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5.7 Filters

A filter of impulse response h is a physical device that when fed the input
waveform x produces the output waveform h + x. The impulse response h is
assumed to be a real or complex signal, and it is tacitly assumed that we only feed
the device with inputs x for which the convolution x * h is defined.?

Definition 5.7.1 (Stable Filter). A filter is said to be stable if its impulse response
is integrable.

Stable filters are also called bounded-input /bounded-output stable or BIBO
stable, because, as the next proposition shows, if such filters are fed a bounded
signal, then their output is also a bounded signal.

Proposition 5.7.2 (BIBO Stability). If h is integrable and if x is a bounded
Lebesgue measurable signal, then the signal x x h is also bounded.

Proof. If the impulse response h is integrable, and if the input x is bounded by
some constant o, then (5.8a) and (5.8b) are both satisfied, and the boundedness
of the output then follows from (5.8¢). O

Definition 5.7.3 (Causal Filter). A filter of impulse response h is said to be causal
or nonanticipative if h is zero at negative times, i.e., if

h(t) =0, t<0. (5.13)

Causal filters play an important role in engineering because (5.13) guarantees that
the present filter output be computable from the past filter inputs. Indeed, the
time-£ flter output can be expressed in the form

(xx h)() = j:m Sy =) dr
= /t z(7) h(t — 7)d7, h causal,

where the calculation of the latter integral only requires knowledge of z(r) for
7 < t. Here the first equality follows from the definition of the convolution (5.2),
and the second equality follows from (5.13).

5.8 The Matched Filter

In Digital Communications inner products are often computed using a matched
filter. In its definition we shall use the notation (5.1).

2This definition of a filter is reminiscent of the concept of a “linear time invariant system.”
Note, however, that since we do not deal with Dirac's Delta in this book, our definition is more
restrictive. For example, a device that produces at its output a waveform that is identical to its
input is excluded from our discussion here because we do not allow h to be Dirac’s Delta.
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Definition 5.8.1 (The Matched Filter). The matched filter for the signal ¢ is
a filter whose impulse response is ¢*, i.e., the mapping

£ 8% (~t). (5.14)

The main use of the matched filter is for computing inner products:

Theorem 5.8.2 (Computing Inner Products with a Matched Filter). The inner
product (u, @) between the energy-limited signals u and ¢ is given by the output at
time t = 0 of a matched filter for ¢ that is fed u:

(u,¢) = (ux¢*)(0), u,¢€Ls. (5.15)

More generally, if g: t — ¢(t —to), then (u,g) is the time-ty oulput corresponding
to feeding the waveform u to the matched filter for ¢:

[ w0 -t = (e d)w) (5.16)

Proof. We shall prove the second part of the theorem, i.e., (5.16); the first follows
from the second by setting t; = 0. We express the time-to output of the matched
filter as:

o0

(ux 5‘](&0) —-/ u(7) gg'(tg—r) dr

-0

o0
= / u(t) ¢* (7 — to) dr,

—00
where the first equality follows from the definition of convolution (5.2) and the
second from the definition of ¢* as the conjugated mirror image of ¢. O

From the above theorem we see that if we wish to compute, say, the three inner
products (u,g;), (u,g2), and (u,gs) in the very special case where the functions
g1, &2, g3 are all time shifts of the same waveform ¢, i.e., when g;: t — ¢(t — 1),
g2 t— ot —t3), and ga: t — &(t — t3), then we need only one filter, namely, the
matched filter for ¢. Indeed, we can feed u to the matched filter for ¢ and the
inner produets (1, g1), (u,g2), and (u, g3) simply correspond to the filter’s outputs
at times 1, t2, and t3. One circuit computes all three inner products. This is so
exciting that it is worth repeating:

Corollary 5.8.3 (Computing Many Inner Products using One Filter). If the
energy-limited signals {g; }}=1 are all time shifts of the same signal ¢ in the sense
that

gt dlt—t;), =1...],

and if u is any energy-limited signal, then all | inner products

(u'gj>1 j:liﬁ"pl
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can be computed using one filter by feeding u to a matched filter for ¢ and sampling
the output at the appropriate times ty,..., 1;:

(u,g) = (ux¢*)(t;), J=1,...,J. (5.17)

5.9 The Ideal Unit-Gain Lowpass Filter

The impulse response of the ideal unit-gain lowpass filter of cutoff frequency W,
is denoted by LPFyy,(-) and is given for every W, > 0 by?

2W sin(2xWet) iFt % 0
LPFyw.(t) £ > SRk " teR. 1
we(t) {2w¢ ift=0, ' ° (5.18)
This can be alternatively written as
LPFw, (t) = 2W, sinc(2W,t), tER, (5.19)
where the function sinc(-) is defined by*
sin(wg) if 5 ?é 0
sinc(g) 2{ € ' £€eR. 5.20
O Lelg 6 (520)

Notice that the definition of sinc(0) as being 1 makes sense because, for very small
(but nonzero) values of £ the value of sin(§)/€ is approximately 1. In fact, with
this definition at zero the function is not only continuous at zero but also infinitely
differentiable there. Indeed, the function from C to C
{J—l”i“ 2 if 2 #0,
Z—

wz
1 otherwise,

is an entire function, i.e., an analytic function throughout the complex plane.

The importance of the ideal unit-gain lowpass filter will become clearer when we
discuss the filter's frequency response in Section 6.3. It is thus named because
the Fourier Transform of LPFyy,_(-) is equal to 1 (hence “unit gain”), whenever
|f| < W,, and is equal to zero, whenever |f| > W,. See (6.38) ahead.

From a mathematical point of view, working with the ideal unit-gain lowpass filter
is tricky because the impulse response (5.18) is not an integrable function. (It
decays like 1/t, which does not have a finite integral from ¢t = 1 to t = 00.) This
filter is thus not a stable filter. We shall revisit this issue in Section 6.4. Note,
however, that the impulse response (5.18) is of finite energy. (The square of the
impulse response decays like 1/t2 which does have a finite integral from one to
infinity.) Consequently, the result of feeding an energy-limited signal to the ideal
unit-gain lowpass filter is always well-defined.

Note also that the ideal unit-gain lowpass filter is not causal.

3For convenience we define the impulse response of the ideal unit-gain lowpass filter of cutoff
frequency zero as the all zero signal. This is in agreement with (5.19).
4Some texts omit the 7's in (5.20) and define the sinc(-) function as sin(£)/£ for £ # 0.



