
Dr. Vasilios Kelefouras, University of Plymouth, School of Engineering, Computing and Mathematics

Vectorization using C/C++ x86-64 instrinsics

Objectives.
1. To enable gcc compiler to auto-vectorize C/C++ code
2. To write C programs using Intel SSE intrinsics.
3. To write C programs using Intel AVX intrinsics

Aim
The aim of this tutorial is to learn how to optimize C/C++ applications using x86-64 vectorization

intrinsics

Introduction
All modern processors support vectorization. This means that processors have extra hardware

components (wide registers and wide processing units) to allow vector processing. Vectorization is the

process of processing vectors (multiple values together) instead of single values. Vectorization is also

known as Single Instruction Multiple Data (SIMD), as a single instruction is used to process multiple data.

Vectorization dramatically improves the performance of our code. The compilers apply vectorization

automatically, this process is called auto-vectorization, but not always with success. Vectorization has

nothing to do with the language used.

Vectorization can be applied in four main ways by

1. automatically by the compiler (specify ‘-O3’ option or ‘-ftree-slp-vectorize' ‘-ftree-vectorize').

Compile using ‘-fopt-info-vec-optimized' option to see which parts are vectorized. This solution

does not provide the best performance, but it is very easy to use.

2. using OpenMP C/C++ pragmas. Better performance than above, less easy to use (this will be

studied later on).

3. using C/C++ instrinsics (assembly coded functions). Better performance than above, not that easy

to use.

4. directly writing assembly code (not used in this module). Best performance but hard to use.

By using C/C++ instrinsics we can get high performance (comparable to assembly - assembly code is always

faster than any other language) portable and somehow easy to write code.

The code for this week’s lab session is located to the ‘Vectorization 1st lab session’ folder. Download ‘code

to start’ source files.

For those who use Visual Studio: Open Visual studio and create an empty (C/C++) project. Copy paste the

code provided in your project. For more information about how to create a C/C++ project please see the

‘How to Create a C/C++ Project’ section below. Visual Studio does not support a separate template for C.

Note that C++ is a superset of C. So, C++ supports everything that comes with C plus extra features such

as Object-Oriented Programming, Exception Handling and a rich C++ Library. So, we will create a C++

Dr. Vasilios Kelefouras, University of Plymouth, School of Engineering, Computing and Mathematics

project and write C code. We could rename all the .cpp files to .c files and run strictly C code, but there is

no reason for doing that.

The code provided, contains four .cpp and three .h source files. It is good practice to put all the

declarations in the .h files and the definitions to the .c/.cpp files. The execution of the program always

starts from the main() function which is located to the main.cpp file.

Section1 – Auto-vectorization

Download the ‘code to start’ folder from Vectorization/section3/ directory. Compile the code using one

of the following options:

gcc main.cpp array_addition.cpp array_constant_addition.cpp MVM.cpp -o p -march=native -O2

 -fopt-info-vec-optimized -ftree-vectorize

gcc main.cpp array_addition.cpp array_constant_addition.cpp MVM.cpp -o p -march=native -O3

 -fopt-info-vec-optimized

-fopt-info-vec-optimized' option to see which parts are vectorized. Run and measure performance

Section 2 – Using omp #pragmas (the easy way)

This section is just to give you an idea of how easy vectorization becomes with OpenMP. We will be

focusing on OpenMP during the next weeks. OpenMP provides a set of compiler directives that are used

to provide extra information to a compiler to allow it to automatically parallelise and/or vectorise code

(typically loops). These are built into the compiler and accessed by using pragmas (via #pragma). Pragmas

are hints that the compiler can choose to use or ignore, depending on whether it has built-in support for

that capability. OpenMP 4.0 introduced omp simd, accessed via #pragma omp simd as a standard set of

hints that can be given to a compiler to encourage it to auto-vectorise code.

A few examples are shown below

#pragma omp simd

For (int n=0; n<N; ++n)

 a[n] += b[n]; //the compiler will vectorize this if possible

#pragma omp simd aligned(a,b:16) safelen(4)

for (int i=0; i<N; ++i)

 a[i] = a[i-4] * 2;

Safelen tells the compiler that it is safe to vectorise 4 values at most. Aligned tells the compiler that a and

b arrays are 16byte aligned.

Dr. Vasilios Kelefouras, University of Plymouth, School of Engineering, Computing and Mathematics

There is a large number of clauses supported by OpenMP such as reduction, simdlen etc, to allow efficient

and easy vectorization even in cases where the loop kernel is complex. OpenMP will not be studied this

week.

Section 3 - using C/C++ instrinsics (input size is multiple of 4/8 only)

I would recommend the remaining tasks to be performed in Visual Studio as it provides better support

when dealing with larger codes. Alternatively, you can use Eclipse in Linux or even a simple text editor and

terminal.

