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Performance used to increased according to 

the number of transistors (1)
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Performance used to increased according to 

the number of transistors (2)
5

 The fact that performance used to increase by increasing the 

number of transistors, made people to believe that performance 

comes from the hardware

 Programmers used to write software without thinking about 

performance 

 They counted on the hardware to do the work

 This model used to work fine…but…back in 2006, something 

changed…

 The Power Wall problem 



Performance used to increased according to 

the number of transistors (3)
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 Power Wall Problem

 The CPU design goal for the late 1990’s and early 2000’s 

was to increase the CPU frequency. 

 This was a way to improve system performance 

 This was done by adding more transistors to a smaller chip.

 However, this increased the power dissipation of the CPU 

chip beyond the capacity of inexpensive cooling techniques.

 The last years the CPU frequency has ceased to grow



Performance used to increased according to 

the number of transistors (4)

 By increasing performance, power consumption increases even more 

(next slide)

 This is not sustainable

 What to do? The solution is Parallel hardware architectures 
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The solution to the Power Wall Problem

8

 Power=Capacitance x Voltage x Frequency2

 By using two processors inside the same chip, with half the frequency each, then:

 Capacitance2 = 2.2 x Capacitance

 Frequency2 = F/2

 Votalge2 = 0.6 x Voltage

 Power2 = 0.4 Power

Parallel computing gives us the ability to give the same performance with lower 

power



The Era of Parallel Computing is here

 Performance comes from the software

 There are no smart-enough tools to efficiently 

parallelize serial software on the parallel hardware

 Free lunch is over…

 We must learn how to write parallel applications…
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Hardware Architecture Trends (1)

Taken from https://www.researchgate.net/publication/336577121_BACKUS_Comprehensive_High-

Performance_Research_Software_Engineering_Approach_for_Simulations_in_Supercomputing_Systems
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https://www.researchgate.net/publication/336577121_BACKUS_Comprehensive_High-Performance_Research_Software_Engineering_Approach_for_Simulations_in_Supercomputing_Systems


Hardware Architecture Trends (2)
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Concurrency vs Parallelism (1)

 Concurrency: A condition of a system in which multiple tasks are logically 

active at one time

 Multiple things can happen at the same time

 They may not be happening but they can

 Parallelism: A condition of a system in which multiple tasks are actually 

active at one time

 A subset of concurrency 

 Concurrent application: An application for which computations logically 

execute simultaneously 

 Parallel application: An application for which computations actually 

execute simultaneously in order to compute a problem faster
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Concurrency vs Parallelism (2)

Taken from https://www.youtube.com/watch?v=6jFkNjhJ-Z4&list=PLLX-

Q6B8xqZ8n8bwjGdzBJ25X2utwnoEG&index=3
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https://www.youtube.com/watch?v=6jFkNjhJ-Z4&list=PLLX-Q6B8xqZ8n8bwjGdzBJ25X2utwnoEG&index=3


Concurrency vs Parallelism (2)

Steps:

1. We need to find the concurrency in our application

 This process cannot be automated

2. Then we decide which parallel programming language (OpenMP, MPI, 

etc) to use

 This is the easy part

 The hard part is to find the concurrency and understand the 

algorithmic strategy

 We must expose the concurrency of a problem and map it on the 

parallel hardware so it can be executed in parallel
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What is OpenMP? (1)

 OpenMP (open multi-processing) : An API for writing 

multithreaded apps

 A set of compiler directives and library routines for parallel 

application programmers 

 Greatly simplifies writing multithreaded programs in Fortran, 

C/C++
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What is OpenMP? (2)

 See how easy it is to parallelize applications using OpenMP
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#pragma omp parallel for private(i, j, k, tmp)

for (i = 0; i < N; i++) {

for (j = 0; j < N; j++) {

tmp = 0.0;

for (k = 0; k < N; k++) {

tmp += A[N * i + k] * B[N * k + j];

}

test[N * i + j] = tmp;

} 

} 



What is OpenMP? (3)

 See how easy it is to parallelize and vectorize applications using 

OpenMP
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#pragma omp parallel 

{

#pragma omp for private(i, j, k, tmp)

for (i = 0; i < N; i++) {

for (j = 0; j < N; j++) {

tmp = 0.0;

#pragma omp simd reduction(+:tmp) aligned(C,A,B:64)

for (k = 0; k < N; k++) {

tmp += A[N * i + k] * B[N * k + j];

}

C[N * i + j] = tmp;

} 

} 

}



What is OpenMP? (4)
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Taken from https://www.youtube.com/watch?v=6jFkNjhJ-Z4&list=PLLX-Q6B8xqZ8n8bwjGdzBJ25X2utwnoEG&index=3

https://www.youtube.com/watch?v=6jFkNjhJ-Z4&list=PLLX-Q6B8xqZ8n8bwjGdzBJ25X2utwnoEG&index=3


What is OpenMP? (5)

 Fork-Join Parallelism 
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OpenMP Core Syntax

 The syntax in C follows:

 #pragma omp construct [clause]

 e.g., #pragma omp parallel for

 A ‘#pragma’ is a compiler directive and is going to tell the compiler to do 

something special beyond the scope of C language. 

 The pragmas are designed so that even if the compiler does not support 

them, the program will still yield correct behavior, but without any 

parallelism. 

 By default, the Visual Studio does not support the ‘#pragma omp’ clause. 

 No error or warning will be shown. 

 The compiler will just ignore the ‘#pragma’ and the program will run 

serially. 

 We must enable OpenMP in Visual Studio
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First Example

21

int main(){

double A[1000];

omp_set_num_threads(4); //requests 4 threads. 

