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Abstract

Modernprocessos comecloseto executingasfastastrue
dependenceallow. The particular dependencethat con-
strain executionspeedconstitutethe critical path of execu-
tion. To optimizethe performanceof theprocessqgrweeither
haveto reducethecritical pathor executeit more efficiently,
In bothcasesjt canbe donemotre effectivelyif weknowthe
actualinstructionsthat constitutethat path.

ThispaperdescribesCritical Path Predictionfor dynam-
ically identifyinginstructiondikelyto beonthecritical path,
allowing variousprocessormptimizationgo take advantae
of this information. We showseveral possiblecritical path
predictiontechniques,and apply critical path predictionto
value predictionand clusteed architectuie scheduling We
showthat critical path prediction has the potential to in-
creasethe effectivenes®f thesehardware optimizationsby
asmud as70%,withoutaddinggreatlyto their cost.

1 Intr oduction

Modernprocessorsemove mostartificial constrainton
executionthroughput.Out-of-orderprocessorsemove arti-
ficial dependencesposedby instructionordering,register
renamingemovesfalsedependenceandaggressie branch
predictionschemegyreatly reduceserializationof instruc-
tion executiondue to branches. Therefore,the bottleneck
for mary workloadson currentprocessorss thetruedepen-
dencesn the code. Chainsof dependeninstructionscon-
strainthe overall throughputof the machine,often leaving
aggressie processotechnologyhighly underutilized. These
chainsof dependeninstructionsconstitutethe critical per
formancepath,or critical path (CP),thoughthe code.

The performanceof the processois thusdeterminedy
thespeedatwhichit executegheinstructionsalongthis crit-
ical path. In our efforts to get the maximumperformance
from the processarit is no longerreasonablé¢o treatall in-
structionsthe same.If we canknow which instructionsare
critical to performancewe can accelerategheir execution,

possibly at the expenseof instructionsnot on the critical
path.

Knowing whichinstructionsarecritical canallow thepro-
cessorto improve performancey giving thoseinstructions
preferenceary time the processoneedgo arbitratebetween
instructions.It canbe usedto give critical pathinstructions
accesgriority to a variety of speculatie hardware mecha-
nisms.Architecturesvhich have thepotentialto breakor re-
ducethelengthof dependencehains(e.g.,valueprediction,
instructionreuse)shouldtargetthosedependencehainsthat
arecritical to performance.

In this paperwe shav thatcritical instructionscanbe ef-
fectively identifiedin hardware. We call this critical path
(CP)prediction. This predictionis basedon the behaior of
previousinvocationsof theinstructionin the pipeline. This
prediction enablesthe processorto make better decisions
aboutwhereto apply certainpoliciesandoptimizations.We
examineseveral critical path predictors,and usethesepre-
dictorsto guidevalue predictionandinstructionplacement
onaclusteredarchitecture.

This paperis organizedasfollows. Section2 introduces
critical pathpredictionwith a simplecasestudy Section3
discusseselatedwork. Section4 describeour experimen-
tal methodology Section5 describeghe generaltechnique
usedby eachof our critical pathpredictorsaswell asseveral
specificpredictors.Section6 evaluategherelative effective-
nessof the predictorsat identifying the critical path. Sec-
tion 7 demonstrateswo potentialapplicationsof the tech-
nigue.Section8 concludes.

2 ldentifying Critical Path Instructions

This sectionusesa simplecodeexampleto demonstrate
theimportanceof findingthecritical path,andto giveinsight
into how onemightrecognizehosecritical pathinstructions.
Figurel shavs the compilergeneratedodefor a simplified
(for clarity) versionof LivermoreLoop 23, which hasone
loop carried dependencébesidesthe induction variables).
This loop-carrieddependenceonstituteswhat we call the
critical paththroughthis code,andis shavn in bold.



SC IQ Oldest
Code IPC | lat. inlQ

Idt f1,8000(t3) | 1.02 | 1 0
Idt 10, 0(t1) 1.02| 1 0
Idt f11, 8(t3) 1.02| 1 0
Idt 12, 0(t4) 1.02| 1 0
addq t2,0x1,t2 1.02 1 0
cmplt  t2,al,t7 1.02 2 0
Ida t1, 8(t1) 1.02| 1 0
Ida t4, 8(t4) 1.02| 1 0
Ida 15, 8(t5) 1.02| 1 0
Ida t3, 8(t3) 1.02| 1 0
mult f1,f10,f1 1.02 3 0
Idt f10,-16(t3) | 5.51 | 286 1
mult f11,f12,f11 | 1.02 4 0
Idt f12,-8(t5) | 1.02 | 1 0
addt  f1,f11,f1 1.02| 8 0
mult f10,f12,f10 | 5.27 | 288 2
Idt f12,-8(t3) 1.02| 1 0
addt f1,f10,f1 6.74 | 290 4
subt  f1,f12,f1 6.06 | 294 4
mult  f1,f0,f1 5.66 | 298 4
addt f12,f1,f1 4.80 | 298 4
stt f1, -8(t3) - 302 4
bne t7, ... - 1 0

Figure 1. Assemb ly code for a simplified ver-
sion of Livermore Loop 23.

