
1

School of Computing

(University of Plymouth)

Compilers for Embedded Systems

Integrated Systems of Hardware and Software

Lecture 1

Dr. Vasilios Kelefouras

Email: v.kelefouras@plymouth.ac.uk

Website: https://www.plymouth.ac.uk/staff/vasilios-kelefouras

https://www.plymouth.ac.uk/staff/vasilios-kelefouras

Module Outline

2

Date Delivery

19th Oct. Lecture #1

26th Oct. Lab session #1

2nd Nov. Lecture #2

9th Nov. Lab session #2

16th Nov. Lecture #3

23rd Nov. Lab session #3

30th Nov. Bank holiday

7th Dec. Lecture #4

14th Dec. Lab session #4

21st Dec. Lecture #5

11th Jan. Lab session #5

18th Jan. Coursework Support

Module Outline

 Week1/2. Motivation, Challenges, Parallel Hardware Architectures,

Programming Models and Software Application Profilers, Measuring

Performance, Roofline Model

 Week3/4., Memory Hierarchy and Cache, Compiler Options and Code

Optimizations - Memory Bound Problems

 Week5/6. More advanced Code Optimizations

 Week7/8. Vectorization using x86-64 intrinsics

 Week9/10. OpenMP Programming – Shared Memory Multi-core CPUs

 Week11. Coursework Support

3

Assessment

 Coursework (100%)

 You will speedup real world applications on your PCs (multi-

core CPUs)

4

Assessment

 Coursework (100%)

 You will speedup real world applications on your PCs (multi-

core CPUs)

5

Outline of the 1st Lecture

 Motivation and Challenges

 Parallel Hardware Architectures and Programming Models

 Software Application Profilers

 How to measure the performance of our parallel software?

 Using timers

 FLOPS

 Speedup, efficiency, scalability

 Roofline Model

6

High Performance Computing (HPC) market

 The HPC Market Map (next slide) demonstrates the rapidly

growing importance of HPC to industrial competitiveness of

both the UK and Europe

 High performance software is critical in modern computer systems

ranging from small embedded devices to big supercomputers and

datacenters

 Companies need employers to write efficient software

 Engineers with that knowledge are desirable in Industry

7

8

[IMPORTANT] - Module Requirements

 Strongly Recommended:

 Install a Virtual Machine using Linux (Ubuntu is recommended)

Or even better, native Linux or Windows Subsystem for Linux

 We will be using both Linux and Windows

 Coursework can be done by using either windows or Linux or Mac

 If you use Visual Studio, you will need 2019 version (earlier

versions do not work)

9

10

Performance used to increased according to

the number of transistors (1)
11

Performance used to increased according to

the number of transistors (2)
12

 The fact that performance used to increase by increasing the

number of transistors, trained people to expect that performance

comes from the hardware

 Programmers used to write software without thinking about

performance

 They counted on the hardware to do the work

 This model used to work fine…but…back in 2006, something

changed…

 The Power Wall problem

Performance used to increased according to

the number of transistors (3)
13

 Power Wall Problem

 The CPU design goal for the late 1990’s and early 2000’s

was to increase the CPU frequency.

 This was a way to improve system performance

 This was done by adding more transistors to a smaller chip.

 However, this increased the heat dissipation of the CPU chip

beyond the capacity of inexpensive cooling techniques.

 The last years the CPU frequency has ceased to grow

Performance used to increased according to

the number of transistors (4)

 By increasing performance, power consumption increases even more

(next slide)

 This is not sustainable

 What to do? The solution is Parallel hardware architectures

14

The solution to the Power Wall Problem

15

 The power of a processor is given by Power=Capacitance x Voltage x Frequency2

 By using two processors inside the same chip, with half the frequency each, then:

 Capacitance2 = 2.2 x Capacitance

 Frequency2 = F/2

 Votalge2 = 0.6 x Voltage

 Power2 = 0.4 Power

Parallel computing gives us the ability to give the same performance with lower

power

The Era of Parallel Computing is here

 Nowadays, performance comes from the software

 There are no smart-enough tools to efficiently

parallelize serial software on the parallel hardware

 Free lunch is over…

 We must learn how to write parallel applications…

16

Hardware Architecture Trends (1)

Taken from https://www.researchgate.net/publication/336577121_BACKUS_Comprehensive_High-

Performance_Research_Software_Engineering_Approach_for_Simulations_in_Supercomputing_Systems

17

https://www.researchgate.net/publication/336577121_BACKUS_Comprehensive_High-Performance_Research_Software_Engineering_Approach_for_Simulations_in_Supercomputing_Systems

Hardware Architecture Trends (2)

