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Abstract

Modernprocessorscomecloseto executingasfastastrue
dependencesallow. Theparticular dependencesthat con-
strain executionspeedconstitutethe critical path of execu-
tion. To optimizetheperformanceof theprocessor, weeither
haveto reducethecritical pathor executeit moreefficiently.
In bothcases,it canbedonemore effectivelyif weknowthe
actualinstructionsthatconstitutethatpath.

ThispaperdescribesCritical PathPredictionfor dynam-
ically identifyinginstructionslikelyto beonthecritical path,
allowing variousprocessoroptimizationsto take advantage
of this information. We showseveral possiblecritical path
predictiontechniques,and apply critical path predictionto
valuepredictionand clustered architecture scheduling. We
showthat critical path prediction has the potential to in-
creasethe effectivenessof thesehardware optimizationsby
asmuch as70%,withoutaddinggreatlyto their cost.

1 Intr oduction

Modernprocessorsremove mostartificial constraintson
executionthroughput.Out-of-orderprocessorsremove arti-
ficial dependencesimposedby instructionordering,register
renamingremovesfalsedependences,andaggressivebranch
predictionschemesgreatly reduceserializationof instruc-
tion executiondue to branches.Therefore,the bottleneck
for many workloadson currentprocessorsis thetruedepen-
dencesin the code. Chainsof dependentinstructionscon-
strain the overall throughputof the machine,often leaving
aggressiveprocessortechnologyhighly underutilized.These
chainsof dependentinstructionsconstitutethe critical per-
formancepath,or critical path(CP),thoughthecode.

Theperformanceof the processoris thusdeterminedby
thespeedatwhichit executestheinstructionsalongthiscrit-
ical path. In our efforts to get the maximumperformance
from theprocessor, it is no longerreasonableto treatall in-
structionsthesame.If we canknow which instructionsare
critical to performance,we can acceleratetheir execution,

possiblyat the expenseof instructionsnot on the critical
path.

Knowingwhichinstructionsarecritical canallow thepro-
cessorto improve performanceby giving thoseinstructions
preferenceany timetheprocessorneedsto arbitratebetween
instructions.It canbeusedto give critical pathinstructions
accesspriority to a variety of speculative hardwaremecha-
nisms.Architectureswhichhavethepotentialto breakor re-
ducethelengthof dependencechains(e.g.,valueprediction,
instructionreuse)shouldtargetthosedependencechainsthat
arecritical to performance.

In this paperwe show thatcritical instructionscanbeef-
fectively identified in hardware. We call this critical path
(CP)prediction.This predictionis basedon thebehavior of
previousinvocationsof the instructionin thepipeline. This
predictionenablesthe processorto make better decisions
aboutwhereto applycertainpoliciesandoptimizations.We
examineseveral critical pathpredictors,andusethesepre-
dictorsto guidevaluepredictionandinstructionplacement
ona clusteredarchitecture.

This paperis organizedasfollows. Section2 introduces
critical pathpredictionwith a simplecasestudy. Section3
discussesrelatedwork. Section4 describesour experimen-
tal methodology. Section5 describesthegeneraltechnique
usedby eachof ourcritical pathpredictors,aswell asseveral
specificpredictors.Section6 evaluatestherelativeeffective-
nessof the predictorsat identifying the critical path. Sec-
tion 7 demonstratestwo potentialapplicationsof the tech-
nique.Section8 concludes.

2 Identifying Critical Path Instructions

This sectionusesa simplecodeexampleto demonstrate
theimportanceof findingthecritical path,andto giveinsight
into how onemightrecognizethosecritical pathinstructions.
Figure1 shows thecompiler-generatedcodefor a simplified
(for clarity) versionof LivermoreLoop 23, which hasone
loop carrieddependence(besidesthe induction variables).
This loop-carrieddependenceconstituteswhat we call the
critical paththroughthiscode,andis shown in bold.
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SC IQ Oldest
Code IPC lat. in IQ
ldt f1, 8000(t3) 1.02 1 0
ldt f10, 0(t1) 1.02 1 0
ldt f11, 8(t3) 1.02 1 0
ldt f12, 0(t4) 1.02 1 0
addq t2,0x1,t2 1.02 1 0
cmplt t2,a1,t7 1.02 2 0
lda t1, 8(t1) 1.02 1 0
lda t4, 8(t4) 1.02 1 0
lda t5, 8(t5) 1.02 1 0
lda t3, 8(t3) 1.02 1 0
mult f1,f10, f1 1.02 3 0
ldt f10, -16(t3) 5.51 286 1
mult f11,f12,f11 1.02 4 0
ldt f12, -8(t5) 1.02 1 0
addt f1,f11, f1 1.02 8 0
mult f10,f12,f10 5.27 288 2
ldt f12, -8(t3) 1.02 1 0
addt f1,f10, f1 6.74 290 4
subt f1,f12, f1 6.06 294 4
mult f1,f0, f1 5.66 298 4
addt f12,f1, f1 4.80 298 4
stt f1, -8(t3) - 302 4
bne t7, ... - 1 0

Figure 1. Assemb ly code for a simplified ver-
sion of Livermore Loop 23.

Theexampleshows “SC IPC”, or short-circuitIPC, next
to eachinstruction.Short-circuitIPC is the throughputthat
this codeachieves if the destinationregister of the corre-
spondinginstruction(andonly thatinstruction)wascorrectly
value-predictedfor eachiterationof theloop,eliminatingits
outputdependences.Theseresultsdemonstrateseveralprin-
ciples:

� An optimization which breaksdependencechains is
only effective if it doessoalongthecritical path.Most
instructionsin this loop have absolutelyno impacton
performance(theIPC with no dependencesremovedis
1.02).