The exampleshawvs “SC IPC”, or short-circuitlPC, next
to eachinstruction. Short-circuitIPC is the throughputthat
this code achievesif the destinationregister of the corre-
spondingnstruction(andonly thatinstruction)wascorrectly
value-predictedor eachiterationof theloop, eliminatingits
outputdependenced heseresultsdemonstratseseralprin-
ciples:

e An optimization which breaksdependencehainsis
only effectiveif it doessoalongthe critical path. Most
instructionsin this loop have absolutelyno impacton
performancdthe IPC with no dependenceemovedis
1.02).

e Critical-pathinstructions andtheir dependentgendto
get stalledin the instructionqueue,and often become
the oldest (bottom) instructionin the queueat some
point. The columnslabeled“lQ latengy” and“Oldest
in 1Q” in Figure 1 show for eachinstruction,the av-
eragenumberof cyclesspentin the instructionqueue,
andatthebottomof theinstructionqueueyespectiely.
Thesenumberscorrelatewell with thecritical path.

e Breakingthechainatary pointalongthecritical pathis
effective.

e Instructiontypeis of limited valuein identifyingimpor-
tantinstructions.

¢ Short-termdependenceathscan be misleading. The
longestpaththrougha singleiterationis differentthan
thecritical pathin this case.

Thelastpointisimportantandmotivatesheapproachaken
in this paper We choosenot to attemptto explicitly trackall
dependencehainsandidentify the onesthatmatter Rather
this exampleshaws thatthe behaior of aninstructionasit
movesthroughthe pipelineis amuchmoreemphatiandica-
tion of wherethecritical pathis, andis typically mucheasier
to track. In fact, the mostcritical pathis difficult to com-
pute,in general,and dependon specificsof the processar
For example,if the instructionwindow of the processoiis
too smallto hold aniterationof this exampleloop, the crit-
ical paththroughthe loop changessignificantly While the
dependencedo not changeto reflectthis, the behaior of
individual instructionswill.

Several things make finding the critical path more diffi-
cult in the generalcasethanin this example,particularlyin
the irregular applicationswe focus on; for example,irreg-
ular control flow, large instructionworking sets,and more
short-livedcritical paths.Despitethat,mostof theprinciples
identifiedherecarryoverto thegenerakase.

We applyseveralheuristicgo try andidentify critical path
instructionsn this paper mostof whichlook for cluesin the
pipeline,suchasthosediscussedhere.

3 RelatedWork

Compilerbasectritical pathreductionoptimizationshave
useddynamicanalysisof the controlflow of a program[3],
followedby astaticanalysisof thedatadependencebsrough
asinglehigh-probabilitypathor trace[20, 8, 24]. The prior
work in compilerbasedoptimizationconcentratesn find-
ing themostpopularcontroltrace/paththroughthe program,
usingeitheredgeor pathprofiling. Staticprofilesassumea
certainpopularcontrol pathbasedon the training inputsor
other heuristics,and cannotaccountfor changingprogram
modalities,or varying processoimplementations.The dy-
namic predictorsin this papercan changetheir predictions
overtime. Also, the dynamicpredictorscanchangeexecu-
tion behaior, yetrequireno ISA changes.

A primeapplicationof critical pathpredictionis in guid-
ing the useof techniqueghatcanreducethe critical pathby
breakingdependencehains.Two suchtechniquesrevalue
prediction[18, 19, 10] andinstructionreuse[25]. Calder et
al. [4] demonstratethatusingthelongestdependencehain
in thecurrentinstructionwindow to guidewhichinstructions
shouldproduceor consumeredictedvaluescanmale value
predictionmoreeffective. Thatresearctproposecho hard-
ware model for identifying or predictingtheselongestde-
pendencehainsnordid it considemthermechanisms.

Baharet al. [2], andFisk and Bahar[9] identifiedloads
which are not on the critical path in orderto give prefer



Benchmark Input FastForward
lisp ref 1000000000
compress | bigtest.in 1000000000
go 5stone21 1000000000
perl scrabbl 1000000000
ijpeg ref 100000000
gce Istmt.i 0
burg rrh- not 0
delta-blue long 0
mpeplay | sukhoi . nmpg 100000000

Table 1. The benchmarks used in this study.

Parameter Value
Fetchwidth 16instructiongpercycle
Branchpredictor SameasAlpha21264
BranchTargetBuffer 256entry 4-way associatie
Active List Entries 1024

FunctionalUnits 12 Integer (8 alsoload/store)6 FP

InstructionQueues 128-entryint, 128-entryFP
Registers 2001Int, 200FP
InstCache 64KB, 2-way, 64-bytelines
DataCache 64KB, 2-way, 64-bytelines
L2 Cache 4 MB, 2-way, 64-bytelines
Lateny (to CPU) L2 18cycles,
Memory 98 cycles(if no contention)
InstructionLatencies Basedon Alpha21164

Table 2. Processor configuration.

ential cacheplacemenffor dataaccessedby critical loads.
Zilles andSohi[33] proposeddentifyingafew staticinstruc-
tionswith thegreatesimpactonexecutionandpre-eecuting
them.

Load hit-missprediction[32] usespredictionstructures,
derived from branchpredictors,to predictwhetherindivid-
ualloadinstructionswvould hit or missin cacheput the pre-
dictionsareonly usedto scheduldoadinstructions.

4 Methodology

Table1l summarizeshe benchmarksisedin all our sim-
ulations. The first 6 benchmarksomefrom the SPEC95
integer suite, andtheir inputs comefrom the referenceset.
Thesebenchmarksirecompiledwith the DEC CC compiler
at —O4. Mpeagplay is an IBS benchmark]29]. Burg is a
C++ parsergeneratar Delta-blueis a C++ constraintso-
lution system.Both Burg and Delta-bluehave significantly
higherdatacachemissratesthanthe otherbenchmarksThe
benchmarksverefast-fornardedthe numberof instructions
indicatedin Table 1 beforebeingsimulatedfor 300 million
instructions.