18

Hardware Evolution

 Scalar Processors

 Pipelined Processors

 Superscalar and VLIW Processors

 Out of order Processors

 Vectorization

 Hyper-Threading

 Multicore Processors

 Manycore Processors

 Heterogeneous systems

19

Time

Heterogeneous computing (1)

20

Single core Era -> Multi-core Era -> Heterogeneous Systems Era

 Heterogeneous computing refers to systems that use more than one

kind of processors or cores

 These systems gain performance or energy efficiency not just by

adding the same type of processors, but by adding dissimilar (co)-

processors, usually incorporating specialized processing capabilities to

handle particular tasks

 Systems with General Purpose Processors (GPPs), GPUs, DSPs, ASIPs

etc.

 Heterogeneous systems offer the opportunity to significantly increase

system performance and reduce system power consumption

Heterogeneous computing (2)

21

 Software issues:

 Offloading

 Programmability – think about CPU code (C code), GPU code (CUDA), FPGA

code (VHDL)

 Portability - What happens if your code runs on a machine with an FPGA instead

of a GPU

Hardware Trends

From single core processors to heterogeneous systems on a

chip
22

Taken from https://embb.io/downloads/MTAPI_EMBB.pdf

https://embb.io/downloads/MTAPI_EMBB.pdf

Comparison of Hardware Architectures

23

Intel CPU

DSP

MultiCore

ManyCore

GPU

FPGA ASIC

Flexibility, Programming Abstraction

Performance, Area and Power Efficiency

CPU:
• Market-agnostic
• Accessible to many
programmers (Python, C++)
• Flexible, portable

ASIC
• Market-specific
• Fewer programmers
• Rigid, less programmable
• Hard to build (physical)

FPGA:
• Somewhat Restricted Market
• Harder to Program (VHDL,
Verilog)
• More efficient than SW
• More expensive than ASIC

High Performance Computing (HPC)

Programming Languages

 HPC is all about performance

 The most used languages in HPC are

 C/C++

 Fortran – there are many old massive applications which

are still running, e.g., weather forecast (MetOffice)

 In this module we will be using C Language

24

Parallel Programming

Models/Frameworks/Libraries

 There are too many parallel programming models to write

parallel applications

 Which one to use?

 Ease of use

 Performance

 Portability

 In this module we will be using shared memory architectures only

 OpenMP

 CUDA

25

Serial VS Parallel version

See how elegant OpenMP is
26

double un_opt(){

int i;

double x, pi, sum=0.0;

double step;

step=1.0/(double) num_steps;

for (i=0; i<num_steps; i++){

x=(i+0.5)*step;

sum = sum + 4.0 / (1.0 + x*x);

}

pi = step * sum;

return pi;

}

double version6(){

int i;

double x, pi, sum=0.0;

double step;

step=1.0/(double) num_steps;

#pragma omp parallel for private(x) reduction(+:sum)

for (i=0; i<num_steps; i++){

x=(i+0.5)*step;

sum = sum + 4.0 / (1.0 + x*x);

}

pi = step * sum;

return pi;

}

GPU Parallel Programming Frameworks

 The main GPU parallel programming frameworks are:

 CUDA (Compute Unified Device Architecture)

 Only for Nvidia GPUs - Nvidia Corporation proprietary

 By far Best performance for Nvidia GPUs

 OpenCL (Open Computing Language)

 Open, maintaned by the Khronos Group

 Programming is not than different from CUDA

 Portable - CPUs, GPUs, other coprocessors

 OpenMP (Open Multi-Processing) – code annotation

 Very easy to use

 Portable - CPUs, GPUs, other coprocessors

 OpenACC (open accelerators) – code annotation

 Very easy to use

 Portable – CPUs, GPUs, other coprocessors

27

Vector Addition Example using

OpenMP and OpenACC

 See how easy it is to write GPU code using OpenMP or OpenACC …

 But not that fast as CUDA for Nvidia GPUs …

 Why?

 CUDA is designed just for Nvidia GPUs, CUDA code is at a lower level,

better control of the hardware resources, allows for code optimizations…

28

// OpenACC code that runs on the GPU
#pragma acc kernels copyout(c[0:n]) copyin(a[0:n], b[0:n])
for (i=0; i<n; i++) {
c[i] = a[i] + b[i];

}

// OpenMP code that run on the GPU
#pragma omp target map(to: a[0:N], b[:N]) map(from: c[0:N])
#pragma omp parallel for
for (int i = 0; i < N; i++) {

c[i] = a[i] + b[i];
}

Parallel Programming Languages

Popularity in Research (not industry)
29

New ExaScale hardware architectures have

been announced

 Exascale computing is expected to revolutionize computational science and

engineering by providing 1000x the capabilities of currently available

computing systems, while having a similar power footprint.

