
1

School of Computing

(University of Plymouth)

Compilers for Embedded Systems

Integrated Systems of Hardware and Software

OpenMP Programming

Dr. Vasilios Kelefouras

Email: v.kelefouras@plymouth.ac.uk

Website: https://www.plymouth.ac.uk/staff/vasilios-kelefouras

https://www.plymouth.ac.uk/staff/vasilios-kelefouras

Outline

 Why Parallel computing?

 Concurrency vs parallelism

 Introduction to OpenMP

 OpenMP examples

 Array addition

 Array summation

 Pi calculation

2

3

Performance used to increased according to

the number of transistors (1)
4

Performance used to increased according to

the number of transistors (2)
5

 The fact that performance used to increase by increasing the

number of transistors, made people to believe that performance

comes from the hardware

 Programmers used to write software without thinking about

performance

 They counted on the hardware to do the work

 This model used to work fine…but…back in 2006, something

changed…

 The Power Wall problem

Performance used to increased according to

the number of transistors (3)
6

 Power Wall Problem

 The CPU design goal for the late 1990’s and early 2000’s

was to increase the CPU frequency.

 This was a way to improve system performance

 This was done by adding more transistors to a smaller chip.

 However, this increased the power dissipation of the CPU

chip beyond the capacity of inexpensive cooling techniques.

 The last years the CPU frequency has ceased to grow

Performance used to increased according to

the number of transistors (4)

 By increasing performance, power consumption increases even more

(next slide)

 This is not sustainable

 What to do? The solution is Parallel hardware architectures

7

The solution to the Power Wall Problem

8

 Power=Capacitance x Voltage x Frequency2

 By using two processors inside the same chip, with half the frequency each, then:

 Capacitance2 = 2.2 x Capacitance

 Frequency2 = F/2

 Votalge2 = 0.6 x Voltage

 Power2 = 0.4 Power

Parallel computing gives us the ability to give the same performance with lower

power

The Era of Parallel Computing is here

 Performance comes from the software

 There are no smart-enough tools to efficiently

parallelize serial software on the parallel hardware

 Free lunch is over…

 We must learn how to write parallel applications…

9

Hardware Architecture Trends (1)

Taken from https://www.researchgate.net/publication/336577121_BACKUS_Comprehensive_High-

Performance_Research_Software_Engineering_Approach_for_Simulations_in_Supercomputing_Systems

10

https://www.researchgate.net/publication/336577121_BACKUS_Comprehensive_High-Performance_Research_Software_Engineering_Approach_for_Simulations_in_Supercomputing_Systems

Hardware Architecture Trends (2)

11

Concurrency vs Parallelism (1)

 Concurrency: A condition of a system in which multiple tasks are logically

active at one time

 Multiple things can happen at the same time

 They may not be happening but they can

 Parallelism: A condition of a system in which multiple tasks are actually

active at one time

 A subset of concurrency

 Concurrent application: An application for which computations logically

execute simultaneously

 Parallel application: An application for which computations actually

execute simultaneously in order to compute a problem faster

12

Concurrency vs Parallelism (2)

Taken from https://www.youtube.com/watch?v=6jFkNjhJ-Z4&list=PLLX-

Q6B8xqZ8n8bwjGdzBJ25X2utwnoEG&index=3

13

https://www.youtube.com/watch?v=6jFkNjhJ-Z4&list=PLLX-Q6B8xqZ8n8bwjGdzBJ25X2utwnoEG&index=3

Concurrency vs Parallelism (2)

Steps:

1. We need to find the concurrency in our application

 This process cannot be automated

2. Then we decide which parallel programming language (OpenMP, MPI,

etc) to use

 This is the easy part

 The hard part is to find the concurrency and understand the

algorithmic strategy

 We must expose the concurrency of a problem and map it on the

parallel hardware so it can be executed in parallel

14

What is OpenMP? (1)

 OpenMP (open multi-processing) : An API for writing

multithreaded apps

 A set of compiler directives and library routines for parallel

application programmers

 Greatly simplifies writing multithreaded programs in Fortran,

C/C++

15

What is OpenMP? (2)

 See how easy it is to parallelize applications using OpenMP

16

#pragma omp parallel for private(i, j, k, tmp)

for (i = 0; i < N; i++) {

for (j = 0; j < N; j++) {

tmp = 0.0;

for (k = 0; k < N; k++) {

tmp += A[N * i + k] * B[N * k + j];

}

test[N * i + j] = tmp;

}

}

What is OpenMP? (3)

 See how easy it is to parallelize and vectorize applications using

OpenMP

17

#pragma omp parallel

{

#pragma omp for private(i, j, k, tmp)

for (i = 0; i < N; i++) {

for (j = 0; j < N; j++) {

tmp = 0.0;

#pragma omp simd reduction(+:tmp) aligned(C,A,B:64)

for (k = 0; k < N; k++) {

tmp += A[N * i + k] * B[N * k + j];

}

C[N * i + j] = tmp;

}

}

}

What is OpenMP? (4)

18

Taken from https://www.youtube.com/watch?v=6jFkNjhJ-Z4&list=PLLX-Q6B8xqZ8n8bwjGdzBJ25X2utwnoEG&index=3

https://www.youtube.com/watch?v=6jFkNjhJ-Z4&list=PLLX-Q6B8xqZ8n8bwjGdzBJ25X2utwnoEG&index=3

What is OpenMP? (5)

 Fork-Join Parallelism

19

OpenMP Core Syntax

 The syntax in C follows:

 #pragma omp construct [clause]

 e.g., #pragma omp parallel for

 A ‘#pragma’ is a compiler directive and is going to tell the compiler to do

something special beyond the scope of C language.

 The pragmas are designed so that even if the compiler does not support

them, the program will still yield correct behavior, but without any

parallelism.

 By default, the Visual Studio does not support the ‘#pragma omp’ clause.

 No error or warning will be shown.

 The compiler will just ignore the ‘#pragma’ and the program will run

serially.

 We must enable OpenMP in Visual Studio

20

First Example

21

int main(){

double A[1000];

omp_set_num_threads(4); //requests 4 threads.

