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Outline

 Code optimization 

 key problems

 Some basic/simple code optimizations/transformations and manually applied 

techniques: 

 Use the available Compiler Options

 Reduce complex operations

 Loop based strength reduction

 Dead code elimination

 Common subexpression elimination 

 Use the appropriate precision

 Choose a better algorithm

 More advanced code transformations

 Loop merge/distribution, loop tiling, register blocking, array copying, etc
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 Loop invariant code motion

 Use table lookups 

 Function Inline

 Loop unswitching

 Loop unroll

 Scalar replacement



Optimize What?

 Optimization in terms of 

 Execution time

 Energy consumption

 Space (Memory size)

 Reduce code size

 Reduce data size
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How to optimize ?

 Optimizing the easy way  

 Use a faster programing language, 

e.g., C instead of Python

 Use a better compiler

 Manually enable specific compiler’s 

options 

 Normally, the optimization gain is 

limited

 No expertise is needed
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 Optimizing the hard way

 use a profiler to identify 

performance bottlenecks, normally 

loop kernels

 Manually apply code 

optimizations

 Re-write parts of the code from 

scratch

 Needs expertise 

 Optimization gain is high



Introduction

 Loops represent the most computationally intensive part of a 

program. 

 Improvements to loops will produce the most significant effect

 Loop optimization

 90% / 10% rule 

 Normally, “90% of a program’s execution time is spent in 

executing 10% of the code”

 larger payoff to optimize the code within a loop
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Which Compiler Options to use and when?
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1. Best choice of transformations

2. Best transformation parameters

3. Best order of transformations 

Loop 

Kernel 1
Efficient Code

?

Another Loop kernel

Another processor

Different Input Size

 Compilers offer a large number of transformation/optimization options

 This is a complex longstanding and unsolved problem for decades

 Which compiler optimization/transformation to use? 

 Which parameters to use? Several optimizations include different parameters

 In which order to apply them?

The exploration space is huge



Optimizing SW - problem (1)

 The key to optimizing software is the correct 

 Choice

 Order 

 Parameters

of code optimizations

 But why optimizing SW is so hard?

 Normally, the efficient optimizations for a specific code are not efficient for

 another code 

 another processor

 different hardware architecture details, e.g., cache line size

 or even for a different input size
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https://gcc.gnu.org/onlinedocs/gcc-4.5.2/gcc/Optimize-Options.html


Optimizing SW – problem (2)

 Why compilers can’t find the optimum choice, order and parameters of 

optimizations? 

1. Compilers are not smart enough to take into account 

 most of the hardware architecture details (e.g., cache size and associativity) 

 custom algorithm characteristics (e.g., data access patterns, data reuse, 

algorithm symmetries)

 Even experienced programmers

o Do not understand how software runs on the target hardware

o Treat threads as black boxes

o Blindly apply loop transformations

 Peak performance demands going low level

 Understand the hardware, compilers, ISA
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Optimizing SW – problem (3)

 Why compilers can’t find the optimum choice, order and parameters of 

optimizations? 

2. The compilation sub-problems depend on each other which makes the problem 

extremely difficult 

 these dependencies require that all the problems should be optimized 

together as one problem and not separately

 Toward this much research has been done

 Iterative compilation techniques 

 Methodologies that simultaneously optimize only two problems 

 Searching and empirical methods

 Heuristics 

 But …

• They are partially applicable

• They cannot give the best solution
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Optimizing SW – problem (4)

 Why compilers can’t find the optimum choice, order and parameters of 

optimizations? 

3. The exploration space (all different implementations/binaries) is so big that it 

cannot be searched; researchers try to decrease the space by using 

 machine learning compilation techniques 

 genetic algorithms 

 statistical techniques

 exploration prediction models focusing on beneficial areas of optimization 

search space

 however, the search space is still so big that it cannot be searched, even by 

using modern supercomputers
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Basic and Simple techniques that will improve 

your code

 Use the available Compiler Options

 Reduce complex operations

 Loop based strength reduction

 Dead code elimination

 Common subexpression elimination 

 Use the appropriate precision

 Choose a better algorithm
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 Loop invariant code motion

 Use table lookups 

 Function Inline

 Loop unswitching

 Loop unroll

 Scalar replacement



Use the available compiler options

 The most used optimization flags/options are the following

 ‘ –O0’ - Disables all optimizations, but the compilation time is very low

 ‘ –O1’ - Enables basic optimizations

 ‘ –O2’ - Enables more optimizations

 ‘ –O3’ - turns on all optimizations specified by -O2 and enables more 

aggressive loop transformations such as register blocking, loop interchange 

etc

 ‘-Ofast’ option - be careful: it is not always safe for codes using floating 

point arithmetic

 ‘Osize’ option – Optimizes for code size

 In VS, go to Project tab -> properties -> C/C++ -> Optimization
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• gcc options can be found here:

https://gcc.gnu.org/onlinedocs/gcc-4.5.2/gcc/Optimize-Options.html

https://gcc.gnu.org/onlinedocs/gcc-4.5.2/gcc/Optimize-Options.html


Loop unroll transformation (1)
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 Creates additional copies of loop body

 Always safe

//C-code1
for (i=0; i < 100; i++)

A[i] = B[i];

//C-code2
for (i=0; i < 100; i+=4) {

A[i] = B[i];
A[i+1] = B[i+1];
A[i+2] = B[i+2];
A[i+3] = B[i+3];

