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Abstract

Shannon provided an exact characterization of the fundamental
limits of point-to-point communication. After almost 40 years of
effort, meeting the same goal for networks proved to be far more
difficult. In this talk, we argue that much broader progress can be
made in network information theory when instead one seeks ap-
proximate solutions with a guarantee on the gap to optimality. We
discuss a specific approach focusing on the practically important
models of linear Gaussian channels and Gaussian sources.

I. Introduction

In his seminal paper [1], Shannon provided a complete solution
to the fundamental limits of point-to-point communication. Since
the coding schemes allowed are of arbitrary block lengths, the
original design problem is an infinite-dimensional optimization
problem. Yet, the optimal solution can be expressed as that of a
finite-dimensional optimization problem (”single-letter” charac-
terization). Moreover, for many specific channels and sources, this
finite-dimensional optimization problem can be solved explicitly
in closed form. This desirable state of affairs is remarkable and
almost unique among engineering fields, but it also sets a high
standard for the information theory field.

A holy grail of information theory is to extend Shannon’s point-
to-point result to the network setting. The general network in-
formation theory problem is to analyze the fundamental limits
of communication when multiple senders want to communicate
with multiple receivers with the help of intermediate nodes. The
first success came in the earlier 1970’s, when Ahlswede [2] and
Liao [3] independently provided a single-letter characterization of
the capacity region of the multiple access channel. In this network,
K users want to send information to a common receiver across a
noisy channel. This result is rather general in the sense that it holds
for arbitrary number of users as well as arbitrary channel statistics.
It led to much excitement in the field at that time. However, as it
turned out, there have been essentially no other network informa-
tion theory results of such generality since then. Most of the other
results, for example, hold for only two users (such as the degraded
message set problem for broadcast channels) or for specific class of
channel or source statistics (such as degraded broadcast channels).
Even these results are few in number. So despite almost forty years
of effort, it is fair to say that we are still very far from solving the
general network information theory problem.

A class of channels and a class of sources that have received much
attention are linear Gaussian channels with quadratic cost con-
straint and Gaussian sources with quadratic distortion measure
respectively. Not only are these models practically relevant for
applications such as wireless and sensor networks, the physically
meaningfulness of their structures give some hope that Gaussian
problems are easier to solve than the general case. Indeed, as is
well-known, the capacity of the point-to-point Gaussian chan-
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nel and the rate-distortion function of the Gaussian source are
known in closed form. Can this luck help us make more progress
in Gaussian network problems than in the general case? The an-
swer is yes for broadcast channels. While the capacity region of the
general broadcast channel is open even in the case of two users,
the capacity region of Gaussian broadcast channels with arbitrary
number of users is known. However, it seems that the luck ran
out rather quickly as most Gaussian network problems are still
open. Examples are interference channels (even the two-user case
is open), relay networks (even the single-relay channel is open),
multiple description and distributed lossy source coding (both
open for more than 2 users). So it seems that Gaussian network
problems are not too much easier than the general ones.

In this talk, we outline a recent approach to make progress in
Gaussian network information theory problems. The idea is to
approximate. Rather than asking for exactly optimal solutions for
network problems, we recognize that network problems are far
more difficult than point-to-point problems and are willing to set-
tle for approximate solutions. Not any old approximate solutions
however, but approximate solutions with a hard guarantee on the
gap to optimality.

Approximate solutions to information theory problems are not
new. However, they are by and far isolated results each with its
own proof technique. What distinguishes the approach we advo-
cate here with these results is that it is a systematic approach that
can be applied to many problems.

The approach consists of four steps:

¢ Noisy channel coding problems are approximated by noise-
less problems. Lossy source coding problems are approxi-
mated by lossless problems.

¢ Analyze the simplified problem.

* Use insights to find new schemes and/or outer bounds to
the original Gaussian problem.

* Derive a worst-case gap of the performance of the proposed
scheme to optimality, universal for all values of the channel
parameters.

