
Dr. Vasilios Kelefouras, University of Plymouth, School of Engineering, Computing and Mathematics

Preliminaries, Profiling Tools and Measuring Execution time of
Programs

Objectives.

 Profile C/C++ programs using gprof profiler (Linux)

 Profile C/C++ programs using perf tool (Linux)

 Profile C/C++ programs using Valgrind tool (Linux)

 Profile C/C++ programs using Intel Vtune tool (supported by all Operating systems)

 Learn how to compile and run C programs using Linux Terminal

 Familiarize yourselves with pointers in C

 To use accurate timers to measure the execution time of code blocks

Aim

The main aim of this lab session is to learn how to profile C/C++ applications. In this session, we will be

using Linux as there are several well-known and well-used free tools such as gprof and Valgrind.

Section1 – Preliminaries

How to Compile and run a C/C++ program in Linux.

In this lab session we will be using gedit text editor to write our programs and the Linux Terminal to
compile and run our programs. Please note that there are more efficient programming environments to
develop software such as Eclipse (it is free), but for small programs, this is not necessary.

You can compile a .c file using the following command:

gcc source.c -o exec -other_optional_options

gcc is a well-known and used compiler. The executable name is specified just after the ‘-o’ (‘o’ stands for
output). The rest options are optional.

Then, you can run the executable by using the following command:

./exec

Dr. Vasilios Kelefouras, University of Plymouth, School of Engineering, Computing and Mathematics

Passing Input arguments – Argc, Argv

So far, all the programs we have written can be run with a single command. For example, if we compile

an executable called exec, we can run it from within the same directory with the following command at

the GNU/Linux command line:

./exec

However, what if you want to pass information from the command line to the program you are running?

Up until now, the skeletons we have used for our C programs have looked something like this:

int main() { }

 From now on, our examples may look a bit more like this:

int main (int argc, char *argv[]) { }

As you can see, main now has arguments. The name of the variable argc stands for "argument count";

argc contains the number of arguments passed to the program. The name of the variable argv stands for

"argument vector". A vector is a one-dimensional array, and argv is a one-dimensional array of strings.

Each string is one of the arguments that was passed to the program.

Compile the input_arguments.c file using the following command gcc input_arguments.c -o exec. Then

run the program normally, but add some parameters too :

./exec arg1 arg2

The output will be

argc = 3

arg[0] = "./p"

arg[1] = "arg1"

arg[2] = "arg2"

Task1. Study input_arguments.c program. Make sure you understand what this program does

Using Pointers

Using Pointers on 1-d arrays

Every variable is stored into a memory location and every memory location has a memory address. A

memory address can be accessed by using the ampersand (&) operator. Consider the following example

#include <stdio.h>

 int main () {

 int var1=4;

 printf("The memory address of %p contains %d \n", &var1, var1);

Dr. Vasilios Kelefouras, University of Plymouth, School of Engineering, Computing and Mathematics

 return 0;

}

The code above prints:

The memory address of 0x7ffdd32f4b9c contains 4.

Keep in mind that the memory address that var1 is stored might be different every time you compile the

program. To print the memory address of a variable, the ‘%p’ format specifier is used. ‘%p’ is a format

specifier which is used if we want to print data of type (void *) or in simple words address of pointer or

any other variable. The output is displayed in hexadecimal value. However, the memory addresses can be

printed in integer format too, if we use ‘%d’ instead of ‘%p’ ; in this case, a warning will be shown ‘warning:

format ‘%d’ expects argument of type ‘int’, but argument 4 has type ‘int *’, which can be ignored.

Task2. Study ‘pointers_1d_array_initialization.c’ file.

This file has a routine that initializes a one-dimensional array and three routines that print the array’s

values, in three different ways, which are explained below. Please note that the array elements are always

stored in consecutive memory locations (always).

1. printf("\n element %d equals to %d",i, A[i]);

2. printf("\n element %d equals to %d",i, *(A+i));

3. printf("\n element %d equals to %d",i, *(ptr+i));

The three bullets above are equivalent. What does *(A+i) mean? A is an array, thus A is the memory

address of the first array element. (A+i) is the memory address of the ith array element. * refers to

contents of memory address. Thus, *(A+i) means : give me the content (value) of the ith array element.

The same holds for the 3rd bullet as 'ptr=&A[0]', which means that the pointer shows to the memory

address of A[0].