#pragma omp parallel {    //fork a number of threads – we asked 4

int ID = omp_get_thread_num(); //get the ID for each thread

function1 (ID, A ) //each thread will run this function

} //end of multi-threading region

printf(“all done\n”); //just the main thread runs this command

return 0;

}



What is difference between thread, process and 

program?
22

 Program:

 Program is an executable file containing the set of instructions written to perform a 

specific job on your computer

 For example, skype.exe is an executable file containing the set of instructions which help us 

to run skype

 Process:

 Process is an executing instance of a program

 For example, when you double click on the skype.exe on your computer, a process is 

started that will run the skype program

 Thread:

 Thread is the smallest executable unit of a process 

 For example, when you run skype program, OS 

creates a process and starts the execution of the main 

thread of that process

 A process can have multiple threads

 All threads of the same process share memory of that process



Memory Layout of a Process
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 Text : contains the compiled code (binary) – read only

 Initialized data : contains the global and static variables that 

are initialized by the programmer

 Uninitialized data : contains the global and static variables that 

are initialized to zero or they do not have explicit initialization 

 Stack: it is a last in first out (LIFO) structure that stores temporary 

variables created by each function (including main). 

 Every time a function is called, its local data, function 

arguments and return values are pushed into the stack

 Every time a function exits, all its local data are freed 

(popped from the stack).  

 Limited size – normally its default value is 1Mbyte.

 Heap : contains all the data allocated dynamically 

text

Initialized data

Unitialized data 

(bss)

stack

heap

High address

Low address

empty memory



Shared and Private Data
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 If we define data outside the ‘#pragma omp parallel{ }’ region, they are 

allocated to heap memory (visual to any thread, shared data). 

 If they are defined inside the ‘omp parallel{ }’ region, they are allocated to the 

threads individual stack (private to the thread, local). 

int main(){

double A[1000];

omp_set_num_threads(4); //requests 4 threads. 

#pragma omp parallel {    //fork a number of threads – we asked 4

int ID = omp_get_thread_num(); //get the ID for each thread

function1 (ID, A ) //each thread will run this function

} //end of multi-threading region

printf(“all done\n”); //just the main thread runs this command

return 0;

}



Commands to get environment information

 nthreads = omp_get_num_threads(); //returns the number of threads 

used inside #pragma omp parallel { }

 procs = omp_get_num_procs(); //returns the number of physical CPU 

cores of this machine

 maxt = omp_get_max_threads(); //returns the maximum number of 

threads available. By default this number will be set to the maximum 

number of available cores 

 inpar = omp_in_parallel(); //This function returns true if currently 

running in parallel, false otherwise.
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What does this program print?
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/* Fork a team of threads giving them their own copies of variables */

#pragma omp parallel 

{

int nthreads, tid; //each thread has its own copies 

tid = omp_get_thread_num(); //get the number of each thread

printf("Hello World from thread = %d\n", tid); //THE ORDER OF THE PRINTF() DIFFERS FROM 

RUN TO RUN

if (tid == 0)  // Only master thread does this – Equivalent to ‘If (master thread)’

{

nthreads = omp_get_num_threads(); //returns the number of threads used inside #pragma omp

parallel { }

procs = omp_get_num_procs(); //returns the number of physical CPU cores

maxt = omp_get_max_threads(); //returns the maximum number of threads available. 

printf("Number of threads = %d\n", nthreads);

printf("Number of processors = %d\n", procs);

printf("Max threads = %d\n", maxt);

}

}  // All threads join master thread and disband



Array Addition Example (1)

 We will study three different implementations of the following 

program

 There are no dependencies – all the loop iterations can be 

executed in parallel 

27

for (i=0; i<N; i++)

A[i]=A[i] + B[i];

…
A[N]

…
B[N]



Array Addition Example 

Implementation #1 (1)
28

#pragma omp parallel for

for (i=0; i<N; i++)

A[i]=A[i] + B[i];

…
A[N]

…
B[N]

for (i=0; i<N; i++)

A[i]=A[i] + B[i];

 OpenMP makes ‘i’ private to each thread, automatically



Array Addition Example 

Implementation #1 (2)
29

#pragma omp parallel for

for (i=0; i<N; i++)

A[i]=A[i] + B[i];

…
A[N]

…
B[N]

 But what OpenMP actually does?

 Considering there are four threads, the i

loop will be split into four parts and each 

core will execute its part

for (i=0; i<250; i++)

A[i]=A[i] + B[i];

for (i=250; i<500; i++)

A[i]=A[i] + B[i];

for (i=500; i<750; i++)

A[i]=A[i] + B[i];
for (i=750; i<1000; i++)

A[i]=A[i] + B[i];

Thread0 Thread1 Thread2 Thread3



Array Addition Example 

Implementation #2
30

#pragma omp parallel

{ //fork a team of threads

#pragma omp for

for (i=0; i<N; i++) 

A[i]=A[i]+B[i];

} //all threads join master

 This syntax is equivalent



Array Addition Example 

Implementation #3

 This is not how we write OpenMP

programs but it is important to 

understand how it works

 Each thread executes the code in 

the parallel region

 Each thread has its own ‘start’ 

and ‘end’ values

31

#pragma omp parallel

{

int id,i,Nthrds, start, end;

id=omp_get_thread_num();

Nthrds=omp_get_num_threads();

start=id   * N / Nthrds;

end=(id+1) * N / Nthrds;

if (id==Nthrds-1)

end=N;

for (i=start; i<end; i++)

A[i]=A[i]+B[i];

}



2nd Example – Reduction 

 In this example, data dependencies exist (race condition)

 If we parallelize this program as before then

 Different threads will be writing concurrently to ‘ave’.

 Some threads might clashing and trying to update the memory 

at the same time. 

 In this case, you never know what the value of ‘ave’ will be.

32

for (i=0; i<N; i++){

ave+=A[i];

}



2nd Example – Reduction 

Implementation #1

 Each thread has its own 

private/local ‘ave’

 When they are finished, all the ‘ave’ 

values must be added together

 omp critical: Restricts execution of the 

associated structured block to a 

single thread at a time.  

 threads wait at the beginning of 

the critical section until no other 

thread in the team is executing it.

33

int average=0;

#pragma omp parallel

{

int ave=0; //each thread has its own ‘ave’

#pragma omp for

for (i=0; i<N; i++){

ave+=A[i];

}

#pragma omp critical //only one thread at a 

time can enter 

average+=ave;

}



2nd Example – Reduction 

Implementation #2

 Each thread has its own 

private/local ‘ave’

 When they are finished, all the 

‘ave’ values must be added 

together

 omp atomic: Ensures that a specific 

storage location is accessed 

atomically

34

int average=0;

#pragma omp parallel

{

int ave=0; //each thread has its own ‘ave’

#pragma omp for

for (i=0; i<N; i++){

ave+=A[i];

}

#pragma omp atomic //only one thread at a 

time can access average

average+=ave;

}



2nd Example – Reduction 

Implementation #3 – Recommended Solution

 reduction (op : list) – A local copy of each ‘list’ variable is made and 

initialized depending on the ‘op’, e.g., 0 for ‘+’. 