What is the rationale for this approach? Take channel coding
problems for example. In the point-to-point case, the noise is the
central object of interest and it occupies the sole attention of Shan-
non’s point-to-point theory. In networks, however, in addition
to the noise there is also the interaction between the signals of
multiple users. To try to solve the problem in one shot is fighting
two battles at the same time. Approximating the noisy problem
by a noiseless (deterministic) one allows us to first focus on the
signal interaction. Noiseless problems are often easier than noisy
problems. For example, while the general noisy broadcast channel
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problem is open, the deterministic broadcast channel is solved
(independently by Pinsker [4] and Marton [5]). Similarly, lossless
source coding problems are often easier than lossy ones. For ex-
ample, while the general lossy distributed source coding problem
is open (even for two users), the lossless distributed source coding
problem is solved (the celebrated Slepian-Wolf Theorem [6]).

Because this approach in effect decouples the effect of the noise
and the signal interaction, it does not in general yield exactly op-
timal solution. (Although sometimes one can get lucky, as we will
see.) The approximation becomes relatively more accurate when
the noise is small compared to the signals (interference-limited or
low-noise regime). So while the worst-case gap holds for all pa-
rameter ranges, the performance gap is more meaningful in the
low-noise regime where the achievable rates are high. The dual
statement for source coding is that the approximation using this
approach becomes relatively more accurate when the target dis-
tortion levels are small and the required rates are high.

In the rest of the talk, we will illustrate this approach using the
four open problems mentioned above.

II. Interference Channels
A. Strong Interference

The capacity region of the 2-user Gaussian interference chan-
nel (IC) (Fig. 1(a)) is one of the long-standing open problems in
network information theory. Two users interfere with each other
through cross talk. The problem is to determine the set of all rates
(R}, R,) that are simultaneously achievable by the two users. This
channel was first considered in the 1970’s and the capacity region
of the Gaussian IC in the strong interference regime was quickly
figured out (independently by Sato [7] and Han and Kobayashi
[8]). In this regime, transmitter 1(2) has a better channel to receiver
2(1) than to receiver 1(2). In any working system for this channel,
receiver 2 can decode its own message 11,, and therefore can cancel
off m,’s contribution. Now, receiver 2 has a clear view of trans-
mitter 1’s signal, and since receiver 2 has a better channel than
receiver 1 from transmitter 1 and receiver 1 can decode its own
message m,, then receiver 2 can decode the message m, as well.
Similarly, receiver 1 can decode the message 1,. So although the
communication system is designed only to deliver the message
m, to receiver 1 and the message 11, to receiver 2, these messages
are automatically public, i.e. decodable at the other receiver. This
converts the strong interference channel to a compound multiple
access channel, i.e. both messages have to be decodable at each of
the receivers, and the capacity region of the Gaussian IC is simply
the intersection of the capacity regions of the two multiple access
channels, one at each receiver.

B. El-Gamal-Costa Deterministic IC

The strong interference regime was quickly solved, but very little
progress has been made on the other parameter regimes for many
years since then. When the channel to the other receiver is weaker
than to your own receiver, requiring the other receiver to decode
your message is obviously sub-optimal. But what is the right strat-
egy? In fact, the only non-trivial IC whose capacity region is fully
solved is the deterministic IC studied by El Gamal and Costa [9].
This is shown in Fig. 1(b). The channel output Y is a function of
the input X, from transmitter 1 and V,, which in turn is a function
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of the input X, from transmitter 2. This would just have been a
general deterministic IC but for an important property they as-
sumed: that V, is a function of X; and Y, (and similar for V,). What
is the optimal strategy for this channel? In any working system, re-
ceiver 2 can decode its own message. Therefore, receiver 2 knows
X,. From X, and Y, it has a clear view of V,. So the part of the
message from transmitter 1 that is on V, will also be decodable by
receiver 2, i.e. is public. This argument is similar to that used in
the strong interference regime, except that now only a part of the
message, the part on V,, is public. The rest is private. This strategy
is a special case of the Han-Kobayashi achievable scheme [8] with
a specific prescription on how to do the private-public split.

