connected
with various external peripherals. Nios II support 32-bit PIO width. Thus, it can
send/receive 32-bits of data at a time.

Packet Format Decision: As we mentioned, the maximum size of a packet is fixed
to 512-bits. The packet is divided into three parts: HEADER, BODY, and END. The
packet’s HEADER contains the first 32-bits of the packet. The last 32-bits is the
END of the packet and the remaining bits of the packet are reserved for the payload
(BODY). The packet format for the distributed routing NI is shown in Fig. 4.32. The
size of the packet’s HEADER is 32-bits. Since the maximum size of the NoC is

http://dx.doi.org/10.1007/978-981-10-6092-2_3

98 4 Multicore SoC On-Chip Interconnection Networks

Fig. 4.32 Packet format

Fig. 4.33 Packet HEADER format

Fig. 4.34 BODY and END format

8 × 8, a minimum 6-bits are required to represent the node address in the network.
In the HEADER, the first 6-bits represent the Destination Address of the core in the
network. The next 6-bits represent the Packet Size, which helps tracking the arrival of
the whole packet. The next 4-bits carry the Packet-Sequence-Number. This number
is used to rearrange the packet in the correct order at the destination core. The next
8-bits areUnused and are reserved for future extension. The remaining 8-bits are for
Payload data field. The HEADER format is shown in Fig. 4.33.

The formats of the BODY and END flits are shown in Fig. 4.34.

Flit-Level Decision: After receiving a packet from the core, the NI converts the
packet into flits. This process is called Flitization. A packet can have minimum 1
flit and maximum 16 flits. The size of a flit is kept fixed and is equal to 34-bits. The
first 2-bits of each flit indicate Flit Type. Each type of flit is encoded as shown in
Table4.3.

Table 4.3 Flit Types and
Coding

Flit type Code

Single Flit with full Payload 00

HEADER flit 01

Body flit 10

End flit 11

4.3 Hardware Design of On-Chip Network 99

Flit Format after Flitization: The HEADER flit is the first flit of a packet that enters
into the network through the NI. In distributed routing, this flit carries first 24-bits
as control information and next 2-bits are unused while the rest 8-bits are payload.
HEADER flit is used for locking the path for the following body flits and an end flit
while traversing through the network.

Two bits are used to decode the type of HEADER flits. Code 00 is used when
the original packet from the core is only 32-bits including the packet header. In this
case, there will be only 1 flit that corresponds to the original packet and there will
be no BODY and END flits.

When the code is 01, this means that the original packet is more than 32-bits.
In this case, the packet can have both BODY and END flits or just an END flit.
The HEADER flit format is shown in Fig. 4.35. BODY Flit: The BODY flit always
follows the HEADER flit and carries the payload. After flitization, a packet may
have a minimum of 0 BODY flit and maximum of 14 BODY flits, depending on the
payload size in the original packet. The BODY flit is represented by code 10 and
its format is shown in Fig. 4.36. END Flit: The END flit is the last flit in the group
flits corresponding to a particular packet. It follows the last BODY flit. It unlocks
the path for the packet to which it belongs. It should be noted here that the path was
locked by the HEADER flit of the same group of flits. The END flit format is shown
in Fig. 4.37.

Fig. 4.35 HEADER flit format

Fig. 4.36 BODY flit format

Fig. 4.37 END flit format

100 4 Multicore SoC On-Chip Interconnection Networks

Table 4.4 Summary of decisions for distributed routing NI

Maximum NoC size Maximum packet size (Bits) Buffer size (Bits) Flit size (Bits)

Buffer 1 Buffer 2

8× 8 512 512 512 34

Flit Format After Deflitization: The process of converting the flits into a packet
is called Deflitization. The Deflitization process starts after receiving the 34-bits
HEADER flit from a router and continues until the END flit is received.Deflitization
is needed for all cores in the network.
HEADER Flit: When the NI receives the 34-bits HEADER flit from the router, it
removes the Flit Type and the Destination Address bits from the above flit. After
that, the Source Address bits are shifted to the most right position. The Packet Size
and Packet Sequence Number bits are also shifted to LSB (Least Significant Bit) side
by 2-bits. The next 8-bits are unused and the remaining 8-bits are payload. The new
created 32-bits packet HEADER (see Fig. 4.38) is stored in the NI buffer.

Both BODY and END flits are deflitized by removing the Flit Type bits and the
rest 32-bits payload is transferred to the buffer in the NI. The formats of both BODY
and END flits after deflitization are the same and shown in Fig. 4.39.

Summary of Design Decisions: The design decisions at all levels for the distributed
routing NI are shown in Table4.4.

4.3.6.2 Distributed Routing NI Design

The detailed internal structure of the NI for distributed routing is shown in Fig. 4.40.
It consists of 6 internal blocks: C2R-Buffer, Flitizer, C2R-Controller, R2C-Buffer,
Deflitizer, and R2C-Controller. Each block performs its defined specific job.

Fig. 4.38 Format of packet header after deflitization

Fig. 4.39 Format of BODY/END flits after deflitization

4.3 Hardware Design of On-Chip Network 101

Fig. 4.40 Internal structure of NI for distributed routing

Fig. 4.41 C2R-buffer

The NI has different blocks and control signals as shown in Fig. 4.40.

Core-to-Router (C2R) Buffer: C2R-Buffer is a FIFO structure which is connected
to the input port of the NI from the core side. The C2R buffer has 16 × 32 en-
tries. Whenever the above buffer receives the “Write-Enable” signal from the C2R-
Controller, it stores a packet coming from the core at a particular location specified
by the “Add-Write” signal from C2R-Controller. Similarly, whenever it receives the
“Read-Enable” signal from C2R-Controller, it sends the chunk from the address
location which is specified by the “Add-Read” signal (Fig. 4.41).

Flitizer Module Architecture: As we mentioned earlier, the process of converting
a packet into flits is called flitization. The input and output signals to the flitizer
module are illustrated in Fig. 4.42. When the “Flitizer-Enable” signal arrives from
the C2R-Controller, the flitizer module starts working on the flitization process; it
reads the 32-bits of a packet from the C2R-Buffer. If the “Flit Type” value is “00,”

102 4 Multicore SoC On-Chip Interconnection Networks

Fig. 4.42 Flitizer module architecture

it means the packet contains only 1 flit. In this case, no BODY and END flits are
present in the packet. If the “Flit Type” value is “01,” it means the packet contains
more than 1 flit.

The flitizer circuit adds 2-bits flit type in the “Flit Type” field and 6-bits source
address in the packet header, i.e., from bit numbers 18–23, and creates a 34-bits
HEADER flit. When it receives the “Flit Type” signal (“10” or “11”), it assumes
that the incoming packet from the C2R-Buffer is BODY or END of the packet
respectively. In this situation, the flitizer just adds the “Flit Type” to the flit at the
field, creates a 34-bits BODY or END flits. After the flitization process completes,
flits are transferred to the router.

Core-to-Router (C2R) Controller: The Core-to-Router (C2R) is also a very im-
portant block in the NI since it generates several important control signals. The C2R
controller consists of several modules as shown in Fig. 4.43. The C1 counter is a
6-bits counter and is used to count the total number of payload bytes of the packet
coming from a given core to the NI. Initially, C1 is set to “000000.” When a packet
header arrives from the core, the corresponding bits in the packet header, which
represents the size of payload bytes, will be stored in this counter.

The C2 counter is 4-bits counter and is used to locate the address of C2R-Buffer
to store the received packet from the core. Initially, its value is also set to “0000.”
The C2 value is incremented by 1 whenever a new chunk of the packet is stored in
the C2R-Buffer.

The C3 counter counts the total number of payload bytes (packet size) that has
been transferred to router fromC2R-Buffer. Initially, its value is also set to “000000.”
Similar to C1 counter, when a packet header is received from the core, the corre-
sponding bits in the packet header will be stored in C3 counter.

The C4 counter is used to locate the address of the C2R-Buffer from where the
chunk of the packet has to be transferred to flitizer. Whenever a chunk of the packet
is sent from C2R-Buffer to flitizer, the counter value will be incremented by 1.

4.3 Hardware Design of On-Chip Network 103

Fig. 4.43 Core-to-router (C2R) controller architecture

Fig. 4.44 Router-to-core (R2C) buffer

Router-to-Core (R2C) Buffer: The Router-to-Core (R2C) has a 16 entries FIFO
buffer connected to the output port of the NI (see Fig. 4.44). Whenever it receives
the “Write Enable” signal (high state) from R2C-Controller, it stores the flit (coming
from deflitizer) at a specified address location. The address location is specified by
the “Add-Write” signal from R2C-Controller. Similarly, whenever it receives the
“Read-Enable” signal, it sends the stored flit from the specified address location of
R2C-Buffer to the core (Nios II core in our case).

DeflitizerModuleArchitecture: The deflitization process starts wheneverDeflitizer
receives the “Deflitizer-Enable” signal from the R2C-Controller and then it reads a
34-bits flit from a router’s port (see Fig. 4.45). It should first check the “Flit Type” bits.
If it is “00” or “01,” the Deflitizer simply removes the “Flit Type” and “Destination

104 4 Multicore SoC On-Chip Interconnection Networks

Fig. 4.45 Deflitizer module architecture

Fig. 4.46 R2C controller module architecture

Address” bits from the flit and shifts the “Source Address” bits to the “Destination
Address” field and creates a 32-bits packet header. The created packet HEADER
should exactly match the one that was created at the source. We have to note that
only “Destination Address” bits are replaced by “Source Address” bits and the rest of
the header bits remains the same. As soon as the deflitization process is completed,
the created packet HEADER will be sent to R2C-Buffer.

Router-to-Core (R2C) Controller: The router-to-core (R2C) module is responsible
for controlling the communications from the router to the core. This module consists
of different components, including a finite-state machine (FSM) component. The
block diagram of the R2C module is shown in Fig. 4.46.

4.4 Chapter Summary 105

4.4 Chapter Summary

The interconnection structure supporting future complex multi and many core SoCs
will be closer to a sophisticated network than to current bus-based solutions. Such
networkmust provide high throughput and low latencywhile keeping area and power
consumption low. NoCs provide a good way of realizing interconnections on sili-
con and largely alleviate the limitations of bus-based solutions. NoC is a scalable
interconnect with a huge potential to handle the increasing complexity of current and
future multicore SoCs. In such paradigm, cores are connected via a packet-switching
communication network on a single chip.

This chapter presented in details architecture and design of a real Network-on-
Chip, which utilizes a Short-Path-Link (SPL) insertion customization to reduce the
communication latency which directly affects the overall system performance.

References

1. A. Ben Abdallah, M. Sowa, basic network-on-chip interconnection for future gigascale mcsocs
applications: communication and computation orthogonalization, in Proceedings of Tunisia-
Japan Symposium on Society, Science and Technology (TJASSST) 4–9th Dec 2006

2. W.J. Dally et. al., Route packets, not wires: on-chip interconnection networks, in the Proceed-
ings of DAC (2001), pp. 684–689

3. F.G. Morales et al., HERMES: an infrastructure for low area overhead packet-switching net-
works on chip. Integr. VLSI J. 38–1, 69–93 (2004)

4. F.A. Samman, T. Hollstein, M. Glesner, Multicast parallel pipeline router architecture for
network-on-chip, in Proceedings of the Conference on Design, Automation and Test in Europe
(DATE 08) (Munich, Germany, 2008), pp. 1396–1401

5. A. BenAbdallah,M. Nakamura, A.B. Ahmed,M.Meyer, Y. Okuyama, Fault-tolerant router for
highly-reliable many-core 3D-NoC systems, in Proceedings of the 3rd International Scientific
Conference on Engineering and Applied Sciences (ISCEAS 2015), (Okinawa, Japan, 29–31
July 2015)

6. A.B. Ahmed, A. Ben, Abdallah, Adaptive fault-tolerant architecture and routing algorithm for
reliable many-core 3d-noc systems. J. Distrib. Comput. 9394, 30–43 (2016)

7. A.B. Ahmed, A. Ben, Abdallah, Graceful deadlock-free fault-tolerant routing algorithm for 3D
network-on-chip architectures. J. Parallel Distrib. Comput. 74(4), 2229–2240 (2014)

8. K.N. Dang, M. Meyer, Y. Okuyama, A. Ben Abdallah, X.-T. Tran, A Soft-error resilient 3D
network-on-chip router, inProceedings of the IEEE 7th International Conference onAwareness
Science and Technology (iCAST 2015) (22–24 Sept. 2015)

9. K.N. Dang, Y. Okuyama, A. Ben Abdallah, Soft-error resilient network-on-chip for safety-
critical applications, inProceedings of the IEEE International Conference on IntegratedCircuit
Design and Technology (ICICDT) (27–29 June 2016)

10. S.Kumar,A. Jantsch, J.-P. Soininen,M.Forsell, et al.,Anetwork on chip architecture anddesign
methodology, VLSI, 2002, in Proceedings of IEEE Computer Society Annual Symposium (25–
26 April 2002), pp. 105–112

11. P.P. Pande, C. Grecu, M. Jones, A. Ivanov, R. Saleh, Performance evaluation and design trade-
offs for network-on-chip interconnect architectures. IEEE Trans. Comput. 54(8), 1025–1040
(2005)

12. E. Salminen, A. Kulmala, T. Hamalainen, On network-on-chip comparison, in Euromicro DSD
(2007), pp. 503–510

106 4 Multicore SoC On-Chip Interconnection Networks

13. A.V. de Mello, L.C.O.F.G. Morales, N.L.V. Calazans, Evaluation of Routing Algorithms on
Mesh Based NoCs (Technical report, FACULDADE DE INFORMATICA - PUCRS, Brazil,
2004)

14. M. Li, Q.A. Zeng, W.-B. Jone, DyXY - a proximity congestion-aware deadlock-free dynamic
routing method for network on chip, in Proceedings of Design Automation Conference (2006),
pp. 849–852

15. E. Bolotin, I. Cidon, R. Ginosaur, A.N.D.A. Kolodny, QNoC: QoS architecture and design
process for network-on-chip (J. Syst, Arch, 2004)

16. L. Bononi, N. Concer, Simulation and Analysis of Network on Chip Architectures: Ring,
Spidergon and 2D Mesh. DATE (2006), pp. 154–159

17. J.S.K. (Ed.), Parallel MIMD Computation: HEP Supercomputer and Its Applications (MIT
Press, Cambridge, MA, 1985)

18. R.S. Arvind, Nikhil, Executing a Program on the MIT Tagged Token Dataflow Architecture,
Lecture Notes in Computer Science (Springer, Berlin/Heidelberg, 1987), p. 129

19. J. Gurd, C.C. Kirkham, I. Watson, The manchester prototype dataflow computer. Commun.
ACM 28(1), 3452 (1985)

20. S. Kumar, A. Jantsch, J.-K. Soininen, M. Forsell, M. Millberg, J.O Berg, K. Tiensyrja, A.
Hemani, A network on chip architecture and design methodology, in Proceedings of IEEE
Computer Society Annual Symposium on VLSI (2002), pp. 105–112

21. P.Martin, Design of a virtual component neutral network-on-chip transaction layer, inProceed-
ings of Design, Automation and Test in Europe Conference and Exhibition (DATE05) (2005),
pp. 336–337

22. I. Saastamoinen, D.S.-Tortosa, J. Nurmi, Interconnect IP node for future systemon- chip de-
signs, in Proceedings of the 1st IEEE International Workshop on Electronic Design, Test and
applications (DELTA02) (2002), pp. 116–120

23. M. Sgroi, M. Sheets, K. Keutzer, S. Malik, J. Rabaey, A.S. Vincentelli, Addressing the system-
on-a-Chip interconnectwoes through communication-based design, in Proceedings of the 38th
Design Automation Conf. (DAC01) (2001), pp. 667–672

24. D.S. Tortosa, T. Ahonen, J. Nurmi, Issues in the development of a practical NoC: the Proteo
Concept. Integr. VLSI J. Elsevier 38(1), 95–105 (2004)

25. W.J. Dally, Virtual-channel flow control. IEEE Trans. Parallel Distrib. Syst. 3(2), 194–205
(1992)

26. W.J. Dally, C.L. SEITZ. The torus routing chip. J Distrib. Comput. 1(3), 187–196 (1986)
27. W.J. Dally, Performance analysis of k-ary n-cube interconnection networks. IEEE Trans. Com-

put. C–39(6), 775785 (1990)
28. A. Pullini , F. Angiolini , D. Bertozzi, L. Benini, Fault tolerance overhead in network-on-chip

flow control schemes, in Proceedings of the 18th Annual Symposium on Integrated Circuits
and System Design (Florianolpolis, Brazil, 04–07 Sept. 2005), pp. 224–229

29. A.B. Ahmed, High-throughput architecture and routing algorithms towards the design of re-
liable mesh-based many-core network-on-chip systems, Ph.D. Thesis, Graduate School of
Computer Science and Engineering, University of Aizu

30. Y. Tar, G.L. Frazier, High-performance multiqueue buffers for VLSI communication switches,
in 15th Annual International Symposium on Computer Architecture (1988), pp. 343–354

31. C.J. Glass, L.M. Ni, The turn model for adaptive routing, in Proceedings of 19th Annual
International Symposium Computer Architecture (1992), pp. 278–287

32. A.B. Ahmed, A. Ben Abdallah, ONoC-SPL customized network-on-chip (NoC) Architecture
and prototyping for data-intensive computation applications, in IEEE Proceedings of The 4th
International Conference on Awareness Science and Technology (2012), pp. 257–262

33. Altera design software, http://www.altera.com/
34. Nios II processor, http://www.altera.com/literature/lit-nio2.jsp

http://www.altera.com/
http://www.altera.com/literature/lit-nio2.jsp

Chapter 5
Advanced Multicore SoC Interconnects

Abstract Next-generation multicore SoC architectures are expected to combine
hundreds of tiny cores integrated together to satisfy the power and performance
requirements of large complex applications. As the number of cores continues to
increase, the employment of low-power and high-throughput on-chip interconnect
fabrics become imperative. This chapter describes the architecture and design of two
emerging multicore SoC interconnects to overcome the limitations of the conven-
tional (two-dimensional) multicore SoC on-chip interconnect. First, we present the
architecture and design of three-dimensional interconnect, which promises a good
opportunity for chip architects by porting the 2D-NoC to the third dimension. Sec-
ond, we describe a mesh-based phototonic on-chip interconnect based on an energy-
efficient non-blocking optical switch and contention-aware routing mechanisms.

5.1 Introduction

Emerging applications are getting more and more complex, demanding good archi-
tecture to ensure a sufficient bandwidth for any transaction between memories and
cores as well as communication between different cores on the same chip. Because
of these and other factors, 2D-NoC interconnect become not a suitable candidate
for future large-scale many-core SoCs that are expected to accommodate hundreds
of cores. More specifically, the limitation of the 2D-NoC paradigm comes from the
high diameter that conventional 2D-NoC suffers from. The network’s diameter is the
number of hops that a flit traverses in the longest possible minimal path between a
source–destination pair.

In 2D-NoC, if a given packet traverses a large number of hops to reach its des-
tination, the communication latency will be long and consequently the throughput
will be low. In other words, large network diameter has a negative impact on the
worst-case routing latency in the system.

The seek for optimizing 2D-NoC-based architecture becomes more and more
necessary, and many researches have been conducted to achieve this goal in various
approaches, such as developing fast routers [1–5] or designing new high-throughput,
and low latency network topologies [6–8]. One of these proposed solutions was

108 5 Advanced Multicore SoC Interconnects

porting the 2D-NoC architecture to the third dimension [9]. In the past few years,
3D-ICs have attracted a lot of attention as a potential solution to resolve the intercon-
nect bottlenecks. A 3D chip is a stack of multiple device layers with direct vertical
interconnects tunneling through them [10, 11].

So far, the achieved researches in this area have shown that 3D-ICs can achieve
higher packing density due to the addition of a third dimension to the conventional
two-dimensional layout; thanks to the reduced average interconnect length, 3D-ICs
can achieve higher performance. Besides this important benefit, this reduction of
total wiring, a lower interconnect power consumption can be obtained [12, 13], not
to forget that circuitry is more immune to noise with 3D-ICs [9]. This may offer an
opportunity to continue performance improvements using CMOS technology with
smaller form factors, higher integration densities, and supporting the realization of
mixed-technology chips [14]. As Topol [13] stated, 3D-IC can improve the perfor-
mance even in the absence of scalability.

3D-NoC architecture responds to the scaling demands for future multicore and
many-core SoCs, exploiting the short vertical links between the adjacent layers that
can clearly enhance the system performance. This combination is expected to provide
a new horizon of NoC and IC designs in general.

One of the important design steps that should be taken into consideration while
designing a 3D-NoC is to implement an efficient router since it is the backbone of any
NoC architecture. The router’s performance depends onmany factors and techniques
such as the traffic pattern, the router pipeline design, and the network topology. As
Feihui [15] stated, among these three factors we have less control over the traffic
patterns compared with the topology and the pipeline design. Following this logic
and assuming the topology choice was already taken, one of the most important
router enhancements that can be done is to improve the pipeline design. By reducing
the pipeline delay via pipelining optimization, not only we decrease the per-hop
delay, but also the whole network latency will be reduced. On the other hand, the
pipeline design is strongly associated with the adopted routing algorithm. Routing
is the process of determining the path that a flit should take between one-source
and one-destination nodes. Routing algorithm can be classified into minimal or non-
minimal, depending on whether flits traveling from source to destination always use
the minimal possible path or not.

Minimal routing schemes are shorter and require less complex hardware, but
allowing non-minimal routes increases the path diversity and decreases the network
congestion. Also the routing algorithms can be adaptive, where routing decisions are
made based on the network congestion status and other information about network
links or buffer occupancy of the neighboring nodes, or alternatively are deterministic.

There are a large number of sophisticated adaptive routing algorithms. However,
they require more hardware and are difficult to implement. That is why deterministic
routing schemes have been adopted for 3D-NoCdesigns.Oneof thewell-used routing
schemes used in 3D-NoCs is the Dimension-Order Routing (DOR) XYZ algorithm.
XYZ is a simple scheme, easy to implement, and free of deadlock and lifelock.
But on the other hand, it suffers from a non-efficient pipeline stage usage. This can
introduce an additional packet latency which has an important effect on the router

5.1 Introduction 109

delay and eventually on the system overall performance. Enhancing this algorithm
while keeping its simplicity may improve the system performance by reducing the
packet delay.

A 2D-NoC, named OASIS-NoC, was presented in [16–18]. Although this ar-
chitecture has its advantages over the shared-bus-based systems, it has also several
limitations such as high power consumption, high-cost communication, and low
throughput.

The presented 3D-OASIS-NoC (3D-ONoC) is based on a so-called Look-Ahead-
XYZ (LA-XYZ) routing algorithm [19]. This algorithm improves the router pipeline
design by parallelizing some stages while taking advantage at the same time of the
simplicity of the conventional XYZ. As a result, this routing scheme aims to enhance
the router performance thereby achieving a low-latency design.

5.2 Three-Dimensional On-Chip Interconnect

As we stated in Chap. 1, the number of transistors kept increasing along the past few
decades, which made shrinking the chip size while maintaining high performance
possible. This technology scaling has allowed Systems-on-Chip (SoCs) to grow con-
tinuously in component count and complexity, which significantly led to some very
challenging problems, such as power dissipation and resource management [20, 21].

As moving to deep submicron technology poses real design and manufacturing
problems, 3D integration becomes an attractive option to meet power and perfor-
mance demands. By stacking dies or wafers we can reduce the wire length. As a
result, the performance is increased and the power consumption is reduced. Thus,
the on-chip interconnection network plays a more and more important role in deter-
mining the performance and also the power consumption of the entire chip [22].

Based on a simple and scalable architecture platform, NoC connects processing
cores, memories, and other custom designs together using switching packets on a
hop-by-hop basis. The ultimate goal is to provide a higher bandwidth and higher
performance. Figure5.1a, b show some well-known architectures which are, respec-
tively, Point-to-Point (P2P) and shared-bus systems. As shown in Fig. 5.1c, NoC
architectures are based upon connecting segments (or wires) and switching blocks
to combine the benefits of the two previous architectures while reducing their dis-
advantages, such as the large numbers of long wires and the lack of scalability in
shared-bus systems.

5.2.1 3D-NoC Versus 2D-NoC

3D-NoC is a widely studied research topic, and many related works have been con-
ducted in the past. Few of them focused on the benefits of the 3D-NoC architecture
over the traditional 2D-NoC design. Feero [23] showed that 3D-NoC has the ability

http://dx.doi.org/10.1007/978-981-10-6092-2_1

110 5 Advanced Multicore SoC Interconnects

Fig. 5.1 SoC interconnection types: a Shared bus, b Point-to-Point, c NoC

to reduce latency and the energy per packet by decreasing the number of hopes by
40% which is a basic and important factor to evaluate the system performance [23].
Pavlidis [24] analyzed the zero-load latency and power consumption, and demon-
strated that a decrease of 62 and 58% in power consumption can be achieved with
3D-NoCwhen compared to a traditional 2D-NoC topology for a network size ofN=
128 andN= 256 nodes, respectively, whereN is the number of cores connected to the
network. This power consumption reduction can simply be related to the reduction
of a number of hops, since a flit has less hops to traverse to go from one source to
its destination, and that includes less buffer access, less switch arbitration, and less
link and crossbar traversal. All of these factors will eventually lead to decrease in
the power consumption.

Another part of previous works is focused on the router architecture. For example,
Li [25] hasmodified the conventional 7× 7 3D router using a shared bus as a commu-
nication interface between the different layers of the router, to create a 3D-NoC-Bus
Hybrid router. This kind of routers reduces in fact the number of ports in each router
from 7 to 6, but on the other hand flits wishing to travel from one layer to another
should compete the access to the shared bus, since it is the only interlayer commu-

5.2 Three-Dimensional On-Chip Interconnect 111

nication interface. This may lead to undesirable performance degradation especially
under a heavy interlayer traffic.

Yan [26], also proposed another architecture for the 3D-router, by implementing
all the vertical links into a single 3D-crossbar. In this case, the router has only five
ports sincewe do not need anymore additional ports for the vertical connections. This
technique reduces the interlayer distance and makes the travel between the different
layers in one single hop possible. But this router also engenders a high router cost
besides the implementation complexity of such router, which cannot be acceptable
for some simple application that actually does not need such a complex router.

For all these facts, we adopted the conventional 7× 7 3D-router, as it is the low-
est cost among the other architectures and also the simplest to implement showing
several properties like regularity, concurrent data transmission, and controlled elec-
trical parameters [27, 28]. All the benefits are acquired while making sure that this
low-cost and simple implementation does not affect the performance of our system.

5.2.2 Routing Algorithms

Many routing algorithms have been proposed for MCSoC systems but most of them
focus only on 2D network topologies. Also, among all the studies conducted for 3D-
NoC, few of them focused on routing algorithms. Among the few proposed ones,
there are some custom routing schemes that aim to reduce the power consumption
and thermal power which is a very challenge design for 3D-NoC systems. For in-
stance, Ramanujam [29] presented an oblivious routing algorithm called randomized
partially minimal (RPM) that aims to load balance the traffic along the network im-
proving the worst-case scenario. RPM sends packets to a random layer first, and then
route them along their X and Y dimensions using either XY or YX routing with equal
probability. Finally, packets are sent to their final destination along the Z dimension.

In a quite similar technique, Chao [30] addressed the thermal power problem in
3D-NoC, which is one of the most important issues in the 3D-NoC designs. Starting
from the fact the upper layer in the network detains the highest thermal power in
the design, they proposed a thermal aware downward routing scheme that sends first
the traffic to a downer layer, routes along the X and Y dimension before sending
the packets back up to their destination layer. This technique avoids communication
in upper layers, where the thermal power is more important than the downer ones,
and then may reduce the overall thermal power in the design, thus ensuring thermal
safety while guaranteeing less performance impact from temperature regulation.

Both of these two routing algorithms have their advantages in terms of load bal-
ancing and thermal power reduction. But the routing used is notminimal,which affect
in a direct way the number of hops. By adopting a non-minimal routing, the packet
delay may increase in the system, especially when we talk about a large number of
connected nodes.

112 5 Advanced Multicore SoC Interconnects

To ensure a minimal path for flits when traveling the network while making
the routing as simple as possible, the majority of the remaining 3D-NoC systems
have been using the conventional minimal Dimension-Order Routing (DOR) XYZ
routing scheme. Other introduced a routing scheme based upon XYZ such as the
case of Tyagi in [31] who extended a previous routing algorithm [32] called BDOR
designated for 2D-NoC. BDOR forwards packets in one of two routes (XY- or YX-
orders), depending on relative position of a source–destination pair, and that aims to
improve the balance of paths along the network also when taking into account the
destination.

XYZ routing scheme, and all the routing algorithms based upon it, is presented
as a vertically balanced routing algorithm which has the best performance, since it
is simple to implement, it is free of deadlock and lifelock, and also because packet
ordering is not required [30, 33, 34]. On the other hand, it cannot always make the
best use of each pipeline stage, for the simple reason that since the Switch Allocation
stage (SA) is always dependent on the previous Routing Calculation (RC) one. This
dependency can be explained by the fact that SA stage needs information about the
desired output port calculated from the RC stage, where the incoming flits should go
through in order to pass to the next neighboring node. To solve this problem in 2D-
NoCsystemsusing theDimension-OrderRouting (DOR)XYrouting scheme, a smart
pipeline design can be adopted with the help of some advanced techniques like look-
ahead routing [31]. This kind of routing has been used to reduce the pipeline stages
in the router, by parallelizing some of these stages, then reducing the router delay,
and then enhancing the system performance. Look-ahead routing has indeed been
used with 2D-NoC but it has not been adopted for 3D network-on-chip architectures
before.

A second problem that can be seen with a lot of conventional routers using XYZ-
based routing schemes is in case of no-load traffic and when the input buffer is
empty, the flit entering the router should be first stored in the input buffer before
advancing the next RC stage even there is no any flit under process in the next
stages. This unnecessary stall will increase the packet latency in the router, and its
associated power consumption, adding a performance overhead to the whole system
even in a light traffic case where the system is supposed to have a close-to-optimal
performance since there is no congestion that may increase the latency. In order to
face this problem, a technique called no-load bypass is used [35]. This technique
allows the flit to advance to the RC stage in case where the buffer is empty.

Previously in [36], a part of this research has been including architecture of a
3D network-on-chip architecture (named 3D-OASIS-NoC) based on a previously
designed 2D-OASIS-NoC. The design’s performance was evaluated using a simple
application that randomly generates flits and sends them along the network. But real
application could not be evaluated due to the absence of some components in the
design such as the network interface. For that reason, a network interface has been

5.2 Three-Dimensional On-Chip Interconnect 113

added to 3D-ONoC, the optimized version of 3D-OASIS-NoC, in order to make our
system able to be evaluated with our real selected target applications (JPEG encoder
and Matrix Multiplication).

In this chapter we present a complete architecture and design of 3D-OASIS-NoC.
Also evaluation results are presented using real applications (JPEG encoder and
Matrix Multiplication). We provide more details about the different components of
3D-OASIS-NoC including a new Look-ahead-XYZ routing scheme (LA-XYZ) and
its ability to take advantage of the simplicity of the conventional XYZ algorithm,
while improving the pipeline design of the 3D-NoC router and enhancing the overall
performance. The look-ahead routing schememeans that each flit additionally carries
one hot encoded next-port identifier used by the downstream router. The no-load
bypass technique is also associated with LA-XYZ in order to get more pipeline
improvement.

5.2.3 Topology Design

3D-ONoC is a scalable network-on-chip based on Mesh topology. The packets are
forwarded among the network usingWormhole-like switching policy and then routed
according to Look-Ahead-XYZ routing algorithm (LA-XYZ). Many topologies exist
for the implementation of NoCs; some are regular (Torus, tree-based) and other
irregular topologies are customized for some special application.We choose theMesh
topology for this design, thanks to its several properties like regularity, concurrent
data transmission, and controlled electrical parameters [27, 28].

Figure5.2 shows a configuration example of 4× 4 × 4 3D-ONoC design. We can
see in this figure that different layers are linked between each other via interlayer
channels. On the other side, each layer is composed of different switches which are
connected to each other using some intra-layer links; each one of them is connected
to one single processing element.

Code5.1 illustrates the RTL (in Verilog HDL) code of the 3D-ONoC top module
that defines the mesh topology. The z-loop, y-loop, and x-loop are used to define
the dimensions of 3D-NoC, while the internal i-loop (line 17) is used to define the
different input and output ports for each direction. For example, i = 0 refers to the
local port, where the outputs and inputs of this port will be allocated later to the
attached PE.

Taking the example of the down port (line 31–39), the output and input of this port
are allocated to the UP port of the router situated just below the current router, which
means the one in the downer layer. As it will be explained later, the unused ports
should be eliminated in order to reduce the area and power consumption. Continuing
with the same down port, it should be disabledwhen the router is located at the bottom
of the topology, which means when z − pos = 0. In this case, as it is illustrated in
Code 5.1 (line 32–35), net-data-in and net-stop-in are assigned to 0.

114 5 Advanced Multicore SoC Interconnects

Fig. 5.2 Configuration example of a 4× 4 × 4 3D-ONoC based on mesh topology

Listing 5.1 Verilog HDL code defining the topology
1 generate
2 //z loop
3 for (z_pos =0; z_pos <Z_WIDTH; z_pos=z_pos +1) begin:z_loop
4

5 //y loop
6 for (y_pos =0; y_pos <Y_WIDTH; y_pos=y_pos +1) begin:y_loop
7

8 //x loop

5.2 Three-Dimensional On-Chip Interconnect 115

9 for (x_pos =0; x_pos <X_WIDTH; x_pos=x_pos +1) begin:x_loop
10

11 router #(NOUT , FIFO_DEPTH , FIFO_LOG2D , FIFO_FULL_LVL) rtr
(.clk(clk), .reset(reset),

12 .data_in(net_data_in[x_pos][y_pos][z_pos]), .
data_out(net_data_out[x_pos][y_pos][z_pos]),

13 .stop_in(net_stop_in[x_pos][y_pos][z_pos]), .
stop_out(net_stop_out[x_pos][y_pos][z_pos]),

14 .xaddr(x_pos[‘L2NET_SIZE -1:0]) , .yaddr(y_pos[‘
L2NET_SIZE -1:0]) , .zaddr(z_pos[‘L2NET_SIZE
-1:0]));

15

16 //set up inter -router connections with correct boundary
conditions

17 for (i=0; i<NOUT; i=i+1) begin:i0
18

19 //tile interface of router
20 if(i==0) begin
21 assign net_data_in[x_pos][y_pos][z_pos][‘WIDTH *(i+1) -1:‘

WIDTH*i] = data_in[(‘WIDTH*X_WIDTH*z_pos*Y_WIDTH)+(‘
WIDTH*X_WIDTH*y_pos)+ (‘WIDTH *(x_pos +1)) -1: (‘WIDTH*
X_WIDTH*z_pos*Y_WIDTH)+(‘WIDTH*X_WIDTH*y_pos)+(‘
WIDTH*x_pos)];

22 assign data_out[(‘WIDTH* X_WIDTH*z_pos*Y_WIDTH)+(‘WIDTH*
X_WIDTH*y_pos)+(‘WIDTH *(x_pos +1)) -1: (‘WIDTH*X_WIDTH
*z_pos*Y_WIDTH) +(‘WIDTH*X_WIDTH*y_pos)+ (‘WIDTH*
x_pos)] = net_data_out[x_pos][y_pos][z_pos][‘WIDTH *(
i+1) -1:‘WIDTH*i];

23

24 assign net_stop_in[x_pos][y_pos][z_pos][i] = stop_in [(
X_WIDTH* z_pos * Y_WIDTH)+(X_WIDTH*y_pos)+x_pos];

25 assign stop_out [(X_WIDTH* z_pos * Y_WIDTH)+(X_WIDTH*
y_pos)+x_pos] = net_stop_out[x_pos][y_pos][z_pos][i
];

26 end
27 ...

5.2.4 Switching Policy

Considered as a very important choice for any NoC design, switching establishes
the type of connection between any upstream and downstream node. It is important
to deploy an efficient switching policy to ensure less blocking communication while
trying to minimize the system complexity. When it is related to packet switching,
three main switching policies have been mostly used for NoC: Store and Forward
(SAF), Virtual Cut Through (VCT), and Wormhole (WH) [37].

Listing 5.2 Verilog-HDL code defining the flit structure
1 // Flit structure
2 ‘define DATA 37:0
3 ‘define TAIL 0
4 ‘define NEXT_PORT 7:1
5 ‘define XDEST 10:8
6 ‘define YDEST 13:11
7 ‘define ZDEST 16:14
8 ‘define DATA 37:17

116 5 Advanced Multicore SoC Interconnects

3D-ONoC adopts wormhole-like switching and virtual-cut-through forwarding
method. The forwarding method which is chosen in a given instance depends on
the level of packet fragmentation. For instance, each router in 3D-ONoC has input
buffers which can store up to four flits by default. When a packet is divided into more
than four flits, 3D-ONoC chooses virtual-cut-through switching. When packets are
divided into less than four flits, the system chooses wormhole. In other words, when
the buffer size is greater than or equal to the number of flits, virtual-cut-through is
used, but when buffer size is less than or equal to the number of flits, wormhole
switching is employed. By combining the benefits of both switching techniques,
packet forwarding can be executed in an efficient way while guaranteeing a small
buffer size. As a result the system performance is enhanced while maintaining a
reasonable area utilization and power consumption.

5.2.4.1 Flit Format Design

Figure5.3 shows the 3D-ONoCflit format. The first bit indicates the tail bit informing
the end of the packet. The next seven bits are dedicated for the next-port that will be
used by the Look-Ahead-XYZ routing algorithm to define the direction of the next
downstream neighboring node where the flit will be sent to. Then, three bits are used
to store destination information of each: xdest, ydest, and zdest. Having three bits for
each destination field allows the network to have a maximum size of 8 × 8 × 8 3D-
ONoC. But if the network size needs to be extended, the addresses fields may also be
increased to accommodate a larger network size. Finally, the remaining 64 bits are
dedicated to store the payload. Since 3D-ONoC is targeted for various applications,
the payload size can be easily modified in order to respect the requirements of some
specific applications. Code 5.2 shows the structure of the 3D-ONoC flit. In addition,
as we previously stated, the architecture does not provide for a separate head flit and
every flit, therefore, identifies its destination X, Y, and Z addresses and carries an
additional single bit to indicate whether it is a tail flit or not.

5.2.5 3D-NoC Router Architecture Design

The router is considered as the backbone element in the whole 3D-ONoC design.
The 3D-ONoC router architecture is based upon the 5× 5 2D-ONoC router where,
as shown in Fig. 5.2, each switch has a maximum number of 7-input by 7-output port,
where four ports are dedicated to connect to the neighboring routers in north, east,

Tail Next_Port X-dest Y-dest Payload

0 1 8 11 14 81

1 Bit 7 Bit 3 Bit 3 Bit 64 Bit

Z-dest

17

3 Bit

Fig. 5.3 3D-ONOC flit format

5.2 Three-Dimensional On-Chip Interconnect 117

south, and west directions using the intra-layer links. One port is used to connect the
router to the local computation tile where the packet can be injected into or ejected
from the network. The remaining two ports are added to connect the switch to the
upper and downer layers to ensure the interlayer communication.

As we previously stated, the number of ports depends on the position of the switch
in the design, since we have to eliminate any unused links that have no connections
with other switches in order to reduce power consumption. For example, as it is
depicted in Fig. 5.2, switch-000 have only four connected ports (north, east, up, and
local) and the remaining three ports (south, west, and down) have been disabled since
there are no connections to any neighboring routers along those directions. Figure5.4
represents 3D-ONoC router architecture and that the routing process at each router
can be defined by threemain pipeline stages: buffer writing (BW), routing calculation
and switch allocation (RC/SA), and the crossbar traversal stages (CT). Observing the
Verilog HDL code for the Router module depicted in Code 5.3, 3D-ONoC contains
seven input-portmodules for each direction represented in input-port module in line
4. This seven-module allocation is defined by the i-loop in line 2, where each value
of i refers to the seven directions (local, north, east, south, west, up, down), and
NOUT parameter in line 2 refers to the number of ports. The outputted sw-req signal
defining the input port asking the grant and the output port requested defined by the
port-req signal is sent from the seven-input port to be an input port for the switch
allocator as shown at lines 19 and 20 of Code 5.3.

In addition to the switch allocator, the crossbar module is also defined (lines
22–25). The crossbar circuit takes as input the sw-cntrl from the switch allocator and
data-in coming from the seven input ports.

Fig. 5.4 3D-ONoC pipeline stages: buffer writing (BW), routing calculation and switch allocation
(RC/SA) and crossbar traversal stage (CT)

118 5 Advanced Multicore SoC Interconnects

Listing 5.3 Verilog-HDL Code for Router
1 // instantiate input ports
2 for (i=0; i<NOUT; i=i+1) begin:il
3

4 input_port #(NOUT , FIFO_DEPTH , FIFO_LOG2D , FIFO_FULL_LVL) ip
5 (.clk(clk), .reset(reset),
6 .data_in(data_in[‘WIDTH *(i+1) -1:‘WIDTH*i]),
7 .data_out(cbar_data_in[‘WIDTH *(i+1) -1:‘WIDTH*i]),
8 .sw_req(sw_req[i]), .port_req(port_req[NOUT*(i+1) -1:

NOUT*i]),
9 .sw_grant(sw_grant[i]), .stop_out(stop_out[i]),

10 .xaddr(xaddr), .yaddr(yaddr), .zaddr(zaddr));
11

12 assign data_sent[i] = |data_out[‘WIDTH*i+‘NEXT_PORT_END:‘
WIDTH*i+‘NEXT_PORT_START];

13 assign tail_sent[i] = data_out[‘WIDTH*i];
14

15 end
16 endgenerate
17

18 sw_alloc #(NOUT) sw_allc (.clk(clk), .reset(reset),
19 .sw_req(sw_req), .stop_in(stop_in), .data_sent(data_sent), .

tail_sent(tail_sent),
20 .port_req(port_req), .grant_out(sw_grant), .sw_cntrl(sw_cntrl));
21

22 crossbar #(NOUT , NOUT , ‘WIDTH) cbar(.clk(clk), .reset(reset),
23 .cntrl(sw_cntrl),
24 .data_in(cbar_data_in),
25 .data_out(data_out));

Now we analyze each component of the switch separately. Starting with the input
port, the switch allocator, and finally crossbar module.

5.2.5.1 Input-Port Module Design

Starting with the input-port module represented in Fig. 5.5 (and where the Verilog
code is represented in Code 5.4), each one of the seven modules is composed of two
main elements: Input buffer and the Route module.