 Updates occur on the local copy. 

 Local copies are reduced into a single value and combined with the 

original global value.

 Each thread has its own copy of ‘ave’, each thread does its own 

summation and when they are done, they are combined with the global 

copy of ‘ave’

35

#pragma omp parallel for reduction(+:ave)

for (i=0; i<N; i++){

ave+=Acopy1[i];

}



An easy but complete example

Calculate the value of Pi  (1)
36

double un_opt(){

int i;

double x, pi, sum=0.0;

double step;

step=1.0/(double) num_steps;

for (i=0; i<num_steps; i++){

x=(i+0.5)*step;

sum = sum + 4.0 / (1.0 + x*x);

}

pi = step * sum;

return pi;

}



An easy but complete example

Calculate the value of Pi  (2)
37

double un_opt(){

int i;

double x, pi, sum=0.0;

double step;

step=1.0/(double) num_steps;

for (i=0; i<num_steps; i++){

x=(i+0.5)*step;

sum = sum + 4.0 / (1.0 + x*x);

}

pi = step * sum;

return pi;

}
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Pi

Parallel 

Implementation #1 

(not efficient)

 Solution 1: 

Promote sum to 

an array. All 

threads will be 

writing to a 

different array 

element. 

int i, nthreads;   
double step, x, pi=0.0, sum[NUM_THREADS];

step=1.0/(double) num_steps;
omp_set_num_threads(NUM_THREADS);

#pragma omp parallel 
{

int i,id,nthrds; //local data
double x;        //local data
id=omp_get_thread_num(); 
nthrds = omp_get_num_threads();

if (id==0) nthreads=nthrds; //save a copy of num of 
threads as the enviroment might choose to give us less 
threads than requested. What if I ask 1000 threads?

for (i=id, sum[id]=0.0; i<num_steps; i=i+nthrds){
x=(i+0.5)*step;
sum[id] = sum[id] + 4.0 / (1.0 + x*x);

}
}

//after this point I have lost the local variables. So, for 
the sum to be visible, I must promote sum to an array.
for (i=0, pi=0.0; i<nthreads; i++)
pi+=sum[i] * step;



Pi Parallel Implementation #1 

(not efficient)
39

 the OpenMP version that uses just one thread is slower than the serial 

version. (Why? )

 This is because OpenMP adds an overhead. 

 By using more threads, the execution time is reduced, but the scalability is 

low. (Why? )

 This is because of the cache false sharing problem in ‘sum[]’ array. 

 Thread0 uses sum[0], Thread1 uses sum[1] etc, but sum[0:7] share the 

same cache line. 

 Although threads do not use share data, they use the same cache line, 

which is a shared hardware resource too

 False sharing is a well-known performance issue



False Sharing

 x86/x64 processors have private 

L1 and L2 caches and shared L3 

cache and DDR memory.

 False sharing occurs when threads 

on different processors modify 

variables that reside on the same 

cache line. 

 This invalidates the cache line and 

forces an update, which hurts 

performance.

 memory system must guarantee 

cache coherence

Taken from https://software.intel.com/content/www/us/en/develop/articles/avoiding-and-identifying-

false-sharing-among-threads.html
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https://software.intel.com/content/www/us/en/develop/articles/avoiding-and-identifying-false-sharing-among-threads.html


Pi Parallel Implementation #2

(not recommended)
41

 This implementation addresses the false sharing problem by using different 

cache lines to store the threads’ sum variables.

 The sum[] array is promoted to a 2-d array sum[NUM_THREADS][PAD], 

where PAD=8

 the cache line size in Intel processors is 64bytes and thus can store 8 

double values. 

 Thus sum[0][0] will always be stored into another cache line than 

sum[1][0], sum[2][0] etc

 Inefficiencies of  implementation #2

 It is not portable – different PAD values amongst different 

processors

 Wastes memory 



Pi Parallel Implementation #3

This version is portable (not recommended)
42

#pragma omp parallel 
{

int i,id,nthrds; //local data
double x, sum=0.0;        //sum is now local, each thread has its own copy
id=omp_get_thread_num(); 
nthrds = omp_get_num_threads();
if (id==0) nthreads=nthrds; //save a copy of num of threads as the 

enviroment might choose to give us less threads than requested. What if I ask 
1000 threads?

for (i=id; i<num_steps; i=i+nthrds){
x=(i+0.5)*step;
sum = sum + 4.0 / (1.0 + x*x);

}

#pragma omp critical //mutual exclusion. only one thread at a time can 
enter this block. I could use 'atomic' instead of 'critical' it is the same

{
pi+=sum * step;
}

}



Pi Parallel Implementation #3

This version is portable
43

 In this version there is no shared array and thus there is no false 

sharing. 

 This version does not consider the cache line size and thus it is 

portable. 

 This version achieves the same performance as version #2. 

 In the ‘#pragma omp critical’ clause, all the threads use their 

private sum variable to update the shared pi variable. 

 This is not performed in parallel; only one thread at a time can 

enter the critical block. 

 We could also use 'atomic' instead of 'critical'. 



