
In Proceedings of the 34th International Symposium on Microarchitecture, December, 2001

Reducing Power with Dynamic Critical Path Information

John S. Seng Eric S. Tune Dean M. Tullsen

Dept. of Computer Science and Engineering
University of California, San Diego

La Jolla, CA 92093-0114
fjseng,etune,tullseng@cs.ucsd.edu

Abstract

Recent research has shown that dynamic information re-
garding instruction criticality can be used to increase mi-
croprocessor performance. Critical path information can
also be used in processors to achieve a better balance of
power and performance. This paper uses the output of a
dynamic critical path predictor to decrease the power con-
sumption of key portions of the processor without incurring
a corresponding decrease in performance. The optimiza-
tions include effective use of functional units with different
power and latency characteristics and decreased issue logic
power.

1. Introduction

Power consumption is an increasingly limiting factor in
the design process of microprocessors. Higher clock rates
and increased device count directly result in more dynamic
power consumption. While the increased clock rates are
partially offset by reductions in Vdd, trends still point to-
ward increasing dynamic power consumption. Trends in
process technology also indicate that static power consump-
tion is increasing, both in absolute terms, and in proportion
to dynamic power consumption. This paper presents micro-
architectural techniques to reduce both dynamic and static
power consumption. Performance losses are minimized by
applying these techniques intelligently to individual instruc-
tions based on information about their criticality. This re-
sults in better ratios of performance to power consumption
than could be achieved without the use of this information.
The particular applications of this technique that we present
in this paper reduce power in the functional units and in the
instruction issue window.

Recent research has demonstrated critical instructions
can be identified during execution by the use of a critical
path predictor [9, 21]. A critical path predictor predicts in-
structions which are believed to be on the critical path of
execution — that is, those instructions whose execution la-
tency constrain the overall speed of the program.

This paper demonstrates that critical path information
can be used in conjunction with power-conscious micropro-
cessor structures to increase the execution efficiency (the
performance/power ratio) of a microprocessor. Dynamic

critical path prediction allows the processor to identify in-
structions which require aggressive handling in order to
maintain a high overall program execution rate, and which
instructions (the non-critical instructions) do not need such
aggressive handling. We can send the latter instructions
through resources which are optimized for power rather
than latency with little impact on performance. Thus, sec-
tions of the processor can be designed with a circuit style
that utilizes less dynamic power and with higher threshold
voltage transistors, resulting in considerable power savings.

In this research we demonstrate two such power opti-
mizations that exploit information provided by a critical
path predictor. For this research we use the critical path
predictor described by Tune, et al [21].

Typically, integer functional units perform most opera-
tions in a single cycle. In order to perform these operations
within one cycle, the circuitry of the functional unit may be
designed with wider transistors, with a faster (higher power)
circuit style, and/or with a reduced threshold voltage to al-
low high switching speed. The cost in power can be signif-
icant. If we can remove the single-cycle constraint on the
design of some functional units, considerable power savings
can be attained. To avoid a corresponding reduction in per-
formance, only non-critical instructions should use a slower
functional unit. Additionally, many functional units, such
as adders, admit to many different designs. When the cycle
time constraint is relaxed, it may be possible to use a de-
sign with fewer transistors, which also results in less static
and dynamic power consumption. We show that the nega-
tive performance impact of replacing most of the functional
units with slower versions can be minimized by utilizing a
critical path predictor, while still providing significant func-
tional unit power reductions.

The combination of the increasing processor-memory
gap and increasing processor issue width dictates large
instruction queues (or large numbers of reservations sta-
tions) to reveal more instruction-level parallelism (ILP).
The power consumed by an issue unit can be reduced by
reducing the size of the queue, by reducing the fraction of
the queue over which the scheduler must search for issuable
instructions, and by the number of functional units served
by the queue. Our designs do all these things. In order to
offset the reduced performance from a constrained instruc-



tion window, instructions are handled differently based on
their criticality.

Power is not only a significant concern in mobile envi-
ronments, where whole-chip power dissipation is the dom-
inant metric. It is also a concern in high-performance pro-
cessors, where power density (the power consumed per
given area) becomes a limiting design factor. The optimiza-
tions in this paper will reduce whole-chip power, but our
primary focus is on hot-spot elimination. We demonstrate
techniques which increase the performance/power ratio of
two functional blocks likely to exceed power density limits
— the execution units and instruction issue mechanism.

This paper is organized as follows. Section 2 provides
some background information on the critical path of a pro-
gram. Section 3 discusses related studies. Section 4 de-
scribes the simulation methodology and tools. Section 5
presents power optimizations enabled by the use of a criti-
cal path predictor. Section 6 concludes.