� Critical-pathinstructions,andtheir dependents,tendto
get stalledin the instructionqueue,andoften become
the oldest (bottom) instruction in the queueat some
point. The columnslabeled“IQ latency” and“Oldest
in IQ” in Figure 1 show for eachinstruction,the av-
eragenumberof cyclesspentin the instructionqueue,
andat thebottomof theinstructionqueue,respectively.
Thesenumberscorrelatewell with thecritical path.

� Breakingthechainatany pointalongthecritical pathis
effective.

� Instructiontypeis of limited valuein identifyingimpor-
tantinstructions.

� Short-termdependencepathscanbe misleading. The
longestpaththrougha singleiterationis differentthan
thecritical pathin thiscase.

Thelastpoint is important,andmotivatestheapproachtaken
in thispaper. We choosenot to attemptto explicitly trackall
dependencechainsandidentify theonesthatmatter. Rather,
this exampleshows that the behavior of an instructionasit
movesthroughthepipelineis amuchmoreemphaticindica-
tion of wherethecritical pathis, andis typically mucheasier
to track. In fact, the mostcritical path is difficult to com-
pute,in general,anddependson specificsof the processor.
For example,if the instructionwindow of the processoris
too small to hold aniterationof this exampleloop, thecrit-
ical paththroughthe loop changessignificantly. While the
dependencesdo not changeto reflect this, the behavior of
individual instructionswill.

Several thingsmake finding the critical pathmorediffi-
cult in thegeneralcasethanin this example,particularlyin
the irregular applicationswe focuson; for example,irreg-
ular control flow, large instructionworking sets,andmore
short-livedcritical paths.Despitethat,mostof theprinciples
identifiedherecarryover to thegeneralcase.

Weapplyseveralheuristicsto try andidentifycriticalpath
instructionsin thispaper, mostof whichlook for cluesin the
pipeline,suchasthosediscussedhere.

3 RelatedWork

Compiler-basedcriticalpathreductionoptimizationshave
useddynamicanalysisof thecontrolflow of a program[3],
followedby astaticanalysisof thedatadependencesthrough
a singlehigh-probabilitypathor trace[20, 8, 24]. Theprior
work in compiler-basedoptimizationconcentrateson find-
ing themostpopularcontroltrace/paththroughtheprogram,
usingeitheredgeor pathprofiling. Staticprofilesassumea
certainpopularcontrol pathbasedon the training inputsor
otherheuristics,andcannotaccountfor changingprogram
modalities,or varying processorimplementations.The dy-
namicpredictorsin this papercanchangetheir predictions
over time. Also, thedynamicpredictorscanchangeexecu-
tion behavior, yet requireno ISA changes.

A primeapplicationof critical pathpredictionis in guid-
ing theuseof techniquesthatcanreducethecritical pathby
breakingdependencechains.Two suchtechniquesarevalue
prediction[18, 19, 10] andinstructionreuse[25]. Calder, et
al. [4] demonstratedthatusingthelongestdependencechain
in thecurrentinstructionwindow to guidewhichinstructions
shouldproduceor consumepredictedvaluescanmakevalue
predictionmoreeffective. That researchproposedno hard-
waremodel for identifying or predictingtheselongestde-
pendencechains,nordid it considerothermechanisms.

Baharet al. [2], andFisk andBahar[9] identifiedloads
which are not on the critical path in order to give prefer-
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Benchmark Input FastForward
lisp ref 1 000000000

compress bigtest.in 1 000000000
go 5stone21 1 000000000
perl scrabbl 1 000000000
ijpeg ref 100000000
gcc 1stmt.i 0
burg rrh-mot 0

delta-blue long 0
mpegplay sukhoi.mpg 100000000

Table 1. The benc hmarks used in this stud y.
Parameter Value

Fetchwidth 16 instructionspercycle
Branchpredictor SameasAlpha21264

BranchTargetBuffer 256entry, 4-way associative
Active List Entries 1024
FunctionalUnits 12 Integer(8 alsoload/store),6 FP

InstructionQueues 128-entryInt, 128-entryFP
Registers 200Int, 200FP
InstCache 64KB, 2-way, 64-bytelines
DataCache 64KB, 2-way, 64-bytelines
L2 Cache 4 MB, 2-way, 64-bytelines

Latency (to CPU) L2 18cycles,
Memory98cycles(if nocontention)

InstructionLatencies BasedonAlpha21164

Table 2. Processor configuration.

ential cacheplacementfor dataaccessedby critical loads.
ZillesandSohi[33] proposedidentifyingafew staticinstruc-
tionswith thegreatestimpactonexecutionandpre-executing
them.

Load hit-missprediction[32] usespredictionstructures,
derived from branchpredictors,to predictwhetherindivid-
ual loadinstructionswouldhit or missin cache,but thepre-
dictionsareonly usedto scheduleloadinstructions.

4 Methodology

Table1 summarizesthebenchmarksusedin all our sim-
ulations. The first 6 benchmarkscomefrom the SPEC95
integer suite,andtheir inputscomefrom the referenceset.
Thesebenchmarksarecompiledwith theDECCC compiler
at –O4. Mpegplay is an IBS benchmark[29]. Burg is a
C++ parsergenerator. Delta-blueis a C++ constraintso-
lution system.Both Burg andDelta-bluehave significantly
higherdatacachemissratesthantheotherbenchmarks.The
benchmarkswerefast-forwardedthenumberof instructions
indicatedin Table1 beforebeingsimulatedfor 300million
instructions.