Listing 5.4 Verilog-HDL Code for Input port
1 // instantiate FIFO
2 fifo #(NOUT , FIFO_DEPTH , FIFO_LOG2D , FIFO_FULL_LVL) ff
3 (. data_in(data_in), .data_out(fifo_data_out),
4 .second_item_nextport(second_fifo_nextport),
5 .enqueue(enqueue), .dequeue(sw_grant),
6 .stop_out(stop_out), .nearly_empty(fifo_nearly_empty),
7 .empty(fifo_empty),
8 .clk(clk), .reset(reset));
9

10 // instantiate look -ahead routing module
11 route #(NOUT) rr
12 (.xdest(fifo_data_out[‘XDEST]), .ydest(fifo_data_out[‘

YDEST]) ,.zdest(fifo_data_out[‘ZDEST]),
13 .xaddr(xaddr), .yaddr(yaddr), .zaddr(zaddr),
14 .nextport(fifo_data_out[‘NEXT_PORT]), .new_nextport(

lookahead_route));

Incoming 81-bit flits data-in from different neighboring switches, or from the con-
nected computation tile, are first stored in the Input buffer andwaiting to be processed.

5.2 Three-Dimensional On-Chip Interconnect 119

Fig. 5.5 Input-port module architecture

This step is considered as the first pipeline stage of the flit’s life cycle (BW). As it
is illustrated in Code 5.5, arbitration between different flits is managed using FIFO
queue technique. Each input buffer has by default four as depth, which means that
it can host up to four 81-bit flits. Buffers occupy a significant portion of router area
but can imply also increase in overall performance.

Listing 5.5 Verilog-HDL Code for Input-FIFO buffer
1 always @(posedge clk) begin
2 if (!reset) begin //If out of reset
3 if (enqueue) begin //Write a flit to the buffer
4 fifo[tail_ptr] <= data_in;
5 tail_ptr <= tail_ptr + 1;
6 end
7 if (dequeue) begin //Read a flit from the buffer
8 head_ptr <= head_ptr + 1;
9 end

10 // nearly full signal = stop_out ,
11 if (((tail_ptr + FULL_LVL[LOG2D -1:0] + 1’b1)== head_ptr

) && enqueue && !dequeue)begin
12 stop_out <= 1’b1;
13 end
14 if (((tail_ptr + FULL_LVL[LOG2D -1:0]) ==(head_ptr+1’b1)

) && !enqueue && dequeue)begin
15 stop_out <= 1’b1;
16 end
17 if ((tail_ptr + FULL_LVL[LOG2D -1:0]) == head_ptr)begin
18 if ((enqueue && !dequeue) || (! enqueue && dequeue)

)begin
19 stop_out <= 1’b0;
20 end
21 ...

After being stored, the flit is fetched from the FIFO buffer and advanced to the next
pipeline stage (RC/SA). The destination addresses (xdest, ydest, and zdest) are then
decoded in order to extract the information about the destination address in addition
to the next-port pre-calculated in the previous upstream node. Those values are then

120 5 Advanced Multicore SoC Interconnects

sent to the Route circuit where La-XYZ routing scheme is executed to determine the
new next-port direction for the next downstream node. At the same time, the next-
port identifier is also used to generate the request for the switch allocator asking for
grant to use the selected output port via sw-req and port-req signals.

As we stated in the previous section, 3D-ONoC uses look-ahead routing scheme
LA-XYZ for fast routing. This scheme is based upon the dimension-order (DOR)
X–Y–Z static routing algorithm, where the X,Y, and Z coordinates are satisfied in
order. X–Y–Z routing is presented as the vertically balanced routing algorithmwhich
has the best performance, since it is simple to implement, it is free of deadlock and
livelock, and also because packet ordering is not required. In addition to that each
flit additionally carries one hot encoded next-port identifier used by the downstream
router. Since LA-XYZ is based upon XYZ routing, it is considered also as a minimal
routing where each flit from any source and destination pair traverses the minimal
number of hops.

5.2.5.2 Semi-adaptive Look-Ahead Routing

To understand better how the next-port is decided, we designed the Verilog HDL
code depicted in Code 5.6. As it is shown in this code (lines 1–12), the routing
decision starts first by finding the next node’s address. It is done by evaluating the
actual next-port fetched from the flit, which gives a hint about which neighboring
node the flit is going to be routed to and eventually knowing its exact address by
incrementing xaddr or yaddr or zaddr. Depending on the resulted next address from
the later step, the new next-port can be determined. As demonstrated between lines
15 and 31 in Code 5.6, LA-XYZ compares the resulted next node’s address (next-
xaddr, next-yaddr, and next-zaddr) and the destination addresses (xdest, ydest, and
zdest). At the end of the execution of this comparison, the new next-port (defined by
route in Code 5.6) can be determined and then embedded in the flit back again to be
sent to the next node as Fig. 5.5 illustrates.

Listing 5.6 Verilog HDL implementation of LA-XYZ routing algorithm.
1 // assign next addresses
2 if (nextport == ‘EAST) next_xaddr = xaddr + 1’b1;
3 else if (nextport == ‘WEST) next_xaddr = xaddr - 1’b1;
4 else next_xaddr = xaddr;
5

6 if (nextport == ‘NORTH) next_yaddr = yaddr + 1’b1;
7 else if (nextport == ‘SOUTH) next_yaddr = yaddr - 1’b1;
8 else next_yaddr = yaddr;
9

10 if (nextport == ‘UP) next_zaddr = zaddr + 1’b1;
11 else if (nextport == ‘DOWN) next_zaddr = zaddr - 1’b1;
12 else next_zaddr = zaddr;
13

14 // evaluate next port
15 if (next_xaddr == xdest)
16 begin if (next_yaddr == ydest)
17 begin if (next_zaddr == zdest) route = ‘SELF;
18 else begin if(next_zaddr < zdest) route = ‘UP;
19 else route = ‘DOWN;
20 end

5.2 Three-Dimensional On-Chip Interconnect 121

21 end
22 else begin
23 if(next_yaddr < ydest) route = ‘NORTH;
24 else route = ‘SOUTH;
25 end
26 end
27 else begin
28 if (next_xaddr < xdest) route = ‘EAST;
29 else route = ‘WEST;
30 end
31 end

If we take a look at Fig. 5.2, and assume for example that a flit coming from switch-
200 enters switch-201 (where the xaddr, yaddr, and zaddr addresses are defined
by 001, 000, and 001, respectively) trying to reach its destination node switch-
313 (where the xdest, ydest, and zdest addresses are defined by 011, 001, and 011,
respectively). This flit caries “EAST” as a next-port identifier pre-calculated in the
previous node (switch-200). According to the first phase of the LA-XYZ algorithm,
next-xaddr = xaddr + 1 which is the x-address of switch-202. In the second phase
of the algorithm, next-xaddr is then compared with xdest. The comparison result
will determine “EAST” as route (the new next-port for switch-202) which will be
re-updated in the flit.

In order to enable the bypass technique, two signals are issued from the buffer to
give information about the buffer occupancy status. These two signals are fifo-empty
and fifo-nearly-empty. When the fifo-empty signal is issued, it means that the input
buffer is empty and when an incoming flit arrives at the input port, it does not need
to be stored in the buffer. Then, overlap the buffering stage and advancing to the next
stage (RC and SA).

5.2.5.3 Switch Allocator Design

The sw-req and port-req signals issued from each input-port module, and giving
information about the desired output port, are transmitted to the switch allocator
module to perform the arbitration between the different requests. When more than
two input flits from different input ports are requesting the same output port at the
same time, the switch allocator manages to decide which output port should be
granted to which input port, and when this grant should be allocated. This process is
done in parallel with the routing computation done in Input port to form the second
pipeline stage.

As indicated in Fig. 5.6, the switch allocator circuit has two output signals: one
is sw-cntrl and the second one is grant-out. sw-cntrl contains all the information
needed by the crossbar circuit about the scheduling result as it is explained later. On
the other hand, the grant-out is sent back to the input-portmodule and gives the grant
to the appropriate input port to send its data to the crossbar before reaching its next
neighboring node. Figure5.6 shows that the switch allocator module is composed of
two main components: Stall-Go flow control and Matrix-Arbiter Scheduling.

122 5 Advanced Multicore SoC Interconnects

Fig. 5.6 Switch allocator architecture

5.2.5.4 Stall-Go Flow Control Architecture

Like the other flow control schemes, Stall-Gomodule manages the case of the buffer
overflow. When the buffer exceeds its limitation on hosting flits (if the number of
flits waiting for process is greater than the depth of the buffer), a flow control has to
be considered to prevent from buffer overflow and eventually from packet dropping,
thus allocating available resources to packets as they progress along their route.
We chose Stall-Go flow control since it proves to be a low-overhead efficient de-
sign choice showing remarkable performance comparing with the other flow control
schemes such as ACK-NACK or Credit-based flow control. Like the other flow con-
trol schemes, Stall-Go module manages the case of the buffer overflow. When the
buffer exceeds its limitation on hosting flits (if the number of flits waiting for process
is greater than the depth of the buffer), a flow control has to be considered to prevent
from buffer overflow and eventually from packet dropping, thus allocating available
resources to packets as they progress along their route. We chose Stall-Go flow con-
trol since it proves to be a low-overhead efficient design choice showing remarkable
performance comparing to the other flow control schemes such as ACK-NACK or
Credit-based flow control [38].

Listing 5.7 Verilog HDL of the state machine decision
1 always @(posedge clk) begin
2

3 if (!reset) begin
4 if ((state==‘GO) && stop_in && data_sent)
5 state <= ‘SENT1;
6 if (state==‘SENT1) begin

5.2 Three-Dimensional On-Chip Interconnect 123

7 if (stop_in && !data_sent)
8 state <= ‘GO;
9 if (! stop_in && data_sent)

10 state <= ‘STOP;
11 end
12

13 if ((state==‘STOP) && stop_in) // stop_in = nearly_full
14 state <= ‘GO;
15 end else
16 state <= ‘GO;
17 end
18

19 assign blocked = (((state==‘STOP) && !stop_in) || ((state==‘
SENT1) && !stop_in && data_sent));

Stall-Go module, where the mechanism is represented in Fig. 5.7, uses two control
signals: nearly-full and data-sent. nearly-full signal is sent to the upstream node
indicating that the input buffer is almost full and only one slot is still available to
host one last flit. After receiving this signal, the FIFO buffers suspend sending flits.
The data-sent signal is issued when the flit is transmitted. Figure5.8 represents the
Stall-Go flow control state machine which aims to generate the nearly-full and data-
sent signals. State GO indicates that the buffer is still able to host two or more flits.
State SENT indicates that the buffer can host only one more flit, and finally when we

Fig. 5.7 Stall-Go flow control mechanism

Fig. 5.8 Stall-Go flow control finite state machine

124 5 Advanced Multicore SoC Interconnects

move to state STOP, it means that the buffer cannot store anymore flits. The state
machine is generated as indicated in Code 5.7 that shows the Verilog-HDL code
explaining the main state transitions using nearly-full and data-sent signals.

5.2.5.5 Matrix-Arbiter Scheduling Architecture

The second component is the scheduling module. As shown in Fig. 5.9, the input
signals sw-req and port-req indicate the input ports demanding the access and which
output ports are they requesting, respectively.Depending on these requests, the arbiter
allocates the convenient output port to its demander. Since 3D-ONoC transmits only
one flit in every clock cycle, then when two input ports or more are competing for
the same output port, the presence of a scheduling scheme is required in order to
prevent any possible conflict. The switch allocator in our design employs a least
recently served priority scheme via the packet transmit layer. Thus, it can treat each
communication as a partially fixed transmission latency [39, 40]. Matrix arbiter is
used for a least recently served priority scheme.

In order to adoptmatrix arbiter scheduling for 3D-ONoC,we implemented a 6× 6
scheduling matrix. The scheduling module accepts all the requests from the different
connected input ports and their requested output ports. Then it assigns priority for
each request. In order to give the grant to the convenient input port, the scheduling
module verifies the scheduling matrix, compares the priorities of the input ports
competing for the same output port, and gives the grant to the one possessing the
highest priority in the matrix. Following this basis, the scheduling module should
make the input port, which got the last grant to use the completed output port, the
lowest priority for the next round of arbitration, and then increases the priority of the
rest of the remaining ports. When there are no requests, the priority is unchanged.
Based on these assumptions, we are sure that every input port will be served and
get the grant to use the output port in a fair way. Figure5.9 illustrates a simple
example of how our scheduling mechanismworks. Each row of the matrix represents
the competing input requests and their priorities. The scheduling module starts by
examining the priorities of each input port request. After the highest priority input is
served, the arbiter updates the scheduling matrix by making the request which got
the last grant, the lowest priority for the next round of arbitration, by inverting its
row and column.

Fig. 5.9 Scheduling matrix priority assignment

5.2 Three-Dimensional On-Chip Interconnect 125

Thematrix shown in Fig. 5.9a illustrates the initial schedulingmatrix where north,
up, and down input ports are asking the grant to eject their flits to the Local port.
Observing this figure, the north request (highlighted in red) has higher priorities
compared with the remaining two requests. As a result the arbiter gives the grant to
the north request. Then north becomes the lowest priority (as it is underlined by a
green line) and the remaining two requests priorities are incremented. In the next
round (Fig. 5.9b), Down seems to have a higher priority than the Up request. The
arbiter then gives the grant to Down and makes its priority the lowest. Finally, as it
is shown in Fig. 5.9c, the Up request having the highest priority among the others is
giving the grant to eject its data to the requested output port. Code 5.8 depicts the
Verilog HDL code for the implementation for the matrix arbiter.

Listing 5.8 Matrix Arbiter code
1 generate
2 for (i=0; i<SIZE; i=i+1) begin:ol1
3 for (j=0; j<SIZE; j=j+1) begin:il1
4 if (j==i)
5 assign pri[i][j]= request[i];
6 else
7 if (j>i)
8 assign pri[i][j]=!(request[j]&& state[j*SIZE+i]);
9 else

10 assign pri[i][j]=!(request[j]&&! state[i*SIZE+j]);
11 end
12 assign grant[i]=&pri[i];
13 end
14 endgenerate
15

16 generate
17 for (i=0; i<SIZE; i=i+1) begin:ol2
18 for (j=0; j<SIZE; j=j+1) begin:il2
19 assign new_state[j*SIZE+i]=(success &&((state[j*SIZE+i

]&&! grant[j])||(grant[i])))||(! success && state[j*
SIZE+i]);

20 end
21 end
22 endgenerate
23

24 always@(posedge clk) begin
25 if (reset) state <=-1;
26 else begin
27 if (| request) state <= new_state;
28 end
29 end

Listing 5.9 Code for Crossbar circuit
1 // crossbar.v
2 generate
3 for (i=0;i<NOUT;i=i+1) begin:output_loop
4 mux_out #(NIN , WIDTH) cbar_mux (. cntrl(cntrl_reg[NIN*(i+1)

-1:NIN*i]), .data_in(data_in), .data_out(data_out[
WIDTH *(i+1) -1:WIDTH*i]));

5 end
6 endgenerate
7

8 // mux_out
9 generate

10 //loop over each bit of data
11 for (i=0;i<WIDTH;i=i+1) begin:bit_loop
12 assign data_out[i] = mux(cntrl , data_bits[i]);

126 5 Advanced Multicore SoC Interconnects

13 //loop over each input channel
14 for (j=0;j<n_in;j=j+1) begin:input_loop
15 assign data_bits[i][j] = data_in[WIDTH*j+i];
16 end
17 end
18 endgenerate
19

20 function mux;
21 input [n_in -1:0] cntrl;
22 input [n_in -1:0] data_in;
23 integer i;
24

25 begin
26 mux = 0;
27 for (i=0; i<n_in; i=i+1) begin
28 if(cntrl[i] == 1’b1) mux = data_in[i];
29 end
30 end
31 endfunction // mux

5.2.5.6 Crossbar Design

The switch allocator sends the issued control signal to the crossbar circuit to complete
the third and final Crossbar Traversal pipeline stage (CT), where information about
the selected input port and the next-port are embedded, and then stored in the sw-
cntrl-reg register as it is shown in Fig. 5.10. After that, the crossbar fetches these
information, receives the data from the FIFO buffer of the selected input port, and

mux-out-L

mux-out-N

mux-out-E

mux-out-S

mux-out-W

mux-out-U

mux-out-D

data_out_L (81)

data_out_S (81)

data_out_N (81)

data_out_W (81)

data_out_E (81)

data_out_U (81)

data_out_D (81)

data_in (567)

Sw_cntrl_reg

control (49)

7
/

Fig. 5.10 Crossbar circuit

5.2 Three-Dimensional On-Chip Interconnect 127

then allocates the appropriate channel for transmission to the decoded next-port.
Finally, the crossbar sends the flit to its destination as illustrated in Fig. 5.10. When
all the flits are transmitted, the tail bit informs the switch allocator via a tail-sent
signal that the packet transmission is completed and can free the used channel so it
can be exploited by another packet. Code 5.9 depicts the Verilog HDL code for the
implementation for the crossbar circuit.

5.2.6 Network Interface Architecture

In order to enable real applications to be run on 3D-ONoC system, a Network In-
terface (NI) was added to every router as a medium interface between the different
PEs (cores, memory, I/O, etc.). JPEG encoder application [41] was used for evalu-
ating the system performance. For this, both Transmitter and Receiver-NI in every
switch are designed. The packet size is set to 99-bit (3-bit flits). Each flit contains
17 bits defining the routing information (xdst, ydst, zdst, next-port, and tail) and the
remaining 16 bits are dedicated for the payload.

Listing 5.10 Verilog-HDL sample code for the sending NI
1 module NI_02_send (clk , rst , enable , data_in , flit);
2 input clk , rst;
3 input enable;
4 input [23:0] data_in;
5 output reg [32:0] flit;
6 always @(state)begin
7 case(state)
8 ‘f0:begin
9 if(cntrl) begin

10 next_state <= ‘f1;
11 flit <= 33’hz;
12 end
13 else next_state <= ‘f1;
14 end
15 ‘f1:begin
16 next_state <= ‘f3;
17 flit 0 <= ‘header;
18 flit [7:1] <= ‘EAST;
19 flit [16:8] <= ‘dest_03;
20 flit [32:17] <= data_in [23:8];
21 end
22 ‘f2:begin
23 if(cntrl) begin
24 next_state <= ‘f3;
25 flit 0 <= ‘header;
26 flit [7:1] <= ‘EAST;
27 flit [16:8] <= ‘dest_03;
28 flit [32:17] <= data_in [23:8];
29 end
30 else next_state <= ‘f2;
31 end
32 ‘f3:begin
33 next_state <= ‘f4;
34 flit 0 <= ‘header;
35 flit [7:1] <= ‘EAST;
36 flit [11:8] <= ‘dest_03;
37 flit [24:17] <= data_in [7:0];
38 flit [32:25] <= 0;

128 5 Advanced Multicore SoC Interconnects

39 end
40 ‘f4:begin
41 next_state <= ‘f2;
42 flit 0 <= ‘tail;
43 flit [7:1] <= ‘EAST;
44 flit [16:8] <= ‘dest_03;
45 flit [17] <= enable;
46 flit [32:18] <= 0;
47 end
48 default:next_state <= ‘f0;
49 endcase
50 end

Figure5.11 shows the architecture of the Transmitter-NI , and Fig. 5.12 shows the
architecture of the receiver-NI. The NI receives a 32-bit data from the JPEG module
that will be divided into two portions representing the payload of the two first flits
of the packet. The payload of the third flit contains the 10-bit control signal from the
JPEGmodule, and the remaining six bits are unused. As shown in Fig. 5.11, aControl
Modulemanages the fits generation. It adds the convenient destination addresses and
next-port direction to each flit, and marks the end of the packet by adding the (tail
bit to the third final flit. The generated flits are then injected into the network. The
Verilog HDL implementation of the Transmitter-NI is depicted in Code 5.10.

Fig. 5.11 Network interface architecture: Transmitter side

5.2 Three-Dimensional On-Chip Interconnect 129

Listing 5.11 Verilog-HDL code for the receiving NI
1 module NI_03_rec (clk , rst , flit , data_out , enable);
2

3 //input output
4 input clk , rst;
5 input [32:0] flit;
6 output reg [23:0] data_out;
7 output reg enable;
8 //reg
9 reg [15:0] data_high;

10 reg [7:0] data_low;
11 reg ena;
12

13 reg [1:0] state;
14 reg [1:0] next_state;
15 reg [32:0] preflit;
16

17 reg [23:0] pre_data_out;
18 // state
19 always @(posedge clk)begin
20 if(rst ==1) state <= ‘f0;
21 else begin
22 preflit <= flit;
23 state <= next_state;
24 end
25 end
26

27 // state
28 always @(state or flit)begin
29 case(state)
30

31 ‘f0:begin
32 if(flit!= preflit)begin
33 next_state <= ‘f1;
34 data_high <= 0;
35 data_low <= 0;
36 end
37 else next_state <= ‘f1;
38 end
39 ‘f1:begin
40 if(flit!= preflit)begin
41 next_state <= ‘f2;
42 data_high <= flit [32:17];
43 end
44 else next_state <= ‘f1;
45 end
46 ‘f2:begin
47 if(flit!= preflit)begin
48 next_state <= ‘f3;
49 data_low <= flit [24:17];
50 end
51 else next_state <= ‘f2;
52 end
53 ‘f3:begin
54 if(flit!= preflit)begin
55 next_state <= ‘f1;
56 ena <= flit [17];
57 pre_data_out <= {data_high , data_low };
58 end
59 else next_state <= ‘f3;
60 end
61 default:next_state <= ‘f0;
62 endcase
63 end

130 5 Advanced Multicore SoC Interconnects

Fig. 5.12 Network interface architecture: Receiver side

On the other side, the Receiver-NI receives the incoming of three flits of each packet
ejected from the network, and then stores them into three temporary registers. After
that the 16-bit payloads of the first and second flit are fetched from the temporary
registers, reassembled together and finally stored in theData-reg register. Controlled
by another Control Module, the complete 32 bits resulted in data and the 10 bits
control signals are fetched and sent to their attached JPEGmodule after the complete
packet is received.

The Verilog HDL implementation of the Transmitter-NI is depicted in Code 5.11.
Based on this network interface, another one has been designed to satisfy the require-
ments of another application that we used for evaluating 3D-ONoC, which is matrix
multiplication. We chose the matrix multiplication as one of our evaluating targets,
since it is wildly used in scientific application. Due to its large multidimensional data
array, it is extremely demanding in computation power and meanwhile, it is potential
to achieve its best performance in a parallel architecture and does not involve syn-
chronization [42]. All of these reasons make the matrix multiplication a very suitable
application to evaluate 3D-ONoC and show its outperforming performance against
2D-ONoC.

5.2.7 3D-NoC Design Evaluation

In this section, we evaluate the hardware complexity of 3D-ONoC in terms of area
utilization, power consumption (static and dynamic), and clock frequency. JPEG
encoder [41] and matrix multiplication [42] applications were used. Execution time,
the number of hops, and also the number of stall after the execution of the both of the
applications are also analyzed. Comparison research is also performed with 2D-NoC
architecture.

5.2 Three-Dimensional On-Chip Interconnect 131

Fig. 5.13 Task graph of the
JPEG encoder

5.2.7.1 JPEG Encoder on 3D-ONoC

JPEG encoder application is a well-known application and is widely used for eval-
uating systems which expose a lot of parallelism. For instance, we took into con-
sideration the tasks implementation shown in Fig. 5.13. For additional analysis, we
made further divisions to the Y:d-q-h, Cb:d-q-h, Cr:d-q-h, and FIFO modules, and
the resulted task graph is illustrated in Fig. 5.14. This extension aims to increase
the network size and deploy more parallel execution of the different modules of the
application, and then can take advantage of the scalability and the reduced number of
hops in the design. As we analyze the modified task graph represented in Fig. 5.14,
we noticed that the communication bandwidths between DCT, Quantization, and
Huffman modules are very high (640 bits) compared with those found between the
different other modules of the application (8, 24, and 32 bits). This bandwidth gap
will cause unbalanced traffic distribution especially when implemented on hardware,
since we will increase the link size in addition to the size and number of flits in the
packet format, causing higher latency and thermal power problem. All these factors
will eventually decrease the overall performance of the system, instead of enhancing
it. For all the reasons previously stated, we will implement the first task graph rep-
resented in Fig. 5.13 and we randomly (for simplicity) map the tasks on 2D-ONoC
(2× 4) and 3D-ONoC (2× 2 × 2) as shown in Figs. 5.15 and 5.16 respectively.

132 5 Advanced Multicore SoC Interconnects

Fig. 5.14 Extended task graph of the JPEG encoder

Fig. 5.15 JPEG encoder mapped on 2× 4 2D-ONoC

5.2.7.2 Matrix Multiplication on 3D-ONoC

First, we assume that an i × k matrix A has i rows and k columns, where Aik is an
element of A at the i-th row and k-th column. As it is demonstrated in Fig. 5.17, an
i × k matrix A can be multiplied by a k × j matrix B to obtain an i × j matrix R.
Figure5.18 presents how the matrix R can be obtained according to Formula 5.1:

5.2 Three-Dimensional On-Chip Interconnect 133

Fig. 5.16 JPEG encoder mapped on 2× 2 × 2 3D-ONoC

Fig. 5.17 Matrix multiplication example: The multiplication of an i × k matrix A by a k × j matrix
B results in an i × j matrix R

Ri, j =
k−1∑

n=0

Ai,n.Bn,k . (5.1)

When implemented onto 3D-ONoC, and for seeking of convenience or without loss
of generality, we can assume that all the matrices are square and having n× n size. In
3D-ONoC, each element of the three matrices is assigned to a computation module
which is connected to one router. As a result the number of routers connected to the
network is the sum of all the elements of three matrices, which is equal to 3n2. Each
element of the matrix B receives n flits from n different elements of the matrix A in
order to make the multiplication. Then, each element of the matrix B sends n flits to
n different elements of the matrix R where all the received values are summed and
then the final resulted value is outputted. In total 2n3 flits travel the network for a
nxn square matrix multiplication.

As we previously stated at the beginning of this section, we want to evaluate the
number of hops traversed by all the flits generated by the matrix application. For this
matter, we define

3D_Hopsi = |x_desti − x_srci |+|y_desti − y_srci |+|z_desti − z_srci |, (5.2)

134 5 Advanced Multicore SoC Interconnects

Fig. 5.18 Simple example demonstrating the matrix multiplication calculation

where 3D_Hopsi is the number of hops consumed for one single flit
i ∈ {0, 1, 2,, 2n3 − 1} (the set of all flits), traveling from one-source node (where
the address is defined by x_dest, y_dest and z_dest) to its destination node (x_src,
y_src and z_src). As a result, we can say that the number of hops consumed by an
nxn square matrix multiplication can be defined by

3D_Total_Hops =
2n3−1∑

k=0

3D_Hopsk . (5.3)

According to Formulas 5.2 and 5.3, the number of hops for 2D-ONoC can be then
extracted and defined as shown in Formulas 5.4 and 5.5:

2D_Hopsi = |x_desti − x_srci | + |y_desti − y_srci | (5.4)

2D_Total_Hops =
2n3−1∑

k=0

2D_Hopsk . (5.5)

For the evaluation, we took the case of 3× 3, 4× 4 and finally a 6× 6 matrix mul-
tiplication. For each one of these three cases, two mapping approaches have been
taken into consideration. For instance, we take the example of 3× 3 matrix multi-
plication. We randomly mapped the elements of the three matrices into 2D-ONoC
(3× 9) and 3D-ONoC (3× 3 × 3) using an optimistic mapping approach as pre-
sented in Fig. 5.19a. In this mapping we tried to make the communication distance as
close as possible, in order to reduce the number of hops which eventually will lead
to decrease the latency. Figure5.19b, on the other hand, illustrates a pessimistic task
mapping approach. The second approach tries to increase the communication path
of the different flits traversing the network.

In order to obtain an easier and more accurate evaluation, both of 3D-ONCs are
implemented in Verilog HDL. We evaluated and compared the hardware complexity
in terms of area, power consumption, (static and dynamic) and clock frequency,

5.2 Three-Dimensional On-Chip Interconnect 135

F
ig
.5
.1
9

3
×
3
m
at
ri
x
m
ul
tip

lic
at
io
n
us
in
g
a
op

tim
is
tic

an
d
b
pe
ss
im

is
tic

m
ap
pi
ng

ap
pr
oa
ch
es

136 5 Advanced Multicore SoC Interconnects

and also the performance in terms of execution time and the number of hops, and
also we counted the number of stop-signal generated from our Stall-Go flow control
mechanism. All the evaluation results obtained for 3D-ONoC are then compared to
2D-ONoC system.

We chose the Stratix III FPGA as a target device and then the synthesis was done
by the Quartus II software, where both are provided by Altera. We used Power-
Play Power Analyzer tool in Quartus II in order to evaluate the power consumption
generated. This design approach results in more accurate speed, area, and power
consumption evaluation. The use of FPGA is a very convenient choice for our de-
sign, thanks to its simplicity and the ability of reconfigurability. In addition to that,
it provides faster simulation than the traditional software emulation while maintain-
ing a cheaper cost than implementing with real processors. Table5.1 presents the
parameters used for the synthesis of 3D-ONoC design.

5.2.7.3 Evaluation Results

The goal of this section is to provide a hardware evaluation for the 3D-ONoC includ-
ing area, power consumption, and clock frequency when simulated with both JPEG
encoder and matrix multiplication applications. Table5.2 illustrates the hardware
evaluation results obtained. The results show that the logic utilization of 3D-ONoC
is increased by an average of 37% compared to the 2D design. The increased number

Table 5.1 Simulation parameters

Parameters 2D-ONoC 3D-ONoC

Network size (Mesh) JPEG 2× 4 2× 2 × 2

Matrix (3× 3) 3× 9 3× 3 × 3

Matrix (4× 4) 6× 8 4× 4 × 3

Matrix (6× 6) 9× 12 6× 6 × 3

Packet size JPEG 3 flits 3 flits

Matrix 1 flit 1 flit

Flit size JPEG 30 bits 33 bits

Matrix 35 bits 30 bits

Header size JPEG 12 bits 17 bits

Matrix 14 bits 17 bits

Payload size JPEG 16 bits 16 bits

Matrix 21 bits 21 bits

Buffer depth 4 4

Switching Wormhole-like Wormhole-like

Flow control Stall-go Stall-go

Scheduling Matrix-arbiter Matrix-arbiter

Routing LA-XY LA-XYZ

Target device Altera stratix III Altera stratix III

5.2 Three-Dimensional On-Chip Interconnect 137

Ta
bl
e
5.
2

3D
-O

N
oC

ha
rd
w
ar
e
co
m
pl
ex
ity

co
m
pa
re
d
w
ith

2D
-O

N
oC

A
pp
s

A
re
a
(A

L
U
T
s)

Po
w
er

(m
W
)

F
(M

H
z)

2D
3D

2D
3D

2D
3D

S
D

To
ta
l

S
D

To
ta
l

JP
E
G

28
.4
01

30
.3
82

81
1.
63

4.
27

81
5.
9

76
9.
13

4.
01

77
3.
14

19
3.
8

16
0.
72

M
3

×
3

18
.0
12

30
.9
54

96
9.
84

33
2

13
01
.8
4

10
32
.1
4

26
0

12
92
.1
4

15
8.
73

13
0.
01

M
4

×
4

36
.3
93

61
.1
57

10
73
.5
2

49
5.
2

15
68
.7
2

10
55
.6
5

41
0

14
52
.6
5

14
6.
56

10
1.
41

M
6

×
6

89
.5
76

14
4.
98
7

11
13
.2
9

58
0

16
93
.2
9

10
51
.0
6

45
0.
2

15
01
.2
6

98
.8
5

98
.1

138 5 Advanced Multicore SoC Interconnects

of ALUTs can be explained by the fact that the 3D-ONoC router has two additional
ports and a larger crossbar than 2D-ONoC. The additional number of ports incurs
additional buffers, which is costly in terms of area.

In terms of clock speed, 3D-ONoC underperforms the 2D-ONoC architecture by
16% on average due to the increased hardware complexity. While the power static
consumption is increased with 3D-ONoC with almost 14% for the same additional
hardware reasons, the dynamic power on the other hand is decreased in average of
16% while executing JPEG and the two mapping approaches for each of the three
matrix multiplications. As a conclusion, the total power consumption is decreased by
nearly 1.4%. Many factors affect the dynamic power in FPGA, such as capacitance
charging, supply voltage, and clock frequency. Since the first two factors are the
same for both 3D- and 2D-ONoC designs, and only the clock frequency is different
between them, we can say that the reduction of the clock frequency had an impact
on the reduction of the dynamic power. Besides that the clock frequency reduction,
we believe that the reduction of a number of hops (that will be explained in the next
section) also plays an important role in the reduction of dynamic power. In fact, when
the number of hops is reduced, it means that the flit has less hops, shorter path which
eventually means less buffering, routing, and scheduling. All these factors lead to
reduce the dynamic power when using 3D-ONoC when compared with 2D system.

5.2.7.4 Performance Analysis Evaluation

For the performance evaluation, we run each of the four applications. Then we
evaluated the execution time, the number of hops, and the number of stop-signal
of each one of them after verifying the correctness of the resulted data. Starting
with the execution time, we run each of the four applications on 3D-ONoC and 2D-
ONoC. Figure5.20 demonstrates the execution time results. Taking a closer look at
the JPEG application results, we may see that there is a slight improvement of 1.4%
with 3D-ONoC when compared with the 2D architecture. This slight improvement
can be explained by many reasons. First, JPEG is a small application which we could
map into only eight nodes. That is a quiet small number to exploit the benefits of
a 3D-NoC. Second, when observing the task graph of JPEG (previously shown in
Fig. 5.13), JPEG has indeed some tasks working in parallel(Y:d-q-h, Cb:d-q-h and
Cr:d-q-h), but at the same time we can see that FIFO module is dependent on those
three tasks. Another reason is that the JPEG computation modules involve heavy
computation. This leads to decrease the clock frequency of the entire system in a
very inconvenient way for 3D-ONoC. The performance of 3D-ONoC is then hidden
and cannot be taken advantage of. All of those reasons have an important impact on
the performance of the 3D-ONoC. JPEG might be a very appropriate application to
show the out performance of NoC over the traditional interconnect systems (such
as bus-based system or P2P), but when we talk about 3D-ONoC that is targeted
for hundreds of cores which is dedicated to a large number of cores with higher
parallelism tasks.

5.2 Three-Dimensional On-Chip Interconnect 139

Fig. 5.20 Execution time
comparison between 3D- and
2D-ONoC

On the other part, when evaluated with the matrix multiplication application,
3D-ONoC shows a greater performance and decreases the execution time for about
35, 33, and 41% for each of 3× 3, 4× 4 and 6× 6 matrix, respectively. In total
3D-ONoC reduces the execution time for one single matrix multiplication to up to
36%when compared with 2D-ONoC. Aswe stated previously, due to the fact that the
matrix multiplication has a larger data array, higher number of parallel tasks with less
dependency between them, matrix multiplication shows greater performance than
JPEG. While the JPEG is mapped onto eight nodes only, the matrix multiplication
can reach the 108 nodes for the 6× 6 matrix size. These factors are very suitable to
show the performance enhancement when adopting 3D-ONoC. This enhancement
can be related to the reduction of a number of hops that offers 3D-ONoC.

Listing 5.12 Verilog-HDL code for hops number count
1 for (i=1;i<=3;i=i+1) begin
2 for (j=1;j<=3;j=j+1) begin
3 for (k=1;k<=3;k=k+1) begin
4 #200000
5 // *************** Hop count from A to B***************
6 if ((A_adress [i][j][2:0]) >(B_adress [j][k

][2:0]))
7 Total_hops= Total_hops+ ((A_adress [i][j

][2:0]) -(B_adress [j][k][2:0]));
8 else
9 Total_hops= Total_hops+ ((B_adress [j][k

][2:0]) -(A_adress [i][j][2:0]));
10

11 if ((A_adress [i][j][5:3]) >(B_adress [j][k
][5:3]))

12 Total_hops= Total_hops+ ((A_adress [i][j
][5:3]) -(B_adress [j][k][5:3]));

13 else
14 Total_hops= Total_hops+ ((B_adress [j][k

][5:3]) -(A_adress [i][j][5:3]));
15

16 if ((A_adress [i][j][8:6]) >(B_adress [j][k
][8:6]))

17 Total_hops= Total_hops+ ((A_adress [i][j
][8:6]) -(B_adress [j][k][8:6]));

18 else
19 Total_hops= Total_hops+ ((B_adress [j][k

][8:6]) -(A_adress [i][j][8:6]));
20

21 // *************** Hop count from B to R***************

140 5 Advanced Multicore SoC Interconnects

22 if ((B_adress [i][j][2:0]) >(R_adress [k][j
][2:0]))

23 Total_hops= Total_hops+ ((B_adress [i][j
][2:0]) -(R_adress [k][j][2:0]));

24 else
25 Total_hops= Total_hops+ ((R_adress [k][j

][2:0]) -(B_adress [i][j][2:0]));
26

27 if ((B_adress [i][j][5:3]) >(R_adress [k][j
][5:3]))

28 Total_hops= Total_hops+ ((B_adress [i][j
][5:3]) -(R_adress [k][j][5:3]));

29 else
30 Total_hops= Total_hops+ ((R_adress [k][j

][5:3]) -(B_adress [i][j][5:3]));
31

32 if ((B_adress [i][j][8:6]) >(R_adress [k][j
][8:6]))

33 Total_hops= Total_hops+ ((B_adress [i][j
][8:6]) -(R_adress [k][j][8:6]));

34 else
35 Total_hops= Total_hops+ ((R_adress [k][j

][8:6]) -(B_adress [i][j][8:6]));
36 end
37 end
38 end

Figures5.21, 5.22, and 5.23 show the variation of the number of hops between 3D-
ONoC and 2D-ONoC with 3× 3, 4× 4 and 6× 6 matrix multiplications using pes-
simistic and optimistic mapping. The number of hops can be calculated using the
Verilog code depicted in Code 5.12. This portion of code is added to the test bench
that performs the calculation. When we analyze this figure, we may see that 3D-
ONoC reduces the number of hops compared with the 2D system with an average
percentage of 42, 31, and 47% 3× 3, 4× 4 and 6× 6 matrices, respectively, having
a total number of hops reduction of 40% over the 2D architecture. This can signifi-
cantly reduce the execution time, since flits have fewer hops to traverse to reach their
destination.

Another reason contributing to the performance of 3D-ONoC is the reduction of
the traffic congestion. This can be seen by observing the Stall-Go flow control and
the number of stop-signal generated by each matrix multiplication. To execute this
calculation, we added a small portion of code (Code 5.13) at the end of the 3D-
ONoC module, which uses the net-stop-out signal issued from the flow control and
calculates the total stall count.

Fig. 5.21 Average number
of hops comparison for both
pessimistic and optimistic
mappings on 3× 3 network
size

5.2 Three-Dimensional On-Chip Interconnect 141

Fig. 5.22 Average number
of hops comparison for both
pessimistic and optimistic
mappings on 4× 4 network
size

Fig. 5.23 Average number
of hops comparison for both
pessimistic and optimistic
mappings on 6× 6 network
size

Listing 5.13 Verilog-HDL code defining for stall count
1 // 3D-ONoC top module: network.v
2

3 ...
4 ...
5 always @(reset) begin
6 if (reset) count <= 0;
7 end
8

9

10 always @(net_stop_out)
11 begin : stop
12 for (j=0;j<Y_WIDTH;j=j+1) begin
13 for (k=0;k<X_WIDTH;k=k+1) begin
14 for (l=0;l<NOUT;l=l+1) begin
15 if (net_stop_out[k][j][l]) count = count +1;
16 end
17 end
18 end
19 end

As a matter of fact when observing Fig. 5.24, we can see that the stall count increase
linearly when we increase the matrix which is related to the number of flits traveling
the network. Even 3D-ONoC can reach up to 77% of stall count reduction over the
2D design with 6× 6 matrix multiplication; the stall count impact cannot be clearly
seen with 3× 3 and 4× 4 calculation. This can simply be explained by the fact that
we are calculating a single matrix multiplication which generates only 54 and 128
flits for 3× 3 and 4× 4 matrix size, respectively. This small number of flits was not
enough to cause any traffic congestions in 3D-ONoC. For that reason, we decide
to extend the evaluation to calculate not only one matrix multiplication but also to
calculate 2, 3, and 4 different matrices at the same. This aims to increase the number

142 5 Advanced Multicore SoC Interconnects

Fig. 5.24 Stall average
count comparison between
3D- and 2D-ONoC

Fig. 5.25 Stall average
count comparison between
3D- and 2D-ONoC with
different traffic loads

Fig. 5.26 Execution time
comparison between 3D- and
2D-ONoC with different
traffic loads

of flits traveling the network at the same time to cause congestion. Then we evaluate
again the average stall count.

Figure5.25, depicts the average stall count of both 3D- and 2D-ONoC when im-
plemented with 1, 2, 3, and 4 matrix multiplications. When analyzing this figure, the
stall count has been dramatically decreased to 94, 67, and 59% in average for 3× 3,
4× 4, and 6× 6 matrix multiplication, respectively. In total 3D-ONoC reduces the
stall count to up to 74%. After calculating the stall number, we want to see the im-
pact of increasing the traffic congestion on the execution time. So evaluate again the
execution time of each matrix size when performing 1, 2, 3, and 4 matrix multipli-
cations. The result obtained is shown in Fig. 5.26, which reduces the execution time
to 36, 39, and 47% for 3× 3, 4× 4, and 6× 6 matrix multiplication, respectively.

5.2 Three-Dimensional On-Chip Interconnect 143

Then improving the total execution time reduction from 36% is obtained in the first
experience with one matrix multiplication, to more than 41% when evaluated with
heavier traffic load.

As the results mentioned above, 3D-ONoC take advantage of its ability to reduce
the number of hops to enhance the performance. In addition, since 3D-ONoC router
has two additional input–output ports, flits traveling the network have better routing
choices which eventually will decrease the congestion that can be caused when using
2D-ONoC, having an important impact on the overall performance of the system.
Not forget to mention, this will improve the traffic balance along the whole network
which plays a very crucial role in the thermal power dissipated from the design.

5.2.8 Conclusion

Future applications are getting more and more complex, demanding a good archi-
tecture to ensure a sufficient bandwidth for any transaction between memories and
cores as well as communication between different cores on the same chip. 2D-NoC
architecture is efficient for medium-scale multicore SoC systems. However, soon
it will not be probably a good candidate for large-scale heterogeneous many-core
systems consisting of more than a thousand cores.

With the emergence of 3D integration technologies, a new opportunity emerges
for chip architects by porting the 2D-NoC to the third dimension. In 3D integration
technologies, multiple layers of active devices are stacked above each other and
vertically interconnected using through-silicon via (TSV). As compared to 2D-IC
designs, 3D-ICs allow for performance enhancements even in the absence of scaling
because of the reduced interconnect lengths. In addition, package density is increased,
power consumption is reduced, and the system is more immune to noise.

5.3 Photonic On-Chip Interconnect for High-Bandwidth
Multicore SoCs

Photonic Network-on-Chip (PNoC) [43–47] is a novel concept enabling ultra-high
communication throughput in the terabits per second range, low-power, and low-
communication latency. When powered with a wavelength division multiplexing
(WDM) scheme,multiple parallel optical streams of data are concurrently transferred
through a single on-chip waveguide. This contrasts with the Electronic Networks-
on-Chip, which require a unique metal wire per bit stream.