2. Background

Modern, wide issue, out-of-order processors are not con-
strained to execute instructions in program order. The exe-
cution time is constrained by the data-dependences between
instructions, and by constraints induced by processor-
specific attributes. Not all instructions impact the execution
time of the program. Those that do constitute the critical
path of execution, and are typically only a fraction of all in-
structions. A critical path prediction which indicates each
instruction’s likely criticality helps us in two ways, for the
purposes of this research. We can retain the high perfor-
mance of the processor by ensuring critical instructions use
only fast resources. We can decrease power consumption by
routing non-critical instructions through power-optimized
circuits which may have longer latency.

Previous work described Critical Path Prediction for dy-
namically identifying instructions likely to be on the critical
path, allowing various processor optimizations to take ad-
vantage of this information. Tune, et al. [21] introduced the
concept, observing dynamic heuristic events in the pipeline
which are shown to be highly correlated with instruction
criticality. A critical path buffer then predicts future criti-
cality based on past behavior. Fields, et al., [9] proposed a
predictor which passes tokens to more explicitly track de-
pendence chains. In this research, we utilize a variant of
the QOLD predictor from [21] primarily because of its sim-
plicity. It adds almost no complexity to the core of the pro-
cessor, which is important in a power-conservative design.
However, the techniques shown in this research would adapt
easily to a different critical path predictor.

The QOLD predictor marks instructions which repeat-
edly reach the bottom of the instruction scheduling window,
indicating that they have dependences which are satisfied

later than any instruction which precedes them in the in-
struction stream. The predictor utilizes a table of saturating
counters, like a branch predictor, to predict future criticality
based on past behavior.

By using a dynamic predictor rather than a static predic-
tor [20], the technique uses no instruction space, adapts to
the actual execution rather than depending on profiling with
other input, and adapts to changes in the dynamic behav-
ior of the program. The last point is important, because the
dynamic behavior does change as critical-path based opti-
mizations are applied, and the predictor recognizes those
changes and constantly adjusts the critical path predictions
accordingly.

When optimizing for power, we can utilize critical path
information by sending as many instructions as possible
through low power structures, while reserving fast (high
power dissipation) structures for those instructions along
the critical path. If we can apply power reduction tech-
niques and still protect the critical path, we can signifi-
cantly increase the ratio of performance to power for those
structures in the processor. In order for this to be effec-
tive, we must have multiple paths through the processor,
some of which are designed for high performance, others
optimized for low power. In modern processors, nearly
all paths are optimized for high performance, creating a
heavy dependence on fast-switching, leaky transistors. This
research demonstrates techniques that make it possible to
significantly reduce the use of power hungry transistors.
We specifically model two such techniques in this paper,
reduced-speed functional units and specialized instruction
queues, but we believe that several other opportunities ex-
ist.

3. Related Work

The previous section described the critical path predic-
tors proposed by Tune, et al. [21] and Fields, et al., [9].
This research uses a predictor proposed by [21], but the ac-
tual predictor used is less important than the fact that the
prediction can be used to improve the power efficiency of
the processor.

Pyreddy and Tyson [15] present research on how proces-
sor performance is impacted when dual speed pipelines are
used for instruction execution. That paper also uses critical-
ity heuristics to mark and send instructions through execu-
tion paths with varying latencies. The heuristics used in that
work are based on those in [21], but utilize a profile based
method for marking instructions, whereas this work utilizes
a run-time mechanism.

Casmira and Grunwald [8] present a different measure of
instruction criticality (or non-criticality). They define slack
as the number of cycles than an instruction can wait before
being issued and becoming critical. That paper lists possible



uses for power reduction but does not provide any further
study.

Srinivasan et al. [17] developed heuristics for finding
critical load instructions. They proposed hardware for find-
ing those critical load instructions. Therefore, we would ex-
pect that their predictor would not perform well in conjunc-
tion with the power optimizations described in this paper,
compared to a predictor which considers all instructions.

Bahar et al. [1] measured the criticality of instruction
cache misses based on the number of instructions in the out-
of-order portion of the pipeline. On an instruction cache
miss, the fills were placed in different parts of the memory
hierarchy depending on whether they were critical. They
observed an improvement in performance and a reduction
in energy.

Attempts to minimize functional unit power via micro-
architectural techniques were described in [3]. The research
in that paper exploits the fact that the sizes of operands are
often less than 64 bits, the size of the available functional
units.

Several architecture-level power models have been de-
veloped recently for use in architecture performance/power
research; these include: Wattch[5], SimplePower [22], and
the Cai-Lim model [7, 16]. The work presented in this paper
is based parts on the power model described in [5].

An additional work which presents research based on per
instruction biases to reduce power consumption is [10]. In
that work, biases are placed against more incorrectly specu-
lated instructions to limit the overall amount of speculation
in the processor. This work presents research which places
biases on a per-instruction basis based on the criticality of
an instruction instead of its speculation history.