Execution is simulatedon an out-of-order superscalar
processormodel which runs unalteredAlpha executables.
Thesimulatoris derivedfrom [26]. Thisarchitecturalsimu-
lator is enhancedto includea critical pathpredictor, andto
take advantageof variouscritical path-awareoptimizations.
The simulatormodelsall reasonablesourcesof latency, in-
cludingcaches,branchmispredictions,TLB misses,andvar-

iousresourceconflicts,includingrenamingregisters,queue
entries,etc.

The simulatedprocessorconfigurationshown in Table2
wasusedfor thestudiesin Sections6 and7. Theconfigura-
tion modelsa futurewide superscalarout-of-ordermachine,
with anaggressivefetchunit,alargeinstructionwindow, and
a large unified renamingunit. The L1 cachesmodeledare
moremodest,to compensatefor the relatively small mem-
ory footprint of mostof ourbenchmarks.Thefetchunit can
fetchup to 16 instructionspercycle from up to threebasic
blockspercycle. Thissimulatesthebehavior of aneffective
tracecache[22].

Theprocessormodelusedin our simulatorhas9 stages.
During the fetch stage,instructionsand predictionswhich
were requestedin the previous cycle arrive. After decod-
ing andregisterrenaming,integerandfloating-pointinstruc-
tionsenterseparateinstructionqueues.The instructionsre-
sidein thequeuesin-order. Every cycle, theoldestinstruc-
tionswhichhavetheirdependencessatisfiedareissued(out-
of-order),until no more instructionsare readyor no more
functionalunitsareavailable.They requireonestageto read
registervaluesbeforethey canbegin execution. After ex-
ecution,they go throughonestageto write backregisters.
Theinstructionsremainin thecommitstageuntil they canbe
committedin order. Thispipelineis similarin basicstructure
to theAlpha21264,describedin [5].

5 Critical Path Prediction Techniques

Critical pathpredictionconsistsof (1) marking instruc-
tionsashaving beenon thecritical path,and(2) predicting
instructionsto beonthecritical pathbasedonpastmarkings.
Bothoccursimultaneouslyin theprocessor. Thissectionfirst
discussestheCritical PathPredictionBuffer, which usesthe
pastbehavior of aninstructionto predictits currentbehavior.
We thendiscusstheactualcriteriausedto markinstructions
ashaving beenon thecritical path.

5.1 Critical Path Prediction Buffer

Critical pathprediction,like branchpredictionandvalue
prediction techniques,is basedprimarily on the previous
history of an instruction. A PC-indexed tableof saturating
countersis updatedaccordingto an instruction’s prior trips
throughtheprocessor, andis queriedwhentheinstructionis
next fetched.

For this research,all of our critical path prediction
schemesfollow the sameprocess. In moving throughthe
pipeline, an instructionmeetsa critical path criterion and
that instruction is marked, indicating that this instruction
mayhave been“critical”. Whenandif the instructioncom-
mits,asaturatingcountercorrespondingto thatinstructionis
incrementedif the instructionwasmarked,or decremented
if it wasnotmarked.Whentheinstructionis next fetched,it
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is predictedto be“critical” if thecounterin a Critical Path
Buf� fer� (CPB)is abovea thresholdvalue.Otherwiseit is pre-
dictedto be“not critical”.

Throughoutthis paperwe will usethe following terms.
An instructionis predictedas critical if its counterin the
critical pathbufferwasabovethethresholdwhentheinstruc-
tion wasfetched.Theseinstructionswill have their CP pre-
dictedbit set,which will identify the instructionasa criti-
cal instructionfor optimizationpurposesasit movesthrough
thepipeline. Marking criterion or criterion meansanevent
which causesinstructionsto bemarkedasfuturecandidates
for critical pathprediction.This is implementedby having a
CP markedbit setduringexecutionfor the instruction,and
thisbit is inspectedwhentheinstructioncommits.A marked
instructionis an instructionwith this bit set. A committing
instruction’smarkedbit is usedto updatetheCPB,sothatit
canbepredictedcorrectlyin thefuture.

In understandingthis new architecturaltechnique,we
wantto separatetheeffectivenessof thetechniquefrom any
aliasingeffects that might occur in a small prediction ta-
ble. Therefore,weassumearelatively large64k-entrydirect-
mapped(indexedby PC,but untagged)tableof 6-bit saturat-
ing countersfor the CPB.Thecountersareincrementedby
8 duringcommitwhenaninstructionis identifiedascritical,
and decrementedby 1 when it is not. The predict thresh-
old value is 8; whena counterexceedsthe threshold,cor-
respondinginstructionsarepredictedasbeingcritical path
instructions.We investigatedmany othersettingsfor incre-
ment,decrementandthreshold,but found theabove values
to performwell for thecritical pathpredictionheuristicswe
examined.

5.2 Critical Path Marking Techniques

In thispaper, weproposefivedifferentcriteriathatmight
beusedto markeachinstructionaseitheronthecritical path
or not on the critical path. We evaluateeachcriterion indi-
vidually; only asingleCPcriterionis appliedduringapartic-
ularsimulation.Somearetrivial to implement,othersmight
be quitecomplex. Initially, we aremoreinterestedin what
worksthanthecomplexity of theimplementation.

Thecriteriaaresummarizedin Table3. What follows is
a moredetaileddescriptionof eachcriterion andthe ratio-
nalebehindit. This is actuallya subsetof thepredictorswe
investigated,but includesthosethat were interestingeither
becauseof their performanceor the intuitivenessof theap-
proach.