Executionis simulatedon an out-of-order superscalar
processomodel which runs unalteredAlpha executables.
Thesimulatoris derivedfrom [26]. This architecturakimu-
lator is enhancedo includea critical pathpredictor andto
take advantageof variouscritical path-avareoptimizations.
The simulatormodelsall reasonablesourcesof lateng, in-
cludingcachesbranchmispredictionsTLB missesandvar-

iousresourceconflicts,including renamingregisters,queue
entriesetc.

The simulatedprocessorconfigurationshavn in Table2
wasusedfor the studiesin Sectionss and7. The configura-
tion modelsa future wide superscalaout-of-ordemmachine,
with anaggressiefetchunit, alargeinstructionwindow, and
a large unified renamingunit. The L1 cachesnodeledare
more modest,to compensatéor the relatively small mem-
ory footprint of mostof our benchmarksThefetchunit can
fetchup to 16 instructionsper cycle from up to threebasic
blockspercycle. This simulategshebehaior of aneffective
tracecacheg22].

The processomodelusedin our simulatorhas9 stages.
During the fetch stage,instructionsand predictionswhich
were requestedn the previous cycle arrive. After decod-
ing andregisterrenamingjntegerandfloating-pointinstruc-
tions enterseparaténstructionqueues.Theinstructionsre-
sidein the queuedn-order Every cycle, the oldestinstruc-
tionswhich have their dependencesatisfiedareissuedout-
of-order), until no more instructionsare readyor no more
functionalunitsareavailable. They requireonestageto read
registervaluesbheforethey canbegin execution. After ex-
ecution,they go throughone stageto write backregisters.
Theinstructiongemainin thecommitstageuntil they canbe
committedn order Thispipelineis similarin basicstructure
to the Alpha 21264,describedn [5].

5 Critical Path Prediction Techniques

Critical path predictionconsistsof (1) marking instruc-
tions ashaving beenon the critical path,and(2) predicting
instructiongo beonthecritical pathbasedn pastmarkings.
Bothoccursimultaneouslyn theprocessarThis sectiorfirst
discusseshe Critical Path PredictionBuffer, which usesthe
pastbehaior of aninstructionto predictits currentbehavior.
We thendiscusghe actualcriteriausedto markinstructions
ashaving beenonthecritical path.

5.1 Critical Path Prediction Buffer

Critical pathprediction,like branchpredictionandvalue
prediction techniques,is basedprimarily on the previous
history of aninstruction. A PC-indexed table of saturating
counterds updatedaccordingto an instructions prior trips
throughthe processqrandis queriedwhentheinstructionis
next fetched.

For this research,all of our critical path prediction
schemedollow the sameprocess. In moving throughthe
pipeline, an instructionmeetsa critical path criterion and
that instructionis marked, indicating that this instruction
may have been“critical”. Whenandif the instructioncom-
mits, a saturatingcountercorrespondingo thatinstructionis
incrementedf the instructionwas marked, or decremented
if it wasnotmarked. Whentheinstructionis next fetched it



is predictedto be “critical” if the counterin a Critical Path
Buffer (CPB)is above athresholdvalue.Otherwiseit is pre-
dictedto be“not critical”.

Throughoutthis paperwe will usethe following terms.
An instructionis predictedas critical if its counterin the
critical pathbuffer wasabovethethresholdvhentheinstruc-
tion wasfetched. Theseinstructionswill have their CP pre-
dictedbit set,which will identify the instructionasa criti-
calinstructionfor optimizationpurposessit movesthrough
the pipeline. Marking criterion or criterion meansan event
which causesnstructionsto be marked asfuture candidates
for critical pathprediction.Thisis implementedy having a
CP marked bit setduring executionfor theinstruction,and
thisbit is inspectedvhentheinstructioncommits.A marked
instructionis aninstructionwith this bit set. A committing
instructions markedbit is usedto updatethe CPB, sothatit
canbepredictedcorrectlyin thefuture.

In understandinghis new architecturaltechnique,we
wantto separatéhe effectivenesf thetechniquerom ary
aliasing effects that might occurin a small predictionta-
ble. Thereforewe assumarelatively large64k-entrydirect-
mappedindexedby PC,but untaggedjableof 6-bit saturat-
ing countersfor the CPB. The countersareincrementedy
8 duringcommitwhenaninstructionis identifiedascritical,
and decrementedby 1 whenit is not. The predictthresh-
old valueis 8; whena counterexceedsthe threshold,cor-
respondingnstructionsare predictedas being critical path
instructions.We investigatednary othersettingsfor incre-
ment,decremenandthreshold but found the above values
to performwell for the critical pathpredictionheuristicswe
examined.

5.2 Critical Path Marking Techniques

In this paperwe proposdive differentcriteriathatmight
beusedto markeachinstructionaseitheronthecritical path
or not on the critical path. We evaluateeachcriterion indi-
vidually; only asingleCPcriterionis appliedduringa partic-
ular simulation.Somearetrivial to implement,othersmight
be quite comple. Initially, we are moreinterestedn what
worksthanthe compleity of theimplementation.

The criteriaaresummarizedn Table3. Whatfollows is
a more detaileddescriptionof eachcriterion andthe ratio-
nalebehindit. Thisis actuallya subsebf the predictorswe
investigatedput includesthosethat were interestingeither
becaus®f their performanceor the intuitivenesf the ap-
proach.

