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Memory Hierarchy (1)

 The memory hierarchy is the main performance bottleneck in 

modern computer systems as the gap between the speed of the 

processor and the memory continues to grow larger 

 This is also known as the Memory Wall Problem

 This problem becomes even worse in an embedded system

 In an embedded system, memory hierarchy takes a huge 

portion of both the 

 chip area 

 power consumption
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Memory Hierarchy (2) 
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Taken from https://www.researchgate.net/publication/281805561_MTJ-

based_hybrid_storage_cells_for_normally-off_and_instant-on_computing/figures?lo=1



Memory Wall Problem
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Take from https://slideplayer.com/slide/7075269/
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Even if you have an incredibly fast processor in your computer, the 

system’s performance strongly depends on the speed of your DDR

https://slideplayer.com/slide/7075269/


Cache memories

 Wouldn’t it be nice if we could find a balance between fast and cheap 

memory?

 The solution is to add from 1, 2 or 3 levels of cache memories, which are small, 

fast, but expensive memories

— The cache goes between the processor and the slower,  main memory (DDR)

— It keeps a copy of the most frequently used data from the main memory

— Faster reads and writes to the most frequently used addresses

— We only need to access the slower main memory for less frequently used 

data

 Cache memories occupy the largest part of the chip area

 They consume a significant amount of the total power consumption

 Add complexity to the design

 Cache  memories are of key importance regarding performance
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Memory Hierarchy (2) 
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 Consider that CPU needs to perform a 

load instruction

 First it looks at L1 data cache. If the 

datum is there then it loads it and no 

other memory is accessed (L1 hit)

 If the datum is not in the L1 data 

cache (L1 miss), then the CPU looks 

at the L2 cache

 If the datum is in L2 (L2 hit) then no 

other memory is accessed. Otherwise 

(L2 miss), the CPU looks at main 

memory

L1 cache access time: 1-4 CPU cycles

L2 cache access time : 6-14 CPU cycles

L3 cache access time : 40-70 CPU cycles

DDR access time : 100-200 CPU cycles



Cache Hits and misses

 A cache hit occurs if the cache contains the data that we’re looking for. Hits 

are desirable, because the cache can return the data much faster than 

main memory

 A cache miss occurs if the cache does not contain the requested data. This 

is inefficient, since the CPU must then wait accessing the slower next level of 

memory

 There are two basic measurements of cache performance

— The hit rate is the percentage of memory accesses that are handled by 

the cache

— The miss rate (1 - hit rate) is the percentage of accesses that must be 

handled by the slower lower level memory

 Typical caches have a hit rate of 95% or higher, so in fact most memory 

accesses will be handled by the cache and will be dramatically faster
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Data Locality (1)

 Code and data are not accessed randomly

 Locality is the tendency of a processor to access the same set of memory 

locations repetitively over a short period of time

 Data locality is a key to good performance on all modern CPUs

 It is very difficult and time consuming to figure out what data will be the 

“most frequently accessed” before a program actually runs

 However, for static programs (the control flow path is known at compile 

time) it can be done

 Only by experience programmers though

 Regarding dynamic programs it is impossible

 This makes it hard to know what to store into the small, precious cache 

memory
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Data Locality (2)

 But in practice, most programs exhibit locality, which the cache can take 

advantage of

— The principle of temporal locality says that if a program accesses 

one memory address, there is a good chance that it will access the 

same address again

— The principle of spatial locality says that if a program accesses one 

memory address, there is a good chance that it will also access 

other nearby addresses
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Temporal Locality in Data

 Programs often access the same variables over and over, especially within loops, 

e.g.,  below, sum, i and B[5] are repeatedly read/written

 Commonly-accessed variables can be kept in registers, but this is not always 

possible as there is a limited number of registers

 Sum and i variables are a) of small size, b) reused many times, and therefore it 

is efficient to remain in the CPU’s registers

 B[k] remains unchanged during the innermost loop and therefore it is efficient to 

remain in a CPU register

 The whole A[ ] array is accessed  3 times and therefore it will remain in the 

cache (depending on its size)
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sum = 0;
for (k = 0; k < 3; k++)
for (i = 0; i < N; i++)
sum = sum + A[i] + B[k];



How caches take advantage of temporal locality

 Every time the processor reads from an address in 

main memory, a copy of that datum is also stored in 

the cache

— The next time that the same address is read, the 

datum is read from the cache instead of 

accessing the slower DDR memory

— So the first read is a little slower than before since 

it goes through both main memory and the cache, 

but subsequent reads are much faster

 This takes advantage of temporal locality -

commonly accessed data are stored in the faster 

cache memory
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Spatial Locality in Data

 Programs often access data that are stored in contiguous memory locations

— Arrays, like A[ ] in the code below are always stored in memory 

contiguously – this task is performed by the compiler
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sum = 0;
for (i = 0; i < N; i++)

sum = sum + A[i];

A[0]   A[1]  A[2]  A[3] 

A[4]   A[5]  A[6]   A[7]

….  