 The new exascale hardware architectures are heterogeneous

 CPUs+GPUs (Aurora)

 CPUs+FPGAs (Arm EPI)

 Although, the exascale supercomputers are currently being developed, with

‘Aurora’ being the first to be announced by the end of 2021, only a few

HPC applications are so far able to fully exploit the capabilities of the

current petascale systems, mainly because of their limited scalability.

 Therefore, efforts for preparing HPC applications for Exascale are needed

 People with such expertise get highly payed jobs

30

Profiling Software Applications

 Types of profiling

 Instrumentation-based profiling

 Adds instructions to the target program to collect required information

 Disadvantage: high overhead that distorts elapsed time

 Statistical Profiling - Sampling-based

 Profilers periodically interrupt the program’s execution to collect

information

 Advantage: very low profiling overhead

 Disadvantage: low statistical accuracy and possible timing anomalies

 Hardware counter (event-based) profiling

 Uses special CPU registers to count CPU events

 Advantage: more detailed information with no profiling overhead

31

Profiling Software Applications

 In this module we will use the following profilers

 Gprof

 Valgrind

 Perf

 Intel Vtune – Intel provides a free version of Vtune (Intel’s

Profiler)

GUI is supported

32

Gprof Profiler

 Gprof profiler is a tool which collects statistics on serial

programs.

 It works by inserting appropriate code in the beginning and in

the end of each function so as to collect information about the

execution time.

 You can use in Linux only – Specific instructions in the tutorial

 When to use:

 When you want to find the computationally intensive functions

of a serial program

33

34

A detailed explanation

is provided in the

tutorial

Valgrind Tool

 The Valgrind tool suite provides a number of debugging and profiling

tools that help you make your programs faster and more correct.

 In this module will be using Cachegrind tool of Valgrind.

 Cachegrind simulates how your program interacts with cache hierarchy.

 It simulates a machine with independent first-level instruction (I1) and

data caches (D1), backed by a unified second-level cache (L2).

 For the CPUs with more than 2 levels of cache Cachegrind simulates the

first-level and last-level caches only.

 Therefore, Cachegrind always refers to the Instruction L1, data L1 and

Last Level cache.

 When to use:

 When you want to optimize memory accesses

35

Valgrind Tool – Example Output

36

==11586== I refs: 1,041,351,336

==11586== I1 misses: 1,108

==11586== LLi misses: 1,101

==11586== I1 miss rate: 0.00%

==11586== LLi miss rate: 0.00%

==11586==

==11586== D refs: 387,398,347 (244,246,437 rd + 143,151,910 wr)

==11586== D1 misses: 411,589 (160,745 rd + 250,844 wr)

==11586== LLd misses: 405,386 (154,589 rd + 250,797 wr)

==11586== D1 miss rate: 0.1% (0.1% + 0.2%)

==11586== LLd miss rate: 0.1% (0.1% + 0.2%)

==11586==

==11586== LL refs: 412,697 (161,853 rd + 250,844 wr)

==11586== LL misses: 406,487 (155,690 rd + 250,797 wr)

==11586== LL miss rate: 0.0% (0.0% + 0.2%)

Perf Tool

 The perf tool offers a rich set of commands to collect and

analyze performance and trace data.

 Supports Hardware counters

 When to use

 When you want to leverage the hardware counters

37

Intel Vtune

 Perhaps the most powerful and the easiest to use

 A GUI is supported

 For Intel Processors only

 When to use

 If you have an Intel Processor

38

39

How to measure the performance of our parallel

software?

 Measuring elapsed execution time of a program

 Real Time (Wall time)

 User Time – does not include the time spent in OS calls or

other processes

 CPU system time – time spent executing system calls

 Floating Point Operations Per Second (FLOPS)

 Highly used in HPC

 Speedup

40

Using Accurate Timers to Measure Execution Time

Linux (1)

 In Linux: The clock_gettime system call allows us to measure the execution time

of programs.

 This function uses the following struct.

struct timespec {

time_t tv_sec; /* seconds */

long tv_nsec; /* nanoseconds */

};

 The clock_gettime system call is used as follows:

 #include <time.h>

 int clock_gettime(clockid_t clk_id, struct timespec *tp);

 The second parameter is the time structure.

