Compilers for Embedded Systems
Integrated Systems of Hardware and Software

Lecture 1

Dr. Vasilios Kelefouras

Email: v.kelefouras@plymouth.ac.uk
Website: https: / /www.plymouth.ac.uk /staff /vasilios-kelefouras

https://www.plymouth.ac.uk/staff/vasilios-kelefouras

Module Outline

2 4
e

19" Oct. Lecture #1

26™ Oct. Lab session #1
2" Nov. Lecture #2

9th Nov. Lab session #2
16™ Nov. Lecture #3
23 Nov. Lab session #3
30%Nev Bank holiday
7™ Dec. Lecture #4
14" Dec. Lab session #4
21 Dec. Lecture #5
11" Jan. Lab session #5

18" Jan. Coursework Support

Module Outline

Week1/2. Motivation, Challenges, Parallel Hardware Architectures,
Programming Models and Software Application Profilers, Measuring
Performance, Roofline Model

Week3/4., Memory Hierarchy and Cache, Compiler Options and Code
Optimizations - Memory Bound Problems

Week5/6. More advanced Code Optimizations
Week7 /8. Vectorization using x86-64 intrinsics

Week9/10. OpenMP Programming — Shared Memory Multi-core CPUs
Week11. Coursework Support

Assessment

.
-1 Coursework (100%)

71 You will speedup real world applications on your PCs (multi-
core CPUs)

Assessment

.
-1 Coursework (100%)

71 You will speedup real world applications on your PCs (multi-
core CPUs)

QOutline of the 15 Lecture

Motivation and Challenges

Parallel Hardware Architectures and Programming Models
Software Application Profilers

How to measure the performance of our parallel software?
Using timers

FLOPS

Speedup, efficiency, scalability

Roofline Model

High Performance Computing (HPC) market

1 The HPC Market Map (next slide) demonstrates the rapidly

growing importance of HPC to industrial competitiveness of
both the UK and Europe

o1 High performance software is critical in modern computer systems
ranging from small embedded devices to big supercomputers and
datacenters

1 Companies need employers to write efficient software

1 Engineers with that knowledge are desirable in Industry

Special

Interest
Group

e-infrastructure

Introduction
e Infrastructure was described in a recent report from the
Department tor Business, Innavation & Skills as the “ecosystem for

innovatior; ge of future

methads and the potential contribution to the UK economy of
o-Intrastructiee tochnologies is enommons

Although higher education curently dominates the UK’ HPC
resources, of all stzes y for
HPC in the commercial arena. Fow companies aoe able ta make the
reguired mvestment an their own, Therefore, a need has developed
for enfrastructure to prowde the necessary resources for HPC

o meet the rapidly of UK

ontorpeisos

Trends & Numbers

Worldwide revenue

High Performance Computing (HPC)

Bomedical industros

@J\osca‘s
@

”
Cecmwr 2 1ULCH

- Advanced combustion madelling i - Yesther forecasting Miitary vohicle design - Astrophysical simwlation - DNA secuence analysts
Plasma physics Climate models: - Processing of teligence Telescope data snalysis - Proteamics and taxicalo
Publ) bodi L toinvestin
typlcally in nudear, metearological, space sciences and private MPC fadilities. Includes banks, data

- Quantum chemstry

Small and medium-sized cnbevpmc in sdentific and

a0raspace, FMCG, eaegy, oil and gas Industries

“@ produban u ne""

@ ARBUS &

processed using cammeral saftware and hardware

i shart tirwe frames. maieculie sinulation

understanding oe minimise sisk. £.6 financial and

Processing data to create forecast models o predict
autcomes, e.g. woather farecasting

Computationally or numerically imtensive
procossing of vast or compiex dztasets to akd
decisi raking in a variety of fdds

testing modelling

- Dertvatives trad)

Educational institutions, .g. aiversiies and techmical
colleges, Lsing HAC faclities to conduct research imvardng
anabysic of large datasets, 0.9, been scan dita

AT @ =5 e @

e ot

Document o e dlasscation, £.5. music, as wel 25
analyse text, e.g. sentiment analysis

Planning and
distribistian systems

- Computer graphs

d agenc
Defence, as well 25 cther health and regulatery agencies
Gowernments ar koy dinect and indinct investors in HPC

i @

o P

Creating computer-generated animation for the
Media industry and modeling output representation

