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SECTION  1 

GENERAL DESCRIPTION

One of the important basic measuring instruments 
used at ultra-high frequencies is the slotted line. With it, 
the standing-wave pattern of the electric field in coaxial 
transmission line of known characteristic impedance can 
be accurately determined. From the knowledge of the 
standing-wave pattern several characteristics of the 
circuit connected to the load end of the slotted line can 
be obtained. For instance, the degree of mismatch 
between the load and the transmission line can be 
calculated from the ratio of the amplitude of the 
maximum of the wave to the amplitude of the minimum 

of the wave. This is called the voltage standing-wave 
ratio, VSWR. The load impedance can be calculated from 
the standing wave ratio and the position of a minimum 
point on the line with respect to the load. The wavelength 
of the exciting wave can be measured by obtaining the 
distance between minima, preferably with a lossless load 
to obtain the great resolution, as successive minima or 
maxima are spaced by half wavelengths. The properties 
outlined above make the slotted line valuable for many 
different types of measurements on antennas, 
components, coaxial elements, and networks. 

SECTION  2 

THEORY

2.1 CHARACTERISTIC IMPEDANCE AND VELOCITY 
OF PROPAGATION. 

A transmission line has uniformly distributed 
inductance and capacitance, as shown in Figure 1. The 
 

series resistance due to conductor losses and the 
shunt resistance due to dielectric losses are also 
uniformly distributed, but they will be neglected for 
the present. The square root of the ratio of the in- 
ductance per unit length, L, to the capacitance per

Figure 1. Circuit showing the distribution 
of inductance and capacitance 

along a transmission line. 
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unit length, C, is defined as the characteristic im- 
pedance, Z0, of the line. 

C
LZ =0  (1) 

This is an approximation, which is valid when line 
losses are low. It gives satisfactory results for most 
practical applications at high freguencies. 

In the next paragraph, transmission-line be- 
havior will be discussed in terms of electromagnetic 
waves traveling along the line. The waves travel with 
a velocity, ν, which depends on L and C in the fol- 
lowing manner: 

LC
v 1
=  (2) 

If the dielectric used in the line is air, (permeability 
unity), the product of L and C for any uniform line 
is always the same. The velocity is egual to the ve- 
locity of light, c, (3 × 1010 cm/sec). If the effective 
dielectric constant, εr, is greater then unity, the ve- 
locity of propafation will be the velocity of light 
divided by the sguare root of the effective dielectic 
constant. 

r

cv
ε

=  (3) 

The relationship between freguency, f, and 
wavelenght, λ, in the transmission line is 

vf =λ  (4a) 

λ
vf =  (4b) 

f
v

=λ  (4c) 

If the dielectric is air (permeability is unity), 

cm/sec103 10⋅=fλ  (4d) 

if λ is in centimeters and f is in cycles per second (Hz). 

2.2 TRAVELING AND STANDING WAVES. 
The performance of a transmission line having 

a uniform characteristic impedance can be explained 
in terms of the behavior or of the electonagnetic wave 
that travels along the line from the generator to the 
load, where all or a portion of it may be reflected 
with or without a change in phase, as shown in Figure 
2a. The reflected wave travels in the opposite direc- 
tion along the line, back toward the generator. The 
phases of these waves are retarded linearly 360° for 
each wavelenght traveled. 

The wave traveling from the generator is called 
the incident wave, and the wave traveling toward the 

Figure 2. (a) Chart showing the variations in the ampli- 
tude and phase of incident and reflected waves along a 
transmission line. (b) The vector combination of the in- 
cident and reflected waves at various points along the 
line is illustrated and the resultant standing wave pro- 
duced by the combination of the two waves is plotted. 
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generator is called the reflected wave. The combina- 
tion of these traveling waves produces a stationary 
interference pattern, which is called a standing wave, 
as shown in Figure 2b. The maximum amplitude of 
the standing wave occurs when the incident and re- 
flected waves are in phase or when they are an integral 
multiple of 360º out of phase. The minimum ampli- 
tude occurs when the two waves are 180º, or an odd 
integral multiple thereof, out of phase. The ampli- 
tude of the standing wave at other points along the 
line is the vector sum of incident and reflected waves. 
Successive minima and maxima are spaced, respec- 
tively, a half-wavelength along the line, as shown in 
the figure. 

