
1

School of Computing

(University of Plymouth)

Compilers for Embedded Systems

Integrated Systems of Hardware and Software

Lecture 2

Dr. Vasilios Kelefouras

Email: v.kelefouras@plymouth.ac.uk

Website: https://www.plymouth.ac.uk/staff/vasilios-kelefouras

https://www.plymouth.ac.uk/staff/vasilios-kelefouras

Outline of this Lecture

 Memory Hierarchy

 Cache

 Data Locality

 Examples

2

Memory Hierarchy (1)

 The memory hierarchy is the main performance bottleneck in

modern computer systems as the gap between the speed of the

processor and the memory continues to grow larger

 This is also known as the Memory Wall Problem

 This problem becomes even worse in an embedded system

 In an embedded system, memory hierarchy takes a huge

portion of both the

 chip area

 power consumption

3

Memory Hierarchy (2)

4

Taken from https://www.researchgate.net/publication/281805561_MTJ-

based_hybrid_storage_cells_for_normally-off_and_instant-on_computing/figures?lo=1

Memory Wall Problem

5

Take from https://slideplayer.com/slide/7075269/

R
e
la

ti
v
e
 p

e
rf

o
rm

a
n
c
e
 (

o
v
e
r

1
9
8
0
)

Even if you have an incredibly fast processor in your computer, the

system’s performance strongly depends on the speed of your DDR

https://slideplayer.com/slide/7075269/

Cache memories

 Wouldn’t it be nice if we could find a balance between fast and cheap

memory?

 The solution is to add from 1, 2 or 3 levels of cache memories, which are small,

fast, but expensive memories

— The cache goes between the processor and the slower, main memory (DDR)

— It keeps a copy of the most frequently used data from the main memory

— Faster reads and writes to the most frequently used addresses

— We only need to access the slower main memory for less frequently used

data

 Cache memories occupy the largest part of the chip area

 They consume a significant amount of the total power consumption

 Add complexity to the design

 Cache memories are of key importance regarding performance

6

Memory Hierarchy (2)

7

 Consider that CPU needs to perform a

load instruction

 First it looks at L1 data cache. If the

datum is there then it loads it and no

other memory is accessed (L1 hit)

 If the datum is not in the L1 data

cache (L1 miss), then the CPU looks

at the L2 cache

 If the datum is in L2 (L2 hit) then no

other memory is accessed. Otherwise

(L2 miss), the CPU looks at main

memory

L1 cache access time: 1-4 CPU cycles

L2 cache access time : 6-14 CPU cycles

L3 cache access time : 40-70 CPU cycles

DDR access time : 100-200 CPU cycles

Cache Hits and misses

 A cache hit occurs if the cache contains the data that we’re looking for. Hits

are desirable, because the cache can return the data much faster than

main memory

 A cache miss occurs if the cache does not contain the requested data. This

is inefficient, since the CPU must then wait accessing the slower next level of

memory

 There are two basic measurements of cache performance

— The hit rate is the percentage of memory accesses that are handled by

the cache

— The miss rate (1 - hit rate) is the percentage of accesses that must be

handled by the slower lower level memory

 Typical caches have a hit rate of 95% or higher, so in fact most memory

accesses will be handled by the cache and will be dramatically faster

8

Data Locality (1)

 Code and data are not accessed randomly

 Locality is the tendency of a processor to access the same set of memory

locations repetitively over a short period of time

 Data locality is a key to good performance on all modern CPUs

 It is very difficult and time consuming to figure out what data will be the

“most frequently accessed” before a program actually runs

 However, for static programs (the control flow path is known at compile

time) it can be done

 Only by experience programmers though

 Regarding dynamic programs it is impossible

 This makes it hard to know what to store into the small, precious cache

memory

9

Data Locality (2)

 But in practice, most programs exhibit locality, which the cache can take

advantage of

— The principle of temporal locality says that if a program accesses

one memory address, there is a good chance that it will access the

same address again

— The principle of spatial locality says that if a program accesses one

memory address, there is a good chance that it will also access

other nearby addresses

10

Temporal Locality in Data

 Programs often access the same variables over and over, especially within loops,

e.g., below, sum, i and B[5] are repeatedly read/written

 Commonly-accessed variables can be kept in registers, but this is not always

possible as there is a limited number of registers

 Sum and i variables are a) of small size, b) reused many times, and therefore it

is efficient to remain in the CPU’s registers

 B[k] remains unchanged during the innermost loop and therefore it is efficient to

remain in a CPU register

 The whole A[] array is accessed 3 times and therefore it will remain in the

cache (depending on its size)

11

sum = 0;
for (k = 0; k < 3; k++)
for (i = 0; i < N; i++)
sum = sum + A[i] + B[k];