The QOLD criterion is basedon theobservation that in-
structionsonthecriticaldependencepathwill typically reach
the bottomof the instructionqueuebeforethey issue. Any
instructionwhich reachesthebottomof thequeuebecomes
theoldestinstruction.This instructionhasdependencesthat
exceed(in time) the dependencesof all prior instructions

Criterion Description
QOLD “OLDestinstructionin Queue”

Eachcycle, theoldestinstructionin aninstruction
queueis marked,if it is not readyto issue.

QOLDDEP “DEPendencewith OLDestinstructionin Queue”
Every cycle,eachinstructionwhichproducesa
valueconsumedby theoldestinstructionin the
queueis markedif it is still active.

ALOLD “OLDestin Active L ist”
Eachcycle, theoldestinstructionin theactive list
(re-orderbuffer) is marked.

QCONS “Most CONSumersin Queue”
Eachcycle, theinstructionis markedwhoseresultis
usedby themostinstructionsin theinstructionqueue.

FREED3 “FREED upat least3 instructionsin queue”
If thecompletionof executionof aninstructionmakes
at leastthreeinstructionsin theinstructionqueueready
to execute,thenthecompletinginstructionis marked.

Table 3. The criteria used in this stud y to mark
instructions as critical path, and a brief de-
scription of each.

in the instructionstream(for that queue,integeror floating
point)

WhereasQOLD markstheoldestinstructionin aninstruc-
tion queue,theQOLDDEP criterionmarkstheoneor two in-
structionsuponwhich it is dependent.In otherwords,if the
instructionattheheadof aninstructionqueuehassourcereg-
isters� and� , thenwewill try tomarktheinstructionswhich
produce� and � . However, if � hasalreadyleft thepipeline
wedonotmarkit, since� ’sentryin theCPBwouldhaveal-
readybeenupdatedwhen � committed.Therefore,QOLD-
DEP markszero, one, or two instructionsper cycle. This
criterionattemptsto marktheinstructionsthatarecurrently
causinginstructionsto back up in the instructionqueues.
This is onestepearlierin thecritical pathdependencechain
thantheoldestinstructionin thequeue(QOLD).

TheALOLD criterionis basedontheobservationthatthe
oldestactive instructionin the machineis likely to be one
that was stalledfor somereason,eitherbecauseof depen-
dencesor becauseit took a long time to execute.Theactive
list hasanentryfor every instructionin thepipeline,waiting
to commit in order. The oldestinstructionin the active list
is usuallyonethat completedexecutionlater thanall prior
instructions.

The QCONS criterion marksthe oneinstruction,among
thosecompletingexecution,which hasthemostdirectcon-
sumersin theinstructionqueue.We defineaconsumerasan
instructionthatwill readthevaluewrittenby thisinstruction.
In thecaseof a tie, theearliestinstructionin the instruction
streamis marked. TheQCONS criterionis basedon theob-
servation that instructionsthat have a largedependencefan
outaremorelikely tobeonthecriticalpath.Bahar, et. al. [9]
tried measuringprocessorperformanceoververy shorttime
scalesto allow the identificationof non-critical loads,but
foundthatcountingthenumberof consumersof a loadwas
abettermetric.Thiscorrespondsto theQCONS criterion.
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TheFREED3 criterionis similar to theQCONS criterion,
but it only countsconsumerswhichbecomereadyto execute
immediately(they are freedby the executing instruction).
This criterion is implementedasa thresholdmechanism.It
marksall instructionswhich free up 3 or moreinstructions
in theinstructionqueue.Theideaof schedulinginstructions
earlierwhich have a high fan-outhasbeenappliedto static
instructionschedulingin compilers[12].

An instructionthat stalls in the instructionqueueor has
a large executionlatency is likely to accumulatemore in-
structionsin thequeuewaitingfor its completion.Therefore,
QCONS andFREED3 accountfor both thedelayassociated
with an instruction’s input dependenceandtheexistenceof
critical outputdependences.FREED3 andQCONS will ob-
viously misssomeinstructionson thecritical paththathave
only a singleoutputdependence.

6 Evaluating Critical Path Predictions

Evaluatingcritical pathpredictionis moredifficult than
evaluatingotherpredictiontechniques.Thisdifficulty stems
from two significantdifferencesbetweenCPpredictionand
otherpredictors.First, in CPpredictionit is moredifficult to
verify the accuracy of a prediction. Second,whenCP pre-
dictionsareusedto directoptimizations,theseoptimizations
will affect futureCPpredictions.

Therearetwo stepsin a branchpredictor:predictionand
verification.Thetrueoutcomeof thebranchis usedto verify
thepredictionandto train thepredictor. In critical pathpre-
diction,however, wecanonly verify whethertheinstruction
againsatisfiedthecriterion;wecannotverify whetheror not
theinstructionwasactuallyon thecritical path.Thepredic-
tor is only predictingthat thecriterion will bemetagainin
the future. Therefore,for critical path predictionto work,
wemustmeettwo conditions.First,thepredictormustaccu-
ratelypredictwhichinstructionswill meetthemarkingcrite-
rion. Second,themarkingcriterionmustbea goodheuristic
methodfor identifying critical pathinstructions.In evaluat-
ing our techniques,we measuretwo differentaspectsof CP
prediction. In section6.1,we assesthepredictoraccuracy;
how accuratelydoesthe predictorpredictwhetherinstruc-
tionswill meetthemarkingcriterion.In section6.2wemea-
surethecriterion effectiveness; how well do thepredictions
indicatewhich instructionsarein factcritical.