g
$ 1 O 3 illion Value ofthe HPC A ,
. illion Commercial Acadomic
Servers market in 2013 Public Research - Defonse & Securtty |
'NREN - National connectivity.
European market % WrenATER B TEEARR B | ows g mm = X LON" "~
Faybylse Captive in -Peenng paints to NAEN BTwholess 1
% share of total worldwide —d |} | | I = = [o Contracted se Houie Use | Oiract cannection -, » DE-CIX \/[L\(
HPC revenues in 2013 - - W Viatel eunetworks NYIIX 5 astacenter =
Value of German
4 3 0 Supercomputer
Million segmentin 20110r 43% omp e ting Europ 0
of total HPC revenues v Dro 0 P
Complete HPC Hard S
Value of French Grid Application & Development Middleware - —%
5 lop 4 Global HAC System Vendors
$ 2 60 Supercomputer Distributed computing resources) Toals 9 S0RNL 10 MUSIE § PGS, Arosihovem oty Soipen e e eon
Million St;g(r’n‘;eln’::\cman‘m dw:nlgﬁzgoled-ﬂbm 3 . IBMs288n #1550 CNERN ©evrorec E4
% U Kngi ZRogueWave) $33Bn ccReer $048n = O] = | 1 1| 19944
of HPC application A e s Memory & Storage Local Interconnects | o 1| 15672
0 softwats viadn o Osikan SDisTENE o = F 2 20976
/0 Europe s indigineous Compoting Grid C e *
and 66% is based on IP allinea ‘Bulk Adaptive P) Nty et Al
aRreraed in BUOpd -g awruTing T Databirect” ikl dotex F j’ numascale Of m 5 7 14 | 776,468
On-Premises _/ =/ Finisar
HITACHI o Bl e ~ rufitsu @ ot |10 6| s [rimon
European share of ey lsmacutencl - ot
; ervers configured for - Divisional ean R&D R
< 5 (y HPC system vendors in the At g | - Dirmeta) Op 8 U Core Processors System Resilience (1] T 1 2 2 | 268400
0 global HPC system market Vendors i ! — 7
a & 2 3 | 62,160
i fnite element analysis. <empenents to prevent scaling faikare.
Amount committed Cloud p NO 3 54,400
by PRACE hosting partners Cloud services are widely used for i) =
(Germany, France, Italy & 2 Inversive purpioses by ARM 6 ranssunr mvioa. (22 e = 1 1 65280
Million Spain) to petascale L HPC
computing cycles (] SE 2 1 73,248
between 20102014 g EC2HPC o o e
Sources “ramazon gk Pata Energy & Power Exa Q| 2 P 263,888
(1) e-nfrastructure Leadership Council 2012 " webservices™ _s Project cofunded by Eurapean Commissicn ta bulkd a Furopesn vision “S«%ﬁ?." sy »i‘.ﬂfl"r"ﬁl * UK 5 15 10 | 925152
(2) ETP4HPC Stratogic Research Agenda 3013 et AR and roadmap to address the challenges of new gererstion 0 5
31DC Worldwide High Performar e Techrical Server Overview 2014 CTOSONE AL =»=.c =1 amulti-Petafiop & Exaflop systems aperations per oeep m number of
9)10C Report on HPC mechet Trends 2073
Prepared by - P
o) etwork of Excellence an ==~ Academic .®. Industry +
FI rst Pa rt n e r UK HPC SME Initiatives / SE_O_S "L n]s @) eriormance and —dNESUS " PRACE % Partneshipfor . Curopean ==s|
e-Infrastructure COMPUTING [JAnumberof initiatives in the UK and Eurcpe W =) , [Embedced Network for v & Advanced FIP L HPE Technology s—-."_‘_ X’
e c ind us ot Initiative SCOTLAND [mducs SME accoss to HPC facilitios in thelr scape. @'@t_ec:. Architectue Ultrascale o » * Camputing in L * e Plaform 4 HPC European Bxascale
AT wwwfirstpartner.net LD] w =" J & Compilation Compuing Europe vyt = Softwace Intiative

Copyright FrstFartnes Lt 2014

[IMPORTANT] - Module Requirements

Strongly Recommended:
Install a Virtual Machine using Linux (Ubuntu is recommended)
Or even better, native Linux or Windows Subsystem for Linux
We will be using both Linux and Windows
Coursework can be done by using either windows or Linux or Mac

If you use Visual Studio, you will need 2019 version (earlier
versions do not work)

Moore’s Law — The number of transistors on integrated circuit chips (1971-2018)
Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years.
This advancement is important as other aspects of technological progress — such as processing speed or the price of electronic products - are
linked to Moore's law.,

50,000,000,000
BTN Y
lW:?SSlamw\ AAooie A1ZX Bonk
10,000,000,000 et a4 | G e s
5,000,000,000 Nsonionm@'SE o N e 1w e P AR Buarke
s oo 8§, Semanibain
i 8 56 St ke
1,000,000,000 e POWE Rl e Bl
500,000,000 Ay \ B e e
) 0 nanem 2\\»:0%6&0. m;&b noied
Pertium D Smaheid,)
Rarmam 2 MEKNay @ ‘ot ‘Coro Do Wokaae 300
Pertum & Preacon - \.un 2 % m
100,000,000 ADIEO O
Pontae~ 4
= 50,000,000 : p....mu:,m“’." RS Smn ewom
§ Baina e %E) 8. 8 Coppermune A Cortin.A0
g 10,000,000 AMD K8, u
@ 5000000 rean g, RIS
g w,. .»zxg
[SATH10
1,000,000 et SR
500,000 e Ao
I L JUIE
Molorok 000 @ o
100,000 "%“. m&ms T ;&‘
50‘000 O kia 20185
ow BODOp @ Wes 5038 E W? >
10.000 T™simo Zeg Wu l?ﬁ& " Nede
: ¥ el
5,000 Pt
‘ Na%) g
i MRS W I
1,000
T U W QT % q, q, > a9 ® L0 L0 W 0 L»
L ELLEF LSS T F LT T 5%

Data source: Wikepedia (Mtps//en. wikpeda.og/wiki Transistor_count)
The data visualization is avallable at OurWorkiinData.org. There you find more visuaizations and research on thes topic Licensed under CC-BY-SA by the author Max Roser.