Some other micro-architectural studies have targeted
power consumption and thermal limitations but at the full-
chip level. Dynamic thermal management [4, 11, 16] man-
agement techniques recognize when the entire chip (or pos-
sibly particular regions) have exceeded allowable thermal
limit, and slow down the entire processor until power con-
sumption is reduced. Our techniques are intended to target
(at design-time) particular units with high power density.

4. Methodology

Simulations for this research were performed with the
SMTSIM simulator [19], used exclusively in single-thread
mode. In that mode it provides an accurate model of an out-
of-order processor executing the Compaq Alpha instruction
set architecture. Most of the SPEC 2000 integer bench-
marks were used to evaluate the designs. All of the tech-
niques modeled in this paper could also be applied to the
floating point functional units and floating point applica-
tions, but for this research we chose to demonstrate them
on the integer execution units. All simulations execute 300
million committed instructions. The benchmarks are fast

Benchmark input Fast forward
(millions)

art c756hel.in 2000
crafty crafty.in 1000
eon kajiya 100
gcc 200.i 10
gzip input.program 50

parser ref.in 300
perlbmk perfect.pl 2000
twolf ref 2500
vortex lendian1.raw 2000
vpr route 1000

Table 1. The benchmarks used in this study, in-
cluding inputs and fast-forward distances used to
bypass initialization.

forwarded (emulated but not simulated) a sufficient distance
to bypass initialization and startup code before measured
simulation begins. The benchmarks used, their inputs, and
the number of instructions fast forwarded is shown in Ta-
ble 1. In all cases, the inputs were taken from among the
reference inputs for those benchmarks.

For the instruction queue and functional unit power sim-
ulations, the power model used is the Wattch power model
from [5]. The model is modified to include leakage current
as described later in this section and is incorporated into the
SMTSIM simulator. This combination enables the tracking
of power consumption by functional block on a cycle-by-
cycle basis, including power used by wrong-path execution
following mispredicted branches.

For the initial simulations regarding the functional unit
power, the following power estimation technique is utilized.
The total power consumption is separated into 2 compo-
nents: Pdynamic and Pstatic.
Pdynamic represents the dynamic power portion of the

total power consumed by the logic. This is the power used
in charging and discharging input and output capacitances
and is proportional to the switching activity of the circuit.

In order to model the effect of using 2 different circuit
speed implementations for fast (standard speed) and slow
functional units, the fast functional unit is assigned a base-
line dynamic power consumption value and the reduced
speed power consumption is scaled down by a ratio. In
the base case, the ratio of dynamic power consumption for
a slow functional unit to a fast unit is 0.8. This ratio ex-
ists because of the reduced timing requirements placed on
the slower functional unit circuitry. Because of the reduced
amount of computation required per cycle, slower circuit
styles may be used [2] which consume less power. Higher
threshold transistors can also reduce the dynamic power
consumed[23]. In addition, transistor sizing may also be
used to reduce the dynamic component of power consump-
tion. There are many factors that would go into determining
the actual ratio of dynamic power used by the two designs,



Parameter Value
Fetch bandwidth 8 instructions per cycle
Functional Units 3 FP, 6 Int (4 load/store)

Instruction Queues 64-entry FP, 64-entry Int
Inst Cache 64KB, 2-way, 64-byte lines
Data Cache 64KB, 2-way, 64-byte lines

L2 Cache (on-chip) 1 MB, 4-way, 64-byte lines
Latency (to CPU) L2 18 cycles,

Memory 80 cycles
Pipeline depth 8 stages

Min branch penalty 6 cycles
Branch predictor 4K gshare

Instruction Latency Based on Alpha 21164

Table 2. The processor configuration.

including the aggressiveness of the original design; thus, we
will investigate the impact over a range of reasonable ratios.
No single ratio would be appropriate for all readers. How-
ever, we feel the default ratio of 0.8 used for later results
represents a conservative estimate.
Pstatic is the static power component of total power con-

sumption. For the fast functional units, lower threshold
voltages are typically used resulting in higher leakage cur-
rent. As a baseline value, static power consumption for
the fast functional units is modeled as 10% of of the dy-
namic power consumption (the power consumed when the
unit is active). This value is for a .1 micron feature size
process [18].

For the slow functional unit, we assume that static power
consumption is reduced by a factor of two, to 5%. This
value is conservative since sub-threshold leakage current
scales exponentially with decreasing threshold voltage [6];
thus, a slight sacrifice in switching speed can greatly reduce
sub-threshold leakage current.

Details of the simulated processor model are given in Ta-
ble 2. The processor model simulated is that of an 8-fetch
8-stage out-of-order superscalar microprocessor with 6 in-
teger functional units. The instruction and floating-point
queues contain 64 entries each, except when specified oth-
erwise. The simulations model a processor with full in-
struction and data caches, along with an on-chip secondary
cache.