#pragma omp parallel { //fork a number of threads – we asked 4

int ID = omp_get_thread_num(); //get the ID for each thread

function1 (ID, A) //each thread will run this function

} //end of multi-threading region

printf(“all done\n”); //just the main thread runs this command

return 0;

}

What is difference between thread, process and

program?
22

 Program:

 Program is an executable file containing the set of instructions written to perform a

specific job on your computer

 For example, skype.exe is an executable file containing the set of instructions which help us

to run skype

 Process:

 Process is an executing instance of a program

 For example, when you double click on the skype.exe on your computer, a process is

started that will run the skype program

 Thread:

 Thread is the smallest executable unit of a process

 For example, when you run skype program, OS

creates a process and starts the execution of the main

thread of that process

 A process can have multiple threads

 All threads of the same process share memory of that process

Memory Layout of a Process

23

 Text : contains the compiled code (binary) – read only

 Initialized data : contains the global and static variables that

are initialized by the programmer

 Uninitialized data : contains the global and static variables that

are initialized to zero or they do not have explicit initialization

 Stack: it is a last in first out (LIFO) structure that stores temporary

variables created by each function (including main).

 Every time a function is called, its local data, function

arguments and return values are pushed into the stack

 Every time a function exits, all its local data are freed

(popped from the stack).

 Limited size – normally its default value is 1Mbyte.

 Heap : contains all the data allocated dynamically

text

Initialized data

Unitialized data

(bss)

stack

heap

High address

Low address

empty memory

Shared and Private Data

24

 If we define data outside the ‘#pragma omp parallel{ }’ region, they are

allocated to heap memory (visual to any thread, shared data).

 If they are defined inside the ‘omp parallel{ }’ region, they are allocated to the

threads individual stack (private to the thread, local).

int main(){

double A[1000];

omp_set_num_threads(4); //requests 4 threads.

#pragma omp parallel { //fork a number of threads – we asked 4

int ID = omp_get_thread_num(); //get the ID for each thread

function1 (ID, A) //each thread will run this function

} //end of multi-threading region

printf(“all done\n”); //just the main thread runs this command

return 0;

}

Commands to get environment information

 nthreads = omp_get_num_threads(); //returns the number of threads

used inside #pragma omp parallel { }

 procs = omp_get_num_procs(); //returns the number of physical CPU

cores of this machine

 maxt = omp_get_max_threads(); //returns the maximum number of

threads available. By default this number will be set to the maximum

number of available cores

 inpar = omp_in_parallel(); //This function returns true if currently

running in parallel, false otherwise.

25

What does this program print?

26

/* Fork a team of threads giving them their own copies of variables */

#pragma omp parallel

{

int nthreads, tid; //each thread has its own copies

tid = omp_get_thread_num(); //get the number of each thread

printf("Hello World from thread = %d\n", tid); //THE ORDER OF THE PRINTF() DIFFERS FROM

RUN TO RUN

if (tid == 0) // Only master thread does this – Equivalent to ‘If (master thread)’

{

nthreads = omp_get_num_threads(); //returns the number of threads used inside #pragma omp

parallel { }

procs = omp_get_num_procs(); //returns the number of physical CPU cores

maxt = omp_get_max_threads(); //returns the maximum number of threads available.

printf("Number of threads = %d\n", nthreads);

printf("Number of processors = %d\n", procs);

printf("Max threads = %d\n", maxt);

}

} // All threads join master thread and disband

Array Addition Example (1)

 We will study three different implementations of the following

program

 There are no dependencies – all the loop iterations can be

executed in parallel

27

for (i=0; i<N; i++)

A[i]=A[i] + B[i];

…
A[N]

…
B[N]

Array Addition Example

Implementation #1 (1)
28

#pragma omp parallel for

for (i=0; i<N; i++)

A[i]=A[i] + B[i];

…
A[N]

…
B[N]

for (i=0; i<N; i++)

A[i]=A[i] + B[i];

 OpenMP makes ‘i’ private to each thread, automatically

Array Addition Example

Implementation #1 (2)
29

#pragma omp parallel for

for (i=0; i<N; i++)

A[i]=A[i] + B[i];

…
A[N]

…
B[N]

 But what OpenMP actually does?

 Considering there are four threads, the i

loop will be split into four parts and each

core will execute its part

for (i=0; i<250; i++)

A[i]=A[i] + B[i];

for (i=250; i<500; i++)

A[i]=A[i] + B[i];

for (i=500; i<750; i++)

A[i]=A[i] + B[i];
for (i=750; i<1000; i++)

A[i]=A[i] + B[i];

Thread0 Thread1 Thread2 Thread3

Array Addition Example

Implementation #2
30

#pragma omp parallel

{ //fork a team of threads

#pragma omp for

for (i=0; i<N; i++)

A[i]=A[i]+B[i];

} //all threads join master

 This syntax is equivalent

Array Addition Example

Implementation #3

 This is not how we write OpenMP

programs but it is important to

understand how it works

 Each thread executes the code in

the parallel region

 Each thread has its own ‘start’

and ‘end’ values

31

#pragma omp parallel

{

int id,i,Nthrds, start, end;

id=omp_get_thread_num();

Nthrds=omp_get_num_threads();

start=id * N / Nthrds;

end=(id+1) * N / Nthrds;

if (id==Nthrds-1)

end=N;

for (i=start; i<end; i++)

A[i]=A[i]+B[i];

}

2nd Example – Reduction

 In this example, data dependencies exist (race condition)

 If we parallelize this program as before then

 Different threads will be writing concurrently to ‘ave’.

 Some threads might clashing and trying to update the memory

at the same time.

 In this case, you never know what the value of ‘ave’ will be.

32

for (i=0; i<N; i++){

ave+=A[i];

}

2nd Example – Reduction

Implementation #1

 Each thread has its own

private/local ‘ave’

 When they are finished, all the ‘ave’

values must be added together

 omp critical: Restricts execution of the

associated structured block to a

single thread at a time.

 threads wait at the beginning of

the critical section until no other

thread in the team is executing it.