1st example, add an array with a constant number
This is the 1st code example which adds an array with a constant number and stores the result to another

array. This example is explained in the slides too. The files involved to this example are just the main.cpp,

the array_constant_addition.cpp and the array_constant_addition.h. array_constant_addition.h and

array_constant_addition.cpp contain three different implementations of the aforementioned algorithm

: a) a normal C routine, b) a routine using SSE instrinsics, c) a routine using AVX instrinsics. You can specify

which function to run in main.cpp file under the ‘t’ loop.

In main.cpp file there is code initializes the arrays (initialization_ConstAdd() function), code used to

measure the execution time of ‘t’ loop, code for verifying that the ConstAdd_SSE() and ConstAdd_AVX()

generate the right output etc.

Task1. Build and run the code.

By default, the Const_Add_SSE() routine will run and a message will be printed depending on whether the

vectorized version of the algorithm generates the same output as the non-vectorized one. All the

functions defined in array_constant_addition.cpp file, return the same output, which is the value of 2. This

way, main() knows that we need to compare the output of this algorithm and thus the appropriate if

condition will be executed. Inside the if condition there are two commands. The first one stores a message

into an array of strings using snprintf(). The second, prints a message whether the output is correct or not.

To do so, the Compare_ConstAdd() routine is executed.

Task2. Measure the execution time

In this task, we will measure the execution time of Const_Add_SSE() routine. Make you sure you run the

project using Ctr+F5 (run without debug); debugging mode does not provide the actual execution time

of the program. It is important to note that for an accurate measurement, the execution time needs to

be at least some seconds. Thus, given that the execution time of the current routine is lower than 1sec at

all times, we run it ‘t’ times (‘t’ is a loop variable) and then the overall execution time is divided to the

number of iterations. The upper bound of ‘t’ is the ‘TIMES_TO_RUN’ macro and must be appropriately

defined.

Comment the Const_Add_SSE() routine and uncomment the Const_Add_default() routine. Build and run

the program and measure the execution time of the Const_Add_default() routine. This routine must be

slower. Repeat the experiment and measure the execution time of Const_Add_AVX() routine. This routine

is faster than Const_Add_SSE(), as 8 elements are processed in parallel, not 4.

Dr. Vasilios Kelefouras, University of Plymouth, School of Engineering, Computing and Mathematics

Task3. Study the Const_Add_SSE() and Const_Add_AVX() routines

Make sure you understand how the Const_Add_SSE() and Const_Add_AVX() routines work.

Const_Add_SSE() is explained in the slided. Const_Add_AVX() does the same thing but used AVX technology

and thus 8 elements are processed at once. For now, assume that the input size is a multiple of 8. Next

week, we will further explain the general solution. All the C instrinisics can be found in

https://software.intel.com/sites/landingpage/IntrinsicsGuide/# .

Drawing upon the slides, try to understand how the routines work.

__declspec(align(64)) : Do not forget to initialize the arrays using this command. When programming in

SSE/AVX all the arrays must be defined as ‘ __declspec(align(64)) float array[N]; ‘ . This command directs

the compiler to align the arrays to a 64-byte boundary. The starting address of the array is

‘(starting_address modulo 64 = 0)’. By doing so, the first element of the array (array[0]) is always stored

into a first cache line slot.

num2 = _mm_loadu_ps (&v2[i]) : This command loads 4 v2[] elements from memory and stores them to

the 128bit variable num2. These elements are v2[i], v2[i+1], v2[i+2], v2[i+3]. Each array element is of

32bits, so their sum is 128 bits. Keep in mind that num2 is defined as ‘ __m128 num2 ‘. The input operand

of this command must be a memory address (you can check here

https://software.intel.com/sites/landingpage/IntrinsicsGuide/#); therefore the & operator must be used

so as the memory address of v2[i] to be provided.

num2 = _mm_load_ps (&v2[i]) : This command is similar to _mm_loadu_ps(). However, the &v2[i] must

be aligned to a 16-byte (or 128-bit) boundary. This means that this instruction works for v2[0], v2[4],

v2[8], v2[12], v2[16] etc inputs only and not v2[1], v2[2], v2[3]. This instruction loads 4 elements (128bits),

but the starting element must a multiple of 4 or equivalently a memory address aligned to a 128bit

boundary. So, _mm_load_ps (&v2[1]) will give an error.

_mm_store_ps (&v1[i], num3) : This command is similar to _mm_load_ps(). However, a store is

performed and not a load. The contents of the 128bit variable num3 are stored into the memory address

&v1[i] , and therefore the values of v1[i], v1[i+1], v1[i+2] and v1[i+3] are updated.

num3 = _mm_add_ps (num1, num2) : This command will add the packed 4 32bit values of num1 to the

packed 4 32-bit values of num2 and put the result into num3.