Performance used to increased according to

the number of transistors (1)
e

M

o The Good Old Days —
(SPECint) tmnt 00,
=) Uniproccessor issue (6 uop issue)
= Performance
— 1000
-
-
£ 00
Q
=
(1]
:
15 10
(a T
Vax “Star:, CISC, Vax 8700
CIsc
Vax-nneo\,~. ') : : ' ' ' ' ' '

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006

From Hennessy and Patterson, Computer Architecture: A Quantitative Approach, 4th edition, Sept. 15, 2006

Performance used to increased according to
the number of transistors (2)

The fact that performance used to increase by increasing the
number of transistors, trained people to expect that performance
comes from the hardware

Programmers used to write software without thinking about
performance

They counted on the hardware to do the work

This model used to work fine...but...back in 2006, something
changed...

The Power Wall problem

Performance used to increased according to
the number of transistors (3)

Power Wall Problem

The CPU design goal for the late 1990’s and early 2000’s
was to increase the CPU frequency.

This was a way to improve system performance
This was done by adding more transistors to a smaller chip.

However, this increased the heat dissipation of the CPU chip
beyond the capacity of inexpensive cooling techniques.

The last years the CPU frequency has ceased to grow

Performance used to increased according to
the number of transistors (4)

By increasing performance, power consumption increases even more
(next slide)

This is not sustainable

What to do? The solution is Parallel hardware architectures

Computer Architecture and the Power Wall

30

Pentium 4 (Psc)
25

Pentium 4 (Wmt)

20
power = perf A 1.74

Growth in Power

15 is Unsustainable

Power

10

Pentium Pro

1486 Pentium

0 l 4 6 8
Scalar Performance

Source: €. Grochowski of Intel

The solution to the Power Wall Problem

o1 The power of a processor is given by Power=Capacitance x Voltage x Frequency?
1 By using two processors inside the same chip, with half the frequency each, then:
Capacitance2 = 2.2 x Capacitance
Frequency2 = F/2
Votalge2 = 0.6 x Voltage

Power?2 = 0.4 Power Processor
Input Processor Ouput Input £/ Ouput
f Processor f
f/2

Parallel computing gives us the ability to give the same performance with lower
power

Source:

Chandrakasan, AP, Potkonjak, M.; Mehra, R,; Rabaey, J; Brodersen, R.W., “Optimizing power using transformations,
Vishwani Agrawai

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,, vol.14, no.1, pp.12-31, Jan 1995

The Era of Parallel Computing is here

Nowadays, performance comes from the software

There are no smart-enough tools to efficiently
parallelize serial software on the parallel hardware

Free lunch is over...

We must learn how to write parallel applications...

Hardware Architecture Trends (1)

; ' ' T

L | = . . ® | Transistors
. = il gy e B
108 | .. ‘f‘"_‘:*"- | (thousands)
. . ;*'il Aok
10° F }i 3.‘&1 ya? .-..*,_ Single-Thread
TV LRy Aot Performance
10* | {:ﬁ ‘;A-p t!j}"' | (SpeclINT x 103)
as 14‘5" ": - Frequency (MHz)
10° | Ta Ay .ﬂ;ﬂ ok =
g . Y - ¢+ | Typical Power
102 | e -. -- v 'I"'J; i‘.ﬁ.‘fﬂ,‘?- naE. — (Wat‘[s}
-'*i v ; - . *

1L - - i I T _.ff;' | Number of

10 ot = N viy ¥ “'z o Logical Cores
‘1‘-"::‘." k4 k4 v rrw - + ."-i
10° -; * G B 00 ﬂmwo}-"' =
] | A TTT I
1970 1980 1990 2000 2010 2020
Year

Taken from

https://www.researchgate.net/publication/336577121_BACKUS_Comprehensive_High-Performance_Research_Software_Engineering_Approach_for_Simulations_in_Supercomputing_Systems

Hardware Architecture Trends (2)

e 0

Hennessy/Patterson
42 Years of Processor Data o Ness ok Asa®
; 07 T T ' H. Sutter ! * Transistors
i “Free Lunch is Over” A "] (1000s)
Saaly
) A & A
6 “First Reconfigurable Wave” AAA A
1 0 TE : Adaptive Silicon, Elixent, Triscend, A =
Morphics, Chameleon Systems, A t ‘ A A
5 Quicksilver Technology, Mathstar A1 4 ‘: Single-Thread
107 : & . —| Performance
“‘A A (SpecINT x 103)
A
104 L. ; F. Brooks s 0 or E
" ”
No Silver Bullet _ ‘i A Frequency
(MHz)

3 L
10 Moore’s
Typical Power

Law
2 (Watts)
10° | * Number of
Logical Cores
il
AA a
100 g ¢ -
s |
1970 1980 1990 2000 2010 2020