33

int average=0;

#pragma omp parallel

{

int ave=0; //each thread has its own ‘ave’

#pragma omp for

for (i=0; i<N; i++){

ave+=A[i];

}

#pragma omp critical //only one thread at a

time can enter

average+=ave;

}

2nd Example – Reduction

Implementation #2

 Each thread has its own

private/local ‘ave’

 When they are finished, all the

‘ave’ values must be added

together

 omp atomic: Ensures that a specific

storage location is accessed

atomically

34

int average=0;

#pragma omp parallel

{

int ave=0; //each thread has its own ‘ave’

#pragma omp for

for (i=0; i<N; i++){

ave+=A[i];

}

#pragma omp atomic //only one thread at a

time can access average

average+=ave;

}

2nd Example – Reduction

Implementation #3 – Recommended Solution

 reduction (op : list) – A local copy of each ‘list’ variable is made and

initialized depending on the ‘op’, e.g., 0 for ‘+’.

 Updates occur on the local copy.

 Local copies are reduced into a single value and combined with the

original global value.

 Each thread has its own copy of ‘ave’, each thread does its own

summation and when they are done, they are combined with the global

copy of ‘ave’

35

#pragma omp parallel for reduction(+:ave)

for (i=0; i<N; i++){

ave+=Acopy1[i];

}

An easy but complete example

Calculate the value of Pi (1)
36

double un_opt(){

int i;

double x, pi, sum=0.0;

double step;

step=1.0/(double) num_steps;

for (i=0; i<num_steps; i++){

x=(i+0.5)*step;

sum = sum + 4.0 / (1.0 + x*x);

}

pi = step * sum;

return pi;

}

An easy but complete example

Calculate the value of Pi (2)
37

double un_opt(){

int i;

double x, pi, sum=0.0;

double step;

step=1.0/(double) num_steps;

for (i=0; i<num_steps; i++){

x=(i+0.5)*step;

sum = sum + 4.0 / (1.0 + x*x);

}

pi = step * sum;

return pi;

}

38

Pi

Parallel

Implementation #1

(not efficient)

 Solution 1:

Promote sum to

an array. All

threads will be

writing to a

different array

element.

int i, nthreads;
double step, x, pi=0.0, sum[NUM_THREADS];

step=1.0/(double) num_steps;
omp_set_num_threads(NUM_THREADS);

#pragma omp parallel
{

int i,id,nthrds; //local data
double x; //local data
id=omp_get_thread_num();
nthrds = omp_get_num_threads();

if (id==0) nthreads=nthrds; //save a copy of num of
threads as the enviroment might choose to give us less
threads than requested. What if I ask 1000 threads?

for (i=id, sum[id]=0.0; i<num_steps; i=i+nthrds){
x=(i+0.5)*step;
sum[id] = sum[id] + 4.0 / (1.0 + x*x);

}
}

//after this point I have lost the local variables. So, for
the sum to be visible, I must promote sum to an array.
for (i=0, pi=0.0; i<nthreads; i++)
pi+=sum[i] * step;

Pi Parallel Implementation #1

(not efficient)
39

 the OpenMP version that uses just one thread is slower than the serial

version. (Why?)

 This is because OpenMP adds an overhead.

 By using more threads, the execution time is reduced, but the scalability is

low. (Why?)

 This is because of the cache false sharing problem in ‘sum[]’ array.

 Thread0 uses sum[0], Thread1 uses sum[1] etc, but sum[0:7] share the

same cache line.

 Although threads do not use share data, they use the same cache line,

which is a shared hardware resource too

 False sharing is a well-known performance issue

False Sharing

 x86/x64 processors have private

L1 and L2 caches and shared L3

cache and DDR memory.

 False sharing occurs when threads

on different processors modify

variables that reside on the same

cache line.

 This invalidates the cache line and

forces an update, which hurts

performance.

 memory system must guarantee

cache coherence

Taken from https://software.intel.com/content/www/us/en/develop/articles/avoiding-and-identifying-

false-sharing-among-threads.html

40

https://software.intel.com/content/www/us/en/develop/articles/avoiding-and-identifying-false-sharing-among-threads.html

Pi Parallel Implementation #2

(not recommended)
41

 This implementation addresses the false sharing problem by using different

cache lines to store the threads’ sum variables.

 The sum[] array is promoted to a 2-d array sum[NUM_THREADS][PAD],

where PAD=8

 the cache line size in Intel processors is 64bytes and thus can store 8

double values.

 Thus sum[0][0] will always be stored into another cache line than

sum[1][0], sum[2][0] etc

 Inefficiencies of implementation #2

 It is not portable – different PAD values amongst different

processors

 Wastes memory

Pi Parallel Implementation #3

This version is portable (not recommended)
42

#pragma omp parallel
{

int i,id,nthrds; //local data
double x, sum=0.0; //sum is now local, each thread has its own copy
id=omp_get_thread_num();
nthrds = omp_get_num_threads();
if (id==0) nthreads=nthrds; //save a copy of num of threads as the

enviroment might choose to give us less threads than requested. What if I ask
1000 threads?

for (i=id; i<num_steps; i=i+nthrds){
x=(i+0.5)*step;
sum = sum + 4.0 / (1.0 + x*x);

}

#pragma omp critical //mutual exclusion. only one thread at a time can
enter this block. I could use 'atomic' instead of 'critical' it is the same

{
pi+=sum * step;
}

}

Pi Parallel Implementation #3

This version is portable
43

 In this version there is no shared array and thus there is no false

sharing.

 This version does not consider the cache line size and thus it is

portable.

 This version achieves the same performance as version #2.

 In the ‘#pragma omp critical’ clause, all the threads use their

private sum variable to update the shared pi variable.

 This is not performed in parallel; only one thread at a time can

enter the critical block.

 We could also use 'atomic' instead of 'critical'.

