
1

School of Computing

(University of Plymouth)

Compilers for Embedded Systems

Integrated Systems of Hardware and Software

Lecture 1

Dr. Vasilios Kelefouras

Email: v.kelefouras@plymouth.ac.uk

Website: https://www.plymouth.ac.uk/staff/vasilios-kelefouras

https://www.plymouth.ac.uk/staff/vasilios-kelefouras

Module Outline

2

Date Delivery

19th Oct. Lecture #1

26th Oct. Lab session #1

2nd Nov. Lecture #2

9th Nov. Lab session #2

16th Nov. Lecture #3

23rd Nov. Lab session #3

30th Nov. Bank holiday

7th Dec. Lecture #4

14th Dec. Lab session #4

21st Dec. Lecture #5

11th Jan. Lab session #5

18th Jan. Coursework Support

Module Outline

 Week1/2. Motivation, Challenges, Parallel Hardware Architectures,

Programming Models and Software Application Profilers, Measuring

Performance, Roofline Model

 Week3/4., Memory Hierarchy and Cache, Compiler Options and Code

Optimizations - Memory Bound Problems

 Week5/6. More advanced Code Optimizations

 Week7/8. Vectorization using x86-64 intrinsics

 Week9/10. OpenMP Programming – Shared Memory Multi-core CPUs

 Week11. Coursework Support

3

Assessment

 Coursework (100%)

 You will speedup real world applications on your PCs (multi-

core CPUs)

4

Assessment

 Coursework (100%)

 You will speedup real world applications on your PCs (multi-

core CPUs)

5

Outline of the 1st Lecture

 Motivation and Challenges

 Parallel Hardware Architectures and Programming Models

 Software Application Profilers

 How to measure the performance of our parallel software?

 Using timers

 FLOPS

 Speedup, efficiency, scalability

 Roofline Model

6

High Performance Computing (HPC) market

 The HPC Market Map (next slide) demonstrates the rapidly

growing importance of HPC to industrial competitiveness of

both the UK and Europe

 High performance software is critical in modern computer systems

ranging from small embedded devices to big supercomputers and

datacenters

 Companies need employers to write efficient software

 Engineers with that knowledge are desirable in Industry

7

8

[IMPORTANT] - Module Requirements

 Strongly Recommended:

 Install a Virtual Machine using Linux (Ubuntu is recommended)

Or even better, native Linux or Windows Subsystem for Linux

 We will be using both Linux and Windows

 Coursework can be done by using either windows or Linux or Mac

 If you use Visual Studio, you will need 2019 version (earlier

versions do not work)

9

10

Performance used to increased according to

the number of transistors (1)
11

Performance used to increased according to

the number of transistors (2)
12

 The fact that performance used to increase by increasing the

number of transistors, trained people to expect that performance

comes from the hardware

 Programmers used to write software without thinking about

performance

 They counted on the hardware to do the work

 This model used to work fine…but…back in 2006, something

changed…

 The Power Wall problem

Performance used to increased according to

the number of transistors (3)
13

 Power Wall Problem

 The CPU design goal for the late 1990’s and early 2000’s

was to increase the CPU frequency.

 This was a way to improve system performance

 This was done by adding more transistors to a smaller chip.

 However, this increased the heat dissipation of the CPU chip

beyond the capacity of inexpensive cooling techniques.

 The last years the CPU frequency has ceased to grow

Performance used to increased according to

the number of transistors (4)

 By increasing performance, power consumption increases even more

(next slide)

 This is not sustainable

 What to do? The solution is Parallel hardware architectures

14

The solution to the Power Wall Problem

15

 The power of a processor is given by Power=Capacitance x Voltage x Frequency2

 By using two processors inside the same chip, with half the frequency each, then:

 Capacitance2 = 2.2 x Capacitance

 Frequency2 = F/2

 Votalge2 = 0.6 x Voltage

 Power2 = 0.4 Power

Parallel computing gives us the ability to give the same performance with lower

power

The Era of Parallel Computing is here

 Nowadays, performance comes from the software

 There are no smart-enough tools to efficiently

parallelize serial software on the parallel hardware

 Free lunch is over…

 We must learn how to write parallel applications…

16

Hardware Architecture Trends (1)

Taken from https://www.researchgate.net/publication/336577121_BACKUS_Comprehensive_High-

Performance_Research_Software_Engineering_Approach_for_Simulations_in_Supercomputing_Systems

17

https://www.researchgate.net/publication/336577121_BACKUS_Comprehensive_High-Performance_Research_Software_Engineering_Approach_for_Simulations_in_Supercomputing_Systems

Hardware Architecture Trends (2)