Compile and run the program using different ‘N’ values, to make sure that all the three routines print the

right values.

In the C Programming Language, the ‘#define’ directive allows the definition of macros within your source

code. This macro definition allows a constant value to be declared for use throughout your code. Macro

definitions are not variables and cannot be changed by your program code like variables.

Keep in mind that in C language, all the routines must be declared before main function.

It is always a good practice to assign a NULL value to a pointer variable in case you do not have an exact

address to be assigned. A pointer that is assigned NULL is called a null pointer. This is done by using

int *ptr = NULL;

Using Pointers on 2d arrays

Task3. Extend the program in ‘pointers_1d_array_initialization.c’ file to 2-d arrays

Dr. Vasilios Kelefouras, University of Plymouth, School of Engineering, Computing and Mathematics

Make the one-dimensional array, two-dimensional and modify the four routines appropriately. Make sure

your program prints the right values. Rename the new file as ‘pointers_2d_array_initialization.c’. In C

language, the array’s elements are always stored row-wise in memory; this means that first the elements

of the first row are stored into memory, then the elements of the second row etc.

Task4. Print the array’s memory addresses

The ‘print_array_memory_addresses.c’ file prints the memory addresses of the 2d array in the above

example (pointers_2d_array_initialization.c). The memory addresses are printed in hex format. This is

further explained in task1 above.

How many bytes are allocated for every element? The answer is 4bytes, as the data type is of typr ‘int’

which is four bytes. As you can observe, the array’s elements are stored into consecutive memory

locations. Change the data type of the array from ‘int’ to ‘short int’ and then into ‘long int’. Are the

memory addresses different now? Why? Given that ‘short int’ occupies 2 bytes, each array element needs

2 bytes.

Further Reading

If you want to learn more about C programming you can study the following links:

1) Tim Bailey, 2005, An Introduction to the C Programming Language and Software Design,

available at: http://www-personal.acfr.usyd.edu.au/tbailey/ctext/ctext.pdf

2) C examples, Programiz, available at https://www.programiz.com/c-programming/examples

3) C Programming examples with Output, Beginners book, available at

https://beginnersbook.com/2015/02/simple-c-programs/

4) C Programming Tutorial, from tutorialspoint.com, available at

https://www.unf.edu/~wkloster/2220/ppts/cprogramming_tutorial.pdf

http://www-personal.acfr.usyd.edu.au/tbailey/ctext/ctext.pdf
https://www.programiz.com/c-programming/examples
https://beginnersbook.com/2015/02/simple-c-programs/
https://www.unf.edu/~wkloster/2220/ppts/cprogramming_tutorial.pdf

Dr. Vasilios Kelefouras, University of Plymouth, School of Engineering, Computing and Mathematics

Section 2 – Profiling Tools

Gprof profiler (Linux)

Gprof profiler is a tool which collects statistics on programs. It works by inserting appropriate code in the

beginning and in the end of each function so as to collect information about the execution time. Gprof is

not a debugger, so make sure your program is working. Gprof does not work for parallel programs.

Type the following command on terminal to see the manual of gprof

man gprof

How to use gprof:

Step1: Compile using ‘-pg’ option. This option adds extra code to the generated binary so as gprof can

report detailed timing statistics.

Step2: Run the program normally

Step3: Type ‘gprof executable_name -other_optional_options’

Store the gprof results into a file: You can store the results into a file by adding the ‘>’ character. The

complete command is:

gprof executable_name > results.txt

Gprof options: Gprof profiler supports a large number of options. To find more about them use the man

command as above. An helpful option is ‘-b’ that shows only the important information.

Task1: profile the benchmark.c file.

Understanding Gprof output:

The gprof output will look like Fig.1. The output is divided into two parts, i.e., Flat profile and Call graph.

Dr. Vasilios Kelefouras, University of Plymouth, School of Engineering, Computing and Mathematics

Fig.1 Gprof Output for benchmark.c program

Flat Profile:

 The first column (%) shows the execution time percentage of each function.

 The second column (cumulative) shows the sum of the execution time in seconds by this function

and those listed above it.

 The third column (self) shows the number of seconds accounted for by this function alone.

 The fourth column (calls) shows the number of times this function was invoked, if this function is

profiled, else blank.

 The fifth column shows the average number of milliseconds spent in this ms/call function per call,

if this function is profiled, else blank.

