Σχεδιασμός Ολοκληρωμένων Κυκλωμάτων VLSI – ΙΙ

- Για τους αθροιστές μεγάλου μήκους (Ν >16 bits), η καθυστέρηση εξαρτάται από την καθυστέρηση του διάδοσης του κρατουμένου διαμέσου των σταδίων πρόβλεψης
- Μπορεί να κατασκευαστεί ένα πολυεπίπεδο δένδρο δομών πρόβλεψης => η καθυστέρηση διάδοσης του κρατούμενου να είναι log N
- Τέτοιοι αθροιστές αναφέρονται συνήθως ως αθροιστές δένδρου
- Υπάρχουν πολλοί τρόποι κατασκευής του δένδρου πρόβλεψης με συμβιβασμούς ανάμεσα στο
 - πλήθος των επιπέδων λογικής
 - πλήθος των λογικών πυλών
 - μέγιστο βαθμό οδήγησης εξόδου κάθε πύλης και
 - ποσότητα καλωδίωσης μεταξύ των σταδίων
- Τρία θεμελιώδη δένδρα είναι οι αρχιτεκτονικές: Brent-Kung, Sklansky και Kogge-Stone

Βασικά δομικά στοιχεία

FIG 10.17 Group PG cells

Brent Kung (1/3)

Υπολογισμός σε μορφή δέντρου των απαραίτητων G των ενδιάμεσων bit για το τελικό αποτέλεσμα

Brent Kung (2/3)

Brent Kung (3/3)

Δεν καταλαμβάνει μεγάλη επιφάνεια

Δεν έχει πρόβλημα πυκνότητας καλωδίων

Απαιτεί 2log₂N – 1 επίπεδα για τον τελικό υπολογισμό – δεν είναι η καλύτερη επιλογή για την καθυστέρηση

Sklansky (1/4)

Υπολογίζει πολλά μαζί Generate μειώνοντας έτσι την καθυστέρηση σε σχέση με τον Brent-Kung tree adder

Sklansky (2/4)

Sklansky (3/4)

Critical path delay του Sklansky (ισχύει και για Kogge-Stone tree adder):

$$t_{tree} = t_{pg} + \left[\log_2 N\right] t_{AO} + t_{xor}$$

Sklansky (4/4)

Απαιτεί log₂ N επίπεδα για τον τελικό υπολογισμό (μικρότερο delay από τον Brent-Kung)

Καταλαμβάνει μεγαλύτερη επιφάνεια σε σχέση με τον Brent-Kung

> Δεν έχει πρόβλημα πυκνότητας καλωδίων

Kogge-Stone (1/3)

Μειώνει το max fan-out σε 2 (μία από τις διαδρομές με max fan-out)

Kogge-Stone (2/3)

Critical path delay του Kogge-Stone tree adder (ισχύει και για <u>Slansky</u>):

$$t_{tree} = t_{pg} + \left[\log_2 N\right] t_{AO} + t_{xor}$$

Kogge-Stone (3/3)

- \blacktriangleright Απαιτεί $\log_2 N$ επίπεδα για τον τελικό υπολογισμό
- Καταλαμβάνει μεγάλη επιφάνεια (μεγάλος αριθμός από black cells)
- Έχει μεγάλο αριθμό καλωδίων για τα οποία πρέπει να ευρεθούν διαδρομές (πρόβλημα)

Han – Carlson (1/4)

> Οι Han-Carlson trees είναι μία οικογένεια από δίκτυα μεταξύ Kogge-Stone και Brent-Kung

≻Στο διάγραμμα χρησιμοποιεί την τεχνική Brent-Kung

Μείωση επιπέδων με χρήση τεχνικής (μακριών καλωδίων) του Kogge-Stone

Han – Carlson (2/4)

Han – Carlson (3/4)

>Μία από τις διαδρομές με max fan-out

Han – Carlson (4/4)

- > Έχει ικανοποιητική καθυστέρηση
- > Δεν καταλαμβάνει μεγάλη επιφάνεια (αριθμός πυλών)
- > Δεν έχει μεγάλη πυκνότητα καλωδίων

Knowles (1/4)

≻Είναι συνδυασμός Kogge-Stone και Sklansky.

Το πρόβλημα του μεγάλου fan-out που παρουσιάζει ο Sklansky επιλύεται με τη μέθοδο (μεγάλων καλωδίων) Kogge-Stone

Knowles (2/4)

Μία από τις διαδρομές με max fan-out

Knowles (3/4)

Μία από τις διαδρομές με τη μέγιστη καθυστέρηση

Knowles (4/4)

- Απαιτεί log₂N επίπεδα για τον τελικό υπολογισμό (η μικρότερη καθυστέρση)
- > Καταλαμβάνει μεγάλη επιφάνεια (αριθμός πυλών)
- > Δεν έχει μεγάλο πρόβλημα πυκνότητας καλωδίων

Lander – Fischer (1/4)

Oι Ladner-Fischer trees είναι οικογένεια δικτύων μεταξύ <u>Slansky</u> και <u>Brent-Kung</u>

≻Αρχικά γίνονται οι υπολογισμοί όπως στους Brent-Kung trees

>Ενώ οι υπόλοιποι υπολογισμοί γίνονται με τη μέθοδο των Slansky trees

Lander – Fischer (2/4)

Η διαδρομή με max fan-out

Lander – Fischer (3/4)

Lander – Fischer (4/4)