C. Connection with Gaussian IC

The El-Gamal-Costa channel seems to have nothing to do with the
Gaussian IC, but in 2006, Raul Etkin, Hua Wang and myself ob-
served a connection. The key is to approximate how the Gaussian
IC behaves. Consider an example of a Gaussian IC where /1;; = 2",
hyjp =2", and m < n so that we are not in the strong interference
regime. Suppose X; has a binary expansion 0-bb,b; . . .. The re-
sulting signal at receiver 1, before adding noise and interference,
isbib, .. .b,.b,.1 ..., and the corresponding signal at receiver 2 is
bb,...b,b, . ....Thenoises at both receivers are normalized to
have unit variance, so the decimal point in the above expansions is
the “noise level”. One can divide the transmitted bits by, by, b5 . . .
into three groups:

® b, by ...b,, which appear above the noise level at both
receivers.

® b1, bys0 ... b, Which appear above the noise level at
receiver 1 but below noise level at receiver 2.

Y
my —»| Enci f, Dec fﬁ1
fa Dec2 a
m,
my, —»| Enc2 X, Y, p)

Fig. 1 (a) Gaussian IC; (b) Deterministic IC.
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® b,,1,b,4y ... appear below the noise level at both receivers.
This decomposition suggests a way to approximate the Gaussian
IC by a El-Gamal-Costa IC. Since b1, b, ... are below the
noise level at both receivers, they convey little information but
also have little interfering effect, being masked by the noise. Let’s
ignore them entirely and assume the transmit signal X; is just
(by, by, ...b,). Of these bits, by, . . ., b,, are observed at both receiv-
ers while the rest appear below noise level at receiver 2 and so also
have little interfering effect. So we can let V; = (b, ..., b,). The
key property of the El-Gamal-Costa IC is approximately satisfied:
given the input X, and the output Y,, the interference V; above
the noise level can be (approximately) determined. The El-Gamal-
Costa result then tells us that user 1 should split its message into
a public and a private message, the public message conveyed in
by, ..., b, while the private message conveyed in b1, ..., b,.

D. Gaussian Capacity to within 1 Bit

Once this correspondence is established, it is clear what is the natural
scheme to try on the Gaussian IC. Split each transmitter’s message
into a public message and a private message. Allocate power to the
private message such that it is received just below the noise level at
the other receiver. The rest of the power is allocated to the public mes-
sage. Use independently generated Gaussian codebooks to convey
the public and the private messages. In [10], it was shown that this
strategy can achieve to within 1 bit/s/Hz (i.e. 0.5 bit per real dimen-
sion) of the capacity region. This gap holds for all values of the chan-
nel parameters. To show this result, new outer bounds are obtained
for the Gaussian IC to match (approximately) the performance of the
proposed scheme. Like the scheme, the outer bounds were also in-
spired by the corresponding outer bounds of the El-Gamal-Costa IC.

The correspondence between the Gaussian IC and the deter-
ministic IC described above is approximate but not exact. In the
deterministic IC, bits are either perfectly observed or are com-
pletely invisible. In the noisy Gaussian IC, such is not the case.
This accounts for why there is a gap between the performance of
the proposed scheme and the outer bound. Somewhat surpris-
ingly, subsequently works [11], [12], [13] showed that by further
tightening one of the new outer bounds in [10], an exact charac-
terization of the sum rate of the Gaussian IC can be obtained in a
certain very weak interference regime.

E. Lattice Codes for Interference Alignment

The within-1-bit strategy is a special case of the general Han-
Kobayashi scheme with randomly gener-
ated Gaussian codebooks for both the pri-
vate and the public messages (and a specific
power split). Since Han-Kobayashi allows
arbitrary input distributions for the private
and the public messages, what we showed is
that Gaussian input distribution is “nearly”
optimal for the 2-user IC. This is consistent
with the folklore in information theory that
“Gaussian inputs are good for Gaussian
problems”. But does this continue to hold
true for IC with more users?