The instructions above use the SSE technology and process 128bits of data. AVX technology use similar

instructions to SSE but processes 256-bit of data. The 256bit registers are defined as __m256 ymmm; .

_mm_add_ps becomes _mm256_add_ps and _mm_load_ps becomes _mm256_load_ps.

2nd example, arrays addition
This is the 2nd code example which adds two arrays and stores the result to another. The files involved to

this example are the array_addition.cpp and the array_addition.h. array_addition.h and

array_addition.cpp contain three different declarations of the aforementioned algorithm : a) a normal C

routine, b) a routine using SSE instrinsics, c) a routine using AVX instrinsics. The routines (b) and (c) must

be written by you. You can specify which function to run in main.cpp file under the ‘t’ loop.

https://software.intel.com/sites/landingpage/IntrinsicsGuide/
https://software.intel.com/sites/landingpage/IntrinsicsGuide/

Dr. Vasilios Kelefouras, University of Plymouth, School of Engineering, Computing and Mathematics

Task1. Implement the Add_SSE() and Add_AVX() routines: Drawing upon Section1, you will implement

the Add_SSE() and Add_AVX() routines. These routines are very similar to those in section1.

Task2. Measure the execution time: Measure and compare the execution time of the three routines. The

default input size is very small, so you will need to increase it, like in array_constant_addition.h.

3rd example, Matrix-Vector multiplication
This is the 3rd code example which multiplies a matrix by a vector (see slides for more information). The

files involved to this example are the MVM.cpp and the MVM.h. MVM.h and MVM.cpp contain three

different implementations of the aforementioned algorithm : a) a normal C routine, b) a routine using SSE

instrinsics, c) a routine using AVX instrinsics. You can specify which function to run in main.cpp file under

the ‘t’ loop.

Task1. Study the MVM_SSE() routine

Drawing upon the slides, try to understand how the MVM_SSE() routine works. The MVM_AVX() routine

is more complicated and it is only presented for consistency (you do not have to study it).

num3 = _mm_fmadd_ps (num0, num1, num3) : This command will multiply the packed 4 32bit values of

num0 by the packed 4 32-bit values of num1 and then add the 4 32bit results to the packed 4 32bit values

of num3. So, this command applies both multiplication and addition. This command can be broken down

into two instructions (one multiply and one add), but this would increase the execution time.

_mm_store_ss (&Y[i], num4) : This command stores just the lower 32bit value from num4 to the memory

address of &Y[i].

xmm1 = _mm_hadd_ps (xmm0, xmm1) : This command horizontally adds adjacent pairs of 32-bit values

in xmm0 and xmm1 and pack the results into xmm1 (Fig.1).

Fig.1 _mm_hadd_ps() command. The registers/variables contain 4 32bit values.

Task2. Measure the execution time: Measure and compare the execution time of the three routines.

Dr. Vasilios Kelefouras, University of Plymouth, School of Engineering, Computing and Mathematics

Section 4 - using C/C++ instrinsics (general case – any input size)

The implementations we have studied so far refer to input sizes that are multiples of 4 only. This is because

in each iteration, four elements were loaded and processed (the iterator is increased by a factor of 4).

Thus, if the input size is 6, then only the first 4 iterations will be processed, leaving the last two iterations

unprocessed. In this task, we will extend the MVM_SSE() routine to all the input sizes.

Task1. Study the new MVM_SSE() routine provided.

Two changes have been made to the previous MVM_SSE() routine. Firstly, we needed to amend the

upper bound of j loop. This must always be a multiple of 4, otherwise the code in the loop body does not

work properly. For example, if the input size is 6, the upper bound must be 4, if the input size is 9, the

upper bound must be 8. The rest iterations will be processed next without using vectorization. This is

implemented as follows:

Upper_j_bound=(M/4) *4;

The M/4 division is between integers, and thus in C, the result of the division will be an integer (the lowest

integer value). Thus, 6/4 will give 1 instead of 1.5, 10/4 will give 2 instead of 2.5, etc. Thus, the above

formula, always gives the number we are looking for. For example, if M=6 then Upper_j_bound=4, if M=10

then Upper_j_bound=8, if M=16 then Upper_j_bound=16.

Secondly, a padding code was added in the end of j loop to execute the remaining iterations. For example,

if M=10, then Upper_j_bound=8 and thus only the first 8 iterations are vectorized; the last two iterations

must be processed normally. The starting value of j is missing, which means that j will have the last j value

used; alternatively, we could specify the starting j value in the padding code as j=(M/4)*4 (but this is not

needed).