Hennessy and Patterson, Turing Lecture 2018, overlaid over “42 Years of Processors Data”
https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/; “First Wave” added by Les Wilson, Frank Schirrmeister
Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten
New plot and data collected for 2010-2017 by K. Rupp

Hardware Evolution

Scalar Processors

Pipelined Processors

Superscalar and VLIW Processors
Out of order Processors Time
Vectorization
Hyper-Threading

Multicore Processors

Manycore Processors

Heterogeneous systems

Heterogeneous computing (1)

Single core Era -> Multi-core Era -> Heterogeneous Systems Era

Heterogeneous computing refers to systems that use more than one
kind of processors or cores

These systems gain performance or energy efficiency not just by
adding the same type of processors, but by adding dissimilar (co)-

processors, usually incorporating specialized processing capabilities to
handle particular tasks

Systems with General Purpose Processors (GPPs), GPUs, DSPs, ASIPs
etc.

Heterogeneous systems offer the opportunity to significantly increase
system performance and reduce system power consumption

Heterogeneous computing (2)

1 Software issues:

Offloading

Programmability — think about CPU code (C code), GPU code (CUDA), FPGA
code (VHDL)

Portability - What happens if your code runs on a machine with an FPGA instead
of a GPU

Comparisons between
Homogeneous and Heterogeneous Computing

s

Symmetric, Same cores Assymmetric, Different cores
(Usually CPUs) (CPUs, GPUs, DSPs and accelerators)

operation is guaranteed to be same at each core operation cannot be supposed to be same at each

core
easy to off load tasks more complicated to off load tasks
good compatibility less compatibility

specialized for specific tasks

Hardware Trends
From single core processors to heterogeneous systems on
chip

Driven by

trequency sealing Heterogeneous systems

Constrained by Manycore today

power consumption i
Multicore since 2008

:) Driven by
Single-Core since 2005 high performance per Watt ratio
1975-2005 Constrained by

programming complexity

H. Ezmaeilzadeh et al., “Dark silicon and the end of multicore 2caling”, Intemational Symposium on Computer Architecture (ISCA). ACM, 2011.
M. Zahran, “Heterogeneous Computing Here to Stay™. ACM Queue, NowDev 2016.

11
SEEEE GPU
HEEEN
]

FPGA

Unrestricted © Siemens AG 2017

Taken from https://embb.io/downloads/MTAPI EMBB.pdf

https://embb.io/downloads/MTAPI_EMBB.pdf

Comparison of Hardware Architectures

Intel CPU

1’ e

ManyCore

FPGA ASIC

<Flexibility. Programming Abstraciion

Pt for mance. Area and Power Efficienky

CPU:
* Market-agnostic
* Accessible to many

FPGA:
* Somewhat Restricted Market
* Harder to Program (VHDL,

programmers (Python, C++)Nerilog)

* Flexible, portable

* More efficient than SW
* More expensive than ASIC

ASIC

* Market-specific

* Fewer programmers

* Rigid, less programmable
* Hard to build (physical)

High Performance Computing (HPC)
Programming Languages

HPC is all about performance
The most used languages in HPC are
C/C++

Fortran — there are many old massive applications which
are still running, e.g., weather forecast (MetOffice)

In this module we will be using C Language

Parallel Programming
Models /Frameworks /Libraries

There are too many parallel programming models to write
parallel applications

Which one to use?
Ease of use
Performance

Portability

In this module we will be using shared memory architectures only
OpenMP
CUDA

Serial VS Parallel version

See how elegant OpenMP is

double un_opt(){
int i;

double version6(){
int i;

| [=0.0:
double x, pi, sum=0.0; double x, pi, sum=0.0;

double step;
double step; ouble step;

tep=1.0/(doubl teps;
step=1.0/(double) num_steps; >ep /(double) num_steps
Hpragma omp parallel for private(x) reduction(+:sum)
for (i=0; i<num_steps; i++){

x=(i+0.5)*step;

sum = sum + 4.0 / (1.0 + x*x);

for (i=0; i<num_steps; i++){
x=(i+0.5)*step;
sum = sum + 4.0 / (1.0 + x*x);

})

| = step * sum; :
P! p sy pi = step * sum;

return pi;

}

return pi;

}

GPU Parallel Programming Frameworks

The main GPU parallel programming frameworks are:
CUDA (Compute Unified Device Architecture)
Only for Nvidia GPUs - Nvidia Corporation proprietary
By far Best performance for Nvidia GPUs
OpenCL (Open Computing Language)
Open, maintaned by the Khronos Group
Programming is not than different from CUDA
Portable - CPUs, GPUs, other coprocessors
OpenMP (Open Multi-Processing) — code annotation
Very easy to use
Portable - CPUs, GPUs, other coprocessors
OpenACC (open accelerators) — code annotation
Very easy to use

Portable — CPUs, GPUs, other coprocessors

Vector Addition Example using

OpenMP and OpenACC

1 See how easy it is to write GPU code using OpenMP or OpenACC ...
But not that fast as CUDA for Nvidia GPUs ...

Why?
m CUDA is designed just for Nvidia GPUs, CUDA code is at a lower level,
better control of the hardware resources, allows for code optimizations...