The magnitude and phase of the reflected wave 
at the load, relative to the incident wave, are func- 
tions of the load impedance. For instance, if the 
load impendace is the same as the characteristic 
impendace of the transmission line, the incident wave 
is totally absorbed in the load and there is no 
reflected wave. On the other hand, if the load is loss- 
les, the incident wave is always completely reflected, 
with no change in amplitude but with a change in 
phase. 

A traveling electromagnetic wave actually con- 
sists of two component waves: a voltage wave and a 
current wave. The ratio af the magnitude and phase 
of the incident voltage wave, Ei, to the magnitude 
and phase of the incident current wave, Ii, is always 
equal to the characteristic impedance, Z0. The re- 
flected waves travel in the opposite direction from 
the incident waves, and consequently the ratio of the 
reflected voltage wave, Er, to the reflected current 
wave, Ir, is �Z0. Since the characteristic impedance 
in most cases is practically a pure resistance1, the 
incident voltage and current waves are in phase with 
each other, and the reflected voltage and current 
waves are 180º out of phase. 

0Z
I
E

i

i =  (5a) 

0Z
I
E

r

r −=  (5b) 

Equations (5a) and (5b) are valid at all points along 
the line. 

The magnitude and phase of the reflected volt- 
age wave, Er, relative to the incident wave, Ei, at the 
load is called the reflection coefficient, Γ, which can 
be calculated from the expresion 

x
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0

0

0  (6) 

Γ= ir EE  at the load (7b) 

Γ−= ir II  at the load (7c) 

where Zx and Yx are the complex load impendace and 
admittance, and Z0 and Y0 are the characteristic im-
pedance and admittance of the line (Y0 = 1/Z0). 

2.2 LINE IMPEDANCE. 

2.3.1 VOLTAGE AND CURRENT DISTRIBUTION. 

If the line is terminated in an impedance equal 
to the characteristic impedance of the line, there 
will be no reflected wave, and Γ = 0, as indicated by 
Equation (6). The voltage and current distributions 
along the line for this case are shown in Figure 3. 

If the line is open-circuited at the load, the volt- 
age wave will be completely reflected and will undergo 
no phase shift on reflection, as indicated by Equation 
(6), (Zx = ∞), while the current wave will also be com-
pletely reflected but will undergo a 180º phase shift 
on reflection, as shown in Figure 4. If the line is 
short-circuited, the current and voltage roles are 
interchanged, and the impedance pattern is shifted 
λ/4 along the line. The phase shifts of the voltage 
and current waves on reflection always differ by 180º, 
as the reflected wave travels in the opposite direction 
from the incident wave. A current maximum, there- 
fore, always occurs at a voltage minimum, and vice 
versa. 

The voltage at a maximum of the standing-wave 
pattern is |Ei| + |Er| or |Ei|⋅ (1 + |Γ|) and at a 
minimum is |Ei| − |Er| or |Ei|⋅ (1 − |Γ|). The
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where L is the inductance per unit length in henrys, 
C is the capacitance per unit length in farads, R is 
the series resistance per unit length in ohms, and 
G is the shunt conductance per unit length in mhos. 
The approximation is valid when the line losses are 

low, or when  . 
C
G

L
R
=
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ratio of the maximum to minimum voltages, which 
is called the voltage standing wave ratio, VSWR, is 

Γ−
Γ+

==
1
1

VSWR
min

max

E
E

 (8a) 

The standing-wave ratio is frequently expres 
sed in decibels. 

min

max
10log20dBinVSWR

E
E

=  (8b)  

 
Figure 3. Chart showing voltage and current waves along a 
transmissio line terminated in its characteristic impedance. 
Note the absence of reflected waves and that the impedance is 
constant and equal to the characteristic impedance at all 
points along the line. 

At any point along a uniform lossless line, the 
impedance, Zp, seen looking towards the load, is the 
ratio of the complex voltage to the complex current 
at that point. It varies along the line in a cyclical 
manner, repeating each half-wavelength of the line, as 
shown in Figure 4. 