 The first parameter, clock ID, allows you to specify the clock you are interested

in using

41

Using Accurate Timers to Measure Execution Time

Linux (2)
42

#define BILLION 1000000000

struct timespec start, end;

/* measure monotonic time */

clock_gettime(CLOCK_MONOTONIC, &start);/* mark start time */

do_something();

clock_gettime(CLOCK_MONOTONIC, &end);/* mark the end time */

diff = BILLION * (end.tv_sec - start.tv_sec) + end.tv_nsec - start.tv_nsec;

printf("elapsed time = %llu nanoseconds\n", (long long unsigned int) diff);

CLOCK_MONOTONIC represents the absolute elapsed wall-clock time

Using Accurate Timers to Measure Execution Time

Linux (3)
43

/* now the measure CPU time for this process only */

/* the time spent sleeping will not count (but there is a bit of overhead */

clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &start);/* mark start time */

do_something();

clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &end);/* mark the end time */

diff = BILLION * (end.tv_sec - start.tv_sec) + end.tv_nsec - start.tv_nsec;

printf("elapsed process CPU time = %llu nanoseconds\n", (long long unsigned int) diff);

The CLOCK_PROCESS_CPU_TIME_ID clock measures only the CPU time
consumed by the process. If the kernel puts the process to sleep, the time
it spends waiting is not counted.

Accurate Timers in Visual Studio

 The most accurate timer is the ‘high_resolution_clock’ which is supported

in C++ only.

 Keep in mind that you can write C code inside a C++ file

44

#include <chrono>

int main() {

auto start = std::chrono::high_resolution_clock::now();

Do_something();

auto finish = std::chrono::high_resolution_clock::now();

std::chrono::duration<double> elapsed = finish - start;

std::cout << "Elapsed time: " << elapsed.count() << " s\n";

…

}

Using OpenMP timer that works on all the

operating systems

 In weeks 5-7 we will be using OpenMP

 OpenMP supports omp_get_wtime() timer

 In Linux you must compile using ‘-fopenmp’ option.

45

#include <omp.h>

int main(){

double start, end;

start=omp_get_wtime();

routine();

end=omp_get_wtime();

printf(“Elapsed Time in seconds is %f”,end-start);

…

}

How to get an accurate execution time value

 When you run your program in an operating system, other

processes run too

 For single thread programs: To get an accurate execution time

value, make sure the execution time of your code is at least a few

seconds

 For multi-threaded programs: To get an accurate execution time

value, make sure the execution time of your code is about 1 minute

 If the execution time of your program is much higher than the sum

of the all the others, then the execution time value is considered

accurate

46

FLOPS

 The performance capabilities of supercomputers are expressed using a

standard rate for indicating the number of floating-point arithmetic

calculations systems can perform on a per-second basis.

 How many FLOPS does the following program achieve if it takes

1sec to execute (the arrays are of type float) ?

 There are ‘2*1024*1024’ FP arithmetic operations (1 addition and

1 multiplication)

 FLOPS=2*1024*1024 / 1sec = 2 Mega FLOPS

47

for (i=0; i<1024; i++)

for (j=0; j<1024; j++)

y[i]+=a[N*i+j] * x[j];

Speedup and Efficiency

 Speedup = Tserial / Tparallel

 The speedup is ideal if Speedup == num.cores

 The speedup is linear if Speedup ≈ num.cores

 In practice it is hard to get linear speedup because of the

overhead in creating the threads, communication, resource

contention, and synchronization

 Efficiency = Speedup / num.cores or ideal.time/measured.time

 It estimates how well-utilized the processors are in solving the

problem

 Ideal speedup gives Efficiency=1

48

Amdahl’s Law

 Amdahl pointed out that the speedup is limited by the fraction of the

serial part of the application that is not amenable to parallelization

 Speedup = 1 / (serial + parallel/num.cores)

 Serial/parallel is the proportion of execution time spent on the serial

and parallel part, respectively

 Parallel=1-serial thus:

 Speedup = 1 / (serial + (1-serial)/num.cores)

49

serial 1-serial

serial (1-serial) / num.cores Serial fraction of the code

parallel fraction of the code

Time

Scalability (1)

 Most parallel applications can be run using different number of

processing elements, but the speedup will be decreasing as the

number of processing elements increases. For example:

 2 cores speedup x1.98

 4 cores speedup x3.7

 16 cores speedup x9

 This is normal, but you must carefully choose the number of cores to

use

 Typically, larger input sizes will run efficiently

 Scalability or scaling is widely used to indicate the ability of hardware

and software to deliver greater computational power when the

amount of resources is increased

50

Scalability (2)

 Strong scaling refers to an application’s performance when the total

problem size is kept fixed, and the number of processing elements

varied.

 What is the speedup if we double the number of cores?

 What is the speedup if we have x8 cores?

 Weak scaling refers to an application’s performance when we increase

the problem size relative to the number of processing elements.

