Consider the first 3 DoF of the modified PUMA 560 arm, shown in Figure 1

Figure 1 3DoF PUMA 560 robot arm (w./ kinematic parameters)
Note the translation of the $0^{\text {th }}$-coordinate system at the base of the robot arm, and the translation of $3^{\text {rd }}$-coordinate system at the tip of the $3^{\text {rd }}$ link (compare them w.r.t. the $1^{\text {st }}$ project). At the bottom of the drawing, the dimensions of each joint are shown; the $1^{\text {st }}$ and $3^{\text {rd }}$ joints have a cylindrical shape while the $2^{\text {nd }}$ joint is composed of the superposition of two cylinders. The circular cross section area of each mentioned cylinder has a diameter of 40 mm . The material used in the `filling' of the cylinders has a mass density of $10 \mathrm{gr} / \mathrm{mm}^{3}$

1. Compute in symbolic form the matrix $A_{0}^{3}\left(\theta_{1}, \theta_{2}, \theta_{3}\right)=A_{0}^{3}(\bar{\theta})$
2. Compute the 4×4 inertia matrices J_{i} of each link $i=1,2,3$
3. Compute in symbolic form the dynamics of the 3 DoF manipulator $D_{3 \times 3}(\bar{\theta}) \ddot{\bar{\theta}}+C_{3 \times 1}(\bar{\theta}, \dot{\bar{\theta}})+G_{3 \times 1}(\bar{\theta})=\bar{\tau}_{3 \times 1}$,
4. Plot $\bar{\tau}(t), t \in[0,12]$ for joint trajectories (expressed in degrees) $\bar{\theta}^{d}(t)=\left[\begin{array}{c}A_{1} \sin \left(\frac{2 \pi}{T_{1}} t\right) \\ A_{2} \sin \left(\frac{2 \pi}{T_{2}} t\right) \\ 40^{\circ}+A_{3} \sin \left(\frac{2 \pi}{T_{3}} t\right)\end{array}\right]$, where

$$
A_{1}=2 A_{2}=2 A_{3}=80^{\circ} \text { and } T_{1}=2 T_{2}=3 T_{3}=6 \text { seconds. Record } \bar{\tau}_{\max }=\left[\begin{array}{c}
\tau_{1}^{\max } \\
\tau_{2}^{\max } \\
\tau_{3}^{\max }
\end{array}\right]=\left[\begin{array}{c}
\max _{t} \tau_{1}(t) \\
\max _{t} \tau_{2}(t) \\
\max _{t} \tau_{3}(t)
\end{array}\right]
$$

5. Assume the trajectories defined in the previous question as the desired ones. Design a computed torque controller $\bar{\tau}_{3 \times 1}=D_{3 \times 3}(\bar{\theta})\left[\ddot{\bar{\theta}}^{d}+K_{d}\left(\dot{\bar{\theta}}^{d}-\dot{\bar{\theta}}\right)+K_{p}\left(\bar{\theta}^{d}-\bar{\theta}\right)\right]+C_{3 \times 1}(\bar{\theta}, \dot{\bar{\theta}})+G_{3 \times 1}(\bar{\theta})$ that when applied to the robot forces its joints to track these desired angles for $\bar{\theta}(0)=\left[\begin{array}{c}-160^{\circ} \\ -225^{\circ} \\ -45^{\circ}\end{array}\right]$. Assume that K_{d}, K_{p} are diagonal positive matrices. Select their diagonal elements so that you have a satisfactory response, while the maximum torque applied to the motors does not exceed $2 \bar{\tau}_{\text {max }}$