Pi Parallel Implementation #4

Recommended Version
44

#pragma omp parallel

{

double x;

#pragma omp for reduction(+:sum) //Each thread has its own

copy of sum. Each thread does its own summation and when

they are done, they are combined with the global copy of sum.

for (i=0; i<num_steps; i++){

x=(i+0.5)*step;

sum = sum + 4.0 / (1.0 + x*x);

}

}

Pi Parallel Implementation #4

Recommended Version
45

 Or like that using just a single #pragma line (more about this next

week)

#pragma omp parallel for private(x) reduction(+:sum) //x is not defined

inside the parallel region. Thus by default it is a shared variable. private(x)

creates a private x variable in each thread. Be Careful: x is unitialized no

matter what its previous value is.

for (i=0; i<num_steps; i++){

x=(i+0.5)*step;

sum = sum + 4.0 / (1.0 + x*x);

}

Serial VS Parallel version

See how elegant OpenMP is
46

double un_opt(){

int i;

double x, pi, sum=0.0;

double step;

step=1.0/(double) num_steps;

for (i=0; i<num_steps; i++){

x=(i+0.5)*step;

sum = sum + 4.0 / (1.0 + x*x);

}

pi = step * sum;

return pi;

}

double version6(){

int i;

double x, pi, sum=0.0;

double step;

step=1.0/(double) num_steps;

#pragma omp parallel for private(x) reduction(+:sum)

for (i=0; i<num_steps; i++){

x=(i+0.5)*step;

sum = sum + 4.0 / (1.0 + x*x);

}

pi = step * sum;

return pi;

}

Further Reading

 Guide into OpenMP: Easy multithreading programming for C++,

available at

https://bisqwit.iki.fi/story/howto/openmp/#ParallelConstruct

 OpenMP Application Programming Interface Examples, available

at

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=w

eb&cd=&cad=rja&uact=8&ved=2ahUKEwiOip2R-

rrqAhX8XRUIHa5HC0QQFjAAegQIAxAB&url=https%3A%2F%2

Fwww.openmp.org%2Fwp-content%2Fuploads%2Fopenmp-

examples-4.5.0.pdf&usg=AOvVaw3BDlLKC3VhdJI1iTj1RE_p

47

https://bisqwit.iki.fi/story/howto/openmp/#ParallelConstruct
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwiOip2R-rrqAhX8XRUIHa5HC0QQFjAAegQIAxAB&url=https%3A%2F%2Fwww.openmp.org%2Fwp-content%2Fuploads%2Fopenmp-examples-4.5.0.pdf&usg=AOvVaw3BDlLKC3VhdJI1iTj1RE_p

Part 2 - Outline

 Dot Product example

 The schedule Clause

 Vectorization using OpenMP

 Matrix-Vector Multiplication example

48

Dot Product Example (1)

 Drawing upon what we have learned so far, can you parallelize

this program using OpenMP?

49

double dot_prod_serial(double *a, double *b){

double sum = 0.0;

int i;

for (i=0; i<N; i++)

{

sum += (a[i] * b[i]);

}

return sum;

}

Dot Product Example (2)

 Drawing upon what we have learned so far, can you parallelize this

program using OpenMP?

50

double dot_prod_serial(…){

double sum = 0.0;

int i;

for (i=0; i<N; i++)

{

sum += (a[i] * b[i]);

}

return sum;

}

double dot_prod_parallel_ver1(…){

double sum = 0.0;

int i;

#pragma omp parallel for reduction(+:sum)

for (i=0; i<N; i++)

{

sum += (a[i] * b[i]);

}

return sum;

}

The Schedule Clause (1)

 The schedule clause: It affects how loop iterations are mapped onto

threads.

 Schedule (static, [,chunk]) . [] is optional.

 Assigns blocks of iterations of size chunk to each thread.

 Used when the amount of iterations is pre-determined and

predictable in advance.

 Scheduling is done at compile time.

 OpenMP divides iterations into chunks that are approximately

equal in size and it distributes at most one chunk to each thread.

51

The Schedule Clause (2)

 The schedule clause: It affects how loop iterations are mapped onto threads.

 Schedule (dynamic, [,chunk]).

 Omp scheduler decides at runtime which iterations will be allocated to each

thread

 Each thread asks (at runtime) for a chunk of iterations, executes them, then asks

for another chunk and so on

 Used when the amount of iterations is unpredictable, highly variable work per

iteration.

 Scheduling is done at runtime.

 No particular order in which the chunks are distributed to the threads.

 The order changes each time when we execute the for loop.

 The dynamic scheduling type is appropriate when the iterations require

different computational costs.

 The dynamic scheduling type has higher overhead than the static scheduling

type because it dynamically distributes the iterations during the runtime.

52

The Schedule Clause (3)

 The schedule clause: It affects how loop iterations are mapped onto threads.

 Schedule (guided, [,chunk]).

 Not really used often.

 The guided scheduling type is similar to the dynamic scheduling type.

 The difference with the dynamic scheduling type is in the size of chunks.

 The size of a chunk is proportional to the number of unassigned

iterations divided by the number of the threads. Therefore, the size

of the chunks decreases.

 The initial chunks are larger, because they reduce overhead.

 The smaller chunks fills the schedule towards the end of the

computation and improve load balancing.

 This scheduling type is especially appropriate when poor load balancing

occurs toward the end of the computation.

53

The Schedule Clause (4)

 The schedule clause: It affects how loop iterations are mapped onto

threads.

 Schedule (runtime)

 Schedule and chunk size taken from the omp_schedule enviroment

variable (or the runtime library).

 Used when we are not sure about which one is best (static or

dynamic)

 Schedule (auto)

 Schedule is left up to the runtime to choose

 This option is new in OpenMP.

 It lets the compiler to decide and do its best.

54

Schedule (static) clause

What does this program print?

Consider N=8
55

#pragma omp parallel

{

int tid = omp_get_thread_num();

if (tid == 0) //if master thread

{

int nthreads = omp_get_num_threads();

printf("Number of threads = %d\n", nthreads);

}

printf("Thread %d is starting...\n",tid);

#pragma omp for reduction(+:sum) schedule(static)

for (i=0; i<N; i++) {

sum += (a[i] * b[i]);

printf("Thread %d: executes iteration i= %d\n", tid, i);

}

}

Number of threads = 4

Thread 0 is starting...

Thread 0: executes iteration i= 0

Thread 0: executes iteration i= 1

Thread 1 is starting...

Thread 1: executes iteration i= 2

Thread 2 is starting...

Thread 2: executes iteration i= 4

Thread 2: executes iteration i= 5

Thread 1: executes iteration i= 3

Thread 3 is starting...

Thread 3: executes iteration i= 6

Thread 3: executes iteration i= 7

Schedule (dynamic) clause

What does this program print?

Consider N=8
56

#pragma omp parallel

{

int tid = omp_get_thread_num();

if (tid == 0) //if master thread

{

int nthreads = omp_get_num_threads();

printf("Number of threads = %d\n", nthreads);

}

printf("Thread %d is starting...\n",tid);

#pragma omp for reduction(+:sum) schedule(dynamic)

for (i=0; i<N; i++) {

funct(i)

printf("Thread %d: executes iteration i= %d\n", tid, i);

}

}

Number of threads = 4

Thread 0 is starting...