At a voltage maximum on the line, the incident 
and reflected votage waves are in phase, and the 
incident and reflected current waves are 180º out of

phase with each other. Since the incident voltage and 
incident current waves are always in phase (assuming 
Z0 is a pure resistance), the effective voltage and 
current at the voltage maximum are in phase and the 
effective impedance at that point is pure resistance. 
At a voltage maximum, the effective impedance is 
equal to the characteristic impedance multiplied by 
the VSWR. 

VSWR0max ⋅= ZR p  (9a) 

 

Figure 4. Chart showing voltage and current waves along a 
transmission line terminated in an open-circuit. Note that the 
minima of the voltage waves occur at the maxima of the 
current waves, and vice versa, and that the separation of 
adjacent minima for each wave is a half-wavelength. The 
variation in the magnitude and phase angle of impedance is 
also shown. 
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At a voltage minimum, the two voltage waves 
are opposing and the two current waves are aiding. 
Again the effective impedance is a pure resistance 
and is equal to the characteristic impedance of the 
line divided by the VSWR. 

VSWR
0

min
Z

R p =  (9b) l
ε

2
=Θ

The impedance, Zp, at any point along the line 
is related to the load impedance by the expression 

θ
θ

tanj
tanj

0
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where Zx and Yx are the complex load impedance and 
admittance, Zo and Yo are the characteristic imped- 
ance and admittance of the line, and θ is the electrical 
length of line between the load and the point along the 
line at which the impedance is measured. (See Figure 
5.)2 The effective length, le, is proportional to the 
physical length, l, multiplied by the square root of 
the effective dielectric constant, εr, of the insulating 
material between the inner and outer conductors. 
 

2 In Figure 5, point p is shown at a voltage minimum. 
However, Equations (10a) and (10b) are valid for any 
location of point p on the line. 

re ll ε=  (11a) 

λ
el

=Θ   in wavelengths (11b) 

rλ
π

   in radians (11c) 

r
l

ε
λ
π360

=Θ    in degrees (11d) 

If l is in centimeters, 

rMHz lf ε012.0=Θ    in degrees (11e) 

2.3.2 DETERMINATION OF THE LOAD IMPEDANCE 
FROM THE IMPEDANCE AT ANOTHER POINT 
ON THE LINE. 

The load impedance, Zx, or admittance, Yx, can 
be determined if the impedance, Zp, at any point along 
a lossless line is known. The expressions relating 
the impedances are: 

θ

θ
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0
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−

−
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Figure 5. Voltage variation along a
transmission line with a load connected and

with the line short-circuited at the load.
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If the line loss cannot be neglected, the equations 
are: 

0
0

0
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p
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p
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 (13a) 
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−
 (13b) 

when γ = α + jβ, and 
α = attenuation constant in nepers/m 

= (att. in dB/100ft)/269.40 
β = phase constant in radians/m 

= 2πf √(LC) = 2π√(εr)/λ 

2.3.3 DETERMINATION OF THE LOAD IMPEDANCE 
FROM  THE  STANDING-WAVE  PATTERN. 

The load impedance can be calculated from a 
knowledge of the VSWR present on the line and the 
position of a voltage minimum with respect to the load, 
since the impedance at a voltage minimum is related 
to the VSWR as indicated by Equation (9b). The equa- 
tion can be combined with Equation (12a) to obtain 
an expression for the load impedance in terms of the 
VSWR and the eletrical distance, θ, between the 
voltage minimum and the load. 

=xZ   

=
−

−
⋅=

θ
θ

tanjVSWR
tan)VSWR(j1

0Z  (14a) 

θ
θ
2cos)1VSWR()1VSWR(
2sin)1VSWR(j)VSWR(2

22

2

0 −++
−−

⋅= Z

 (14b) 

Since in a lossless line the impedance is the 
same at half-wavelength intervals along the line, θ 
can be the eletrical distance between a voltage mini- 
mum and any multiple of a half-wavelength from the 
load (see Figure 5). Of course, if the half-wavenlength 
point used is on the generator side of the voltage

minimum located with the load connected, θ will be 
negative. The points corresponding to half-wavelength 
distances from the load can be determined by short-
circuiting the line at the load and noting the positions 
of the voltage minima on the line. The minima will 
occur at multiples of a half-wavelength from the load. 