}

Pros:

 Reduces the number of instructions

 Increase instruction parallelism

Cons:

– Increases code size

– Increases register pressure



Loop unroll transformation (2)
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 The number of arithmetical instructions is reduced

1. Less add instructions for i, i.e., i=i+4 instead of i=i+1

2. Less compare instructions, i.e., i==100 ?

3. Less jump instructions 

// C code1

for (i=0; i<100; i++) {

…

}

// assembly code1

loop_i …

…

inc i // increment i

cmp i, 100 // compare i to 100

jl loop_i // jump if i lower to 100

// C code2

for (i=0; i<100; i+=4) {

…

}

// assembly code2

loop_i …

…

…

…

…

inc i // increment i

cmp i, 100 // compare i to 100

jl loop_i // jump if lower

A[i] = B[i];
A[i] = B[i];
A[i+1] = B[i+1];
A[i+2] = B[i+2];
A[i+3] = B[i+3];



Scalar replacement transformation
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 Converts array reference to scalar reference

 Most compilers will do this for you automatically by specifying ‘-

O2’ option

 Always safe

//Code-1
for (i=0; i < 100; i++){
A[i] = … + B[i];
C[i] = … + B[i];
D[i] = … + B[i];

}

//Code-2
for (i=0; i < 100; i++){
t=B[i];
A[i] = … + t;
C[i] = … + t;
D[i] = … + t;

}

 Reduces the number of L/S instructions

 Reduces the number of memory accesses



Scalar Replacement Transformation example (1) 

// C-code2

for (i=0; i<300; i++) {

tmp=Y[i];

for (j=0; j<300; j++) {

tmp+= A[i][j] * X[j]; 

}

Y[i]=tmp; 

}
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// C-code1

for (i=0; i<300; i++)

for (j=0; j<300; j++) 

Y[i] += A[i][j] * X[j];

 Y[i] is not affected by j loop
 For every j, Y[i] is redundantly 

loaded/stored from/to memory
 A load/store instruction needs 1-3 

CPU cycles

Main memory

L1 instruction 

cache

L2 unified cache

L1 data cache

RF

CPU

Y[0] 

Y[0] 

Y[0] 

 the number of L/S instructions is reduced

the number of L1 data accesses is reduced 

Main memory

RF

CPU



You have learned that the largest the loop unroll factor, the 

largest the gain in instructions, but is it always efficient?
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 When code2 is faster than code1?

a) Always

b) Never

c) It depends on the hardware architecture

d) It is impossible to know

//code1
N=1000000;
for (i=0; i < N; i++)

A[i] = B[i];

//code2
N=1000000;
for (i=0; i < N; i+=10000) {

A[i] = B[i];
A[i+1] = B[i+1];
A[i+2] = B[i+2];
A[i+3] = B[i+3];

…
A[i+9999] = B[i+9999];

}

Main memory

L1 instruction 

cache

L2 unified cache

L1 data cache

RF

CPU

When the code2 size becomes larger 

than L1 instruction cache size, code2 

is no longer efficient



Use as less complex operations as possible (1) 

 Division is expensive

 On most CPUs the division operator is significantly more expensive 

(i.e. takes many more clock cycles) than all other operators. When 

possible, refactor your code to not use division.

 Use multiplication instead

 For example, change ‘ / 5.0 ‘ to ‘ * 0.2 ‘

 Use shift operations instead of multiplication and division 

 Only for multiplications and division with powers of 2

 Compilers will do that for you though
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Use as less complex operations as possible (2) 

 Functions such as pow(), sqrt() etc are expensive, so avoid them when 

possible

 E.g., avoid calling functions such as strlen() all the time, call it once 

(x=strlen()) and then x++ or x-- when you add or remove a 

character.

 Avoid Standard Library Functions

 Many of them are expensive only because they try to handle all 

possible cases

 Think of writing your own simplified version of a function, if possible, 

tailored to your application

 E.g., pow(a, b) function where b is an integer and b=[1,10] 
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Strength Reduction (1) 

 Strength reduction is the replacement of an expression by a different expression 

that yields the same value but is cheaper to compute

 Most compilers will do this for you automatically by specifying ‘-O1’ option

 Normally, addition needs less CPU cycles 

than multiplication

 In each iteration c is added to T
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Loop-Invariant Code Motion 

 Any part of a computation that does not depend on the loop variable and which is 

not subject to side effects can be moved out of the loop entirely

 Most compilers will do this for you automatically by specifying ‘-O1’ option

 The value of sqrt(x) is not affected 

by the loop

 Therefore, its value is computed just 

once, outside of the loop 

 If n<1, the loop is not executed and 

therefore C must not be assigned 

with the sqrt(x) value

21



Function Inline

 Replace a function call with the body of the function

 It can be applied in many different ways

 Either manually or automatically

 ‘-O1’ applies function inline

 In C, a good option is to use macros instead (if possible)

 Pros :-

1. It speeds up your program by avoiding function calling overhead 

2. It saves the overhead of pushing/poping on the stack

3. It saves overhead of return call from a function

4. It increases locality of reference by utilizing instruction cache

 Cons

 The main drawback is that it increases the code size
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Loop Unswitching