// OpenACC code that runs on the GPU
#pragma acc kernels copyout(c[@:n]) copyin(a[@:n], b[@:n])
for (i=0; i<n; i++) {
c[i] = a[i] + b[1];
}

// OpenMP code that run on the GPU
#pragma omp target map(to: a[@:N], b[:N]) map(from: c[O:N])
#pragma omp parallel for
for (int 1 =0; i < N; i++) {
c[i] = a[i] + b[i];
}

Parallel Programming Languages
Popularity in Research (not industry)

Papers mentioning parallel programming langages.
Data according to Google Scholar (April 27th 2020)

=== OpenCL

=== Open MP

a=gus VP
el CUDA

wijiem Cil k
=== TBB

Number of papers

st Open ACC
e—SYCL

(c) Simon Mcintosh-Smith 2020

New ExaScale hardware architectures have
been announced

Exascale computing is expected to revolutionize computational science and
engineering by providing 1000x the capabilities of currently available
computing systems, while having a similar power footprint.

The new exascale hardware architectures are heterogeneous
CPUs+GPUs (Aurora)
CPUs+FPGAs (Arm EPI)

Although, the exascale supercomputers are currently being developed, with
‘Aurora’ being the first to be announced by the end of 2021, only a few
HPC applications are so far able to fully exploit the capabilities of the
current petascale systems, mainly because of their limited scalability.

Therefore, efforts for preparing HPC applications for Exascale are needed

People with such expertise get highly payed jobs

Profiling Software Applications

Types of profiling
Instrumentation-based profiling
Adds instructions to the target program to collect required information
Disadvantage: high overhead that distorts elapsed time
Statistical Profiling - Sampling-based

Profilers periodically interrupt the program’s execution to collect
information

Advantage: very low profiling overhead

Disadvantage: low statistical accuracy and possible timing anomalies
Hardware counter (event-based) profiling

Uses special CPU registers to count CPU events

Advantage: more detailed information with no profiling overhead

Profiling Software Applications

In this module we will use the following profilers
Gprof
Valgrind
Perf

Intel Vtune — Intel provides a free version of Vtune (Intel’s
Profiler)

GUI is supported

Gprof Profiler

Gprof profiler is a tool which collects statistics on serial
programs.

It works by inserting appropriate code in the beginning and in
the end of each function so as to collect information about the
execution time.

You can use in Linux only — Specific instructions in the tutorial
When to use:

When you want to find the computationally intensive functions
of a serial program

H rile EJit VIEW sgallll

user@il@wave:~/Desktop/comp3001/my/Labs/profiling$ gprof p -b
Flat profile:

Each sample counts as 0.01 seconds.
cumulative
seconds
Sig
.01
.05
.06
.07
.08
.09
.09
.09
.09

%
time
49,
49,

0.
.14
.14
.14
.14
.00
.00
.00

o000 00

T = D D D

[1]

49
49
57

index % time

T R R R R R |

50

self

seconds

SN
.50
.04
.01
.01
.01
.01
.00
.00
.00

20000000 W

50

Ierfiinat nep

calls

R R R e

call graph

self children

.00
.04
.50
.01
.01
.00
.00

20 0000 W=

.09
.50
.00
.01
.00
.01
.00

self

s/call

1/1
1/1
1/1
1/1
1/1
1/1
1/1

Zs
.50
.04

called

20000000 W

50

01
01
01

.01
.00
.00
.00

total
s/call name
3.50 MMM _default
.50 MMM
.54 writedata_MMM
.81 MvM_default
.01 vec_add
.01 vec_add_default
.02 writedata vec_add
.00 MVM
.00 1initialize
.01 writedata MVM

2000000 WwWWw

granularity: each sample hit covers 2 byte(s) for @.14% of 7.89 seconds

name
<spontaneous>

main [1]
writedata MMM [2]
MMM [4]
writedata_vec_add [5]
vec_add [7]
writedata MVM [9]
initialize [11]
MVM [10]

main [1]
writedata_MMM [2]
MMM_default [3]

writedata MMM [2]
MMM_default [3]

main [1]
writedata_vec_add [5]
vec_add default [8]

writedata_MvM [9]
MVM_default [6]

main [1]
vec_add [7]

A detailed explanation
IS provided in the
tutorial

Valgrind Tool

The Valgrind tool suite provides a number of debugging and profiling
tools that help you make your programs faster and more correct.

In this module will be using Cachegrind tool of Valgrind.
Cachegrind simulates how your program interacts with cache hierarchy.

It simulates a machine with independent first-level instruction (I1) and
data caches (D1), backed by a unified second-level cache (L2).

For the CPUs with more than 2 levels of cache Cachegrind simulates the
first-level and last-level caches only.

Therefore, Cachegrind always refers to the Instruction L1, data L1 and
Last Level cache.