Pi Parallel Implementation #4

Recommended Version
44

#pragma omp parallel 

{

double x;

#pragma omp for reduction(+:sum) //Each thread has its own 

copy of sum. Each thread does its own summation and when 

they are done, they are combined with the global copy of sum. 

for (i=0; i<num_steps; i++){

x=(i+0.5)*step;

sum = sum + 4.0 / (1.0 + x*x);

}

}



Pi Parallel Implementation #4

Recommended Version
45

 Or like that using just a single #pragma line (more about this next 

week)

#pragma omp parallel for private(x) reduction(+:sum) //x is not defined 

inside the parallel region. Thus by default it is a shared variable. private(x) 

creates a private x variable in each thread. Be Careful: x is unitialized no 

matter what its previous value is. 

for (i=0; i<num_steps; i++){

x=(i+0.5)*step;

sum = sum + 4.0 / (1.0 + x*x);

}



Serial VS Parallel version

See how elegant OpenMP is
46

double un_opt(){

int i;

double x, pi, sum=0.0;

double step;

step=1.0/(double) num_steps;

for (i=0; i<num_steps; i++){

x=(i+0.5)*step;

sum = sum + 4.0 / (1.0 + x*x);

}

pi = step * sum;

return pi;

}

double version6(){

int i;

double x, pi, sum=0.0;

double step;

step=1.0/(double) num_steps;

#pragma omp parallel for private(x) reduction(+:sum) 

for (i=0; i<num_steps; i++){

x=(i+0.5)*step;

sum = sum + 4.0 / (1.0 + x*x);

}

pi = step * sum;

return pi;

}



Further Reading

 Guide into OpenMP: Easy multithreading programming for C++, 

available at 

https://bisqwit.iki.fi/story/howto/openmp/#ParallelConstruct

 OpenMP Application Programming Interface Examples, available 

at 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=w

eb&cd=&cad=rja&uact=8&ved=2ahUKEwiOip2R-

rrqAhX8XRUIHa5HC0QQFjAAegQIAxAB&url=https%3A%2F%2

Fwww.openmp.org%2Fwp-content%2Fuploads%2Fopenmp-

examples-4.5.0.pdf&usg=AOvVaw3BDlLKC3VhdJI1iTj1RE_p

47

https://bisqwit.iki.fi/story/howto/openmp/#ParallelConstruct
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwiOip2R-rrqAhX8XRUIHa5HC0QQFjAAegQIAxAB&url=https%3A%2F%2Fwww.openmp.org%2Fwp-content%2Fuploads%2Fopenmp-examples-4.5.0.pdf&usg=AOvVaw3BDlLKC3VhdJI1iTj1RE_p


Part 2 - Outline 

 Dot Product example

 The schedule Clause

 Vectorization using OpenMP

 Matrix-Vector Multiplication example

48



Dot Product Example (1)

 Drawing upon what we have learned so far, can you parallelize 

this program using OpenMP?

49

double dot_prod_serial(double *a, double *b){

double sum = 0.0;

int i;

for (i=0; i<N; i++) 

{

sum += (a[i] * b[i]);

}

return sum;

}



Dot Product Example (2)

 Drawing upon what we have learned so far, can you parallelize this 

program using OpenMP?

50

double dot_prod_serial( … ){

double sum = 0.0;

int i;

for (i=0; i<N; i++) 

{

sum += (a[i] * b[i]);

}

return sum;

}

double dot_prod_parallel_ver1( … ){

double sum = 0.0;

int i;

#pragma omp parallel for reduction(+:sum) 

for (i=0; i<N; i++) 

{

sum += (a[i] * b[i]);

}

return sum;

}



The Schedule Clause (1)

 The schedule clause: It affects how loop iterations are mapped onto 

threads. 

 Schedule (static, [,chunk]) . [ ] is optional. 

 Assigns blocks of iterations of size chunk to each thread. 

 Used when the amount of iterations is pre-determined and 

predictable in advance. 

 Scheduling is done at compile time. 

 OpenMP divides iterations into chunks that are approximately 

equal in size and it distributes at most one chunk to each thread.
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The Schedule Clause (2)

 The schedule clause: It affects how loop iterations are mapped onto threads. 

 Schedule (dynamic, [,chunk]). 

 Omp scheduler decides at runtime which iterations will be allocated to each 

thread

 Each thread asks (at runtime) for a chunk of  iterations, executes them, then asks 

for another chunk and so on

 Used when the amount of iterations is unpredictable, highly variable work per 

iteration. 

 Scheduling is done at runtime. 

 No particular order in which the chunks are distributed to the threads. 

 The order changes each time when we execute the for loop. 

 The dynamic scheduling type is appropriate when the iterations require 

different computational costs. 

 The dynamic scheduling type has higher overhead than the static scheduling 

type because it dynamically distributes the iterations during the runtime.
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The Schedule Clause (3)

 The schedule clause: It affects how loop iterations are mapped onto threads. 

 Schedule (guided, [,chunk]). 

 Not really used often. 

 The guided scheduling type is similar to the dynamic scheduling type. 

 The difference with the dynamic scheduling type is in the size of chunks. 

 The size of a chunk is proportional to the number of unassigned 

iterations divided by the number of the threads. Therefore, the size 

of the chunks decreases. 

 The initial chunks are larger, because they reduce overhead. 

 The smaller chunks fills the schedule towards the end of the 

computation and improve load balancing. 

 This scheduling type is especially appropriate when poor load balancing 

occurs toward the end of the computation.
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The Schedule Clause (4)

 The schedule clause: It affects how loop iterations are mapped onto 

threads. 

 Schedule (runtime) 

 Schedule and chunk size taken from the omp_schedule enviroment

variable (or the runtime library). 

 Used when we are not sure about which one is best (static or 

dynamic )

 Schedule (auto)

 Schedule is left up to the runtime to choose  

 This option is new in OpenMP. 

 It lets the compiler to decide and do its best.
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Schedule (static) clause

What does this program print?

Consider N=8
55

#pragma omp parallel 

{

int tid = omp_get_thread_num();

if (tid == 0) //if master thread

{

int nthreads = omp_get_num_threads();

printf("Number of threads = %d\n", nthreads);

}

printf("Thread %d is starting...\n",tid);

#pragma omp for reduction(+:sum) schedule(static)

for (i=0; i<N; i++)   {

sum += (a[i] * b[i]);

printf("Thread %d: executes iteration i= %d\n", tid, i);

}

}

Number of threads = 4

Thread 0 is starting...

Thread 0: executes iteration i= 0

Thread 0: executes iteration i= 1

Thread 1 is starting...

Thread 1: executes iteration i= 2

Thread 2 is starting...

Thread 2: executes iteration i= 4

Thread 2: executes iteration i= 5

Thread 1: executes iteration i= 3

Thread 3 is starting...

Thread 3: executes iteration i= 6

Thread 3: executes iteration i= 7



Schedule (dynamic) clause

What does this program print?