0.aja0a3

0.b4b,000

three users and the top user is interfered by the other two. We
consider a particular operating point, and show in the figure the
binary expansion of the signals in the deterministic approximation
of this Gaussian IC. Both transmitter 2 and transmitter 3 are send-
ing two bits above noise level at their respectively receivers. In
this example, the channels from both these transmitters to receiver
1 are stronger than their own direct channels and so the bits from
these transmitters are shifted upwards at receiver 1 relative to re-
ceiver 2 and 3. We make two observations:

¢ The two most significant bits at receiver 1 are un-usable for
transmitter 1 as long as one of the other two transmitters
send information at those levels. So if one is sending, the
other might as well send as well. This is the phenomenon of
interference alignment.

* The next three significant bits are left empty by both users 2
and 3. So now user 1 can send 3 bits on those levels.

How can we translate this picture back to the Gaussian world? A
natural strategy would be for both users 2 and 3 to use a capacity-
achieving Gaussian code on their own link. Because of the strong
channel to receiver 1, the codewords in each of the Gaussian codes
will be spaced far apart there. However, the summed codewords
will be close together. This is because the summed codewords will
be all distinct and so the size of the summed codebook is the square
of the size of each user’s codebook. This means that while the indi-
vidual interference is confined within the most significant two bits,
the aggregate interference leaks to the next three bits, making these
levels unusable for user 1. But if instead we use the same lattice
code for both users 2 and user 3, then interference alignment can be
achieved. This is because the summed codewords will remain on
the lattice. Now the space in between the codewords is preserved
for user 1 to transmit information. Thus, unlike in the two-user
case, Gaussian codes are no longer good when there are more us-
ers. Generalizing from this example, it is shown in [14] that lat-
tice codes can achieve the capacity of the many-to-one Gaussian to
within constant gap universal of the values of the channel gains.

III. Relay Networks

Consider a relay network with a single sender node who wants to
transmit information to a single destination node with the help of
a number of relay nodes in between. The received signal at a node
is a superposition of the (attenuated) signals transmitted at other
nodes plus Gaussian noise. What is the capacity, the maximum
rate of information transfer from the sender to the destination?

This problem has a very long history, buteven

+2‘ 22 g 8 gg the simplest case with a single relay node
"2 ' (the so-called relay channel) is open. The best
4182330 1 own achievable strategies were obtained

by Cover and El Gamal in 1979 [15].
If instead of Gaussian channels, the nodes
b1b. 000  are connected via noiseless, orthogonal

links, then we have a wireline network and
the capacity is given by the famous max-
flow min-cut theorem of Ford and Fulker-

0.¢6,000
Consider an example of a many-to-one
Gaussian IC in Figure 2. Here, there are
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Fig. 2 Many-to-one IC.

»P— ¢1c,. 000 son. The Gaussian problem is significantly
\r more complex due to the superposition of

the signals as well as the additive noise at
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each of the node. A natural generalization of the min-cut of wire-
line networks to general networks is the cutset bound:

C max min (XY o | Xo) )
Px,

X Q

cutset -

where () is a cut in the network (a set of nodes including the
sender) and the maximization is over all joint distributions on
the transmit signals at the nodes. I{ X, Y| X¢) is the information
flow across the cut assuming full cooperation of the nodes in £} to
send information and full cooperation of the nodes outside of () to
decode the information. In the wireline network, the cutset bound
evaluates to the minimum cut of the network and yields the ca-
pacity. In the Gaussian network, however, the cutset bound only
provides an upper bound. How tight is this bound?

In the Fall of 2006, Salman Avestimehr, Suhas Diggavi and myself
started to study this question. Fresh after the 1-bit gap result on the
2-user Gaussian IC, we naturally seek a constant-gap result for relay
networks as well. Our first observation is that for the (single) relay
channel, the decode-forward strategy proposed by Cover and El Ga-
mal in 1979 actually achieves within 1 bit/s/Hz of the cutset bound,
universally for all values of the channel gains. But what about for
general networks with more than 1 relay? It is clear that requiring
each relay to decode the entirety of the sender’s information is not the
right thing to do in general. So what to forward? How to forward?