Theseconddifficulty maybe referredto asthe feedback
problem.Namely, prior predictionsaffect futurepredictions.
In bimodal branchprediction, the predictionusedfor the
branchwill not affect the updateof the counter. In critical
pathprediction,aninstructionthatis predictedascriticalwill
beoptimized(e.g.,valuepredicted,sentto a differentclus-
ter, etc.). After beingoptimized,it mayno longerbeon the
critical path,andit maynot bemarkedascritical. However,
if it is subsequentlynot optimized,it may againappearon
thecritical path.Thiseffect is discussedmorein section6.3.

Criterion Percent Percent Percent Percent
Instr. Instr. Non-CP Positive

Marked Predicted Prediction Prediction
Accuracy Accuracy

QOLD 14 26 99 49
QOLDDEP 17 33 99 50

ALOLD 15 35 99 36
QCONS 6 16 99 36
FREED3 5 7 99 64

Table 4. The percent of executed instructions
that each technique marks and causes to be
predicted, as well as the accurac y with whic h
each predictor predicted the same behavior
used to mark instructions.

CP predictionis not an optimization,but an enablerfor
otheroptimizations. The absolutegainsshown in this pa-
per arestrictly determinedby the optimizationswe choose
to modelandtheconstraintsweplaceonthem.It is only the
changein theoptimization’seffectivenessthatis interesting.
For that reason,we definethe EffectivenessRatio (ER) as
follows:

���
	 ���������������� �������! #"%$'&�� ()��� *,+.-0/
������#��������� ���#*21������3 �"%$'&#� ()�4� *,+5-0/

Therefore,if anoptimizationwhichprovidesa20%speedup
canachieve a 40%speedupwhencritical pathpredictionis
incorporated,it hasaneffectivenessratioof 2.0– it hasmade
theoptimizationtwiceaseffective.

6.1 Measuring Prediction Accuracy

This sectionexaminesthe degreeof self-correlation(or
repeatability)of thepredictioncriteria— that is, if eventA
is usedto markcritical instructionsandupdatethepredictor,
is the correspondingpredictoractuallya goodpredictorof
eventA? If not, it is unlikely to beausefulcriterion.

To measurethis self-predictability, thesimulatorwasset
only to markandpredictinstructions;no actionsweretaken
basedon thepredictions.Whatwasmeasuredis how often
aninstruction,whichwaspredictedto beonthecritical path,
wasagainmarkedasacritical pathinstruction.

Table 4 shows the resultsfor eachCP algorithm, aver-
agedover all benchmarks.Thefirst columnlists thenames
of thecriteriatested,asdescribedin section5.2.Thecolumn
labeled“PercentInstr. Marked” showsthepercentageof dy-
namicinstructionsthathadtheirCPmarkedbit set.Thecol-
umnlabeled“PercentInstr. Predicted”showshow oftenany
dynamicinstructionhad its CP predictedbit set. Remem-
ber thatan instructionhasits predictedbit setif its counter,
in thePC-indexedCritical PathBuffer, is above 8. Thecol-
umn marked “PercentNon-CPPredictionAccuracy” mea-
sureswhatfractionof dynamicinstructionsthatarepredicted
as “not on critical path” do not trigger the marking crite-
rion again.Thecolumnmarked“PercentPositivePrediction
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Accuracy” measureswhat fraction of dynamicinstructions
that6 arepredictedasbeingon thecritical pathhave their CP
markedflagsetagainthenext time they areexecuted.

Theresultsdemonstratethatour predictorsareintention-
ally liberal. One reasonfor this is to identify instructions
only occasionallyon the critical path. For example,on a
load with a 20% miss rate that is only on the critical path
whenit misses,we might do bestto alwayspredictit on the
critical path. This assumesthat thecostof a wrongpositive
predictionis typically lessthanthecostof notpredictingthe
instructionas being critical. Note that for the 65-93%of
instructionspredictedasnot beingon the critical path, the
predictorsarevirtually alwaysright.

6.2 Measuring Prediction Effectiveness

This sectionevaluatesthe effectivenessof our marking
criteria in indicating which instructionsare on the critical
path. Oneapproachwould be to computethe critical path
of a programby finding the longestchainof dependentin-
structionsin a traceof the program,and to comparethese
instructionswith thosethat arepredictedby the CPpredic-
tor. Thereareseveraldownfalls to thisapproach:

� Thestatically-determinedcritical pathdependsnot just
on dependences,but alsoon the idiosyncrasiesof the
processor, includingqueuesizes,active list size,num-
ber of renamingregisters,andeven on the input used
whenrunningtheprogram.

� Whenthecritical pathinformationis usedto optimize
certaininstructions,the optimizationscan changethe
critical path, and the critical path predictor needsto
adaptto the changesin the critical pathcausedby its
previouspredictions.Thestatically-determinedcritical
pathdoesnotaccountfor thesechanges.

To evaluateperformancewe will againusetheapproach
from section2, which focuseson the actual performance
when the critical path predictionis usedto changeexecu-
tion. In this section,weapplyanideal,genericoptimization
to compareseveral proposedpredictorsoutsideof the con-
text of a specificoptimization;thenext sectionappliesmore
realisticoptimizations.

In this experiment,eachcycle in which instructionsare
fetched,one instruction from the fetchedblock is chosen
to executewith no outputdependencestalls. That is, sub-
sequentinstructionsthatdependon this instructionwill not
haveto wait for thisinstructionto execute.Thisemulatesop-
timizationsthatbreakdatadependencechains,suchasvalue
predictionand instructionreuse,but without presupposing
exactlywhatoptimizationit is or whichinstructionsit would
work on. Thechoiceof which instructionto selectis based
on thecritical pathprediction.