The key to saving power in PNoC systems comes from the fact that once a photonic
path is established, the optical data are transmitted in an end-to-end fashion without
the need for buffering, repeating, or regenerating. This is different from ENoCs,
where messages are buffered, regenerated, and then transmitted on the inter-router

144 5 Advanced Multicore SoC Interconnects

links several times en route to their destination. Furthermore, photonic routers do not
need to switch to every bit of the transmitted data like in electronic routers; optical
routers switch on and off once per message, and their energy dissipation does not
depend on the bit rate. This feature allows ultra-high bandwidth transmission while
avoiding the power cost that is found in traditional ENoCs.

In a hybrid PNoC systems, the source node first issues a path configuration packet,
which includes destination address information and other additional control infor-
mation, via a copper-based electrical link. The configuration packet is routed via an
Electric Control Network (ECN), reserving the photonic switches and channels along
the path for the photonic message. When the photonic path reservation is completed,
the source node returns an Acknowledgment (ACK) signal. When the ACK signal
is received and processed by the source node, the optical data transmission starts.
At the end of the transmission, all reserved photonic resources for the above data
transmission are released.

The circuit-switched nature of such hybrid PNoCs directly affects the perfor-
mance and power efficiency of on-chip communications. As observed in previously
conducted study, the energy overhead of a hybrid PNoC system is mainly due to the
electronic controlmodules,which consume themajority of the total power budget of a
hybrid PNoC system.Moreover, the latency required for photonic path configuration
is found to be much longer than the photonic data transfer itself.

While a single-layer configuration can provide low-loss waveguides and high-
performance photonic devices, it suffers from limited integration density due to
waveguide crossing and limited real estate. A way to go beyond this limitation is
to monolithically stack multiple photonic layers above Si as multilayered electrical
interconnections realized in modern electronic circuits [48, 49]. Figure5.27 shows
a high-level view of a three-dimensional PNoC (PHENIC) implemented with one
electrical control layer and several photonic communication layers [50].

Fault tolerance is crucial when considering mission critical applications where
the system must correctly function even when something goes wrong. One such
application is that of space travel, where repair or replacement is not a possible
option, and billions of dollars would be wasted.

5.3.1 Photonic Communication Building Blocks

The main components of an PNoC include a laser source, which generates phase co-
herent and equally spaced wavelengths, waveguides, which is used as a transmission
medium, and modulators and photodetectors, which convert electrical digital data
to and from photonic signals [51, 52]. Figure5.28 shows a typical on-chip optical
link that uses an external laser as a light source. It is expected that the laser source
could produce up to 64 wavelengths per waveguide for a DenseWavelength Division
Multiplexing (DWDM) network.

5.3 Photonic On-Chip Interconnect for High-Bandwidth Multicore SoCs 145

Fig. 5.27 3D-Stacked photonic network-on-chip architecture

Fig. 5.28 Photonic link architecture

Laser Source: Since there are no available high-speed, electrically driven, on-chip
monolithic laser light, PHENIC system features an off-chip laser source, such as
VCSEL (Vertically Cavity Surface Emitting Laser). As indicated in Fig. 5.28, the
off-chip laser source provides light to the modulator(s), which transduces electrical
information into a modulated optical signals. Then, when the lights enter the chip,
optical splitters and waveguides route it to the different modulators used for data
transmission.

Modulators: Before optical messages are transmitted, the electrical messages from
each IP core should be converted into optical form. PHENIC implements at each
node a gateway: (Fig. 5.29) serving as a photonic network interface and based on
silicon optical modulators and SiGe photodetectors. To reduce conversions time,
modulators should be small (i.e., the circular-shaped 10µm ring modulator [53])
and fast. The performance of a typical modulator is dependent on the on-to-off light
intensity ratio [54], which depends on the electrical input signal strength. A higher
extinction ratio is better and required for fast and accurate signal detection. Works
in [53, 54] reported that an extinction ratio greater than 10dB is acceptable and
enough to enable proper signal detection without causing communication errors.

146 5 Advanced Multicore SoC Interconnects

Fig. 5.29 Gateway organization

Waveguide: The waveguides provide the physical interconnection between all
sources and destinations and enable connectivity between all photonic devices in
PHENIC systems. The transmitter demultiplexes the light into appropriate wave-
length channels and then modulates each of the channels with a digital data stream
generated by the electronic component to be interconnected. Finally, photonic signals
are routed to various PEs via routers and waveguides.

We have to note here that the refractive index [54] of the waveguide material
has a big impact on the bandwidth, latency, and area of an optical interconnect.
A waveguide typically has a width of 0.3µm [55]. Once the photonic signals are
received by the destination node (receiver), the signals must be converted back to
electrical form. Also, since PHENIC simultaneously transmits different wavelengths
per bidirectional waveguides, a wave selective filter for each received wavelength is
needed at the destination node.

Microring Resonator: The main element of a silicon-photonic NoC system is the
microring resonator (MR). MRs are capable of effectively guiding an optical signal
by carefully choosing their dimensions and positions along the path. Optical signals
couple into ring resonators at specific regularly spaced wavelengths in the optical
spectrum, called resonant modes [56].

5.3.2 Design Challenges

The photonic domain is immune to transient faults caused by radiation [57], but
is still susceptible to process variation (PV) and thermal variations (TV) as well as
aging. The aging typically occurs faster in active components as well as elements that
have high TV [28]. In the optical domain, the faults can occur in MRs, waveguides,
routers, etc. Active components, such as MRs, have higher failure rates than passive
components, e.g., waveguides [28]. A single MR failure can cause messages to be

5.3 Photonic On-Chip Interconnect for High-Bandwidth Multicore SoCs 147

misdelivered or lost, which results in bandwidth loss or even complete failure of the
whole system. Together, fabrication-induced PV and TV effects present enormous
performance and reliability concerns. TV causes a microring to respond to a different
wavelength than intended. This can take the form of a passband shift in the MRs.
When an MR heats up, it expands, changing its radius, and therefore shifting the
wavelengths which it uses to the right [58]. As reported in [59], a change of as
little as 1◦ C can shift the resonance wavelength of a microring by as much as
0.1nm. This is not permanent andwill returnwhen the temperature returns to normal.
Therefore, systems’ temperature must be kept at a reasonable value in order for
the MRs to resonate correctly. This is challenging, especially in a large complex
computing system, which uses thousands of these components. Trimming technique
[60] is generally used to dynamically modify the resonance frequency of a microring
to overcome both thermal drift and fabrication inaccuracy. This technique can be
accomplished by dynamically increasing the current in the n+ region or by heating
the ring [60–62].

PV is the variations of critical physical dimensions, e.g., thickness of wafer and
width of waveguides, and also affects the resonant wavelengths of MRs. This means
that not all fabricated MRs can be used due to PV. As a result, network nodes that
do not have all working MRs would lose some or all of wavelengths/bandwidths in
communication [63]. To solve this problem, Xu et al. [64] proposed a method of
flexible wavelength assignment. Because the networks are already built with excess
detectors or modulators for each message, the node with the excess components can
compensate and rematch the components which have been affected by PV.

Over time, all silicon-based ICs wear down. We refer to this phenomenon as
aging. Some of the aging effects only apply to the active components, because of
their electrical subcomponents [65], such as the MRs, while other aging affects all
parts, even the waveguides.

Recent PNoCs researches (i.e., network topology, router micro-architecture de-
sign, and performance and power optimization and analysis) have resulted in sev-
eral architectures capable of transmitting at a high data bandwidth and low energy
dissipation [43–47]. In [48], we proposed an energy-efficient and high-throughput
hybrid silicon-photonic network-on-chip based on a smart contention-aware path-
configuration algorithm and an energy-efficient non-blocking optical switch to fur-
ther exploit the low energy proprieties of the PNoC systems. However, little attention
has been given to the aspect of fault tolerance and reliability along the photonic in-
terconnects.

This chapter presents a fault-tolerant PNoC architecture. The system is based on
a fault-tolerant path-configuration and routing algorithm, a microring fault-resilient
photonic router, and uses minimal redundancy to assure accuracy of the packet trans-
mission even after faulty MRs are detected.

148 5 Advanced Multicore SoC Interconnects

5.3.3 Fault Models

It is worth noting that the light is not sensitive to radiation or electromagnetic fields,
the signals which control the optical network can be sensitive to it. The following is
a list of actual possible causes that can contribute to the failure of an optical device.

5.3.3.1 PNoC Signal Strength

Typical NoCs are defined by their power consumption, delay, and throughput. PNoCs
also have to consider the signal-to-noise ratio at the receiving end. Because they do
not buffer and retransmit, the signal gets weaker based on how many hops it jumps.
This does not significantly affect the power the network consumes, but it can lead to
a higher sensitivity to noise.

5.3.3.2 Electrostatic Discharge

While thewaveguides are not electrically conductive, the switches andphotodetectors
are. This means that they are sensitive to high currents. One thing which can ruin
an IC is electrostatic discharge (ESD). This is when a current enters through the
I/O pins of the control circuit, or it can be caused by an extremely strong magnetic
field. This all results in the aforementioned extreme current, and this current causes
severe damage to the silicon in the components. Possible points of damage are the
dielectric, the PN junctions, and any wiring connecting to the controllers. Because
of the scaling, the causing phenomena have become harder to control [66]. This can
be prevented by proper packaging to the IC providing ESD protection at the pins.

5.3.3.3 Noise

This is one of the unique things that we categorize as a cause for a fault. The reason
is because the noise can be caused simply by poorly matched wavelengths. It can
also be caused by creating a path that is too long, or a path that crosses too many
intersections. These paths tend to be caused by rerouting or non-minimalistic routing,
but other factors can contribute and cause more noise. The most common factors are
listed in the following subsections.

5.3.3.4 Aging

Over time, all silicon-based ICs wear down. Some of the aging effects only apply to
the active components, because of their electrical subcomponents, while other aging
affects the optical properties of the components.

5.3 Photonic On-Chip Interconnect for High-Bandwidth Multicore SoCs 149

Electromigration—This mainly affects the wires which control the ring res-
onators. It does not affect the waveguides in any way. It originally causes a delay in
the wire, and can eventually lead to an open, or to a short to a nearby wire. It achieves
this by thinning out the thinnest portion of the wire due to the higher current density
at the bottleneck [67].

Laser Degradation—After the lasers have been on for several hundred hours,
they start to show signs of degradation. This shows in the form of either missing
wavelengths, which can cause a channel fault, or general weakening of the original
laser signal. In each of these cases, it does not become a true problem until the signal
falls to a level where the worst-case scenario’s signal-to-noise ratio is too weak to
receive an understandable signal [68].

Photodetector Degradation—Various studies have been done for different types of
photodetectors showing that they degrade overtime, particularly from being exposed
to thermal conditions or UV light. It is reasonable to assume that no matter what
material photodetectors aremade out of, they all seem to be vulnerable to degradation
due to thermal variation, which is present in all networks [28, 65].

A lot of work has been done to combat the effects of aging. Some examples are
Agarwal [69], Keane [67], and Kim [70]. These are mainly focused on the electrical
side, but the fact that these do exist shows the hope for a future where optical aging
can be researched and prevented. Many parameters such as the wavelengths and laser
strength can possibly bemodified throughout the life of a chip to counteract the aging
effects in a similar manner to what Mintarno does for Electrical networks [71].

5.3.3.5 Process Variability

This can affect both the active and inactive components of the optical network.
The variability accounts for material impurities, doping concentrations, and size and
geometries of structures [72]. One single dimple in a particular point in the coupling
region of a ring resonator can greatly affect the coupling properties and thus cause
problems for the switch, or maybe just the channel. A poor geometry can also cause
a certain component to be more sensitive to aging or ESD. Obviously, if a variation
gets bad enough, an entire link can be rendered useless. This would be considered
an early permanent fault and should be detected before a device is released. The
impurities in a waveguide can cause such a block, or cause there to be a change in the
reflectivity of thematerial, and that causes a higher amount of insertion loss, resulting
in a lower signal-to-noise ratio. Other similar chains of events can occur from bad
doping of the photodetectors.Minimizing this process variability can greatly increase
the reliability of the system, even without implementing fancier and area or energy
heavy redundancies. The unfortunate truth is that with recent advances in scaling,
the variability continues to increase [73, 74].

150 5 Advanced Multicore SoC Interconnects

5.3.3.6 Temperature Variation

For electrical components, temperature variation can cause changes in properties
such as resistivity and cause more power consumption or delay, but in the optical
domain, it is quite different. Ring resonators are tuned by heating up the ring, causing
them to expand, which changes their passband wavelength. If the chip heats up to a
point beyond the tuning, then certain channels just disappear as a whole. The increase
in temperature also causes the photodetectors to degrade asmentioned in the previous
section. These temperature variations also tend to speed up other forms of aging as
well.

5.3.4 Fault-Tolerant Photonic Network-on-Chip Architecture

The Fault-tolerant Photonic Network-on-Chip (FT-PHENIC) system, shown in
Fig. 5.30, is a mesh-based topology and uses minimal redundancy to assure accuracy
of the packet transmission even after faulty MRs are detected [75]. The system uses
Stall-Go mechanism for flow control, and a matrix arbiter as a scheduling technique
[2, 19, 76]. FT-PHENIC is also based on a microring fault-resilient photonic router
(MRPR) and an adaptive path-configuration and routing algorithm [50, 77].

Fig. 5.30 FT-PHENIC system architecture. a 3× 3 mesh-based system, b 5× 5 non-blocking
photonic switch, c Unified tile including PE, NI, and control modules

5.3 Photonic On-Chip Interconnect for High-Bandwidth Multicore SoCs 151

As illustrated in Fig. 5.30, the proposed system consists of a Photonic Commu-
nication Network (PCN), used for data communication, and an Electronic Control
Network (ECN), used for path configuration and routing. Each PE (Processing Ele-
ment) is connected to a local electrical router and also connected to the corresponding
gateway (modulator/detector) in the PCN [48]. Messages generated by the PEs are
separated into control signals and payload signals. Control signals are routed in the
ECN and used for path configuration and routing. The payloads are converted into
optical data and transmitted on the PCN.

5.3.4.1 Microring Fault-Resilient Photonic Router

Theblockdiagramof theMicroringFault-resilient PhotonicRouter (MRPR) is shown
in Fig. 5.31. It consists of a non-blocking fault-tolerant photonic switch (Fig. 5.31a)
and a light-weight control router (Fig. 5.31b). RedundantMRs are carefully placed at
special locations on the switch to assure fault tolerance even if one of the MRs on the
backup path has a fault. The backup route for the NEWS (North–east–west–south)
directions is to actually use the waveguide connected to the core ports as a master
backup; therefore, the redundant MRs are all chosen at the locations which connect
the NSEW ports to the core.

For a majority of faults, the design of the switch allows for an alternate, slightly
less power efficient route. In fact, the backup route is less power efficient because
the packets travel across more waveguide distance, go through more activeMRs, and
cross more waveguides. However, the switch still maintains all of its functionality.
Because backup routes are only intended for use in the switches in which faults have
occurred, the extra loss will have minimal effect on the message’ signal strength
across the whole network.

The MRPR was designed to require no MRs from east–west and north–south
traffic. Since this kind of traffic accounts for a majority of the traffic of the PCN [50],
such design will save on power and continue to function in the case of any MR fails.
Assuming that a single location of redundantMRs does not fail altogether, the switch
is able to maintain all functionality at slowed speeds.

Figure5.32 shows a reconfiguration example of how MR 9 can be backed up by
MRs 5, 15, and 1. Additionally, the MRs which connect parallel waveguides are
replaced with racetracks [78]. This allows for a wider passband of light frequencies
and makes them less sensitive to physical faults, such as reduced sensitivity to ther-
mally caused passband shifting. Racetracks also have a larger Mean Time Between
Failures (MTBF) [78].

The original form of MRPR switch is a five-port non-blocking switch, meaning
that it allows for routing from any available port to any other available port. Once
a fault is detected, the switch recovers, but there is a chance that it may turn into a
blocking switch; however, it should be able to maintain all functionality as long as
none of the redundantMRs fails. Because the redundantMRs lie dormant, they do not
requiremuch power other than the boost in signal strength required to compensate for
the signal loss, caused by passing an inactive MR, which is minimal. As all rerouting

152 5 Advanced Multicore SoC Interconnects

Fig. 5.31 Microring fault-resilient photonic router (MRPR):aNon-blocking fault-tolerant photonic
switch, b Light-weight control router

in the switch occurs on the core waveguide, traffic certainly increases on this one
waveguide as too many faults occur, which is why it should be treated as a node
failure after a threshold of failed MRs is reached.

In addition to tolerating faults, MRPR is able to handle the ACK signals and the
resulting regeneration process of the tear-down signal at each hop. To accomplish
this goal, a hybrid switching policy is used: Spacial-switching for the data signals
by manipulating the state of the broadband switching elements and a Wavelength-
selective switching for the tear-down signals by using detectors and modulators.
Moreover, since the tear-down signals should be checked and regenerated at each
hop, it is crucial that their manipulation be automatic and not interfere with data
signals, nor cause a blockage inside the switch. When the tear-down is generated

5.3 Photonic On-Chip Interconnect for High-Bandwidth Multicore SoCs 153

Fig. 5.32 Example of how a non-redundant MR’s functionality can be mimicked by redundant
ones

Table 5.3 Microring configuration for normal data transmission

Output/Input Core North East South West

Core – 4 6 3 5

North 7 – 16 None 14

East 8 17 – 13 None

South 1 None 12 – 9

West 2 11 None 10 –

at the source NI (Network Interface), it is first sent to the control router. Then, the
photonic switch controller releases the corresponding MRs and generate another
tear-down which is sent to the output-port modulator in the PCN where it continues
its path in a hop-by-hop basis until it reaches its destination. At the destination node,
the tear-down is detected in the input port and sent to the photonic switch controller
in the corresponding electronic router. In this fashion, we can omit the overhead
of an additional gateway which becomes significant when we increase the number
of cores. Table5.3 shows the MRs configuration for data transmission, where 16
MRs are used in a non-blocking fashion. Table5.4 shows the backup paths for each
transmission.

We use the first six wavelengths in the optical spectrum starting from 1550nm,
with a wavelength spacing equal to 0.8nm to maintain a low cross-talk as reported
in [79]. For the acknowledgment signals, we use the first five wavelengths in the
optical spectrum starting from 1550nm: four wavelengths for the tear-down signal
where each one is dedicated to each port except the local one. In addition, a single
wavelength is used for the ACK. The remaining available wavelengths are used for
data transmission. The five wavelengths used to control the ACK and tear-down

154 5 Advanced Multicore SoC Interconnects

Table 5.4 Microring backup configuration for data transmission

Output/Input Core North East South West

Core 15 D F C E

North G – 6,15,7 None 5,15,7

East H 4,15,8 – 3,15,8 None

South A None 6,15,1 - 5,15,1

West B 4,15,2 None 3,15,2 –

Table 5.5 Wavelength assignment for acknowledgment signal (Mod: Modulator, and Det: Pho-
todetector)

Core North East South West

Input Modλ0 Detλ3 Detλ2 Detλ1 Detλ4
Output Detλ0 Modλ1 Modλ4 Modλ3 Modλ2

signals are notably constant regardless of the network size, in contrast with the fully
optical where the number of wavelength used for control and arbitration grows with
the network size. Thus, cutting these wavelengths from the available spectrum to be
used for control would not degrade the system bandwidth. These five wavelengths
will be negligible especially when DWDM is used providing up to 128 wavelengths
per waveguide [80]. The wavelength assignment for each port is shown in Table5.5.

Should the tear-down signals enter the switch, they need to be redirected to the
corresponding electronic router. Since these signals are coming from different ports,
and are modulated with different wavelengths, detectors capable of switching all of
the four wavelengths are placed in front of the input ports to intercept the signals. The
converted optical signal will be redirected to the electronic router to be processed.
According to the included information, the corresponding MRs will be released. For
the ACK, when the PSCP reaches the destination, 1-bit optical signal is modulated
starting from the output port (i.e., opposite direction) and travels back to the source.

With this smart hybrid switchingmechanism, we take advantage of the low-power
consumption of the optical link by using optical pulses modulated with the adequate
wavelength instead of propagating the acknowledgment signals in the ECN. Second,
we take advantage of theWDM proprieties by separating the acknowledgment pack-
ets and the data signals and let them coexist in the same medium without interfering
with each other. This contrasts with the electronic domain where these acknowledg-
ment packets travel for several hops consequently blocking (preventing) the waiting
cores from sending their PSCP packets. Finally, we are able to tolerate faults due to
the arrangement of the MRs, and allowing for redundancy at critical locations.

As a primary comparison, we performed a study on the routers, and the loss that
they would each have on average, and in their worst case. The results can be seen in
Table5.6. As expected, the Crux [81] performs the best, as its only design goal was to
minimize loss and noise, sacrificing a lot of functionality. Values for the calculation
were taken from various authors and can be seen in Table5.7.

5.3 Photonic On-Chip Interconnect for High-Bandwidth Multicore SoCs 155

Table 5.6 Various switches and their estimated losses. AL: Average Loss, WL: Worst Loss

Router Cros. MRs Termi. AL (dB) WL (dB) WL (faulty) (dB)

Crossbar 25 25 10 1.12 1.60 ∞
Crux 9 12 2 0.657 1.11 ∞
PHENIC 27 18 0 1.315 1.615 ∞
FT-PHENIC 19 16+9 0 0.965 1.115 2.215

Table 5.7 Insertion loss
parameters for 22nm process

Parameter Value (dB)

Through ring loss 0.5 [81]

Pass by ring loss 0.005 [82]

Bending loss 0.005 [82]

Crossing loss 0.12 [81]

Terminator 0.01 [82]

5.3.4.2 Light-Weight Electronic Control Router

Figure5.31b illustrates the control router architecture, which is based upon OASIS-
NoC router [2, 76, 83, 84]. As shown in the above figure, the arbiter receives the
detected tear-down from the above switch (colored arrows). According to the in-
formation encoded in this signal, the corresponding MRs are released and a new
tear-down is generated for the next hop until it reaches its final destination and all
MRs involved in this communication are released. The figure shows also the con-
nection between the network interface (NI) and the local port, where a configuration
packet (CP) is sent from the NI to the local port. The CP could be a setup packet or a
path-blocked packet. The NI is connected also to the data switch (i.e., PCN). When
the source node receives the ACK, the payload is processed by a serializer bank (if
needed), a high-speed driver, and a modulator to convert the electrical signal into
an optical one. At the source node, the optical data leaves the data switch and go
through a detection step, a high-speed Trans-Impedance-Amplification step, and a
deserialization step. At the end the NI’s receiver receives the payload data with its
original clock speed.

5.3.4.3 Fault-Tolerant Path-Configuration and Routing

The key feature of the Fault-tolerant Photonic Path-configuration algorithm (FTPP)
is that it can handle faulty MRs within the photonic switches. When a fault occurs,
the algorithm checks for the secondary MRs on the list and checks their status. The
backup MR table can be very simple in the cases of a redundant MR failing, where
it is simply replaced by its redundancy, or it can be slightly more complicated, as
shown in Fig. 5.32.

156 5 Advanced Multicore SoC Interconnects

The FTPP algorithmmustmeet certain requirements toworkwith the FT-PHENIC
system. It should be also able to remove the dependency between the ECN and PCN
which causes a significant latency overhead in conventional hybrid PNoC systems.
In addition, the latency caused by the path blocking, which requires several cycles
for the path dropping and the new path setup packet generation, is considerably
decreased. Another key feature of the configuration algorithm is the efficiency of
the ECN resources’ utilization. By moving the acknowledgment signals to the upper
layer, we can reduce the buffer depth to only two slots, since half of the network
traffic is eliminated. This reduction is a key factor to design a light-weight router,
highly optimized for latency and energy.

Figure5.33a shows an example of a successful path setup process where all the
necessary resources between a given source–destination pair are reserved. The cor-
responding pseudocode is given in the algorithm shown in Fig. 5.34.

Before optical data transmission, the source node issues a Path-setup-Control-
Packet (PSCP) which is routed in the ECN and includes information about the des-
tination and source addresses. In addition to the source and destination addresses,
other information is included. For example, one bit is used for the packet-type field.
This field can be “00” for a PSCP and “01” when this configuration packet is a path-
blocked. Other information to ensure quality-of-service and fault tolerance, such as
message ID, fault status, and error detection code, can also be included.

For each electrical router, the output port is calculated according to dimension-
order routing [84]. Every time the PSCP progresses to the next router, the optical
waveguides between the previous and current routers are reserved. Depending on the
output port of the electrical router, the corresponding photonic router is configured
by switching on/off one or more MRs using the MRs configuration table shown in
Table5.3.

In the example shown in Fig. 5.33a, the packet is entering the local input port
attached to the Network Interface (NI) and requesting the east output port. According
to Table5.3, MR 8 is required and its availability is checked in the (Microring State
Table) MRST. In this table, the MR’s state is “00” (free and not faulty). Therefore,
the switch controller reserves the MR and changes its states from “00” (free and not
faulty) to “01” (not free and not faulty). After this successful reservation (hop based),
the PSCP continues its path to the next hop and the same procedure is repeated until
all necessary MRs are reserved for the complete path. This process is illustrated in
lines 1–10 of the algorithm shown in Fig. 5.34.

In a case where the requested MRs at a given optical switch along the path are
not available, blocking occurs. This can be seen in Fig. 5.33b where MR 5, which is
necessary for the ejection to the local output port from the west input port, and is used
by another communication. In this case, the PSCP is converted into a path-blocked
packet (PB). The PB, then, travels back to the source node and releases the already
reserved resources. The release is done by re-updating the corresponding entries in
the MRST to “00” and by sending an electrical “OFF” signal to the corresponding
MRs in the PCN. This process is illustrated in lines 11–15 of the algorithm shown
in Fig. 5.34.

5.3 Photonic On-Chip Interconnect for High-Bandwidth Multicore SoCs 157

Fig. 5.33 Microring fault-resilient path configuration: a Path setup, b Path-blocked, c Faulty MR
with recovery. GW0: Gateway for data, GW1: Gateway for acknowledgment signals, PS: photonic
switch, MRCT: Microring Configuration Table, MRST: Microring State Table. 00 = Not faulty,
Not blocked, 01 = Not faulty, Blocked, 10 = Faulty

158 5 Advanced Multicore SoC Interconnects

Fig. 5.34 Fault-tolerant path-configuration algorithm

5.3 Photonic On-Chip Interconnect for High-Bandwidth Multicore SoCs 159

If a fault is encountered along the way, denoted by a state of “10”, shown in
Fig. 5.33c, then the switch attempts to use its backup route within the switch to
maintain the intended port-to-port communication. This allows for recovery without
requiring the whole system to change the route of a packet, and can save on costly
retransmission andmultiple attempts at setting up the path. Assuming that the backup
path is being used for a recovery path, the algorithm proceeds with sending the
standard path-blocked packet.

When the PSCP arrives successfully at the destination node, the NI modulates
one-bit acknowledgment (ACK) signal to travel back to the source via the PCN. This
can be seen in lines 16–20 of Algorithm 1. Upon the arrival of this ACK signal, the
source node modulates the payload through the data modulators and sends it to the
destination node via the PCN. Lines 21–25 of the algorithm shown in Fig. 5.34 depict
this data/payload transfer phase. The last process of the proposed path-configuration
algorithm is the tear-down step as shown in lines 26–31 of the algorithm shown
in Fig. 5.34. When the entire payload is transmitted, it is necessary to release the
reserved optical resources. This is handled by the source node which sends a tear-
down packet to the destination after predetermined number of cycles depending on
the source–destination addresses, transmission bandwidth, and message size.

The source’s NI sends the electronic tear-down packet (TD) to the first electronic
router ER1. The Electronic Controller (EC) in this router indexes the MRCT with
input–output ports information and determines the MRs that need to be released. As
we can see in this figure, the state of MR 8, previously reserved in the path setup
process, is reset to Free (state = “00”) and electrical “OFF” signals are sent to the
MR.

After the MRs are deactivated, a new optical tear-down signal is generated ac-
cording to the used wavelength. It is sent through the PCN to the next hop where it is
converted back to electrical and redirected to the EC in the corresponding electronic
router to be processed. After this process, the MRs are released and a new optical
tear-down signal is generated. This process is repeated until the tear-down reaches
the destination and all optical resources are released. It is important to mention that
the path setup and path-blocked processes of the proposed algorithm are very similar
to the conventional ones [43, 44, 85–88]. The main difference is that the MRST in
our proposal contains only two states: Free and Active. The MRs are set “ON” as
soon as the PSCP succeeds to reserve them. In the conventional mechanisms, three
states are necessary: Free, Reserved, and Active. When the PSCP finds the requested
MRs Free, it updates their states in the MRST to Reserved without turning them
“ON”. When the complete path setup process is completed, the ACK signal travels
back to the source node and sets the corresponding MRs “ON” by updating their
states in the MRST to Active. With the proposed algorithm, some portions of the
reserved path might be set “ON” and then “OFF” due to the unavailability of the
resources. However, it enables the fast ACK transmission in the PCN.

In conventional path-configuration algorithms, theACKand tear-downpackets are
transmitted in the ECN and have to go through all the buffering, routing computation,
and arbitration stages.With the proposed algorithm, they are carried via the PCN.As a
consequence, the ETE latency can be significantly reduced in addition to the dynamic

160 5 Advanced Multicore SoC Interconnects

energy saving that can be achieved. Additionally, conventional path-configuration
algorithms do not check for faulty MRs. This will allow the system to tolerate more
MR failures and take advantage of the fault-tolerant switch.

5.3.5 Evaluation

Weevaluate theFT-PHENICsystemusing amodifiedversion of PhoenixSimwhich is
developed in theOMNeT++simulation environment [82]. The simulator incorporates
detailed physical models of basic photonic building blocks such as waveguides,
modulators, photodetectors, and switches. Electronic energy performance is based
on the ORION simulator [89]. We evaluate the bandwidth performance and energy
consumption for 16, 64, and 256 cores systems (Table5.8).

We compare the performance of the FT-PHENIC systems with the baseline
PHENIC [48], and the system using the algorithm proposed by Xiang et al. [63].
Xiang’s network was chosen over other typical systems [90–93], because it uses
some form of fault tolerance, and most of their results would mimic the baseline
PHENIC.

For the fault-related data, we disabled a certain number of MRs at random, and
recorded the data. To get better results, we would run each system at each fault
rate 10 times, and then averaged each test’s total energy, average bandwidth, and
average latency. Currently, the MR is disabled for the whole test, and thus models
either a permanent or intermittent fault. Dealing with passband shift or temporary
overheating of an MR is outside of the scope of this paper, beyond redundancy as a
solution. The fault rates were chosen to span from 0 to 30% due to the fact that at
this point, all of the tested networks were in deadlock (Table5.9).

Table 5.8 Configuration
parameters

Network configuration Value

Process technology 32nm

Number of tiles 256,64,16

Chip area (equally divided
amongst tiles)

400mm2

Core frequency 2.5GHz

Electronic control frequency 1GHz

Power model Orion 2.0

Buffer depth 2

Message size 2kbytes

Simulation time 10ms (25 108 cycles)

5.3 Photonic On-Chip Interconnect for High-Bandwidth Multicore SoCs 161

Table 5.9 Photonic
communication network
energy parameters

Network configuration Value

Datarate (per wavelength) 2.5GB/s

MRs dynamic energy 375 fJ/bit

MRs static energy 400µ W

Modulators dynamic energy 25 fJ/bit

Modulators static energy 30µ W

Photodetector energy 50 fJ/bit

MRs static thermal tuning 1µW/ring

5.3.5.1 Complexity Evaluation

The complexity evaluation considers the number of used rings and the resulting static
thermal tuning. The number of usedMRs is given by Eq.5.6, where Mod/Detc(ring)

is the number of rings required to modulate/detect the payload signal. Swi tch(ring) is
the number of ring required for the photonic switch to route the optical data. Finally,
the ACKs(ring) is the number required to handle the acknowledgment signal:

Total(ring) = Mod/Detc(ring) + Swi tch(ring) + ACKs(ring). (5.6)

Tables5.10 and 5.11 show the comparison results for 64 and 256 cores systems,
respectively. We can see that the optimized networks have the lowest number of
rings. In fact, this kind of network is even more sensitive to MR faults as each MR is
critical for the functionality of the node. In addition, with a minimal number of rings,
the resulting insertion loss is lower than the fault-tolerant design. For the proposedFT-
PHENIC system, it has additional rings used for acknowledgment signal, compared
to the other networks, as well as for fault tolerance. This increase can reach 33%
when compared to the optimized crossbar and PHENIC systems.We also observe the
same behavior when evaluating the required static thermal tuning, which is required
to maintain the functionality of the ring, under 20K temperature with 1µW for each
ring.

Table 5.10 MR requirement comparison results for 64 cores systems

FT-PHENIC PHENIC Xiang

Mod/Detc 64 64 64

Switch 1152 1152 1600

ACKs 640 640 –

Redundant MRs 384 – –

Total 2240 1856 1664

Sta. Power (mW) 44 37 33

162 5 Advanced Multicore SoC Interconnects

Table 5.11 MRs requirement comparison results for 256-core systems

FT-PHENIC PHENIC Xiang

Mod/Detc 256 256 256

Switch 4608 4608 6400

ACKs 2560 2560 –

Redundant MRs 1536 – –

Total 8960 7424 6656

Sta. Power (mW) 179 149 133

5.3.5.2 Latency and Bandwidth Evaluation

Figure5.35a, b shows the overall average latency and the average latency near the
saturation region, respectively.We can see that for zero-load latency, all networks be-
have in the sameway.Near saturation, PHENIC showsmore flexibility and scalability
in 256 cores when compared to the other networks. For the 64 cores configuration,
the crossbar-based system slightly outperforms both PHENIC systems in terms of
latency. This can be explained by the use of optical-to-electronic conversion of the
tear-down which affects the overall latency of small networks.

The latency is heavily affected by the failure rate of MRs, and as the systems fail
more, the latency increases until thewhole system fails. This has a lot to dowith failed
path setup. Figure5.36 shows the results of the latency test when adding in varying
amounts of MR failures. The FT-PHENIC demonstrates its ability to withstand MR
failures over all other systems.

For the achieved bandwidth, Fig. 5.37 shows that the bandwidth is increased by
about 51% when compared to Xiang’ system, for both 64 and 256 cores configura-
tions. When compared to the crossbar, torus and PHENIC systems, we see that the
four systems behave similarly.While the torus system has the capability of setting the
path with less hop count, the FT-PHENIC system can achieve the same performance
without the need for an extra network access which is required for the torus. This
behavior is observed for 16, 64, and 256 core systems.

The latency increase caused by failed MRs will in turn cause the bandwidth to
decrease. The effects of the failures on the bandwidth can be seen in Fig. 5.38. As
with the latency, only FT-PHENIC and Xiang show any tolerance to faults, with
FT-PHENIC outperforming Xiang.

5.3.5.3 Energy Evaluation

Figure5.39 shows the total energy and the energy efficiency comparison results for
16, 64, and 256 cores systems. For the 256 cores configuration, the proposed system
outperforms all other networks. This is illustrated by an improvement in terms of
energy efficiency reaching 26% when compared the crossbar-based (non-blocking).

5.3 Photonic On-Chip Interconnect for High-Bandwidth Multicore SoCs 163

Fig. 5.35 Latency
comparison results under
random uniform traffic: a
Overall Latency, b Latency
near saturation

(a)

(b)

When compared to the torus-based architecture, FT-PHENIC improves the energy
efficiency by upward of 70%. The torus-based architecture offers high bandwidth,
thanks to the connection between edges leading to short communications. On the
other hand, it comes at high energy cost. This can be explained by the fact that the
additional input ports, required for the edge connections established in the torus-
based system, incur increased area and consequently an energy overhead.

Figure5.40 shows the total energy and energy efficiency of the systems when 4%
of their MRs have failed. Some systems were not able to complete simulation, and
so their energy is marked as 0 J, and an efficiency of 0pJ/bit, just so the functioning
ones remain visible. The extra energy comes from the extra run time. It is important

164 5 Advanced Multicore SoC Interconnects

Fig. 5.36 Latency results of each system as faults are introduced

Fig. 5.37 Bandwidth comparison results under random uniform traffic

Fig. 5.38 Bandwidth comparison results as faults are introduced

5.3 Photonic On-Chip Interconnect for High-Bandwidth Multicore SoCs 165

Fig. 5.39 Total energy and energy efficiency comparison results under random uniform traffic near
saturation

Fig. 5.40 Total energy and energy efficiency comparison results under random uniform traffic with
4% of MRs acting faulty

to notice how much the scale has changed for the energy efficiency between the
fault-free and 4% fault results.

From these results, we can see that FT-PHENIC outperforms systems with either
non-blocking or blocking switches. In addition, it provides heightened energy effi-
ciency, far greater than the torus-based which can offer the same bandwidth as the
proposed system. We conclude that the obtained improvement by FT-PHENIC is the
result of the association of three main factors together: (1) the non-blocking switch

166 5 Advanced Multicore SoC Interconnects

supporting optical acknowledgment signals, (2) the light-weight router with reduced
buffer size, (3) and the path setup algorithm to adopt hybrid switching inside the
photonic switch.

5.3.6 Related Literature

There are threemain types of optical fault tolerance that wewere able to find. The first
one is various methods of adaptive routing. The second one is techniques involving
redundancy, which is commonly implemented in the network interface by using
WDM as a redundancy technique. The third one involves buffering, checking, and
proceeding like a standard electronic NoC.

Adaptive routing [94–96] is the most commonmethod for fault tolerance in mesh-
based architectures because of the large amount of possible minimal paths. It does
require some extra logic in the routing decision, but this is minimal compared to an
extra interconnect at each location. For it to truly support multiple faults, it must also
support non-minimal routing in order to avoid a non-reserved deadlock situation. It
should also be noted that implementing fault tolerance on a deadlock-free algorithm
can negate that feature. This is not troublesome to optical networks as deadlock is
a non-issue due to the fact that end-to-end is reserved before the transmission can
start, and is only an issue during path setup.

Ramesh et al. proposed a method [95] of determining and using backup routes.
The algorithm determines the least cost path. This path will be used unless there is
a fault detected, in which case the backup path is used. Ramesh proposed using a
set of probe packets. When the destination receives one of the probe packets, it then
sends a PACK signal for each probe packet. If a packet is dropped due to faults, then
a NACK signal is sent. This is a solution of off-chip optical networks though.

Loh breaks his algorithm [94] into a similar fashion to Ramesh. It has a default
routing algorithm and a backup routing method. His two methods are called logical
route and adaptive route. The logical route in his paper is a few sets of dimension-
order routing. The adaptive algorithm determines which of the deterministic routings
to use. This method simply checks for faults along the way, and if it can be detected,
then it tries to switch to the other form of dimension-order routing. This is an attempt
to shift from X to Y when a problem is found in the X-direction. This results in a
routing algorithm which is minimal and adaptive, deadlock-free, and livelock-free.

Fault region [96] is a form of adaptive routing where each node keeps track of the
permanent faults of its neighbors. This then allows for the path making decision to
be educated with respect to faults up to a certain distance away. It can then guarantee
that no old permanent faults are going to cause problems with the transmission. One
such an algorithm is proposed by Xingyun [96]. He proposed a quite interesting
optical network. It comes in the form of a torus which only allows data in two
directions. This allows for some unique fault tolerance ideas. While they may not be
minimalistic routing it will switch directions, go under the chip and come back from
the top and reroute to avoid a bad crossing. This could possibly cause large amounts

5.3 Photonic On-Chip Interconnect for High-Bandwidth Multicore SoCs 167

of insertion loss from routing around the network’s length multiple times. This loss
would translate to high power cost, and not yield any true benefits to converting to
optical. This is still only monitoring its own outputs though.

Look-ahead routing [63] is another type of adaptive routing which is most inter-
esting to implement in a nanophotonic setting. This is where a node has knowledge
of its neighbors’ faulty links, and possibly its neighbors’ neighbors’ links. With this
data at hand, the routing can protect a path and guarantee its success. The only issue
would be implementing one of the detection algorithms mentioned at the beginning
of this section. Although it has not been implemented in a photonic chip yet, there is
no obvious reason preventing it from being translated over. Xiang’s method [63] uses
a minus-first routing algorithm as a basis. The author does not detail how to detect
a faulty link, but once a faulty link is discovered, it runs a minus-first algorithm,
checking each step along the way. This method attempts to find all paths from the
source to the destination from the problematic node, and then determines which one
requires the least amount of time. This switch shows that only the links are optical,
and the switches themselves are electrical. This also allows for the implementation
of buffers, which allow for a few more fault tolerance options which can be detailed
in Radetzki’s paper [72].

Modular redundancy uses WDM (Wavelength Division Multiplexing) as a fault
tolerance tool [97–99]. The general idea is that if a certain wavelength is causing
problems, either through noise or a manufacturing defect, and this problem can
be detected, then certain wavelengths can be disabled and enabled. This is highly
effective formodulator and photodetector based faults. These focus on permanent and
intermittent faults, because a transient fault would occur far too late for a wavelength
to be switched.

Noise has been a large source of faultswithin optical networks. Currently, there are
manydifferent formsof optical switcheswhich are used in networks. Themain goal of
these switch designs is to reduce the area, when compared to the crossbar switch. We
will only focus on the non-blocking switches because of their performance benefits.
Three examples of optical switches can be seen in Fig. 5.41. The first is an example
of a typical optimized switch, which reduces crossings and MRs. The second is the
five-port crossbar switch, which uses the maximum number of MRs, crossings, and
terminators, but is a simplistic non-blocking design. The last, Crux by Ye et al. [81],

Fig. 5.41 Example of photonic switches. From left to right: PHENIC’s original [48], crossbar, and
crux [81]

168 5 Advanced Multicore SoC Interconnects

is a switch which is optimized for XY-deterministic routing. This allows it to drop
some extra MRs, but it no longer maintains the functionality to travel from the Y-
direction to X-direction, such as north to east. This does greatly reduce the noise,
when compared to other switches which can perform all network routing operations.
Many other switches and networks were proposed to improve the SNR [78, 100–
103]. The reason that this noise is so heavily researched is explained by Nikdast et
al. [104].

Additionally, various authors have looked into the affect of thermal variance,
and how to combat it [105, 106]. There are various ways to combat it, but the most
common way is to cool down the ring to normal temperatures, which can be done by
keeping it inactive, or by thermal tuning [106]. Trimming [60] was also one solution,
which was mentioned in the introduction, and appears to be a promising answer to
the problem. To the best of our knowledge, none of the existing solutions proposed
so far take advantage of switch structure to provide fault tolerance. The focus of all
other research has been on the routing algorithms or different locations to provide
modular redundancy or noise reduction.

5.3.7 Chapter Summary

With the emergence of 3D integration technologies, a new opportunity emerges for
chip architects by porting the 2D-NoC to the third dimension. In 3D integration
technologies, multiple layers of active devices are stacked above each other and
vertically interconnected using through-silicon via (TSV). As compared to 2D-IC
designs, 3D-ICs allow for performance enhancements even in the absence of scaling
because of the reduced interconnect lengths. In addition, package density is increased,
power consumption is reduced, and the system is more immune to noise.