The QOLD criterionis basedon the obsenationthatin-
structionsonthecritical dependencpathwill typically reach
the bottomof the instructionqueuebeforethey issue. Any
instructionwhich reacheghe bottomof the queuebecomes
theoldestinstruction. Thisinstructionhasdependencethat
exceed(in time) the dependencesf all prior instructions

Criterion
QOLD

Description

“OLDestinstructionin Queue”

Eachcycle, the oldestinstructionin aninstruction
queueds marked, if it is notreadyto issue.
“DEPendenceavith OLD estinstructionin Queue”
Every cycle, eachinstructionwhich producest
valueconsumedy the oldestinstructionin the
queues markedif it is still active.

“OLDestin Active List”

Eachcycle, theoldestinstructionin the actie list
(re-orderbuffer) is marked.

“Most CONSumersin Queue”

Eachcycle, theinstructionis marlked whoseresultis
usedby themostinstructionsin theinstructionqueue
“FREED up atleast3 instructionsin queue”

If thecompletionof executionof aninstructionmales
atleastthreeinstructionsin theinstructionqueueready
to execute thenthe completinginstructionis marked.

QOLDDEP

ALOLD

QCons

FREED3

Table 3. The criteria used in this study to mark
instructions as critical path, and a brief de-
scription of each.

in the instructionstream(for that queue,integer or floating
point)

WhereaQOL D markstheoldestinstructionin aninstruc-
tion queuethe QOLDDEP criterionmarkstheoneor two in-
structionsuponwhichit is dependentin otherwords,if the
instructionattheheadof aninstructionqueuehassourcereg-
istersz andy, thenwewill try to marktheinstructionsvhich
producer andy. However, if z hasalreadyleft the pipeline
we donotmarkit, sincez’s entryin the CPBwould have al-
readybeenupdatedvhenz committed. Therefore,QOLD-
DEepP markszero, one, or two instructionsper cycle. This
criterionattemptgo markthe instructionsthatarecurrently
causinginstructionsto back up in the instruction queues.
Thisis onestepearlierin the critical pathdependencehain
thantheoldestinstructionin thequeug(QOLD).

The ALOLD criterionis basedntheobsenationthatthe
oldestactive instructionin the machineis likely to be one
that was stalledfor somereason either becauseof depen-
dencer becausét took alongtime to execute.The active
list hasanentryfor every instructionin thepipeline,waiting
to commitin order The oldestinstructionin the active list
is usually one that completedexecutionlater thanall prior
instructions.

The QCoNS criterion marksthe oneinstruction,among
thosecompletingexecution,which hasthe mostdirectcon-
sumersn theinstructionqueue We definea consumeasan
instructionthatwill readthevaluewrittenby thisinstruction.
In the caseof aftie, the earliestinstructionin theinstruction
streamis marked. The QCONS criterionis basedn the ob-
senationthatinstructionsthat have a large dependencéan
outaremorelik ely to beonthecritical path.Bahar et. al. [9]
tried measuringprocessoperformancever very shorttime
scalesto allow the identificationof non-critical loads, but
foundthat countingthe numberof consumer®f aloadwas
abettermetric. This correspond$o the QCONS criterion.



The FREEDS criterionis similar to the QCoNs criterion,
but it only countsconsumersvhich becomeeadyto execute
immediately(they are freed by the executinginstruction).
This criterionis implementedasa thresholdmechanism.t
marksall instructionswhich free up 3 or moreinstructions
in theinstructionqueue.Theideaof schedulingnstructions
earlierwhich have a high fan-outhasbeenappliedto static
instructionschedulingn compilers[12].

An instructionthat stallsin the instructionqueueor has
a large executionlateng is likely to accumulatemore in-
structionsn thequeuewaiting for its completion.Therefore,
QConNs and FREeD3 accountfor boththe delayassociated
with aninstructions input dependencandthe existenceof
critical outputdependences-REeD3 and QCoNs will ob-
viously misssomeinstructionson the critical paththathave
only asingleoutputdependence.

6 Evaluating Critical Path Predictions

Evaluatingcritical path predictionis more difficult than
evaluatingotherpredictiontechniquesThis difficulty stems
from two significantdifferencedetweenCP predictionand
otherpredictors First,in CP predictionit is moredifficult to
verify the accurag of a prediction. SecondwhenCP pre-
dictionsareusedto directoptimizationstheseoptimizations
will affectfuture CP predictions.

Therearetwo stepsin a branchpredictor:predictionand
verification. Thetrue outcomeof thebranchis usedto verify
the predictionandto train the predictor In critical pathpre-
diction, however, we canonly verify whethertheinstruction
againsatisfiecthe criterion;we cannotverify whetheror not
theinstructionwasactuallyon the critical path. The predic-
tor is only predictingthatthe criterion will be metagainin
the future. Therefore,for critical path predictionto work,
we mustmeettwo conditions.First, the predictormustaccu-
ratelypredictwhichinstructionswill meetthe markingcrite-
rion. Secondthe markingcriterionmustbe a goodheuristic
methodfor identifying critical pathinstructions.In evaluat-
ing our techniguesye measurdwo differentaspectof CP
prediction. In section6.1, we asseghe predictoraccurmacy;
how accuratelydoesthe predictorpredict whetherinstruc-
tionswill meetthemarkingcriterion.In section6.2we mea-
surethe criterion effectivenesshow well do the predictions
indicatewhichinstructionsarein factcritical.

The seconddifficulty may be referredto asthe feedbak
problem.Namely prior predictionsaffect futurepredictions.
In bimodal branchprediction, the prediction usedfor the
branchwill not affect the updateof the counter In critical
pathprediction aninstructionthatis predictedascritical will
be optimized(e.qg.,value predicted sentto a differentclus-
ter, etc.). After beingoptimized,it maynolongerbeonthe
critical path,andit may notbe markedascritical. However,
if it is subsequentiyot optimized,it may againappearon
thecritical path. This effectis discussednorein section6.3.