L1 data cache

Main memory

L1 instruction 

cache

L2 unified cache

L1 data cache

RF

CPU



How caches take advantage of Spatial locality

 When the CPU reads location i from main memory, a 

copy of that data is placed in the cache

 But instead of just copying the contents of location i, it 

copies several values into the cache at once (cache 

line)

— If the CPU later does need to read from a location 

in that cache line, it can access that data from the 

cache and not the slower main memory, e.g., A[0] 

and A[3]

— For example, instead of loading just one array 

element at a time, the cache actually loads four 

/eight array elements at once

 Again, the initial load incurs a performance penalty, but 

we’re gambling on spatial locality and the chance that 

the CPU will need the extra data
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Main memory

L1 instruction 

cache

L2 unified cache

L1 data cache

RF

CPUCache lines – 128 bit
Words 32 bit

A[0]   A[1]  A[2]  A[3] 

A[4]   A[5]  A[6]   A[7]

….  

L1 data cache



Accessing arrays – From a Hardware Perspective (1)

In C/C++, row-wise is the right way
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….

int i;

int A[3][3];

for (i=0; i<3; i++)

for (j=0; j<3; j++)

A[i][j] = i+j; 

….

Main memory

L1 instruction 

cache

L2 unified cache

L1 data cache

RF

CPU

L1 data cache

[0][0]   [0][1]  [0][2]  [1][0] 

[1][1]   [1][2]  [2][0]   [2][1]

[2][2]

L2 cache

Main Memory

[1][2] [2][0] [2][1][1][1] [2][2] …[0][0] [0][1] [0][2] [1][0] ……

[0][0]   [0][1]  [0][2]  [1][0] 

[1][1]   [1][2]  [2][0]   [2][1]

[2][2]



Accessing arrays – From a Hardware Perspective (2)

In C/C++, row-wise is the right way
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….

int i;

int A[3][3];

for (i=0; i<3; i++)

for (j=0; j<3; j++)

A[i][j] = i+j; 

….

Main memory

L1 instruction 

cache

L2 unified cache

L1 data cache

RF

CPU

L1 data cache

[0][0]   [0][1]  [0][2]  [1][0] 

L2 cache

Main Memory

[1][2] [2][0] [2][1][1][1] [2][2] …[0][0] [0][1] [0][2] [1][0] ……

A[0][0]=0;
[0][0]   [0][1]  [0][2]  [1][0] 

A[0][0]
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….

int i;

int A[3][3];

for (i=0; i<3; i++)

for (j=0; j<3; j++)

A[i][j] = i+j; 

….

Main memory

L1 instruction 

cache

L2 unified cache

L1 data cache

RF

CPU

L1 data cache

[0][0]   [0][1]  [0][2]  [1][0] 

L2 cache

Main Memory

[1][2] [2][0] [2][1][1][1] [2][2] …[0][0] [0][1] [0][2] [1][0] ……

A[0][1]=0;
[0][0]   [0][1]  [0][2]  [1][0] 

A[0][1]

Now, A[0][1] resides in L1 

Accessing arrays – From a Hardware Perspective (3)

In C/C++, row-wise is the right way



Accessing arrays – the wrong way (1)
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Main memory

L1 instruction 

cache

L2 unified cache

L1 data cache

RF

CPU

 It is efficient to accesses arrays’ elements in sequential order 

 Array elements are loaded into cache in blocks, e.g., A[0-3], A[4-7] 

etc

 Accessing A[3] just after A[0] is a cache hit – spatial locality

• Let’s have a look at the next slide where 

the array’s elements are not accessed in 

sequential order

• In each iteration an entire L2 and L1 

cache line is loaded, which is inefficient 



Accessing arrays – the wrong way (2)

column-wise
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….

int i;

int A[4][4];

for (i=0; i<4; i++)

for (j=0; j<4; j++)

A[ j ][ i ] = i+j; 

….