When to use:

When you want to optimize memory accesses

Valgrind Tool — Example Output

==11586==1 refs: 1,041,351,336

==11586==11 misses: 1,108

==11586== LLi misses: 1,101

==11586==11 miss rate: 0.00%

==11586== LLi miss rate: 0.00%

==11586==

==11586==D refs: 387,398,347 (244,246,437 rd + 143,151,210 wr)
==11586== D1 misses: 411,589 (160,745rd + 250,844 wr)
==11586== LLd misses: 405,386 (154,589rd + 250,797 wr)
==11586== D1 miss rate: 0.1% (0.1% + 0.2%)
==11586== LLd miss rate: 0.1% (0.1% + 0.2%)
==11586==

==11586== LL refs: 412,697 (161,853rd + 250,844 wr)
==11586== LL misses: 406,487 (155,690rd + 250,797 wr)

==11586== LL miss rate: 0.0% (0.0% + 0.2%)

Perf Tool

The perf tool offers a rich set of commands to collect and
analyze performance and trace data.

Supports Hardware counters
When to use

When you want to leverage the hardware counters

Intel Vtune

Perhaps the most powerful and the easiest to use
A GUI is supported

For Intel Processors only

When to use

If you have an Intel Processor

225ep 09:59 e

Intel VTune Profiler

+ O & || Welcome r003ps *

. Performance Snapshot Performance Snapshot + @& 1) INTEI.VT“NE PRDF".EH

Analysis Configuration Collection Log ~ Summary

Choose your next analysis type Elapsed Time “: 2.170s
Select a highlighted recommendation based on your performance snapshot. IPC 1.636
SP GFLOPS 1.669
ALGORITHM MICROARCHITECTURE DP GFLOPS & 0.000
x87 GFLOPS " 0.019
] o Average CPU Frequency ©: 3.7 GHz
Hotspots Anomaly Memory Microarchitecture Memory Access
Detection Consumption Exploration
(preview) 41.7%

Logical Core Utilization : 30.7% (1.227 out of 4) &
Physical Core Utilization ©: 30.7% (1.227 out of 4} ®

Threading HPC Input and Microarchitecture Usage : 41.7% R of Pipeline Slots
30.7% Periorm_anc_e Output Retiring ©: 41.7% of Pipeline Slots
Characterization
Front-End Bound =: 23.5% & of Pipeline Slots
Back-End Bound - 28.8% & of Pipeline Slots
. 9 f Piveline Slot
ACC E I_: T':.-:' RS P Memory Bound ' 7.5% of Pf pelf ne Slots
CTE - = . Core Bound 21.3% & of Pipeline Slots
Bad Speculation ©: 6.0% of Pipeline Slots
GPU Offload GPU CPU/FPGA System GPU Rendering CPU/GPU
Compute/Media Interaction Overview (preview) Concurrency
Hotspots (deprecated) . .
(preview) Memory Bound : 7.5% of Pipeline Slots
L1 Bound °: 3.7% of Clockticks
. 79 \f Clockticks
Platform Profiler L2 Bound 0.7% of Clockticks
L3 Bound ©: 28% of Clockticks

DRAM Bound ©: 6.9% of Clockticks
Store Bound ©: 0.1% of Clockticks

Collection and Platform Info
This section provides information about this collection, including result set size and collection platform data.

Application Command Line: /home/wave/Desktop/p Vectorization : 94.2% of Packed FP Operations
Operating System: 5.11.0-34-generic DISTRIB_ID=Ubuntu DISTRIB_RELEASE=20.04 DISTRIB_CODENAME=focal Instruction Mix:
DISTRIB_DESCRIPTION="Ubuntu 20.04.3 LTS"
Computer Name: wave-Thi_n kCentre-M910s SPFLOPs : 5.6% of uOps
Result Size: 3.3MB Packed ©: 98.5% from SP FP
Collection start time: 08:58:40 22/09/2021 UTC 128-bit 98.5% I from SP FP
Callection stop time 08:58:43 22/09/2021 UTC 256bit 00% from SPFP
Collector Type: Event-based counting driver Scalar 2 1.5% from SP FP
Finalization mode: Fast. If the number of collected samples exceeds the threshold, this mode limits the number of processed DP FLOPs 0.0% of uOps
samples to speed up post-processing. Packed ©: 20% from DP FP
Scalar 98.0% k& from DP FP
CPU x87 FLOPs 0.3% of uOps
Name: Intel(R) Processor code named Kabylake Non-FP ©: 94.2% of uOps
Frequency: 34 GHz FP Arith/Mem Rd Instr. Ratio ©: 0.239 &

Logical CPU Count: 4 FP Arith/Mem Wr Instr. Ratio = 0.527

How to measure the performance of our parallel
software?

Measuring elapsed execution time of a program

Real Time (Wall time)

User Time — does not include the time spent in OS calls or

other processes

CPU system time — time spent executing system calls
Floating Point Operations Per Second (FLOPS)

Highly used in HPC

Speedup

Using Accurate Timers to Measure Execution Time
Linux (1)

In Linux: The clock_gettime system call allows us to measure the execution time
of programs.

This function uses the following struct.
struct timespec {
time_t tv_sec; /* seconds */
long tv_nsec; /* nanoseconds */
Y
The clock_gettime system call is used as follows:
#include <time.h>
int clock_gettime(clockid_t clk_id, struct timespec *tp);
The second parameter is the time structure.