Criterion Percent| Percent Percent Percent
Instr. Instr. Non-CP Positve
Marked | Predicted| Prediction| Prediction

Accuray Accuray
QOLD 14 26 929 49
QOLDDEP 17 33 99 50
ALOLD 15 35 929 36
QCoNs 6 16 99 36
FREED3 5 7 99 64

Table 4. The percent of executed instructions
that each technique marks and causes to be
predicted, as well as the accuracy with which
each predictor predicted the same behavior
used to mark instructions.

CP predictionis not an optimization,but an enablerfor
other optimizations. The absolutegainsshawn in this pa-
per are strictly determinedoy the optimizationswe choose
to modelandthe constraintave placeonthem.lIt is only the
changen theoptimizations effectivenesghatis interesting.
For that reason,we definethe Effectivenes$katio (ER) as
follows:

Speedupyith cP prediction — 1

ER =
Speedupithout cp prediction 1

Thereforejf anoptimizationwhich providesa 20%speedup
canachieve a 40% speedupvhencritical path predictionis
incorporatedit hasaneffectivenessatio of 2.0—it hasmade
the optimizationtwice aseffective.

6.1 Measuring Prediction Accuracy

This sectionexaminesthe degree of self-correlation(or
repeatability)of the predictioncriteria— thatis, if eventA
is usedto markcritical instructionsandupdatethe predictor
is the correspondingredictoractually a good predictorof
eventA? If not, it is unlikely to bea usefulcriterion.

To measurehis self-predictability the simulatorwas set
only to markandpredictinstructionsno actionsweretaken
basedon the predictions.Whatwasmeasureds how often
aninstruction,whichwaspredictedo beonthecritical path,
wasagainmarkedasa critical pathinstruction.

Table 4 shows the resultsfor eachCP algorithm, aver-
agedover all benchmarksThe first columnlists the names
of thecriteriatested asdescribedn sections.2. Thecolumn
labeled‘Percentinstr. Marked” shavs the percentagef dy-
namicinstructionghathadtheir CP markedbit set. Thecol-
umnlabeled‘Percentinstr. Predicted"shavs how oftenary
dynamicinstructionhadits CP predictedbit set. Remem-
berthataninstructionhasits predictedbit setif its counter
in the PC-indexed Critical Path Buffer, is abose 8. The col-
umn marked “PercentNon-CP PredictionAccurag” mea-
sureswhatfractionof dynamicinstructionghatarepredicted
as “not on critical path” do not trigger the marking crite-
rion again.The columnmarked“PercentPositve Prediction



Accurag” measuresvhat fraction of dynamicinstructions
thatarepredictedasbeingon the critical pathhave their CP
markedflag setagainthe next time they areexecuted.

Theresultsdemonstratéhatour predictorsareintention-
ally liberal. Onereasonfor this is to identify instructions
only occasionallyon the critical path. For example,on a
load with a 20% missrate thatis only on the critical path
whenit misseswe might do bestto alwayspredictit onthe
critical path. This assumeshatthe costof awrong positive
predictionis typically lessthanthe costof not predictingthe
instructionas being critical. Note that for the 65-93% of
instructionspredictedas not being on the critical path, the
predictorsarevirtually alwaysright.

6.2 Measuring Prediction Effectiveness

This sectionevaluatesthe effectivenessof our marking
criteria in indicating which instructionsare on the critical
path. Oneapproachwould be to computethe critical path
of a programby finding the longestchain of dependenin-
structionsin a traceof the program,andto comparethese
instructionswith thosethat are predictedby the CP predic-
tor. Thereareseveraldownfallsto this approach:

e Thestatically-determinedritical pathdependsot just
on dependencedyut alsoon the idiosyncrasieof the
processarincluding queuesizes,actie list size,num-
ber of renamingregisters,and even on the input used
whenrunningthe program.

¢ Whenthe critical pathinformationis usedto optimize
certaininstructions,the optimizationscan changethe
critical path, and the critical path predictor needsto
adaptto the changesn the critical path causedy its
previous predictions.The statically-determinedritical
pathdoesnotaccountor thesechanges.

To evaluateperformanceve will againusethe approach
from section2, which focuseson the actual performance
whenthe critical path predictionis usedto changeexecu-
tion. In this section we applyanideal,genericoptimization
to compareseveral proposedpredictorsoutsideof the con-
text of a specificoptimization;the next sectionappliesmore
realisticoptimizations.

In this experiment,eachcycle in which instructionsare
fetched, one instructionfrom the fetchedblock is chosen
to executewith no outputdependencstalls. Thatis, sub-
sequeninstructionsthat dependon this instructionwill not
have to wait for thisinstructionto execute.Thisemulate®p-
timizationsthatbreakdatadependencehains,suchasvalue
predictionand instructionreuse,but without presupposing
exactly whatoptimizationit is or whichinstructionst would
work on. The choiceof which instructionto selectis based
onthecritical pathprediction.