Thread 0: executes iteration i= 0

Thread 0: executes iteration i= 1

Thread 0: executes iteration i= 2

Thread 0: executes iteration i= 3

Thread 0: executes iteration i= 4

Thread 0: executes iteration i= 5

Thread 3 is starting...

Thread 3: executes iteration i= 7

Thread 2 is starting...

Thread 1 is starting...

Thread 0: executes iteration i= 6

Schedule (static, 4) clause

What does this program print?

Consider N=8
57

#pragma omp parallel

{

int tid = omp_get_thread_num();

if (tid == 0) //if master thread

{

int nthreads = omp_get_num_threads();

printf("Number of threads = %d\n", nthreads);

}

printf("Thread %d is starting...\n",tid);

#pragma omp for reduction(+:sum) schedule(static, 4)

for (i=0; i<N; i++) {

sum += (a[i] * b[i]);

printf("Thread %d: executes iteration i= %d\n", tid, i);

}

}

Number of threads = 4

Thread 0 is starting...

Thread 0: executes iteration i= 0

Thread 0: executes iteration i= 1

Thread 0: executes iteration i= 2

Thread 0: executes iteration i= 3

Thread 2 is starting...

Thread 3 is starting...

Thread 1 is starting...

Thread 1: executes iteration i= 4

Thread 1: executes iteration i= 5

Thread 1: executes iteration i= 6

Thread 1: executes iteration i= 7

Schedule (dynamic, 4) clause

What does this program print?

Consider N=8
58

#pragma omp parallel

{

int tid = omp_get_thread_num();

if (tid == 0) //if master thread

{

int nthreads = omp_get_num_threads();

printf("Number of threads = %d\n", nthreads);

}

printf("Thread %d is starting...\n",tid);

#pragma omp for reduction(+:sum) schedule(dynamic, 4)

for (i=0; i<N; i++) {

sum += (a[i] * b[i]);

printf("Thread %d: executes iteration i= %d\n", tid, i);

}

}

Number of threads = 4

Thread 0 is starting...

Thread 0: executes iteration i= 0

Thread 0: executes iteration i= 1

Thread 0: executes iteration i= 2

Thread 0: executes iteration i= 3

Thread 0: executes iteration i= 4

Thread 0: executes iteration i= 5

Thread 0: executes iteration i= 6

Thread 0: executes iteration i= 7

Thread 2 is starting...

Thread 1 is starting...

Thread 3 is starting...

Thread 0 asked for 4 iterations, it executed them and the scheduler decided to give the other 4

iterations to thread 0.

The Schedule Clause (5)

 In this module we will be writing programs where the

number of iterations per thread can be calculated at

compile time (static programs)

 Thus, we will be using the schedule(static, chunk) clause

59

Vectorization using OpenMP

The ‘#pragma omp simd’ Construct

 OpenMP 4.0 introduced omp simd, accessed via #pragma omp simd as

a standard set of hints that can be given to a compiler to encourage it to

auto-vectorise code.

 Compilers may not vectorize loops when they are complex or possibly

have dependencies, even though the programmer is certain the loop will

execute correctly as a vectorized loop.

 The simd construct assures the compiler that the loop can be vectorized.

 Be careful. Using omp simd bypasses the compiler analysis.

 So, use with caution as

 Incorrect results are possible

 Poor performance is possible

 memory errors are possible

60

Use x86-64 Intrinsics or

‘#pragma omp simd’ ?

 The OpenMP ‘simd’ clause

 is easy to use

 can provide good performance for simple programs

 The x86-64 Intrinsics

 are harder to use

 provide better performance

 can allow for other optimizations too further improving

performance, e.g., register blocking

61

‘#pragma omp simd’

in Visual Studio

 The ‘simd’ clause is a new feature and supported only

in Visual Studio 2019 via the command line

 Supported in Linux too

62

Vectorization

Do not forget to align your arrays

 We can either allocate aligned memory statically using

 float A[N] __attribute__((aligned (64))); //In Linux only

 __declspec(align(64)) float A[N] //In Visual studio only

 or dynamically using

 _mm_malloc (N * sizeof(float),64); //Linux and Visual Studio

63

Vectorization using OpenMP

 #pragma omp simd : The simd construct can be applied to a loop to

indicate that the loop can be vectorized

 aligned(y,x,a:64) : The aligned clause asserts to the compiler that an

array is aligned.

 Using this clause allows the compiler to safely use SIMD instructions

that have strict alignment requirements.

 If this clause is used, the programmer is responsible for ensuring that

the data is in fact aligned.

 reduction(+:tmp) : The reduction clause instructs the compiler to perform

a vector reduction on a variable.

 Same as in multithreaded

 How can we be sure that the compiler vectorized the code? To be verify

that, compile using -fopt-info-vec-optimized option (gcc only)

64

An Introduction to the storage attributes

 We can define in the #pragma clause whether a variable is shared

amongst all threads or is private.

 shared (a): all threads can access ‘a’.

 private (a): each thread creates an un-initialized copy of ‘a’

 The ‘i’ loop is the loop next to the omp clause and it is private by default.

 The ‘j’ loop is not private by default and thus it must be defined as

private

 ‘Y’ is shared by default and thus it is not needed, but it helps readability

and might prevent bags.

65

#pragma omp parallel for shared(Y) private(i, j)

for (i=0; i<N; i++)

for (j=0; j<N; j++)

Y[i]=…

Matrix-Vector Multiplication

Serial Version
66

for (i=0; i<N; i++)

for (j=0; j<N; j++)

y[i]+=a[N*i+j] * x[j];

a00 a01 a02 … a0N

a10

a20

a30

a40

aN0 aNN

y0

y1

y2

y3

y4

yN

= x

Y A (NxN) X

…
…

……

…

x0

x1

x2

x3

x4

xN

…

Matrix-Vector Multiplication

Multi-threaded Version

 Both code versions are valid

67

#pragma omp parallel for private(I,j)

for (i=0; i<N; i++)

for (j=0; j<N; j++)

y[i]+=a[N*i+j]*x[j];

#pragma omp parallel for shared(y,a,x) private(i,j) schedule(static)

for (i=0; i<N; i++)

for (j=0; j<N; j++)

y[i]+=a[N*i+j]*x[j];

Matrix-Vector Multiplication

Multi-threaded Version (2)

 Performance results on a PC with four physical cores

 N=128

 2 threads -> speedup x1.85

 3 threads -> speedup x2.55

 4 threads -> speedup x3.13

 N=4096

 2 threads -> speedup x1.95

 3 threads -> speedup x2.93

 4 threads -> speedup x3.75

68

#pragma omp parallel for shared(y,a,x) private(i,j) schedule(static)

for (i=0; i<N; i++)

for (j=0; j<N; j++)

y[i]+=a[N*i+j]*x[j];

Why the scalability is low for

N=128?