The critical path predictor is a 64K-entry table of satu-
rating counters updated according to the QOLD heuristic,
as described in [21]. This technique proved to be effec-
tive in performance-based optimizations, and also outper-
formed the other heuristics for our power-based optimiza-
tions. The 64K-entry table would not necessarily be the best
choice for a power-conscious design, but allows us to ini-
tially compare these techniques ignoring the issues of con-
tention. However, Section 5.3 shows that much smaller ta-
bles give nearly identical performance. The default counter
threshold at which instructions are marked as critical is set
to 5 with an instruction marked as critical incrementing the
counter by one, and non-critical instructions decrementing
by one. Thus the counters can be as small as 3 bits.

The primary metric utilized in this paper is execution
efficiency for particular microprocessor structures. This
metric is equal to the performance (in instructions per
cycle) divided by the power consumed by that structure.
This does not necessarily correspond to chip-level per-
formance/energy ratios which are important in a battery-
conservation environment. However, it does reflect the use-
fulness of a technique in improving the performance/power
density ratio for a functional block which is a potential hot
spot. This metric is appropriate assuming the power density
of the targeted structure is a constraint on the total design
(and is similar in spirit to a cache performance study that
assumes the cache sets the cycle time of the processor [12]).
In that scenario, the optimization which has the best perfor-
mance to component power ratio, and reduces power den-
sity to acceptable levels, would represent the best design.

5. Optimization

This section examines two optimizations which exploit
information available from a critical path predictor. First, it
directs the use of asymmetric functional units which differ
in speed and power consumption. Second, it simplifies in-
struction scheduling by splitting the critical and non-critical
instructions into different issue queues and simplifying the
critical queue, or possibly both queues.

5.1. Low Power Functional Units

Functional units are likely to be designed with fast,
power hungry devices so that they meet cycle time require-
ments. If we remove the requirement that all functional
units need to be fast, we can reduce our reliance on high-
power transistors. This section describes how critical path
information can be used to determine where to send instruc-
tions when functional units of different power consump-
tion (and also latency) are present. Non-critical instructions
should be able to tolerate a longer execution latency with-
out a corresponding slowdown in the execution of the over-
all program. This optimization exploits the tradeoff that is
available to circuit designers - that of power consumption
versus execution speed. In these experiments, we assume
the processor has both standard speed functional units and
reduced speed functional units, which we will refer to as
fast and slow functional units for simplicity. The fast func-
tional units are assumed to execute most integer operations
in a single cycle, while the slow functional units perform
operations in two cycles. We assume that the slow units are
still pipelined, so that we can sustain the same issue rate.

Each fetched instruction receives a 1-bit critical-path
prediction, which is carried with the instruction as long as
it might be needed – in this case, up until issue. The use of
asymmetric functional units can significantly complicate in-
struction scheduling (and use more power) if the assignment



0

0.5

1

1.5

2

2.5

3

3.5

ar
t 

cra
fty

 
eo

n 
gc

c 
gz

ip 

pa
rse

r 

pe
rlb

mk
tw

olf
 

vo
rte

x 
vp

r 

av
er

ag
e

IP
C

0fast/6slow 1fast/5slow
2fast/4slow 6fast/0slow

Figure 1. Performance when varying the number of
fast and slow functional units.

to units is done flexibly at scheduling time. This is because
the two scheduling decisions, that of the fast units and that
of the slow units, become dependent on each other. Instead,
we take an approach used by the Alpha 21264 [13] with
their clustered functional units, and “slot” an instruction for
a functional unit type before dispatch into the instruction
queue. Thus critical path instructions are slotted to the fast
functional units, and non-critical instructions are slotted to
the slow functional units. Once slotted, an instruction must
issue to the functional unit type it is assigned to.

Figure 1 shows the performance with various combina-
tions of fast and slow integer functional units. In all cases
the total number of units is 6. These results show the impor-
tance of using the critical path predictions. In most cases,
over half the performance difference between the 0-fast re-
sults and the 6-fast results is achieved with just a single fast
functional unit by slotting instructions based on the criti-
cal path predictions. In general, critical path prediction al-
lows us to prevent heavy drops in performance, relative to
the baseline of 6 fast functional units. Gzip has the biggest
difference between the 1-fast FU result and the baseline at
18%. The average difference is 8.1%. If the functional units
are a potential hot spot, we may be willing to take that loss
if there is a correspondingly greater reduction in power.