18

Hardware Evolution

 Scalar Processors

 Pipelined Processors

 Superscalar and VLIW Processors

 Out of order Processors

 Vectorization

 Hyper-Threading

 Multicore Processors

 Manycore Processors

 Heterogeneous systems

19

Time

Heterogeneous computing (1)

20

Single core Era -> Multi-core Era -> Heterogeneous Systems Era

 Heterogeneous computing refers to systems that use more than one

kind of processors or cores

 These systems gain performance or energy efficiency not just by

adding the same type of processors, but by adding dissimilar (co)-

processors, usually incorporating specialized processing capabilities to

handle particular tasks

 Systems with General Purpose Processors (GPPs), GPUs, DSPs, ASIPs

etc.

 Heterogeneous systems offer the opportunity to significantly increase

system performance and reduce system power consumption

Heterogeneous computing (2)

21

 Software issues:

 Offloading

 Programmability – think about CPU code (C code), GPU code (CUDA), FPGA

code (VHDL)

 Portability - What happens if your code runs on a machine with an FPGA instead

of a GPU

Hardware Trends

From single core processors to heterogeneous systems on a

chip
22

Taken from https://embb.io/downloads/MTAPI_EMBB.pdf

https://embb.io/downloads/MTAPI_EMBB.pdf

Comparison of Hardware Architectures

23

Intel CPU

DSP

MultiCore

ManyCore

GPU

FPGA ASIC

Flexibility, Programming Abstraction

Performance, Area and Power Efficiency

CPU:
• Market-agnostic
• Accessible to many
programmers (Python, C++)
• Flexible, portable

ASIC
• Market-specific
• Fewer programmers
• Rigid, less programmable
• Hard to build (physical)

FPGA:
• Somewhat Restricted Market
• Harder to Program (VHDL,
Verilog)
• More efficient than SW
• More expensive than ASIC

High Performance Computing (HPC)

Programming Languages

 HPC is all about performance

 The most used languages in HPC are

 C/C++

 Fortran – there are many old massive applications which

are still running, e.g., weather forecast (MetOffice)

 In this module we will be using C Language

24

Parallel Programming

Models/Frameworks/Libraries

 There are too many parallel programming models to write

parallel applications

 Which one to use?

 Ease of use

 Performance

 Portability

 In this module we will be using shared memory architectures only

 OpenMP

 CUDA

25

Serial VS Parallel version

See how elegant OpenMP is
26

double un_opt(){

int i;

double x, pi, sum=0.0;

double step;

step=1.0/(double) num_steps;

for (i=0; i<num_steps; i++){

x=(i+0.5)*step;

sum = sum + 4.0 / (1.0 + x*x);

}

pi = step * sum;

return pi;

}

double version6(){

int i;

double x, pi, sum=0.0;

double step;

step=1.0/(double) num_steps;

#pragma omp parallel for private(x) reduction(+:sum)

for (i=0; i<num_steps; i++){

x=(i+0.5)*step;

sum = sum + 4.0 / (1.0 + x*x);

}

pi = step * sum;

return pi;

}

GPU Parallel Programming Frameworks

 The main GPU parallel programming frameworks are:

 CUDA (Compute Unified Device Architecture)

 Only for Nvidia GPUs - Nvidia Corporation proprietary

 By far Best performance for Nvidia GPUs

 OpenCL (Open Computing Language)

 Open, maintaned by the Khronos Group

 Programming is not than different from CUDA

 Portable - CPUs, GPUs, other coprocessors

 OpenMP (Open Multi-Processing) – code annotation

 Very easy to use

 Portable - CPUs, GPUs, other coprocessors

 OpenACC (open accelerators) – code annotation

 Very easy to use

 Portable – CPUs, GPUs, other coprocessors

27

Vector Addition Example using

OpenMP and OpenACC

 See how easy it is to write GPU code using OpenMP or OpenACC …

 But not that fast as CUDA for Nvidia GPUs …

 Why?

 CUDA is designed just for Nvidia GPUs, CUDA code is at a lower level,

better control of the hardware resources, allows for code optimizations…

28

// OpenACC code that runs on the GPU
#pragma acc kernels copyout(c[0:n]) copyin(a[0:n], b[0:n])
for (i=0; i<n; i++) {
c[i] = a[i] + b[i];

}

// OpenMP code that run on the GPU
#pragma omp target map(to: a[0:N], b[:N]) map(from: c[0:N])
#pragma omp parallel for
for (int i = 0; i < N; i++) {

c[i] = a[i] + b[i];
}

Parallel Programming Languages

Popularity in Research (not industry)
29

New ExaScale hardware architectures have

been announced

 Exascale computing is expected to revolutionize computational science and

engineering by providing 1000x the capabilities of currently available

computing systems, while having a similar power footprint.