 A loop containing a loop-invariant IF statement can be transformed into an IF 

statement containing two loops

 After unswitching, the IF expression is only executed once, thus improving run-time 

performance

 After unswitching, the loop body does not contain an IF condition and therefore it 

can be better optimized by the compiler

 Most compilers will do this for you automatically by specifying ‘-O3’ option

for (i = 0; i < N; i++) {
if (x<0) 

a[i] = 0; 
else

b[i] = 0; 
}

if (x<0) 
for (i = 0; i < N; i++) {

a[i] = 0; 
}

else

for (i = 0; i < N; i++) {
b[i] = 0; 
}
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Register Blocking 

also known as Loop unroll and jam (1)

 Register blocking is primarily intended to 

 increase register exploitation (data reuse)

 reduce the number of L/S instructions 

 reduce the number of memory accesses

 Register blocking involves two transformations

 Loop unroll 

 Scalar replacement

 Register blocking is included in ‘-O3’ optimization option

 In gcc you must enable this option : -floop-unroll-and-jam

 However, an experienced developer can achieve better results
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Register Blocking 

also known as Loop unroll and jam (2)

 The steps are:

1. One or more loops (not the innermost) are partially unrolled 

and as a consequence common array references are exposed 

in the loop body (data reuse)

2. Then, the array references are replaced by variables (scalar 

replacement transformation) and thus the number of L/S 

instructions is reduced
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Step1

// C code of MMM

for (i=0; i<N; i++)

for (j=0; j<N; j+=2) {

for (k=0; k<N; k++) {

C[i][j] += A[i][k] * B[k][j];

C[i][j+1] += A[i][k] * B[k][j+1];

} }

// C code of MMM

for (i=0; i<N; i++)

for (j=0; j<N; j++)

for (k=0; k<N; k++)

C[i][j] += A[i][k] * B[k][j];

Step2

// C code of MMM

for (i=0; i<N; i++)

for (j=0; j<N; j+=2) {

c0=C[i][j];

c1=C[i][j+1];

for (k=0; k<N; k++) {

a0=A[i][k];

c0 += a0 * B[k][j];

c1 += a0 * B[k][j+1];

}

C[i][j]=c0;

C[i][j+1]=c1;

}
Common 

reference, use a 

register

C[i][j] does not 

depend on the 

innermost loop

Get it out and use 

register



Register Blocking 

also known as Loop unroll and jam (3)

 Key Point:

 The number of the variables in the loop kernel must be lower or equal to the 

number of the available registers

 Otherwise, some of the variables cannot remain in the registers and they are 

loaded many times from L1 data cache (dL1), degrading performance

 This is also known as register spills
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Main memory

L1 instruction 

cache

L2 unified cache

L1 data cache

RF

CPU

Main memory

RF

CPU Register spills



Register Blocking (4)

Another example
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Step1

// C code of MMM

for (i=0; i<N; i++)

for (j=0; j<N; j+=4) {

for (k=0; k<N; k++) {

C[i][j] += A[i][k] * B[k][j];

C[i][j+1] += A[i][k] * B[k][j+1];

C[i][j+2] += A[i][k] * B[k][j+2];

C[i][j+3] += A[i][k] * B[k][j+3];

} }

// C code of MMM

for (i=0; i<N; i++)

for (j=0; j<N; j++)

for (k=0; k<N; k++)

C[i][j] += A[i][k] * B[k][j];

Step2

// C code of MMM

for (i=0; i<N; i++)

for (j=0; j<N; j+=4) {

c0=C[i][j];

c1=C[i][j+1];

c2=C[i][j+2];

c3=C[i][j+3];

for (k=0; k<N; k++) {

a0=A[i][k];

c0 += a0 * B[k][j];

c1 += a0 * B[k][j+1];

c2 += a0 * B[k][j+2];

c3 += a0 * B[k][j+3];

}

C[i][j]=c0;

C[i][j+1]=c1;

C[i][j+2]=c2;

C[i][j+3]=c3; }

• A[i][k] is loaded and then 

used 4 times (data reuse)

• Therefore, A[i][k] is loaded 

4 times less than before

• Every load from dL1 costs 

1-3 cycles

• In the first case, C[i][j] is loaded/stored N3

times, i.e., (N times for k loop x N times for j 

x N times for i loop)

• Now, registers are used to hold the 

intermediate results and therefore they are 

loaded/stored from/to registers not dL1

• Using registers is much faster

• Now, C array references are outside k loop 

and therefore it is loaded/stored N2 times 

only



Register Blocking (5)

An example
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Step1

// C code of MMM

for (i=0; i<N; i++)

for (j=0; j<N; j+=4) {

for (k=0; k<N; k++) {

C[i][j] += A[i][k] * B[k][j];

C[i][j+1] += A[i][k] * B[k][j+1];

C[i][j+2] += A[i][k] * B[k][j+2];

C[i][j+3] += A[i][k] * B[k][j+3];

} }

// C code of MMM

for (i=0; i<N; i++)

for (j=0; j<N; j++)

for (k=0; k<N; k++)

C[i][j] += A[i][k] * B[k][j];

Step2

// C code of MMM

for (i=0; i<N; i++)

for (j=0; j<N; j+=4) {

c0=C[i][j];

c1=C[i][j+1];

c2=C[i][j+2];

c3=C[i][j+3];

for (k=0; k<N; k++) {

a0=A[i][k];

c0 += a0 * B[k][j];

c1 += a0 * B[k][j+1];

c2 += a0 * B[k][j+2];

c3 += a0 * B[k][j+3];

}

C[i][j]=c0;

C[i][j+1]=c1;