Figure 2 confirms that this is true. It gives the ratio of
performance (IPC) to power for the functional units, as an
average over all benchmarks. Because the actual power
consumed by the functional units will vary widely with how
aggressively they are designed — how close they are to the
chip’s critical timing path, and how much high-speed cir-
cuitry is used — this figure plots the power/performance
for five different ratios of fast-unit dynamic power to slow-
unit dynamic power for an active unit. Even when there is

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0.5 0.6 0.7 0.8 0.9

Ratio of slow unit dynamic power to fast unit dynamic power

IP
C

 to
 fu

nc
tio

na
l u

ni
t p

ow
er

 r
at

io

1fast/5slow

2fast/4slow

6fast/0slow

Figure 2. The ratio of IPC to functional unit power
for various FU configurationsand various assump-
tions about the power dissipation of the slow units.

very little difference in the dynamic power, the difference in
static power still more than compensates for the lost perfor-
mance due to the slow functional units. All further results
will assume a ratio of 0.8.

One artifact of slotting instructions to functional units
is that load imbalance (too many instructions being slotted
to either the critical or non-critical units, while the others
sit idle) can also reduce performance significantly. Thus,
we add an explicit load-balance technique to ensure that the
processor does not degrade too heavily from the static par-
titioning of the functional units. The load balancing mecha-
nism utilizes a shift register, which holds the criticality pre-
diction of the previous 60 instructions, allowing us to track
a moving average of the number of predicted critical in-
structions. The mechanism attempts to maintain this value
between two experimentally determined thresholds (which
are approximately the ratio of fast functional units to total
functional units). If an incoming instruction will cause the
moving average to exceed one of the thresholds, its critical-
ity prediction will be inverted. This mechanism improves
performance by 7% on the average over the critical path
predictor alone, which is reflected in the results shown here.
The same critical path predictor may be conservative or lib-
eral depending on the specific characteristics of an appli-
cation, so some load-balancing mechanism is important in
achieving consistently good results. We will utilize the 1-
fast, 5-slow configuration in most of the remaining results
in this paper.

5.2. In-order Issue of Critical Instructions

Given that the processor is assigning instructions to a
functional unit type prior to issue, it is not necessary that



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

critical non-critical

0 1 2 3 4 5 60 1 2 3 4 5 6

number of instructions issued

re
la

tiv
e 

fr
eq

ue
nc

y

Figure 3. The average number of instructions
issued per cycle for an out-of-order instruction
queue.

they even share the same scheduling resource. There is an
immediate advantage to dividing up the scheduling. The im-
plementation complexity for scheduling increases with the
number of entries [14], so multiple smaller queues can be
more efficient than one large window. But the advantages
go beyond that. Once we split the critical and non-critical
instructions, we find that their scheduling needs are quite
different.

Figure 3 is a histogram of the number of each type of in-
struction that get scheduled each cycle, assuming an out-of-
order scheduler with symmetric functional units. This fig-
ure demonstrates that for these applications the critical path
is typically a very serial chain of dependent instructions,
and there are rarely even two instructions that are available
to schedule in parallel. This is further confirmed by Fig-
ure 4. This figure presents the results of performance simu-
lation assuming two partitioned instruction queues (critical
and non-critical instruction queues), assuming either could
be in-order issue or out-of-order issue, showing all possi-
ble permutations. It shows that the critical instructions are
almost completely insensitive to the difference between in-
order issue and out-of-order issue, while the other instruc-
tions are extremely sensitive.

This is not because the instructions in the non-critical
queue are more important, but rather because placing a se-
rial constraint on the non-critical instructions creates long
critical path sequences where previously there were none.
Looked at another way, it is out-of-order scheduling that
makes most of those instructions non-critical in the first
place, and removing that optimization returns many of them
to the critical path.

0

0.5

1

1.5

2

2.5

3

3.5

ar
t 

cr
af

ty 
eo

n 
gc

c 
gz

ip 

pa
rs

er
 

pe
rlb

m
k

tw
olf

 

vo
rte

x 
vp

r 

av
er

ag
e

IP
C

c_in/nc_in c_out/nc_in c_in/nc_out c_out/nc_out

Figure 4. Sensitivity of critical and non-critical
instructions to out-of-order vs. in-order issue.
c in and c out represent when critical instructions
are issued in-order and out-of-order, respectively.
nc in and nc out denote how non-critical instruc-
tions are issued.

Splitting the critical and non-critical instructions pro-
vides three opportunities for power reduction, two of which
are explored here. First, splitting the one queue into smaller
queues reduces the complexity of selection. Second, we can
further simplify the critical queue by allowing it to issue
in-order. Third, we could also reduce the speed of the out-
of-order queue, giving it two cycles to make a (pipelined)
decision, rather than one. In the worst-case, this would add
a cycle to the latencies seen by instructions in that queue.
This last optimization is not explored in this paper, but the
performance effect would be similar to that shown in Fig-
ure 1.

An in-order queue utilizes less power overall because of
the relaxed issue requirement. In fact, when coupled with
a single fast functional unit, the scheduler need only visit a
single instruction to make a scheduling decision.