 The new exascale hardware architectures are heterogeneous

 CPUs+GPUs (Aurora)

 CPUs+FPGAs (Arm EPI)

 Although, the exascale supercomputers are currently being developed, with

‘Aurora’ being the first to be announced by the end of 2021, only a few

HPC applications are so far able to fully exploit the capabilities of the

current petascale systems, mainly because of their limited scalability.

 Therefore, efforts for preparing HPC applications for Exascale are needed

 People with such expertise get highly payed jobs

30

Profiling Software Applications

 Types of profiling

 Instrumentation-based profiling

 Adds instructions to the target program to collect required information

 Disadvantage: high overhead that distorts elapsed time

 Statistical Profiling - Sampling-based

 Profilers periodically interrupt the program’s execution to collect

information

 Advantage: very low profiling overhead

 Disadvantage: low statistical accuracy and possible timing anomalies

 Hardware counter (event-based) profiling

 Uses special CPU registers to count CPU events

 Advantage: more detailed information with no profiling overhead

31

Profiling Software Applications

 In this module we will use the following profilers

 Gprof

 Valgrind

 Perf

 Intel Vtune – Intel provides a free version of Vtune (Intel’s

Profiler)

GUI is supported

32

Gprof Profiler

 Gprof profiler is a tool which collects statistics on serial

programs.

 It works by inserting appropriate code in the beginning and in

the end of each function so as to collect information about the

execution time.

 You can use in Linux only – Specific instructions in the tutorial

 When to use:

 When you want to find the computationally intensive functions

of a serial program

33

34

A detailed explanation

is provided in the

tutorial

Valgrind Tool

 The Valgrind tool suite provides a number of debugging and profiling

tools that help you make your programs faster and more correct.

 In this module will be using Cachegrind tool of Valgrind.

 Cachegrind simulates how your program interacts with cache hierarchy.

 It simulates a machine with independent first-level instruction (I1) and

data caches (D1), backed by a unified second-level cache (L2).

 For the CPUs with more than 2 levels of cache Cachegrind simulates the

first-level and last-level caches only.

 Therefore, Cachegrind always refers to the Instruction L1, data L1 and

Last Level cache.

 When to use:

 When you want to optimize memory accesses

35

Valgrind Tool – Example Output

36

==11586== I refs: 1,041,351,336

==11586== I1 misses: 1,108

==11586== LLi misses: 1,101

==11586== I1 miss rate: 0.00%

==11586== LLi miss rate: 0.00%

==11586==

==11586== D refs: 387,398,347 (244,246,437 rd + 143,151,910 wr)

==11586== D1 misses: 411,589 (160,745 rd + 250,844 wr)

==11586== LLd misses: 405,386 (154,589 rd + 250,797 wr)

==11586== D1 miss rate: 0.1% (0.1% + 0.2%)

==11586== LLd miss rate: 0.1% (0.1% + 0.2%)

==11586==

==11586== LL refs: 412,697 (161,853 rd + 250,844 wr)

==11586== LL misses: 406,487 (155,690 rd + 250,797 wr)

==11586== LL miss rate: 0.0% (0.0% + 0.2%)

Perf Tool

 The perf tool offers a rich set of commands to collect and

analyze performance and trace data.

 Supports Hardware counters

 When to use

 When you want to leverage the hardware counters

37

Intel Vtune

 Perhaps the most powerful and the easiest to use

 A GUI is supported

 For Intel Processors only

 When to use

 If you have an Intel Processor

38

39

How to measure the performance of our parallel

software?

 Measuring elapsed execution time of a program

 Real Time (Wall time)

 User Time – does not include the time spent in OS calls or

other processes

 CPU system time – time spent executing system calls

 Floating Point Operations Per Second (FLOPS)

 Highly used in HPC

 Speedup

40

Using Accurate Timers to Measure Execution Time

Linux (1)

 In Linux: The clock_gettime system call allows us to measure the execution time

of programs.

 This function uses the following struct.

struct timespec {

time_t tv_sec; /* seconds */

long tv_nsec; /* nanoseconds */

};

 The clock_gettime system call is used as follows:

 #include <time.h>

 int clock_gettime(clockid_t clk_id, struct timespec *tp);

 The second parameter is the time structure.