If the VSWR is greater than 10 tan θ, the fol- 
lowing approximation of Equation (14b) gives good 
results: 

θ2
0

cosVSWR ⋅
≅

Z
Rx  (15a) 

θtan0 ⋅−≅ ZX x  (15b) 

2.3.4 SMITH CHART. 

The calculation of the impedance transforma- 
tion produced by a length of transmission line using 
the equations previously presented can be time con-
suming. Mr. P. H. Smith3 has devised a chart, shown 
in Figure 6, whitch simplifies these calculations. In 
this chart the circles whose centers lie on the resist- 
ance component axis correspond to constant values 
of resistance. The arcs of circles whose centers lie 
on an axis perpendicular to the resistance axis cor-
respond to constant values of reactance. The chart 
covers all values of impedance from zero to infinity. 
The position of a point corresponding to any given 
comlex impedance can be found from the intersec- 
tion of the resistance and reactance coordinates cor-
responding to the resistive and reactive components 
of the unknown impedance. 

As the distance from the load is increased or 
decreased, the impedance seen looking along the line 
toward a fixed unknown will travel around a circle 
with its center at the center of the chart. The angular 
movement around the circle is proportional to the 
electrical displacement along the line. One complete 
traverse of the circle will be made for each half-
wavelength of travel. The radius of the circle is a 
function of the VSWR. 

2.3.4.1  Calculation of Impedance at One Point from the 
Impedance at Another Point on a Line. If the im- 
pedance at one point on a line, say at a point p is 
known, and the impedance at another point a known 
 

3 Smith, P. H., Electronics, Vol. 17, No. 1, pp. 130-133, 
318-325, January 1944. 
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electrical distance away (for instance, at the load) 
is desired, the problem can be solved using the 
Smith Chart in the following manner: First, locate 
the point on the chart corresponding to the known im-
pedance, as shown in Figure 6. (For example, assume 
that Zp = 20 + j25 ohms.) Then, draw a line from the 
center of the chart through Zp to the outside edge of 
the chart. If the point at which the impedance is de- 
sired is on the load side of the point at which the 
impedance is known, travel along the WAVELENGTHS 
TOWARD LOAD scale, from the intersection of the 
line previously drawn, a distance equal to the elec- 
trical distance in wavelenghts between the point at 
which the impedance is known and the point at which 
it is desired. If the point at which the impedance is 
desired is on the generator side of the point at which the 

impedance is known, use the WAVELENGHTS 
TOWARD GENERATOR scale. (In this example, as- 
sume that the electrical distance is 0.11 wavelenght 
toward the load.) Next, draw a circle through Zp with 
its center at the center of the chart, or lay out, on the 
last radial line drawn, a distance equal to the dis- 
tance between Zp and the center of the chart. The co-
ordinates of the point found are the resistive and 
reactive components of the desired impedance. (In 
the example chosen, the impedance is 16 � j8 ohms.) 

The VSWR on the line is function of the radial 
distance from the point corresponding to the imped- 
ance, to the center of the chart. To find the VSWR, 
lay out the distance on the STANDING WAVE RATIO 
scale located at the bottom of the chart, and read the

 

Figure 6. Illustration of the use of
the Smith Chart for determining the
impedance at a certain point along
a line when the impedance a
specified electrical distance away is
known. In the example plotted, the
known impedance, Zp, is 20 + j25
ohms and the impedance, Zx, is
desired at a point 0.11 wavelength
toward the load from the point at
which the impedance is known. 
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  8 

VSWR as a ratio, 
Emax

Emin
 , or in dB on the appropriate 

scale. (In the example of Figure 6, the VSWR is 3.2 
or 10.1 dB.) 