This chapter first presented architecture, design, and evaluation of a 3D-NoC in-
cluding complete hardware design details about themain components of the 3D-NoC
system. Then, the chapter presented a fault-tolerant photonic network-on-chip archi-
tecture,which usesminimal redundancy to assure accuracy of the packet transmission
even after faulty microrings (MRs) are detected. The system is based on a fault-
tolerant path-configuration and routing algorithm, and a microring fault-resilient
photonic router.

References

1. A.B. Ahmed, High-performance scalable photonics on-chip network for many-core systems-
on-chip, Ph.D. Thesis, Gradute school of Computer Science and Engineering, The University
of Aizu, March 2016

2. A.B. Ahmed, A. Ben Abdallah, Graceful deadlock-free fault-tolerant routing algorithm for
3d network-on-chip architectures. J. Parallel Distrib. Comput. 74(4), 2229–2240 (2014)

References 169

3. K. Kim, H.Y. Kim, T.G. Kim, Top-down retargetable framework with token-level design
for accelerating simulation time of processor architecture. IEICE Trans. Fundam. Electron.
Commun. Comput. Sci. E86-A(12), 3089–3098 (2003)

4. J. Kim, C. Nicopoulos, D. Park, V. Narayanan, M.S. Yousif, C.R. Das, A gracefully degrading
and energy-efficient modular router architecture for on-chip networks, in Proceedings of the
33rd International Symposium on Computer Architecture (2006), pp. 138–149

5. R. Mullins, A. West, S. Moore, Low-latency virtual-channel routers for on-chip networks, in
Proceedings of the 31st International Symposium on Computer Architecture (2004), pp. 188–
197

6. W.J. Dally, Express cubes: improving the performance of kary-n-cube interconnection net-
works. IEEE Trans. Comput. 40(9), 1016–1023 (1991)

7. J. Kim, J. Balfour, W.J. Dally, Flatterned butterfly topology for on-chip networks, in Proceed-
ings of the 40th International Symposium on Microarchitecture (2007), pp. 172–182

8. U.Y. Orgas, R. Marculescu, It’s a small world after all: NoC performance optimization via
long-range link insertion. IEEE Trans. on VLSI Sys. 14(7), 693–706 (2006)

9. G. Philip, B.Christopher, P. Ramm,Handbook of 3d Integration: Technology andApplications
of 3d Integrated Circuits (Wiley-VCH, 2008)

10. S. Das et al., Technology, performance, and computer aided design of three-dimensional
integrated circuits, in Proceedings of the International Symposium on Physical Design (2004)

11. P. Morrow, M. Kobrinsky, S. Ramanathan, C.-M. Park, M. Harmes, V. Ramachandrarao, H.
Park, G. Kloster, S. List, S. Kim,Wafer-level 3d interconnects via cu bonding, in Proceedings
of the 21st Advanced Metallization Conference (2004)

12. J. Joyner, P. Zarkesh-Ha, J. Meindl, A stochastic global net-length distribution for a three-
dimensional system-on-chip(3D-SoC), in Proceedings of the 14th Annual IEEE International
ASIC/SOC Conference (2001)

13. A.W. Topol, J.D.C. La Tulipe, L. Shi, D.J. Frank, K. Bernstein, S.E. Steen, A. Kumar, G.U.
Singco, A.M. Young, K.W. Guarini, M. Ieong, Three-dimensional integrated circuits. IBM J.
Res. Dev. 50(4/5), 491–506 (2006)

14. L.P. Carloni, P. Pande, Y. Xie, Networks-on-chip in emerging interconnect paradigms: ad-
vantages and challenges, in Proceedings of the 3rd ACM/IEEE International Symposium on
Networks-on-Chip (NOCS09), San Diego, CA (2009), pp. 93–102

15. F. Li, C. Nicopoulos, T.D. Richardson, Y. Xie, N. Vijaykrishnan, M.T. Kandemir, Design and
management of 3d chipmultiprocessors using network-in-memory, ISCA (2006), pp. 130–141

16. A. Ben Abdallah, M. Sowa, Basic network-on-chip interconnection for future gigascale
mcsocs applications: communication and computation orthogonalization, in Proceedings of
Tunisia-Japan Symposium on Society, Science and Technology (TJASSST) (2006), pp. 4–9

17. K. Mori, A. Ben Abdallah, K. Kuroda, Design and evaluation of a complexity effective
network-on-chip architecture on FPGA, in The 19th intelligent system symposium (FAN 2009)
(2009), pp. 318–321

18. K. Mori, A. Esch, A. Ben Abdallah, K., Kuroda, Advanced design issue for OASIS network-
on-chip architecture, in IEEE, International Conference on BWCCA (2010), pp. 74–79

19. A.B. Ahmed, High-throughput architecture and routing algorithms towards the design of
reliable mesh-based many-core network-on-chip systems, Ph.D. Thesis, Graduate School of
Computer Science and Engineering, University of Aizu, March 2015

20. A. Habibi, M. Arjomand, H. Sarbazi-Azad, Multicast-aware mapping algorithm for on-chip
networks, in 19th International Euromicro Conference on Parallel, Distributed and Network-
Based Processing (2011), pp. 455–462

21. G. Leary, K.S. Chatha, Design of NoC for SoC with multiple use cases requiring guaranteed
performance, in 23rd International Conference on VLSI Design (2010), pp. 200–205

22. R. Kumar, V. Zyuban, D.M. Tullsen, Interconnections in multicore architectures: understand-
ing mechanisms, overheads and scaling, in Proceedings of the 32nd International Symposium
on Computer Architecture (Madison, USA, 2005), pp. 408–419

23. B. Feero, P. Pratim Pande, Performance evaluation for three-dimensional networks-on-chip,
in Proceedings of IEEE Computer Society Annual Symposium on VLSI (ISVLSI), 9–11 May
2007, pp. 305–310

170 5 Advanced Multicore SoC Interconnects

24. V.F. Pavlidis, E.G. Friedman, 3-D topologies for networks-on-chip. IEEE Trans. VLSI Syst.
(2007), pp. 1081–1090

25. F. Li, C. Nicopoulos, T. Richardson, Y. Xie, V. Narayanan, M. Kandemir, Design and man-
agement of 3D chip multiprocessors using network-in-memory. ACM SIGARCH Comput.
Archit. News 34(2), 130–141 (2006)

26. S. Yan, B. Lin, Design of application-specific 3D networks-on-chip architectures, in Proceed-
ings of International Conference of Computer Design (2008), pp. 142–149

27. C.J. Glass, L.M. Ni, The turn model for adaptive routing, in Proceedings of the 19th Annual
Intl Symposium on Computer Architecture (1992), pp. 278–287

28. Z.S. Hu, F.Y. Hung, K.J. Chen, S.-J. Chang, W.-K. Hsieh, T.-Y. Liao, Improvement in thermal
degradation of zno photodetector by embedding silver oxide nanoparticles. Funct.Mater. Lett.
6(01), 1350001 (2013)

29. R.S.Ramanujam,B.Lin,Near-optimal oblivious routing on three dimensionalmesh networks,
inProceedings of the IEEE International Conference onComputer-AidedDesign, Lake Tahoe,
CA (2008)

30. C.H. Chao, K.Y. Jheng, H.Y. Wang, J.C. Wu, A.-Y. Wu, Traffic- and thermal-aware run-time
thermalmanagement scheme for 3DNoCsystems, inProceedings of ACM/IEEE International
Symposium Networks-on-Chip (NoCS), Grenoble, France (2010), pp. 223–230

31. S. Tyagi, Extended balanced dimension ordered routing algorithm for 3d-networks, in Centre
for Development of Advance Computing, Noida, (U.P.), India International Conference on
Parallel Processing Workshops (2009), pp. 499–506, http://www.iacqer.com/Proceedings

32. J.M. Montana, M. Koibuchi, H. Matsutani, H. Amano, Balanced dimension-order routing for
k-ary n-cubes, in Department of Information and Computer Science, Keio University, Yoko-
hama, Japan, International Conference on Parallel processing Workshops (2009), pp. 499–
506

33. K. Dev, Multi-objective Optimization Using Evolutionary Algorithms (Wiley, New York,
2002), pp. 245–253

34. K. Lahiri, A. Raghunathan, S. Dey, Efficient exploration of the SoC communication architec-
ture design space, in Proceedings of IEEE/ACM ICCAD’00 (2000), pp. 424–430

35. L. Xin, C.S. Choy, Low-latency NoC Router with Lookahead Bypass, in Proceedings of 2010
IEEE International Symposium on Circuits and Systems (ISCAS) (2010), pp. 3981–3984

36. A. BenAhmed, A. BenAbdallah, K. Kuroda, Architecture and design of efficient 3D network-
on-chip (3D NoC) for custom multicore SoC, in IEEE Proceedings of BWCCA-2010 (2010)

37. M.S. Rasmussen, Network-On-Chip in Digital Hearing Aids, Informatics and Mathematical
Modeling, Technical University of Denmark, DTU, Richard Petersens Plads, Building 321,
DK-2800 Kgs. Lyngby, IMM-Thesis-2006-76 (2006)

38. A. Pullini, F. Angiolini, D. Bertozzi, L. Benini, Fault tolerance overhead in network-on-chip
flow control schemes, in Proceedings of the Symposium on Integrated Circuits and Systems
Design (2005), pp. 224–229

39. Z. Fu, X. Ling, The design and implementation of arbiters for network-on-chips, in 2010 2nd
International Conference on IEEE, Industrial and Information Systems (IIS), vol. 1 (2010)
pp. 292–295

40. B.T. Gold, Balancing Performance, Area, and Power in anOn-ChipNetwork.,Master’s thesis,
Department of Electrical and Computer Engineering, Virginia Tech, Aug 2004

41. J. Rosethal, JPEG image compression using an FPGA, Master of Science in Electrical and
Computer Engineering, University of California Santa Barbara DEC (2006)

42. S.Mandal,N.Gupta,A.Mandal, J.Malave, J. Lee,R.Mahapatra,NoCBench: aBenchmarking
Platform for Network on Chip, in Workshop on Unique Chips and Systems (UCAS) (2009)

43. A.B. Ahmed, A. Ben Abdallah. Phenic: silicon photonic 3d-network-on-chip architecture
for high-performance heterogeneous many-core system-on-chip, in 2013 14th International
Conference on Sciences and Techniques of Automatic Control and Computer Engineering
(STA) (2013), pp. 1–9

44. A.B. Ahmed, M. Meyer, Y. Okuyama, A. Ben Abdallah, Efficient router architecture, design
and performance exploration for many-core hybrid photonic network-on-chip (2d-phenic),

http://www.iacqer.com/Proceedings

References 171

in 2015 2nd International Conference on Information Science and Control Engineering
(ICISCE) (2015), pp. 202–206

45. A.B. Ahmed, M. Meyer, Y. Okuyama, A. Ben Abdallah, Hybrid photonic noc based on
non-blocking photonic switch and light-weight electronic router, in 2015 IEEE International
Conference on Systems, Man and Cybernetics (SMC) (2015)

46. A.B. Ahmed, Y. Okuyama, A. Ben Abdallah, Contention-free routing for hybrid photonic
mesh-based network-on-chip systems, in The 9th IEEE International Symposium on Embed-
ded Multicore/Manycore SoCs (MCSoc) (2015), pp. 235–242

47. A.B. Ahmed, Y. Okuyama, A. Ben Abdallah, Non-blocking electro-optic network-on-chip
router for high-throughput and low-power many-core systems, in The World Congress on
Information Technology and Computer Applications 2015 (2015)

48. A.B. Ahmed, A. Ben Abdallah, Hybrid silicon-photonic network-on-chip for future genera-
tions of high-performance many-core systems. J. Supercomput. (2015). doi:10.1007/s11227-
015-1539-0

49. S. Zhu, G.-Q. Lo, Vertically-stacked multilayer photonics on bulk silicon toward three-
dimensional integration. J. Lightw. Technol. PP(99), 1–1 (2015)

50. M.C. Meyer, A.B. Ahmed, Y. Okuyama, A. Ben Abdallah, Fttdor: microring fault-resilient
optical router for reliable optical network-on-chip systems, in 2015 IEEE 9th International
SymposiumonEmbeddedMulticore/Many-core Systems-on-Chip (MCSoC) (2015), pp. 227—
234

51. B.R. Koch, A.W. Fang, O. Cohen, J.E. Bowers, Mode-locked silicon evanescent lasers. Opt.
Express 18(15), 11225 (2007)

52. A. Kumar, L.-S. Peh, P. Kundu, N.K. Jha, Express virtual channels: towards the ideal intercon-
nection fabric, in Proceedings of the 34th International Symposium on Computer Architecture
(2007), pp. 150–161

53. V.R. Almeida et al., All-optical switching on a silicon chip. Opt. Lett. 29, 2867–2869 (2004)
54. S. Parsricha, N.Dutt, Trends in emerging on-chip interconnect technologies. IPSJ Transaction

on System LSI Design Methodology vol. 1, pp. 2–17 (2008)
55. M. Briere, et. al., Heterogeneous modelling of an optical network-on-chip with SystemC, in

The 16th IEEE International Workshop on Rapid System Prototyping 8–10 June 2005, pp.
10–16

56. J. Chan et al., PhoenixSim: A Simulator for Physical-Layer Analysis of Chip-scale Photonic
Interconnection Networks, in Design, Automation and Test in Europe (DATE) (2010)

57. R. Kappeler, Radiation testing of micro photonic components. Stagiaire Project Report.
ESA/ESTEC. Sept.29, 2004. Ref. No.: EWP 2263

58. W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes,
P. Dumon, P. Bienstman, D. Van Thourhout, R. Baets, Silicon microring resonators. Laser
Photonics Rev. 6(1), 47–73 (2012)

59. C.J. Nitta, M.K. Farrens, V. Akella, Resilient microring resonator based photonic networks, in
Proceedings of the 44th Annual IEEE/ACM International Symposium on Microarchitecture,
MICRO-44 (ACM, New York, 2011), pp. 95–104

60. J.H. Ahn, M. Fiorentino, R.G. Beausoleil, N. Binkert, A. Davis, D. Fattal, N.P. Jouppi, M.
McLaren, C.M. Santori, R.S. Schreiber, S.M. Spillane, D. Vantrease, Q. Xu, Devices and
architectures for photonic chip-scale integration. Appl. Phys. A 95(4), 989–997 (2008)

61. S.T. Chu, W. Pan, S. Sato, T. Kaneko, B.E. Little, Y. Kokubun, wavelength trimming of a
microring resonator filter by means of a uv sensitive polymer overlay. Photonics Technol.
Lett. IEEE 11(6), 688–690 (1999)

62. D. Rafizadeh, J.P. Zhang, S.C. Hagness, A. Taflove, K.A. Stair, S.T. Ho, R.C. Tiberio, Temper-
ature tuning ofmicrocavity ring and disk resonators at 1.5-mu;m, inLasers andElectro-Optics
Society Annual Meeting, 1997. LEOS ’97 10th Annual Meeting. Conference Proceedings,
IEEE, vol. 2 (1997), pp. 162–163

63. D. Xiang, Y. Zhang, S. Shan, Y. Xu, A fault-tolerant routing algorithm design for on-chip
optical networks, in 2013 IEEE 32nd International Symposium Reliable Distributed Systems
(SRDS) (2013), pp. 1–9

http://dx.doi.org/10.1007/s11227-015-1539-0
http://dx.doi.org/10.1007/s11227-015-1539-0

172 5 Advanced Multicore SoC Interconnects

64. Y. Xu, J. Yang, R. Melhem, Tolerating process variations in nanophotonic on-chip networks,
in ACM SIGARCH Computer Architecture News, vol. 40 (IEEE Computer Society, 2012),
pp. 142–152

65. Z. Tu, Z. Zhou, X. Wang. Reliability considerations of high speed germanium waveguide
photodetectors, in SPIE OPTO (International Society for Optics and Photonics, 2014), pp.
89820W–89820W

66. S.g. Yang, L. Li, Y. a. Zhang, B. Zhang, Y. Xu, A power-aware adaptive routing scheme
for network on a chip, in 7th International Conference on ASIC, 2007. ASICON ’07 (2007),
pp. 1301–1304

67. J. Keane, C.H. Kim, An odometer for cpus: microprocessors don’t normally show wear and
tear, but wear they do. IEEE SPECTRUM 48(5), 26–31 (2011)

68. S. Luryi, J. Xu, A. Zaslavsky, Future Trends in Microelectronics: Up the Nano Creek (Wiley,
2007)

69. M. Agarwal, B.C. Paul, M. Zhang, S. Mitra, Circuit failure prediction and its application to
transistor aging, in 25th IEEE VLSI Test Symposium (VTS’07), IEEE (2007), pp. 277–286

70. J. Keane, T.-H. Kim, C. H Kim, An on-chip nbti sensor for measuring pmos threshold voltage
degradation. IEEE Trans. Very Large Scale Integr. (VLSI) Sys. 18(6), 947–956 (2010)

71. E. Mintarno, J. Skaf, R. Zheng, J.B. Velamala, Y. Cao, S. Boyd, R.W Dutton, S. Mitra, Self-
tuning for maximized lifetime energy-efficiency in the presence of circuit aging. IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst. 30(5), 760–773 (2011)

72. M. Radetzki, C. Feng, X. Zhao, A. Jantsch, Methods for fault tolerance in networks-on-chip.
ACM Comput. Surv. (CSUR) 46(1), 8 (2013)

73. K. Kuhn, C. Kenyon, A. Kornfeld, M. Liu, A. Maheshwari, W.-k. Shih, S. Sivakumar, G.
Taylor, P. VanDerVoorn, K. Zawadzki, Managing process variation in intel’s 45nm cmos
technology. Intel Tech. J. 12(2) (2008)

74. S.K. Saha, Modeling process variability in scaled cmos technology. IEEE Des. Test Comput.
27(2), 8–16 (2010)

75. M. Meyer, Micro-ring fault-resilient photonic on-chip network for reliable high-performance
many-core systems-on-chip, Ph.D. Thesis, Graduate School of Computer Science and Engi-
neering, The University of Aizu, March 2017

76. A.B. Ahmed, A. Ben Abdallah, Architecture and design of high-throughput, low-latency,
and fault-tolerant routing algorithm for 3d-network-on-chip (3d-noc). J. Supercomput. 66(3),
1507–1532 (2013)

77. M. Nikdast, G. Nicolescu, S. Le Beux, J. Xu, Photonic Interconnects for Computing Systems
River Publishers Series (2017). ISBN:9788793519800

78. M. Mohamed, Silicon Nanophotonics for Many-Core On-Chip Networks. Ph.D. thesis, Uni-
versity of Colorado (2013)

79. K. Preston, N. Sherwood-Droz, J.S. Levy, M. Lipson, Performance guidelines for wdm inter-
connects based on silicon microring resonators, in 2011 Conference on Lasers and Electro-
Optics (CLEO) (2011), pp. 1–2

80. L. Brusberg, H. Schrder, M. Queisser, K.-D. Lang, Single-mode glass waveguide platform
for dwdm chip-to-chip interconnects, in Electronic Components and Technology Conference
(ECTC), 2012 IEEE, 62nd (2012), pp. 1532–1539

81. Y. Ye, X. Wu, J. Xu, W. Zhang, M. Nikdast, X. Wang, Holistic comparison of optical routers
for chip multiprocessors, in 2012 International Conference on Anti-Counterfeiting, Security
and Identification (ASID) (IEEE, 2012), pp. 1–5

82. J. Chan, G. Hendry, A. Biberman, K. Bergman, L.P Carloni, Phoenixsim: a simulator for
physical-layer analysis of chip-scale photonic interconnection networks, in Proceedings of
the Conference on Design, Automation and Test in Europe (European Design and Automation
Association, 2010), pp. 691–696

83. A. BenAbdallah,Multicore Systems-On-chip: Practical Hardware/SoftwareDesign, 2nd edn.
(Atlantis, Paris, 2013)

84. A. Ben Abdallah, M. Sowa, Basic network-on-chip interconnection for future gigascale
MCSoCs applications: communication and computation orthogonalization, in JASSST2006
(2006)

References 173

85. C.A.D. Adi, H. Matsutani, M. Koibuchi, H. Irie, T. Miyoshi, T. Yoshinaga, An efficient path
setup for a photonic network-on-chip, in 2010 First International Conference on Networking
and Computing (2010), pp. 156–161

86. J. Chan, G. Hendry, K. Bergman, L.P. Carloni, Physical-layer modeling and system-level
design of chip-scale photonic interconnection networks. IEEE Trans. Comput.-Aided Design
Integr. Circuits Syst. 30(10), 1507–1520 (2011)

87. G. Hendry, E. Robinson, V. Gleyzer, J. Chan, L.P. Carloni, N. Bliss, K. Bergman, Circuit-
switched memory access in photonic interconnection networks for high-performance embed-
ded computing, in 2010 International Conference on High Performance Computing, Net-
working, Storage and Analysis (SC) (2010), pp. 1–12

88. A. Shacham, K. Bergman, L.P. Carloni. On the design of a photonic network-on-chip, in
Networks-on-Chip, 2007. NOCS 2007. First International Symposium (2007), pp. 53–64

89. A.B.Kahng,B.Li, L.-S. Peh,K. Samadi,Orion 2.0: a power-area simulator for interconnection
networks. IEEE Trans. Very Large Scale Integr. (VLSI) Sys. 20(1), 191–196 (2012)

90. J. Chan, K. Bergman, Photonic interconnection network architectures using wavelength-
selective spatial routing for chip-scale communications. IEEE/OSA J. Opt. Commun. Netw.
4(3), 189 (2012)

91. Y. Pan, P. Kumar, J. Kim, G. Memik, Y. Zhang, A. Choudhary, Firefly: illuminating fu-
ture network-on-chip with nanophotonics, in ACM SIGARCH Comput. Archit. News, vol. 37
(ACM, 2009), pp. 429–440

92. A. Shacham, K. Bergman, L.P. Carloni, Photonic networks-on-chip for future generations of
chip multiprocessors. IEEE Trans. Comput. 57(9), 1246–1260 (2008)

93. D. Vantrease, R. Schreiber, M.Monchiero, M.McLaren, N.P Jouppi, M. Fiorentino, A. Davis,
N. Binkert, R.GBeausoleil, J.H.Ahn, Corona: system implications of emerging nanophotonic
technology, inACMSIGARCHComputerArchitectureNews, vol. 36 (IEEEComputer Society,
2008), pp. 153–164

94. P.K.K. Loh, W.-J. Hsu, Design of a viable fault-tolerant routing strategy for optical-based
grids, in Parallel and Distributed Processing and Applications (Springer, 2003), pp. 112–126

95. G.Ramesh, S. SundaraVadivelu,A reliable and fault tolerant routing for opticalwdmnetworks
(2009), arXiv:0912.0602

96. Q. Xingyun, F. Quanyou, C. Yongran, D. Qiang, D.Wenhua, A fault tolerant bufferless optical
interconnection network, in Eighth IEEE/ACIS International Conference on Computer and
Information Science, 2009. ICIS 2009 (IEEE, 2009), pp. 249–254

97. M. McLaren, N.L. Binkert, A.L.Davis, M.Florentino, Energy-efficient and fault-tolerant
resonator-based modulation and wavelength division multiplexing systems, 22 2014. US
Patent 8,705,972

98. L. Sahasrabuddhe, S. Ramamurthy, B. Mukherjee, Fault management in ip-over-wdm net-
works: Wdm protection versus ip restoration. IEEE J. Sel. Area. Comm. 20(1), 21–33 (2002)

99. J. Zhang, B.Mukheriee, A review of fault management inwdmmesh networks: basic concepts
and research challenges. IEEE Netw. 18(2), 41–48 (2004)

100. S.V.R.Chittamuru, S. Pasricha, Crosstalkmitigation for high-radix and low-diameter photonic
noc architectures. Design Test, IEEE 32(3), 29–39 (2015)

101. S.V.R. Chittamuru, S. Pasricha, Improving crosstalk resilience with wavelength spacing in
photonic crossbar-based network-on-chip architectures, in 2015 IEEE58th InternationalMid-
west Symposium on Circuits and Systems (MWSCAS) (IEEE, 2015), pp. 1–4

102. P.K. Kaliraj, Reliability-performance trade-offs in photonic noc architectures (2013)
103. M. Nikdast, X. Jiang, W. Xiaowen, W. Zhang, Y. Ye, X. Wang, Z. Wang, Z.Wang, System-

atic analysis of crosstalk noise in folded-torus-based optical networks-on-chip. IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst. 33(3), 437–450 (2014)

104. M. Nikdast, J. Xu. On the impact of crosstalk noise in optical networks-on-chip, in Design
Automation Conference (DAC) (2014)

105. H. Li, A. Fourmigue, S.L. Beux,X. Letartre, I. O’Connor, G.Nicolescu, Thermal aware design
method for vcsel-based on-chip optical interconnect, in Proceedings of the 2015 Design,
Automation and Test in Europe Conference and Exhibition (EDA Consortium, 2015), pp.
1120–1125

http://arxiv.org/abs/0912.0602

174 5 Advanced Multicore SoC Interconnects

106. Z. Li, M. Mohamed, X. Chen, E. Dudley, K. Meng, L. Shang, A.R. Mickelson, R. Joseph,
M. Vachharajani, B. Schwartz et al., Reliability modeling and management of nanophotonic
on-chip networks. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 20(1), 98–111 (2012)

Chapter 6
3D Integration Technology for Multicore
Systems On-Chip

Abstract 3D integration fully explains the latest microelectronics techniques for
increasing chip density and maximizing performance while reducing power
consumption. Three-dimensional NoCs/SoCs systems have been showing their
advantages against conventional two-dimensional SoCs. Thanks to their reduced
average interconnect length and lower interconnect-power consumption inherited
from three-dimensional ICs. To ensure their correct functionality, such systems must
be fault-tolerant to any short-term malfunction or permanent physical damage to
ensure message delivery on time while minimizing the performance degradation as
much as possible. This chapter introduces 3D integration technology for fault-tolerant
multicore Systems On-Chip.

6.1 3D Integration Technology

During the past few decades, a lot of research has been focusing on three-dimensional
multicore SoCs/NoCs as an auspicious solution to alleviate the interconnect bottle-
neck and reduce the power consumption in current SoCs designs. By increasing
system integration at a lower cost, reducing footprint, improving the performance
and reusing the existed technologies, 3D integration is a promising approach forman-
ufacturing future advanced ICs. Recently, 3D-ICs have been introduced in several
applications such as DRAM stacking [1], camera sensors [2–4], SSD (Solid State
Drive) [5], processor [6].

By stackingmultiple 2D layers together, designers expect to have smaller package,
shorterwire, and better overall performance. Figure6.1 illustrates how3D integration
can reduce the footprint and wire length. We can notice that with the same area A,
the die width of 2D-IC is

√
A while the two-layer and four-layer 3D-IC dies width

are
√
A/2 and

√
A/4 (29.29 and 50% of reduction), respectively. Thanks to the

reduction of the die width, the wire length is also reduced.
As shown in Fig. 6.2, there are several methods for 3D integration, such as

wire bonding [7], solder balls [8], through-silicon-via [9] and wireless stacking
[10, 11]. The Wire bonding uses dedicated wires to connect cores within different
layers. It has different design configurations—from pyramid stacking to overhang

176 6 3D Integration Technology for Multicore Systems On-Chip

Fig. 6.1 Reducing footprint and wire length in 3D-stack structure

(a) (b)

(d)(c)

Fig. 6.2 3D integration schemes: aWire bonding; b Solder balls; c Through silicon vias; dWireless
stacking

stacking, from standard bonding to low loop and reverse bonding. The Solder balls
is an alternative method for wire bonding, and used solder balls to connect pins
in different stacked layers. For both wire bonding and solder balls methods, the
major problem is the global wire interconnections. The through-silicon via (TSV) is
a vertical connection passing completely through a silicon wafer. TSVs are a high
performance interconnect techniques used as an alternative to the previous described
methods to create 3D packages and 3D integrated circuits. Finally, theWireless stack-
ing approach eliminates difficult steps needed for the TSV integration method, such
as extreme thinning of wafers, however it opens up new issues about aligning coils
and eliminating interference.

6.2 Fault-Tolerant TSV Cluster for 3D Integration 177

6.2 Fault-Tolerant TSV Cluster for 3D Integration

Numerous works have addressed the fault tolerance and reliability issues in 3D-
NoCs/SoCs [12–15]. In this chapter, we focus on TSV defect tolerance. The existing
works have approached the TSV fault-tolerance in three layers:Physical layer,Data-
link layer and System layer.

In Physical layer, the improvement of TSV manufacturing can help to reduce
the defect rate [16]. Designers can optimize the physical layout, use thermal-aware
routing and placement methods to improve the reliability of 3D-ICs [17]. Even when
a fabricated TSVhas a short defect, a correction circuit, using a voltage comparator to
gain the output voltage of the TSV, can be employed [18]. To enhance the reliability of
TSVs, [19] proposed a method named Double TSV which uses two TSVs, instead of
one, to maintain the vertical communication. If an open, short-to-substrate or bridge
defect occurs in one TSV, the communication is still performed by the duplicate one.

In the Data-link layer, the most common method is adding redundant TSVs to
correct the defected ones [20–22]. The major concern in this method is to efficiently
route from a defected TSV to a spare one. There are four basic solutions: (a) signal
switching [1], (b) single shifting [23], (c) crossbar [21] and (d) network routing [20].
Because of the cluster defect, the TSVs located nearby the defected one have a high
probability of failure. Therefore, grouping them together will make a group with
many defected TSVs. This leads to increase the redundancy to deal with this kind
of defects. In [24], the authors propose a mapping method to reduce the impact of
cluster defects. TSVs in the same group are mapped in a random position with the
help of an optimization process. On the other hand, Zhao et al. [25] analyze the
grouping method to achieve the best recovery. The work presented in [20] introduces
an innovated method for TSV mapping by creating a network and implementing an
algorithm for rerouting the defected TSVs.

Loi et al. [21], proposed a TSV fault-tolerant structure for 3D-NoCs. The authors
propose the crossbar redundancy to enhance the yield rate. A testing mechanism
is also presented to help the system detecting the defected TSVs. Because TSVs
manage the vertical connections in a 3D-NoC, Error Correction Coding [26] is also
a prominent method for detecting and correcting the defected TSVs; however, this
type of solutions requires extra bits, which significantly increases the area cost and
power consumption when compared to the redundancy approach.

In the System layer, which mainly focuses on 3D-NoCs, fault-tolerant routing
algorithms [27] are one of the most suitable solutions. To reduce the risk of thermal
and tress issues in 3D-NoCs, thermal-aware management [28] is also a promising
solution. On the other hand, most of works proposed off-line testing and recovery
schemes which are not suitable for post-manufacturing. The system operation has to
be halt in order to be tested and recovered. In [22], the authors presented an online
testing function. Because the reliability of TSVs is a critical issue, the need for online
testing recovery is primordial.

As we previously mentioned, the cluster defect is predicted to be frequently
occurred. The most efficient solution for correcting random defects is grouping and

178 6 3D Integration Technology for Multicore Systems On-Chip

(a) (b)

(c)

Fig. 6.3 TSV fault-tolerance schemes: a Redundancy technique; b Double TSV; c Network TSV

adding redundancy.However, they are still inefficient for the cluster defect and require
costly extra area for redundancy. On the other hand, several works [29, 30] have been
reporting the low utilization of the vertical connection using TSVs in 3D-NoC. The
authors tried to reduce the number of TSVs to minimize the area overhead while
maintaining a low degradation in terms of performance. Motivated by the cluster
defect issue and the low utilization of the TSVs in 3D-NoC, we present in this
chapter a low cost method for TSV fault-tolerance in 3D-NoCs. Figure6.3 illustrates
well-known TSV fault-tolerance schemes.

6.2.1 Fault-Tolerance for TSV-Clusters

In order to handle the TSV-cluster defects in 3D-NoCs, our solution is to share
TSVs between neighboring routers. Therefore, when a TSV cluster fails, its router
can borrow a healthy cluster from one of its neighbors to maintain the connection.
Moreover, we also present several design optimizations to improve the reliability of
the system (Sect. 6.3.4).

6.2 Fault-Tolerant TSV Cluster for 3D Integration 179

6.2.1.1 Fault Assumptions

Before we present the system structure, this subsection clarifies the fault assumptions
taken in this proposal. Because the cluster defect [20, 24, 25] is the major obstacle to
be dealt with in this work, we assume there are no random defects. Here, we consider
an occurred fault makes the whole TSVs in the cluster defected. For those whomight
be concerned about random defects, using redundancy [1, 19, 21, 23] can be easily
integrated in our TSV-cluster design. For controlling signals using TSVs, they are
considered as a part of the TSV cluster instead of separated TSVs, which are better
dealt as random defect (e.g., [22] uses Double TSV [19]). The detection process,
which may need a Built-In-Self-Test module [31, 32], is assumed to be existing
and connected to the fault-tolerance module. To synchronize the configuration, the
existingNoC infrastructure is used instead of addingTSVs.Therefore, no redundancy
is required in the proposed architecture.

6.2.1.2 System Structure

A simplified layout example of 3 × 3 × 3 3D-NoC system using the proposed TSV
usage is depicted in Fig. 6.4. For each vertical connection, a router needs a set of
TSVs. Instead of grouping all TSVs together they are divided into four groups. As
a result, a router owns four TSV clusters and has a maximum of four nearby TSV
clusters. If a TSV cluster of a router is defected, the router can choose one of its four
neighboring clusters as a replacement without the need for redundancy. To satisfy
the timing constraints, the router chooses the closest TSV cluster among its neighbor
clusters. Taking into account further TSV clusters is not considered in order to avoid
long wires that are needed to establish the connection. By structuring the TSVs
into four clusters for each router, we can maintain the scalability of 3D-NoCs and
avoid long wire delay. We have to note here that there are some works that consider
serialization to reduce the cost of TSVs in 3D-NoCs. In this work, we consider a
normal vertical connection; however, the proposed approach can be applied for the
serialized TSV structure.

Figure6.5 shows the placement and connections of the TSV sharing area between
R(1,1,1) and R(1,0,1). Because each router has two ports (up and down) and two
directions (in and out), the number of TSV clusters is eight. Each TSV cluster handles
a quarter of the vertical connection.Byusing the tri-stage gates, the systemcan control
which router has access to the TSV clusters.

6.2.1.3 Sharing Circuit Design

To borrow a TSV cluster from a neighbor, the router needs a supporting module.
Figure6.6a shows thewrapper of a 3D-Routerwith the additional supportingmodules
that perform the sharing algorithm, later explained inSect. 6.3. There are two identical
sharing modules (S-UP and S-DOWN) for the two vertical up and down connections

180 6 3D Integration Technology for Multicore Systems On-Chip

Fig. 6.4 High-level view of the system architecture with 3 × 3 × 3 configuration

Fig. 6.5 TSV sharing area placement and connectivity between two neighboring routers

and each connection has two configuration registers (CR) for the input and output
ports. As previously depicted in Fig. 6.4,R(1,1,1) shares theTSVclusterswith its four
neighbors: R(1,1,0), R(1,1,2), R(1,0,1), and R(1,2,1). Figure6.6b shows the sharing
circuit for a TSV cluster. The input of this TSV cluster is shared between R(2,1,0)
and R(2,1,1) on layer2. The output of this TSV cluster is shared between R(1,1,1)
and R(1,1,0) on layer1. In the case where this TSV cluster is defected, or borrowed,
the data can be sent by using one of the four neighboring clusters.

Based on the value of the 6-bit CR, shown in Table6.1, the input and output ports
can select the data from: (1) its original TSV cluster, (2) one of its four neighbor-

6.2 Fault-Tolerant TSV Cluster for 3D Integration 181

Fig. 6.6 TheTSV fault-tolerance architecture: aRouterwrapper;bConnection between two layers.
Red rectangles represent TSVs. S-UP and S-DOWN are the sharing arbitrators which manage the
proposed mechanism. CR stands for configuration register and W is the flit width

182 6 3D Integration Technology for Multicore Systems On-Chip

Table 6.1 Configuration
register (CR) description

Value Description

000001 Original router connects to the cluster

000010 Neighboring router connects to the cluster

000100 Original router connects to the
neighboring north TSV cluster

001000 Original router connects to the
neighboring east TSV cluster

010000 Original router connects to the
neighboring south TSV cluster

100000 Original router connects to the
neighboring west TSV cluster

ing clusters or (3) being disconnected. As shown in Fig. 6.6b, the output data from
R(2,1,1) can be sent to its TSV cluster if the least significant bit is “1”. By setting the
least significant bit to “0”, the original TSV cluster is disconnected from it router.
If the second bit is set as “1”, the neighboring router (R(2,1,0)) takes the access to
this cluster. When the original TSV cluster is defected or taken, the router needs
to take one of its neighbor’s clusters to maintain the connection based on the last
4-bit of CR. At the receiving router (R(1,1,1)), a similar CR is used to establish the
connection. The value of this CR is identical to the sending router’s CR. Because
the CR only manages the connectivity, its value have to be set carefully to avoid the
possible conflict of TSV-cluster usage and to optimize the performance. To this aim,
an adaptive sharing algorithm is needed.

6.3 Adaptive Online TSV Sharing Algorithm

In the previous section, we presented how a router can use its nearby TSV clusters
to maintain the connection and the operation on a layer. The CR values need to be
configured in order to deal with the TSV defects. The simplest way for this process
is to perform it offline and the configuration fuses the TSV group [20]. However,
fixing the connections has twomain drawbacks: (1) recovering a newly defected TSV
needs to halt the system and perform again the mapping, and (2) each application
has a different distribution in the vertical connections and variations depending on
the running task which is not optimized by offline mappings. Consequently, we aim
to perform the mapping online so that the system can react immediately to the newly
defected TSV clusters and can consider the connectivity of the 3D-NoC system.
Thus, this subsection provides an online algorithm for sharing TSVs which can be
implemented onto the system.

Figure6.7 shows the proposed algorithm for our sharing mechanism. Each router
is assigned to a weight for each of the vertical connections. This weight decides its
priority in sharing/borrowing. The weight can be assigned at the design process or

6.3 Adaptive Online TSV Sharing Algorithm 183

Fig. 6.7 Adaptive online TSV sharing algorithm

can be updated by a dedicated module. Changing the weights of routers can create
different mappings. At the initial stage, all routers in the network exchange their
weights and their TSV-clusters status with their neighbors. In the next step, the algo-
rithm performs the mapping process. If a TSV cluster is defected, its corresponding
router should find from its neighbors a possible candidate by relying on the following
conditions:

• The weight of the candidate has to be smaller than the current router.
• The candidate TSV cluster has to be healthy and not borrowed.
• The weight of the final candidate is the smallest among all the possible candidates.

At the end of the algorithm, the router finds out the possible candidate for borrowing.
If no candidates were found, the router’s vertical connection is disabled. If there is a
candidate, the router sends a request to the borrowing router to use its TSV cluster as
a replacement for the defected one. The routers having borrowed TSV clusters also
look for a replacement among one of their neighbors. By using a weighted system,
the disabled TSV-clusters focus on smaller weight routers.

184 6 3D Integration Technology for Multicore Systems On-Chip

Fig. 6.8 An example of the sharing algorithm on a 4×4 layer: a Initial state with ten defected TSV
clusters; b Best candidates selection; c Borrowing chain creating and selection refining. d Final
result with six disabled routers

Figure6.8 shows an example of how the sharing algorithm works on a 4 × 4
layer with ten defected TSV clusters. Initially, the routers in the center, which are
predefined to have higher TSV utilization rates, have higher weights than those at
the edges of the network, as depicted in Fig. 6.8a. The sharing algorithm selects the
best candidates, shown in Fig. 6.8b, by following the rules previously explained in
Fig. 6.7. Figure6.8c shows that this selection must be further refined by disabling the
router having less than four functional (or not borrowed) TSV clusters and canceling
their borrowing. The returning process is discussed in Sect. 6.3.2. Moreover, we also

6.3 Adaptive Online TSV Sharing Algorithm 185

observe the case in Fig. 6.8d where two routers R(1,3,2) and R(1,3,3) are disabled
but R(1,3,3) can borrow TSV cluster from R(1,3,2) to obtain full four TSV clusters.
However, the borrowing is prohibited due to the higher weight of router R(1,3,2).
In order to optimize this case, we use a technique named Weight adjustment in
Sect. 6.3.3.

As shown in the above example, the chain of sharing leads to disabling the routers
on the edges. Instead of having ten defected TSV clusters, the algorithm only disables
six routers having the lowest weights (40% of reduction). Consequently, maintaining
the connections of the center routers, which have higher weights and utilize more
vertical communications, can reduce the impact of TSV defects in terms of overall
performance.

6.3.1 Weight Generation

One of the most important parameters in the sharing algorithm is the weight values
of the routers. The weights help the algorithm decide what router is suitable to be
borrowed. As shown in Fig. 6.8, the routers having smaller weights are disabled after
the chains of sharing are established.

Because the weights decide the priority of the routers in the sharing process, they
need to be optimized to obtain a maximum system performance. In order to do that,
the best solution is using a statistic-based solution where the priority of the vertical
connection depends on the communication traffic [33, 34]. In otherwords, the vertical
connections having more data transmissions are assigned higher weights; otherwise,
smaller weights are assigned. Because application mapping is out of the scope of
this work, we adopt a simple method where the routers in the middle of the layer
have the highest weights. The router’s weights are decreased and become the lowest
at the edges of the layer. Equation6.1 shows the used weight value assignment. The
output of this weight assignment on a layer of 4 × 4 can be seen in Fig. 6.8 where,
for instance, the weights of routers R(1,0,0), R(1,1,0), and R(1,1,1) are 1, 2, and 3,
respectively.

Weightrouter(x, y) = min(x, cols − x) + min(y, rows − y) + 1 (6.1)

6.3.2 TSV-Clusters Return

After a TSV cluster is borrowed, it is managed by the borrowing router. However,
if the borrowing router is disabled later, this frees the borrowed cluster which has
to be returned to its original router. As a result, if the borrowed TSV cluster created
a chain of borrowing, a chain of returning is also created. This can be clearly seen
in Fig. 6.8c where R(1,3,1) has a faulty cluster and has selected the east cluster of
R(1,3,0) to be borrowed. However, in the next step, R(1,3,1) is selected to borrow

186 6 3D Integration Technology for Multicore Systems On-Chip

its north cluster to a higher weight router, R(1,2,1). Because R(1,3,1) is unable to
find any sharing TSV cluster to borrow, it is disabled and borrowing from R(1,3,0) is
canceled. Figure6.8d represents the final results of the sharing process. In this final
stage, R(1,3,0) is operational again as it is no longer lending a cluster to R(1,3,1)
which was disabled in the previous phase.

After a TSV cluster is returned, its router check whether it created a borrowing
chain and release the borrowing. If there is no borrowing chain, which means the
router failed to find a replacement and is disabled, the sharing algorithm is performed
again to check if the router can return to normal. As shown in Fig. 6.8d, R(1,3,0)
returns to normal after its TSV cluster (T(E)) is returned.