How caches take advantage of temporal locality

 Every time the processor reads from an address in

main memory, a copy of that datum is also stored in

the cache

— The next time that the same address is read, the

datum is read from the cache instead of

accessing the slower DDR memory

— So the first read is a little slower than before since

it goes through both main memory and the cache,

but subsequent reads are much faster

 This takes advantage of temporal locality -

commonly accessed data are stored in the faster

cache memory

12

Main memory

L1 instruction

cache

L2 unified cache

L1 data cache

RF

CPU

Spatial Locality in Data

 Programs often access data that are stored in contiguous memory locations

— Arrays, like A[] in the code below are always stored in memory

contiguously – this task is performed by the compiler

13

sum = 0;
for (i = 0; i < N; i++)

sum = sum + A[i];

A[0] A[1] A[2] A[3]

A[4] A[5] A[6] A[7]

….

L1 data cache

Main memory

L1 instruction

cache

L2 unified cache

L1 data cache

RF

CPU

How caches take advantage of Spatial locality

 When the CPU reads location i from main memory, a

copy of that data is placed in the cache

 But instead of just copying the contents of location i, it

copies several values into the cache at once (cache

line)

— If the CPU later does need to read from a location

in that cache line, it can access that data from the

cache and not the slower main memory, e.g., A[0]

and A[3]

— For example, instead of loading just one array

element at a time, the cache actually loads four

/eight array elements at once

 Again, the initial load incurs a performance penalty, but

we’re gambling on spatial locality and the chance that

the CPU will need the extra data

14

Main memory

L1 instruction

cache

L2 unified cache

L1 data cache

RF

CPUCache lines – 128 bit
Words 32 bit

A[0] A[1] A[2] A[3]

A[4] A[5] A[6] A[7]

….

L1 data cache

Accessing arrays – From a Hardware Perspective (1)

In C/C++, row-wise is the right way
15

….

int i;

int A[3][3];

for (i=0; i<3; i++)

for (j=0; j<3; j++)

A[i][j] = i+j;

….

Main memory

L1 instruction

cache

L2 unified cache

L1 data cache

RF

CPU

L1 data cache

[0][0] [0][1] [0][2] [1][0]

[1][1] [1][2] [2][0] [2][1]

[2][2]

L2 cache

Main Memory

[1][2] [2][0] [2][1][1][1] [2][2] …[0][0] [0][1] [0][2] [1][0] ……

[0][0] [0][1] [0][2] [1][0]

[1][1] [1][2] [2][0] [2][1]

[2][2]

Accessing arrays – From a Hardware Perspective (2)

In C/C++, row-wise is the right way
16

….

int i;

int A[3][3];

for (i=0; i<3; i++)

for (j=0; j<3; j++)

A[i][j] = i+j;

….

Main memory

L1 instruction

cache

L2 unified cache

L1 data cache

RF

CPU

L1 data cache

[0][0] [0][1] [0][2] [1][0]

L2 cache

Main Memory

[1][2] [2][0] [2][1][1][1] [2][2] …[0][0] [0][1] [0][2] [1][0] ……

A[0][0]=0;
[0][0] [0][1] [0][2] [1][0]

A[0][0]

17

….

int i;

int A[3][3];

for (i=0; i<3; i++)

for (j=0; j<3; j++)

A[i][j] = i+j;

….

Main memory

L1 instruction

cache

L2 unified cache

L1 data cache

RF

CPU

L1 data cache

[0][0] [0][1] [0][2] [1][0]

L2 cache

Main Memory

[1][2] [2][0] [2][1][1][1] [2][2] …[0][0] [0][1] [0][2] [1][0] ……

A[0][1]=0;
[0][0] [0][1] [0][2] [1][0]

A[0][1]

Now, A[0][1] resides in L1

Accessing arrays – From a Hardware Perspective (3)

In C/C++, row-wise is the right way

Accessing arrays – the wrong way (1)

18

Main memory

L1 instruction

cache

L2 unified cache

L1 data cache

RF

CPU

 It is efficient to accesses arrays’ elements in sequential order

 Array elements are loaded into cache in blocks, e.g., A[0-3], A[4-7]

etc

 Accessing A[3] just after A[0] is a cache hit – spatial locality

• Let’s have a look at the next slide where

the array’s elements are not accessed in

sequential order

• In each iteration an entire L2 and L1

cache line is loaded, which is inefficient

Accessing arrays – the wrong way (2)

column-wise
19

….

int i;

int A[4][4];

for (i=0; i<4; i++)

for (j=0; j<4; j++)

A[j][i] = i+j;

….