 The sixth column shows the average number of milliseconds spent in this ms/call function and its

descendents per call, if this function is profiled, else blank.

 The name column shows the name of the function.

Call Graph: The call graph describes the call tree of the program. Each entry in this table consists of several

lines. The line with the index number at the left hand margin lists the current function.The lines above it

list the functions that called this function, and the lines below it list the functions this one called.

 % time This is the percentage of the `total' time that was spent in this function and its children.

 self This is the total amount of time spent in this function.

Dr. Vasilios Kelefouras, University of Plymouth, School of Engineering, Computing and Mathematics

 children This is the total amount of time propagated into this function by its children.

 called This is the number of times the function was called. If the function called itself recursively,

the number only includes non-recursive calls, and is followed by a `+' and the number of recursive

calls.

Further Reading for gprof

1. GPROF Tutorial – How to use Linux GNU GCC Profiling Tool, available at

https://www.thegeekstuff.com/2012/08/gprof-tutorial/

Valgrind Tool (Linux)

The Valgrind tool suite provides a number of debugging and profiling tools that help you make your

programs faster and more correct. A detailed desciption is found in Valgrind’s webpage

https://www.valgrind.org/docs/manual/quick-start.html#quick-start.intro . You can download and

install Valgrding by just typing opening a terminal and typing ‘sudo apt-get install valgrind‘. Alternatively,

you can download Valgrind from https://www.valgrind.org/downloads/?src=www.discoversdk.com ; you

can install it by following the steps: a) extract the compressed file downloaded, b) use terminal and go to

the valgrind directory and type: ‘./configure’, then type ‘make’, then type ‘make install’.

In this module, we will be using Cachegrind tool of Valgrind. Cachegrind simulates how your program

interacts with a machine's cache hierarchy. It simulates a machine with independent first-level instruction

and data caches (I1 and D1), backed by a unified second-level cache (L2). Note that modern PCs, normally

have three levels of cache and in this case Cachegrind simulates the first-level and last-level of caches

only. Therefore, Cachegrind always refers to the I1, D1 and LL (last-level) caches. For more information

read this https://valgrind.org/docs/manual/cg-manual.html .

How to use Cachegrind:

Step1: compile using ‘-g’ option

Step2: use the following command ‘valgrind --tool=cachegrind ./executable’

Task1: use valgrind to simulate how the benchmark.c file interacts with cache memories.

The output will look like this:

==11586== I refs: 1,041,351,336

==11586== I1 misses: 1,108

==11586== LLi misses: 1,101

==11586== I1 miss rate: 0.00%

==11586== LLi miss rate: 0.00%

==11586==

==11586== D refs: 387,398,347 (244,246,437 rd + 143,151,910 wr)

==11586== D1 misses: 411,589 (160,745 rd + 250,844 wr)

==11586== LLd misses: 405,386 (154,589 rd + 250,797 wr)

==11586== D1 miss rate: 0.1% (0.1% + 0.2%)

==11586== LLd miss rate: 0.1% (0.1% + 0.2%)

https://www.thegeekstuff.com/2012/08/gprof-tutorial/
https://www.valgrind.org/docs/manual/quick-start.html#quick-start.intro
https://www.valgrind.org/downloads/?src=www.discoversdk.com
https://valgrind.org/docs/manual/cg-manual.html

Dr. Vasilios Kelefouras, University of Plymouth, School of Engineering, Computing and Mathematics

==11586==

==11586== LL refs: 412,697 (161,853 rd + 250,844 wr)

==11586== LL misses: 406,487 (155,690 rd + 250,797 wr)

==11586== LL miss rate: 0.0% (0.0% + 0.2%)

 Irefs stands for Instruction references

 I1 misses stands for L1 instruction cache misses

 LLi misses stands for Last level cache instruction misses

 Drefs stands for data references

 D1 misses stands for L1 data cache misses

 rd stands for reads while wr stands for writes

Detailed Profiling: Every time we run Valgrind, a file is generated and stored into the working directory.

This file name is ‘cachegrind.out.12065’, the last digits differ from simulation to simulation. To see a more

detailed analysis use the following command:

cg_annotate --auto=yes cachegrind.out.12065

For more annotate options see https://www.cs.cmu.edu/afs/cs.cmu.edu/project/cmt-

40/Nice/RuleRefinement/bin/valgrind-3.2.0/docs/html/cg-manual.html .