6.3.3 Weight Adjustment

After applying the sharing mechanism, the disabled TSV clusters are shifted to
the region which consists of low weighted routers. Figure6.9a shows a case of three
routers (R(1,0,0), R(1,0,1) and R(1,0,2)) which are disabled after the sharing process.
However, there are still a chance of optimizing these routers to obtain a better map-
ping. In fact,R(1,0,2) can borrow a TSV cluster fromR(1,0,1). Therefore, the number
of TSV clusters of R(1,0,2) can be maintained to four.

To perform this optimization, the disabled router, after the sharing process by the
algorithm shown in Fig. 6.7, is brought to a new process. First, the router counts the
number of possible TSV clusters that it can borrow. Since three routers (R(1,0,0),
R(1,0,1) and R(1,0,2)) are disabled, their TSV clusters are free to be taken. At the end
of this stage, R(1,0,0), R(1,0,1) and R(1,0,2) have 1, 3, and 1 borrowed/defected TSV
clusters and are able to take 0, 1 and 1 TSV cluster from their disabled neighbors,
respectively. At the second stage, the router checks whether it can take the disabled
router’s cluster to obtain a full connection. BecauseR(1,0,2) has one borrowed cluster
and is able to borrow another one from R(1,0,1), its weight is kept. The other routers

Fig. 6.9 Example of the weight adjustment performed to disable routers’ sharing: a Before weight
update; b After weight update

6.3 Adaptive Online TSV Sharing Algorithm 187

(R(1,0,1) and textitR(1,0,0) weights are reduced to zero. As a result, R(1,0,2) can
borrow a TSV cluster from R(1,0,1) despite the fact that it originally has a lower
weight. The result is shown in Fig. 6.9b where R(1,0,2) vertical connection is re-
enabled. If the system want to restart the sharing mechanism, the weights of all
routers need to be reinitialized.

6.3.4 Design Optimization

Without adding redundancy, borrowing TSV clusters to work around the defected
ones makes some routers to have less than four accessible clusters (e.g., R(1,0,0) in
Fig. 6.8d). As a result, the communication of these routers have been disabled. To
tackle this problem, the naive solution is using a fault-tolerant routing algorithm to
reroute the packets to a neighboring router. This solution may lead to non-minimal
routing and congestion in the network. Therefore, we propose Virtual TSV to help
these routers maintaining the connection without using any fault-tolerant routing
algorithm. In the case where the Virtual TSV is unable to be performed, we also
implement the Serialization technique which helps the vertical connection establish-
ing only one or two TSV clusters.

Virtual TSV

When a router is not granted the access to four TSV clusters, it is disabled. However,
if the number of nearby TSVs is larger or equal than four, which is enough for
maintaining vertical communication, they can be utilized to establish a connection. A
possible connection, which requires four TSV clusters, may need clusters belonging
to the neighboring routers. If these routers do not use these clusters, the disabled
router can borrow them for a short period to establish a communication.

Figure6.10a shows an example of how Virtual TSV works where R(1,0,1) has a
defective cluster (T(N)) and borrows a cluster from R(1,0,0). Because R(1,0,0) is
unable to find any replacement for the borrowed cluster (T(E)), it is disabled. When
R(1,0,0) needs to establish an inter-layer communication, it needs to find at least
four TSV clusters. Assuming that R(1,0,1) does not use the borrowed cluster T(E), it
is temporarily returned to R(1,0,0). When the packet is completely transmitted, the
borrowing cluster is taken back by the router R(1,0,1) again.

On the other hand, Fig. 6.10b shows the case where a disabled router R(1,0,0)
temporarily borrows a TSV cluster from a higher weight router R(1,0,1) to establish
an inter-layer connection. For selecting a suitable candidate to temporarily borrow,
the algorithm shown in Fig. 6.7 is utilized.

Because there is a case where R(1,0,1), which has the higher priority, occupies the
TSV for a long transmission time, R(1,0,0) is unable to access the TSV to establish a
connection. Moreover, at a high defect rates, R(1,0,0) may not find any suitable can-
didate for virtual TSV. In order to solve these issues, we adopt the Serialization [35]
technique to maintain the connection.

188 6 3D Integration Technology for Multicore Systems On-Chip

Fig. 6.10 Examples of virtual TSV: a return the TSV cluster to the original router; b borrow a
cluster from a higher weight router

Serialization Technique

Although the Virtual TSV can help the disabled router maintaining its vertical con-
nection, there are still two situations where Virtual TSV cannot be performed: (a)
there are less than four healthy TSV clusters, (b) the candidate TSV cluster is occu-
pied constantly by a higher priority router. In order to solve these cases, we use the
Serialization technique [35] to maintain the connectivity.

For the serialization, the router needs at least one TSV cluster to maintain its
connection. If there is one available cluster, the 1:4 serialization is used, if there are
twoavailable clusters, the 1:2 serialization is established.Theup anddowndirections’
output of the crossbar is stored in a register and the serialization module transmits
flits over the remained clusters. Figure6.11 shows the vertical interface between two
routers using 1:4 serialization. Two serial counters handle the connection by detecting
the transmitting flit. This flit is also stored in a buffer in the transmitting router. By
increasing the counter’s value which selects the multiplexer, the output width is a
quarter of the flit size. Because only one TSV cluster is utilized, the controller selects
the output by using a demultiplexer.

At the receiving router, the input data will be cached in a register. There are also a
demultiplexer and a multiplexer which are controlled by a serial configuration and a
serial counter, respectively.When the corresponding counter reaches “11”, the whole
flit is transmitted to the buffer. For 1:2 serialization, the first half of each flit is cached
and when the remainder arrivals (counter reach “01”), the whole flit is sent to the
buffer.

6.4 Evaluation Results 189

Fig. 6.11 Circuit of 1:4 serialization

6.4 Evaluation Results

The proposed system was designed in Verilog-HDL, synthesized and prototyped
with commercial CAD tools. The hardware technology parameters are illustrated in
Table6.2. We use NANGATE 45nm library [36] and NCSU FreePDK TSV [37].
The system configurations are depicted in Table6.3.

First, we evaluate the defect rate by inserting faults (defects) into TSV clusters
and assess the reliability of the proposed 3D-NoC system. Second, we use both
synthetic and realistic traffic patterns as benchmarks to study the performance of
the proposed system in comparison to the baseline model [38]. Third, we evaluate
the hardware complexity of a single 3D router and compare our system with other
proposed approaches [20, 25].

Table 6.2 Technology
parameters

Parameter Value

Technology Nangate 45nm [36]

FreePDK3D45 [37]

Voltage 1.1V

TSV’s size 4.06µm × 4.06µm

TSV pitch 10µm

Keep-out zone 15µm

190 6 3D Integration Technology for Multicore Systems On-Chip

Table 6.3 System
configurations

Parameter Value

ports 7

Topology 3D mesh

Routing algorithm Look-ahead routing

Flow control Stall-go

Forwarding mechanism Wormhole

Input buffer 4

Flit width 44

6.4.1 Defect-Rate Evaluation

In this section, we provide the impact of the different defect rates. To demonstrate
the scalability of the proposed architecture, we set up several layer sizes: 2 × 2,
4 × 4, 8 × 8, 16 × 16, 32 × 32, and 64 × 64. TSVs are grouped in clusters as
presented in Sect. 6.2.1. We also vary the TSV-cluster defect rates: from 5 to 50%.
Because our technique focuses on the cluster defect, random defects are assumed
to be dealt with typical redundancy methods. The position of cluster defects are
generated randomly and we perform the proposed algorithms with 100,000 different
samples and calculate the average results. We measure the ratio of four types routers
in the layer: Normal (healthy or corrected), Virtual (router with virtual TSV), Serial
(router using serialization) and Disabled (disabled routers). We also compare the
obtained results with “Normal w/o FT” (Normal without Fault Tolerance), where no
fault-tolerance method is used and the router vertical connection having defects is
disabled.

As shown in Fig. 6.12, the system mostly operates without disabling any vertical
connections with fault-rates under 50%. Thanks to the Virtual TSV and Serialization
techniques, the routers having less than four clusters are still able to work. Even at
less than 20% of defect rate, there are less than 10% of serialization connections
in all simulated layer sizes. With 50% of defect rate and a 2 × 2 layer size, the
disabled router rate is negligible with about 1.565%. This can be easily dealt using
a light-weight fault-tolerant routing algorithm. When the layer size increases to be
larger than 8×8, the number of disabled connections is mostly insubstantial. At 50%
defect rate, the disabled router ratio is nearly 0.63, 0.50, 0.44 and 0.42% with 8× 8,
16× 16, 32× 32, and 64× 64 layer sizes, respectively. However, these defect rates
are extremely high; thus, our proposed mechanism can be considered as a highly
reliable.

In comparison to the system without fault-tolerant methods, there is a significant
improvement in terms of healthy connections, especially at large layer sizes. In
Fig. 6.12, the percentage of routers having four healthy TSV clusters is represented
by the “Normalw/o FT” curve.At 50%defect rate, the average ratio of normal routers
has been improved by 29.83, 186.26, 280.76, 324.42, 346.74, and 257.79% for 2×2,
4×4, 8×8, 16×16, 32×32, and 64×64 layer sizes, respectively. The improvements

6.4 Evaluation Results 191

(a) (b) (c)

(d) (e) (f)

Fig. 6.12 Defect-rate evaluation: a Layer size: 2 × 2 (4 routers, 16 TSV clusters); b Layer size:
4 × 4 (16 routers, 64 TSV clusters); c Layer size: 8 × 8 (64 routers, 256 TSV clusters); d Layer
size: 16 × 16 (256 routers, 1024 TSV clusters); e Layer size: 32 × 32 (1024 routers, 4096 TSV
clusters); f Layer size: 64 × 64 (4096 routers, 16384 TSV clusters)

are lesser with small layer sizes such as: 2×2 or 4×4. However, thanks to the Virtual
TSV and Serialization, the workable connection rates have nearly reached 100%.

In summary, this evaluation has shown a significant improvement in terms of relia-
bility provided by our proposed mechanism. Thanks to the efficiency of the proposed
architecture and algorithm, the system can mostly maintain all vertical connections,
even at extremely high defect rate (50%). This evaluation also shows the proposed
mechanism ability to remain efficiently scalable. The proposal can be applied from
a small layer size (e.g., 2 × 2) to a larger one (e.g., 64 × 64). The evaluation is also
performed with a solid number of tests (100,000) which strongly demonstrates the
efficiency of the proposed approach. Therewere some caseswhere some routers were
disabled; however, they can be recovered by simple and lightweight fault-tolerant
routing algorithms.

6.4.2 Performance Evaluation

The previous section has proved the reliability of the proposed solution. In this
section, we evaluate the system performance under TSV-cluster defects. As we pre-
viouslymentioned, works in [29, 30] have demonstrated the low utilization rate of the
vertical connections; nevertheless, the performance degradation on highly stressed
networks has to be investigated. To evaluate the performance of the proposed system
and keep fair comparisons to the baseline, we adopted both synthetic and realistic
traffic patterns as benchmarks. We selected Transpose [39], Uniform [39], Matrix-
multiplication [40], and Hotspot 10% [39] as the synthetic benchmarks. Within these
benchmarks, Uniform and Hotspot 10% have the highest stress on the network and

192 6 3D Integration Technology for Multicore Systems On-Chip

Table 6.4 Simulation configurations

Parameter/System Value

Network size (x × y × z) Matrix 6 × 6 × 3

Transpose 4 × 4 × 4

Uniform 4 × 4 × 4

Hotspot 10% 4 × 4 × 4

H.264 3 × 3 × 3

VPOD 3 × 2 × 2

MWD 2 × 2 × 3

PIP 2 × 2 × 2

Total injected packets Matrix 1,080

Transpose 640

Uniform 8,192

Hotspot 10% 8,192

H264 8,400

VPOD 3,494

MWD 1,120

PIP 512

Packet’s size Hotspot 10% 10 flits+10% on hotspot nodes

Others 10 flits

both Transpose and Matrix-multiplication use vertical connections for all of their
connections. For realistic benchmarks, we chose H.264 video encoding system [41],
Video Object Plane Decoder (VOPD), Picture In Picture (PIP) andMultipleWindow
Display (MWD) [42]. These realistic applications are carefully selected to study the
performance of the system.Moreover, the network’s performance under TSV defects
is the focus of these evaluations, the realistic and synthetic benchmarks provide a
vast diversity to study the impact of the fault-tolerance. The configurations of these
benchmarks are shown in Table6.4. The packets are injected continuously into the
network. In other words, we executed the benchmarks until the saturation point of
the network is reached. In order to keep a fair comparison, only TSV defects are
injected. This means that the other fault-tolerance mechanisms [43] are disabled to
not affect the performance.

6.4.3 Latency Evaluation

In this experiment, we evaluate the performance of the proposed architecture in terms
of Average packet Latency (APL) over various benchmark programs and defect rates.
The simulation results are shown in Fig. 6.13a. From this graph, we notice that with
a 0% of defect rate, the system’s tolerance has similar performance in comparison
to the baseline system.

6.4 Evaluation Results 193

(a)

(b)

Fig. 6.13 Evaluation result: a Average packet latency; b Throughput

When we increase the defect rates in the proposed system, it has demonstrated
additional impacts onAPL.At a 1% fault-rate usingMatrix, Uniform, Transpose, and
Hotspot 10% benchmarks, the system increases the APL by 83.24, 64.46, 11.30, and
66.55%, respectively. These high impacts are due to the occurrence of bottlenecks
inside the network. Because all vertical connections are utilized, Virtual TSV has
caused congestions by sharing the TSV between two routers. The serialization is
already a bottleneck technique. These bottlenecks effects are even higher at a 30% of
defect rate where the APL can be over three times that of the 0% case in the synthetic
benchmarks.

With H.264, PIP, MWD and VOPD benchmarks, the APL incrementation are
significantly reduced due to the low utilization of TSV. We can observe the identical
performance of VOPD benchmark from a 1 to a 30% defect rates. With the PIP
benchmark, the system under 1% defect rate has similar performance to 0% thank
to the optimization process which disables the unused clusters. With the MWD and
H.264 benchmarks, the impact on APL is gradually increased when increasing the
defect rate. Even at a 30% of defect rate, the APL values of MWD and H.264 are
increased by 129.91 and 60.04%, respectively. Because there is no optimized routing
technique for these benchmarks, the bottleneck effect is expected to happen.

Although there are significant impacts in latency, the system has proven to work
without major issues in all benchmarks.

6.4.4 Throughput Evaluation

Figure6.13b depicts the throughput evaluation with different benchmarks. At 0%
defect rate, the proposed system’s throughput is similar to that of the baseline. When
defects are injected into the system, we can observe some degradation in through-
put caused by the bottleneck effects on the system. Similar to APL, the throughput

194 6 3D Integration Technology for Multicore Systems On-Chip

degradation on realistic traffic benchmarks (VOPD, H.264, MWD and PIP) are sig-
nificantly better than the synthetic ones. The system at a 20% defect rate provides a
decreased throughput by 71.17, 64.36, 67.44 and 64.37% for Transpose, Uniform,
Matrix and Hotspot 10%, respectively. At the same defect rate, VOPD, MWD, PIP
and H.264 have 46.03, 50.04, 28.17 and 19.79% of throughput degradation. This
lower impact is caused by the low utilization of vertical connection rate and the opti-
mization process. The throughput of realistic benchmarks are naturally smaller than
the synthetic ones because of the specific tasks order of execution that was observed
in the task graphs [41, 42].

Although there is a considerable degradation in the throughput evaluation, the
system still maintains over 0.1 flit/node/cycle in the highly stressed benchmarks,
even at extremely high defect rates.

6.4.5 Router Hardware Complexity

Table6.5 illustrates the hardware complexity results of the proposed router in
terms of area, power (static, dynamic, and total), and speed. In comparison to the
router in which we implement the proposed techniques, the area, and power con-
sumption have increased by 30.42 and 18.66%, respectively. The maximum speed
has also slightly decreased by 12.37%. In comparison to the baseline model, the pro-
posed system almost doubles the area cost and power consumption while decreasing
the maximum frequency by about 50%. However, the TSV sharing and Serializa-
tion modules incur reasonable area and power consumption overheads which are
47.99 and 38.89% in comparison to the baseline router, respectively. Here, the TSV
Sharing module handles the sharing algorithm and the Virtual TSV process and the
Serialization module helps the router communicate in Serialization mode.

The layout of a layer is shown in Fig. 6.14 where the sharing TSV areas are
depicted by the red boxes. As shown in Sect. 6.2.1.2, the TSV sharing area consists
of eight clusters. For each port, R(1,1,1) can access T(E) of R(1,1,0) and R(1,1,0) can
access T(W) of R(1,1,1). By placing the shared cluster areas between two routers,
we can ensure a small extra wire delay for rerouting.

Table 6.5 Hardware complexity of a single router

Model Area (µm2) Power (mW) Speed (Mhz)

Static Dynamic Total

Baseline router [38] 18,873 5.1229 0.9429 6.0658 925.28

Proposal Router 29,780 10.017 2.2574 12.3144 613.50

Serialization 3,318 0.9877 0.2807 1.2684 –

TSV sharing 5,740 0.7863 0.2892 1.0300 –

Total 38,838 11.7910 2.8273 14.6128 537.63

6.4 Evaluation Results 195

Fig. 6.14 Single layer layout illustrating the TSV sharing areas (red boxes). The layout size is
865µm × 865µm

6.4.6 Comparison

In order to understand the efficiency of the proposed approach, we compare it with
existing solutions as shown inTable6.6.Here,weanalyzeour proposalwith anetwork
size of 4 × 4 × 4. Because the router and its TSV clusters structure are identical,
similar results can be obtained with the others network sizes. TSV Grouping [25]
optimized the configuration of redundancy to deal with TSV-cluster defects. TSV
Network [20] established TSVs into networks which allow routing from defected
TSVs to redundant ones. We select the best results on these two works [20, 25] for
the comparison. From this table, we can see that the average area of our proposal is
151.47µm2 per TSV and, for a TSV size of 10µm × 10µm, the area overhead is
about 51.47%. The TSV Network [20] has similar value for 4:2 configuration (four
original TSVs and two redundant TSVs). With 8:4 configuration, TSV Grouping also
obtained an average area of 151.86 µm2.

On the other hand, the other configurations obtained lower area overheads. Nev-
ertheless, we have to note that our arbiter not only consists of the rerouting circuit
(similar to the multiplexers in TSV Network and TSV Grouping); but, also includes
an online adaptive algorithm designed in hardware, in addition to the Virtual TSV
and Serialization techniques. Both TSV Grouping and TSV Network have to require
additional dedicated circuitry to recover from the cluster defects.

196 6 3D Integration Technology for Multicore Systems On-Chip

Ta
bl
e
6.
6

C
om

pa
ri
so
n
re
su
lts

be
tw
ee
n
th
e
pr
op
os
ed

ap
pr
oa
ch

an
d
th
e
ex
is
tin

g
w
or
ks

M
od
el

T
SV

ne
tw
or
k
[2
0]

T
SV

gr
ou
pi
ng

[2
5]

T
hi
s
w
or
k

Te
ch
no
lo
gy

65
nm

N
/A

45
nm

#T
SV

10
00

60
00

84
48

C
on
fig

ur
at
io
n

4:
2

8:
2

4
×

4
:8

16
×

16
:3

2
4:
4

8:
4

11
×

4
×

4:
0

#S
pa
re

T
SV

51
2

25
6

51
2

12
8

60
00

30
00

0

45
nm

A
rb
ite
r

ar
ea

(µ
m

2
)

37
2b

74
4b

1,
11
6b

1,
11
6b

11
,1
60

a
11
,1
60

a
43
4,
78
4c

A
ve
ra
ge

ar
ea
/T
SV

(µ
m

2
)

15
1.
57
2

12
6.
24
4

15
2.
31
6

12
8.
03

11
3.
91
6

15
1.
86

15
1.
47

R
el
ia
bi
lit
y

10
0%

99
%

10
0%

10
0%

10
0%

98
.1
1%

Fa
ul
ta
ss
um

pt
io
n

(δ
T

S
V

=
0.
01
%
,α

=
2)

d
(δ

T
S

V
=

1%
,α

=
2)

d
(δ

cl
u

st
er

=
50
%
)d

a T
he

au
th
or
s
us
e
2:
1
m
ul
tip

le
xe
rs
[2
5]
.F

or
co
m
pa
ri
so
n,

w
e
us
e
th
e
ar
ea

co
st
of

m
ul
tip

le
xe
r
fr
om

N
an
ga
te
45

nm
[3
6]

(M
U
X
2_
X
1:

0.
18
6
µ
m

2
)

b
T
he

au
th
or
s
us
e
1–
3
m
ul
tip

le
xe
rs
[2
0]

w
hi
ch

co
ns
is
ts
of

tw
o
M
U
X
2_
X
1
m
ul
tip

le
xe
rs
(2

×
0.
18
6
µ
m

2
[3
6]
)

c F
or

fa
ir
co
m
pa
ri
so
ns
,o

ur
ar
bi
te
r
on

ly
co
ns
is
ts
of

th
e
T
SV

sh
ar
in
g
an
d
se
ri
al
iz
at
io
n
m
od

ul
es

as
sh
ow

n
in

Ta
bl
e
6.
5

d
δ
:d

ef
ec
tr
at
e.

α
:p

ar
am

et
er

of
Po

is
so
n
di
st
ri
bu
tio

n
[2
0,

25
]

6.4 Evaluation Results 197

In terms of reliability, the proposed approach has proven its high resiliency, as
previously shown in Sect. 6.4.1. TSV Grouping demonstrated a 100% of yield rate
under a defect rate of 1% and TSV Network obtained nearly 100% in the most
cases. However, their approaches are different than our scheme, where they add
redundancy to correct the defect TSVs. As a result, if the number of defected TSVs
is larger than the number of redundant ones, they are unable to recover from the
defected clusters. On the other hand, our technique can significantly improve the
reliability by providing 98.11% of workable routers at 50% of defected TSV clusters.
Moreover, at the low defect rates (e.g., under 5%), our proposal also ensures 100% of
working connection and demonstrates small performance degradations in the realistic
traffic pattern benchmarks. Even with disabled vertical connections, the reliability
of our system can also be improved (i.e., covering the remaining 1.89%) by using a
lightweight fault-tolerant routing which would have a negligible impact on the area
overhead.

6.5 Chapter Summary

This chapter presented an adaptive and scalable sharingmethodology forTSVs in 3D-
NoC systems to deal with the TSV-cluster defects. The results have proven the system
ability to provide high reliability that can reach up to 346.74% increase in functional
routers. Moreover, the proposed approach can correctly work with a reasonable
degradation, even under a 30% of defect rate. The hardware complexity has shown
a small overhead in terms of area cost (30.42%), power consumption (18.66%), and
maximum frequency (12.37%) of router’s logic. Since no TSV redundancy is not
required in the proposed architecture and algorithm, we show that it is possible to
provide a highly reliable system while maintaining the overhead reasonable.

References

1. U. Kang, H.-J. Chung, S. Heo, S.-H. Ahn, H. Lee, S.-H. Cha, J. Ahn, D. Kwon, J. Kim, J.-W.
Lee, et al., 8Gb 3DDDR3 DRAM using through-silicon-via technology, in IEEE International
Solid-State Circuits Conference-Digest of Technical Papers (ISSCC)

2. J. Ahn et al., 7.1 A 1/4-inch 8Mpixel CMOS image sensor with 3D backside-illuminated
1.12 um pixel with front-side deep-trench isolation and vertical transfer gate, in 2014 IEEE
International Solid-State Circuits Conference Digest of Technical Papers (ISSCC) (2014), pp.
124–125

3. V. Suntharalingam, R. Berger, S. Clark, J. Knecht, A. Messier, K. Newcomb, D. Rathman,
R. Slattery, A. Soares, C. Stevenson, et al., A 4-side tileable back illuminated 3d-integrated
mpixel cmos image sensor, in IEEE International of Solid-State Circuits Conference-Digest of
Technical Papers, 2009. ISSCC 2009, (IEEE, New York, 2009), pp. 38–39

4. H. Yoshikawa, A. Kawasaki, T. Iiduka, Y. Nishimura, K. Tanida, K. Akiyama, M. Sekiguchi,
M. Matsuo, S. Fukuchi, K. Takahashi, Chip scale camera module (CSCM) using through-

198 6 3D Integration Technology for Multicore Systems On-Chip

silicon-via (TSV), in IEEE International Solid-State Circuits Conference–Digest of Technical
Papers (2009), pp. 476–477, 477a

5. K. Ishida, T. Yasufuku, S. Miyamoto, H. Nakai, M. Takamiya, T. Sakurai, K. Takeuchi, A
1.8 V 30nJ adaptive program-voltage (20V) generator for 3D-integrated NAND flash SSD,
in IEEE International of Solid-State Circuits Conference-Digest of Technical Papers, 2009.
ISSCC 2009, (IEEE, New York, 2009), pp. 238–239

6. M. Saen, K. Osada, Y. Okuma, K. Niitsu, Y. Shimazaki, Y. Sugimori, Y. Kohama, K. Kasuga,
I. Nonomura, N. Irie et al., 3-d system integration of processor and multi-stacked srams using
inductive-coupling link. IEEE J. Solid-State Circuits 45(4), 856–862 (2010)

7. M. Karnezos, 3d packaging: Where all technologies come together, in Electronics Manufac-
turing Technology Symposium, 2004. IEEE/CPMT/SEMI 29th International (IEEE, NewYork,
2004), pp. 64–67

8. J. Miettinen, M. Mantysalo, K. Kaija, E. Ristolainen, System design issues for 3d system-
in-package (sip), in Electronic Components and Technology Conference, 2004. Proceedings.
54th, vol. 1 (IEEE, New York, 2004), pp. 610–615

9. K. Banerjee, S.J. Souri, P. Kapur, K.C. Saraswat, 3-D ICs: a novel chip design for improving
deep-submicrometer interconnect performance and systems-on-chip integration. Proc. IEEE
89(5), 602–633 (2001)

10. E. Culurciello, A.G. Andreou, Capacitive inter-chip data and power transfer for 3-d vlsi. IEEE
Trans.Circuits Syst. II: Express Briefs 53(12), 1348–1352 (2006)

11. W.R. Davis, J. Wilson, S. Mick, J. Xu, H. Hua, C. Mineo, A.M. Sule, M. Steer, P.D. Franzon,
Demystifying 3d ics: the pros and cons of going vertical. IEEE Des. Test Comput. 22(6),
498–510 (2005)

12. A.B. Ahmed, A. Ben Abdallah, Adaptive fault-tolerant architecture and routing algorithm for
reliable many-core 3D-NoC systems. J. Parallel Distrib. Comput. 9394(7), 30–43 (2016)

13. A.B. Ahmed, A. Ben Abdallah, Architecture and design of high-throughput, low-latency, and
fault-tolerant routing algorithm for 3d-network-on-chip (3d-noc). J. Supercomput. 66(3), 1507–
1532 (2013)

14. A.B. Ahmed, A. Ben Abdallah, K. Kuroda, Architecture and design of efficient 3d network-
on-chip (3D NoC) for custom multicore soc, in IEEE Proceedings of BWCCA-2010 (2010)

15. K.N. Dang, M. Meyer, Y. Okuyama, A. Ben Abdallah, A low-overhead soft-hard fault tolerant
architecture, design and management scheme for reliable high-performance many-core 3D-
NoC systems. Supercomputer 73, 2705–2729 (2017)

16. J.U. Knickerbocker, P.S. Andry, B. Dang, R.R. Horton,M.J. Interrante, C.S. Patel, R.J. Polastre,
K. Sakuma, R. Sirdeshmukh, E.J. Sprogis et al., Three-dimensional silicon integration. IBM J.
Res. Dev. 52(6), 553–569 (2008)

17. T. Zhang, Y. Zhan, S. Sapatnekar, Temperature-aware routing in 3D ICs, in Asia and South
Pacific Conference on Design Automation (2006), pp. 309–314

18. M. Cho, C. Liu, D.H. Kim, S.K. Lim, S. Mukhopadhyay, Design method and test structure to
characterize and repair TSV defect induced signal degradation in 3D system, in Proceedings
of the International Conference on Computer-Aided Design, (IEEE Press, New York, 2010),
pp. 694–697

19. M. Laisne, K. Arabi, T. Petrov, Systems and methods utilizing redundancy in semiconductor
chip interconnects, US Patent 8,384,417, 2013

20. L. Jiang, F. Ye, Q. Xu, K. Chakrabarty, B. Eklow, On effective and efficient in-field TSV repair
for stacked 3D ICs, in Proceedings of the 50th Annual Design Automation Conference, (ACM,
2013) p. 74

21. I. Loi, S. Mitra, T.H. Lee, S. Fujita, L. Benini, A low-overhead fault tolerance scheme for
TSV-based 3D network on chip links, in Proceedings of the 2008 IEEE/ACM International
Conference on Computer-Aided Design, (IEEE Press, New York, 2008), pp. 598–602

22. Y. Zhao, S. Khursheed, B.M. Al-Hashimi, Online fault tolerance technique for TSV-based
3-D-IC. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 23(8), 1567–1571 (2015)

23. A.-C. Hsieh, T. Hwang, TSV redundancy: architecture and design issues in 3-D IC. IEEETrans.
Very Large Scale Integr. (VLSI) Syst. 20(4), 711–722 (2012)

References 199

24. F. Ye, K. Chakrabarty, TSV open defects in 3D integrated circuits: characterization, test, and
optimal spare allocation, in Proceedings of the 49th Annual Design Automation Conference,
(ACM, 2012), pp. 1024–1030

25. Y. Zhao, S. Khursheed, B.M. Al-Hashimi, Cost-effective TSV grouping for yield improvement
of 3D-ICs, in Asian Test Symposium (ATS), (IEEE, New York, 2011), pp. 201–206

26. D. Bertozzi, L. Benini, G. DeMicheli, Error control schemes for on-chip communication links:
the energy-reliability tradeoff. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 24(6),
818–831 (2005a)

27. A.B. Ahmed, A. Ben Abdallah, Architecture and design of high-throughput, low-latency, and
fault-tolerant routing algorithm for 3D-network-on-chip (3D-NoC). J. Supercomput. 66(3),
1507–1532 (2013)

28. K.C.J. Chen, C.H. Chao, A.Y.A. Wu, Thermal-aware 3D network-on-chip (3D NoC) designs:
routing algorithms and thermal managements. IEEE Circuits Syst. Mag. 15(4), 45–69 (2015)

29. Y.J. Hwang, J.H. Lee, T.H. Han, 3d network-on-chip system communication using minimum
number of tsvs, in ICT Convergence (ICTC), 2011 International Conference on, (IEEE, New
York, 2011), pp. 517–522

30. A. Kologeski, C. Concatto, D. Matos, D. Grehs, T. Motta, F. Almeida, F.L. Kastensmidt,
A. Susin, R. Reis, Combining fault tolerance and serialization effort to improve yield in 3d
networks-on-chip, in 2013 IEEE 20th International Conference on Electronics, Circuits, and
Systems (ICECS) (2013), pp. 125–128

31. Y.-J. Huang, J.-F. Li, Built-in self-repair scheme for the TSVs in 3-D ICs. IEEE Trans. Comput.
Aided Des. Integr. Circuits Syst. 31(10), 1600–1613 (2012)

32. M. Tsai, A. Klooz, A. Leonard, J. Appel, P. Franzon. Through silicon via (TSV) defect/pinhole
self test circuit for 3D-IC, in IEEE International Conference on 3D System Integration, (IEEE,
New York, 2009), pp. 1–8

33. M. Palesi, R. Holsmark, S. Kumar, V. Catania, Application specific routing algorithms for
networks on chip. IEEE Trans. Parallel Distrib. Syst. 20(3), 316–330 (2009)

34. Z. Qian and C. Y. Tsui. A thermal-aware application specific routing algorithm for network-on-
chip design, in 16th Asia and South Pacific Design Automation Conference (ASP-DAC 2011)
(2011), pp. 449–454

35. Y. Ghidini, M. Moreira, L. Brahm, T. Webber, N. Calazans, C. Marcon, Lasio 3D NoC vertical
links serialization:Evaluationof latency andbuffer occupancy, in26th Symposium on Integrated
Circuits and Systems Design (SBCCI) (2013), pp. 1–6

36. NanGate Inc. Nangate open cell library 45 nm, (2016)
37. NCSU Electronic Design Automation. FreePDK3D45 3D-IC process design kit, (2016)
38. A.B. Ahmed, A. Ben Abdallah, LA-XYZ: low latency, high throughput look-ahead routing

algorithm for 3D network-on-chip (3D-NoC) architecture, in IEEE 6th International Sympo-
sium on Embedded Multicore Socs (MCSoC), (IEEE,NewYork, September 2012), pp. 167–174

39. W.J. Dally, B.P. Towles, Principles and Practices of Interconnection Networks (Elsevier, Bei-
jing, 2004)

40. P. Chen, K. Dai, D. Wu, J. Rao, X. Zou, The parallel algorithm implementation of matrix
multiplication based on ESCA, in IEEE Asia Pacific Conference on Circuits and Systems
(APCCAS), (IEEE, New York, 2010), pp. 1091–1094

41. A.-M.Rahmani,K.R.Vaddina,K.Latif, P.Liljeberg, J. Plosila,H.Tenhunen,High-performance
and fault-tolerant 3D noc-bus hybrid architecture using arb-net-based adaptive monitoring
platform. IEEE Trans. Comput. 63(3), 734–747 (2014)

42. D. Bertozzi, A. Jalabert, S. Murali, R. Tamhankar, S. Stergiou, L. Benini, G. De Micheli, NoC
synthesis flow for customized domain specific multiprocessor systems-on-chip. IEEE Trans.
Parallel Distrib. Syst. 16(2), 113–129 (2005)

43. K.N. Dang, M. Meyer, Y. Okuyama, A. Ben Abdallah, A low-overhead soft–hard fault-tolerant
architecture, design and management scheme for reliable high-performance many-core 3D-
NoC systems. J. Supercomput. 73(6), 1–25 (2017)

Chapter 7
Parallelizing Compiler for Single
and Multicore Computing

Abstract To overcome challenges from high power densities and thermal hot spots
in microprocessors, multicore computing platforms have emerged as the ubiquitous
computing platform fromservers to embedded systems.But, providingmultiple cores
does not directly translate into increased performance for most applications. The
burden is placed on software developers to find and exploit coarse-grain parallelism
to effectively make use of the abundance of computing resources provided by the
systems. With the rise of multicore systems and many-core processors, concurrency
becomes a major issue in the daily life of a programmer. Thus, compiler and software
development tools will be critical to help programmers create high-performance soft-
ware. This chapter covers software issues of a so-called parallelizing queue compiler
targeted for future single- and multicore embedded systems.

7.1 Introduction

A compiler is a program that translates one computer language into another lan-
guage (target language). Most of the compilers translate a high-level programming
language into machine language program or also called the object code. The goal
of high-level programming languages is to hide the details of the microprocessor
in a set of abstract, easy to use concepts to make complex programming simpler.
Sophisticated programs such as operating systems and modern applications rely on
high-level programming languages to facilitate their development, to reduce imple-
mentation time, and to avoid error-prone assembly programming. Compilers are a
very important layer in the computer systems stack as they translate application code
into machine code with comparable, or better, performance than hand-coded assem-
bly. Although compiler technology is well understood for parallelizing programs for
single-core processors, the introduction of many cores has brought major challenges
for the compiler designers.

202 7 Parallelizing Compiler for Single and Multicore Computing

7.1.1 Instruction Level Parallelism

Instruction level parallelism (ILP) is the key to improve the performance of modern
architectures. ILP allows the instructions of a sequential program to be executed in
parallel on multiple data paths and functional units. Data and control independent
instructions determine the groups of instructions that can be issued together while
keeping the program correctness [1].

A good scheduling is crucial to achieve high performance. An effective scheduling
for the exploitation of ILP depends greatly on two factors: the processor features,
and the compiler techniques. In superscalar processors, the compiler exposes ILP
by rearranging instructions. However, the final schedule is decided at runtime by
the hardware [2]. In VLIW machines, the scheduling is decided at compile time by
aggressive static scheduling techniques [1, 3].

Sophisticated compiler optimizations havebeendeveloped to exposehigh amounts
of ILP in loop regions [4], where many scientific and multimedia programs spend
most of their execution time. The purpose of some loop transformations such as
loop unrolling is to enlarge basic blocks by combining instructions called in multi-
ple iterations to a single iteration. A popular loop scheduling technique is modulo
scheduling [5, 6] where the iterations of a loop are parallelized in such a way that a
new iteration initiates before the previous iteration has completed execution.

These static scheduling algorithms improve greatly the performance of the appli-
cations at the cost of increasing the register pressure [7]. When the schedule requires
more registers than those available in the processor, the compiler must insert spill
code to fit the application in the available number of architected registers [8]. Many
high-performance architectures born in the last decade [9–11] were designed on the
assumption that applications could not make effective use of more than 32 regis-
ters [12]. Recent studies have shown that the register requirements for the same
kind of applications using the current compiler technology demand more than 64
registers [13].

High ILP register requirements have direct impact in the processor performance as
a large number of registers need to be accessed concurrently. The number of ports to
access the register file affects the access time and the power consumption. In order to
maintain clock speed and low power consumption, high-performance embedded and
digital signal processors have implemented partitioned register banks [14] instead
of a large monolithic register file. Several software solutions for the compiler have
been proposed to reduce the register requirements of modulo schedules [15], and
other studies have focused on the compilation issues for partitioned register files [16,
17]. A hardware/compiler technique to alleviate register pressure is to provide more
registers than allowed by the instruction encoding. In [18, 19], the usage of queue
register files has been proposed to store the live variables in a software pipelined
loop schedule while minimizing the pressure on the architected registers. The work
in [20] proposes the use of register windows to give the illusion of a large register
file without affecting the instruction set bits.

7.1 Introduction 203

An alternative to hide the registers from the instruction set encoding is by using a
queuemachine. A queuemachine uses a first-in first-out structure, called the operand
queue, as the intermediate storage location for computations. Instructions read and
write the operand queue implicitly. Not having explicit operands in the instructions
make instructions short improving code density. Also, false dependencies disappear
from programs eliminating the need for register renaming logic that reduces circuitry
and improves power consumption [21].

Queue computers have been studied in several works. Bruno [22] investigated the
possibility of evaluating expression trees and highlighted the problems of evaluating
directed acyclic graphs (DAG) in an abstract queue machine.

In [23], Okamoto presented some design issues of a superscalar queue machine.
Schmit et al. [24] use a queue machine as the execution layer for reconfigurable
hardware. They transform the program’s data flow graph (DFG) into a spatial repre-
sentation that can be executed in a simple queuemachine. This transformation inserts
extra special instructions to guarantee correct execution by allowing every variable
to be produced and consumed only once. Their experiments show that the execution
of programs in their queue machine has the potential of exploiting high levels of
parallelism while keeping code size less than a RISC instruction set.

In [25, 26], a 32-bit QueueCore processor with a 16-bit instruction set format was
designed. The approach is to allow variables to be produced only once but can be
consumed multiple times. We sacrifice some bits in the instruction set for an offset
reference to indicate the relative location of a variable to be reused. The goal is
to allow DAGs to be executed without transformations that increase the instruction
count while keeping reduced instructions that generate dense programs.

Ideas about compiling for queue machines have been discussed in the previ-
ous work in an abstract way. Some problems have been clearly identified but no
algorithms have been proposed. Before, we explored the possibility of using a retar-
gettable code generator for register machines to map register code into the queue
computation model [27]. The resulting compiler mapped the operand queue in terms
of a large number general purpose registers in themachine description file that is used
by the code generator in order to avoid spill code. This approach led to complex algo-
rithms to map register programs into queue programs, excessively long programs,
poor parallelism, and poor code quality.

This chapter presents a code generation scheme implemented in a compiler for
the QueueCore processor. The compiler generates assembly code from C programs
and is suitable for single-core and multicore platforms. The queue compiler exposes
natural ILP from the input programs to the QueueCore processor. Experimental
results show that the compiler can extract more parallelism for the QueueCore than
an ILP compiler for a RISC machine, and also generate programs with lower code
size.

204 7 Parallelizing Compiler for Single and Multicore Computing

7.1.2 Queue Computation Model

Aqueue-based computer employs a first-in first-out (FIFO) queue to evaluate expres-
sions [25, 28, 29]. To avoid high-latencymemory accesses, the queue is implemented
with high-speed registers arranged and accessed in a special manner. The physical
implementation of the queue is called the Queue Register File. Reading operation
from the queue is done always through the head of the queue, and writing operation
is done always through the tail of the queue. Therefore, the hardware must provide
two pointers to track the head and tail of the queue. Such pointers are implemented
as special registers, QH and QT to track the head and the tail positions of the queue.
The queue computation model (QCM) is the set of rules and conventions that allow
programs to be executed in a queue processor.

7.2 Parallel Queue Compiler

The queue computation model (QCM) is the abstract definition of a computer that
uses a first-in first-out data structure as the storage space to perform operations.
Elements are inserted, or enqueued, through a write pointer named QTthat references
the rear of the queue. And elements are removed, or dequeued, through a read pointer
named QHthat references the head of the queue.

7.2.1 Queue Processor Overview

TheQueueCore is a 32-bit processor with a 16-bit wide producer order QCM instruc-
tion set architecture based on the produced order parallel QCM [26, 28, 30–32]. The
instruction format reserves 8-bit for the opcode and 8-bit for the operand. The operand
field is used in binary operations to specify the offset reference value with respect
of QHfrom which the second source operand is dequeued, QH−N . Unary operations
have the freedom to dequeued their only source operand from QH−N . Memory oper-
ations use the operand field to represent the offset and base register, or immediate
value. For cases when 8-bit is not enough to represent an immediate value or an offset
for a memory instruction, a special instruction named “covop” is inserted before
the conflicting memory instruction. The “covop” instruction extends the operand
field of the following instruction.

QueueCore defines a set of specific purpose registers available to the programmer
to be used as the frame pointer register ($fp), stack pointer register ($sp), and return
address register ($ra). Frame pointer register serves as a base register to access local
variables, incoming parameters, and saved registers. Stack pointer register is used as
the base address for outgoing parameters to other functions.

7.2 Parallel Queue Compiler 205

7.2.2 Compiling for One-Offset QueueCore Instruction Set

The instruction sequence to correctly evaluate a given expression is generated from a
level-order traversal of the expressions’ parse tree [22]. A level-order traversal visits
all the nodes in the parse tree from left to right starting from the deepest level towards
the root as shown in Fig. 7.1a.

Fig. 7.1 Instruction sequence generation from the parse tree of expression x = a+b
b−c

206 7 Parallelizing Compiler for Single and Multicore Computing

The generated instruction sequence is shown in Fig. 7.1b. All nodes in every level
are independent from each other and can be processed in parallel. Every node may
consume and produce data. For example, a load operation produces one datum and
consumes none, a binary operation consumes two data and produces one. AQSTATE
is the relationship between all the nodes in a level that can be processed in parallel
and the total number of data consumed and produced by the operations in that level.
Figure7.1c shows the production and consumption degrees of the QSTATEs for the
sample expression.