C[i][j+2]=c2;

C[i][j+3]=c3; }

 The number of L/S instructions is reduced and as a consequence the 

number of memory accesses

 The number of arithmetical instructions is reduced too as there are 

less address computations for C[i][j] and A[i][k]

 In the first case a different memory address is used for each 

load/store of A[][]

 Now, registers are used instead and therefore less memory 

addresses are computed 



Register Blocking (6)

Activity
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// C code of MMM

for (i=0; i<N; i+=2)

for (j=0; j<N; j+=2) {

for (k=0; k<N; k++) {

…

} }

// C code of MMM

for (i=0; i<N; i++)

for (j=0; j<N; j++)

for (k=0; k<N; k++)

C[i][j] += A[i][k] * B[k][j];



Loop interchange 

 The loop interchange transformation switches the order of the loops in order 

to improve data locality or increase parallelism

 Not always safe, only when data dependencies allow it

 In C/C++, accessing arrays column wise is inefficient (see next)
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….

int i, j, N=1000;

int A[N][N];

for (j=0; j<N; j++)

for (i=0; i<N; i++)

A[ i ][ j ] = i+j; 

….

….

int i, j, N=1000;

int A[N][N];

for (i=0; i<N; i++)

for (j=0; j<N; j++)

A[ i ][ j ] = i+j; 

….

Column-wise (bad) Row-wise (good)



Loop interchange 

A more complicated example
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for (j=0; j<N; j++)

for (i=0; i<N; i++)

total [ i ] = total [ i ] + A [ i ] [ j ];

for (i=0; i<N; i++)

for (j=0; j<N; j++)

total [ i ] = total [ i ] + A [ i ] [ j ];loop 

interchange

 Which one is more efficient and why?



Loop interchange 

A more complicated example
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for (j=0; j<N; j++)

for (i=0; i<N; i++)

total [ i ] = total [ i ] + A [ i ] [ j ];

for (i=0; i<N; i++)

for (j=0; j<N; j++)

total [ i ] = total [ i ] + A [ i ] [ j ];

• total [ ] is loaded and stored N2 times 

• all the intermediate results are loaded/stored from/to dL1 

• A[ ][ ] is accessed column-wise

• total[i] is invariant with respect to the inner loop and therefore it can be replaced 

by a register, yielding better data locality

• This can be applied either manually or automatically by compiling with ‘-O3’

• A[ ][ ] is accessed row-wise

for (i=0; i<N; i++) { 

t = total [ i ];

for (j=0; j<N; j++) {

t = t + A [ i ] [ j ];  

}

total [ i ] = t;  }

loop 

interchange
Scalar replacement



Dependencies in programs (1)

 Data dependencies 

 statement S3 cannot be moved before either 

S1 or S2 without producing incorrect values

 Control dependencies

 statement S2 cannot be executed before S1 

in a correctly transformed program, because 

the execution of S2 is conditional upon the 

execution of the branch in S1 

 Statement S3 cannot be executed before S2
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S1: PI=3.14;

S2: R=5.0;

S3: AREA=2 * PI * R

S1: if (temp==0) 

S2:   a=5.0; 

S3: a=3.0;



Dependencies in programs (2)
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 Definition: There is a data dependence from statement S1 to 

statement S2 (statement S2 depends on statement S1) if and only if

1. both statements access the same memory location and at least 

one of them stores into it and

2. there is a feasible run-time execution path from S1 to S2.



Data Dependencies – classification  
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 Data dependencies reside into 3 categories

A. Read after Write (RAW) or true dependence 

B. Write after Read (WAR) or anti-dependence

C. Write after Write (WAW) or output dependence

S1:  PI=3.14;

S2:  R=2;

S3:  S=2 x PI x R //S3 cannot be executed before S1, S2 – true dependence

S1:  T1=R1;  

S2:  R2=PI-T1;

S3:  R1=PI+S;    

T=…

…=T

…=T

T=…

T=…

T=…

S1:  T1=R1;

S2:  R2=PI-T1;

S3:  R3=PI+S; 

S1:  T1=R1;

S2:  T1=R2+5;

S1:  T1=R1;

S2:  T2=R2+5;

WAW dependence is 

eliminated by applying 

register renaming

A:

B:

C:

//S3 cannot be executed before or in parallel with S1 – anti-

//dependence. But it can be eliminated by applying register 

//renaming – this is why it is called ‘anti’ dependence



Data Dependencies – Terminology 
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 Data dependencies :

 Read after Write (RAW) or true dependence

 Write after Read (WAR) or anti-dependence

 Write after Write (WAW) or output dependence

 The convention for graphically displaying dependence is to depict the edge as

flowing from the statement that executes first (the source) to the one that executes 

later (the sink).

 Here S2 depends on S1

S1 S2
δ1

S1 S2
δ

OR

S1 S2
δ-1

S1 S2
δ0



Data Dependencies – classification 
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Data Dependencies

Loop Dependent Loop Independent

True Anti Output True Anti Output



Data Dependencies in loops

Loop dependent dependencies
38

 Loop dependent dependencies

 the statement S1 on any loop iteration 

depends on the instance of itself from the 

previous iteration. 