Figure2 shows thespeedupachievedon this testfor the
variousdynamicpredictors. The speedupis relative to the
executiontime with no optimization. We alsoprovide the
following measurementsfor comparison:

� FIRST: Alwaysselectthe first instructionfetchedthis
cycle.

� RANDOM: Pick an instruction randomly eachcycle
from theinstructionsfetched.

� STATIC: We precomputethe critical path of the pro-
gramby identifying the instructionswhich areon the
longestchainof dependencesin theprogramusingpro-
filing [27]. The profiler computesa dynamiccritical
path,accountingfor cacheandbrancheffectsaswell as
a limited instructionwindow size.While asingle,com-
pletedynamicpathis identified,thetool createsastatic
summaryof eachinstruction’s contribution to the dy-
namiccritical path.Themostcritical staticinstructions,
accountingfor 98%of thedynamicpath,arethenstati-
cally identifiedascritical for thepurposesof theSTATIC

predictorin thesesimulations.Eachcycle, then,astati-
cally markedinstructionis chosenfrom thefetchblock
to beoptimized,if possible.

� LONGEST: The instructionwith the longestestimated
executionlatency is chosen.Thelatency is “estimated”
becausethe latency of loadsvaries. The hierarchyof
latenciesweassumeis basedonAlpha21264latencies.
We usea staticestimatefor load latency which places
it lower than integer multiply andmostfloating point
arithmeticoperations,but above all other integer op-
erations. For the integer-intensive applicationsshown
here,then,LONGEST oftenamountsto “choosethefirst
load.” Exceptionsarempegplay andijpeg which
have a fair numberof integer multiply and floating-
point instructions.We alsotesteda differentversionof
LONGEST which priorizedloadsover integermultiply
andfloatingpoint instructions,but it did notperformas
well.

We seethat in almostall cases,the useof critical path
predictionconsistentlyresultsin greaterspeedupthan the
non-dynamicFIRST andRANDOM mechanisms.We found
that on every benchmark,ALOLD, QOLD, QOLDDEP,
and QCONS performedbetter than LONGEST. FREED3
was slightly worse on lisp and compress,but better then
LONGEST on theothersevenbenchmarks.Additionally, on
eachbenchmark,at leastoneof ourdynamicpredictorsper-
formedbetterthanSTATIC. This confirmsthatour dynamic
predictorsareadaptingto changesin thecritical path(chiefly
causedby the optimizationsthemselves) in ways that the
STATIC predictorcannot.Notethatthebenchmarkandinput
files usedto generatethestaticprofile areidenticalto those
usedin thesimulations.In a practicaluseof staticprofiling,
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Figure 2. The performance resulting from breaking the dependences of critical path instructions.

differencesbetweentheinputsusedfor generatingthestatic
profile,andfor actualexecutionwould likely reducetheper-
formanceof theSTATIC method.For thedynamicpredictors,
aswell asSTATIC, weassumewehavethesameinformation
(estimatedlatency) availableto usefor thetie-breaker when
multiple instructions,or no instructions,arepredictedasbe-
ing critical.

6.3 Counter Format and Prediction Persistence

In somecases,predictingan instructionas critical path
(andapplyingsomeoptimization)causesthat instructionto
no longer be on the critical path. However, this doesnot
meanthat we shouldno longerconsiderthe instructionas
critical. We’ll refer to the predictor’s naturalinclination to
start decrementingan instruction’s CPB counteras forget-
ting a prediction. We canminimize the CPB’s tendency to
forgetby incrementingtheCPBcountersby a largeamount
whenaninstructionisontheCPanddecrementingbyasmall
amountwhennot. In thepreviousexperiments,weincrement
by eightanddecrementby one,partially to avoid forgetting.
Any instructionwith acountergreatertheneighthasits pre-
dictedbit set.In theworstcase,a CPinstructiongetsretried
everyeighthexecutionto confirmits criticality.

Not all of the markingcriteria areaffectedin the same
way. In particular, QCONS andFREED3 alwaysforgetbe-
causea successfuloptimizationeliminatesthedependences.
On the otherhand,whenan instruction’s result is, for ex-
ample, value-predicted,that instructionmust still execute
to verify the prediction. Consequently, we would expect
that ALOLD andQOLD would be lessproneto forgetting.
To verify this, we reran the dependence-breakingexperi-
ment of the previous sectionbut with a a more forgetful
counter, incrementingby two anddecrementingby one. In
theseexperiments,QOLD andALOLD bothperformedbet-
ter with the moreforgetful counter, but the others(QOLD-
DEP, QCONS, and FREED3) all performedbetterwith the

original increment-by-eight,confirming that they needthe
help of the confidencecountersto force predictionpersis-
tence.

7 UsingCritical Path Predictions

Theprevioussectionshowedthepotentialfor usingcrit-
ical pathpredictionby ideally removing a predictedinstruc-
tion’s dependencesfrom execution.This sectionappliesthe
predictionsto morerealisticoptimizations.Wefirst examine
thebenefitof usingcritical pathinformationto guidevalue
prediction. We attemptto get the bestutilization out of a
valuepredictorthat is constrainedin the numberof predic-
tions it canmake. Thesecondapplicationusescritical path
informationto steerinstructionplacementin a clusteredar-
chitecture.

7.1 Critical-Path ValuePrediction

Critical-path prediction can assist value prediction in
three ways. First, it allows the processorto make good
choiceswhen thereare more predictableinstructionsin a
fetch block thanhardwareresourcesto predict them. Sec-
ond,it canbeusedto preventcostlymispredictionpenalties
on instructionsfor which thereis no benefitto prediction.
Third, it caneliminatepollution in thevaluefile by restrict-
ing whichinstructionsarestoredinto it. Only thefirst benefit
is examinedin thispaper.