Consider N=8
56

#pragma omp parallel 

{

int tid = omp_get_thread_num();

if (tid == 0) //if master thread

{

int nthreads = omp_get_num_threads();

printf("Number of threads = %d\n", nthreads);

}

printf("Thread %d is starting...\n",tid);

#pragma omp for reduction(+:sum) schedule(dynamic)

for (i=0; i<N; i++)   {

funct(i)

printf("Thread %d: executes iteration i= %d\n", tid, i);

}

}

Number of threads = 4

Thread 0 is starting...

Thread 0: executes iteration i= 0

Thread 0: executes iteration i= 1

Thread 0: executes iteration i= 2

Thread 0: executes iteration i= 3

Thread 0: executes iteration i= 4

Thread 0: executes iteration i= 5

Thread 3 is starting...

Thread 3: executes iteration i= 7

Thread 2 is starting...

Thread 1 is starting...

Thread 0: executes iteration i= 6



Schedule (static, 4) clause

What does this program print?

Consider N=8
57

#pragma omp parallel 

{

int tid = omp_get_thread_num();

if (tid == 0) //if master thread

{

int nthreads = omp_get_num_threads();

printf("Number of threads = %d\n", nthreads);

}

printf("Thread %d is starting...\n",tid);

#pragma omp for reduction(+:sum) schedule(static, 4)

for (i=0; i<N; i++)   {

sum += (a[i] * b[i]);

printf("Thread %d: executes iteration i= %d\n", tid, i);

}

}

Number of threads = 4

Thread 0 is starting...

Thread 0: executes iteration i= 0

Thread 0: executes iteration i= 1

Thread 0: executes iteration i= 2

Thread 0: executes iteration i= 3

Thread 2 is starting...

Thread 3 is starting...

Thread 1 is starting...

Thread 1: executes iteration i= 4

Thread 1: executes iteration i= 5

Thread 1: executes iteration i= 6

Thread 1: executes iteration i= 7



Schedule (dynamic, 4) clause

What does this program print?

Consider N=8
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#pragma omp parallel 

{

int tid = omp_get_thread_num();

if (tid == 0) //if master thread

{

int nthreads = omp_get_num_threads();

printf("Number of threads = %d\n", nthreads);

}

printf("Thread %d is starting...\n",tid);

#pragma omp for reduction(+:sum) schedule(dynamic, 4)

for (i=0; i<N; i++)   {

sum += (a[i] * b[i]);

printf("Thread %d: executes iteration i= %d\n", tid, i);

}

}

Number of threads = 4

Thread 0 is starting...

Thread 0: executes iteration i= 0

Thread 0: executes iteration i= 1

Thread 0: executes iteration i= 2

Thread 0: executes iteration i= 3

Thread 0: executes iteration i= 4

Thread 0: executes iteration i= 5

Thread 0: executes iteration i= 6

Thread 0: executes iteration i= 7

Thread 2 is starting...

Thread 1 is starting...

Thread 3 is starting...

Thread 0 asked for 4 iterations, it executed them and the scheduler decided to give the other 4 

iterations to thread 0.



The Schedule Clause (5)

 In this module we will be writing programs where the 

number of iterations per thread can be calculated at 

compile time (static programs)

 Thus, we will be using the schedule(static, chunk) clause

59



Vectorization using OpenMP

The ‘#pragma omp simd’ Construct

 OpenMP 4.0 introduced omp simd, accessed via #pragma omp simd as 

a standard set of hints that can be given to a compiler to encourage it to 

auto-vectorise code.

 Compilers may not vectorize loops when they are complex or possibly 

have dependencies, even though the programmer is certain the loop will 

execute correctly as a vectorized loop. 

 The simd construct assures the compiler that the loop can be vectorized.

 Be careful. Using omp simd bypasses the compiler analysis. 

 So, use with caution as 

 Incorrect results are possible

 Poor performance is possible

 memory errors are possible   
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Use x86-64 Intrinsics or 

‘#pragma omp simd’ ?

 The OpenMP ‘simd’ clause 

 is easy to use

 can provide good performance for simple programs

 The x86-64 Intrinsics

 are harder to use

 provide better performance

 can allow for other optimizations too further improving 

performance, e.g., register blocking
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‘#pragma omp simd’ 

in Visual Studio

 The ‘simd’ clause is a new feature and supported only 

in Visual Studio 2019 via the command line

 Supported in Linux too 
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Vectorization 

Do not forget to align your arrays 

 We can either allocate aligned memory statically using 

 float A[N] __attribute__((aligned (64))); //In Linux only

 __declspec(align(64)) float  A[N] //In Visual studio only

 or dynamically using

 _mm_malloc (N * sizeof(float),64); //Linux and Visual Studio 
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Vectorization using OpenMP

 #pragma omp simd : The simd construct can be applied to a loop to 

indicate that the loop can be vectorized

 aligned(y,x,a:64) : The aligned clause asserts to the compiler that an 

array is aligned. 

 Using this clause allows the compiler to safely use SIMD instructions 

that have strict alignment requirements. 

 If this clause is used, the programmer is responsible for ensuring that 

the data is in fact aligned. 

 reduction(+:tmp) : The reduction clause instructs the compiler to perform 

a vector reduction on a variable. 

 Same as in multithreaded 

 How can we be sure that the compiler vectorized the code? To be verify 

that, compile using -fopt-info-vec-optimized option (gcc only)
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An Introduction to the storage attributes

 We can define in the #pragma clause whether a variable is shared 

amongst all threads or is private. 

 shared (a): all threads can access ‘a’. 

 private (a): each thread creates an un-initialized copy of ‘a’ 

 The ‘i’ loop is the loop next to the omp clause and it is private by default. 