 A true dependence occurs for each 

different colour 

 The program writes in iteration i and reads 

in iteration i+1

 The iterations cannot be executed in 

parallel

for (i = 1; i<N i++)

S1:    A(i+1) = A(i) + B(i)

i=1 : A[2] = A[1] + B[1]

i=2 : A[3] = A[2] + B[1]

i=3 : A[4] = A[3] + B[3]

i=4 : A[5] = A[4] + B[4]

i=5 : A[6] = A[5] + B[5]

…



Loop dependent dependencies

Terminology
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 On the right, there is a loop dependent true 

dependence 
for (i = 1; i<N i++)

S1:    A(i+1) = A(i) + B(i)

i=1 : A[2] = A[1] + B[1]

i=2 : A[3] = A[2] + B[1]

i=3 : A[4] = A[3] + B[3]

i=4 : A[5] = A[4] + B[4]

i=5 : A[6] = A[5] + B[5]

…

S1 S1
δ1

1

δn

1, -1, 0

True,  Anti,  Output

Nesting level value for loop dependent dependencies

or ‘∞’ for loop independent dependencies



Loop dependent dependencies 

another example
40

 Now, the distance of the 

dependence is 2

 Therefore i=1 and i=2 can be 

executed in parallel – no 

dependence exists

S1: for (i = 1; i<N i++)

S2:    A(i+2) = A(i) + B(i)

i=1 : A[3] = A[1] + B[1]

i=2 : A[4] = A[2] + B[1]

i=3 : A[5] = A[3] + B[3]

i=4 : A[6] = A[4] + B[4]

i=5 : A[7] = A[5] + B[5]

i=6 : A[8] = A[6] + B[5]

…
No dependence exists between 2

iterations – they can be executed in

parallel or vectorised (see later on)

S2 S2
δ1

1



Data Dependencies

Distance Vector & Direction Vector

 It is convenient to characterize dependences by the distance between the 

source and sink of a dependence in the iteration space

 We express this in terms distance vectors and direction vectors

 Distance Vector

 Suppose that there is a dependence from S1 on iteration i (of a loop 

nest of n loops) to S2 on iteration j, then the dependence distance vector 

d(i,j) is defined as a vector of length n such that d(i,j)k = jk – ik

 Direction Vector: is defined as a vector of length n such that 

41



Data Dependencies

An example
42

for (i = 1; i<10; i++)

for (j = 0; j<20; j++)

for (k = 0; k<100; k++)

for (n = 2; n<80; n++)

S1:    A(i, j+2, k, n) = A(i, j, k, n+1) + temp;

• Distance vector: d(i, j, k, n) = (0, 2, 0, -1)

• Direction vector: D(i, j, k, n) = (=, <, =, >)

• The dependence is always given by the leftmost non ‘=’ symbol 

S1 S1
δ2

1

δ2
1



Loop Merge 

also known as Loop Fusion (1)

 Loop Merge is a transformation that combines 2 independent loop 

kernels that have the same loop bounds and number of iterations

 This transformation is not always safe

 data dependencies must be preserved
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for (i=1; i<N; i++) 

A[ i ] = B[ i ]; 

for (i=1; i<N; i++) 

B[ i ] = A[ i-1 ];

for (i=1; i<N; i++){ 

A[ i ] = B[ i ]; 

B[ i ] = A[ i-1 ];

}



Loop Merge 

also known as Loop Fusion (2)
44

Benefits:

 Reduces the number of arithmetical 

instructions

 Remember each loop is transformed 

into an add, compare and jump 

assembly instruction

 May improve data reuse 

 May enable other loop transformations

Drawbacks:

 May increase register pressure 

 May hurt data locality (extra 

cache misses)

 May hurt instruction cache 

performance 

for (i=1; i<N; i++) 

A[ i ] = B[ i ]; 

for (i=1; i<N; i++) 

B[ i ] = A[ i-1 ];

for (i=1; i<N; i++){ 

A[ i ] = B[ i ]; 

B[ i ] = A[ i-1 ];

}



Loop Merge 

also known as Loop Fusion (3)

 Consider the case where the arrays are 

bigger than L1 data cache, then

 In the first case, both arrays are 

accessed from L2 and/or main memory 

twice

 By merging the two loop kernels into 

one, the arrays are loaded once

 data locality is achieved
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for (i=1; i<N; i++) 

A[ i ] = B[ i ]; 

for (i=1; i<N; i++) 

B[ i ] = A[ i-1 ];

for (i=1; i<N; i++){ 

A[ i ] = B[ i ]; 

B[ i ] = A[ i-1 ];

}

Main memory

L1 instruction 

cache

L2 unified cache

L1 data cache

RF

CPU

F
a
s
te

r 
a
n

d
 s

m
a
ll
e
r



Loop Merge 

not always safe

 Is the following transformation correct?

 NO – Data dependencies are not preserved

46

for (i=1; i<N; i++) 

A[ i ] = B[ i ]; 

for (i=1; i<N; i++) 

B[ i ] = A[ i+1 ];

for (i=1; i<N; i++){ 

A[ i ] = B[ i ]; 

B[ i ] = A[ i+1 ];

}

i=1: A[1] = B[1]

i=2: A[2] = B[2]

i=3: A[3] = B[3]

…

i=1: B[1] = A[2]

i=2: B[2] = A[3]

i=3: B[3] = A[4]

…

i=1: A[1] = B[1]

B[1] = A[2]

i=2: A[2] = B[2]

B[2] = A[3]

i=3: 

…

On the left, 

we write in A [ ] and then read from A[ ] 

On the right, 

we read from A [ ] and then write to A[ ] (wrong)



Loop Merge 

not always safe

 Is the following transformation correct?