Further Reading for Valgrind:

1. The Valgrind Quick Start Guide, available at https://www.valgrind.org/docs/manual/quick-

start.html#quick-start.intro

2. Cachegrind: a cache and branch-prediction, available at https://valgrind.org/docs/manual/cg-

manual.html

Perf Tool (Linux) - optional

The perf tool offers a rich set of commands to collect and analyze performance and trace data. A

detailed description of perf can be found in https://perf.wiki.kernel.org/index.php/Tutorial . To take full

advantage of Perf tool, native Linux is needed (not virtual machine)

How to use Perf: Perf includes many features. Some of them are listed below:

 perf stat ./executable : It shows CPU Performance statistics

 perf stat -d ./executable : It shows more detailed CPU Performance statistics

 perf stat -d sleep 1 ./executable : it shows detailed CPU Performance statistics, but by running the

program only for 1 second

 perf stat -d -C 0,2 ./executable : it shows detailed CPU Performance statistics for the CPU core 0 and

CPU core2.

 perf stat -a ./p : It shows CPU Performance statistics by using all the CPU cores

https://www.cs.cmu.edu/afs/cs.cmu.edu/project/cmt-40/Nice/RuleRefinement/bin/valgrind-3.2.0/docs/html/cg-manual.html
https://www.cs.cmu.edu/afs/cs.cmu.edu/project/cmt-40/Nice/RuleRefinement/bin/valgrind-3.2.0/docs/html/cg-manual.html
https://www.valgrind.org/docs/manual/quick-start.html#quick-start.intro
https://www.valgrind.org/docs/manual/quick-start.html#quick-start.intro
https://valgrind.org/docs/manual/cg-manual.html
https://valgrind.org/docs/manual/cg-manual.html
https://perf.wiki.kernel.org/index.php/Tutorial

Dr. Vasilios Kelefouras, University of Plymouth, School of Engineering, Computing and Mathematics

 perf stat -d -e cycles ./executable : shows detailed CPU Performance statistics including the number

of CPU cycles by accessing the appopriate hardware counter.

 perf stat -r 3 ./executable : ‘r’ stand for repeat. -r 3, runs the program 3 times. It is possible to use

perf stat to run the same program multiple times and get for each count, the standard deviation

from the mean

 perf list : Lists all the options with regards to the hardware counters and events. The ‘-e’ option

allows us to monitor the hardware counters. You cannot display the values of the hardware

counters by using a virtual machine.

 perf stat -d -C 0,1,2,3 -e cycles,instructions,ref-cycles,cpu-clock,cache-misses,cache-references,L1-

dcache-load-misses,L1-dcache-loads,L1-dcache-stores,L1-icache-load-misses,LLC-load-

misses,LLC-loads,LLC-store-misses,LLC-stores,cache-misses,cache-references,mem-loads,mem-

stores ./executable : shows detailed statistics of the aforementioned hardware counters. Do not

use space between two options

 perf stat -M Summary ./executable : in ‘perf list’ there are some sections such as Pipeline and

Summary. To print those use -M option

Perf record and report:

 perf record -e cycles,instructions,ref-cycles,cpu-clock,cache-misses,cache-references,L1-dcache-

load-misses,L1-dcache-loads,L1-dcache-stores,L1-icache-load-misses,LLC-load-misses,LLC-

loads,LLC-store-misses,LLC-stores,cache-misses,cache-references,mem-loads,mem-stores

./executable : perf record collects samples which can then analyzed, possibly on another

machine, using the perf report and perf annotate commands.

 perf report : By using the previous command (perf record), the samples collected are saved into

a binary file called, by default, perf.data. The perf report command reads this file and generates

a concise execution profile.

Note: you might need to open the following file and amend its value with 0,

/proc/sys/kernel/perf_event_paranoid.

Task1: Use perf tool to profile the program in the benchmark.c file.

Keep in mind that the hardware counters are used by other processes too, not just by the program we

are running.

Further Reading for Perf

1. Tutorial, Linux kernel profiling with perf, available at https://perf.wiki.kernel.org/index.php/Tutorial

2. perf Examples, available at http://www.brendangregg.com/perf.html

Intel Vtune (Windows, Linux, Mac) - optional

Intel Vtune is perhaps the most powerful and user-friendly tool to optimize application performance. It

can be used for Intel processors only. Note that it supports a graphical interface. You can download

https://perf.wiki.kernel.org/index.php/Tutorial
http://www.brendangregg.com/perf.html

Dr. Vasilios Kelefouras, University of Plymouth, School of Engineering, Computing and Mathematics

Vtune here https://software.intel.com/content/www/us/en/develop/tools/oneapi/base-

toolkit/download.html. A user guide is found in [1].