 The ‘j’ loop is not private by default and thus it must be defined as 

private

 ‘Y’ is shared by default and thus it is not needed, but it helps readability 

and might prevent bags. 
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#pragma omp parallel for shared(Y) private(i, j)

for (i=0; i<N; i++)

for (j=0; j<N; j++)

Y[i]=…



Matrix-Vector Multiplication 

Serial Version
66

for (i=0; i<N; i++) 

for (j=0; j<N; j++) 

y[i]+=a[N*i+j] * x[j];
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Matrix-Vector Multiplication 

Multi-threaded Version

 Both code versions are valid
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#pragma omp parallel for private(I,j)

for (i=0; i<N; i++) 

for (j=0; j<N; j++) 

y[i]+=a[N*i+j]*x[j];

#pragma omp parallel for shared(y,a,x) private(i,j) schedule(static)

for (i=0; i<N; i++) 

for (j=0; j<N; j++) 

y[i]+=a[N*i+j]*x[j];



Matrix-Vector Multiplication 

Multi-threaded Version (2)

 Performance results on a PC with four physical cores

 N=128

 2 threads -> speedup x1.85

 3 threads -> speedup x2.55

 4 threads -> speedup x3.13

 N=4096

 2 threads -> speedup x1.95

 3 threads -> speedup x2.93

 4 threads -> speedup x3.75
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#pragma omp parallel for shared(y,a,x) private(i,j) schedule(static)

for (i=0; i<N; i++) 

for (j=0; j<N; j++) 

y[i]+=a[N*i+j]*x[j];

Why the scalability is low for 

N=128?



Matrix-Vector Multiplication 

Multi-threaded Version (3)

 Why the scalability is low for N=128?

 Because the overhead for creating and synchronizing the

threads is comparable to the threads’ execution time.

 The code will scale well only when each thread executes at

least a minimum amount of instructions

 The amount of instructions per thread is found

experimentally and depends on the target platform
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Matrix-Vector Multiplication 

Multi-threaded and Vectorized Version
70

#pragma omp parallel for private(j, tmp) 
for (i=0; i<N; i++) {
tmp=y[i];
#pragma omp simd aligned(y,x,a:64) reduction(+:tmp)
for (j=0; j<N; j++) {
tmp+=a[N*i+j]*x[j];
}

y[i]=tmp;
}

In my PC, the omp simd clause gives a speedup x2 

In my PC, this code performs x7.55 times 

faster than the serial version …

We can do much better …



Matrix-Vector Multiplication 

Vectorization using x86-64 intrinsics vs OpenMP

 Execution time values are similar

 See MVM_parallel_ver5() routine

 But … 

 By using x86-64 AVX intrinsics, we can enable other 

optimizations which cannot be applied to the openmp version, 

further improving performance, e.g., register blocking

 x86-64 AVX intrinsics can provide improved performance in the 

general case. 
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Performance in GigaFLOPS

Can we do better?
72
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Performance in GigaFLOPS

Can we do better? (2)

 Yes we can. Much better 

 Optimizations such as 

 register blocking

 loop tiling 

 software prefetching 

 Can boost performance

 Register blocking is the most efficient optimization for MVM 

algorithm and can boost performance in 90GigaFLOPS

 A code example is provided
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Let’s study the MVM_parallel.c (see GitHub)
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Routine Gflops for N=1024

MVM_serial() 1.8

MVM_parallel_ver1() – omp

parallel

6.7

MVM_parallel_ver4() – omp

simd + omp parallel

42.7

MVM_parallel_ver5() – omp

parallel + AVX

53

MVM_parallel_ver6() – omp

parallel + AVX + reg.

blocking factor of 8

82.5

x3.7

x6.4

x7.9

x1.55



Further Reading

 Effective Vectorization with OpenMP 4.5, available at 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd

=&cad=rja&uact=8&ved=2ahUKEwjCksHTqr3qAhX4SRUIHSmlBYAQFj

AAegQIBhAB&url=https%3A%2F%2Finfo.ornl.gov%2Fsites%2Fpublica

tions%2Ffiles%2FPub69214.pdf&usg=AOvVaw22CMKDJzHHKHKSFz

m8P9qr

 Chapter 51 in OpenMP Application Programming Interface, Examples, 

available at 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd

=&cad=rja&uact=8&ved=2ahUKEwjIooTyqr3qAhWYaRUIHZmEC58Q

FjAAegQIAhAB&url=https%3A%2F%2Fwww.openmp.org%2Fwp-

content%2Fuploads%2Fopenmp-examples-

4.5.0.pdf&usg=AOvVaw3BDlLKC3VhdJI1iTj1RE_p
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https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwjCksHTqr3qAhX4SRUIHSmlBYAQFjAAegQIBhAB&url=https%3A%2F%2Finfo.ornl.gov%2Fsites%2Fpublications%2Ffiles%2FPub69214.pdf&usg=AOvVaw22CMKDJzHHKHKSFzm8P9qr
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwjIooTyqr3qAhWYaRUIHZmEC58QFjAAegQIAhAB&url=https%3A%2F%2Fwww.openmp.org%2Fwp-content%2Fuploads%2Fopenmp-examples-4.5.0.pdf&usg=AOvVaw3BDlLKC3VhdJI1iTj1RE_p


Part3 - Outline 

 More advanced OpenMP Topics

 Omp barrier, omp nowait, omp single, omp master, 

Collapse clause

 Changing the storage attributes

 omp sections

 Parallel Programming Design Patterns

 Divide and conqueror Design Pattern

 Omp tasks

 Environmental Variables
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The ‘omp single’ Construct

 #pragma omp single : The single construct 

specifies that the given statement/block 

is executed by only one thread. 

 It is unspecified which thread. 

 Other threads skip the 

statement/block and wait at an 

implicit barrier at the end of the 

construct. 

 Do not assume that the single block is 

executed by whichever thread gets 

there first. 

 According to the standard, the 

decision of which thread executes the 

block is implementation-defined.
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#pragma omp parallel { 

funct1();  //all threads execute this

#pragma omp single   

{   

funct2(); //just one thread executes 

this   

} //other threads wait here for the 

single thread to finish   

funct3(); //all threads execute this 

}



The ‘omp master’ Construct

 ‘#pragma omp master’: The master 

construct is similar to single, except that 

the statement/block is run by the master

thread, and there is no implied barrier

 Other threads skip the construct 

without waiting. 

 The following two examples are 

equivalent.