Figure2 shavs the speedupchieved on this testfor the
variousdynamicpredictors. The speedugs relative to the
executiontime with no optimization. We also provide the
following measurement®r comparison:

e FIRST: Alwaysselectthe first instructionfetchedthis
cycle.

e RANDOM: Pick an instructionrandomly each cycle
from theinstructionsfetched.

e STATIC: We precomputehe critical path of the pro-
gram by identifying the instructionswhich are on the
longestchainof dependencds the programusingpro-
filing [27]. The profiler computesa dynamiccritical
path,accountingor cacheandbrancheffectsaswell as
alimited instructionwindow size.While asingle,com-
pletedynamicpathis identified,thetool createsa static
summaryof eachinstructions contrikution to the dy-
namiccritical path. Themostcritical staticinstructions,
accountingor 98% of thedynamicpath,arethenstati-
callyidentifiedascritical for thepurpose®f the STATIC
predictorin thesesimulations Eachcycle, then,a stati-
cally markedinstructionis choserfrom thefetchblock
to beoptimized,if possible.

e LONGEST: Theinstructionwith the longestestimated
executionlateny is chosenThelateng is “estimated”
becausdhe lateng of loadsvaries. The hierarchyof
latenciesve assumes basen Alpha 21264latencies.
We usea staticestimatefor load lateng which places
it lower thaninteger multiply and mostfloating point
arithmetic operations,but above all otherinteger op-
erations. For the integerintensve applicationsshovn
here then,L ONGEST oftenamountgo “choosethefirst
load” Exceptionsarenpegpl ay andi j peg which
have a fair numberof integer multiply and floating-
pointinstructions.We alsotesteda differentversionof
LONGEST which priorizedloadsover integer multiply
andfloatingpointinstructionsput it did notperformas
well.

We seethatin almostall casesthe useof critical path
prediction consistentlyresultsin greaterspeedupthan the
non-dynamid=IRST and RANDOM mechanismsWe found
that on every benchmark,ALOLD, QOLD, QOLDDEP,
and QCoNs performedbetterthan LONGEST. FREED3
was slightly worse on lisp and compress,but betterthen
LONGEST on the othersevenbenchmarksAdditionally, on
eachbenchmarkat leastoneof our dynamicpredictorsper
formedbetterthan STaTIC. This confirmsthatour dynamic
predictorsaareadaptingo changesdn thecritical path(chiefly
causedby the optimizationsthemseles) in ways that the
StATIC predictorcannot.Notethatthebenchmarlandinput
files usedto generatehe staticprofile areidenticalto those
usedin the simulations.In a practicaluseof staticprofiling,



Criterion  Effectiveness Ratio [ ]

(vs. LONGEST) ] ;I,EI\SII-DFOM
ALOLD 1.42 = ESQEEST
QOLD 1.45 @ ALOLD
QOLD DEP 1.15 T ] QoLD
QCONS 1.40 [ QOLD DEP
FREED3 1.21 = SCONS

[ ] FREED 3
lisp compress go perl gcc iipeg delta-blue burg mpegplay mean

Figure 2. The performance resulting from breaking

differencedetweertheinputsusedfor generatinghe static
profile,andfor actualexecutionwouldlikely reducethe per

formanceof the STATIC method.Forthedynamicpredictors,
aswell asSTATIC, we assumeve have thesameinformation
(estimatedateng) availableto usefor thetie-brealer when
multiple instructionspr noinstructionsarepredictedasbe-
ing critical.

6.3 Counter Format and Prediction Persistence

In somecasespredictingan instructionas critical path
(andapplyingsomeoptimization)causeghatinstructionto
no longer be on the critical path. However, this doesnot
meanthat we shouldno longer considerthe instructionas
critical. We'll referto the predictors naturalinclination to
startdecrementingan instructions CPB counteras forget-
ting a prediction. We canminimize the CPB’s tendeng to
forgetby incrementinghe CPB countersy a largeamount
whenaninstructionis ontheCPanddecrementingpy asmall
amountvhennot. In thepreviousexperimentsyeincrement
by eightanddecremenby one,partially to avoid forgetting.
Any instructionwith a countergreatettheneighthasits pre-
dictedbit set.In theworstcasea CPinstructiongetsretried
every eighthexecutionto confirmits criticality.

Not all of the marking criteria are affectedin the same
way. In particular QCoNs and FREeD3 always forget be-
causea successfubptimizationeliminateshe dependences.
On the other hand, when an instructions resultis, for ex-
ample, value-predictedthat instruction must still execute
to verify the prediction. Consequentlywe would expect
that ALOLD and QOLD would be lessproneto forgetting.
To verify this, we reranthe dependence-breakingkperi-
ment of the previous sectionbut with a a more forgetful
counter incrementingoy two anddecrementindpy one. In
theseexperiments QOLD andAL OLD both performedbet-
ter with the moreforgetful counter but the others(QOLD-
DepP, QCoNs, and FReeD3) all performedbetterwith the

the dependences of critical path instructions.

original increment-by-eightconfirming that they needthe
help of the confidencecountersto force prediction persis-
tence.

7 Using Critical Path Predictions

The previous sectionshavedthe potentialfor usingcrit-
ical pathpredictionby ideally removing a predictednstruc-
tion’s dependencesom execution. This sectionappliesthe
predictiongo morerealisticoptimizations We first examine
the benefitof usingcritical pathinformationto guidevalue
prediction. We attemptto get the bestutilization out of a
valuepredictorthatis constrainedn the numberof predic-
tionsit canmake. The secondapplicationusescritical path
informationto steerinstructionplacementn a clusteredar
chitecture.

7.1 Critical-P ath Value Prediction

Critical-path prediction can assistvalue prediction in
threeways. First, it allows the processorto make good
choiceswhen there are more predictableinstructionsin a
fetch block than hardwareresourcego predictthem. Sec-
ond, it canbe usedto preventcostly mispredictionpenalties
on instructionsfor which thereis no benefitto prediction.
Third, it caneliminatepollution in the valuefile by restrict-
ing whichinstructionsarestorednto it. Only thefirst benefit
is examinedin this paper

Any reasonablealue predictorwill have limited predic-
tion bandwidth. Gabbayand Mendelson[11] shoved that
prediction bandwidthis importantfor the performanceof
value prediction. They developedarchitecturego provide
multiple value predictionsper cycle, but at the costof in-
creasinghe compleity andaccesgime of thevaluepredic-
tion architectureWe take theoppositeapproachWe attempt
to achieve the sameperformanceout of a value prediction
architectureby usingcritical pathinformationwith limited
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Figure 3. The performance of value prediction incorporating critical path prediction.

predictionbandwidth(in this caseonevalue predictionper
cycle).