Further Reading for Vtune

1. Get started with Intel Vtune, available at

https://software.intel.com/content/www/us/en/develop/documentation/get-started-with-

vtune/top/windows-os.html

https://software.intel.com/content/www/us/en/develop/tools/oneapi/base-toolkit/download.html
https://software.intel.com/content/www/us/en/develop/tools/oneapi/base-toolkit/download.html
https://software.intel.com/content/www/us/en/develop/documentation/get-started-with-vtune/top/windows-os.html
https://software.intel.com/content/www/us/en/develop/documentation/get-started-with-vtune/top/windows-os.html

Dr. Vasilios Kelefouras, University of Plymouth, School of Engineering, Computing and Mathematics

Section 3 - Using Accurate Timers to Measure Execution Time

Below different ways of measuring the execution time of blocks of code are provided. Note that the
aim of this section is to learn how to use the timers; not further investigate their implementation
details.

Accurate Timer on Linux

The clock_gettime system call allows us to measure the execution time of programs. This function uses
the following struct.

struct timespec {

time_t tv_sec; /* seconds */

long tv_nsec; /* nanoseconds */

};

The clock_gettime system call is used as follows:

#include <time.h>

int clock_gettime(clockid_t clk_id, struct timespec *tp);

The second parameter is the time structure that will be filled in by the system call to contain the value of
the clock. The first parameter, clock ID, allows you to specify the clock you are interested in using; these
can be found in this link https://linux.die.net/man/3/clock_gettime.

Task1: Study the ‘timers.c’ file and make sure you understand what it does. This example uses
clock_gettime using two different options, CLOCK_MONOTONIC and CLOCK_PROCESS_CPUTIME_ID.

For measuring elapsed time, CLOCK_MONOTONIC is recommended. CLOCK_MONOTONIC represents the
absolute elapsed wall-clock time since some arbitrary, fixed point in the past.

The CLOCK_PROCESS_CPU_TIME_ID clock measures only the CPU time consumed by the process. If the
kernel puts the process to sleep, the time it spends waiting is not counted. If a process has multiple
threads, CLOCK_THREAD_CPUTIME_ID is similar but measures only the CPU time spent on the thread that
is making the request.

This example marks the start time by getting the value of CLOCK_MONOTONIC. The process then sleeps

for a second and marks the stop time by getting the value of CLOCK_MONOTONIC a second time. It then

does the same thing again but uses CLOCK_PROCESS_CPUTIME_ID. Since the CPU is not used for the time

that the process is sleeping, the results are substantially shorter.

https://linux.die.net/man/3/clock_gettime

Dr. Vasilios Kelefouras, University of Plymouth, School of Engineering, Computing and Mathematics

Accurate Timer on Visual Studio

The most accurate timer is the ‘high_resolution_clock’ which is supported in C++ only. Keep in mind that
you can write C code inside a C++ file/template. You can use it as follows

#include <chrono>

int main() {

auto start = std::chrono::high_resolution_clock::now();

routine();

auto finish = std::chrono::high_resolution_clock::now();

std::chrono::duration<double> elapsed = finish - start;
std::cout << "Elapsed time: " << elapsed.count() << " s\n";

…

}

Accurate Timer on both Linux and Visual Studio supported by OpenMP

In weeks 5-7 we will be using OpenMP framework which supports omp_get_wtime() routine. This works
for both Linux and Visual Studio. In Linux you must compile using ‘-fopenmp’. You can use it as follows.

#include <omp.h>
int main(){

double start,end;

start=omp_get_wtime();
 routine();
end=omp_get_wtime();

printf(“Elapsed Time in seconds is %f”,end-start);
…

}

Dr. Vasilios Kelefouras, University of Plymouth, School of Engineering, Computing and Mathematics

Section 4 - The Roofline Model

The roofline model [3] provides an easy way to get performance bounds for compute-bound and
memory-bound loop kernels. It allows us to know how far the achieved performance is from the
optimum. It is based on the concept of computational intensity, sometimes also called arithmetic or
operational Intensity. The arithmetic intensity is given by the following formula:
‘FP.arithmetical.instructions / number.of.bytes.loaded.stored’. This model has several limitations [3],
e.g., does not consider all features of modern processors and ignores integer computations.