In the work on the two-user Gaussian IC [10], we found a good
scheme and new outer bounds by drawing an approximate analogy
with the El Gamal-Costa deterministic IC. However, this analogy was
of a heuristic nature and in that work we actually never introduced a
specific deterministic channel to approximate the Gaussian IC. In the
relay work, we took this approach one step further and introduced a
specific deterministic channel model as a bridge between the Gauss-
ian and the wireline models. This allows us to leverage off insights
from the wireline network to solve the Gaussian relay problem.

One insight from our earlier discussion on interference channels is
that bits received above noise level can be approximated as clean
and bits below the noise level as useless. This insight can be con-
verted into a deterministic channel model as follows. In the Gauss-
ian model, the received signal at a relay node j is:

Yy = EhiniJFsz W; ~ N(0, 1),

where X; is the signal sent at node i and /; is the gain from node i
to node j. Since noise is normalized to be unit variance, the integer
part of the received signal can be considered as the part above
noise level. This yields the following deterministic channel:

The next step is the analysis of this deterministic network. In earlier
works, Aref [16] and Ratner and Kramer [17], had looked at deter-
ministic networks but with broadcast only and no superposition of
the signals at the nodes. They showed that a random forwarding
strategy at each relay (randomly mapping the received signal to a
transmit codeword) is sufficient to achieve the cutset bound. This
strategy is reminiscent of the random network coding strategy of
Ahlswede et al [18] for wireline networks and in fact determinis-
tic networks with broadcast only is a generalization of the wireline
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model. But in our deterministic channel model, there is superposi-
tion of signals as well. This led us to prove the following generaliza-
tion of these results to general deterministic relay networks: the rate

R= max minl(XyYq|Xq) )
PxPrr Py, ©

is achievable [19], [20]. We see that this is identical to the cutset
bound (1) except that in the maximization, the input distribution is
constrained to be independent across the nodes. For wireline and
deterministic networks with broadcast only, it is optimal to have
independent inputs at each node and (2) matches the cutset bound.
For the deterministic network derived from the Gaussian network,
we showed that this achievable rate is a constant gap from the cut-
set bound, irrespective of channel gain parameters. So not allow-
ing the correlation of inputs results only in bounded loss.

Finally, we brought back these insights to the original Gaussian
relay network. The answers to our earlier questions is now clear:
1) What to forward at each relay? The received signal quantized at
the noise level; 2) How to forward? Each relay randomly maps the
quantized received signal into a Gaussian codeword to transmit.
In [20] we showed that this strategy achieves within a constant
gap « from the cutset bound for the Gaussian network.

Among all the schemes proposed in [15], our scheme is philosophi-
cally most similar to compress-forward. There is one important
difference, however. In the compress-forward scheme discussed in
[15], the destination is required to decode the quantized signal at
the relay and then, with the help of the quantized signal and the
direct reception from the sender, decodes the sender’s message. In
our scheme, the quantized signals are never decoded anywhere. at
the relays or the final destination. Instead, the sender’s message is
decoded directly at the final destination based on all the forwarded
information. These two approaches yield identical performance on
single relay networks, but the latter approach is superior for more
than 1 relay nodes. In fact, it is not even clear how the first approach
can be naturally generalized to more than 1 relay. In recent work,
Lim et al [21] generalized our scheme from the Gaussian case to gen-
eral noisy networks and coined it “network compress-forward”.

Finally, a comment about the gap « to the cutset bound. This gap
does not depend on the values of the channel gains, but unfortu-
nately it depends on the number of nodes n in the networks. It
grows like 1 log 1, and so our result is not very good when the
network is large. Basically, each quantized signal at a relay con-
tains noise, and with increasing number of relay stages, noise gets
accumulated more and more and the performance of the scheme
degrades. An interesting open question is to either find another
scheme that has a network-size-independent gap to the cutset
bound, or find a better upper bound than the cutset bound.