Main memory

L1 instruction 

cache

L2 unified cache

L1 data cache

RF

CPU

L1 data cache

[0][0]   [0][1]  [0][2]  [0][3] 

L2 cache

Main Memory

[1][1] [1][2] [1][3][1][0] [2][0] [2][1][0][0] [0][1] [0][2] [0][3] ……

A[0][0]=0;

A[0][0]

The array is accessed column-wise (first j then i)

[0][0]   [0][1]  [0][2]  [0][3] 



Accessing arrays – the wrong way (3)

column-wise
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….

int i;

int A[3][3];

for (i=0; i<3; i++)

for (j=0; j<3; j++)

A[ j ][ i ] = i+j; 

….

Main memory

L1 instruction 

cache

L2 unified cache

L1 data cache

RF

CPU

L1 data cache

[0][0]   [0][1]  [0][2]  [0][3]

[1][0]   [1][1]  [1][2]  [1][3] 

L2 cache

Main Memory

A[1][0]=0;

A[1][0]

The array is accessed column-wise (first j then i)

[1][1] [1][2] [1][3][1][0] [2][0] [2][1][0][0] [0][1] [0][2] [0][3] ……

[0][0]   [0][1]  [0][2]  [0][3]

[1][0]   [1][1]  [1][2]  [1][3] 

In Fortran, the arrays are 

stored into memory column-

wise and therefore this is 

the right way to access the 

arrays



Accessing arrays 

Simulation Results using Valgrind Cachegrind

Column-Wise case  - N=1000
21

1000000 writes
1000000 dL1 write misses



Accessing arrays 

Simulation Results using Valgrind Cachegrind

Row-Wise case  - N=1000
22

1000000 writes 62500 dL1 write misses

There are 16 times less misses as each dL1 cache line 
contains 16 elements. Keep in mind that 
62,500x16=1,000,000. 

x16 times faster



How important is cache size?

#define N  1000 // N=1000, 2000, 4000, 8000, 16000, 32000

Int X[N];

for (i=0; i<1000000; i++)

for (j=0; j<N; j++){

X[j]=i;

}
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Array size in bytes

The following code can be seen as a benchmark that experimentally 

finds the cache size 

• Our cache is 32kbyte

• For larger arrays, the number of cache 

misses increases rapidly



Direct Mapped Cache 

(not used by modern processors)

 A direct-mapped cache is the simplest approach: each main memory address 

maps to exactly one cache block

 In the following figure

a 16-entry main memory

and a 4-entry cache (four

1-entry blocks) are shown

 Memory locations 0, 4, 8

and 12 all map to cache

block 0

 Addresses 1, 5, 9 and 13

map to cache block 1, etc
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Direct Mapped Cache (2)

(not used by modern processors)

 One way to figure out which cache 

block a particular memory address 

should go to is to use the modulo

(remainder) operator

 Let x be block number in cache, y be 

block number of DDR, and n be number 

of blocks in cache, then mapping is 

done with the help of the equation 

x = y mod n

 For instance, with the 

four-block cache here,

address 14 would map

to cache block 2

14 mod 4 = 2
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the modulo operation finds the remainder 

after division of one number by another



Modern cache memories are Associative 

Caches

• Block 12 placed in 8 block cache:

0 1 2 3 4 5 6 7Block

no.

Fully associative:

block 12 can go 

anywhere

0 1 2 3 4 5 6 7Block

no.

Direct mapped:

block 12 can go 

only into block 4 

(12 mod 8 = 4)

0 1 2 3 
Block

no.

2 way Set associative (like 

having two half size direct 

mapped caches):

block 12 can go in either of 

the two block 0 (12 mod 4 = 0)

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

Block-frame address

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3Block

no.

0 1 2 3 

26



Further Reading

 Samuel Williams, Andrew Waterman, and David Patterson. 2009. 

Roofline: an insightful visual performance model for multicore 

architectures. Commun. ACM 52, 4 (April 2009), 65-76. 

DOI=10.1145/1498765.1498785, available at 

https://people.eecs.berkeley.edu/~kubitron/cs252/handouts/papers/

RooflineVyNoYellow.pdf

 [for cache memories] Chapter 4 in ‘Computer Organization and 

architecture’ available at 

http://home.ustc.edu.cn/~leedsong/reference_books_tools/Computer

%20Organization%20and%20Architecture%2010th%20-

%20William%20Stallings.pdf
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