Main memory

L1 instruction

cache

L2 unified cache

L1 data cache

RF

CPU

L1 data cache

[0][0] [0][1] [0][2] [0][3]

L2 cache

Main Memory

[1][1] [1][2] [1][3][1][0] [2][0] [2][1][0][0] [0][1] [0][2] [0][3] ……

A[0][0]=0;

A[0][0]

The array is accessed column-wise (first j then i)

[0][0] [0][1] [0][2] [0][3]

Accessing arrays – the wrong way (3)

column-wise
20

….

int i;

int A[3][3];

for (i=0; i<3; i++)

for (j=0; j<3; j++)

A[j][i] = i+j;

….

Main memory

L1 instruction

cache

L2 unified cache

L1 data cache

RF

CPU

L1 data cache

[0][0] [0][1] [0][2] [0][3]

[1][0] [1][1] [1][2] [1][3]

L2 cache

Main Memory

A[1][0]=0;

A[1][0]

The array is accessed column-wise (first j then i)

[1][1] [1][2] [1][3][1][0] [2][0] [2][1][0][0] [0][1] [0][2] [0][3] ……

[0][0] [0][1] [0][2] [0][3]

[1][0] [1][1] [1][2] [1][3]

In Fortran, the arrays are

stored into memory column-

wise and therefore this is

the right way to access the

arrays

Accessing arrays

Simulation Results using Valgrind Cachegrind

Column-Wise case - N=1000
21

1000000 writes
1000000 dL1 write misses

Accessing arrays

Simulation Results using Valgrind Cachegrind

Row-Wise case - N=1000
22

1000000 writes 62500 dL1 write misses

There are 16 times less misses as each dL1 cache line
contains 16 elements. Keep in mind that
62,500x16=1,000,000.

x16 times faster

How important is cache size?

#define N 1000 // N=1000, 2000, 4000, 8000, 16000, 32000

Int X[N];

for (i=0; i<1000000; i++)

for (j=0; j<N; j++){

X[j]=i;

}

23

110
200

400

800

2300

4600

0.00E+00

5.00E+02

1.00E+03

1.50E+03

2.00E+03

2.50E+03

3.00E+03

3.50E+03

4.00E+03

4.50E+03

5.00E+03

4000 8000 16000 32000 64000 128000

E
x
e
cu

ti
o
n
 t
im

e
 (

m
se

c)

Array size in bytes

The following code can be seen as a benchmark that experimentally

finds the cache size

• Our cache is 32kbyte

• For larger arrays, the number of cache

misses increases rapidly

Direct Mapped Cache

(not used by modern processors)

 A direct-mapped cache is the simplest approach: each main memory address

maps to exactly one cache block

 In the following figure

a 16-entry main memory

and a 4-entry cache (four

1-entry blocks) are shown

 Memory locations 0, 4, 8

and 12 all map to cache

block 0

 Addresses 1, 5, 9 and 13

map to cache block 1, etc

24

0

1

2

3

Index

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Memory

Address

Direct Mapped Cache (2)

(not used by modern processors)

 One way to figure out which cache

block a particular memory address

should go to is to use the modulo

(remainder) operator

 Let x be block number in cache, y be

block number of DDR, and n be number

of blocks in cache, then mapping is

done with the help of the equation

x = y mod n

 For instance, with the

four-block cache here,

address 14 would map

to cache block 2

14 mod 4 = 2

25

0

1

2

3

Index

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Memory

Address

the modulo operation finds the remainder

after division of one number by another

Modern cache memories are Associative

Caches

• Block 12 placed in 8 block cache:

0 1 2 3 4 5 6 7Block

no.

Fully associative:

block 12 can go

anywhere

0 1 2 3 4 5 6 7Block

no.

Direct mapped:

block 12 can go

only into block 4

(12 mod 8 = 4)

0 1 2 3
Block

no.

2 way Set associative (like

having two half size direct

mapped caches):

block 12 can go in either of

the two block 0 (12 mod 4 = 0)

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

Block-frame address

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3Block

no.

0 1 2 3

26

Further Reading

 Samuel Williams, Andrew Waterman, and David Patterson. 2009.

Roofline: an insightful visual performance model for multicore

architectures. Commun. ACM 52, 4 (April 2009), 65-76.

DOI=10.1145/1498765.1498785, available at

https://people.eecs.berkeley.edu/~kubitron/cs252/handouts/papers/

RooflineVyNoYellow.pdf

 [for cache memories] Chapter 4 in ‘Computer Organization and

architecture’ available at

http://home.ustc.edu.cn/~leedsong/reference_books_tools/Computer

%20Organization%20and%20Architecture%2010th%20-

%20William%20Stallings.pdf

27

http://doi.acm.org/10.1145/1498765.1498785
https://people.eecs.berkeley.edu/~kubitron/cs252/handouts/papers/RooflineVyNoYellow.pdf
http://home.ustc.edu.cn/~leedsong/reference_books_tools/Computer%20Organization%20and%20Architecture%2010th%20-%20William%20Stallings.pdf