Matrix-Vector Multiplication

Multi-threaded Version (3)

 Why the scalability is low for N=128?

 Because the overhead for creating and synchronizing the

threads is comparable to the threads’ execution time.

 The code will scale well only when each thread executes at

least a minimum amount of instructions

 The amount of instructions per thread is found

experimentally and depends on the target platform

69

Matrix-Vector Multiplication

Multi-threaded and Vectorized Version
70

#pragma omp parallel for private(j, tmp)
for (i=0; i<N; i++) {
tmp=y[i];
#pragma omp simd aligned(y,x,a:64) reduction(+:tmp)
for (j=0; j<N; j++) {
tmp+=a[N*i+j]*x[j];
}

y[i]=tmp;
}

In my PC, the omp simd clause gives a speedup x2

In my PC, this code performs x7.55 times

faster than the serial version …

We can do much better …

Matrix-Vector Multiplication

Vectorization using x86-64 intrinsics vs OpenMP

 Execution time values are similar

 See MVM_parallel_ver5() routine

 But …

 By using x86-64 AVX intrinsics, we can enable other

optimizations which cannot be applied to the openmp version,

further improving performance, e.g., register blocking

 x86-64 AVX intrinsics can provide improved performance in the

general case.

71

Performance in GigaFLOPS

Can we do better?
72

1.86
1.64 1.61 1.61 1.59 1.58

6.2

9.7 10.4
9.3 8.6 8.4

6 5.9 6.16 6 5.9 5.8

13.7

26.2

39.5

11.7 11.6 11.4

1.5

15

128 512 1024 2048 4096 8192

G
ig

a
F
LO

P
s

(2
N

2
/n

se
co

n
d

s)
 (

lo
g
.s

ca
le

)

MVM - Performance on quad core desktop PC

serial vectorization only

multi-threading only (4 threads) vectorization + 4 threads

Performance in GigaFLOPS

Can we do better? (2)

 Yes we can. Much better

 Optimizations such as

 register blocking

 loop tiling

 software prefetching

 Can boost performance

 Register blocking is the most efficient optimization for MVM

algorithm and can boost performance in 90GigaFLOPS

 A code example is provided

73

Let’s study the MVM_parallel.c (see GitHub)

74

Routine Gflops for N=1024

MVM_serial() 1.8

MVM_parallel_ver1() – omp

parallel

6.7

MVM_parallel_ver4() – omp

simd + omp parallel

42.7

MVM_parallel_ver5() – omp

parallel + AVX

53

MVM_parallel_ver6() – omp

parallel + AVX + reg.

blocking factor of 8

82.5

x3.7

x6.4

x7.9

x1.55

Further Reading

 Effective Vectorization with OpenMP 4.5, available at

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd

=&cad=rja&uact=8&ved=2ahUKEwjCksHTqr3qAhX4SRUIHSmlBYAQFj

AAegQIBhAB&url=https%3A%2F%2Finfo.ornl.gov%2Fsites%2Fpublica

tions%2Ffiles%2FPub69214.pdf&usg=AOvVaw22CMKDJzHHKHKSFz

m8P9qr

 Chapter 51 in OpenMP Application Programming Interface, Examples,

available at

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd

=&cad=rja&uact=8&ved=2ahUKEwjIooTyqr3qAhWYaRUIHZmEC58Q

FjAAegQIAhAB&url=https%3A%2F%2Fwww.openmp.org%2Fwp-

content%2Fuploads%2Fopenmp-examples-

4.5.0.pdf&usg=AOvVaw3BDlLKC3VhdJI1iTj1RE_p

75

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwjCksHTqr3qAhX4SRUIHSmlBYAQFjAAegQIBhAB&url=https%3A%2F%2Finfo.ornl.gov%2Fsites%2Fpublications%2Ffiles%2FPub69214.pdf&usg=AOvVaw22CMKDJzHHKHKSFzm8P9qr
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwjIooTyqr3qAhWYaRUIHZmEC58QFjAAegQIAhAB&url=https%3A%2F%2Fwww.openmp.org%2Fwp-content%2Fuploads%2Fopenmp-examples-4.5.0.pdf&usg=AOvVaw3BDlLKC3VhdJI1iTj1RE_p

Part3 - Outline

 More advanced OpenMP Topics

 Omp barrier, omp nowait, omp single, omp master,

Collapse clause

 Changing the storage attributes

 omp sections

 Parallel Programming Design Patterns

 Divide and conqueror Design Pattern

 Omp tasks

 Environmental Variables

76

The ‘omp single’ Construct

 #pragma omp single : The single construct

specifies that the given statement/block

is executed by only one thread.

 It is unspecified which thread.

 Other threads skip the

statement/block and wait at an

implicit barrier at the end of the

construct.

 Do not assume that the single block is

executed by whichever thread gets

there first.

 According to the standard, the

decision of which thread executes the

block is implementation-defined.

77

#pragma omp parallel {

funct1(); //all threads execute this

#pragma omp single

{

funct2(); //just one thread executes

this

} //other threads wait here for the

single thread to finish

funct3(); //all threads execute this

}

The ‘omp master’ Construct

 ‘#pragma omp master’: The master

construct is similar to single, except that

the statement/block is run by the master

thread, and there is no implied barrier

 Other threads skip the construct

without waiting.

 The following two examples are

equivalent.

78

#pragma omp parallel //example1

{

funct1(); //executed by all threads

#pragma omp master {

funct2(); //just Thread0

}

funct3(); //all threads

}

#pragma omp parallel //example2

{

funct1();

if(omp_get_thread_num() == 0) {

funct2();

}

funct3();

}

The ‘omp barrier’ Construct

 #pragma omp barrier: Each thread waits at the barrier until all threads

arrive.