2.3.4.2  Calculation of Impendance at the Load from 
the VSWR and Position of a Voltage Minimum. In im-
pendance measurements in which the voltage standing-
wave pattern is measured, the impendance at a volt- 
age minimum is a pure resistance having a magni- 

tude of 
Z0

VSWR . Plot this point on the resistance com-

ponent axis and draw a circle having its center at 
the center of the chart drawn throug the point. The 
impendance at any point along the transmission line

 must lie on this circle. To determine the load im- 
pedance, travel around the circle from the original 
point an angular distance on the WAVELENGTHS 
TOWARD LOAD scale equal to the electrical distance, 
expressed as a fraction of a wavelength, between the 
voltage minimum and the load (or a point a half-wave-
length away from the load, as explained in Paragraph 
2.3.3.) If the half-wave point chosem lies on the gen- 
erator side of the minimum found with the load 
connected, travel a round the chart in the opposite di-
rection, using the WAVELENGTHS TOWARD GEN-
ERATOR scale. The radius of the circle can be de- 
termined directly from the VSWR, expressed as a 
ratio, or, if desired, in decibels by use of the scales 
labeled STANDING WAVE RATIO, located at the bot- 
tom of the chart. 

Figure 7. Example of the calcula-
tion of the unknown impedance 
from measurements of the VSWR 
and position of a voltage minimum, 
using a Smith Chart. The measured 
VSWR is 5 and the voltage mini-
mum with the unknown connected is 
0.14 wavelength from the effective 
position of the unknown. A method 
of determining the admittance of the 
unknown is also illustrated. 
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The example plotted on the chart in Figure 7 
shows the procedure for determining the load im- 
pedance when the VSWR is 5 to 1, and the electrical 
distance between the load or a half-wavelength point 
and a voltage minimum is 0.14 wavelength. The 
unknown impedance, read from the chart, is 23 � j55 
ohms. 

The Smith Chart can also be used when the line 
between the load and the measuring point is not loss- 
less. The procedure for correcting for loss is out- 
lined in Paragraph 4.6.2. 

NOTE 

Additional copies of the Smith Chart are avail-
able, drawn for a 50-ohm system in either impidance 
or admittance coordinates. The Impedance Chart,

similar to the one shown in Figure 6 but printed on 
transparent paper, is Form 756-Z. The Admittance 
Chart, similar to Figure 8, is Form 756-Y. A normalized 
chart, with an expanded center portion for low VSWR 
measurements, is also available on Form 756-NE. 
 

2.3.4.3  Conversion from Impedance to Admittance. 
The Smith Chart can also be used to obtain the trans-
formation between impedance and admittance. Follow 
around the circle of constant VSWR a distance of ex- 
actly 0.25 wavelength from the impedance point. To 
obtain the conductance and susceptance in millimhos, 
simply multiply the coordinates of the newly deter- 
mined point by 0.4 (see Figure 7). This conversion 
property is a result of the inversion of impedance 
every quarter-wavelength along a uniform transmis-

 

Figure 8. Example of the calcula-
tion of the unknown admittance 
from measurements of the VSWR 
and the position of a voltage 
minimum, using the Smith Chart 
drawn for admittance measure-
ments on lines having characteristic 
admittances of 20 millimhos (50 
ohms). 
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sion line. The impendances at points 1 and 2, a quarter-
wavelength apart, are related by the equation 

2

2
0

1 Z
ZZ =  (16a) 

or 

2
2
01 YZZ =  (16b) 

2.3.4.4  Admitance Measurements using the Smith 
Chart. The admittance of the unknown can be ob- 
tained directly from a normalized Smith Chart, or 
from the chart shown in Figure 8, whose coordinates 
are admittace component, rather than by the pro- 
cedure outline in Paragraph 2.3.4.3. When the chart 
shown in Figure 8 is used, the characteristic admit- 
tance, 20 millimhos, is multiplied by the measured 
VSWR to find the conductance at the voltage minimum. 
The radius of the corresponding admittance circle on 
the chart can be found by plotting the measured con-
ductance directly on the conductance axis. The radius 
can also be found from the STANDING WAVE RATIO 
scale located at the bottom of the chart. The electrical 
distance to the load is found and laid off on the WAVE- 
 

LENGTHS TOWARD LOAD scale, starting at 0.25 
wavelenght. On the VSWR circle, the coordinates of the 
point corresponding to the angle found on the WAVE-
LENGTHS scale are the values of conductance and 
susceptance of the unknown. 

The example plotted on the chart is the same 
as the used for the impendance example of Figure 7. 