Any reasonablevaluepredictorwill have limited predic-
tion bandwidth. GabbayandMendelson[11] showed that
predictionbandwidthis important for the performanceof
valueprediction. They developedarchitecturesto provide
multiple valuepredictionsper cycle, but at the cost of in-
creasingthecomplexity andaccesstimeof thevaluepredic-
tionarchitecture.Wetaketheoppositeapproach.Weattempt
to achieve the sameperformanceout of a valueprediction
architectureby usingcritical path informationwith limited
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Figure 3. The performance of value prediction incorporating critical path prediction.

predictionbandwidth(in this caseonevaluepredictionper
cycle).

Eachcycle,valuepredictabilityinformationandpossibly
dynamiccritical pathpredictionsare suppliedfor eachin-
structionfetched.Sincethesecaneachbea singlebit, it is
reasonableto assumethe valueconfidenceandCPB struc-
tures(which couldbea singlestructure)have multiple read
portswhile thevaluefile doesnot. Multiple valuepredictions
alsoconsumevaluableregisterwrite ports.

If multiple instructionsaremarked asvaluepredictable,
oneof severalheuristicsareusedto selectonefor prediction.
Theheuristicsaresimilarto thosealreadyshown. FIRST and
LONGEST selectthefirst or longest-latency instruction,and
RANDOM selectsa randominstruction.Theremainingbars
show theperformancewhenusinga CPBwith thespecified
CPpredictioncriterion.

Theresults(Figure3) show thatQCONS andQOLDDEP

always provide more speedupthan the selectionschemes
which do not usecritical pathpredictions. QOLD delivers
the bestoverall performance. It achieves an effectiveness
ratio of 2.26over the RANDOM selector(it hasmadevalue
prediction126%moreeffective)andaneffectivenessratioof
1.68over LONGEST. Thespeedupobservedfor compress
is muchhigherthanwith theotherbenchmarks,but thetech-
niqueis effective in all cases.

Determinationof value predictability for theseexperi-
mentsis idealizedto accountfor the continuedimprove-
ment of those techniquesand confidenceestimators. In
particular, we assumeperfectvalue predictionconfidence.
Therefore,if theinstructionwouldbecorrectlypredictedby
either conventionallast-value techniques[19], stride tech-
niques[10, 13], or a context-basedpredictor[23, 31], we
mark it asvaluepredictable.We simulatealiased-freelast-
valueandstridepredictors.Thecontext predictoris modeled
after[31], with a64Kentryvaluehistorytable,with fourdata
valuesperentry.
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Figure 4. The performance of value-prediction
of Critical-P ath instructions for varying value-
prediction band width.

Figure4 shows theresultsof usinga valuepredictorthat
canprovide 1, 2, 3 and4 predictionsper cycle. The same
benchmarksandsimulatorwereusedfor this experimentas
for the last. We have selectedthebestperformingcriterion
from thepreviousexperimentwith onevaluepredictionper
cycle. Namely, thetop line showsthemeanspeedupoverall
benchmarksfor QOLD. The lower line shows the speedup
whenthe LONGEST selectionschemeis used. The results
show that theuseof critical pathinformationwith 1 predic-
tion per cycle bridgesmost of the gapbetweenLONGEST

with 1 andLONGEST with 2 predictionsper cycle. With 2
predictionspercycle, theCPBstill providesa noticeablein-
creaseover LONGEST. Whenmorevaluepredictionscanbe
madeper cycle, the two schemesstart to converge, as the
critical patharbitrationbecomeslessnecessary.
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7.2 ClusteredSchedulingAr chitectures

Clusteredarchitecturesreducethe complexity and de-
lay associatedwith key partsof the processorarchitecture
coreby separatingfunctionalunitsandassociatedstructures
into multiple groups.Theclustersfeaturefastcommunica-
tion within a group,andslower betweenclusters. The Al-
pha21264[16] hastwo clustersof integer functionalunits,
served by a duplicatedregisterfile, but a singleinstruction
queue.

In thissection,wesimulateanarchitecturewith two clus-
tersof integerfunctionalunits,eachservedby a separatein-
structionqueue.Weassumebypassingof databetweenclus-
terstakes2 cycleslongerthanbypassingwithin acluster. In-
structionsareassignedto a particularstructureby hardware.
This architectureis similar to thatdescribedin [15] andone
of themachinesdescribedin [21]. A similar architectureis
describedby Farkaset. al., [6], but instructionscheduling
is donestatically. TheM-machine[7] alsofeaturesclusters,
but their clustersarealsonot transparentto software.

Performanceon a clusteredarchitectureis optimized
whenthe instructionsat both endsof key dependencesare
assignedto thesamecluster. Evenbetter, we’d like to send
anentirecritical dependencechainthrougha singlecluster.
Onesimpleway to achieve this is to alwayssendpredicted
critical pathinstructionsthroughthesamecluster.

The processormodel is the sameasusedfor the previ-
ousexperiments,excepttheintegerqueueis dividedin half,
eachservinghalf of the integer/load-storefunctionalunits.
We will examinethreedifferentheuristicsfor assigningin-
structionsto clusters,with increasingdegreeof complexity,
andeachbeingmodifiedto incorporatecritical pathpredic-
tion.

The first technique,Blind assignment,assignsinstruc-
tions randomly, with its only priority being to balancethe
load in eachqueue.Blind cp sendsall CP-marked instruc-

tions to onecluster(if thereis room); otherinstructionsgo
to whichever clusterhasmore room. The blind algorithm
suffers by not looking at registerdependences,but hasthe
advantageof allowing clusteringto take placeearlierin the
pipeline, beforesuchinformation is known, thus allowing
moreof thepipelineto benefitfrom decentralization.