 NO – Data dependencies are not preserved

 How can we be sure?

 The top subscript must be larger or equal to the bottom subscript

 Here, i >= i+1 is not true, thus loop merge is not safe
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for (i=1; i<N; i++) 

A[ i ] = B[ i ]; 

for (i=1; i<N; i++) 

B[ i ] = A[ i+1 ];



Loop Distribution 

also known as Loop Fission (1) 

 Loop Distribution is a transformation where a loop kernel is broken 

into multiple loop kernels over the same index range with each 

taking only a part of the original loop's body

 This transformation is not always safe

 data dependencies must be preserved

 The top subscript must be larger or equal to the bottom 

subscript

48

for (i=1; i<N; i++) 

A[ i ] = B[ i ]; 

for (i=1; i<N; i++) 

B[ i ] = A[ i-1 ];

for (i=1; i<N; i++){ 

A[ i ] = B[ i ]; 

B[ i ] = A[ i-1 ];

}



Loop Distribution 

also known as Loop Fission (2) 
49

for (i=1; i<N; i++) 

A[ i ] = B[ i ]; 

for (i=1; i<N; i++) 

B[ i ] = A[ i-1 ];

for (i=1; i<N; i++){ 

A[ i ] = B[ i ]; 

B[ i ] = A[ i-1 ];

}

Benefits:

 May enable partial/full parallelization 

 This optimization is most efficient in 

multi/many core processors that can split a 

task into multiple tasks for each processor

 May reduce register pressure

 May improve data locality (cache misses)

 May enable other loop transformations 

Drawbacks:

 Increases the number of 

arithmetical instructions

 May hurt data locality 



Activity

Should we apply loop merge or not?

// A

for (i = 0; i < N; i++)

for (j = 0; j < N; j++)

y[i] = y[i] + beta * A[i][j] * x[j];

for (i = 0; i < N; i++)

for (j = 0; j < N; j++)

w[i] = w[i] + alpha * A[i][j] ;
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//B 

for (i = 0; i < N; i++)

for (j = 0; j < N; j++)

y[i]+=A[i][j] * x[j]

for (i = 0; i < N; i++)

for (j = 0; j < N; j++)

y2[i]+=A2[i][j] * x2[j]



Loop Reversal (1)

 Loop reversal is a transformation that reverses the order of the iterations 

of a given loop

 It is not always safe

 Remember, in the direction vector, the leftmost non ‘=‘ symbol has to 

be the same as before

 Loop reversal, has no effect on a loop independent dependence.
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for (i=start; i<=end; i++)

A[i] = … ;

for (i=end; i>=start; i--)

A[i] = … ;

for (i=start; i<=end; i++)

A[end - (i - start)] = … ;

OR



Loop Reversal (2)

 Loop reversal cannot be applied to i loop

 In this case D(i, j) = (>, >) and therefore the leftmost non ‘=‘ symbol 

changes, violating data dependencies

 Loop reversal can be applied to j loop though

 In this case D(i, j) = (<, <) and therefore the leftmost non ‘=‘ symbol 

does not change
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for (i=0; i<N; i++)

for (j=0; j<P; j++)

A[j][i] = A[j+1][i-1] + temp;

d(i, j) = (1, -1)

D(i, j) = (<, >)

Dependence 



Loop Reversal (3)

 Main Benefits

 Increase parallelism 

 In loop nests, loop reversal is used to uncover parallelism 

and move it to the outermost iterator possible

 Enable other transformations

53



Loop Reversal – 1st example (1)

 Problem: The array  is accessed column-wise; this gives 

 Low performance 

 High energy consumption

 Potential Solution: Apply loop interchange 

 However, loop interchange gives D(j, i) = (>, <), violating data 

dependencies

 Solution: Apply loop reversal to j loop which gives D(i, j) = (<, <) 

 Then, loop interchange is valid as it gives D(j, i) = (<, <) 
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for (i=0; i<N; i++)

for (j=0; j<P; j++)

A[j][i] = A[j+1][i-1] + temp;
D(i, j) = (<, >)

Dependence 



Loop Reversal – 1st example (2)
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for (i=0; i<N; i++)

for (j=0; j<P; j++)

A[j][i] = A[j+1][i-1] + temp;

D(i, j) = (<, >)

Dependence 

for (j=P-1; j>=0; j--)

for (i=0; i<N; i++)

A[j][i] = A[j+1][i-1] + temp;

D(j, i) = (<, <)

Dependence 

for (i=0; i<N; i++)

for (j=P-1; j>=0; j--)

A[j][i] = A[j+1][i-1] + temp;

D(i, j) = (<, <)

Dependence 

column-wise array accesses (inefficient)

row-wise array accesses (efficient)

loop 

reversal

loop 

interchange



Loop Reversal – 2nd example 

56

for (i=0; i<=N; i++)

B[i] = A[i] + …;

for (i=0; i<=N; i++)

C[i] = B[N-i] - …;

Loop merge not possible

i >= N - i, not true

for (i=0; i<=N; i++)

B[i] = A[i] + …;

for (i=0; i<=N; i++)

C[N-i] = B[N-(N-i)] - …;

Apply loop reversal 

to the 2nd loop kernel

for (i=0; i<=N; i++) {

B[i] = A[i] + …;

C[N-i] = B[i] - …;

}

Loop merge is now possible

as i >= i



Loop Peeling

 Separate special cases at either end 

 Always safe
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for (i=0; i<100; i++)