2.3.4.5  Use of Other Forms of the Smith Chart. In 
some forms of the Smith Chart, all components are 
normalized with respect to the characteristic im- 
pendance to make the chart more adaptable to all 
values of characteristic impendance lines. If normal- 
ized charts are used, the resistance component value 

used for the voltage-minimum resistance is 
1

VSWR  

and the unknown impendance coordinates obtained 
must be multiplied by the characteristic impendance 
of the line to obtain the unknown impendance in ohms. 
If the admittance is desired, the coordinates that 
correspond to the admittance should be multiplied by 
the characteristic admittance. 

The normalized Smith Chart is produced in a 
slide rule form by the Emeloid Corporation, Hillside, 
New Jersey. 

SECTION  3 

USEFUL FORMULAS

Characteristic impedance, Z0, of the line with loss 
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The impedance, Zp, at any point along the line with loss 
in distance l in relation to the load impedance ZL 
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The admittance, Yp, at any point along the line with loss 
in distance l in relation to the load admittance YL 

0
0

0
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L
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Characteristic impedance, Z0, of the lossless line 

C
LZ =0  

LCωχ j=  

The impedance, Zp, at any point along the lossless line in 
distance l in relation to the load impedance ZL 
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The admittance, Yp, at any point along the lossless line in 
distance l in relation to the load admittance YL 
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The impedance, Zin, at input point of the opened line with 
loss of length l 

0 0tanh lim ( )in inl
Z Z l Z l Zγ

→∞
= =  

The admittance, Yin, at input point of the opened line with 
loss of length l 

1
0 0tanh lim ( )in inl

Y Y l Y l Yγ−

→∞
= =  

where γ = α + jβ, α = attenuation constant in nepers/m 
 β = phase constant in radians/m 
       β  = 2πf √(LC) = 2π√(εr)/λ 
 

The impedance, Zin, at input point of the opened lossless 
line of length l 

lZZin βtan0=  

The admittance, Yin, at input point of the opened lossless 
line of length l 

lYYin β10 tan
−=  

where β = phase constant in radians/m 
       β  = 2πf √(LC) = 2π√(εr)/λ 

 
The load impedance ZL calculated from the knowledge of the VSWR present on the line with impedance Z0 and the 
position θ of a voltage minimum with respect to the load (see Figure 5), of the lossless line 
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and the VSWR and position θ back calculated from the load impedance ZL 
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Transmission line Z0 (Y0) with load impedance ZL (YL) and its relation to reflection coefficient Γ and VSWR 
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TL1. Coaxial line impedance calculated from dimensions 

 ����������������������������
����������������������������
����������������������������
����������������������������
����������������������������

�������
������� D 

εr 

 







≅






=

d
D

d
DZ e

r
e log958.59log

π2
1

0 εε
µ

 d 

 
 
TL2. Two parallel lines impedance calculated from dimensios 
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  SLOTTED LINE MEASUREMENTS 

TL3. Two shielded parallel lines impedance calculated from dimensios 
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TL4. Impedance of line constructed by round wire symmetrically centered between boundless ground planes 
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TL5. Impedance of symmetrically centered track of zero thickness between boundless ground planes 
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TL6. Impedance of surface stripline over the boundless ground plane with dielectric material (PCB track impedance) 
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IPC-2141 � Controlled Impedance circuit Boards and High-Speed Logic Design, April 1996. 

0

, 2 0,

87 5.98 87log log 7.5
0.82 2

e e
d dr rt d t
D D

D DZ
d t dε ε

≤ →

   ≅ ≅   +   + +
! 2≤

 

Wadell, B. C., Transmission Line Design Handbook, Artech House 1991. 
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    [see Wadell] 

 
Electric permittivity is an electrical property of a dielectric defined in the SI system of units as 
    ε ε , 0rε=
where εr is the dielectric constant, sometimes called the relative permittivity, and ε0 is the permittivity of free space, 

    ε µ , 2 12 -1 12
0 01/( ) 8.8542 10 Fm 8.8542 10 C N mc − −= × = ×"

where c is the speed of light, , µ82.99792458 10 msc ×" 0 is the permeability of free space. 
 
Magnetic permeability is the macroscopic quantity given by 
    , 0rµ µ µ=
where µr is the relative permeability and µ0 is the permeability of free space. 

     7 -1 -1 6 -1 -1
0 4 10 WbA m 1.2566 10 WbA mµ π − −× = ×"

 
 
That�s all for the present. Mates, April 2004. 
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