There is an additional benefit to splitting the queues and
functional units in this manner. Since the fast functional
units are bound to the in-order queue and the slow func-
tional units are bound to the out-of-order queue, the higher
power structures (out-of-order queue and fast functional
units) are not placed together. This will reduce power den-
sity problems even further when both functional blocks are
problematic.

Figure 5 confirms that there is little performance lost
by using smaller, partitioned queues, examining two differ-
ent partitionings of the original 64-entry queue, and assum-
ing the asymmetric execution units of the previous section.
The performance difference in IPC between the partitioned



0

0.5

1

1.5

2

2.5

3

ar
t

cra
fty eo

n
gc

c
gz

ip

pa
rs

er

pe
rlb

m
k

tw
olf

vo
rte

x
vp

r

av
er

ag
e

IP
C

64 o-o-o queue
- 1fast/5slow

48 o-o-o queue/
16 inorder -
1fast/5slow

32 o-o-o queue/
32 inorder -
1fast/5slow

Figure 5. The effect on performance when vary-
ing the queue size. The designs modeled have
either a single, conventional instruction queue, or
a split instruction queue with an in-order critical-
instruction queue, and a out-of-order non-critical
instruction queue.

queues (with the in-order critical queue) and a single com-
plex queue is much less than the effect seen due to the slow
functional units. For example, the difference between two
32-entry queues and a 64-entry queue is only 2.5%.

Figures 6, 7, and 8 show the difference in execution ef-
ficiency for various combinations of queue sizes, queue or-
ganizations, and functional unit speeds on functional unit
efficiency, queue efficiency, and combined efficiency, re-
spectively. Each of the results have been normalized to the
results for the 64 entry out-of-order queue simulations. Fig-
ure 6 shows the functional unit impact. While it is not sur-
prising that queue organization has little impact on execu-
tion unit power, the advantage of having mostly slow func-
tional units is clear across a variety of organizations. In the
cases where the size of the queue does effect the functional
unit power ratio, this occurs because of the effect of instruc-
tion queue size and organization on speculation. When the
instruction queue size is reduced and some of the instruc-
tions are issued in-order, the total number of wrong path in-
structions that are executed is reduced as well. This reduces
the average power consumed by the functional units.

The effect on the queues is seen in Figure 7 where we see
a clear advantage to the partitioned queues. The best ratio
in this graph is provided by a 32-entry non-critical queue
and a 32-entry critical queue, with an average increase of
over 33% in performance to power consumption. The 32-
entry critical queue does not fill often, but the cost of the
large queue is low since the issue mechanism is in-order,
and it prevents pipeline conflicts which might occur when a
smaller critical-instruction queue would become full.

The combined effect on the functional units and the
queues is seen in Figure 8. The best combined efficiency
comes from the combination of the best functional unit con-
figuration and the best queue configuration. In this case, a
32-entry in-order queue with five slow functional units and
a 32-entry out-of-order queue with one fast functional unit
clearly excels, proving more than a 20% gain in efficiency
over the baseline design.

The combination of split queues and liberal use of slow
functional units can produce a significant decrease in power,
more than proportional to the decrease in IPC, in the very
core of the processor where power density is often of great-
est concern.

5.3. Saving Energy With Critical Path Prediction

The focus of this paper is on power reduction of pro-
cessor hot spots. However, these optimizations will also be
useful in an energy-constrained (e.g., mobile) environment
as they each will reduce whole-chip energy usage, as would
other optimizations that might also use the critical-path pre-
dictor. In a battery-constrained environment, however, we
would need to evaluate these optimizations somewhat dif-
ferently.

For this paper, where the primary focus is power den-
sity in high-performance processors, we focus on the perfor-
mance/power ratio for individual blocks, which is appropri-
ate when the power density of a unit becomes a design bot-
tleneck. For energy, we would need to look at whole-chip
energy. In that case, the performance/energy gains would
be less than the performance/power gains shown here. This
is because the energy gains would be somewhat diluted by
the energy of the rest of the processor not affected by the
optimization.

Second, we would need to ensure that the sum total of the
reductions enabled by the critical path predictions was not
negated by the cost of the predictor itself. When focusing
on power density constraints, it is only necessary that it not
become a hot spot. Of course, the less power and energy it
uses, even in high-performance applications, the better.

The critical path predictor need not be a high-power
block. Like other memory-based structures, power density
is not likely to be a problem because the fraction of devices
activated each cycle is low.

We use a relatively large predictor for the results in this
paper, but Figure 9 shows that it need not be large to provide
high-quality predictions. This graph shows the average per-
formance over the benchmarks we simulated when varying
the critical path buffer size. A 1K predictor provides nearly
equivalent performance to a 64K, but still significantly out-
performs no predictor (for the size zero results, a random
predictor was used).