Roofline Model for MMM algorithm: MMM has N3 iterations and each iteration contains 4 Floating Point
(FP) L/S operations and 2 FP arithmetical operations. So, the arithmetical intensity of MMM (the ratio
between FP arithmetical operations and number of bytes loaded/stored), when the arrays are of type
‘float’, is 2/(4*4bytes)=1/8.

MMM loop kernel contains integer arithmetical instructions too (we could generate the assembly and
check them out by typing gcc source.c -S assembly.s -O2). The integer arithmetical instructions are
responsible for a) computing the L/S memory addresses (e.g., ...=A[i][j] will be broken down to multiple
assembly instructions), b) controlling the iterators (increment i, compare i to N, branch back); however,
these integer operations take 1 CPU cycle each and they are performed in parallel with the FP ones. So,
for this loop kernel we could assume that performance is not affected by the integer operations.
Furthermore, the roofline model does not consider integer operations, and this is a serious limitation of
this model.

Fig.4. The Roofline Model [3]

Algorithms that have a low arithmetical intensity are memory-bound, while algorithms that have a high
arithmetical intensity are compute-bound. Memory-bound means that their performance is bounded on
the memory latency and bandwidth values; in simple words, no matter how high the CPU frequency is,
or no matter how many cores the CPU supports, performance depends on how fast the data are
loaded/stored from/to memory.

Attainable FLOPS = min(Peak Floating Point Performance, Peak Memory Bandwidth x Arithmetical

Intensity)

Dr. Vasilios Kelefouras, University of Plymouth, School of Engineering, Computing and Mathematics

The peak FP performance is the maximum we can get, and it refers to compute-bound loop kernels with
a perfect balance between simple and complex FP operations. The latter is an advanced topic and it is
not further explained here; for those who want to go deeper and learn more about it, ask the module
leader. The peak FP performance is CPU dependent.

Tip. each instruction has a latency and a throughput value, where the latter one is always larger or
equal to the first; thus, to achieve the optimum performance of a bunch of instructions, e.g.,

multiply instructions, multiple multiply instructions must be feed the instruction pipeline one after
another.

The peak memory bandwidth depends on the DDR memory and memory controller hardware
characteristics. Furthermore, if the data fit and remain in the cache, the peak memory bandwidth is the
cache bandwidth. As a reminder, a DDR memory access takes about 100-200 CPU cycles, an L3 memory
accesses about 40-70 CPU cycles, an L2 memory access 6-14 CPU cycles, while an L1 memory access takes
about 1-4 CPU cycles.

So, if the peak memory bandwidth is 21GBytes/sec, then the maximum MMM performance will be
21GB/sec x (1/8)=2.65gigaflops. If the arrays fit in the precious cache memories, then the memory
bandwidth is higher and thus performance is increased.

How can we improve the performance of memory-bound algorithms? The main strategies are as
follows. Reducing the number of memory accesses through the whole memory hierarchy; this relates to
reducing the number of cache-misses too. Another strategy is to use software prefetching. The above
can be achieved by using code optimizations such as loop tiling, register blocking, array copying, loop
merge/distribution etc. We will study those next week.

Further Reading:

1. The Valgrind Quick Start Guide, available at https://www.valgrind.org/docs/manual/quick-

start.html#quick-start.intro

2. Cachegrind: a cache and branch-prediction, available at https://valgrind.org/docs/manual/cg-

manual.html

3. Samuel Williams, Andrew Waterman, and David Patterson. 2009. Roofline: an insightful visual

performance model for multicore architectures. Commun. ACM 52, 4 (April 2009), 65-76.

DOI=10.1145/1498765.1498785, available at

https://people.eecs.berkeley.edu/~kubitron/cs252/handouts/papers/RooflineVyNoYellow.pdf

https://www.valgrind.org/docs/manual/quick-start.html#quick-start.intro
https://www.valgrind.org/docs/manual/quick-start.html#quick-start.intro
https://valgrind.org/docs/manual/cg-manual.html
https://valgrind.org/docs/manual/cg-manual.html
http://doi.acm.org/10.1145/1498765.1498785
https://people.eecs.berkeley.edu/~kubitron/cs252/handouts/papers/RooflineVyNoYellow.pdf