Thesecondtechnique,abbreviatedReg, takesregisterde-
pendencesinto account. It attemptsto sendan instruction
to whichever cluster the instructionsproviding the source
operandswereassigned.This is only violatedwhena queue
is full or thequeuesaresignificantlyoutof balance.Reg cp
only usescritical path predictionto breakties when each
operandcomesfrom adifferentcluster.

The third technique,abbreviated Act reg, is similar to
Reg, but only considersthe location of the producerof a
sourceoperandif that instructionhasnot yet completedex-
ecution(it is active). This is the mechanismclosestto that
assumedin [15] and[21], but is the mostcomplex andas-
sumesinformationnot typically availableto theearlystages
of the pipeline. Act reg cp againusesCP information to
breaktieswhenbothoperandsarestill waiting to execute.

TheQOLD predictorwasusedfor thisapplication,in each
case.

From Figure 5, we seethat the critical path prediction
data allows better assignmentof instructionsfor the less
complex assignmentschemes,achieving anaverage15%in-
creaseover the Blind scheme,but a smallergain over Reg.
That gain is enoughto allow Reg cp to overtake Act reg,
possiblyallowing alesscostlywayto achievetheresult,par-
ticularly if we arealreadyusing the critical pathpredictor
for other uses. With Act reg we find even fewer ties that
needto be broken, but the small improvementshown even
theredemonstratesthat we arestill making the right deci-
sionswhengiventheopportunity.

The lastsetof barsshow thesameresultsfor a 4-cluster
architecture. In that casewe seethat the blind allocation
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algorithmis morehandicappedby the increasein clusters,
but that the two register-basedallocatorsareboth morede-
pendenton thecritical pathpredictionsto achieve their best
performance.

7.3 Other UsesFor Critical Path Prediction

Critical path knowledgecanallow efficient useof vari-
ous critical resourcesinside the processor. In the absence
of resourcesto do an unlimited numberof memorydisam-
biguationsor value predictions, we may still be able to
getcloseto optimalperformancewith single-portedor dual-
portedmechanismsif we guide the useof thoseresources
throughcritical pathprediction.

Multiple-pathexecution[30, 14, 17] follows bothtargets
of conditionalbranchesthathave low predictionconfidence.
Betteruseof predictionresourcescouldbeobtainedby not
forking non-critical-pathbranches,or perhapsnot forking
branchdirectionsthat are not immediatelyon the critical
path.

Critical path instructionscanbe given priority for issue
whentherearemoredata-readyinstructionsthan thereare
functionalunits.

Multithreadedprocessors[1, 28] placehigherpressureon
issuebandwidthandotherexecutionresources,andwould
thereforeseehigherbenefitfrom amechanismthatusedcrit-
ical pathpredictionto manageresources,suchasguidingin-
structionissuepriority.

Various power optimizations would also be possible.
Non-critical path instructions(e.g., loads) could be pre-
ventedfrom executingspeculatively. The processormight
chooseto stall for somecyclesduring executionof a long-
latency operationknown to beon thecritical path.

Dataaccessedby critical loadinstructionscanbeguarded
againstreplacement[2, 9] in order to save energy and im-
proveperformance.

Several of thesearethe subjectof ongoingor future re-
search.

In this sectionwe have discussedmany potentialappli-
cationsof critical pathcomputing,andhave simulatedtwo
examples. Thesetwo applicationsvalidateour thesisthat
knowing thecritical pathcanallow usto make usefultrade-
offs betweenCP andnon-CPinstructions.Theseexamples
alsovalidatethe accuracy of our predictors,demonstrating
that thepredictorsareindeedidentifying importantinstruc-
tions,enablingsignificantperformanceenhancements.

8 Conclusions

This paperintroducesthe conceptof critical path pre-
diction, which seeksto identify thoseinstructionsthat con-
straintheperformanceof theprocessor. In orderto approach
or evensurpassthecurrenttrue-dependencebottleneck,the
processorneedsto know exactly which instructionscreate

thatbottleneck.Critical pathpredictioninformationcanbe
usefuljust aboutanywherethe processormustarbitratebe-
tweeninstructions,or wherehardwarestructuresareprone
to contentionor pollution.

Weexamineavarietyof techniquesto identifyandpredict
CPinstructions,includingsomewhicharesimpleto markin
the pipelineandprovide excellentaccuracy. We show that
we canbias the processorin favor of critical path instruc-
tionsandagainstotherinstructionsandconsistentlyachieve
performancegains.

Critical pathpredictionis a techniquewhich canbeused
to increasetheeffectivenessof otherstructuresor optimiza-
tions. We demonstratecritical pathpredictioneffectiveness
on several hardwareoptimizations. First, we establishthe
potentialfor critical pathpredictionby applyingit to anide-
alizedoptimization.Thenweapplyit to valuepredictionand
clusteredarchitectureinstructionscheduling.

We demonstratethat the effectivenessof a valuepredic-
tor canbemorethandoubledthroughtheuseof critical path
prediction,relative to a valuepredictorthatmustselectran-
domly amongmultiple instructionsthat are deemedto be
predictable.It is 68%moreeffective thana valuepredictor
thatusesdecodedinstructioninformationto make theselec-
tion basedonexpectedlatency.

As processorsincreasetheir ability to exploit ILP in the
instructionstream,applicationperformancebecomesmore
tied to the executionof the critical dependencepath. Opti-
mizationsthatacceleratecritical pathexecutionwill havean
increasinglylargeadvantage.
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