IV. Source Coding

We approximate the Gaussian channel by a deterministic chan-
nel by assuming the bits of the received signal above the noise
level are completely clean and bits below are completely useless.
In a dual way, we can approximate a Gaussian lossy source coding
problem with quadratic distortion measure by viewing a source
sample X in terms of its binary expansion 0.b;b, . . ., and the goal
of the source decoder as recovering the first n most significant bits,
where 1 = 3log,d and d is the distortion requirement. Hence, the
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source encoder only has to focus on the first # bits and the lossy
problem of recover X to distortion d is replaced by a lossless prob-
lem of recovering (b, by, ...,b,) exactly. This approximation is
applied to two source coding problems below.

A. Multiple Description (MD)

A source has to be described using K descriptions, such that the
decoder that receives a subset S of the descriptions can recover the
source to within distortion ds. Given distortion requirement for
every subset S C {1, ..., K}, what are the set of rates (Ry, . . ., Rg)
needed to generate the descriptions? Let us focus on Gaussian
sources with squared error distortion. In the case of 2 descriptions,
Ozarow [22] showed that an achievable rate region by El Gamal
and Cover for general sources [23] is tight. The problem for more
than 2 descriptions is open.

For simplicity, let us focus on the symmetric MD problem, where
the same distortion d,, is required for any subset of m descriptions,
and d; < d, ... <dy The approximating lossless source coding
problem is as follows [26]. Let n; = %log d,i=1,...K. The source
Xis (b, by, ...b, ), and any decoder that receives i descriptions
have to recover by, by, . .. b,. Note that the bits that needed to be
recovered at different “levels” are nested. This lossless source cod-
ing problem had been considered before: it is called “multilevel
diversity coding” [24], [25]. The optimal coding strategy breaks
up the source into V;, Vo, ...V, where V;= (b, ,...D,) are the
additional bits in level i beyond those in level i—1, codes V; using
a (K, i) MDS code, and constructs the descriptions as shown in
Figure 3. This ensures that whenever one receives i descriptions,
V., ... V;can be recovered.

The V/’s can be thought of as successive refinement layers of the
source: V; is the base layer (most significant bits), V; are addi-
tional refinement bits, and so forth. Thus, the above lossless ap-
proximation suggests a natural strategy for the original Gaussian
MD problem: use a successive refinement code to generate layers
Vi, Vs, ... Vg, such that with V;, ...V, the source can be recon-
structed with distortion d;, and then apply multilevel diversity
coding to generate the descriptions as above. Using the successive
refinability of Gaussian sources, it is shown in [26] that this strat-
egy achieves within 1.48 bits/sample of the symmetric rate point
for any number of descriptions. A more sophisticated scheme by
Puri et al [27] has a gap of 0.92 bits/sample.

B. Distributed Lossy Source Coding

K sources Y, ...Y; are distributedly encoded at rates Ry, ... R
respectively. Using the encodings, a central decoder has to recon-
struct these sources with distortions d, . . . dg respectively. What
is the achievable rate region? In the case when the sources are
correlated Gaussian and the distortion measure is quadratic, this
problem for 2 sources was recently solved by Wagner et al [28],
building on earlier work by Oohama [29]. The optimal strategy
is Gaussian quantization of the sources followed by Slepian-Wolf
binning. The problem is wide open for three or more sources, but
progress can be made using the approximation approach.

Consider an example of 3 tree sources Yy, Yy, Y3, i.e. there exists
a Gaussian X ~ N(0,1), such that Y;=X+Z,i=1,2,3 with
Z;~ N(0, ¢7) and X, Z,, Z,, Z5 are independent. Approximately,
we can think of the Z;’s as “noises” which make the less significant
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bits of the Y; ’s independent while keep the more significant bits
identical. For example:

X=0aa30y ...,

Y; = 0.a,a,b1b, . . .,

Y, = 0.a14,a5¢1C5 - . .,

Y5 = 0.a1a0a30,d:1d, . . .,
for the case when o3 > ¢3 > 3.