79

#pragma omp parallel

{

int id=omp_get_thread_num();

A[id]=funct1(id);

#pragma omp barrier //no thread will execute funct2, before A[] is

stored

B[id]= funct2(id, A);

}

The ‘nowait’ Directive

 #pragma omp nowait: nowait overrides the barrier implicit at the

end of a directive.

 The nowait directive can only be attached to: sections, for and

single.

80

#pragma omp parallel

{

#pragma omp for nowait

for (i=1; i<n; i++)

b[i] = (a[i] + a[i-1]) / 2.0;

#pragma omp for nowait

for (i=0; i<m; i++)

y[i] = sqrt(z[i]);

}

The ‘collapse’ Clause

 Collapse clause: Two or more loops are merged to one and

parallelized.

 Used when the number of iterations in the loop is small.

 Use the collapse-clause to increase the total number of iterations

that will be partitioned across the available number of omp

threads.

81

#pragma omp parallel for collapse(2)

for (i=0; i<15; i++) //there are only 15 iterations to parallelize. Using

collapse there will be 1200

for(j=0; j<80; j++)

func(i,j);

Nested Parallelism

 Loop nesting: Nested parallelism” is disabled in OpenMP by

default (it can be used though), and thus a second pragma will

be ignored at runtime.

82

#pragma omp parallel for

for (i=0; i<15; i++)

#pragma omp for // This is ignored, nesting like this is not allowed by default

for(j=0; j<80; j++)

func(i,j);

Changing the Storage Attributes

 shared (a): all threads can access ‘a’

 private (a): each thread creates an un-initialized copy of ‘a’

 firstprivate (a): each thread creates an initialized copy of ’a’

 lastprivate (a) : the value of ‘a’, of the last iteration of the loop, is stored

back as global. If a loop goes from i=[0,N-1], then the thread that

executed the iteration N-1, its value of tmp will be copied out to the

global scope.

 default (private | shared | none). The default clause forces a programmer

to explicitly specify the data-sharing attributes of all variables in a

parallel region.

 E.g., #pragma omp parallel for default(shared) private(a, b).

 You can also write parallel regions with the default(none) clause and

then specify the private and shared ones.

83

Changing the Storage Attributes

An Example
84

void wrong(){

int tmp=0;

#pragma omp parallel for private(tmp) //create a var tmp that is

private (un-initialized)

for (i=0; i<N; i++)

tmp+=j; //Problem, the first value of tmp is not zero

printf (tmp); //problem, will see the global tmp, not the private.

The private tmp is disappeared

}

Changing the Storage Attributes

An Example (2)
85

Void good(){

tmp=1;

#pragma omp parallel for firstprivate(tmp) //create a var tmp that is

private and initialized

for (i=0; i<N; i++) {

if ((i%2)==0)

A[i]=tmp;

}

else

A[i]=0;

}

Changing the Storage Attributes

An Example (3)

 Consider the following code.

1. Are a,b,c local to each thread or shared?

2. What are the a,b,c values inside the parallel region and

after, in the code below?

int a=1,b=1, c=1;

#pragma omp parallel private(b) firstprivate(c)

{ … }

86

Omp Sections (1)

 omp sections: The section

construct is one way to

distribute different tasks to

different threads.

 Each section refers to a

different task and is

executed by one only

thread

 Unlike to the previous

examples, where they

were based on loop

parallelism, sections

enable task parallelism

(see next slide)

87

#pragma omp sections

{

#pragma omp section //just one thread

executes this section

{ funct1(); }

#pragma omp section //just one thread

executes this section

{ funct2();

funct3(); }

#pragma omp section //just one thread

executes this section

{ funct4(); }

} //the other threads wait here

88

#pragma omp section
{
printf("Thread %d doing section

2\n",tid);
#pragma omp simd
for (i=0; i<N; i++)
{
d[i] = a[i] * b[i];
//printf("Thread %d: d[%d]=

%f\n",tid,i,d[i]);
}

}

} /* end of sections */

printf("Thread %d done.\n",tid);

} /* end of parallel section */

#pragma omp parallel
shared(a,b,c,d,nthreads) private(i,tid)
{
tid = omp_get_thread_num();
#pragma omp master
{
nthreads = omp_get_num_threads();
printf("Number of threads = %d\n",

nthreads);
}

printf("Thread %d starting...\n",tid);

#pragma omp sections nowait
{
#pragma omp section
{
printf("Thread %d doing section

1\n",tid);
#pragma omp simd
for (i=0; i<N; i++)
{
c[i] = a[i] + b[i];
// printf("Thread %d: c[%d]=

%f\n",tid,i,c[i]);
}

}

This Program crashes. Why?

89

int A[1024][1024];

#pragma omp parallel shared(nthreads) private(i,j,tid,A)

{

tid = omp_get_thread_num();

#pragma omp master

{

nthreads = omp_get_num_threads();

printf("Number of threads = %d\n", nthreads);

}

printf("Thread %d starting...\n", tid);

for (i=0; i<N; i++)

for (j=0; j<N; j++)

A[i][j] = (i-j)%100;

}

 Array A is private, which

means that every thread will

try to allocate an array of

size NxN.

 The memory segment that is

used, is the stack, not the

heap, as A[][] is a private

array

 the size of the array is very

large and the program cannot

allocate such space on the

threads’ stack.

 This makes the program to

crash.

The ‘Omp task’ Clause

(advanced topic)

 Omp task: When a thread encounters

a task construct, a task is generated.

The moment of execution of the task

depends on the runtime system.

 A thread that executes a task

might be different from the thread

that originally encountered it.

 The tasks are independent units of

work and executed in any order

 The code associated with a task

construct will be executed only

once.

90

#pragma omp parallel

{

#pragma omp single

{

#pragma omp task

{ funct1(); }

#pragma omp task

{ funct2(); }

#pragma omp task

{ funct3(); }

#pragma omp taskwait //all the

tasks must end here

}

}

Environmental Variables (1)

 The OpenMP specification defines several environment variables that

control the execution of OpenMP programs.