 If we run a program for N=128 on 4 cores, will the time remain

constant if we run the program for N=256 on 8 cores?

 Will the time remain constant since the work per core has remained

the same, or will it increase because of the communication overhead /

cache misses etc?

51

The Roofline Model (1)

 The roofline model provides an easy way to get performance bounds

for compute-bound and memory-bound loop kernels.

 It allows us to know how far the achieved performance is from the

optimum.

 It is based on the concept of computational intensity, sometimes also

called arithmetic or operational Intensity.

 The arithmetic intensity (AI) is given by the following formula:

AI=FP.arithmetical.instructions / number.of.bytes.loaded.stored

 This model has several limitations, e.g., does not consider all features of

modern processors and ignores integer computations.

 You can read more in

https://people.eecs.berkeley.edu/~kubitron/cs252/handouts/papers/R

ooflineVyNoYellow.pdf

52

https://people.eecs.berkeley.edu/~kubitron/cs252/handouts/papers/RooflineVyNoYellow.pdf

The Roofline Model (2)

 Algorithms that have a low arithmetical intensity are memory-bound, while

algorithms that have a high arithmetical intensity are compute-bound.

53

 Memory-bound means that their performance is bounded on the memory latency and

bandwidth values

The Roofline Model (3)

54

FLOPS = min (Peak Floating Point Performance, Peak Memory Bandwidth x AI)

The peak FP performance is the maximum we can

get, and it refers to compute-bound loop kernels with

a perfect balance between simple and complex FP

operations.

The Roofline Model (4)

55

FLOPS = min (Peak Floating Point Performance, Peak Memory Bandwidth x AI)

The peak memory bandwidth depends on the DDR and

memory controller hardware characteristics.

Furthermore, if the data fit in a cache memory and they

are always accessed from there, the peak memory

bandwidth is the cache bandwidth.

Roofline Model - Example

 MMM has N3 iterations and each iteration contains 4 Floating Point (FP)

L/S operations and 2 FP arithmetical operations.

 So, the arithmetical intensity of MMM, is 2/(4*4bytes)=1/8.

 Assume that performance is not affected by the integer operations.

 So, if the peak memory bandwidth is 21GBytes/sec, then the maximum

MMM performance will be 21GB/sec x (1/8)=2.65gigaflops.

 If the arrays fit in the precious cache memories (using optimizations), then

the memory bandwidth is higher and thus performance is increased.

56

for (i=0;i<N;i++)

for (j=0;j<N;j++)

for (k=0;k<N;k++)

C[i][j] +=A [i][k] * B[k][j];

Roofline Model – Example (2)

 Find the Arithmetic Intensity of the following program

57

Float Y[N], A[N][N], X[N];

for (i=0; i<N; i++)

for (j=0; j<N; j++)

y[i] +=A[i][j] * X[j];

Roofline Model – Example (3)

58

Intel Advisor. Taken from

https://software.intel.com/content/www/us/en/develop/articles/a-brief-overview-of-

integer-roofline-modeling-in-intel-advisor.html

https://software.intel.com/content/www/us/en/develop/articles/a-brief-overview-of-integer-roofline-modeling-in-intel-advisor.html

Performance Guidelines

 Compute bound codes are not that hard to optimized

 The speedup achieved will be small

 Speeding up memory bound codes is really challenging and

researchers still working on it

 The main software strategies are as follows.

 Reducing the number of memory accesses through the whole

memory hierarchy.

 Use software prefetching.

 The above can be achieved by using code optimizations such as

loop tiling, register blocking, array copying, loop

merge/distribution etc. We will study those next week.

 There are I/O bound problems too, but not studied here

59

Further Reading

 GPROF Tutorial – How to use Linux GNU GCC Profiling Tool, available

at https://www.thegeekstuff.com/2012/08/gprof-tutorial/

 The Valgrind Quick Start Guide, available at

https://www.valgrind.org/docs/manual/quick-start.html#quick-

start.intro

 Cachegrind: a cache and branch-prediction, available at

https://valgrind.org/docs/manual/cg-manual.html

 Tutorial, Linux kernel profiling with perf, available at

https://perf.wiki.kernel.org/index.php/Tutorial

 perf Examples, available at http://www.brendangregg.com/perf.html

 Get started with Intel Vtune, available at

https://software.intel.com/content/www/us/en/develop/documentatio

n/get-started-with-vtune/top/windows-os.html

60

https://www.thegeekstuff.com/2012/08/gprof-tutorial/
http://www.brendangregg.com/perf.html
https://software.intel.com/content/www/us/en/develop/documentation/get-started-with-vtune/top/windows-os.html