Section 5 – More Advanced Examples

Task1. Implement MMM_SSE() routine

This is the 2nd code example which mutiplies two 2d arrays and stores the result to another. The files

involved to this example are the MMM.cpp and the MMM.h. MMM.h and MMM.cpp contain three

different declarations of the aforementioned algorithm : a) a normal C routine, b) a routine using SSE

instrinsics, c) a routine using AVX instrinsics. The routine (b) must be written by you. You can specify which

function to run in main.cpp file under the ‘t’ loop.

Drawing upon MVM_SSE(), you will implement the MMM_SSE() routine. These two routines are very

similar with each other. However, you will not succeed if you do not draw on the paper the three matrices

and understand how the three loop iterators work (Fig.1).

Dr. Vasilios Kelefouras, University of Plymouth, School of Engineering, Computing and Mathematics

Fig.1. A visual representation of MMM algorithm

The B[][] array is accessed in a column-wise order. Each row of A[][] is multiplied by a column of B[][].

However, the elements of each column are not written in consecutive memory locations. Thus, the load

instruction we have seen so far cannot load B[0][0], B[1][0], B[2][0] and B[3][0] array elements. Note that

mm_load_ps(&B[0][0]) will load B[0][0:3] not B[0:3][0].

To address the above issue, we create the B[][] transpose and store it into a new array (Btranspose[][]).

The first row of Btranspose is the first column of B, the second row of Btranspose is the second column of

B etc. This is implemented as follows

for (i=0; i< N; i++)

for (j=0; j< N; j++)

Btranspose[i][j] = B[j][i];

Thus, the new loop kernel will be the following

for (i=0; i< N; i++)

for (j=0; j< N; j++)

for (k=0; k< N; k++)

C[i][j] += A[i][k] * Btranspose[j][k];

This way, a row of A[][] is multiplied by a row of Btranspose[][] and the above problem is solved. Now you

are ready to implement the MMM_SSE() routine, drawing upon the MVM_SSE().

Task2. Learn how to vectorize if-conditions.

For those who need to learn a bit more about vectorization, I have included an example vectorizing an if-

conditions code. This task is optional. The files involved to this example are the if_cond.cpp and the

if_cond.h. The way this code works is explained in the the slides. All the C instrinsics are found here

https://software.intel.com/sites/landingpage/IntrinsicsGuide/#

https://software.intel.com/sites/landingpage/IntrinsicsGuide/

Dr. Vasilios Kelefouras, University of Plymouth, School of Engineering, Computing and Mathematics

Further reading

1. Virtual Workshop (Cornell University), available at

https://cvw.cac.cornell.edu/vector/overview_simd

2. Tutorial from Virginia University, available at

https://www.cs.virginia.edu/~cr4bd/3330/F2018/simdref.html

How to Create a C/C++ Project

Visual Studio does not support a separate template for C. Please note that C++ is a superset of C. So,
C++ supports everything that comes with C plus extra features such as Object-Oriented Programming,
Exception Handling and a rich C++ Library. So, we will create a C++ project and write C code.

Open Visual studio and select ‘create new project’ as in Fig.2. Then, type ‘C++’ in the search area in the
top and select the ‘empty project’ option (Fig.3). Specify the project’s name and directory and click
‘create’ button (Fig.4). Right click on the ‘source files’ and select ‘add’-> ’new item’ (Fig.5). Then select
‘C++ File (.cpp)’ and click ‘Add‘ button (Fig.6). Name the .cpp file appropriately and copy paste the code
provided for this file. Repeat this for the other .cpp files too. For the header files (.h), right click on the
‘header files’ and select ‘add’-> ’new item’. Then select ‘header File (.h)’ and click ‘Add‘ button. Name
the .h file appropriately and copy paste the code provided for this file. Repeat this for the other .h files
too.

If you want to run strictly C code, then rename all the .cpp files to .c files.

Press F7 to build the code (this option is under the Build tab). Then, press Ctrl+F5 to run the program
without debugging or press F5 to run with debugging. To measure the actual execution time of the
program you must run the code without debugging (Ctrl+F5).

https://cvw.cac.cornell.edu/vector/overview_simd
https://www.cs.virginia.edu/~cr4bd/3330/F2018/simdref.html

Dr. Vasilios Kelefouras, University of Plymouth, School of Engineering, Computing and Mathematics

Fig.2. How to create a C++ Project Step1

Fig.3. How to create a C++ Project Step2

Fig.4. How to create a C++ Project Step3

Dr. Vasilios Kelefouras, University of Plymouth, School of Engineering, Computing and Mathematics

Fig.5. How to create a C++ Project Step4

Fig.6. How to create a C++ Project Step5