78

#pragma omp parallel //example1

{    

funct1();  //executed by all threads

#pragma omp master { 

funct2(); //just Thread0 

}

funct3(); //all threads  

}

#pragma omp parallel //example2 

{ 

funct1();

if(omp_get_thread_num() == 0)  { 

funct2();  

}   

funct3(); 

}



The ‘omp barrier’ Construct

 #pragma omp barrier: Each thread waits at the barrier until all threads 

arrive. 
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#pragma omp parallel

{

int id=omp_get_thread_num();

A[id]=funct1(id);

#pragma omp barrier //no thread will execute funct2, before A[] is 

stored

B[id]= funct2(id, A);

}



The ‘nowait’ Directive

 #pragma omp nowait: nowait overrides the barrier implicit at the 

end of a directive. 

 The nowait directive can only be attached to: sections, for and 

single. 
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#pragma omp parallel

{

#pragma omp for nowait

for (i=1; i<n; i++)

b[i] = (a[i] + a[i-1]) / 2.0;

#pragma omp for nowait

for (i=0; i<m; i++)

y[i] = sqrt(z[i]);

}



The ‘collapse’ Clause

 Collapse clause: Two or more loops are merged to one and 

parallelized. 

 Used when the number of iterations in the loop is small. 

 Use the collapse-clause to increase the total number of iterations 

that will be partitioned across the available number of omp

threads.
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#pragma omp parallel for collapse(2)

for ( i=0; i<15; i++) //there are only 15 iterations to parallelize. Using 

collapse there will be 1200

for( j=0; j<80; j++)

func(i,j);   



Nested Parallelism

 Loop nesting: Nested parallelism” is disabled in OpenMP by 

default (it can be used though), and thus a second pragma will 

be ignored at runtime.
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#pragma omp parallel for  

for ( i=0; i<15; i++)

#pragma omp for // This is ignored, nesting like this is not allowed by default

for( j=0; j<80; j++)     

func(i,j);



Changing the Storage Attributes 

 shared (a): all threads can access ‘a’

 private (a): each thread creates an un-initialized copy of ‘a’

 firstprivate (a): each thread creates an initialized copy of ’a’

 lastprivate (a) : the value of ‘a’, of the last iteration of the loop, is stored

back as global. If a loop goes from i=[0,N-1], then the thread that

executed the iteration N-1, its value of tmp will be copied out to the

global scope.

 default (private | shared | none). The default clause forces a programmer

to explicitly specify the data-sharing attributes of all variables in a

parallel region.

 E.g., #pragma omp parallel for default(shared) private(a, b).

 You can also write parallel regions with the default(none) clause and

then specify the private and shared ones.
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Changing the Storage Attributes 

An Example
84

void wrong(){

int tmp=0;

#pragma omp parallel for private(tmp) //create a var tmp that is 

private (un-initialized)

for (i=0; i<N; i++)

tmp+=j;  //Problem, the first value of tmp is not zero

printf (tmp); //problem, will see the global tmp, not the private. 

The private tmp is disappeared

}



Changing the Storage Attributes 

An Example (2)
85

Void good(){

tmp=1;

#pragma omp parallel for firstprivate(tmp) //create a var tmp that is 

private and initialized

for (i=0; i<N; i++) {

if ((i%2)==0) 

A[i]=tmp;

}

else

A[i]=0; 

}



Changing the Storage Attributes 

An Example (3)

 Consider the following code. 

1. Are a,b,c local to each thread or shared?

2. What are the a,b,c values inside the parallel region and 

after, in the code below? 

int a=1,b=1, c=1;

#pragma omp parallel private(b) firstprivate(c)

{ … }
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Omp Sections (1)

 omp sections: The section 

construct is one way to 

distribute different tasks to 

different threads. 

 Each section refers to a 

different task and is 

executed by one only 

thread

 Unlike to the previous 

examples, where they 

were based on loop 

parallelism, sections 

enable task parallelism 

(see next slide)
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#pragma omp sections 

{

#pragma omp section  //just one thread 

executes this section

{ funct1(); } 

#pragma omp section //just one thread 

executes this section

{ funct2();     

funct3(); }   

#pragma omp section   //just one thread 

executes this section

{ funct4(); } 

} //the other threads wait here
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#pragma omp section
{
printf("Thread %d doing section 

2\n",tid);
#pragma omp simd
for (i=0; i<N; i++)
{
d[i] = a[i] * b[i];
//printf("Thread %d: d[%d]= 

%f\n",tid,i,d[i]);
}

}

}  /* end of sections */

printf("Thread %d done.\n",tid); 

} /* end of parallel section */

#pragma omp parallel 
shared(a,b,c,d,nthreads) private(i,tid) 
{
tid = omp_get_thread_num();
#pragma omp master
{
nthreads = omp_get_num_threads();
printf("Number of threads = %d\n", 

nthreads);
}

printf("Thread %d starting...\n",tid);

#pragma omp sections nowait
{
#pragma omp section
{
printf("Thread %d doing section 

1\n",tid);
#pragma omp simd
for (i=0; i<N; i++)
{
c[i] = a[i] + b[i];
// printf("Thread %d: c[%d]= 

%f\n",tid,i,c[i]);
}

}



This Program crashes. Why?
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int A[1024][1024];

#pragma omp parallel shared(nthreads) private(i,j,tid,A)

{

tid = omp_get_thread_num();

#pragma omp master

{

nthreads = omp_get_num_threads();

printf("Number of threads = %d\n", nthreads);

}

printf("Thread %d starting...\n", tid);

for (i=0; i<N; i++)

for (j=0; j<N; j++)

A[i][j] = (i-j)%100;

} 

 Array A is private, which 

means that every thread will 

try to allocate an array of 

size NxN. 

 The memory segment that is 

used, is the stack, not the 

heap, as A[][] is a private 

array

 the size of the array is very 

large and the program cannot 

allocate such space on the 

threads’ stack. 

 This makes the program to 

crash. 



The ‘Omp task’ Clause

(advanced topic) 

 Omp task: When a thread encounters 

a task construct, a task is generated. 

The moment of execution of the task 

depends on the runtime system. 

 A thread that executes a task 

might be different from the thread 

that originally encountered it. 