In the approximating lossless problem, each encoder has to deliver
the significants bits of its Y; up to the target distortion level. But
because there is correlation (like the a, bit that appears in all of the
Y;’s in the above example), rate can be saved by only sending one
copy of each independent bit. In the lossless problem, this can be
pre-arranged by making sure each independent bit is delivered
only by one encoder. Alternatively, all the encoders can do ran-
dom binning into bins of appropriate size to remove the redun-
dancy in the encodings.

This latter strategy naturally yields a strategy for the original lossy
problem. First, each encoder does Gaussian quantization up to the
distortion requirement of its observation Y;. This in effect extract
the significant bits that the decoder needs. Then, the index of the
quantized vector is randomly binned. It is shown in [30] that this
strategy is within 2.4 bit/sample of the optimal rate region.

The strategy above is exactly the same as the Gaussian-quantize-
and-bin strategy that is optimal for the 2-source case. So what was
shown is that this strategy is within a constant gap to optimality for
tree sources. Is this strategy good for any jointly Gaussian sources?

Consider the follow example. Yy, Y,arecorrelatedand Y; = Y7 — Y5,
and our goal is to recover Y; at a certain distortion d; with encod-
ings from Y; and Y, only. We can write out the binary expansions:

Y, = 0.a,a,a50,b5b5 . . .
Y, = 0.a,a,a5¢1CC5 . . .
Y: — Y, =0.000e085 . . .
where e;=a;—b;,i=1,2,3. Suppose we want to recover Y; up

to the 5th significant bit. The Gaussian-quantize-and-bin strategy
will first yield the first 5 bits from each of the sources via Gaussian
V; = l  e—

—(3,3) no coding | L} -
V2 |_ (3,2) MDS code %f/{;‘!//ﬁ m W

! v —
repetition c ‘ &\0(\\ ‘ &\0(\@ ‘ &\0(\5
Gﬂ\Q GK\Q G(\Q

Vd Vd o¢°

Fig. 3 Multi-level coding.
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quantization, and use Slepian-Wolf binning to remove the redundan-
cy in the encodings. So in effect, only one copy of a;, a,, a; are sent.

But this is still wasteful! The decoder does not actually need any
copy of ay, ay, as; it only needs by, by, c;, ¢, to compute the difference
bits e, e,. So what is needed is a quantizer for Y, to extract only the
less significant bits by, b, and a quantizer for Y, to extract c;, c;. A
(random) Gaussian quantizer will not do; the five significant bits
are all mixed up in the representation. Rather, what is needed is
a lattice quantizer, consisting of a coarse lattice representing the
most significant bits ( a,, a,, a3 ) and a fine lattice representing the
less significant bits ( by, b, for Yy, and ¢y, ¢, for Y, ). Each encoder
only needs to send the fine lattice index of the quantized vector.
This scheme was proposed by Krithivasan and Pradhan [31] and
shown to be within 1 bit/sample to optimality by Wagner [32].

V. Conclusion

Traditionally, exact analysis of Gaussian network information theory
proceeds by finding a good Gaussian scheme and then proving a
converse using an extremal information inequality for which Gauss-
ian is tight. This approach is problematic because: 1) we don’t have
too many such inequalities in our arsenal (basically entropy-power
inequality and its variants) and inventing new ones is difficult; 2)
Gaussian schemes may be very far away from being optimal (as we
saw); 3) the analysis is very much tied to the details of the Gaussian
noise/source model. The approximation approach tries to circum-
vent these difficulties. Moreover, it has the added bonus of connect-
ing Gaussian problems with other problems such as network coding
and lossless source coding, and thus helps to shed more light into the
structure of the network information theory field as a whole.
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