Although the instruction sequence fromadirected acyclic graph (DAG) is obtained
also from a level-order traversal, there are some cases where the basic rules of
enqueueing and dequeueing are not enough to guarantee correctness of the pro-
gram [22]. Figure7.2a shows the evaluation of an expression’s DAG that leads to
incorrect results. In Fig. 7.2c, notice that at QSTATE 1 there are three operands pro-
duced, and at QSTATE 2 the operations consume four operands. The add operation
in Fig. 7.2b consumes two operands, a, b, and produces one, the result of the addi-
tion a + b. The sub operation consumes two operands that should be b, c, instead
it consumes operands c, a + b.

In our previous work [26], we have proposed a solution for this problem. We give
flexibility to the dequeueing rule to get operands from any location in the operand
queue. In otherwords, we allow operands to be consumedmultiple times. The desired
operand’s location is relative to the head of the queue and it is specified in the
instruction as an offset reference, QH−N . As the enqueueing rule, production
of data, remains fixed at QT, we name this model the Producer Order Queue
Computation Model.

Figure7.1 shows the code for this model that solves the problems in Fig. 7.2.
Notice that add, sub, div instructions have offset references that indicate the
place relative toQHwhere the operands should be taken. The “sub -1, 0” instruc-
tion now takes operand b from QH−1, and operand c from QH itself, QH+0.We name
the code for this model P-Code. This nontraditional computation model requires
new compiler support to statically determine the value of the offset references.

Correct evaluation of binary instructions whose both source operands are away
from QH using QueueCore’s one operand instruction set is not possible. To ensure
correct evaluation of this case, a special instruction has been implemented in the
processor. The dup instruction takes a variable in the operand queue and places a
copy in QT. The compiler is responsible for placing dup instructions to guarantee
that binary instructions will have their first operand available always at QH, and the
second operand may be taken from an arbitrary position in the operand queue by
using QueueCore’s one operand instruction set. Let the expression x = −a/(a + a)

be evaluated using QueueCore’s one offset instruction set, its DAG is shown in
Fig. 7.2a. Notice that the level L3 produces only one operand, a, that is consumed
by the following instruction, neg. The add instruction is constrained to take its
first source operand directly from QH, and its second operand has freedom to be

7.2 Parallel Queue Compiler 207

Fig. 7.2 Instruction sequence generation from DAG of expression x = a+b
b−c

taken from QH−N . For this case, the dup instruction is inserted to make a copy of
a available as the first source operand of instruction add as shown with the dashed
line in Fig. 7.2b. Notice that level L3 in Fig. 7.2b produces two data instead of one.
The instruction sequence using QueueCore’s one offset instruction set is shown in
Fig. 7.2c. This mechanism allows safe evaluation of binary operations in a DAG
using one offset instruction set at the cost of the insertion of dup instructions. The
QueueCore’s instruction set format was decided from our design space exploration

208 7 Parallelizing Compiler for Single and Multicore Computing

[32]. We found that binary operations that require the insertion of dup instructions
are rare in program DAGs. We believe that one operand instruction set is a good
design to keep a balance between compact instructions and program requirements.

7.3 Parallelizing Compiler Framework

There are three tasks, the parallelizingqueue compilermust do that tomake it different
from traditional compilers for register machines:

(1) constrain all instructions to have at most one offset reference,
(2) compute offset reference values, and
(3) schedule the program expressions in level-order manner.

We developed a C compiler for the QueueCore that uses GCC’s 4.0.2 front end
and middle end. The C program is transformed into abstract syntax tree (AST) by
the front-end. Then the middle end converts the ASTs into a language and machine
independent format called GIMPLE [33]. A set of tree transformations and optimiza-
tions to remove redundant code and substitute sequences of code with more efficient
sequences is optionally available from the GCC’s middle end for this representa-
tion. Although these optimizations are available in our compiler, until this point, our
primary goal was to develop the basic compiler infrastructure for the QueueCore
and we have not validated the results and correctness of programs compiled with
these optimizations enabled. We wrote a custom back end that takes GIMPLE inter-
mediate representation and generates assembly code for the QueueCore processor.
Figure7.3 shows the phases and intermediate representations of the queue compiler
infrastructure. The uniqueness of our compiler is from the One-offset code gener-
ation algorithm implemented as the first and second phases in the back end. This
algorithm transforms the data flow graph to assure that the program can be executed
using a one-offset queue instruction set. The algorithm then statically determines the
offset values for all instructions by measuring the distance of QH relative position
with respect of each instruction. Each offset value is computed once and remains
the same until the final assembly code is generated. The third phase of the back end
converts our middle-level intermediate representation into a linear one-operand low-
level intermediate code, and at the same time, schedules the program in a level-order
manner. The linear low-level code facilitates the extraction of natural ILP done by
the fourth phase. Finally, the fifth phase converts the low-level representation of the
program into assembly code for the QueueCore. The following subsections describe
in detail the phases, the algorithms, and the intermediate representations utilized by
our queue compiler to generate assembly code from any C program.

7.3 Parallelizing Compiler Framework 209

Fig. 7.3 Parallelizing
compiler infrastructure

7.3.1 One-Offset P-Code Generation Phase

GIMPLE is a three address code intermediate representation used by GCC’s middle
end to perform optimizations. Three address code is a popular intermediate repre-
sentation in compilers that expresses well the instructions for a register machine, but
fails to express instructions for the queue computation model. The first task of our
back end is to expand the GIMPLE representation into QTrees. QTrees are ASTs
without limitation in the number of operands and operations.

210 7 Parallelizing Compiler for Single and Multicore Computing

GIMPLE’s high-level constructs for arrays, pointers, structures, unions, subrou-
tine calls are expressed in simpler GIMPLE constructs to match the instructions
available in a generic queue hardware.

The task of the first phase of our back end, one-offset P-Code Generation, is to
constrain the binary instructions in the program to have at most one offset refer-
ence. This phase detects the cases when dup instructions need to be inserted and it
determines the correct place. The code generator takes as input QTrees and generates
leveled directed acyclic graphs (LDAGs) as output. A leveled DAG is a data structure
that binds the nodes in a DAG to levels [34]. We chose LDAGs as data structure to
model the data dependencies between instructions and QSTATEs.

The algorithm works in two stages. The first stage converts QTrees to LDAGs
augmented with ghost nodes. A ghost node is a node without operation that
serves as a mark for the algorithm. The second stage takes the augmented LDAGs
and removes all ghost nodes by deciding whether a ghost node becomes a dup
instruction or is removed.

7.3.1.1 Augmented LDAG Construction

QTrees are transformed into LDAGs by a post-order depth-first recursive traversal
over the QTree. All nodes are recorded in a lookup table when they first appear
and are created in the corresponding level of the LDAG together with its edge to the
parent node. Two restrictions are imposed over the LDAGs for the one-offset P-Code
QCM.

Definition 7.3.1 A level is an ordered list of elements with at least one element.

Definition 7.3.2 The sink of an edge must be always in a deeper or same level than
its source.

Definition 7.3.3 An edge to a ghost node spans only one level.

When an operand is found in the lookup table, the Definition 7.3.2 must be kept.
Line 5 in Algorithm 7.1 is reached when the operand is found in the lookup table
and it has a shallower level (closer to the root) than the new level. The function
dag_ghost_move_node() moves the operand to the new level, updates the
lookup table, converts the old node into a ghost node, and creates an edge from the
ghost node to the newly created node.

The function insert_ghost_same_level() in Line 8 is reached when the
level of the operand in the lookup table is the same to the new level. This function
creates a new ghost node in the new level, makes an edge from the parent node
to the ghost node, and an edge from the ghost node to the element matched in the
lookup table. These two functions build LDAGs augmented with ghost nodes that
obey Definitions 7.3.2 and 7.3.3.

7.3 Parallelizing Compiler Framework 211

Algorithm 7.1 dag_levelize_ghost (tree t , level)
1: nextlevel ⇐ level + 1
2: match ⇐ lookup (t)
3: if match �= null then
4: if match.level < nextlevel then
5: relink ⇐ dag_ghost_move_node (nextlevel, t , match)
6: return relink
7: else if match.level = lookup (t) then
8: relink ⇐ insert_ghost_same_level (nextlevel, match)
9: return relink
10: else
11: return match
12: end if
13: end if
14: /* Insert the node to a new level or existing one */
15: if nextlevel > get_Last_Level() then
16: new ⇐ make_new_level (t , nextlevel)
17: record (new)
18: else
19: new ⇐ append_to_level (t , nextlevel)
20: record (new)
21: end if
22: /* Post-Order Depth First Recursion */
23: if t is binary operation then
24: lhs ⇐ dag_levelize_ghost (t .left, nextlevel)
25: make_edge (new, lhs)
26: rhs ⇐ dag_levelize_ghost (t .right, nextlevel)
27: make_edge (new, rhs)
28: else if t is unary operation then
29: child ⇐ dag_levelize_ghost (t .child, nextlevel)
30: make_edge (new, child)
31: end if
32: return new

7.3.1.2 dup Instruction Assignment and Ghost Nodes Elimination

The second and final stage of the one-offset P-Code generation algorithm takes the
augmented LDAG and decides what ghost nodes are assigned to be a dup node or
eliminated from the LDAG. The only operations that need a dup instruction are those
binary operations whose both operands are away from QH. The augmented LDAG
with ghost nodes facilitates the task of identifying those instructions. All binary
operations having ghost nodes as their left and right children need to be transformed
as follows.

The ghost node in the left children is substituted by a dup node, and the ghost
node in the right children is eliminated from the LDAG. For those binary operations
with only one ghost node as the left or right children, the ghost node is eliminated
from the LDAG. Algorithm 7.2 describes the function dup_assignment().

212 7 Parallelizing Compiler for Single and Multicore Computing

Algorithm 7.2 dup_assignment (Node i)
1: if isBinary (i) then
2: if isGhost (i .left) and isGhost (i .right) then
3: dup_assign_node (i .left)
4: dag_remove_node (i .right)
5: else if isGhost (i .left) then
6: dag_remove_node (i .left)
7: else if isGhost (i .right) then
8: dag_remove_node (i .right)
9: end if
10: return
11: end if

7.3.2 Offset Calculation Phase

Once the LDAGs including dup instructions have been built, the next step is to
calculate the offset reference values for the instructions. Following the definition of
the producer order QCM, the offset reference value of an instruction represents the
distance, in number of queue words, between the position of QH and the operand to
be dequeued.

The main challenge in the calculation of offset values is to determine the QH
relative position with respect of every operation. We define the following properties
to facilitate the description of the algorithm to find the position of QH with respect
of any node in the LDAG.

Definition 7.3.4 An α-node is the first element of a level.

Definition 7.3.5 The QH position with respect of the α-node of Level-j is always at
the α-node of the next level, Level-(j+1).

Definition 7.3.6 A level-order traversal of a LDAG is a walk of all nodes in every
level (from the deepest to the root) starting from the α-node.

Definition 7.3.7 The distance between two nodes in a LDAG, δ(u, v), is the number
of nodes found in a level-order traversal between u and v including u.

Definition 7.3.8 A hard edge is a dependence edge between two nodes that spans
only one level.

Let pn be a node for which the QH position must be found. QH relative position with
respect of pn is found after a node in a traversal Pi from pn−1 to p0 (α-node) meets
one of two conditions. The first condition is that the node is the α-node, Pi = p0.
From Definition 7.3.5, QH position is at α-node of the next level lev(p) + 1. The
second condition is that Pi is a binary or unary operation and has a hard edge to
one of its operands qm . QH position is given by qm’s following node as a result of a

7.3 Parallelizing Compiler Framework 213

level-order traversal. Notice that qm’s following node can be qm+1, or the α-node of
lev(qm) + 1 if qm is the last node in lev(qm). The proposed algorithm is described
in Algorithm 7.3.

After the QH position with respect of pn has been found, the only operation to
calculate the offset referencevalue for eachof pn’s operands is tomeasure the distance
δ between QHś position and the operand’s position as described in Algorithm 7.4.

In brief, for all nodes in a LDAG w, the offset reference values to their operands
are calculated by determining the position of QHwith respect of every node, andmea-
suring the distance to the operands. Every edge is annotated with its offset reference
value.

Algorithm 7.3 qh_pos (LDAG w, Node u)
1: I ⇐ getLevel (u)
2: for i ⇐ u.prev to I.α-node do
3: if isOperation (i) then
4: if isHardEdge (i .right) then
5: v ⇐ BFS_nextnode (i .right)
6: return v

7: end if
8: if isHardEdge (i .left) then
9: v ⇐ BFS_nextnode (i .left)
10: return v

11: end if
12: end if
13: end for
14: L ⇐ getNextLevel (u)
15: v ⇐ L .α-node
16: return v

Algorithm 7.4 OpOffset (LDAG w, Node v, Operand r)
1: offset ⇐ δ(qh_pos(w, v), r)

2: return offset

7.3.3 Instruction Scheduling Phase

The instruction scheduling algorithm of our compiler is a variation of basic block
scheduling [1] where the only difference is that instructions are generated from a
level-order topological order of the LDAGs. The input of the algorithm is an LDAG
annotated with offset reference values. For every level in the LDAG, from the deepest
level to the root level, all nodes are traversed from left to right and an equivalent low-
level intermediate representation instruction is selected for every visited node.

214 7 Parallelizing Compiler for Single and Multicore Computing

Fig. 7.4 QIR code fragment

Instruction selection was simplified by having one low-level instruction for every
high-level instruction in the LDAG representation. The output of the instruction
scheduling is a QIR list. QIR is a single-operand low-level intermediate represen-
tation capable to express the instruction set of the QueueCore. The only operand
is used for memory operations and branch instructions. Offset reference values are
encoded as attributes in the QIR instructions. Figure7.4 shows the QIR list for the
LDAG. The QIR includes annotations depicted in Fig. 7.4 with the prefix QMARK_*.

An extra responsibility of this phase is to check code correctness of the one-offset
P-Code generation algorithm by comparingwith zero the value of the offset reference
for the first operand of binary instructions based on the assumption that the one-offset
P-Code generation algorithm constrains all instructions to have at most one offset
reference. For every compiled function, this phase also inserts the QIR instructions
for the function’s prologue and epilogue.

7.3.4 Natural Instruction Level Parallelism Extraction:
Statement Merging Transformation

Statement merging transformation reorders the instructions of a sequential program
in such a way that all independent instructions from different statements are in the
same level and can be executed in parallel following the principle of the QCM. This

7.3 Parallelizing Compiler Framework 215

phase makes a dependence analysis on individual instructions of different statements
looking for conflicts in memory locations. Statements are considered the transfor-
mation unit. Whenever an instruction is reordered, the entire data flow graph of the
statement to where it belongs is reordered to keep its original shape. In this way, all
offsets computed by the offset calculation phase remain the same, and the data flow
graph is not altered.

The data dependence analysis looks for two accesses to the same memory loca-
tion whenever two instructions have the same offset with respect of the base register.
Instructions that may alias memory locations are merged safely using a conservative
approach to guarantee correctness of the program. Statements with branch instruc-
tions and function calls are non-mergeable.

Figure7.5a shows a programwith three statements S1, S2, S3. The original sequen-
tial scheduling of this program is driven by a level-order scheduling as shown in
Fig. 7.5b. When the statement merging transformation is applied to this program, a
dependency analysis reveals a flow dependency for variable x in S1, S2 in levels L4,
L3. Instructions from S2 can be moved one level down and the flow dependency on
variable x is kept as long the store to memory happens before the load. Statement S3
is independent from the previous statements, this condition allows S3 to be pushed to
the bottom of the data flow graph. Figure7.5c shows the DFG for the sample program
after the statement merging transformation. For this example, the number of levels
in the DFG has been reduced from seven to five.

Fig. 7.5 Statement merging
transformation

216 7 Parallelizing Compiler for Single and Multicore Computing

From the QCM principle, the QueueCore is able to execute the maximum par-
allelism found in DAGs as no false dependencies occur in the instructions. This
transformation merges statements to expose all the available parallelism [35] within
basic blocks. With the help of the compiler, QueueCore is able to execute natural
instruction level parallelism as it appears in the programs. Statement merging is
available in the queue compiler as an optimization flag which can be enabled upon
user request.

7.3.5 Assembly Generation Phase

The last stage of the queue compiler is the assembly code generation for the
QueueCore processor. It is done by a one-to-one translation fromQIR code to assem-
bly code. The assembly generator is in charge of inserting covop instructions to
expand the operand field of those instructions that have operands beyond the limits
of the operand field bits.

Figure7.6a shows the generated assembly code and Fig. 7.6b shows the assembly
code with natural parallelism exposed for the C program. Notice that the original
assembly code and the assembly code after statement merging contain exactly the
same instructionswith the only difference that the order of the instructions change.All
instructions have one operand. Depending on the instruction type, the only operand
has different meanings. The highlighted code fragment in Fig. 7.6a shows the assign-
ment of an array element indexed by variable to another variable, in C language
“x=a[i]”. The first instruction loads the index variable into the queue, its operand
specifies the base register and the offset to obtain thememory location of the variable.

Fig. 7.6 Assembly output for QueueCore processor

7.3 Parallelizing Compiler Framework 217

The operand in the second instruction specifies the immediate value to be loaded,
if the value is greater than the instruction bits, the assembly phase inserts a covop
instruction to extend the immediate value. The operand in the third instruction works
is used to compute the effective address of the first element of the array. The next
two arithmetic instructions use their operand as the offset reference and help to
compute the address of the array element indexed by a variable. For this example,
both are binary instructions and take their first operand implicitly from QH and the
second operand from QH+1. The lds instruction loads into the queue the value of
a computed address taken the operand queue as an offset reference given by its only
operand. The last instruction stores the value pointed by QH to memory using base
addressing.

To demonstrate the efficiency of our one-offset queue computation model, we
developed a C compiler that targets the QueueCore processor. For a set of numerical
benchmark programs, we evaluated the characteristics of the resulting queue com-
piler. We measured the effectiveness of statement merging optimization for improv-
ing ILP, we analyzed the quality of the generated code in terms of the distribution of
instruction types, and we demonstrate the effectiveness of the queue compiler as a
design space exploration tool for our QueueCore by analyzing the maximum offset
value required by the chosen numerical benchmarks.

To show the potential of our technique for a high-performance processor, we
compared the compile time exposed ILP from our compiler against the ILP exposed
by an optimizing compiler for a typical RISC processor. And to highlight the low
code size features of our design, we also compare the code size to the embedded
versions of two RISC processors.

The chosen benchmarks are well-known numerical programs: radix-8 fast Fourier
transform, livermore loops, whetstone loops, single precision linpack, and quake
benchmark. To compare the extracted ILP, we compiled the programs using our
queue compiler with statementmerging transformation. For the RISC-like processor,
we compiled the benchmarks using GCC 4.0.2 with classical and ILP optimizations
enabled (-O3) targeting the MIPS I [9] instruction set. The ILP for the QueueCore is
measured directly from the DDG in the compiler. The ILP for theMIPS I is measured
from the generated assembly based on the register and memory data dependencies
and control flow, assuming no-aliasing information.

Code size was measured from the text segment of the compiled programs.
MIPS16 [36] and ARM/Thumb [37] were chosen for the RISC-like embedded
processors. GCC 4.0.2 compiler for MIPS16 and ARM/Thumb architectures was
used with full optimizations enabled (-O3) to generate the object files. For the
QueueCore, the queue compiler was used with statement merging transformation.

7.4 Parallelizing Compiler Development Results

The resulting back end for the QueueCore consists of about 8000 lines of C code.
Table7.1 shows the number of lines for each phase of the back end.

218 7 Parallelizing Compiler for Single and Multicore Computing

Table 7.1 Lines of C code for each phase of the queue compiler’s back end

Phase Lines of code Description

One-offset P-Code generation 3000 Code generation algorithm,
QTrees and LDAGs infrastructure

Offset calculation 1500 Algorithm to find the location of QH
and distance to each operation

Instruction scheduling 1500 Level-order scheduling, lowering
to QIR, and QIR infrastructure

Statement merging 1000 Natural ILP exploitation and
data dependency analysis

Assembly generation 1000 Assembly code generation from QIR

Total 8000

Fig. 7.7 Effect on ILP of statement merging transformation in the queue compiler

7.4.1 Queue Compiler Evaluation

First, we analyze the effect of the statement merging transformation on boosting ILP
in our compiler. Figure7.7 shows the improvement factor of the compiled code with
statement merging transformation over the original code without statement merging,
both scheduled using the level-order traversal.

All benchmarks show an improvement gain ranging from 1.73 to 4.25. The largest
ILP improvement is for the fft8g program because it contains very large loop bodies
without control flow where the statement merging transformation can work most
effectively. Statement merging is a code motion transformation and does not insert
or eliminate instructions.

7.4 Parallelizing Compiler Development Results 219

Table 7.2 Instruction category percentages for the compiled benchmarks for the QueueCore

Benchmark Memory ALU Move data Ctrl. flow Covop

fft8g 48.60 47.55 0.32 2.90 0.63

Livermore 58.55 33.29 0.20 5.95 4.01

Whetstone 58.73 26.73 1.11 13.43 0

Linpack 48.14 41.59 0.58 8.16 1.52

Equake 44.52 43.00 0.56 7.76 3.5

Table 7.3 QueueCore’s
program maximum offset
reference value

Benchmark Maximum offset

fft8g 29

Livermore 154

Whetstone 31

Linpack 174

Equake 89

To evaluate the quality of the generated code of our compiler, we organized the
QueueCore instructions into five categories: memory, ALU, move data, control flow,
and covop. Memory instructions are to load and store to main memory including
loading immediate values; ALU includes comparison instructions, type conversions,
integer and floating point arithmetic–logic instructions; move data includes all data
transfer between special purpose registers; control flow includes conditional and
unconditional jumps, and subroutine calls; and covop includes allcovop instructions
to extend memory accesses and immediate values.

Table7.2 shows the distribution of the instruction categories in percentages for
the compiled programs. From the table, we can observe that memory operations
account for about 50% of the total number of instructions, ALU instructions about
40%, move data less than 1%, control flow less about 8%, and covop about 2%.
These results point a place for future improvement of our compiler infrastructure.
We believe that classical local and global optimizations [38] may improve the quality
of the generated code by reducing the number of memory operations.

The developed queue compiler is a valuable tool for the QueueCore’s architec-
ture design space exploration since it gives us the ability to automatically generate
assembly code and extract characteristics of the compiled programs that affect the
processor’s parameters. To emphasize the usage of the queue compiler as a design
tool, we measured the maximum offset value required by the compiled benchmarks.

Table7.3 shows the maximum offset value for the given programs. These compil-
ing results show that the eight bits reserved in theQueueCore’s instruction format [39]
for the offset reference value are enough to satisfy the demands of these numerical
calculation programs.

220 7 Parallelizing Compiler for Single and Multicore Computing

Fig. 7.8 Instruction level parallelism improvement of queue compiler over optimizing compiler
for a RISC machine

7.4.2 Comparison of Generated QueueCore Code
with Optimized RISC Code

The graph in Fig. 7.8 compares the ILP improvement of the queue compiler over the
optimizing compiler for MIPS processor. For all the analyzed programs, the queue
compiler exposed more natural parallelism to the QueueCore than the optimizing
compiler for the RISC machine. The improvement of parallelism comes from the
natural parallelism found in the level-order scheduled data flow graph with merged
statements.

QueueCore’s instruction set benefits from this transformation and scheduling as no
register names are present in the instruction format. TheRISCcode, on the other hand,
is limited by the architected registers. It depends on the good judgment of the compiler
to make effective use of the registers to extract as much parallelism as possible, and
whenever the register pressure exceeds the limit then spill registers to memory. The
loop bodies in livermore, whetstone, linpack, and equake benchmarks consist of one
or few instructions with many operands and operations. The improvement of our
technique in these programs comes mainly from the level-order scheduling of these
“fat” statements since the statement merging has no effect across basic blocks.

The greatest improvement on these benchmarks was for the fft8g program which
is dominated by manually unrolled loop bodies where the statement merging takes
full advantage. In average, our queue compiler is able to extract more parallelism
than the optimizing compiler for a RISC machine by a factor of 1.38.

Figure7.9 shows the normalized code size of the compiled benchmarks for
MIPS16, ARM/Thumb and QueueCore using theMIPS I as the baseline. For most of

7.5 Chapter Summary 221

Fig. 7.9 Normalized code size for two embedded RISC processors and QueueCore

the benchmarks, our design achieves denser code than the baseline and the embedded
RISC processors. Except for the equake program, where the MIPS16 achieved lower
code size than the QueueCore.

A closer inspection of the object file revealed that the QueueCore program has
about two times more instructions than the MIPS and MIPS16 code. This is due to
the effect of local optimizations such as constant folding, common sub expression
elimination, dead code removal, etc., that are applied in the RISC compilers and
not in the queue compiler. On average, our design achieves 31% denser code than
MIPS I, 20% denser code than the embedded MIPS16, and 26% denser code than
the ARM/Thumb processor.

7.5 Chapter Summary

With the rise of multicore systems and many-core processors, concurrency becomes
a major issue in the daily life of a programmer. Thus, compiler and software devel-
opment tools will be critical to help programmers create high-performance software.

This chapter described design and evaluation of a parallelizing compiler targeted
for single- and multicore computing. The design eliminates the register pressure by
hiding completely the register file from the instruction set while maintaining a short
instruction format with one operand reference. The queue compiler takes advantage
of this design and it is capable to expose the maximum natural parallelism available
in the data flow graph bymeans of a statement merging transformation.We evaluated
the design by comparing the compile time extracted parallelism against an optimizing
compiler for a traditional RISC machine for a set of numerical benchmarks.

222 7 Parallelizing Compiler for Single and Multicore Computing

References

1. S.S. Muchnick, Advanced Compiler Design and Implementation (Morgan Kaufman, Burling-
ton, 1997)

2. J.Hennessy,D. Patterson,Computer Architecture: A Quantitative Approach (MorganKaufman,
Burlington, 1990)

3. R. Allen, K. Kennedy, Optimizing Compilers for Modern Architectures, (Morgan Kaufman,
Burlington, 2002)

4. M. Wolfe, High Performance Compilers for Parallel Computing (Addison-Wesley, 1996)
5. M. Lam, Software pipelining: an effective scheduling technique for VLIW machines, in Pro-

ceedings of the ACM SIGPLAN 1988 conference on Programming Language design and Imple-
mentation, (1988), pp. 318–328

6. R. Rau, Iterativemodulo scheduling: an algorithm for software pipelining loops, inProceedings
of the 27th annual international symposium on Microarchitecture, (1994), pp. 63–74

7. J. Losa, E. Ayguade, M. Valero, Quantitative evaluation of register pressure on software
pipelined loops. Int. J. Parallel Program. 26(2), 121–142 (1998)

8. S. Pinter, Register allocation with instruction scheduling, in Proceedings of the ACM SIGPLAN
1993 Conference on Programming Language Design and Implementation, (1993), pp. 248–257

9. G. Kane, J. Heinrich, MIPS RISC Architecture, (Prentice Hall, 1992)
10. R. Kessler, The Alpha 21264 microprocessor. IEEE Micro 19(2), 24–36 (1999)
11. Sparc-International, The SPARC Architecture Manual, Version 8, (Prentice Hall, 1992)
12. S.A.Mahlke,W.Y.Chen, P.P. Chang,W.mei,W.Hwu, Scalar programperformance onmuliple-

instruction-issue processors with a limited number of registers, in Proceedings of the 25th
Annual Hawaii Int’l Conference on System Sciences, (1992), pp. 34–44

13. M. Postiff, D. Greene, T. Mudge, The Need for Large Register File in Integer Codes, Technical
Report CSE-TR-434-00, (University of Michigan, 2000)

14. J. Janssen, H. Corporaal, Partitioned register file for TTAs, in Proceedings of the 28th annual
international symposium on Microarchitecture, (1995), pp. 303–312

15. J. Zalamea, J. Llosa, E. Ayguade, M. Valero, Software and hardware techniques to optimize
register file utilization in VLIW architectures. Int. J. Parallel Program. 32(6), 447–474 (2004)

16. X. Huang, S. Carr, P. Sweany, Loop transformations for architectures with partitioned register
banks, in Proceedings of the ACM SIGPLAN Workshop on Languages, Compilers and Tools
for Embedded Systems, (2001), pp. 48–55

17. S. Jang, S.Carr, P. Sweany,D.Kuras,Acodegeneration framework forVLIWarchitectureswith
partitioned register banks, in Proceedings of the 3rd International Conference on Massively
Parallel Computing Systems, (1998)

18. M. Fernandes, J. Llosa, N. Topham, Using Queues for Register File Organization in VLIW.
Technical Report ECS-CSG-29-97, (University of Edinburgh, Department of Computer Sci-
ence, 1997)

19. G. Tyson, M. Smelyanskiy, E. Davidson, Evaluating the use of register queues in software
pipelined loops. IEEE Trans. Comput. 50(8), 769–783 (2001)

20. R. Ravindran, R. Senger, E. Marsman, G. Dasika, M. Guthaus, S. Mahlke, R. Brown, Parti-
tioning variables across register windows to reduce spill code in a low-power processor. IEEE
Trans. Comput. 54(8), 998–1012 (2005)

21. G. Kucuk, O. Ergin, D. Ponomarev, K. Ghose, Energy efficient register renaming. Lect. Notes
Comput. Sci. 2799(2003), 219–228 (2003)

22. B. Preiss, C. Hamacher, Data flow on queue machines, in 12th International IEEE Symposium
on Computer, Architecture, (1985), pp. 342–351

23. S. Okamoto, Design of a superscalar processor based on queue machine computation model, in
IEEE Pacific Rim Conference on Communications, Computers and Signal Processing, (1999),
pp. 151–154

24. H. Schmit, B. Levine, B. Ylvisaker, Queue machines: hardware compilation in hardware,
in FCCM’02, 10th Annual IEEE Symposium on Field-Programmable Custom Computing
Machines, (2002), pp. 152–161

References 223

25. A. Ben Abdallah, T. Yoshinaga, M. Sowa, High-level modeling and FPGA prototyping of
produced order parallel queue processor core. J. Supercomput. 38(1), 3–15 (2006)

26. M. Sowa, A. Ben Abdallah, T. Yoshinaga, Parallel queue processor architecture based on
produced order computation model. J. Supercomput. 32(3), 217–229 (2005)

27. A.Canedo,A.BenAbdallah,M.Sowa,AGCC-basedCompiler for the queue register processor,
in Proceedings of International Workshop on Modern Science and Technology, (May 2006),
pp. 250–255

28. A. Ben Abdallah, M. Masuda, A. Canedo, K. Kuroda, Natural instruction level parallelism-
aware compiler for high-performance queuecore processor architecture. J. Supercomput. 57(3),
314–338 (2011)

29. A. Ben Abdallah, A. Canedo, T. Yoshinaga, M. Sowa, The QC-2 parallel queue processor
architecture. J. Parallel Distrib. Comput. 68(2), 235–245 (2008)

30. A. Canedo, A. Ben Abdallah, M. Sowa, A new code generation algorithm for 2-offset producer
order queue computation model. J. Comput. Lang. Syst. Struct. 34(4), 184–194 (2007)

31. A. Canedo, A. Ben Abdallah, M. Sowa, Compiling for reduced bit-width queue processors. J.
Signal Process. Syst. 59(1), 45–55 (2010)

32. A. Canedo, A. Ben Abdallah, M. Sowa, Efficient compilation for queue size-constrained queue
processors. J. Parallel Comput. 35, 213–225 (2009)

33. D. Novillo, Design and implementation of tree SSA, in Proceedings of GCC Developers Sum-
mit, (2004), pp. 119–130

34. L.S. Heath, S.V. Pemmaraju, Stack and queue layouts of directed acyclic graphs: part I. SIAM
J. Comput. 28(4), 1510–1539 (1999)

35. D.Wall, Limits of instruction-level parallelism. ACMSIGARCHComput. Archit. News 19(2),
176–188 (1991)

36. K. Kissel, MIPS16: High-density MIPS for the Embedded Market (Technical report, Silicon
Graphics MIPS Group, 1997)

37. L. Goudge, S. Segars, Thumb: reducing the cost of 32-bit RISC performance in portable and
consumer applications, in Proceedings of COMPCON 1996, (1996), pp. 176–181

38. A.V. Aho, R. Sethi, J.D. Ullman, Compilers Principles, Techniques, and Tools, (Addison Wes-
ley, 1986)

39. A. Ben Abdallah, S. Kawata, M. Sowa, Design and architecture for an embedded 32-bit
queuecore. J. Embed. Comput. 2(2), 191–205 (2006)

Chapter 8
Power Optimization Techniques
for Multicore SoCs

Abstract Power dissipation continues to be a primary design constraint in single
and multicore systems. Increasing power consumption not only results in increasing
energy costs, but also results in high die temperatures that affect chip reliability,
performance, and packaging cost. Energy conservation has been largely considered in
the hardware design in general and also in embeddedmulticore systems’ components,
such as CPUs, disks, displays, memories, and so on. Significant additional power
savings can be also achieved by incorporating low-power methods into the design
of network protocols used for data communication (audio, video, etc.). This chapter
investigates in details power reduction techniques at components and the network
protocol levels.

8.1 Introduction

Computation and communication have been steadily moving toward embedded mul-
ticore devices. With continued miniaturization and increasing computation power,
we see ever growing use of powerful microprocessors running sophisticated, intel-
ligent control software in a vast array of devices including pagers, cellular phones,
laptop computers, digital cameras, video cameras, video games, etc. Unfortunately,
there is an inherent conflict in the design goals behind these devices: as mobile sys-
tems, they should be designed to maximize battery life, but as intelligent devices,
they need powerful processors, which consume more energy than those in simpler
devices, thus reducing battery life.

In spite of continuous advances in semiconductor and battery technologies that
allow microprocessors to provide much greater computation per unit of energy and
longer total battery life, the fundamental trade-offs between performance and battery
life remain critically important [1–4].

Multimedia applications and mobile computing are two trends that have a new
application domain and market. Personal mobile or ubiquitous computing is playing
a significant role in driving technology. An important issue for these devices will
be the user interface—the interaction with its owner. The device needs to support
multimedia tasks and handles many different classes of data traffic over a limited

226 8 Power Optimization Techniques for Multicore SoCs

bandwidth wireless connection, including delay-sensitive, real-time traffic such as
video and speech.

Wireless networking greatly enhances the utility of a personal computing device. It
providesmobile userswith versatile communication and permits continuous access to
services and resources of the land-based network. A wireless infrastructure capable
of supporting packet data and multimedia services in addition to voice will boot-
strap on the success of the Internet, and in turn drives novel networked applications
and services. However, the technological challenges to establishing this paradigm
of personal mobile computing are nontrivial. In particular, these devices have lim-
ited battery resources. While reduction of the physical dimensions of batteries is a
promising solution, such effort alone will reduce the amount of charge retained by
the batteries. This will in turn reduce the amount of time a user can use the comput-
ing device. Such restrictions tend to undermine the notion of mobile computing. In
addition, more extensive and continuous use of network services will only aggravate
this problem since communication consumes relatively much energy. Unfortunately,
the rate at which battery performance improves is very slow, despite the great interest
created by the wireless business.

The energy efficiency is an issue involving all layers of the system, its physical
layer, its communication protocol stack, its system architecture, its operating system,
and the entire network [1]. This implicates several mechanisms that can be used to
attain a high-energy efficiency. There are several motivations for energy-efficient
design. Perhaps, the most visible driving source is the success and growth of the
portable consumer electronic market.

In its most abstract form, a networked system has two sources of energy drain
required for its operation:

1. Communication, due to energy spent by the wireless interface and due to the
internal traffic between various parts of the system, and

2. Computation, due to processing for applications, tasks required during commu-
nication, and operating system.

Thus, minimizing energy consumption is a task that will require minimizing the
contributions of communication and computation.

From another hand, power consumption has become a major concern because of
the ever-increasing density of solid-state electronic devices, coupled with an increas-
ing use of mobile computers and portable communication devices. The technology
has thus far helped to build low-power systems. The speed–power efficiency has
indeed gone up since 1990 by 10 times each 2.5years for general-purpose proces-
sors and digital signal processors (DSPs) [4].

Design for low-energy consumption is certainly not a challenging research field,
and yet remains one of the most difficult as future mobile multicore SoC system
designers attempt to pack more capabilities such as multimedia processing and high
bandwidth radios into battery-operated portable miniature packages. Playing times
of only a few hours for personal audio, notebooks, and cordless phones are clearly
not very consumer friendly. Also, the required batteries are voluminous and heavy,
often leading to bulky and unappealing products [5].

8.1 Introduction 227

The key to energy efficiency in futuremobilemulticore SoCSwill be, then, design-
ing higher layers of the mobile system, their functionality, their system architecture,
their operating system, and the entire network, with energy efficiency in mind.

8.2 Power-Aware Technological-Level Design
Optimizations

8.2.1 Factors Affecting CMOS Power Consumption

Most components in a mobile system are currently fabricated using CMOS technol-
ogy. Since CMOS circuits do not dissipate power if they are not switching, a major
focus of low-power design is to reduce the switching activity to the minimal level
required to perform the computations [6, 7].

The sources of energy consumption on a CMOS chip can be classified as static
and dynamic power dissipation. The average power is given by

Pavg = Pstatic + Pdynamic. (8.1)

The static power consumption is given by

Pstatic = Pshort-circuit + Pleak = Isc · Vdd + Ileak · Vdd (8.2)

and the dynamic power consumption is given by

Pdynamic =α0→1 CL · V 2
dd · fclk. (8.3)

The three major sources of power dissipation are, then, summarized in the following
equation:

Pavg =α0→1 CL · V 2
dd · fclk + Isc · Vdd + Ileak · Vdd. (8.4)

The first term of formula 4 represents the switching component of power, where
α0→1 is the node transition activity factor (the average number of times the node
makes a power-consuming transition in one clock period),CL is the load capacitance,
and fclk is the clock frequency. The second term is due to the direct-path short-
circuit current, Isc, which arises when both the NMOS and PMOS transistors are
simultaneously active, conducting current directly from supply ground. The last term,
Ileak (leakage current), which can arise from substrate injection and sub-threshold
effects, is primarily determined by fabrication technology.

α0→1 is defined as the average number of times in each clock cycle that a node
with capacitance,CL , willmake a power-consuming transition resulting in an average
switching component of power for a CMOS gate to be simplified to

228 8 Power Optimization Techniques for Multicore SoCs

Pswitch =α0→1 CL · V 2
dd · fclk. (8.5)

Since the energy expended for each switching event in CMOS circuits isCL .V 2
dd. fclk,

it has the extremely important characteristics that it becomes quadratically more
efficient as the high transition voltage level is reduced.

It is clear that operating at the lowest possible voltage is most desirable; however,
this comes at the cost of increased delays and thus reduced throughput. It is also pos-
sible to reduce the power by choosing an architecture that minimizes the effective
switched capacitance at a fixed voltage: through reductions in the number of oper-
ations, the interconnect capacitance, internal bit widths, and using operations that
require less energy per computation. We will use Formulas (8.4) and (8.5) to discuss
the energy reduction techniques and trade-offs that involve energy consumption of
digital circuits. From these formulas, we can see that there are four ways to reduce
power:

1. reduce the capacity load C ,
2. reduce the supply voltage V ,
3. reduce the switching frequency f , and
4. reduce the switching activity.

8.2.2 Reducing Voltage and Frequency

Supply voltage scaling has been the most adopted approach to power optimization,
since it normally yields considerable savings, thanks to the quadratic dependence of
Pswitch on Vdd [6]. The major shortcoming of this solution, however, is that lowering
the supply voltage affects circuit speed. As a consequence, both design and tech-
nological solutions must be applied in order to compensate the decrease in circuit
performance introduced by reduced voltage. In other words, speed optimization is
applied first, followed by supply voltage scaling, which brings the design back to its
original timing, but with a lower power requirement.

It is well known that reducing clock frequency f alone does not reduce energy,
since to do the same work the system must run longer. As the voltage is reduced,
the delay increases. A common approach to power reduction is to first increase the
speed performance of the module itself, followed by supply voltage scaling, which
brings the design back to its original timing, but with lower power requirements [7].

A similar problem, i.e., performance decrease, is encountered when power opti-
mization is obtained through frequency scaling. Techniques that rely on reductions
of the clock frequency to lower power consumption are thus usable under the con-
straint that some performance slack does exist. Although this may seldom occur for
designs considered in their entirety, it happens quite often that some specific units in
a larger architecture do not need peak performance for some clock/machine cycles.
Selective frequency scaling (as well as voltage scaling) on such units may thus be
applied, at no penalty in the overall system speed.

8.2 Power-Aware Technological-Level Design Optimizations 229

8.2.3 Reducing Capacitance

Energy consumption in CMOS circuitry is proportional to capacitance C. There-
fore, a path that can be followed to reduce energy consumption is to minimize the
capacitance. A significant fraction of a CMOS chips energy consumption is often
contributed to driving large off-chip capacitances, and not to core processing. Off-
chip capacitances are in the order of five to tens of pF. For conventional packaging
technologies, pins contribute approximately 13–14pF of capacitance each (10pF for
the pad and 3–4pF for the printed circuit board) [8].

From our earlier discussion, Eq. (8.5) indicates that energy consumption is pro-
portional to capacitance; I/O power can be a significant portion of the overall energy
consumption of the chip. Therefore, in order to save energy, use few external outputs,
and have them switch as infrequently as possible. Packaging technology can have a
impact on the energy consumption. For example, in multi-chip modules where all of
the chips of a system are mounted on a single substrate and placed in a single pack-
age, the capacitance is reduced. Also, accessing external memory consumes much
energy. So, a way to reduce capacitance is to reduce external accesses and optimize
the system by using on-chip resources like caches and registers.

8.2.3.1 Chip Layout

There are a number of layout-level techniques that can be applied. Since the physical
capacitance of the higher metal layers is smaller, there is some advantage to select
upper level metals to route high-activity signals. Furthermore, traditional placement
involves reducing area and delay, which in turn translates to minimizing the physical
capacitance of wires. Placement that incorporates energy consumption concentrates
on minimizing the activity-capacitance product rather than capacitance alone. In
general, high-activitywires should be kept short and local. Tools have been developed
that use this basic strategy to achieve about 18% reduction in energy consumption.

The capacitance is an important factor for the energy consumption of a sys-
tem. However, reducing the capacity is not the distinctive feature of low-power
design, since in CMOS technology energy is consumed only when the capacitance is
switched. It is more important to concentrate on the switching activity and the num-
ber of signals that need to be switched. Architectural design decisions have more
impact than solely reducing the capacitance.

8.2.3.2 Technology Scaling

Scaling advanced CMOS technology to the next generation improves performance,
increases transistor density, and reduces power consumption. Technology scaling
typically has three main goals:

230 8 Power Optimization Techniques for Multicore SoCs

1. Reduce gate delay by 30%, resulting in an increase in operating frequency of
about 43%;

2. Double transistor density; and
3. Reduce energy per transistor by about 65%, saving 50% of the power.

These are not ad hoc goals; rather, they follow scaling theory [8].
As the Semiconductor Industry Association road map (SIA) indicates, the trend

of process technology improvement is expected to continue for years [9]. Scaling of
the physical dimension involves reducing all dimensions: thus transistors widths and
lengths are reduced; interconnection length is reduced, etc. Consequently, the delay,
capacitance, and energy consumption will decrease substantially.