The first parameter, clock ID, allows you to specify the clock you are interested
in using

Using Accurate Timers to Measure Execution Time

Linux (2)

CLOCK_MONOTONIC represents the absolute elapsed wall-clock time

#define BILLION 1000000000
struct fimespec start, end;

/* measure monotonic time */
clock_gettime(CLOCK_MONOTONIC, &start); /* mark start time */

do_something();
clock_gettime(CLOCK_MONOTONIC, &end); /* mark the end time */

diff = BILLION * (end.tv_sec - start.tv_sec) + end.tv_nsec - start.tv_nsec;
printf("elapsed time = %llu nanoseconds\n", (long long unsigned int) diff);

Using Accurate Timers to Measure Execution Time
Linux (3)

The CLOCK_PROCESS CPU _TIME_ID clock measures only the CPU time
consumed by the process. If the kernel puts the process to sleep, the time
it spends waiting is not counted.

/* now the measure CPU time for this process only */

/* the time spent sleeping will not count (but there is a bit of overhead */
clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &start); /* mark start time */

do_something();
clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &end);/* mark the end time */

diff = BILLION * (end.tv_sec - start.tv_sec) + end.tv_nsec - start.tv_nsec;
printf("elapsed process CPU time = %llu nanoseconds\n", (long long unsigned int) diff);

Accurate Timers in Visual Studio

1 The most accurate timer is the ‘high_resolution_clock’ which is supported
in C++ only.

Keep in mind that you can write C code inside a C++ file

#include <chrono>

int main() {

auto start = std::chrono::high_resolution_clock::now();
Do_something();

auto finish = std::chrono::high_resolution_clock::now();

std::chrono::duration<double> elapsed = finish - start;
std::cout << "Elapsed time: " << elapsed.count() << "s\n";

Using OpenMP timer that works on all the

operating systems

7 In weeks 5-7 we will be using OpenMP

1 OpenMP supports omp_get_wtime() timer
In Linux you must compile using ‘-fopenmp’ option.
#include <omp.h>

int main(){

double start, end;
start=omp_get_wtime();
routine();

end=omp_get_wtime();

printf(“Elapsed Time in seconds is %f”,end-start);

How to get an accurate execution time value

When you run your program in an operating system, other
processes run too

For single thread programs: To get an accurate execution time
value, make sure the execution time of your code is at least a few
seconds

For multi-threaded programs: To get an accurate execution time
value, make sure the execution time of your code is about 1 minute

If the execution time of your program is much higher than the sum
of the all the others, then the execution time value is considered
accurate

FLOPS

The performance capabilities of supercomputers are expressed using a
standard rate for indicating the number of floating-point arithmetic
calculations systems can perform on a per-second basis.

How many FLOPS does the following program achieve if it takes
1sec to execute (the arrays are of type float) ¢

There are ‘2%1024%1024’ FP arithmetic operations (1 addition and
1 multiplication)

FLOPS=2%1024*1024 / 1sec = 2 Mega FLOPS

for (i=0; i<1024; i++)
for (j=0; [<1024; [++)
yli]+=a[N*i+j] * x[];

Speedup and Efficiency

Speedup = Tserial / Tparallel
The speedup is ideal if Speedup == num.cores
The speedup is linear if Speedup = num.cores

In practice it is hard to get linear speedup because of the
overhead in creating the threads, communication, resource
contention, and synchronization

Efficiency = Speedup / num.cores or ideal.time /measured.time

It estimates how well-utilized the processors are in solving the
problem

|deal speedup gives Efficiency=1

Amdahl’s Law
40 9

1 Amdahl pointed out that the speedup is limited by the fraction of the
serial part of the application that is not amenable to parallelization

01 Speedup = 1 / (serial + parallel /num.cores)

0 Serial /parallel is the proportion of execution time spent on the serial
and pqrallel par’r respectively

~

:: 0 Speedup =(1 ,/ 'Lserlal + (1-serial) /num. coresz p

______________ Time
T .
T
T

I serial 1-serial

e serial (1-serial) / num.cores Serial fraction of the code

parallel fraction of the code

Scalability (1)

Most parallel applications can be run using different number of
processing elements, but the speedup will be decreasing as the
number of processing elements increases. For example:

2 cores speedup x1.98
4 cores speedup x3.7
16 cores speedup x9

This is normal, but you must carefully choose the number of cores to
use

Typically, larger input sizes will run efficiently

Scalability or scaling is widely used to indicate the ability of hardware
and software to deliver greater computational power when the
amount of resources is increased

Scalability (2)

Strong scaling refers to an application’s performance when the total
problem size is kept fixed, and the number of processing elements
varied.

What is the speedup if we double the number of cores?
What is the speedup if we have x8 cores?

Weak scaling refers to an application’s performance when we increase
the problem size relative to the number of processing elements.

If we run a program for N=128 on 4 cores, will the time remain
constant if we run the program for N=256 on 8 cores?

Will the time remain constant since the work per core has remained
the same, or will it increase because of the communication overhead /
cache misses etc?

The Roofline Model (1)

The roofline model provides an easy way to get performance bounds
for compute-bound and memory-bound loop kernels.

It allows us to know how far the achieved performance is from the
optimum.

It is based on the concept of computational intensity, sometimes also
called arithmetic or operational Intensity.