 The first parameter, clock ID, allows you to specify the clock you are interested

in using

41

Using Accurate Timers to Measure Execution Time

Linux (2)
42

#define BILLION 1000000000

struct timespec start, end;

/* measure monotonic time */

clock_gettime(CLOCK_MONOTONIC, &start);/* mark start time */

do_something();

clock_gettime(CLOCK_MONOTONIC, &end);/* mark the end time */

diff = BILLION * (end.tv_sec - start.tv_sec) + end.tv_nsec - start.tv_nsec;

printf("elapsed time = %llu nanoseconds\n", (long long unsigned int) diff);

CLOCK_MONOTONIC represents the absolute elapsed wall-clock time

Using Accurate Timers to Measure Execution Time

Linux (3)
43

/* now the measure CPU time for this process only */

/* the time spent sleeping will not count (but there is a bit of overhead */

clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &start);/* mark start time */

do_something();

clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &end);/* mark the end time */

diff = BILLION * (end.tv_sec - start.tv_sec) + end.tv_nsec - start.tv_nsec;

printf("elapsed process CPU time = %llu nanoseconds\n", (long long unsigned int) diff);

The CLOCK_PROCESS_CPU_TIME_ID clock measures only the CPU time
consumed by the process. If the kernel puts the process to sleep, the time
it spends waiting is not counted.

Accurate Timers in Visual Studio

 The most accurate timer is the ‘high_resolution_clock’ which is supported

in C++ only.

 Keep in mind that you can write C code inside a C++ file

44

#include <chrono>

int main() {

auto start = std::chrono::high_resolution_clock::now();

Do_something();

auto finish = std::chrono::high_resolution_clock::now();

std::chrono::duration<double> elapsed = finish - start;

std::cout << "Elapsed time: " << elapsed.count() << " s\n";

…

}

Using OpenMP timer that works on all the

operating systems

 In weeks 5-7 we will be using OpenMP

 OpenMP supports omp_get_wtime() timer

 In Linux you must compile using ‘-fopenmp’ option.

45

#include <omp.h>

int main(){

double start, end;

start=omp_get_wtime();

routine();

end=omp_get_wtime();

printf(“Elapsed Time in seconds is %f”,end-start);

…

}

How to get an accurate execution time value

 When you run your program in an operating system, other

processes run too

 For single thread programs: To get an accurate execution time

value, make sure the execution time of your code is at least a few

seconds

 For multi-threaded programs: To get an accurate execution time

value, make sure the execution time of your code is about 1 minute

 If the execution time of your program is much higher than the sum

of the all the others, then the execution time value is considered

accurate

46

FLOPS

 The performance capabilities of supercomputers are expressed using a

standard rate for indicating the number of floating-point arithmetic

calculations systems can perform on a per-second basis.

 How many FLOPS does the following program achieve if it takes

1sec to execute (the arrays are of type float) ?

 There are ‘2*1024*1024’ FP arithmetic operations (1 addition and

1 multiplication)

 FLOPS=2*1024*1024 / 1sec = 2 Mega FLOPS

47

for (i=0; i<1024; i++)

for (j=0; j<1024; j++)

y[i]+=a[N*i+j] * x[j];

Speedup and Efficiency

 Speedup = Tserial / Tparallel

 The speedup is ideal if Speedup == num.cores

 The speedup is linear if Speedup ≈ num.cores

 In practice it is hard to get linear speedup because of the

overhead in creating the threads, communication, resource

contention, and synchronization

 Efficiency = Speedup / num.cores or ideal.time/measured.time

 It estimates how well-utilized the processors are in solving the

problem

 Ideal speedup gives Efficiency=1

48

Amdahl’s Law

 Amdahl pointed out that the speedup is limited by the fraction of the

serial part of the application that is not amenable to parallelization

 Speedup = 1 / (serial + parallel/num.cores)

 Serial/parallel is the proportion of execution time spent on the serial

and parallel part, respectively

 Parallel=1-serial thus:

 Speedup = 1 / (serial + (1-serial)/num.cores)

49

serial 1-serial

serial (1-serial) / num.cores Serial fraction of the code

parallel fraction of the code

Time

Scalability (1)

 Most parallel applications can be run using different number of

processing elements, but the speedup will be decreasing as the

number of processing elements increases. For example:

 2 cores speedup x1.98

 4 cores speedup x3.7

 16 cores speedup x9

 This is normal, but you must carefully choose the number of cores to

use

 Typically, larger input sizes will run efficiently

 Scalability or scaling is widely used to indicate the ability of hardware

and software to deliver greater computational power when the

amount of resources is increased

50

Scalability (2)

 Strong scaling refers to an application’s performance when the total

problem size is kept fixed, and the number of processing elements

varied.

 What is the speedup if we double the number of cores?

 What is the speedup if we have x8 cores?

 Weak scaling refers to an application’s performance when we increase

the problem size relative to the number of processing elements.