Another way to reduce capacitance at the technology level is to reduce chip area.
For example, an energy-efficient architecture that occupies a larger area can reduce
the overall energy consumption, e.g., by exploiting locality in a parallel implemen-
tation.

8.3 Power-Aware Logic-Level Design Optimizations

Logic-level power optimization has been extensively researched in the last few years.
While most traditional power optimization techniques for logic cells focus on mini-
mizing switching power, circuit design for leakage power reduction is also gaining
importance [10]. As a result, logic-level design can have a high impact on the energy
efficiency and performance of the system. Issues in the logic level relate to, for exam-
ple, state machines, clock gating, encoding, and the use of parallel architectures.

8.3.1 Clock Gating

Several power minimization techniques work especially well at the logic level. Most
of them rely on switching frequency. The best example of which is the use of clock
gating [11]. Clock gating provides a way to selectively stop the clock, and thus force
the original circuit to make no transition, whenever the computation to be carried out
by a hardware unit at the next clock cycle is useless. In other words, the clock signal
is disabled to shut down some modules of the chip that are inactive. This saves on
clock power, because the local clock line is not toggling all the time.

For example, the latency for the CPU of the TMS320C5x DSP processor [12]
to return to active operation from the IDLE3 mode takes around 50μs, due to the
need of the on-chip PLL circuit to lock with the external clock generator. With the
conventional scheme, the register is clocked all the time, whether new data is to be
captured or not. If the register must hold the old state, its output is fed back into
the data input through a multiplexer whose enable line (ENABLE) controls whether
the register clocks in new data or recycles the existing data. However, with a gated

8.3 Power-Aware Logic-Level Design Optimizations 231

Fig. 8.1 Clock gating
example

DATA_IN DATA_OUT

ENABLE

CLK

(a) conventional

DATA_IN

DATA_OUT

ENABLE

CLK

(b) gated clock

clock, the signal that would otherwise control the select line on the multiplexer now
controls the gate. The result is that the energy consumed in driving the register’s
clock input (CLK) is reduced in proportion to the decrease in average local clock
frequency. The two circuits function identically, but utilization of the gated clock
reduces the power consumption (Fig. 8.1).

8.3.2 Logic Encoding

The power consumption can be also reduced by carefully minimizing the number
of transitions. The designer of a digital circuit often has the freedom of choosing
the encoding scheme. Different encoding implementations often lead to different
areas, powers, and delay trade-offs. An appropriate choice of the representation of
the signals can have a big impact on the switching activity.

The frequency of consecutive patterns in the traffic streams is the basis for the
effectiveness of encoding mechanisms. For example, a program counter in a proces-
sor generally uses a binary code. On average two bits are changed for each state
transition [13]. Using a Gray-code (single bit changes) can give interesting energy
savings. However, a Gray-code incremental requires more transistors to implement
than a ripple carry incrementer [13]. Therefore, a combination can be used in which
only the most frequently changing LSB bits use a Gray code.

232 8 Power Optimization Techniques for Multicore SoCs

Fig. 8.2 Dual operation
ALU with guard logic. The
multiplexer does the
selection only after both
units have completed their
evaluation. The evaluation of
one of the two units is
avoided by using a guard
logic; two latches (L1 and
L2) are placed with enable
signals (s1 and s2) at the
inputs of the shifter and the
adder respectively

addershifter

MUXs
1 0

data register/bus data register/bus

s=0s=1

Guard logic

latch (L1) latch (L2)

8.3.3 Data Guarding

Switching activity is the major cause of energy dissipation in most CMOS digital
systems. Therefore, to reduce power consumption, switching activities that do not
contribute to the actual communication and computation should be eliminated. The
basic idea is to identify logical conditions at some inputs to a logic circuit that is
invariant to the output. Since those input values do not affect the output, the input
transitions can be disabled.

Data logic-guarding technique [14] is an efficient method used to guard not useful
switching activities to propagate further inside the system. The technique is based
on reducing the switching activities by placing transparent latches/registers with an
enable signal at the inputs of each block of the circuit that needs to be selectively
turned off. If the module is to be active in a clock cycle, the enable signal makes the
latch transparent, permitting normal operation. If not, the latch retains its previous
state and no transitions propagate through the inactive module (see Fig. 8.2). As a
summary, the logic-level design can have a high impact on the energy efficiency and
the performance of a given system. Even with the use of state-of-the-art hardware
design language (i.e., Verilog HDL), there are still many optimizations techniques
that should be explored by the designers to reduce the energy consumption at the logic
level. The most effective technique used at this level is the reduction of switching
activities.

8.4 Power-Aware System Level Design Optimizations

In the previous sectionswe have explored sources of energy consumption and showed
the low level—technology and circuit levels, and design techniques used to reduce
the power dissipation. In this section, we will concentrate on the energy reduction
techniques at the architecture and system level.

8.4 Power-Aware System Level Design Optimizations 233

8.4.1 Hardware System Architecture Power Consumption
Optimizations

The implementation-dependent part of the power consumption of a system is strongly
related to the number of properties that a given system or algorithm may have. The
component that contributes a significant amount of the total energy consumption is
the communication channels or interconnects.

Experiments have already been made in designs and proved that about 10–40%
of the total power may be dissipated in buses, multiplexers and drivers [15, 16].
This amount can increase dramatically for systems with multiple chips due to large
off-chip bus capacitance.

The energy consumption of the communication channels is largely dependent on
algorithm and architecture-level design decisions. Regularity and locality are two
important properties of algorithms and architectures for reducing the energy con-
sumption due to the communication channels. The idea behind regularity is to cap-
ture the degree to which common patterns appear in an algorithm. Common patterns
enable the design of less complex architecture and therefore simpler interconnect
structure and less control hardware. Simple measures of regularity include the num-
ber of loops in the algorithm and the ratio of operations to nodes in the data flow
graph. The statistics of the percentage of operations covered by sets of patterns is
also indicative of an algorithm’s regularity. Quantifying this measure involves first
finding a promising set of patterns, large patterns being favored. The core idea is to
grow pairs of as large as possible isomorphic regions from corresponding pairs of
seed nodes [17].

Locality relates to the degree to which a system or algorithm has natural isolated
clusters of operation or storagewith few interconnections between them. Partitioning
the system or algorithm into spatially local clusters ensures that the majority of the
data transfers take place within the clusters and relatively few between clusters. The
result is that the local buses with a low electrical capacity are shorter and more
frequently used than the longer highly capacitive global buses. Locality of reference
can be used to partition memories. Current high-level synthesis tools are targeted to
area minimization or performance optimization. However, for power reduction it is
better to reduce the number of accesses to long global buses and have the local buses
be accessed more frequently.

In a direct implementation targeted at area optimization, hardware sharing
between operations might occur, destroying the locality of computation. An architec-
ture and implementation should preserve the locality and partition and implement it
such that hardware sharing is limited. The increase in the number of functional units
does not necessarily translate into a corresponding increase in the overall area and
energy consumption since the localization of interconnect allows a more compact
layout and also fewer access to buffers, and multiplexers are needed.

234 8 Power Optimization Techniques for Multicore SoCs

8.4.1.1 Hierarchical Memory System

Efficient use of an optimized custom memory hierarchy to exploit temporal locality
in the data accesses can have a very large impact on the power consumption in data-
dominated applications. The idea of using a custom memory hierarchy to minimize
the power consumption is based on the fact thatmemory power consumption depends
primarily on the access frequency and the size of the memory. For on-chip memories,
memory power increases with the memory size. In practice, the relation is between
linear and logarithmic depending on the memory library. For off-chip memories,
the power is much less dependent on the size because they are internally heavily
partitioned. Still they consume more energy per access than the smaller on-chip
memories. Hence, power savings can be obtained by accessing heavily used data
from smaller memories instead of from large background memories [18].

As most of the time only a small memory is read, the energy consumption is
reduced. Memory considerations must also be taken into account in the design of any
system. By employing an on-chip cache significant power reductions together with a
performance increase can be gained. Apart from caching data and instructions at the
hardware level, caching is also applied in the file system of an operating system [18].
The larger the cache is, the better performance is achieved. Energy consumption is
reduced because data is kept locally, and thus requires less data traffic. Furthermore,
the energy consumption is reduced because less disk and network activity is required.

The compiler also has impact on power consumption by reducing the number
of instructions with memory operands. It also can generate code that exploits the
characteristics of the machine and avoids expensive stalls. The most energy can be
saved by a proper utilization of registers. In [19], a detailed review of some compiler
techniques that are of interest in the power minimization arena is also presented.

Secondary Storage

Secondary storage in modern mobile systems generally consists of a magnetic disk
supplemented by a small amount of DRAMused as a disk cache; this cachemay be in
the CPU main memory, the disk controller, or both [20–22]. Such a cache improves
the overall performance of secondary storage. It also reduces its power consumption
by reducing the load on the hard disk, which consumes more power than the DRAM.

Energy consumption is reduced because data is kept locally, and thus requires
less data traffic. In addition, the energy consumption is reduced because less disk
and network traffic is required. Unfortunately, there is trade-off in size of the cache
memory since the required amount of additional DRAM can use as much as energy
as a conventional spinning hard disk [23].

A possible technology for secondary storage is an integrated circuit called flash
memory [21]. Like a hard disk, suchmemory is nonvolatile and can hold data without
consuming energy. Furthermore, when reading or writing, it consumes only 0.15–
0.47 W, far less than a hard disk. It has a read speed of about 85 ns per byte, quite
like DRAM, but writes speed of about 410μs per byte, about 10–100 times slower
than hard disk. However, since flash memory has no seek time, its overall write
performance is not that much worse than a magnetic disk; in fact, for sufficiently

8.4 Power-Aware System Level Design Optimizations 235

small random writes, it can actually be faster. Since flash is practically as fast as
DRAM at reads, a disk cache in no longer important for read operation. The cost
per megabyte of flash is about 7–40 times more expensive than guard disk, but about
2–5 times less expensive than DRAM. Thus, flash memory might also be effective
as a second-level cache below the standard DRAM disk cache [20, 21].

8.4.1.2 Processor

In general, the power consumption of the CPU is related to the clock rate, the sup-
ply voltage, and the capacitance of the devices being switched [11, 24–26]. One
power-saving feature is the ability to slow down the clock. Another is the ability
to selectively shut off functional units, such as the floating-point unit; this ability is
generally not externally controllable. Such a unit is usually turned off by stopping
the clock propagated to it. Finally, there is the ability to shut down processor opera-
tion altogether so that it consumes little or no energy. When this last ability is used,
the processor typically returns to full power when the next interrupt occurs. A time
energy consumption relationship is shown in Fig. 8.3.

Turning off a processor has a little downside; no excess energy is expended turning
the processor back on, the time until it comes back on is barely noticeable, and the
state of the processor is unchanged from it turning off and on, unless it has a volatile
cache [11]. Therefore, reducing the power consumption of the processor can have a
greater effect on overall power savings than it might seem from merely examining
the percentage of total power attributable to the processor.

sleep

peak

energy
consumption

ueful
computation

time

wake-up time

inactivity
threshold

Fig. 8.3 Power consumption in typical processor core

236 8 Power Optimization Techniques for Multicore SoCs

8.4.1.3 Display and Backlight

The display and backlight have very few energy-saving features. This is unfortunate,
since they consumeagreat deal of power in theirmaximum-power states; for instance,
on the Duo 280c, the display consumes a maximum of 0.75W and the backlight
consumes a maximum of 3.40 [27, 28]. The backlight can have its power reduced
by reducing the brightness level or by turning it off, since its power consumption
is roughly proportional to the luminance delivered. The display power consumption
can be reduced by turning the display off. It can also be reduced slightly by switching
from color to monochrome or by reducing the update frequency, which reduces the
range of shades or colors of Gray for each pixel, since such shading is done by
electrically selecting each pixel for a particular fraction of its duty cycle. Generally,
the only disadvantage of these low-power modes is reduced readability. However,
in the case of switches among update frequencies and switches between color and
monochrome, the transitions can also cause annoying flashes.

8.4.2 Operating System Power Consumption Optimization

Software and algorithmic considerations can also have a severe impact on energy
consumption [2, 16, 19, 28–30]. Digital hardware designers have promptly reacted to
the challenge posed by low-power design.Designer skills, technology improvements,
and CAD tools have been successful in reducing the energy consumption. Unfortu-
nately, software engineers and system architects are often less “energy-aware” than
digital designers, and they also lack suitable tools to estimate the energy consump-
tion of their designs. As a result, energy-efficient hardware is often employed in a
way that does not make optimal use of energy-saving possibilities. In this section we
will show several approaches to reduce energy consumption at the operating system
level and to the applications (Table8.1).

Table 8.1 Operating system functionality and corresponding techniques for optimizing energy
utilization

CPU scheduling Idle power mode, voltage scaling

Operating system functionality Energy-efficient techniques

Memory allocation Adaptive placement of memory blocks, switching of
hardware energy reduction modes

Application/OS interaction Agile content negotiation trading fidelity for power, APIs

Resource Protection and allocation Fair distribution of battery life among both local and
distributed tasks, locking battery for expensive operations

Communication Adaptive network polling, energy-aware routing, placement
of distributed computation, and server binding

8.4 Power-Aware System Level Design Optimizations 237

A fundamental OS task is efficient management of host resources. With energy
as the focus, the question becomes how to make the basic interactions of hard-
ware and software as energy efficient as possible for local computation. One issue
observed in traditional performance-centric resource management involves latency
hiding techniques. A significant difference and challenge in energy-centric resource
management is that power consumption is not easy to hide.

As one instance of power-aware resource management, we consider memory
management. Memory instructions are among the more power-hungry operations on
embedded processors [29], making the hardware/software of memorymanagement a
good candidate for optimization. Intels guidelines for mobile power [31, 32] indicate
that the target for main memory should be approximately 4% of the power budget.
This percentage can dramatically increase in systems with low-power processors,
displays, or without hard disks. Since many small devices have no secondary storage
and rely onmemory to retain data, there are power costs formemory even in otherwise
idle systems. The amount of memory available in mobile devices is expanding with
each new model to support more demanding applications (i.e., multimedia), while
the demand for longer battery life also continues to grow significantly.

Scheduling is needed in a systemwhenmultiple functional units need to access the
sameobject. In operating systems scheduling is applied at several parts of a system for
processor time, communication, disk access, etc. Currently, scheduling is performed
on criteria like priority, latency, time requirements, etc. Power consumption is in
general only a minor criterion for scheduling, despite the fact that much energy
could be saved.

Subsystems of a computer, such as the CPU, the communication device, and
storage system, have small usage duty cycles. That is, they are often idle and wait for
the user or network interaction. Furthermore, they have huge differences in energy
consumption between their operating states.

Recent advances in ad hoc networks allow mobile devices to communicate with
one another, even in the absence of pre-existing base stations or routers. All mobile
devices are able to act as routers, forwarding packets among devices that may oth-
erwise be out of communication range of one another. Important challenges include
discovering and evaluating available routes among mobile devices and maintaining
these routes as devices move, continuously changing the “topology” of the underly-
ing wireless network. In applications with limited battery power, it is important to
minimize energy consumption in supporting this ad hoc communication.

There are numerous opportunities for power optimizations in such environments,
including

(i) reducing transmission power adaptively based on the distance between sender
and receiver,

(ii) adaptively setting transmission power in route discovery protocols,
(iii) balancing hop count and latency against power consumption in choosing the

“best” route between two hosts, and
(iv) choosing routes to fairly distribute the routing duties (and the associated power

consumption) among nodes in an ad hoc network [33].

238 8 Power Optimization Techniques for Multicore SoCs

8.4.3 Application, Compilation Techniques, and Algorithm

In traditional power-managed systems, the hardware attempts to provide automatic
power management in a way that is transparent to the applications and users. This
has resulted in some legendary user problems such as screens going blank during
video or slide show presentations, annoying delays while disks spin up unexpectedly,
and low battery life because of inappropriate device usage. Because the applications
have direct knowledge of how the user is using the system to perform some func-
tion, this knowledge must penetrate into the power management decision-making
system in order to prevent the kinds of user problems described above. This suggests
that operating systems ought to provide application programming interfaces so that
energy-aware applications may influence the scheduling of the systems resources.

The switching activity in a circuit is also a function of the present inputs and the
previous state of the circuit. Thus it is expected that the energy consumed during exe-
cution of a particular instructionwill vary depending onwhat the previous instruction
was. Thus an appropriate reordering of instructions in a program can result in lower
energy. Today, the cost function in most compilers is either speed or code size, so
the most straightforward way to proceed is to modify the objective function used by
existing code optimizers to obtain low-power versions of a given software program.
The energy cost of each instruction must be considered during code optimization.
An energy-aware compiler has to make a trade-off between size and speed in favor
of energy reduction.

At the algorithm-level functional pipelining, re-timing, algebraic transformations,
and loop transformations can be used [29]. The system’s essential power dissipation
can be estimated by a weighted sum of the number of operations in the algorithm that
has to be performed. The weights used for the different operations should reflect the
respective capacitance switched. The size and the complexity of an algorithm (e.g.,
operation counts, word length) determine the activity. Operand reduction includes
common sub-expression elimination, dead code elimination, etc. Strength reduction
can be applied to replace energy-consuming operations by a combination of simpler
operations (for example, by replacing multiplications into shift and add operations).

8.4.4 Energy Reduction in Network Protocols

Up to this point we have mainly discussed the techniques that can be used to decrease
the energy consumption of digital systems and focused on the computing components
of a mobile host. In this subsection, we will discuss some techniques that can be used
to reduce the energy consumption that is needed for the communication external of
the mobile host.

We classify the sources of power consumption, with regard to network operations,
into two types: (1) communication related and (2) computation related.

8.4 Power-Aware System Level Design Optimizations 239

Communication involves usage of the transceiver at the source, intermediate (in
the case of ad hoc networks), and destination nodes. The transmitter is used for
sending control, route request, and response, as well as data packets originating
at or routed through the transmitting node. The receiver is used to receive data and
control packets some of which are destined for the receiving node and some of which
are forwarded. Understanding the power characteristics of the mobile radio used in
wireless devices is important for the efficient design of communication protocols.

The computation mainly involves usage of the CPU, main memory, the storage
device, and other components. Also, data compression techniques, which reduce
packet length, may result in increased power consumption due to increased compu-
tation. There exists a potential trade-off between computation and communication
costs. Techniques that strive to achieve lower communication costs may result in
higher computation needs, and vice-versa. Hence, protocols that are developed with
energy efficiency goals should attempt to strike a balance between the two costs.

Energy reduction should be considered in the whole system of the mobile and
through all layers of the protocol stack. The following discussion presents some
general guidelines that may be adopted for an energy-efficient protocol design.

8.4.4.1 Protocol Stack Energy Reduction

Data communication protocols dictate the way in which electronic devices and sys-
tems exchange information by specifying a set of rules that should be a consistent,
regular, and well-understood data transfer service. Mobile systems have strict con-
straints on the energy consumption, the communication bandwidth available, and are
required to handle many classes of data transfer over a limited bandwidth wireless
connection, including real-time traffic such as speed and video. For example, mul-
timedia applications are characterized by their various media streams with different
qualities of service requirements.

In order to save energy, an obvious mode of operation of the mobile host will be a
sleep mode [34]. To support such mode the network protocols need to be modified.
Store-and-forward schemes for wireless networks, such as the IEEE 802.11 proposed
sleep mode, not only allow a network interface to enter a sleep mode but can also
perform local retransmissions not involving the higher network protocol layers.

There are several techniques used to reduce the power consumption in all layers
within the protocol stack. In Fig. 8.4, we list areas in which conservationmechanisms
are efficient.

Collisions should be eliminated as much as possible within the media access layer
(MAC) layer, a sub-layer of the data link layer, since they result in retransmissions.
Retransmissions lead to unnecessary power consumption and to possibly unbounded
delays. Retransmissions cannot be completely avoided in a wireless network due to
the high error rates. Similarly, it may not be possible to fully eliminate collisions in a
wireless mobile network. This is partly due to user mobility and a constantly varying
set of mobiles in a cell.

240 8 Power Optimization Techniques for Multicore SoCs

Partitioning of tasks
Context Adaptation
So0urce coding and DSP

Application and
Services

OS & Middleware

Transport

Network

Data link

Physical

Disconnection Management
QoS Management
Power management

Modulation Schemes
RF circuits
Channel Coding

Congestion control
Retransmissions

Rerouting
Mobility Management

Modulation Schemes
RF circuits
Channel coding

Fig. 8.4 Protocol stack of a generic wireless network, and corresponding areas of energy-efficient
possible research

For example, new users registering with the base station may have to use some
form of random access protocol. In this case, using a small packet size for registration
and bandwidth request may reduce energy consumption. The EC-MAC protocol [34]
is one example that avoids collisions during reservation and data packet transmission.
This is the default mechanism used in the IEEE 802.11 wireless protocol in which
the receiver is expected to keep track of channel status through constant monitoring.
One solution is to broadcast a schedule that contains data transmission starting times
for each mobile as in [34]. Another solution is to turn off the transceiver whenever
the node determines that it will not be receiving data for a period of time.

Physical Layer

As shown in Fig. 8.4, the lowest level of the protocol stack is the physical layer.
This layer consists of radio frequency (RF) circuits, modulation, and channel coding
systems. At this level, we need to use an energy-efficient radio that can be in various
operating modes (like variable RF power and different sleep modes) such that it
allows a dynamic power management [35]. Energy can also be saved if it is able to
adapt its modulation techniques and basic error correction schemes. The energy per
bit transmitted or received tends to be lower at higher bit rates. For example, the
WaveLAN radio operates at 2Mb/s and consumes 1.8W, or 0.9 J/bit.

A commercially available FM transceiver (Radiometrix BIM-433) operates at
40kb/s and consumes 60mW, or 1.5 J/bit. This makes the low bit-rate radio less
efficient in energy consumption for the same amount of data. However, when a
mobile has to listen for a longer period for a broadcast or wake-up from the base
station, then the high bit-rate radio consumes about 30 timesmore energy than the low
bit-rate radio. Therefore, the low bit-rate radio must be used for the basic signaling

8.4 Power-Aware System Level Design Optimizations 241

only, and as little as possible for data transfer. To minimize the energy consumption,
but also to mitigate interference and increase network capacity, the transmit power
on the link should be minimized, if possible.

Data Link Layer

The data link layer is thus responsible forwireless link error control, security (encryp-
tion/decryption), mapping network layer packets into frames, and packet retransmis-
sion. A sub-layer of the data link layer, the media access control (MAC) protocol
layer, is responsible for allocating the time–frequency or code space among mobiles
sharing wireless channels in a region.

In an energy-efficient MAC protocol the basic objective is to minimize all actions
of the network interface, i.e., minimize on-time of the transmitter as well as the
receiver. Another way to reduce energy consumption is by minimizing the number
of transitions the wireless interface has to make. By scheduling data transfers in
bulk, an inactive terminal is allowed to doze and power off the receiver as long as
the network interface is reactivated at the scheduled time to transmit the data at full
speed.

An example of an energy-efficient MAC protocol is E2MaC [36]. The E2MaC
protocol is designed to provide QoS to various service classes with a low energy
consumption of the mobile. In this protocol, the main complexity is moved from the
mobile to the base station with plenty of energy. The scheduler of the base station
is responsible to provide the connections on the wireless link the required QoS and
tries to minimize the amount of energy spent by the mobile. The main principles
of the E2MaC protocol are to avoid unsuccessful actions, minimize the number of
transitions, and synchronize the mobile and the base station.

Network Layer

The network layer is responsible for routing packets, establishing the network service
type, and transferring packets between the transport and link layers. In a mobile
environment this layer has the added responsibility of rerouting packets and mobility
management. Errors on the wireless link can be propagated in the protocol stack. In
the presence of a high packet error rate and periods of intermittent connectivity of
wireless links, some network protocols (such as TCP)may overreact to packet losses,
mistaking them for congestion. TCP responds to all losses by invoking congestion
control and avoidance algorithms. Thesemeasures result in an unnecessary reduction
in the link’s bandwidth utilization and increases in energy consumption because it
leads to a longer transfer time.

The limitations of TCP can be overcome by a more adequate congestion control
during packet errors. These schemes choose from a variety ofmechanisms to improve
end-to-end throughput, such as local retransmissions, split connections, and forward
error correction.

A comparative analysis of several techniques to improve the end-to-end perfor-
mance of TCP over lossy, wireless hops is given [37]. These schemes are classified
into three categories: end-to-end protocols, where loss recovery is performed by
the sender; link-layer protocols that provide local reliability; and split-connection

242 8 Power Optimization Techniques for Multicore SoCs

protocols that break the end-to-end connection into two parts at the base station.
The results show that a reliable link-layer protocol with some knowledge of TCP
provides good performance, more than using a split-connection approach. Selective
acknowledgment schemes are useful, especially when the losses occur in bursts.

OS and Middle-Ware Layer

The operating system and middle-ware layer handles disconnection, adaptively sup-
port, and power and QoS management within wireless devices. This is in addition
to the conventional tasks such as process scheduling and file system management.
To avoid the high cost, in terms of performance, energy consumption or money of
wireless network communication is to avoid use of the network when it is expensive
by predicting future access and fetching necessary data when the network is cheap.
In the higher level, protocols of a communication system caching and scheduling
can be used to control the transmission of messages. This works in particular well
when the computer system has the ability to use various networking infrastructures
(depending on the availability of the infrastructure at a certain locality), with varying
andmultiple network connectivities and with different characteristics and costs. True
prescience, of course, requires knowledge of the future. Two possible techniques,
LRU caching and hoarding, are for example present in the Coda cache manager. A
summary of other software strategies for energy efficiency is presented in [28, 38].

8.5 Chapter Summary

Power dissipation continues to be a primary design constraint in single- and
multicore-based systems. Increasing power consumption not only results in increas-
ing energy costs, but also results in high die temperatures that affect chip reliability,
performance, and packaging cost.

This chapter has investigated a number of energy-aware design techniques that can
be used into complexmulticore systems. In particular, this chapter covered techniques
used to design energy-aware systems at the technology, logic, and system levels. The
vast majority of the techniques used in the system architectures are derived from
existing uni-processor energy-aware systems.

References

1. R. Kravets, P. Krishnan, Application driven power management for mobile communication
Springer Science. Wirel. Netw. 6(4), 263–277 (2000)

2. J. Lorch, Modeling the effect of different processor cycling techniques on power consumption,
Performance evaluation group technical note 179, in ATG Integrated Sys, Apple Computer,
1995

References 243

3. T. Martin, Balancing batteries, power and performance: system issues in CPU speed-setting for
mobile computing, Ph.D. Dissertation, Carnegie Mellon University, Department of Electrical
and Computer Engineering, Aug, 1999

4. G.F.Welch,A survey of powermanagement techniques inmobile computing operating systems.
ACM SIGOPS Oper. Syst. Rev. 29(4), 47–56 (1995)

5. J.M. Rulnick, N. Bambos, Mobile power management for maximum battery life in wireless
communication networks, in Proceedings of IEEE INFOCOM 96, 1996

6. F.N. Najm, A survey of power estimation techniques in VLSI circuits. IEEE Trans. VLSI Syst.
2(4), 44–55 (1994)

7. M. Pedram, Power minimization in IC design: principles and applications. ACM Trans. Des.
Autom. Electron. Syst. 1(1), 3–6 (1996)

8. S. Borkar, Design challenges of technology scaling. IEEE Micro. 19(4), 23–29 (1999)
9. Semiconductor industry association: the national technology roadmap for semiconductors:

technology needs, Sematche Inc. (Austin, USA, 1997), http://www.sematech.org
10. Y. Ye. S. Borkar, V. De. A new technique for standby leakage reduction in high-performance

circuits, in Symposium on VLSI Circuits, Honolulu, Hawaii, 40–41 1998
11. L. Benini, G. de Micheli, System-level power optimization: techniques and tools, in Proceed-

ings Intéz Symposium Low-Power Electronics Design, San Diego, CA, 288–293 1999
12. L. Benini, G. de Micheli, E. Macii, Designing low-power circuits: practical recipes. IEEE

Circuits Syst. Mag. 1, 6–25 (2001)
13. A. Ben Abdallah, S. Kawata, T. Yoshinaga, M. Sowa, Modular design structure and high-level

prototyping for novel embedded processor core, in Proceedings of the 2005 IFIP International
Conference on Embedded And Ubiquitous Computing (EUC’2005), Nagasaki, 340–349 Dec
6–9 2005

14. V. Tiwari, S.Malik, Guarded evaluation: pushing power management to logic synthesis/design.
IEEE Trans. Comput. Aided Des. Integr. Circ. Syst. 17(10), 1051–1060 (1998)

15. A. Abnous, J. Rabaey, Ultra-low-power domain-specific multimedia processors, in (Proceed-
ings of the IEEE VLSI Signal Processing Workshop, IEEE press, 459–464 1996

16. J. Liang et al., An architecture and compiler for scalable on-chip communication. IEEE Trans.
VLSI Syst. 12(7), 711–726 (2004)

17. J. Rabaey, L. Guerra, R.Mehra, Design guidance in the power Dimension, in Proceedings of
the ICASSP, 1995

18. C.L. Su, M. Alvin Despain, cache designs for energy efficiency, in Proceedings of the 28th
Hawaii International Conference on System Science, 1995

19. H. Mehta, R. M. Owens, M.J. Irwin, R. Chen, D. Ghosh, Techniques for low energy software,
in Internatzonal Symposzum of Low Power Electronics and Deszgn, IEEE/ACM, 72–75 1997

20. F. Doughs, P. Krishnan, B. Marsh, Thwarting the power hungry disk, in Proceedings of the
1991 Winter USENIX Conference, 1994

21. F. Douglis, F. Kaashoek, B. March, R. Caceres, K. Li, J. Tauber, Storage alternative for mobile
computers, in Proceedings of the first USENIX Symposimum on Operating Systems Design and
Implemnetation, 1994

22. K. Li, R. Kumpf, P. Horton, T. Anderson, A quantitative analysis of disk drive power manage-
ment in portable computers, in Proceedings of the 1994 Winter USENIX, 1994

23. P. Erik, P. Harris, W. Steven, E.W. Pence, S. Kirkpatrick, Technology directions for portable
computers. in Proceedings of the IEEE, 83b(4) 63–57 1995

24. K. Govil, E. Chan, H. Wasserman. Comparing algorithms for dynamic speed-setting of a low-
power cpu, In First ACM International Conference on Mobile Computing and Networking
(MOBICOM), 1995

25. J.R. Lorch, A.J. Smith. Reducing processor power consumption by improving processor time
management in a single user operating system, in Second ACM International Conference on
Mobile Computing and Networking (MOBICOM), 1996

26. M.Weiser, B.Welch,A.Demers, S. Shenker. Schedlibng for reduced cpu energy. inProceedings
of the First Symposium on Operating System Design and Implementation (OSDI), 1994

http://www.sematech.org

244 8 Power Optimization Techniques for Multicore SoCs

27. J. Lorch, A complete picture of the energy consumption of a portable computer.Master’s thesis,
Department of Computer Science, University of California at Berkeley, 1995

28. J.R. Lorch, A.J. Smith, Software strategies for portable computer energy management. IEEE
Pers. Commun. 5(3), 60–73 (1998)

29. V. Tiwari, S. Malik, A. Wolfe, Power analysis of embedded software: a first step towards
software power minimization. IEEE Trans. Very Large Scale Integr. 2(4), 437–445 (1994)

30. F. Wolf, Behavioral Intervals in Embedded Software: Timing and Power Analysis of Embedded
Real-Time Software Process (Kluwer Academic Publishers, The Netherlands, 2002). ISBN:
1-4020-7135-3

31. Intel Corporation. Mobile power guidelines (2000), ftp://download.intel.com/design/mobile/
intelpower/mpg99r1.pdf, Accessed Dec 1998

32. Intel Corporation: Mobile intel pentium III processor in BGA2 and micro-PGA2 packages,
revision 7.0, (2001)

33. P.J.M.Havinga,G.J.M.Smit, Energy-efficientwireless networking formultimedia applications,
in wireless communications and mobile computing. Wirel. Commun. Mob. Comput. 1, 165–
184 (2001)

34. K.M. Sivalingam, J.C. Chen, P. Agrawal, M. Srivastava, Design and analysis of low-power
access protocols for wireless and mobile ATM networks. Wirel. Netw. 6(1), 73–87 (2000)

35. F. Akyildiz, S. Weilian, S. Yogesh, E. Cayirci, A Survey on sensor networks. IEEE Commun.
Mag. 40(8), 102–114 (2002)

36. P.J. Havinga, G. Smit, M. Bos, Energy-efficient wireless ATM design, in (Proceedings
wmATM), 2–4 June 1999

37. H. Balakrishnan, V. Enkata, N. Padmanabhan, A comparison of mechanisms for improving tcp
performance over wireless links. IEEE/ACM Trans. Netw. 5(6), 756–769 (1997)

38. J. Kistler, Disconnected operation in a distributed file system, Ph.D. thesis, Carnegie Mellon
University, School of Computer Science, 1993

ftp://download.intel.com/design/mobile/ intelpower/mpg99r1.pdf
ftp://download.intel.com/design/mobile/ intelpower/mpg99r1.pdf

Chapter 9
Real Deign of Embedded Multicore
SoC for Health Monitoring

Abstract Recent technological advances in wireless networking, embedded micro-
electronics and the Internet allow computer and biomedical scientists to fundamen-
tally modernize and change the way health care services are deployed. Thus, changes
and new services are urgently needed to help cope with the imminent crisis in the
health care systems caused by current demographic, social, and economic trends
in many countries. Electrocardiography (ECG) is an interpretation of the electrical
activity of the heart over time captured and externally recorded by electrodes. An
effective approach to speed up this and other biomedical operations is to integrate a
very high number of processing elements in a single chip so that the massive scale of
fine-grain parallelism inherent in several biomedical applications can be exploited
efficiently. In this chapter, we present a case study of a real hardware and software
design of a multicore SoC architecture targeted for elderly health monitoring.

9.1 Introduction

The world population over age 65 is expected to more than double from 357 million
in 1990 to 761 million in 2025 [1]. These statistics clearly underscore the need for
more scalable and affordable health care solution. Despite the decreased mortality
rate, heart disease and associated complications is one of the main causes of death
around the world. Detection of irregularities in the rhythms of the heart is a growing
concern in medical research.

Embedded health monitoring systems are approaches to deal with such prob-
lems. However, development of such systems faces a number of challenging tasks
since they need to often address conflicting requirements for performance, size, and
accuracy. In health monitoring applications, a wide range of parameters must be
available and processed. Thus, multiple tasks must be performed in order to obtain
accurate diagnosis. In most cases, complex computations are required because of
the applied detection algorithm. When real time diagnosis are required, a single
medium-performance processor core might have problems dealing with all tasks.

246 9 Real Deign of Embedded Multicore SoC for Health Monitoring

Electrocardiography is an essential practice in heart medicine. It faces compu-
tational challenges, especially when 12 or more lead signals are to be analyzed in
parallel, in real-time, and under increasing sampling frequencies. Another challenge
is the analysis of huge amounts of data that may grow to days of recording.

As we described in Chap.3, MCSoCs are high performance devices that incorpo-
ratemultiple building blocks frommultiple sources. AnMCSoCmay contain general
or special purpose fully programmed processors, co-processors, DSPs, dedicated
hardware, memory blocks, etc. These systems are becoming a common design alter-
native in portable devices because it is possible to manufacture a silicon chip includ-
ing only necessary elements. Certain medical applications require devices capable of
providing very accurate information about monitored patients in places where com-
plex clinical systems are not available and parameters such as electrocardiogram
characteristics are important to be determined.

In this chapter, we present a case study of a real hardware and software design
of a multicore SoC architecture, named BANSMOM, targeted for biomedical appli-
cations. The ultimate goal of this multicore system is to monitor elderly people and
promote well-being by introducing smart in-body sensors that allow medical pro-
fessionals to initiate interventions in the home environment. Although the designed
system can be slightly modified and used for various biomedical applications, we
focus here only on ECG processing and real-time monitoring. The complete system
consists of hardware and software components. The hardware part consists of the
multicore SoC platform.While the software part consists of a so called Period-Peak-
Detection (PPD) algorithm and a real-time interaction interface.

9.1.1 Electrocardiography and Heart Diseases

Electrocardiography, which is also called ECG/EKG, is generally used to record the
electrical impulses which immediately precede the contractions of the heart mus-
cle. This method causes no discomfort to a patient and is often used for diagnosing
heart disorders such as coronary heart disease, pericardia or inflammation of the
membrane around the heart, heart muscle disease, arrhythmia and coronary throm-
bosis, etc. When using this technique, doctors connect electrodes to the chest, wrist
and ankles that are connected to a recording machine. This machine displays, then,
the electrical activity in the heart as a trace on a rolling graph or screen. Using the
electrocardiography any abnormalities are revealed to the doctor.

This technique can be taken at a doctor’s office, hospital or even at home and
will provide your doctor with a 24h record of the patients heart activity from a tape
recorder that is worn by the patient. The Doctor or a medical staff can look at the
printed graph to see if the heart chambers are contracting with complete regularity
which indicates a normal rhythm. If the contractions of the lower heart chambers are
extremely irregular this could indicate ventricular fibrillation. When the upper and
lower heart chambers are beating independently this could indicate a complete heart
blockage. If the upper heart chambers are beating fast and irregular, this can indicate
arterial fibrillation.

http://dx.doi.org/10.1007/978-981-10-6092-2_3

9.1 Introduction 247

The electrocardiography is a painless and quick procedure. The electrical impulses
in the heart are recorded and amplified on a moving strip of paper. Small metal
electrodes are placed on the skin of the patient to measure the flow and direction
of the electrical currents in the heart during each heart beat. Each of the electrodes
are connected by a wire to a machine that will produce what is called a tracing for
each electrode. This tracing represents a particular view or what is called lead of the
heart’s electrical patterns. In most cases any person who is suspected of having heart
disease will have an ECG taken by their doctor. This will aid the doctor in identifying
a number of heart problems.

An electrocardiography produces waves that are known as: P, Q, R, S, T and
U waves which gives each part of the ECG an alphabetical designation. Figure9.1
shows an example of a typical ECG wave. As the heart beat begins with an impulse
from the senatorial node, the impulse will first activate the upper chambers of the
heart or atria and produce the P wave. Then the electrical current will flow down to
the lower chambers of the heart or ventricles producing the Q, R and S waves. As
the electrical current spreads back over the ventricles in the opposite direction it will
produce the T waves. Using this technique doctors can determine where in the heart
abnormal rhythms start which allows them to begin to determine the cause.

Many ECG analysis methods use the three peaks Q, R, S and the corresponding
intervals between these three peaks. In biomedical terms, this interval from Q to
R to S is known as the QRS complex [2, 3]. The well known QRS Pan-Tompkins
algorithm locates R-peaks in the ECG signal and calculates the heart period [4].

A number of other research efforts focus on hardware implementations of health
monitoring systems. For example, Christos presented a hardware implementation of
the Pan and Tompkins QRS complex [5].

Fig. 9.1 A typical ECG wave

248 9 Real Deign of Embedded Multicore SoC for Health Monitoring

9.2 Application Specific Digital Signal Processing

Before we start describing the system architecture, let us first review some basic
knowledge about digital signal processing (DSP). DSP has been with us for decades
now with some astronomical development in the area over the years. The world of
science and engineering is filled with signals: images from remote space probes,
voltages generated by the heart and brain, radar and sonar echoes, seismic vibra-
tions, and countless other applications. Digital Signal Processing is the science of
using computers to understand these types of data. This includes a wide variety of
goals: filtering, speech recognition, image enhancement, data compression, neural
networks, and much more. DSP is one of the most powerful technologies that will
shape science and engineering in the twenty-first century.

DSP is the processing of signals by digital means. A signal in this context can
mean a number of different things. Historically the origins of signal processing are
in electrical engineering, and a signal here means an electrical signal carried by a
wire or telephone line, or perhaps by a radio wave. More generally, however, a signal
is a stream of information representing anything from stock prices to data from a
remote-sensing satellite. A digital signal consists of a stream of numbers, usually
(but not necessarily) in binary form. The processing of a digital signal is done by
performing numerical calculations.

One of the important factors that enhancedDSPperformance is the evolution of the
processor architecture. As the computing needs of each processor type grew rapidly,
the first response of the computer architects and semiconductor companies was to
increase the speed of the single processor. Higher performance was mainly achieved
by refining manufacturing processes to improve the operating speed. However, this
method requires finding solutions for increased leakage power and other problems,
making it unable to keep pace with the current rate of evolution.

After several decades of single processor core devices production, major CPU
makers, such as Intel and AMD, decided to switch to multicore processor chips
because itwas found that several smaller processor cores running at a lower frequency
can perform the same amount of work without consuming as much energy and
power. More precisely, this shift started when Intel’s hardware engineers launched
the Pentium 4; at that time, they expected single processor chip to scale up to 10GHz
or even more using advanced process technologies below 90nm. However, they
did not really achieve their expectation since the fastest processor never exceeded
4GHz. As a result, the trends followed by all major hardware makers is to use a
higher number of slower logic gates, building parallel devices made with denser
chips that work at low clock speed. One of the areas that takes advantage from the
evolution of the processor architecture and digital signals processing is the embedded
systems targeted for health monitoring. Such systems require small devices capable
to process a bio-medical data at real time and with the minimum energy use.

Manymicro-watt power processors have been proposed to improve the processing
efficiency for the possible application to Bio Signal Processing. The first group
is the general purposed processor. They have developed for low power operation.

9.2 Application Specific Digital Signal Processing 249

Yet, they still require the long operating time, which is the important factor of the
energy consumption. Thus, the application specific processor rather than general
purpose processor has been developed. Even though it consumes more power than
the general purposed processors, the operating time can be reduced remarkably due
to the dedicated hardware and instructions. Thus, if the application is clearly defined
such as the Bio Signal Processing, it becomes very attractive to improve the energy
efficiency.

Recently, with the increase of the interests in the healthcare, the need for the ambu-
latory arrhythmia monitoring system has been rising exponentially. The monitoring
system records ECG signal continuously in ambulatory condition for a sizable time
like several hours. The system transmits the record data to the user or the healthcare
center like hospital when the alert ECG signal is detected or the recording period
is finished. In order to monitor and analyze the ECG signal, the functions operated
at the clinical instrument such as signal sensing and the classification should be
integrated into the light-weight, ambulatory monitoring system. The most important
requirements for the ambulatory monitoring system are ultra low energy operation
for the long battery life time and a small footprint for wearability. In general, since
the highest energy consuming parts are the memory transaction blocks and the wire-
less communication blocks than the processing block, the data processing as much
as possible before transmission is the most efficient method to reduce the total sys-
tem energy consumption. However, the development of such systems faces several
challenging tasks since they need to often address conflicting requirements for perfor-
mance, size, and accuracy. In addition, Electrocardiography (ECG) may face many
computational challenges, especially when 12 or more lead signals should be ana-
lyzed in parallel, at real-time, and under high sampling frequencies. A number of
recent research efforts focus on hardware implementations and the real time visu-
alization of the ECG signals Christos presented a hardware implementation of the
Pan and Tompkins QRS detection algorithm [5]. The system achieved a speed up
of 250% compared to the software implementation. Yutana Jewajinda presented an
FPGA-based Online-learning for ECG Signal Classification [6], where the complete
ECG signal classification can be implemented in hardware. Another challenge is the
analysis of huge amounts of data that may grow depending on the recording range
time and also the Visualization outputs of such systems on an environment that can
be consulted at real time. Recent techniques deployed for monitoring heart activity is
the 12-leads ECGwhich uses data coming from twelve ECG leads serially. The leads
produce huge amounts of data, especially when used for a long number of hours. The
monitoring part is also crucial for the real time diagnosis. This importance came from
the fact that in order to make clinical studies or heart diseases diagnosis, researchers
and doctors are required to be in immediate proximity to patients which is not always
practical.