Although the structure is read and updated multiple
times per cycle, that also need not translate into complexity



0

0.2

0.4

0.6

0.8

1

1.2

1.4

ar
t

cr
af

ty
eo

n
gc

c
gz

ip

pa
rs

er

pe
rlb

m
k

tw
olf

vo
rte

x
vp

r

av
er

ag
e

IP
C

 t
o

 f
u

n
ct

io
n

al
 u

n
it

 p
o

w
er

 r
at

io

alu 64 o-o-o queue -
6fast/0slow

alu 48 o-o-o queue -
6fast/0slow

alu 32 o-o-o queue -
6fast/0slow

alu 64 o-o-o queue -
1fast/5slow

alu 48 o-o-o/ 16
inorder - 1fast/5slow

alu 32 o-o-o/ 32
inorder - 1fast/5slow

Figure 6. The ratio of IPC to functional unit power for various FU and queue configurations.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

ar
t

cr
af

ty
eo

n
gc

c
gz

ip

pa
rs

er

pe
rlb

m
k

tw
olf

vo
rte

x
vp

r

av
er

ag
e

IP
C

 t
o

 in
te

g
er

 q
u

eu
e 

p
o

w
er

 r
at

io

64 o-o-o
queue -
1fast/5slow

48 o-o-o/ 16
inorder -
1fast/5slow

32 o-o-o/ 32
inorder -
1fast/5slow

Figure 7. The ratio of IPC to queue power for various queue configurations.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

ar
t

cr
af

ty
eo

n
gc

c
gz

ip

pa
rs

er

pe
rlb

m
k

tw
olf

vo
rte

x
vp

r

av
er

ag
e

IP
C

 t
o

 f
u

+
q

u
eu

e 
p

o
w

er
 r

at
io

total 64 o-o-o queue
- 6fast/0slow

total 48 o-o-o queue
- 6fast/0slow

total 64 o-o-o queue
- 1fast/5slow

total 32 o-o-o queue
- 6fast/0slow

total 48 o-o-o/ 16
inorder - 1fast/5slow

total 32 o-o-o/ 32
inorder - 1fast/5slow

Figure 8. The ratio of IPC to functional unit plus queue power for various FU and queue configurations.



0

0.5

1

1.5

2

2.5

0 1 2 4 8 16 32 64

CP predictor buffer size (KB)

IP
C

average

Figure 9. The effect of critical path predictor buffer
size on the average IPC of the benchmarks tested.
The processor model includes a 48-entry out-of-
order queue, a 16-entry in-order queue, 1 fast and
5 slow functional units.

or power. Like the branch target buffer, the predictor is ac-
cessed by a fetch block at a time (both at fetch, and possibly
at commit). Thus, like a BTB, we can interleave the struc-
ture so that it can still be single-ported (e.g., for read) and
indexed by a single address.

The more places the processor makes use of critical path
prediction, the better it amortizes the power or energy used
by the predictions. This paper only describes two such op-
timizations, but those do not exhaust the possibilities.

One other area we did explore for using critical-path in-
formation to attack energy is the use of criticality-controlled
speculation. This attempted to reduce total speculation by
limiting speculation based on criteria such as the critical-
ity of individual instructions, the criticality of branches, on
how much of the critical path was in the processor, etc. Al-
though we achieved some small gains, that work brought
the following conclusions — critical path instructions are
in general poor candidates for execution speculation (as
demonstrated by the fact that out-of-order execution is not
necessarily required for critical instructions), and criticality
is less useful than speculation/confidence measures in con-
trolling speculation.

6. Conclusions

In modern processors, designers pack as much func-
tionality as possible into each pipeline stage within the al-
lowable cycle time constraints. Performance is optimized
when there is not one critical timing path, but rather a large

number of nearly equal critical timing paths. This design
methodology, however, produces designs with very high re-
liance on high-power, high-speed devices and circuits.

This paper presents techniques which can be used to de-
crease reliance on high-power circuits. This is done by dif-
ferentiating, on a per instruction basis, between those that
need high performance and those that do not. This presents
the opportunity to reserve high-speed circuitry for the in-
structions which effect performance, while using power-
optimized circuitry for those that do not.

This work relies on recent work on critical path predic-
tion to dynamically identify those instructions whose exe-
cution latency has the greatest impact on overall program
execution speed. Two specific techniques are modeled that
exploit this information to eliminate high-power logic. The
first replaces most of the functional units of a superscalar
processor with slower units, giving the critical-path instruc-
tions exclusive access to the fast unit or units. This results
in significant gains in in the ratio of performance to power
density. This is true over a range of assumptions about the
power that could be saved with the slow devices.