 If we run a program for N=128 on 4 cores, will the time remain

constant if we run the program for N=256 on 8 cores?

 Will the time remain constant since the work per core has remained

the same, or will it increase because of the communication overhead /

cache misses etc?

51

The Roofline Model (1)

 The roofline model provides an easy way to get performance bounds

for compute-bound and memory-bound loop kernels.

 It allows us to know how far the achieved performance is from the

optimum.

 It is based on the concept of computational intensity, sometimes also

called arithmetic or operational Intensity.

 The arithmetic intensity (AI) is given by the following formula:

AI=FP.arithmetical.instructions / number.of.bytes.loaded.stored

 This model has several limitations, e.g., does not consider all features of

modern processors and ignores integer computations.

 You can read more in

https://people.eecs.berkeley.edu/~kubitron/cs252/handouts/papers/R

ooflineVyNoYellow.pdf

52

https://people.eecs.berkeley.edu/~kubitron/cs252/handouts/papers/RooflineVyNoYellow.pdf

The Roofline Model (2)

 Algorithms that have a low arithmetical intensity are memory-bound, while

algorithms that have a high arithmetical intensity are compute-bound.

53

 Memory-bound means that their performance is bounded on the memory latency and

bandwidth values

The Roofline Model (3)

54

FLOPS = min (Peak Floating Point Performance, Peak Memory Bandwidth x AI)

The peak FP performance is the maximum we can

get, and it refers to compute-bound loop kernels with

a perfect balance between simple and complex FP

operations.

The Roofline Model (4)

55

FLOPS = min (Peak Floating Point Performance, Peak Memory Bandwidth x AI)

The peak memory bandwidth depends on the DDR and

memory controller hardware characteristics.

Furthermore, if the data fit in a cache memory and they

are always accessed from there, the peak memory

bandwidth is the cache bandwidth.

Roofline Model - Example

 MMM has N3 iterations and each iteration contains 4 Floating Point (FP)

L/S operations and 2 FP arithmetical operations.

 So, the arithmetical intensity of MMM, is 2/(4*4bytes)=1/8.

 Assume that performance is not affected by the integer operations.

 So, if the peak memory bandwidth is 21GBytes/sec, then the maximum

MMM performance will be 21GB/sec x (1/8)=2.65gigaflops.

 If the arrays fit in the precious cache memories (using optimizations), then

the memory bandwidth is higher and thus performance is increased.

56

for (i=0;i<N;i++)

for (j=0;j<N;j++)

for (k=0;k<N;k++)

C[i][j] +=A [i][k] * B[k][j];

Roofline Model – Example (2)

 Find the Arithmetic Intensity of the following program

57

Float Y[N], A[N][N], X[N];

for (i=0; i<N; i++)

for (j=0; j<N; j++)

y[i] +=A[i][j] * X[j];

Roofline Model – Example (3)

58

Intel Advisor. Taken from

https://software.intel.com/content/www/us/en/develop/articles/a-brief-overview-of-

integer-roofline-modeling-in-intel-advisor.html

https://software.intel.com/content/www/us/en/develop/articles/a-brief-overview-of-integer-roofline-modeling-in-intel-advisor.html

Performance Guidelines

 Compute bound codes are not that hard to optimized

 The speedup achieved will be small

 Speeding up memory bound codes is really challenging and

researchers still working on it

 The main software strategies are as follows.

 Reducing the number of memory accesses through the whole

memory hierarchy.

 Use software prefetching.

 The above can be achieved by using code optimizations such as

loop tiling, register blocking, array copying, loop

merge/distribution etc. We will study those next week.

 There are I/O bound problems too, but not studied here

59

Further Reading

 GPROF Tutorial – How to use Linux GNU GCC Profiling Tool, available

at https://www.thegeekstuff.com/2012/08/gprof-tutorial/

 The Valgrind Quick Start Guide, available at

https://www.valgrind.org/docs/manual/quick-start.html#quick-

start.intro

 Cachegrind: a cache and branch-prediction, available at

https://valgrind.org/docs/manual/cg-manual.html

 Tutorial, Linux kernel profiling with perf, available at

https://perf.wiki.kernel.org/index.php/Tutorial

 perf Examples, available at http://www.brendangregg.com/perf.html

 Get started with Intel Vtune, available at

https://software.intel.com/content/www/us/en/develop/documentatio

n/get-started-with-vtune/top/windows-os.html

60

https://www.thegeekstuff.com/2012/08/gprof-tutorial/
http://www.brendangregg.com/perf.html
https://software.intel.com/content/www/us/en/develop/documentation/get-started-with-vtune/top/windows-os.html