Traditionally, personal medical monitoring systems, such as ambulatory electro-
cardiography devices [7], have been used to record data. Data processing and analy-
sis are performed off-line, making such devices impractical for continual monitoring
and early detection of medical disorders, especially for patients needing immediate
medical interventions.

250 9 Real Deign of Embedded Multicore SoC for Health Monitoring

A lot of research have been conducted to perform the transfer and the diagnosis
of the ECG signals at real time, Farah Magrabi et al. [8] presented a Web Based
Longitudinal ECG Monitoring, Jun Dong et al. [9] presented A Remote Diagnosis
Service Platform for Wearable ECG Monitors where they present a patient location
independent and continuous ECG monitoring and diagnosis system.

9.2.1 Analog and Digital Signals

In many cases, the signal of interest is initially in the form of an analog electrical
voltage or current, produced for example by a microphone or some other type of
transducer. In some situations, such as the output from the readout system of a
compact disc player, the data is already in digital form. An analog signal must
be converted into digital form before DSP techniques can be applied. An analog
electrical voltage signal, for example, can be digitized using an electronic circuit
called an analog-to-digital converter (ADC). This generates a digital output as a
stream of binary numbers whose values represent the electrical voltage input to the
device at each sampling instant.

9.2.2 Signal Processing

Signals commonly need to be processed in a variety of ways. For example, the
output signal from a transducer may well be contaminated with unwanted electrical
noise. The electrodes attached to a patient’s chest when an ECG is taken measure
tiny electrical voltage changes due to the activity of the heart and other muscles.
The signal is often strongly affected by mains pickup due to electrical interference
from the mains supply. Processing the signal using a filter circuit can remove or at
least reduce the unwanted part of the signal. Increasingly nowadays, the filtering of
signals to improve signal quality or to extract important information is done by DSP
techniques.

9.2.3 Analog to Digital Conversion

Signals in the real world are analog: light, sound, heart signal. So, real-world signals
must be converted into digital, using a circuit called analog to digital conversion,
before they can be manipulated by digital equipment. Scanning a picture for example
with a scanner is doing is an analog-to-digital conversion: The scanner is taking the
analog information provided by the picture (light) and converting into digital. When
voice is recorded or a VoIP solution is used on the computer, an analog-to-digital
conversion takes place to convert voice, which is analog, into digital information.

9.2 Application Specific Digital Signal Processing 251

Digital information is not only restricted to computers. For talk on the phone, for
example, voice is converted into digital since voice is analog and the communication
between the phone switches is done digitally. When an audio CD is recorded at a
studio, analog-to-digital conversion is taking place, converting sounds into digital
numbers that will be stored on the disc.

To get the analog signal back, the opposite conversion digital-to-analog, which
is done by a circuit called DAC (Digital-to-Analog Converter) is needed. Playing
an audio CD, what the CD player is doing is reading digital information stored on
the disc and converting it back to analog so that the music can be heard. There are
some basic reasons to use digital signals instead of analog, noise being the number
one. Since analog signals can assume any value, noise is interpreted as being part
of the original signal. Digital systems, on the other hand, can only understand two
numbers, zero and one. Anything different from this is discarded.

Basically Analog-to-digital conversion is an electronic process in which a con-
tinuously variable (analog) signal is changed, without altering its essential content,
into a multi-level (digital) signal. The input to an analog-to-digital converter (ADC)
consists of a voltage that varies among a theoretically infinite number of values.
Examples are sine waves, the waveforms representing human speech, heart signals
and the signals from a conventional television camera.

The output of the ADC, in contrast, has defined levels or states. The number
of states is almost always a power of two – that is, 2, 4, 8, 16, etc. The simplest
digital signals have only two states, and are called binary. All whole numbers can
be represented in binary form as strings of ones and zeros. Digital signals propagate
more efficiently than analog signals, largely because digital impulses, which are
well-defined and orderly, are easier for electronic circuits to distinguish from noise,
which is chaotic. This is the chief advantage of digital modes in communications.
Computers “talk” and “think” in terms of binary digital data; while a microprocessor
can analyze analog data, it must be converted into digital form for the computer to
make sense of it.

9.3 Period-Peak ECG Detection Algorithm

After we reviewed some basics about DSPs, we will now describe in this section a
so called Period-Peak Detection Algorithm (PPD) for processing real signal - ECG
signals. The PPD algorithm first detects the period and then looks for all peaks [10,
11]. This is the fundamental idea which differ from the known approaches that first
find peaks and then period.

The PPD algorithm detects period before finding peaks because there is a high
degree of randomness in the ECG signals. The randomness makes finding peaks an
erroneous process. Figure9.2 illustrates an example of faulty ECG analysis.

252 9 Real Deign of Embedded Multicore SoC for Health Monitoring

Fig. 9.2 Faulty ECG Analysis

What we would get by doing this is the level of correlation these signals have.
PPD algorithm computes several parameters: heart period, typical peaks (P, Q, R,
S, T, and U), and inter-peak time spans (R-R interval). Peak height and inter-peak
time ranging outside normal values, indicating different kinds of diseases, are also
detected with the PPD algorithm.

PPD consists of two processing flows (see Fig. 9.3): one that detects period using
the autocorrelation function, and another one that detects the number, amplitude and
time interval of all peaks.

Fig. 9.3 PPD algorithm processing flow

9.3 Period-Peak ECG Detection Algorithm 253

9.3.1 Period Detection

As indicated in Fig. 9.3, the PPD algorithm’s period detection phase consists of 4
steps: (1) Data reading, (2) Derivation, (3) Autocorrelation, and (4) Finding intervals.
The derivation phase finds the discrete derivative of the ECG signal. The derivative
function is the best function we can run and which can aid in amplifying signal
peaks; therefore, after reading the data of a signal y with samples from memory, a
very helpful step is to calculate the derivative of the signal y(t). Equation9.1 is the
derivative function used by the PPD algorithm in the period detection phase.

∂y

∂t
(t) ≈ y[n + 1] − y[n]

(n + 1) − n
= y[n + 1] − y[n] (9.1)

With this derivative, a given peak will be amplified relative to the samples before
it, and if the value of y[n] and y[n + 1] are near each other (i.e. no peaks) then
the difference will look relatively small on the new derivative graph. The advantage
of taking the derivative is that the fluctuations taking place in the signal, especially
those around the peaks, would be reduced to a near-zero-value. In addition, perfor-
mance overhead associatedwith derivative calculation of the ECG signal is negligible
compared to the rest of the algorithm.

The autocorrelation step finds the period of ECG signals. This step uses auto-
correlation function (ACF) defined by Formula9.2. This ACF is a statistical method
used to measure the degree of association between values in a single series separated
by some lags. The fixed length ACF is defined by Formula9.3. By running the ACF
on the function y over the recorded data sample, we can easily get the coefficients
of the ACF.

Ry[k] =
n=∞∑

n=−∞
y[n] × y[n − k] (9.2)

Ry[L] =
N∑

n=0

y[n] × y[n − L] (9.3)

where, Ry is the autocorrelation function, y[n] is the filtered ECG signal. L is a
positive natural number related to the number of times needed for the calculations
to get the period; it is the same as the number of lags of the autocorrelation. Finally,
the f inding interval step finds interval point in ECG signals based on the results
of the autocorrelation step.

The period detection detailed computation steps are shown in Fig. 9.4. As it is
shown in the above flow-chart, the actual period detection phase consists of seven
steps. Figures9.6, 9.7, 9.8 and 9.9 describe the detailed computations of the main
steps (Fig. 9.5).

254 9 Real Deign of Embedded Multicore SoC for Health Monitoring

Fig. 9.4 Period detection computation details

Fig. 9.5 Peaks detection computation details

9.3.2 Peaks Detection

As shown in Fig. 9.3, the second phase of the PPD algorithm is the peaks detection
phase and consists of 3main steps: Extraction, Discrimination, and Store results. The
extraction step discriminates significant peaks from calculated interval information
in period detection phase. The discrimination step finds 6 peak-points (P, Q, R, S,

9.3 Period-Peak ECG Detection Algorithm 255

Fig. 9.6 Period detection: finding maximum value algorithm. The autocorrelation step
ACF_ST E P is set 256

Fig. 9.7 Period detection: reduce negative value algorithm

256 9 Real Deign of Embedded Multicore SoC for Health Monitoring

Fig. 9.8 Period detection: find base points

Fig. 9.9 Period detection: sort base points

9.3 Period-Peak ECG Detection Algorithm 257

T and U) from the extracted peaks [1, 12]. Finally, the store step stores interval and
peak information in the buffer. The peaks detection detailed computation is shown
in Fig. 9.5.

9.4 Multicore SoC Hardware Design

Figure9.10 shows the block diagram of the multicare SoC system architecture that
was designed in hardware. As shown in this figure, the processing of a given ECG
signal from one lead is performed in four major phases: (1) signal reading, (2)
filtering, (3) analysis, and (4) display. In the remaining of this section, wewill explain
these processing stages in detail.

9.4.1 Signal Reading

First of all we have to note that the number of data inputs from the external sensors
(leads) is extensible to 15 leads or more (see Fig. 9.10). The size of data is included
in data read from the sensors. Analog Digital Converter (ADC) converts analog data
into digital data so a contiguous ECG signal is converted into a discrete ECG signal.
As a result, filter processing and analysis processing can be easily done.

Fig. 9.10 High-level view of the BANSMOM system architecture

258 9 Real Deign of Embedded Multicore SoC for Health Monitoring

9.4.2 Filtering

The band-pass filter reduces the influence of muscle noise, 60Hz interference, base-
line wander, and T-wave interference. This filter cascaded the low-pass and high-pass
filters described below to achieve a 3dB passband from about 5–11 Hz.

A low pass filter only allows low frequency signals from 0Hz to its cut-off fre-
quency, f c point to pass while blocking those any higher. The difference equation
of the filter is shown in Formula9.4. Where T is the sampling period, the cutoff
frequency is about 11Hz.

y(nT) = 2y(nT − T) − y(nT − 2T) + x(nT)

−2x(nT − 6T) + x(nT − 12T) (9.4)

The other type of filtering is called high-pass filter. Its design is based on subtracting
the output of a first-order low-pass filter from an all-pass filter (i.e., the samples in
the original signal). The difference equation of the filter is shown in the Formula9.5.
Where the cutoff frequency is about 5Hz.

y(nT) = 32x(nT − 16T) − [y(nT − T)

+x(nT) − x(nT − 32T)] (9.5)

9.4.2.1 Noise Filtering

Noise filtering uses a bandpass filter that is based on the Finite Impulse Response
(FIR) filter. The bandpass filter reduces the influence of muscle noise, 50Hz inter-
ference, baseline wander, and T-wave interference. Digital filters process digitized
or sampled signals. A digital filter computes a quantized time-domain representa-
tion of the convolution of the sampled input time function and a representation of
the weighting function of the filter. They are realized by an extended sequence of
multiplications and additions carried out at a uniformly spaced sample interval. The
digitized input signal is mathematically influenced by the DSP program. These sig-
nals are passed through structures that shift the clocked data into summers (adders),
delay blocks and multipliers. These structures change the mathematical values in a
predetermined way: the resulting data represents the filtered or transformed signal.

Digital filters are a very important part of DSP. Filters have two uses: signal
separation and signal restoration. Signal separation is needed when a signal has
been contaminated with interference, noise, or other signals. For example, imagine
a device for measuring the electrical activity of a baby’s heart (EKG) while still in
the womb. The raw signal will likely be corrupted by the breathing and heartbeat
of the mother. A filter might be used to separate these signals so that they can be
individually analyzed. Signal restoration is used when a signal has been distorted
in some way. For example, an audio recording made with poor equipment may be
filtered to better represent the sound as it actually occurred.

9.4 Multicore SoC Hardware Design 259

Finite Impulse Response (FIR) filter is a basic type of digital filter. FIR filters have
no non-zero feedback coefficient in the general form of the digital filter difference
equation. That is, the filter has only zeros, and once it has been excited with an
impulse, the output is present for only a finite N number of computational cycles.
The FIR filter uses noise rejection and waveform extraction for ECG algorithm. The
data from analog/digital converter is finite and is a discrete digital signal; therefore,
BANSMOM system uses FIR filter. This filter is popular among liner digital filters
and the most safety in another filter within finite data. The FIR filter is composed
of three parts: delay element, multiplier, and adder. Formula9.7 is the difference
equation for FIR filter that is defined by the relationship between input signal and
output signal.

y[n] = a0xn + a1xn−1 + · · · + aN xn−N (9.6)

=
N∑

i=0

ai xn−i (9.7)

N is filter order that corresponds to the number of taps. xn are current or previous filter
inputs. y[n] is the current filter output. ai are the filters coefficients that correspond
to impulse response. A FIR filter works by multiplying an array of the most recent
n data samples by an array of constants, and summing the elements of the resulting
array. The filter then inputs another sample of data and repeats the process.

9.4.3 Data Processing

Correlation is calculated between the acquired segment and a pattern which has been
previously obtained. For each analyzed patient, the pattern segment is assumed to
contain regular ECG signals where a signal’s QRS complex is contained so that any
further ECG pulses can be correlated with it. High correlation values correspond to
pulse detection. Pattern extraction is performedby themain processor.Onceobtained,
it is transferred and stored to the off-chip memory. The off-chip memory starts to
receive data samples directly from the ADC. Data samples are stored in a Queue
(FIFO). Correlation pattern is calculated, and pulse alignment is evaluated. When
the input signals in the Queue are aligned with the pattern, a high correlation value
will be obtained, and a signal indicating the presence of a new pulse is generated.
Externalmonitor outputs the analyzed results. The output data is peaks of each typical
wave (P, Q, R, S and T), heart rate and entire waveform (see Figs. 9.13 and 9.16).

260 9 Real Deign of Embedded Multicore SoC for Health Monitoring

9.4.4 Processor Core

For Master and Slave cores, we adopted the Nios II soft-core which is a 32-bit
embedded-processor architecture designed byAltera [13]. Nios II incorporates many
enhancements over the original Nios architecture, making it more suitable for a wider
range of embedded computing applications, fromDSP to system-control. TheNios II
architecture is a RISC style architecture. The soft-core nature of the Nios II processor
lets the system designer specify and generate a custom Nios II core, tailored for his
or her specific application requirements. Of course, system designers can extend the
Nios II’s basic functionality by adding a predefined memory management unit, or
defining custom instructions and custom peripherals (Fig. 9.11).

Fig. 9.11 Prototyped multicore SoC block diagram

Fig. 9.12 Nios II core architecture block diagram

9.4 Multicore SoC Hardware Design 261

Nios II processor is designed for 5-stage pipelines, with separate data and instruc-
tion Harvard structure. Nios II has its own dedicated architecture and instruction set
to support 32 bits hardware multiplication and division instructions. It has 32 general
purpose registers. Users can also customize up to 256 instructions according to their
needs. Figure9.12 shows a simple block diagram of the Nios II core. Reader can
reefer to on-line literature [14] for more details.

9.5 Real-Time Monitoring Interface Design

The monitoring part is crucial for the real time diagnosis with BANSNOM system.
The existing methods of ECG monitoring are characterized by a manually-intensive
work flow for data acquisition, formatting and visualization. Besides, they are most
often relying on multiple serial processes and several software packages.

The developed Real-Time Interaction (RTI) interface is a robust web based appli-
cation. This feature allows the user to deal with the high requirements of bio-medical
data monitoring, such as the real time constraint in addition to the interaction and
the synchronization issues between the medical staff side and the patient side.

The RTI tool uses PHP [15] as a server side and Mysql [16] as a data base
management system. The ECG waveform is displayed with a library based on Java-
script. Moreover, the dynamic update is ensured byAjax technology to allow the user
to interact directly with the data coming from the local storage without needing to
refresh the page. The incoming data is stored in a dedicated table in Mysql database.
Each node has its own table that contains all data classified by recording date. This
classification allows the medical staff to visualize any specific data at any desired
date and time. In addition, by building the RTI tool as a web application, one can
improve the mobility of the monitoring task without distributing it or installing any
specific software. Thus, the medical staff can consult the ECG data at real-time from
anywhere through an Internet browser. In other words, the user/doctor can easily
interact with patients at any time as long as the Internet connection is established
(Figs. 9.13 and 9.14).

9.5.1 Data Capturing

Theoutput of the processing part is the coordinates of each peak for each corre-
sponding node. To continue on the same way of mobility, the processed data coming
from BANSMOM node(s) are transmitted to the database through the Internet and
the corresponding table in MySQL is updated automatically. Figures9.15 and 9.16
show BANSMOM system running snapshot and the external monitoring interface
respectively.

262 9 Real Deign of Embedded Multicore SoC for Health Monitoring

Fig. 9.13 Software simulation output

9.5.2 Data Display and Analysis

Thecoordinates of the ECG graph from each node are first transmitted through the
Internet and sent to the database. This process is done as long as there are new
incoming data. The continuity of the update process gives us a wide range of ECG
data classified by capture date. The real time charting library implemented in the web
visualization tool will manipulate this huge amount of data. So, the medical staff can
consult the latest incoming data at real time (a marker is implemented to show that
there are new incoming data) or it can re-consult previous data.

As it is shown in Fig. 9.16, the tool contains four main modules. The most impor-
tant one is theECGviewer itselfwith the capability to display the data from three leads
at the same time. The second module (window) displays the nodes which already
sent data to the database. The remaining utilities are dedicated for the information
related to the node (patient).

9.5 Real-Time Monitoring Interface Design 263

Fig. 9.14 (a) Get live-data, (b) Get previous-data

264 9 Real Deign of Embedded Multicore SoC for Health Monitoring

Fig. 9.15 Multicore SoC system running snapshot

Fig. 9.16 Interactive RTI tool displaying ECG waves

Figure9.14b illustrates the PHP script for consulting previous ECG data. In the
case of visualizing live incoming data, an Ajax call is executed; this execution returns
the last peaks that have been added to the database as shown in Fig. 9.14a.

9.6 System Hardware and Software Design Evaluation 265

9.6 System Hardware and Software Design Evaluation

9.6.1 Hardware Complexity

The system was designed in Verilog HDL. Figure9.11 shows the block diagram of
the prototyped system. The master module consists of the Altera Nios II core [14],
four on-chip memories (used for raw ECG data storage, processor memory, shared
memory and virtual external memory), an interrupt timer, a graphics LCD controller,
a LED controller and a JTAG UART (used for connection with host PC). One PPD
node (slave) consists of Nios II core, on-chip memory, and an interrupt timer.

The FIR filter module is generated by Altera MegaCore Function. The specifi-
cation of this filter is as follows: filter step is 51, sample rate is 128, and cutoff
frequency is from 5–15 Hz. Table9.1 shows logic synthesis result. For example, one
configured with 1-lead (only one PPD module), the logic utilization is about 14%,
the total block memory bits is about 21%, and The total power dissipation is about
677mW.

Table 9.1 Hardware complexity

Systemmodel Logic utilization MEM bits Speed (MHz) Power (mW)

ALUTs ALUTs REG Total (%)

1-lead 9,769 16 11,669 14 1,207,312
(21%)

97.89 677.00

2-lead 17,169 32 21,297 26 1,810,384
(32%)

95.82 716.31

3-lead 24,592 48 30,947 38 2,413,840
(43%)

92.52 754.84

4-lead 32,047 64 40,566 50 3,016,976
(54%)

92.25 784.31

Table 9.2 Performance evaluation

Recode
(No.)

Detected RR Interval
(# of interval)

Failed Detection
(# of interval)

Execution time
(s)

16265 14 7 (50%) 6.787

16273 13 3 (23%) 6.959

16420 14 5 (36%) 6.791

16773 10 1 (10%) 6.511

16786 10 3 (30%) 6.524

17052 9 2 (22%) 6.182

18177 15 5 (33%) 8.316

18184 8 3 (38%) 4.860

266 9 Real Deign of Embedded Multicore SoC for Health Monitoring

9.6.2 Performance Evaluation

We used real sample data from PhysioBank data base [17] for testing the correctness
and the accuracy of BANSMOM system. Table9.2 shows the test results over various
configurations. Figure9.13 shows the simulation screen capture of the processing
report. PPP, QPP, RPP, SPP, TPP and UPP mean P, Q, R, S, T and U Peaks. On
average, the PPD algorithm achieves fair accuracy of about 69%.

9.7 Chapter Summary

Recent technological advances in wireless networking, microelectronics and the
Internet allow computer and biomedical scientists to fundamentally modernize and
change the way health care services are deployed.

Electrocardiography is a commonly used, non-invasive procedure for recording
electrical changes in the heart. The record, which is called an electrocardiogram
(ECG or EKG), shows the series of waves that relate to the electrical impulses which
occur during each beat of the heart. The results are printed on paper or displayed on
a monitor. The waves in a normal record are named P, Q, R, S, T, U and follow in
alphabetical order.

MCSoCs are high performance devices that incorporate multiple building blocks
from multiple sources. An embedded multicore SoC may contain general or special
purpose fully programmed processors, co-processors, DSPs, dedicated hardware,
memory blocks, etc. TheseMCSoC systems are becoming a common design alterna-
tive in portable devices because it is possible to manufacture a silicon chip including
only necessary elements.

This chapter exploits the technology of parallel processing to process the electro-
cardiography computational kernels in parallel. The idea is to implement the tradi-
tional multi-lead bulky electrocardiogram on a programmable embedded multicore
SoC which is small and more efficient. The presented solution paves the way for
real-time processing diagnosis of heart-related diseases. Prototyping of Multicore
SoC on FPGA involves building a functional system model that lets the designer
evaluate various aspects of a design, and provide a realistic projection about the
final product implementation. Having a prototype available provides more accurate
power-performance evaluations. For example, prototypes make accurate area esti-
mations feasible, as well as hardware complexity overhead and energy consumption
measurements.

References 267

References

1. Y. Haga, A. Ben Abdallah, K. Kuroda, Embedded MCSoC architecture and period-peak detec-
tion (PPD) algorithm for ECG/EKG processing, in The 19th Intelligent System Symposium
(FAN 2009), (2009), pp. 298–303

2. A.D. Desai, T.S. Yaw, T. Yamazaki, A. Kaykha, S. Chun, V.F. Froelicher, Prognostic signifi-
cance of quantitative qrs duration. Am. J. Med. 119(7), 600–606 (2006)

3. G.M. Friesen, T.C. Jannett,M.A. Jadallah, S.L.Yates, S.R.Quintand,H.T.Nagle,A comparison
of the noise sensitivity. IEEE Trans. Biomed. Eng. 37(1), 85–89 (1990)

4. J. Pan,W.J. Tompkins, A real-time QRS detection algorithm. IEEE Trans. Biomed. Eng. 32(3),
230–236 (1985)

5. M.G. Carey, Electrocardiographic predictors of sudden cardiac death. J. Cardiovasc. Nurs.
23(2), 175–182 (2008)

6. Y. Jewajinda, P. Chongstitvatana, Electrical Engineering/Electronics Computer Telecommuni-
cations and Information Technology (ECTI-CON) IEEE, (2010), pp. 1050–1054

7. B.U. Kohler, C. Hennig, R. Orglmeister, The principles of software QRS detection. Eng. Med.
Biol. Mag. IEEE 21(1), 42–57 (2002)

8. F. Magrabi, H. Nigel, B.G. Celler, Web based longitudinal ECG monitoring, engineering in
medicine and biology society, in Proceedings of the 20th Annual International Conference of
the IEEE, (1998), pp. 1155–1158

9. J. Dong, J.-W. Zhang, H.-H. Zhu, L.-P. Wang, X. Liu, Z.-J. Li, Intelligent systems. IEEE 1,
36–43 (2012)

10. A. Ben Abdallah, Y. Haga, K. Kuroda, An efficient algorithm and embedded multicore imple-
mentation for ECG analysis in multi-lead electrocardiogram records, in IEEE Proceedings of
the 39th International Conference on Parallel Processing Workshop, (San Diego, 13–16 Sept
2010), pp. 99–103

11. A.B. Ahmed, Y. Kimezawa, A. Ben Abdallah, Towards smart health monitoring system for
elderly people, in IEEE Proceedings of the 4th International Conference on Awareness Science
and Technology, (2012), pp. 248–253

12. H. Yasuyoshi, A. Ben Abdallah, Architecture and design of application specific multicore SoC,
graduation thesis, The Univ. of Aizu, Feb. 2010

13. Altera Design Software, http://www.altera.com/
14. Nios II Processor, http://www.altera.com/literature/lit-nio2.jsp
15. PHP Hypertext Preprocessor, http://www.php.net/
16. Mysql, http://www.mysql.com/
17. PhysioBank, http://www.physionet.org/physiobank/

http://www.altera.com/
http://www.altera.com/literature/lit-nio2.jsp
http://www.php.net/
http://www.mysql.com/
http://www.physionet.org/physiobank/

Index

A
Accelerator, 11
ACK/NACK, 75
Acknowledgment signal, 154
Active components, 146
Adaptive, 236
Adaptive online TSV sharing algorithm, 182
Adaptive routing, 166
Aging, 146, 147
Algorithm, 11, 183
Analog, 250
Analysis, 247
Annotations, 23
API, 24
Applications, 8
Architecture, 3, 28
Assembly, 216
Assembly code, 203
Assembly generation, 216
Autocorrelation, 253

B
Backup routes, 151
Bandwidth, 162
Baseline, 160
Basic blocks, 216
Battery, 249
Benchmarks, 197, 219, 221
Biomedical, 247
Buffer size, 97
Building blocks, 144
Bus, 2, 17
Bus-based, 3
Butterfly, 70

C
Cache, 1, 15, 50
Cache coherence, 15
Cache miss, 15
Capacitance, 229
Cell processor, 23
Chip, 2
Chip layout, 229
Circuit-switched, 144
Clock gating, 230
Clocks, 16
Coarse-grain, 201
Coherence, 61
Communication, 144, 236
Communication protocols, 50
Comparison, 195
Compilation, 238
Compiler, 201, 219
Compiler designers, 201
Compiling, 205
Complexity, 161
Computation model, 206
Computer systems, 1
Computing markets, 6
Concurrency, 201
Configuration, 144
Configuration packet, 144
Connections, 179
Consistency, 61
Consumer electronic, 9
Consumption, 233
Control router, 155
Copper-based electrical link, 144
Core-to-router, 101, 102
CPU, 7, 234
Credit-based, 75
Crossbar, 88

270 Index

D
3D, 175
DAC, 251
DAG, 206
Data capturing, 261
Data display and analysis, 262
Data link layer, 241
Data-Level Parallelism, 5
Data processing, 259
Deadlock, 79
Deflitizer, 103
Degradation, 149
Dependency analysis, 215
Design, 146, 217, 219
Design optimization, 187
Destination node, 153
Digital signal processing, 11, 217, 248
3D integration, 175, 177
Dissipation, 144
Distributed routing, 96
2D-mesh, 68
2D-NoC, 109
3D-NoC, 109, 177
3D-OASIS-NoC, 112
DRAM, 48, 234
DSP, 246, 248, 266

E
ECG, 266
ECG analysis, 252
ECG detection, 251
ECG signal, 247
Elderly, 245
Electrocardiography, 266
Electromagnetic, 148
Electronic, 159
Electronic networks-on-chip, 143
Electrostatic discharge, 148
Embedded, 1
Embedded applications, 39
Embedded multicore, 245
Embedded systems, 201
Encoding, 231
Energy, 8, 16, 42, 60, 162, 233
Energy-aware, 242
Energy efficiency, 226
Energy-efficient, 107
Error correction, 240
Error correction coding, 177
Evaluation, 160
Evaluation results, 189
External sensors, 257

F
Failure, 148
Failure rate, 162
Fault, 17, 148
Fault assumptions, 179
Fault-resilient, 168
Fault-tolerant, 158, 177
Fault-tolerant routing, 197
Field Programmable Gate Arrays (FPGAs),

6, 7, 266
Filtering, 258
FIR filters, 259
Flexibility, 46
Flit format, 99, 116
Flitizer, 101
Flit-level, 98
Floating, 32
Floating-point accelerator, 30
Flow control, 28, 74, 150
FSM, 24

G
Gateway, 146
GIMPLE, 210
GNU GCC, 23
Grant-out, 121
Guarding, 232

H
Hardware, 246, 266
Hardware complexity, 194
Hardware design, 257
HDL, 33
Health, 245
Health monitoring, 245
Heart diseases, 246
Heterogeneous, 10, 40
High-performance, 144
High-throughput, 107
Homogeneous, 10, 40
Hybrid PNoC, 144

I
I/O, 15
ICs wear down, 147
Implementations, 13
Input-port, 117
Insertion, 90
Instruction scheduling phase, 213
Instruction Level Parallelism (ILP), 4, 28,

202, 217, 218

Index 271

Instructions, 28
Instruction set, 217
Interconnect, 2
Interrupt, 265
Invalidation, 63
IP, 3, 39

J
JPEG encoder, 132

L
LA-XYZ, 121
Laser source, 144, 145
Latency, 162, 192
Layer layout, 195
LDAG, 211
Leads, 249
Light-weight, 155
Link architecture, 145
Livelock, 79
Locality, 50
Logic-level, 230
Look-ahead routing, 120, 167
Low-energy, 226
Low latency, 107
Low-power, 154

M
MAC, 241
Many-core, 201, 221
Mapping, 92, 97, 134, 138, 140, 177, 182
Matrix-Arbiter, 121, 124
Maximum parallelism, 216
MCSoC, 40
Memory, 48
Memory allocation, 236
Memory management, 16
Memory system, 234
Mesh, 14, 70, 81, 84, 89, 92
Microring fault-resilient, 151
Microring Resonators (MRs), 146, 147
Middle-ware, 242
MIPS, 217
Misdelivered, 147
Mobile applications, 44
Modular redundancy, 167
Modulators, 144, 145
Monitoring, 245
Monitoring interface, 261
Monitoring systems, 249
Moore’s Law, 2

Multicore, 266
Multicore SoC, 2, 17
Multicore SoC applications, 44
Multicore systems, 12
Multilayered, 144
Multimedia, 44
Multimedia applications, 9, 44
Multiprocessor, 1, 6
Multi-threading, 16
Mysql, 261

N
Natural instruction level parallelism, 214
Network, 3, 17, 21, 25, 26, 41, 42, 60, 68
Network architectures, 65
Networking, 39
Network interface, 47, 51, 70, 94
Network layer, 241
Network-on-chip, 3, 47, 48, 51, 65, 67––69,

94, 105, 112, 147, 150, 168
Network protocols, 238
Network size, 97
Next-port, 120
Nios, 96
Nios II, 260
Noise, 148, 258

O
Off-chip, 58
Offset calculation, 212
ON/OFF, 74
On-chip Interconnection Networks, 17
On-chip network, 2
One-Offset QueueCore, 205
OpenMP, 23
Operating system, 236
Optical, 143
Optical device, 148
Optimistic mapping, 140
Optimizations, 233
Organization, 11
Overhead, 163, 197

P
Packet size, 97
Packet-switched, 51
Packet switching, 2, 3, 71
Paradigm, 107
Parallel, 266
Parallel hardware, 6
Parallel queue compiler, 204

272 Index

Parallelism, 4, 216, 245
Parallelization, 23
Parallelizing compiler, 201, 217, 221
Partitioning of tasks, 240
Passband, 151
Path-configuration, 157
Path-setup-control-packet, 156
P-Code, 214
Peaks detection, 254
Performance, 160
Period-peak, 251
Period detection phase, 253
PHENIC, 144
Photodetector, 144, 149
Photonic, 143, 144
Photonic Network-on-Chip (PNoC), 143
Photonic path, 143
Photonic switch controller, 153
Photonic switches, 144
PHP, 261
Physical, 147
Physical layer, 240
Pipeline, 28
Platforms, 15
Power, 8, 10, 16
Power-aware, 232
Power consumption, 16
Power-efficient, 151
Powerful, 7
PPD, 252
PPD algorithm, 251
P, Q, R, S, T, U, 266
Processing element, 12, 16, 46, 113, 151, 245
Processor, 175, 235
Processor core, 260
Processor performance, 202
Programmability, 10
Programming, 4, 5, 10, 12
Programming language, 201
Programs, 201
Protocol stack, 239
Prototyped, 260
Prototyping, 266
PV, 147

Q
QC-2, 29
QH, 29
QoS, 241
QREG, 29, 33
QRS complex, 247
QSTATEs, 206

QT, 29
Queue, 216, 219
Queue compiler, 218
Queue computation, 29
Queue computation model, 204
Queue computers, 203
QueueCore, 203, 208
Queue machines, 203
Queue processor, 204

R
Radiation, 146, 148
Real deign, 245
Realistic traffic, 197
Real-Time Interaction (RTI) interface, 261
Reconfigurability, 2
Reducing voltage and frequency, 228
Redundancy technique, 178
Registers, 203
Reliability, 17, 191
Re-usability, 46
RISC, 217, 220
RISC-like processor, 217
RISC machine, 221
Router, 144, 146, 188
Router-to-core, 103
Routing, 33, 52, 69, 70, 76, 77
Routing algorithms, 76, 111

S
Scalability, 2, 3, 11, 26, 54, 67–69, 108, 109,

131, 162, 179, 190
Scheduling, 202
Scheduling algorithms, 202
Scratchpad memory, 58
Secondary storage, 234
Semiconductor, 5, 8
Sensitive, 148
Sensitivity, 148
Serialization technique, 188
Sharing circuit, 179
Signal processing, 250
Signal strength, 151
Signal-to-noise, 148
Simulation, 266
Simulator, 160
SoC, 246, 266
Soft IP cores, 53
Software, 4
Software design, 265
Software issues, 201
Software simulation, 262

Index 273

Solder balls, 176
Source routing, 95
Space exploration, 217
Spacial-switching, 152
Stall-go, 122
Statement merging, 214, 215, 218
Store-and-forward, 71
Stream, 143
Superscalar queue machine, 203
Switch, 85
Switch allocator, 117, 121
Switching, 71
Synchronization, 54
Synchronous, 43
System architecture, 257
System hardware, 265
System structure, 179
Systems on-Chip (SoCs), 1, 7, 175

T
Task graph, 131
Task-level parallelism, 5
Tear-down, 152, 159
Technology, 175
Technology scaling, 229
Temperature, 15, 16, 150
Thermally-caused, 151
Thermal variance, 168
Thermal variations, 146, 147
Thread-level parallelism, 4
Three-dimensional, 144
Throughput evaluation, 193
Through-silicon-via (TSVs), 175
Topology, 47, 68–70

Transmission, 144
Transmitter-NI, 128
Traversal, 117
Trimming technique, 147
TSV cluster, 178, 183, 197
TSV-clusters return, 185
TSV defect tolerance, 177
TSV grouping, 195
TSV network, 195

V
Variability, 149
Verilog, 88
Virtual-channel-based, 80
Virtual-cut-through, 73, 116
Virtual TSV, 187

W
Wave, 247
Waveguide, 144, 146
Wavelength Division Multiplexing (WDM),

144, 167
Wavelengths, 144, 148
Wavelength-selective switching, 152
Weight adjustment, 186
Weight generation, 185
Wireless stacking, 176
Wormhole, 72
Wormhole-like, 116

X
XYZ, 120

	Preface
	Contents
	Figures
	Tables
	1 Introduction to Multicore Systems On-Chip
	1.1 The Multicore Revolution
	1.1.1 The Impact of Moore's Law
	1.1.2 On-Chip Interconnection Schemes
	1.1.3 Parallelism and Performance
	1.1.4 Parallel Hardware Architectures
	1.1.5 The Need for Multicore Computing
	1.1.6 Multicore SoCs Potential Applications

	1.2 Multicore SoC Basics
	1.2.1 Programmability Support
	1.2.2 Software Organization
	1.2.3 Programming Multicore Systems
	1.2.4 Multicore Implementations

	1.3 Multicore SoCs Design Challenges
	1.3.1 Cache Coherence
	1.3.2 Power and Temperature
	1.3.3 Multi-threading and Memory Management
	1.3.4 On-Chip Interconnection Networks
	1.3.5 Reliability Issues

	1.4 Chapter Summary
	References

	2 Multicore SoCs Design Methods
	2.1 Introduction
	2.2 Design Space Exploration
	2.3 Parallel Software Development Phase
	2.3.1 Compiler-Based Schemes
	2.3.2 Language Extensions Schemes
	2.3.3 Language Extensions with APIs
	2.3.4 Model-Based Schemes

	2.4 Generic Architecture Template (GAT) for Real Multicore SoC Design
	2.4.1 Target Multicore SoC Platform
	2.4.2 Design Method
	2.4.3 QueueCore Architecture
	2.4.4 Performance Analysis

	2.5 Chapter Summary
	References

	3 Multicore SoC Organization
	3.1 Introduction
	3.1.1 Heterogeneous MCSoC
	3.1.2 Homogeneous MCSoC
	3.1.3 Multicore SoC Applications
	3.1.4 Applications Mapping

	3.2 MCSoC Building Blocks
	3.2.1 Processor Core
	3.2.2 Memory
	3.2.3 Cache
	3.2.4 Communication Protocols
	3.2.5 Intellectual Property (IP) Cores
	3.2.6 IP Cores with Multiple Clock Domains
	3.2.7 Selection of IP Cores

	3.3 MCSoC Memory Hierarchy
	3.3.1 Types on On-Chip Memory
	3.3.2 Scratchpad Memory
	3.3.3 Off-Chip Memory
	3.3.4 Memory Power Reduction in SoC Designs

	3.4 Memory Consistency in Multicore Systems
	3.4.1 Cache Coherence Problem
	3.4.2 Cache Coherence Protocols

	3.5 Chapter Summary
	References

	4 Multicore SoC On-Chip Interconnection Networks
	4.1 Introduction
	4.2 Network-on-Chip Architecture
	4.2.1 Topology
	4.2.2 Switching
	4.2.3 Flow Control
	4.2.4 Routing Algorithms

	4.3 Hardware Design of On-Chip Network
	4.3.1 Topology Design
	4.3.2 Pipeline Design
	4.3.3 Crossbar Design
	4.3.4 Limitations of Regular Mesh Topology
	4.3.5 SPL Insertion Algorithm
	4.3.6 Network Interface Design

	4.4 Chapter Summary
	References

	5 Advanced Multicore SoC Interconnects
	5.1 Introduction
	5.2 Three-Dimensional On-Chip Interconnect
	5.2.1 3D-NoC Versus 2D-NoC
	5.2.2 Routing Algorithms
	5.2.3 Topology Design
	5.2.4 Switching Policy
	5.2.5 3D-NoC Router Architecture Design
	5.2.6 Network Interface Architecture
	5.2.7 3D-NoC Design Evaluation
	5.2.8 Conclusion

	5.3 Photonic On-Chip Interconnect for High-Bandwidth Multicore SoCs
	5.3.1 Photonic Communication Building Blocks
	5.3.2 Design Challenges
	5.3.3 Fault Models
	5.3.4 Fault-Tolerant Photonic Network-on-Chip Architecture
	5.3.5 Evaluation
	5.3.6 Related Literature
	5.3.7 Chapter Summary

	References

	6 3D Integration Technology for Multicore Systems On-Chip
	6.1 3D Integration Technology
	6.2 Fault-Tolerant TSV Cluster for 3D Integration
	6.2.1 Fault-Tolerance for TSV-Clusters

	6.3 Adaptive Online TSV Sharing Algorithm
	6.3.1 Weight Generation
	6.3.2 TSV-Clusters Return
	6.3.3 Weight Adjustment
	6.3.4 Design Optimization

	6.4 Evaluation Results
	6.4.1 Defect-Rate Evaluation
	6.4.2 Performance Evaluation
	6.4.3 Latency Evaluation
	6.4.4 Throughput Evaluation
	6.4.5 Router Hardware Complexity
	6.4.6 Comparison

	6.5 Chapter Summary
	References

	7 Parallelizing Compiler for Single and Multicore Computing
	7.1 Introduction
	7.1.1 Instruction Level Parallelism
	7.1.2 Queue Computation Model

	7.2 Parallel Queue Compiler
	7.2.1 Queue Processor Overview
	7.2.2 Compiling for One-Offset QueueCore Instruction Set

	7.3 Parallelizing Compiler Framework
	7.3.1 One-Offset P-Code Generation Phase
	7.3.2 Offset Calculation Phase
	7.3.3 Instruction Scheduling Phase
	7.3.4 Natural Instruction Level Parallelism Extraction: Statement Merging Transformation
	7.3.5 Assembly Generation Phase

	7.4 Parallelizing Compiler Development Results
	7.4.1 Queue Compiler Evaluation
	7.4.2 Comparison of Generated QueueCore Code with Optimized RISC Code

	7.5 Chapter Summary
	References

	8 Power Optimization Techniques for Multicore SoCs
	8.1 Introduction
	8.2 Power-Aware Technological-Level Design Optimizations
	8.2.1 Factors Affecting CMOS Power Consumption
	8.2.2 Reducing Voltage and Frequency
	8.2.3 Reducing Capacitance

	8.3 Power-Aware Logic-Level Design Optimizations
	8.3.1 Clock Gating
	8.3.2 Logic Encoding
	8.3.3 Data Guarding

	8.4 Power-Aware System Level Design Optimizations
	8.4.1 Hardware System Architecture Power Consumption Optimizations
	8.4.2 Operating System Power Consumption Optimization
	8.4.3 Application, Compilation Techniques, and Algorithm
	8.4.4 Energy Reduction in Network Protocols

	8.5 Chapter Summary
	References

	9 Real Deign of Embedded Multicore SoC for Health Monitoring
	9.1 Introduction
	9.1.1 Electrocardiography and Heart Diseases

	9.2 Application Specific Digital Signal Processing
	9.2.1 Analog and Digital Signals
	9.2.2 Signal Processing
	9.2.3 Analog to Digital Conversion

	9.3 Period-Peak ECG Detection Algorithm
	9.3.1 Period Detection
	9.3.2 Peaks Detection

	9.4 Multicore SoC Hardware Design
	9.4.1 Signal Reading
	9.4.2 Filtering
	9.4.3 Data Processing
	9.4.4 Processor Core

	9.5 Real-Time Monitoring Interface Design
	9.5.1 Data Capturing
	9.5.2 Data Display and Analysis

	9.6 System Hardware and Software Design Evaluation
	9.6.1 Hardware Complexity
	9.6.2 Performance Evaluation

	9.7 Chapter Summary
	References

	Index