The arithmetic intensity (Al) is given by the following formula:
Al=FP.arithmetical.instructions / number.of.bytes.loaded.stored

This model has several limitations, e.g., does not consider all features of
modern processors and ignores integer computations.

You can read more in

https://people.eecs.berkeley.edu/~kubitron/cs252/handouts/papers/RooflineVyNoYellow.pdf

The Roofline Model (2)

Algorithms that have a low arithmetical intensity are memory-bound, while
algorithms that have a high arithmetical intensity are compute-bound.

Memory-bound means that their performance is bounded on the memory latency and

bandwidth values AFLOPS

Max FLOPS

Floating point imbalance (e.g. more * than + etc)

Compute Bound Problems

Memory Bound

Problems
>
“Roofline: An Insightful Visual Performance Model For Multicore Max FLOPS/Max BW Arithmetic Intensity
Architectures®, S. Williams, A. Waterman and D. Patterson”, (system dependent)

Communications of the ACM, val 52, no 4, April 2009 (Al) of problem

The Roofline Model (3)

FLOPS = min (Peak Floating Point Performance, Peak Memory Bandwidth x Al)

The peak FP performance is the maximum we can

ELOPS get, and it refers to compute-bound loop kernels with
A a perfect balance between simple and complex FP
operations. '
Max FLOPS

Floating point imbalance (e.g. more * than + etc)

Compute Bound Problems

Memory Bound

Problems
>
“Roofline: An Insightful Visual Performance Model For Multicore Max FLOPS/Max BW Arithmetic Intensity
Architectures”, S. Williams, A. Waterman and D. Patterson”, (system dependent)

Communications of the ACM, val 52, no 4, April 2009 (Al) of problem

The Roofline Model (4)

FLOPS = min (Peak Floating Point Performance, Peak Memory Bandwidth x Al)

The peak memory bandwidth depends on the DDR and
memory controller hardware characteristics.
ATEOPS Furthermore, if the data fit in a cache memory and they
are always accesised from there, the peak memory
bandwidth is the icache bandwidth.

Max FLOPS

Floating point imbalance (e.g. more * than + etc)

Compute Bound Problems

Memory Bound

Problems .
S - ; Max FLOPS/Max BW . . .
Roofline: An Insightful Visual Perf Model For Mult
Argt?it'Iar::?urer;”,r| 3'.gwnlﬁanl§fji. v%a?gr?na:r:: anOD.ePa?trersl;nl’sore (system dependent) Arithmetic Intensity

Communications of the ACM, val 52, no 4, April 2009 (Al) of problem

Roofline Model - Example

MMM has N3 iterations and each iteration contains 4 Floating Point (FP)
L/S operations and 2 FP arithmetical operations.

So, the arithmetical intensity of MMM, is 2/(4*4bytes)=1/8.
Assume that performance is not affected by the integer operations.

So, if the peak memory bandwidth is 21 GBytes/sec, then the maximum
MMM performance will be 21GB/sec x (1/8)=2.65gigaflops.

If the arrays fit in the precious cache memories (using optimizations), then
the memory bandwidth is higher and thus performance is increased.

for (i=0;i<N;i++)

for (j=0;/<N;j++)

for (k=0;k<N;k++)

C[i]0] +=A [i]lk] * B[k][];

Roofline Model — Example (2)
B

71 Find the Arithmetic Intensity of the following program

Float Y[N], A[N]J[N], X[N];

for (i=0; i<N; i++)
for (j=0; [<N; j++)
y[i] +=A[i][j] * X[j];

Roofline Model — Example (3)

O..

by =

INTOP/Byte (Anthmetic Intensity)

339

Intel Advisor. Taken from
https://software.intel.com/content/www/us/en/develop/articles/a-brief-overview-of-

Integer-roofline-modeling-in-intel-advisor.html

https://software.intel.com/content/www/us/en/develop/articles/a-brief-overview-of-integer-roofline-modeling-in-intel-advisor.html

Performance Guidelines

Compute bound codes are not that hard to optimized
The speedup achieved will be small

Speeding up memory bound codes is really challenging and
researchers still working on it

The main software strategies are as follows.

Reducing the number of memory accesses through the whole
memory hierarchy.

Use software prefetching.

The above can be achieved by using code optimizations such as
loop tiling, register blocking, array copying, loop
merge/distribution etc. We will study those next week.

There are 1/O bound problems too, but not studied here

Further Reading

GPROF Tutorial — How to use Linux GNU GCC Profiling Tool, available
at

The Valgrind Quick Start Guide, available at
https:/ /www.valgrind.org /docs/manual /quick-start.html#quick-
start.intro

Cachegrind: a cache and branch-prediction, available at
https: / /valgrind.org /docs/manual /cg-manual.html

Tutorial, Linux kernel profiling with perf, available at
https: / /perf.wiki.kernel.org /index.php /Tutorial

perf Examples, available at

Get started with Intel Vtune, available at

https://www.thegeekstuff.com/2012/08/gprof-tutorial/
http://www.brendangregg.com/perf.html
https://software.intel.com/content/www/us/en/develop/documentation/get-started-with-vtune/top/windows-os.html