The second optimization shows that separate schedul-
ing queues for the critical and non-critical instructions al-
lows lower overall complexity, including much simpler is-
sue complexity for the critical-instruction queue. The im-
pact on performance of this change is minimal, and the
power savings is significant.

7. Acknowledgments

Early conversations with C.J. Newburn and George Cai
of Intel influenced the direction of this research. We would
like to thank the anonymous reviewers for their useful com-
ments. This work was funded by NSF CAREER grant
No. MIP-9701708, grants from Compaq Computer Corpo-
ration and the Semiconductor Research Corporation, and a
Charles Lee Powell faculty fellowship.

References

[1] R. Bahar, G. Albera, and S. Manne. Power and performance
tradeoffs using various caching strategies. In Proceedings of
the International Symposium on Low Power Electronics and
Design (ISLPED-98), pages 64–69, New York, Aug. 10–12
1998. ACM Press.

[2] S. Borkar. Design challenges of technology scaling. IEEE
Micro, (4), July 1999.

[3] D. Brooks and M. Martonosi. Dynamically exploiting nar-
row width operands to improve processor power and perfor-
mance. In Proceedings of the Fifth International Symposium
on High-Performance Computer Architecture, Jan. 1999.

[4] D. Brooks and M. Martonosi. Dynamic thermal man-
agement for high-performance microprocessors. In Pro-
ceedings of the Seventh International Symposium on High-
Performance Computer Architecture, Jan. 2001.



[5] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A frame-
work for architectural-level power analysis and optimiza-
tions. In 27th Annual International Symposium on Computer
Architecture, June 2000.

[6] J. Butts and G. Sohi. A static power model for architects.
In 33rd International Symposium on Microarchitecture, Dec
2000.

[7] G. Cai and C. Lim. Architectural level power/performance
optimization and dynamic power estimation. In Proceedings
of Cool Chips Tutorial at 32nd International Symposium on
Microarchitecture, Nov. 1999.

[8] J. Casmira and D. Grunwald. Dynamic instruction schedul-
ing slack. In 2000 KoolChips workshop, Dec. 2000.

[9] B. Fields, S. Rubin, and R. Bodik. Focusing processor poli-
cies via critical-path prediction. In 28th Annual Interna-
tional Symposium on Computer Architecture, July 2001.

[10] D. Grunwald, A. Klauser, S. Manne, and A. Pleskun. Con-
fidence estimation for speculation control. In 25th Annual
International Symposium on Computer Architecture, June
1998.

[11] W. Huang, J. Renau, S. Yoo, and J. Torrellas. A frame-
work for dynamic energy-efficiency and temperature man-
agement. In 33rd International Symposium on Microarchi-
tecture, Dec 2000.

[12] N. Jouppi. Cache write policies and performance. In 20th
International Symposium on Computer Architecture, May
1993.

[13] R. Kessler, E. McLellan, and D. Webb. The Alpha 21264
microprocessor architecture. In International Conference on
Computer Design, Dec. 1998.

[14] S. Palacharla, N. Jouppi, and J. Smith. Complexity-effective
superscalar processors. In 24th Annual International Sympo-
sium on Computer Architecture, pages 206–218, June 1997.

[15] R. Pyreddy and G. Tyson. Evaluating design tradeoffs in
dual speed pipelines. In 2001 Workshop on Complexity-
Effective Design, June 2001.

[16] J. Seng, D. Tullsen, and G. Cai. Power-sensitive multi-
threaded architecture. In International Conference on Com-
puter Design 2000, Sept. 2000.

[17] S. Srinivasan, R. Ju, A. Lebeck, and C. Wilkerson. Locality
vs. criticality. In 28th Annual International Symposium on
Computer Architecture, June 2001.

[18] S. Thompson, P. Packan, and M. Bohr. MOS scaling: Tran-
sistor challenges for the 21st century. In Intel Technology
Journal, 1998.

[19] D. Tullsen. Simulation and modeling of a simultaneous mul-
tithreading processor. In 22nd Annual Computer Measure-
ment Group Conference, Dec. 1996.

[20] D. Tullsen and B. Calder. Computing along the critical path.
Technical report, University of California, San Diego, Oct.
1998.

[21] E. Tune, D. Liang, D. Tullsen, and B. Calder. Dynamic
prediction of critical path instructions. In Proceedings of
the Seventh International Symposium on High-Performance
Computer Architecture, Feb. 2001.

[22] N. Vijaykrishnan, M. Kandemir, M. Irwin, H. Kim, and
W. Ye. Energy-driven integrated hardware-software opti-
mizations using simplepower. In 27th Annual International
Symposium on Computer Architecture, June 2000.

[23] L. Wei, Z. Chen, M. Johnson, and K. Roy. Design and op-
timization of low voltage high performance dual threshold
cmos circuits. In Design Automation Conference, June 1998.