 OMP_NUM_THREADS : Sets the number of threads to use during

execution of a parallel region. You can override this value by a

NUM_THREADS clause, or a call to OMP_SET_NUM_THREADS().

 OMP_STACKSIZE : Sets the stack size for each thread.

 OMP_WAIT_POLICY : The OMP_WAIT_POLICY environment variable

provides a hint to an OpenMP implementation about the desired

behavior of waiting threads. It can be either ACTIVE or PASSIVE.

 In active, the thread actively spins waiting for something to be

available. This consumes CPU power.

 In passive, the thread is put into sleep. Putting a thread into sleep

and waiting it up, costs a lot

91

Environmental Variables (2)

 The OpenMP specification defines several environment variables that

control the execution of OpenMP programs.

 OMP_PROC_BIND : It can be either true or false. It sets the thread affinity

policy to be used for parallel regions at the corresponding nested level.

 If the environment variable is set to false, the execution environment

may move a thread to another CPU core.

 If it is true, threads are not shuffled among the cores.

 Use true for cache intensive algorithms.

 Example: to set OMP_PROC_BIND=true in Linux, type the following

command:

export OMP_PROC_BIND=TRUE //sets it

echo $OMP_PROC_BIND //prints it, to make sure it worked

 To learn more about environment variables visit

https://www.openmp.org/spec-html/5.0/openmpch6.html .

92

https://www.openmp.org/spec-html/5.0/openmpch6.html

Design Patterns for Parallel Programming

 No matter which programming language you use, there are specific algorithmic

concepts that are universal

 These are the design patterns for parallel programming – So far, we have used

just one programming language and three different patterns

 The design patterns we have seen so far are:

 Single Program Multiple Data (SPMD) pattern

 A single program runs on many processing elements

 Create a collection of units of execution (here threads) and each one will

run the same program

 Remember Pi program - version1(),version2(),version3() routines

 Loop parallelism pattern

 Most used in OpenMP – we have seen many examples

 Task Parallelism

 Divide and Conquer pattern (next slide)

93

Divide and Conquer design paradigm

 Divide and Conquer

algorithm: recursively

breaking down a problem

into two or more sub-

problems, until these

become simple enough to

be solved directly.

 The solutions to the

sub-problems are then

combined to give a

solution to the original

problem

94

Fibonacci Sequence

 In mathematics, the Fibonacci numbers, commonly denoted Fn, form

a sequence, called the Fibonacci sequence, such that each number is

the sum of the two preceding ones, starting from 0 and 1.

 F0=0, F1=1 and Fn=Fn-1+Fn-2

 The beginning of the sequence is thus:

 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, …

95

int fib (int n){

int x,y;

if (n<2)

return n;

x=fib (n-1);

y=fib (n-2);

return x+y;

}

https://en.wikipedia.org/wiki/Integer_sequence

Fibonacci Sequence

Serial Code
96

int fib (int n){

int x,y;

if (n<2)

return n;

x=fib (n-1);

y=fib (n-2);

return x+y;

}

 How can we parallelize this problem?

 Using the divide and conquer design pattern

Fibonacci Sequence

Multi-threaded Code
97

int Fibonacci (int n){

int fib;

#pragma omp parallel

{

#pragma omp single

fib=kernel(n);

}

return fib;

}

int kernel (int n){

int x,y;

if (n<2) return n;

#pragma omp task shared(x) //x must be

shared otherwise, it will be lost when the

task ends. x is undefined outside the task

x=kernel(n-1);

#pragma omp task shared(y)//y must be

shared otherwise, it will be lost when the

task ends. y is undefined outside the task

y=kernel(n-2);

#pragma omp taskwait

return x+y;

}

Parallelize Pi example using

divide and conquer design pattern (1)
98

double divide_conquer(){

int i;

double step, pi, sum=0.0;

step=1.0/(double) num_steps;

#pragma omp parallel

{

#pragma omp single

sum=pi_kernel (0,num_steps, step);

}

pi = step * sum;

return pi;

}

 The main idea behind this

implantation is to recursively split

the pi program’s loop into half

until the number of iterations is

smaller than a threshold.

 Step1. We want just one thread

to execute the Pi routine

 All the threads will be

created from a single source

thread

Parallelize Pi example using

divide and conquer design pattern (2)
99

 Step2. Is the problem

small enough to compute

it?

 Yes. If so use one

thread to compute it

 No. Split it to two

tasks, and recursively

execute the pi routine

 Step3. merge the results

of the sub-problems

double pi_kernel(int start, int finish, double step){

int i,blk; double x,sum=0.0,sum1,sum2;

if (finish-start < BULK){ //if problem small enough

for (i=start; i<finish; i++){

x=(i+0.5)*step;

sum = sum + 4.0 / (1.0 + x*x);

}

}

else { blk=finish-start;

#pragma omp task shared(sum1)

sum1=pi_kernel(start,finish-blk/2, step);

#pragma omp task shared(sum2)

sum2=pi_kernel(finish-blk/2, finish, step);

#pragma omp taskwait

sum=sum1+sum2;

}

return sum;

}

Further Reading

 OpenMP Architecture, available at https://www.openmp.org/

 Guide into OpenMP: Easy multithreading programming for C++,

available at

https://bisqwit.iki.fi/story/howto/openmp/#ParallelConstruct

 OpenMP Application Programming Interface Examples, available at

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd

=&cad=rja&uact=8&ved=2ahUKEwiOip2R-

rrqAhX8XRUIHa5HC0QQFjAAegQIAxAB&url=https%3A%2F%2Fwww.

openmp.org%2Fwp-content%2Fuploads%2Fopenmp-examples-

4.5.0.pdf&usg=AOvVaw3BDlLKC3VhdJI1iTj1RE_p

 GNU libgomp available at

https://gcc.gnu.org/onlinedocs/libgomp/index.html

100

https://www.openmp.org/
https://bisqwit.iki.fi/story/howto/openmp/#ParallelConstruct
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwiOip2R-rrqAhX8XRUIHa5HC0QQFjAAegQIAxAB&url=https%3A%2F%2Fwww.openmp.org%2Fwp-content%2Fuploads%2Fopenmp-examples-4.5.0.pdf&usg=AOvVaw3BDlLKC3VhdJI1iTj1RE_p
https://gcc.gnu.org/onlinedocs/libgomp/index.html