A[i] = A[0] + B[i];

A[0] = A[0] + B[0];

for (i=1; i<100; i++)

A[i] = A[0] + B[i];

Loop carried dependence - The 

compiler cannot parallelize it
No dependence - The compiler 

can parallelize it or vectorise it



Loop Peeling

An example

58

for (i=2; i<=N; i++)

B[i] = A[i] + temp;

for (i=3; i<=N; i++)

C[i] = A[i] + D[i];

Loop merge not possible

Apply loop peeling 

to the 1st loop kernel

If (N>=2)

B[2] = A[2] + temp;

for (i=3; i<=N; i++)

B[i] = A[i] + temp;

for (i=3; i<=N; i++)

C[i] = A[i] + D[i];

Loop merge is now 

possible

If (N>=2)

B[2] = A[2] + temp 

for (i=3; i<N; i++) {

B[i] = A[i] + temp;

C[i] = A[i] + D[i];

}

58



Loop Bump

 Changes the loop bounds

 It is always safe

 Benefits:

 It can enable other transformations

 It can increase parallelism 
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for (i=start; i<end; i++)

A[i] = …

for (i=start + N; i<end + N; i++)

A[i - N] = …

59



Loop Bump

1st example
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for (i=2; i<N; i++)

B[i] = A[i] + …;

for (i=0; i<N-2; i++)

C[i] = B[i+2] + …;

Loop merge not possible

i >= i+2, not true

Apply loop bump to 

the 2nd loop kernel

for (i=2; i<N; i++)

B[i] = A[i] + …;

for (i=0+2; i<N-2+2; i++)

C[i-2] = B[i+2-2] + …;

Loop merge is now possible

as i >= i

for (i=2; i<N; i++) {

B[i] = A[i] + …;

C[i-2] = B[i] + …;

}

60



Array copying transformation (1)

 Copies the array’s elements into a new array before computation

 The new array’s elements will be written in consecutive main memory 

locations

 Always safe but incurs high cost

Vectorization is extremely pure

Vectorization can be applied effectively
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for (i=0;i!=M;i++)
for (j=0;j!=M;j++)
for (k=0;k!=M;k++)

C[i][j]+=A[i][k] * B[k][j];

//array copying
for (i=0;i!=N;i++)
for (j=0;j!=N;j++)
B_transpose[i][j]=B[j][i];

for (i=0;i!=M;i++)
for (j=0;j!=M;j++)
for (k=0;k!=M;k++)
C[i][j]+=A[i][k] * B_transpose[j][k];



Array copying transformation (2)

 When should we apply array copying? 

 When the number of cache misses is high and multi-dimensional 

arrays exist

 In vectorization, as vectorization needs consecutive memory locations
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for (i=0;i!=M;i++)
for (j=0;j!=M;j++)
for (k=0;k!=M;k++)

C[i][j]+=A[i][k] * B[k][j];

//array copying
for (i=0;i!=N;i++)
for (j=0;j!=N;j++)
B_transpose[i][j]=B[j][i];

for (i=0;i!=M;i++)
for (j=0;j!=M;j++)
for (k=0;k!=M;k++)
C[i][j]+=A[i][k] * B_transpose[j][k];



Software Prefetching

 This is an advanced topic and it is not going to be studied

 Next week, we will learn how to use SSE/AVX x86-64 intrinsics. 

 These include prefetch instructions. 

 All the prefetch instructions supported for x86-64 architectures can 

be found here 

https://software.intel.com/sites/landingpage/IntrinsicsGuide/#exp

and=173,5533,3505,1449,3505,2940,2024&text=prefetch. 

 An example of a software prefetch instruction is shown below

_mm_prefetch(&C[i][j], _MM_HINT_T0);

 The instruction above pre-fetches the cache line containing C[i][j] 

from DDR. No value is written back to a register and we do not 

have to wait for the instruction to complete. The cache line is loaded 

in the background. 
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https://software.intel.com/sites/landingpage/IntrinsicsGuide/#expand=173,5533,3505,1449,3505,2940,2024&text=prefetch


Loop Tiling / blocking (1)
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for ( i=0; i<6; i++)

for ( j=0; j<6; j++)

S1[i][j]=…;

for ( ii=0; ii<6; ii+=2)

for ( jj=0; jj<6; jj+=2)

for ( i=ii; i<ii+2; i++)

for ( j=jj; j<jj+2; j++)

S1[i][j]=…;

Iteration space



Loop Tiling / blocking (2)

 Loop tiling partitions a loop's iteration space into smaller chunks or blocks, 

so as to help data remain in the cache (data reuse)

 The partitioning of loop iteration space leads to partitioning of large 

arrays into smaller blocks (tiles), thus fitting accessed array elements into 

cache, enhancing cache reuse and reducing cache misses

 Loop tiling can be applied to each iterator multiple times, e.g., it is 

applied to the j and i iterators in previous example

 Loop tiling is one of the most performance critical transformations for 

data dominant algorithms
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Loop Tiling / blocking (3)

 In data dominant algorithms, loop tiling is applied to exploit data 

locality in each memory, including register file

 Register blocking can be considered as loop tiling for the register 

file memory

 By applying Loop tiling to Li cache memory, the number of Li 

cache misses is reduced 

 The number of Li cache misses equals to the number of Li+1 

accesses
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Loop Tiling / blocking (4)