Eachcycle, valuepredictabilityinformationandpossibly
dynamiccritical path predictionsare suppliedfor eachin-
structionfetched. Sincethesecaneachbe a singlebit, it is
reasonabléo assumehe value confidenceand CPB struc-
tures(which could be a single structure)have multiple read
portswhile thevaluefile doesnot. Multiple valuepredictions
alsoconsumevaluableregisterwrite ports.

If multiple instructionsare marked asvalue predictable,
oneof severalheuristicaareusedto selectonefor prediction.
Theheuristicsaresimilarto thosealreadyshavn. FIRST and
LONGEST selectthefirst or longest-lateng instruction,and
RANDOM selectsa randominstruction. The remainingbars
shav the performancavhenusinga CPBwith the specified
CPpredictioncriterion.

Theresults(Figure3) shav that QCoNs and QOLDDEP
always provide more speedupthan the selectionschemes
which do not usecritical path predictions. QOLD delivers
the bestoverall performance. It achiezes an effectiveness
ratio of 2.26 over the RANDOM selector(it hasmadevalue
prediction126%moreeffective) andaneffectivenessatio of
1.68over LONGEST. Thespeedumbsenedfor conpr ess
is muchhigherthanwith the otherbenchmarkshut thetech-
nigueis effectivein all cases.

Determinationof value predictability for theseexperi-
mentsis idealizedto accountfor the continuedimprove-
ment of those techniquesand confidenceestimators. In
particular we assumeperfectvalue predictionconfidence.
Thereforejf theinstructionwould be correctlypredictedby
either corventionallast-value techniqueq19], stride tech-
niques[10, 13|, or a context-basedpredictor[23, 31], we
markit asvalue predictable.We simulatealiased-fredast-
valueandstridepredictors.Thecontext predictoris modeled
after[31], with a64K entryvaluehistorytable with four data
valuesperentry.

mean IPC

3.3E ¢ VP QOLD
-©- VP LONGEST
3.2 : :
1 2 3 4

Value predictions per cvcle

Figure 4. The performance of value-prediction
of Critical-P ath instructions for varying value-
prediction bandwidth.

Figure4 shows theresultsof usinga valuepredictorthat
canprovide 1, 2, 3 and4 predictionsper cycle. The same
benchmarksndsimulatorwere usedfor this experimentas
for the last. We have selectedhe bestperformingcriterion
from the previous experimentwith onevalue predictionper
cycle. Namely thetop line shavsthe meanspeedumverall
benchmarkgor QOLD. Thelower line shavs the speedup
whenthe LONGEST selectionschemeis used. The results
shav thatthe useof critical pathinformationwith 1 predic-
tion per cycle bridgesmost of the gap betweenL ONGEST
with 1 and LONGEST with 2 predictionsper cycle. With 2
predictionspercycle,the CPBstill providesanoticeablan-
creaseover LONGEST. Whenmorevaluepredictionscanbe
madeper cycle, the two schemesstartto corverge, asthe
critical patharbitrationbecomedessnecessary
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Figure 5. The performance of a critical path-aware clustered architecture .

7.2 Clustered SchedulingAr chitectures

Clusteredarchitecturesreducethe compleity and de-
lay associatedvith key partsof the processomrchitecture
coreby separatindunctionalunitsandassociatedtructures
into multiple groups. The clustersfeaturefastcommunica-
tion within a group, and slower betweenclusters. The Al-
pha21264[16] hastwo clustersof integer functionalunits,
sened by a duplicatedregisterfile, but a singleinstruction
queue.

In this sectionwe simulateanarchitecturewvith two clus-
tersof integerfunctionalunits,eachsenedby a separatén-
structionqueue We assumdypassingf databetweerclus-
terstakes?2 cycleslongerthanbypassingvithin acluster In-
structionsareassignedo a particularstructureby hardware.
This architecturds similar to thatdescribedn [15] andone
of the machinegdescribedn [21]. A similar architecturds
describedby Farkaset. al., [6], but instructionscheduling
is donestatically The M-maching[7] alsofeaturesclusters,
but their clustersarealsonottransparento software.

Performanceon a clusteredarchitectureis optimized
whenthe instructionsat both endsof key dependenceare
assignedo the samecluster Evenbetter we'd like to send
anentirecritical dependencehainthrougha singlecluster
Onesimpleway to achieve this is to alwayssendpredicted
critical pathinstructionghroughthe samecluster

The processomodelis the sameas usedfor the previ-
ousexperimentsgexceptthe integerqueueis dividedin half,
eachservinghalf of the integer/load-stordunctional units.
We will examinethreedifferentheuristicsfor assigningn-
structionsto clusterswith increasingdegreeof compleity,
andeachbeingmodifiedto incorporatecritical pathpredic-
tion.

The first technique,Blind assignmentassignsinstruc-
tions randomly with its only priority beingto balancethe
loadin eachqueue.Blind _cp sendsall CP-marled instruc-

tionsto onecluster(if thereis room); otherinstructionsgo
to whichever clusterhasmore room. The blind algorithm
suffers by not looking at register dependencedut hasthe
adwantageof allowing clusteringto take placeearlierin the
pipeline, beforesuchinformationis known, thus allowing
moreof the pipelineto benefitfrom decentralization.