 The tasks are independent units of 

work and executed in any order

 The code associated with a task 

construct will be executed only 

once. 
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#pragma omp parallel

{

#pragma omp single

{

#pragma omp task

{ funct1(); }

#pragma omp task

{ funct2(); }

#pragma omp task

{ funct3(); }

#pragma omp taskwait //all the

tasks must end here

}

}



Environmental Variables (1)

 The OpenMP specification defines several environment variables that 

control the execution of OpenMP programs.  

 OMP_NUM_THREADS : Sets the number of threads to use during 

execution of a parallel region. You can override this value by a 

NUM_THREADS clause, or a call to OMP_SET_NUM_THREADS().

 OMP_STACKSIZE : Sets the stack size for each thread. 

 OMP_WAIT_POLICY : The OMP_WAIT_POLICY environment variable 

provides a hint to an OpenMP implementation about the desired 

behavior of waiting threads. It can be either ACTIVE or PASSIVE. 

 In active, the thread actively spins waiting for something to be 

available. This consumes CPU power. 

 In passive, the thread is put into sleep. Putting a thread into sleep 

and waiting it up, costs a lot
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Environmental Variables (2)

 The OpenMP specification defines several environment variables that 

control the execution of OpenMP programs.  

 OMP_PROC_BIND : It can be either true or false. It sets the thread affinity 

policy to be used for parallel regions at the corresponding nested level. 

 If the environment variable is set to false, the execution environment 

may move a thread to another CPU core. 

 If it is true, threads are not shuffled among the cores. 

 Use true for cache intensive algorithms.

 Example: to set OMP_PROC_BIND=true in Linux, type the following 

command:

export OMP_PROC_BIND=TRUE //sets it

echo $OMP_PROC_BIND  //prints it, to make sure it worked

 To learn more about environment variables visit 

https://www.openmp.org/spec-html/5.0/openmpch6.html .
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https://www.openmp.org/spec-html/5.0/openmpch6.html


Design Patterns for Parallel Programming

 No matter which programming language you use, there are specific algorithmic 

concepts that are universal 

 These are the design patterns for parallel programming – So far, we have used 

just one programming language and three different patterns

 The design patterns we have seen so far are:

 Single Program Multiple Data (SPMD) pattern

 A single program runs on many processing elements

 Create a collection of units of execution (here threads) and each one will 

run the same program 

 Remember Pi program - version1(),version2(),version3() routines

 Loop parallelism pattern 

 Most used in OpenMP – we have seen many examples

 Task Parallelism

 Divide and Conquer pattern (next slide)
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Divide and Conquer design paradigm 

 Divide and Conquer

algorithm: recursively

breaking down a problem

into two or more sub-

problems, until these

become simple enough to

be solved directly.

 The solutions to the

sub-problems are then

combined to give a

solution to the original

problem
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Fibonacci Sequence

 In mathematics, the Fibonacci numbers, commonly denoted Fn, form 

a sequence, called the Fibonacci sequence, such that each number is 

the sum of the two preceding ones, starting from 0 and 1. 

 F0=0, F1=1 and Fn=Fn-1+Fn-2

 The beginning of the sequence is thus:

 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, …
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int fib (int n){

int x,y;

if (n<2)

return n;

x=fib (n-1);

y=fib (n-2);

return x+y;

}

https://en.wikipedia.org/wiki/Integer_sequence


Fibonacci Sequence

Serial Code
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int fib (int n){

int x,y;

if (n<2)

return n;

x=fib (n-1);

y=fib (n-2);

return x+y;

}

 How can we parallelize this problem?

 Using the divide and conquer design pattern



Fibonacci Sequence

Multi-threaded Code
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int Fibonacci (int n){

int fib;

#pragma omp parallel 

{

#pragma omp single 

fib=kernel(n);

}

return fib;

}

int kernel (int n){

int x,y;

if (n<2) return n;

#pragma omp task shared(x) //x must be 

shared otherwise, it will be lost when the 

task ends. x is undefined outside the task

x=kernel(n-1);

#pragma omp task shared(y)//y must be 

shared otherwise, it will be lost when the 

task ends. y is undefined outside the task

y=kernel(n-2);

#pragma omp taskwait

return x+y;

}



Parallelize Pi example using 

divide and conquer design pattern (1)
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double divide_conquer(){

int i;

double step, pi, sum=0.0;

step=1.0/(double) num_steps;

#pragma omp parallel 

{

#pragma omp single 

sum=pi_kernel (0,num_steps, step);

}

pi = step * sum;

return pi;

}

 The main idea behind this 

implantation is to recursively split 

the pi program’s loop into half 

until the number of iterations is 

smaller than a threshold. 

 Step1. We want just one thread 

to execute the Pi routine

 All the threads will be 

created from a single source 

thread



Parallelize Pi example using 

divide and conquer design pattern (2)
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 Step2. Is the problem 

small enough to compute 

it?

 Yes. If so use one 

thread to compute it

 No. Split it to two 

tasks, and recursively 

execute the pi routine

 Step3. merge the results 

of the sub-problems

double pi_kernel(int start, int finish, double step){

int i,blk; double x,sum=0.0,sum1,sum2;

if (finish-start < BULK){ //if problem small enough

for (i=start; i<finish; i++){

x=(i+0.5)*step;

sum = sum + 4.0 / (1.0 + x*x);

} 

}

else { blk=finish-start;  

#pragma omp task shared(sum1)

sum1=pi_kernel(start,finish-blk/2, step);

#pragma omp task shared(sum2)

sum2=pi_kernel(finish-blk/2, finish, step);

#pragma omp taskwait

sum=sum1+sum2;

}

return sum; 

}



Further Reading

 OpenMP Architecture, available at https://www.openmp.org/

 Guide into OpenMP: Easy multithreading programming for C++,

available at

https://bisqwit.iki.fi/story/howto/openmp/#ParallelConstruct

 OpenMP Application Programming Interface Examples, available at

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd

=&cad=rja&uact=8&ved=2ahUKEwiOip2R-

rrqAhX8XRUIHa5HC0QQFjAAegQIAxAB&url=https%3A%2F%2Fwww.

openmp.org%2Fwp-content%2Fuploads%2Fopenmp-examples-

4.5.0.pdf&usg=AOvVaw3BDlLKC3VhdJI1iTj1RE_p

 GNU libgomp available at

https://gcc.gnu.org/onlinedocs/libgomp/index.html
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