 Loop tiling reduces the number of cache misses

 This doesn’t entail performance improvement at all times –

performance depends on other parameters too, e.g., number of 

instructions

 Key problems:

 Selection of the tile size

 Loops/iterators to be applied to

 How many levels of tiling to apply (multi-level cache hierarchy)
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Pros:

 May increase locality (reduce cache 

misses)

Cons:

 Increases the number of instructions 

(adds extra loops)



Loop tiling - Case Study 

Matrix-Matrix Multiplication

Problem
68

float C[2048][2048], A[2048][2048], B[2048][2048];

for (i=0; i<2048; i++)

for (j=0; j<2048; j++)

for (k=0; k<2048; k++)

C[i][j] += A[i][k] * B[k][j];

C A B

=
x

…

…

Main memory

A[][], B[][], C[][]

L1 instruction 

cache

L2 unified cache

L1 data cache

8 Kbytes

RF

CPU

The size of each row of A is 8 kbytes



Loop tiling - Case Study 

Matrix-Matrix Multiplication

Motivation

 Each row of A is multiplied by all the columns of B, thus:

 Each row of A is loaded from memory 2048 times

 If the row of A cannot remain in dL1, it will be loaded 2048 

times from L2

 If the row of A cannot remain in L2, it will be loaded 2048 

times from main memory

 The whole B array is multiplied by each row of A, thus:

 B array is loaded 2048 times from memory

 If B cannot remain in dL1, it will be loaded 2048 times from L2

 If B cannot remain in L2, it will be loaded 2048 times from main 

memory
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C A B

=
x

…

…

Main memory

L1 instruction 

cache

L2 unified cache

RF

CPU

L1 data cache

8 Kbytes

j loopj loop

i loop i loop k loop

k loop



Loop tiling - Case Study 

Matrix-Matrix Multiplication

 Consider a single level of cache. In this case

 A array is loaded 2048 times from main 

memory, 20483 loads

 B array is loaded 2048 times from main 

memory, 20483 loads

 C array is stored just once, 20482 stores
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C A B

=
x

…

…

Main memory

L1 instruction 

cache

RF

CPU

L1 data cache

8 Kbytes

j loopj loop

i loop i loop k loop

k loop



Loop tiling - Case Study 

Matrix-Matrix Multiplication – 1 level of cache (1)
71

C A B

=
x

Main memory

L1 instruction 

cache

RF

CPU

L1 data cache

8 Kbytes

for (ii=0; ii<2048; ii+=T)

for (jj=0; jj<2048; jj+=T)

for (kk=0; kk<2048; kk+=T)

for (i=ii; i<ii+T; i++)

for (j=jj; j<jj+T; j++)

for (k=0; k<kk+T; k++)

C[i][j] += A[i][k] * B[k][j];

for (i=0; i<2048; i++)

for (j=0; j<2048; j++)

for (k=0; k<2048; k++)

C[i][j] += A[i][k] * B[k][j];

T

T

T

TT

T

These loops specify which 

elements inside the tile to 

multiply

These loops specify 

which tiles to multiply

j loopj loop

i loop i loop k loop

k loop



 The matrices are partitioned into smaller sub-matrices 

(TxT)

 Instead of multiplying A[][] by B[][], their tiles are 

multiplied

 The tiles are small enough in order to fit in the cache

 A array is loaded 2048/T times from main memory 

 B array is loaded 2048/T times from main memory 

 C array is loaded and stored 2048/T times from/to 

main memory
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Main memory

L1 instruction 

cache

RF

CPU

L1 data cache

8 Kbytes

C A B

=
xT

T

T

TT

T

Loop tiling - Case Study 

Matrix-Matrix Multiplication – 1 level of cache (2)

j loopj loop

i loop i loop k loop

k loop



 Before applying loop tiling

 A: 2048 x (2048x2048) loads from main memory

 B: 2048 x (2048x2048) loads from main memory

 C: 1 x (2048x2048) stores to main memory

 In total, 2*20483 + 20482 main memory accesses

 After applying loop tiling

 A: 2048/T x (2048x2048) loads from main memory

 B: 2048/T x (2048x2048) loads from main memory

 C: 2048/T x (2048x2048) stores to main memory

 In total, 3*20483/T main memory accesses

 By increasing T, performance is increased

 However, T is bounded to the cache hardware details
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Main memory

L1 instruction 

cache

RF

CPU

L1 data cache

8 Kbytes

Loop tiling - Case Study 

Matrix-Matrix Multiplication – 1 level of cache (3)



MMM – Loop Tiling 

Performance Evaluation

 Square Tile sizes are used Ti=Tj=Tk=T
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MMM – Loop Tiling 

Performance Evaluation (2)

 Roofline analysis for T=16
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Further Reading

 Optimizing compilers for modern architectures: a dependence-based 

approach, book, available at https://liveplymouthac-

my.sharepoint.com/:b:/g/personal/vasilios_kelefouras_plymouth_ac_

uk/EVy4Laj_1W9Hr7D3W57CBuQBeohd0M9iVVT7x5n91PcDyg?e=

RGnRCa

 Options That Control Optimization, available at  

https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
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https://liveplymouthac-my.sharepoint.com/:b:/g/personal/vasilios_kelefouras_plymouth_ac_uk/EVy4Laj_1W9Hr7D3W57CBuQBeohd0M9iVVT7x5n91PcDyg?e=RGnRCa
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