ThesecondechniqueabbreriatedReg, takesregisterde-
pendence@nto account. It attemptsto sendan instruction
to whichever clusterthe instructionsproviding the source
operandsvereassignedThisis only violatedwhena queue
is full or thequeuesaresignificantlyout of balance Reg cp
only usescritical path predictionto breakties when each
operanccomesfrom a differentcluster

The third technique,abbreviated Act_reg, is similar to
Reg, but only considersthe location of the producerof a
sourceoperandf thatinstructionhasnot yet completedex-
ecution(it is active). This is the mechanisntlosestto that
assumedn [15] and[21], but is the mostcomplex and as-
sumesnformationnottypically availableto the early stages
of the pipeline. Act_regcp againusesCP informationto
breaktieswhenbothoperandsrestill waitingto execute.

TheQOLD predictorwasusedor thisapplicationjn each
case.

From Figure 5, we seethat the critical path prediction
data allows better assignmenbf instructionsfor the less
comple assignmenschemesachieving anaveragel 5%in-
creaseover the Blind schemebut a smallergain over Reg.
That gain is enoughto allow Rey_cp to overtale Actreg,
possiblyallowing alesscostlywayto achieve theresult,par
ticularly if we are alreadyusing the critical path predictor
for otheruses. With Actreg we find even fewer ties that
needto be broken, but the small improvementshovn even
theredemonstrateshat we are still makingthe right deci-
sionswhengiventhe opportunity

The lastsetof barsshawv the sameresultsfor a 4-cluster
architecture. In that casewe seethat the blind allocation



algorithmis more handicappedby the increasen clusters,
but thatthe two registerbasedallocatorsare both morede-
pendenbn the critical pathpredictionsto achieve their best
performance.

7.3 Other UsesFor Critical Path Prediction

Critical path knowledgecanallow efficient useof vari-
ous critical resourcesnside the processar In the absence
of resourcego do an unlimited numberof memorydisam-
biguationsor value predictions, we may still be able to
getcloseto optimalperformancavith single-portedr dual-
portedmechanismsf we guide the useof thoseresources
throughcritical pathprediction.

Multiple-pathexecution[30, 14, 17] follows bothtargets
of conditionalbrancheshathave low predictionconfidence.
Betteruseof predictionresourcegould be obtainedby not
forking non-critical-pathbranchesor perhapsnot forking
branchdirectionsthat are not immediatelyon the critical
path.

Critical pathinstructionscan be given priority for issue
whenthereare more data-readyinstructionsthanthereare
functionalunits.

Multithreadedprocessorgl, 28] placehigherpressuren
issuebandwidthand other executionresourcesand would
thereforeseehigherbenefitfrom amechanisnthatusedcrit-
ical pathpredictionto manageaesourcessuchasguidingin-
structionissuepriority.

Various power optimizationswould also be possible.
Non-critical path instructions(e.g., loads) could be pre-
ventedfrom executingspeculatrely. The processomight
chooseto stall for somecyclesduring executionof a long-
lateng/ operatiorknown to be onthecritical path.

Dataaccessedy critical loadinstructionscanbeguarded
againstreplacemenf2, 9] in orderto save enegy andim-
prove performance.

Several of thesearethe subjectof ongoingor future re-
search.

In this sectionwe have discussednary potentialappli-
cationsof critical pathcomputing,and have simulatedtwo
examples. Thesetwo applicationsvalidate our thesisthat
knowing the critical pathcanallow usto make usefultrade-
offs betweenCP andnon-CPinstructions. Theseexamples
alsovalidatethe accurag of our predictors,demonstrating
thatthe predictorsareindeedidentifying importantinstruc-
tions,enablingsignificantperformanceenhancements.

8 Conclusions

This paperintroducesthe conceptof critical path pre-
diction, which seeksto identify thoseinstructionsthat con-
strainthe performancef the processarin orderto approach
or even surpasghe currenttrue-dependenceottleneckthe
processomneedsto know exactly which instructionscreate
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thatbottleneck.Critical path predictioninformationcanbe
usefuljust aboutanywherethe processomustarbitratebe-
tweeninstructions,or wherehardware structuresare prone
to contentioror pollution.

We examineavarietyof techniqueso identify andpredict
CPinstructionsjncludingsomewhich aresimpleto markin
the pipelineand provide excellentaccurag. We shav that
we can biasthe processoin favor of critical pathinstruc-
tionsandagainsibtherinstructionsandconsistentlyachiese
performanceains.

Critical pathpredictionis a techniquewhich canbe used
to increasehe effectivenesof otherstructuresor optimiza-
tions. We demonstrateritical pathpredictioneffectiveness
on several hardware optimizations. First, we establishthe
potentialfor critical pathpredictionby applyingit to anide-
alizedoptimization. Thenwe applyit to valuepredictionand
clusteredarchitecturenstructionscheduling.

We demonstratehat the effectivenessof a value predic-
tor canbe morethandoubledthroughthe useof critical path
prediction,relative to a valuepredictorthatmustselectran-
domly amongmultiple instructionsthat are deemedto be
predictable.It is 68% moreeffective thana valuepredictor
thatusesdecodednstructioninformationto make the selec-
tion basedn expectedateng.

As processoréncreasetheir ability to exploit ILP in the
instructionstream,applicationperformancebecomesnore
tied to the executionof the critical dependenceath. Opti-
mizationsthataccelerateritical pathexecutionwill have an
increasinglylargeadwantage.
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