> Απαιτεί **2log₂N-1** επίπεδα για τον τελικό υπολογισμό (όχι τόσο καλή καθυστέρηση)

- > Καταλαμβάνει πολύ μικρή επιφάνεια
- > Δεν έχει πρόβλημα πυκνότητας καλωδίων

Ομαδοποίηση tree adders (1/2)

Θέτοντας L=log₂N γίνεται η περιγραφή του κάθε tree με 3 μεταβλητές:

(l,f,t) στο σύνολο [0,L-1]

Ομαδοποίηση tree adders (2/2)

FIG 10.35 Taxonomy of prefix networks

Taxonomy Revisited

Αλγοριθμική κατασκευή αθροιστών παράλληλου προθέματος

 S. Roy, M. Choudhury, R. Puri and D. Z. Pan, "Towards Optimal Performance-Area Trade-Off in Adders by Synthesis of Parallel Prefix Structures," in *IEEE Transactions on Computer-Aided Design of Integrated Circuits* and Systems, vol. 33, no. 10, pp. 1517-1530, Oct. 2014, doi: 10.1109/TCAD.2014.2341926.

Αφαίρεση

30

Διάγραμμα κουκίδων (Dot Diagram)

- Πολλαπλασιασμοί μεγάλων αριθμών απεικονίζονται ευκολότερα με τα διαγράμματα κουκίδων
- Κάθε κουκίδα αντιπροσωπεύει μια θέση για ένα ψηφίο που μπορεί να είναι 0 ή 1
- Τα μερικά γινόμενα αναπαριστώνται από ένα οριζόντιο κουτί γραμμής κουκίδων, ολισθημένο σύμφωνα με το βάρος τους
- Τα δυαδικά ψηφία του πολλαπλασιαστή που χρησιμοποιούνται για την παραγωγή των μερικών γινομένων φαίνονται στα δεξιά

Γενικές αρχές υλοποίησης πολλαπλασιασμού (1/2)

- Πλήθος τεχνικών για την εκτέλεση του πολλαπλασιασμού
- Η επιλογή βασίζεται πάνω σε μετρικές σχεδιασμού
 - η καθυστέρηση, ο ρυθμός λειτουργίας (throughput rate), επιφάνεια και πολυπλοκότητα
- Η προφανής λύση είναι η χρήση αθροιστή διάδοσης κρατουμένου (CPA) M+1 bits σε δομή αλυσίδας
 - Χρειάζεται N-1 CPAs και είναι αργή, ακόμα κι αν χρησιμοποιηθεί ένας γρήγορος CPA
- Αποδοτικότερες δομές με χρήση ορισμένου τύπου πίνακα ή δένδρων αθροιστών για την πρόσθεση των μερικών γινομένων

Γενικές αρχές υλοποίησης πολλαπλασιασμού (2/2)

- Κλασσική δομή πίνακα για μη προσημασμένους αριθμούς
- Τροποποίηση πίνακα για προσημασμένους αριθμούς σε συμπλήρωμα ως προς 2 – αλγόριθμος Baugh-Wooley
- Κωδικοποίησης Booth για μείωση πλήθους μερικών γινομένων
- Δένδρα Wallace για μείωση λογικών επιπέδων πρόσθεσης
 - Τα δένδρα Wallace οδηγούν σε πολύπλοκα layouts και έχουν μεγάλου μήκους, μη κανονικές διασυνδέσεις
- Υβριδικές δομές πινάκων / δένδρων

Rectangular Array

• Ίδιοι αθροιστές μετατοπισμένοι για να ταιριάζουν σε ένα ορθογώνιο σχήμα

Πολλαπλασιασμός σε αριθμών σε αναπαράσταση συμπληρώματος του δύο

$$x = -x_{N-1}2^{N-1} + \sum_{i=0}^{N-2} x_i 2^i \qquad y = -y_{M-1}2^{M-1} + \sum_{j=0}^{M-2} y_j 2^j$$

$$x \cdot y = \left(-x_{N-1}2^{N-1} + \sum_{i=0}^{N-2} x_i 2^i\right) \left(-y_{M-1}2^{M-1} + \sum_{j=0}^{M-2} y_j 2^j\right)$$

$$= x_{N-1}y_{M-1}2^{M+N-2} + \sum_{i=0}^{N-2} \sum_{j=0}^{M-2} x_i y_j 2^{i+j} - x_{N-1} \sum_{j=0}^{M-2} y_j 2^j - y_{M-1} \sum_{i=0}^{N-2} x_i 2^i$$

Πολλαπλασιασμός αριθμών σε αναπαράσταση συμπληρώματος ως προς 2 με Baugh – Wooley (2/4)

- Γινόμενων μη αρνητικών τμημάτων
- Γινόμενο των δύο MSBs
- Υπό συνθήκη αφαιρέσεις ως άθροισμα συμπληρώματος του δύο
 - Ανεστραμμένα bits
 - Πρόσθεση 1 στο λιγότερο σημαντικού ψηφίου
- Συνθήκες είναι οι τιμές των MSBs
Πολλαπλασιασμός σε συμπλήρωμα ως προς 2 (3/4)

- Η καθυστέρηση εξαρτάται από τον αριθμό των γραμμών των μερικών γινομένων που θα προστεθούν
- Ο τροποποιημένος πολλαπλασιαστής Baugh-Wooley μειώνει τον αριθμό των μερικών γινομένων προ-υπολογίζοντας τα αθροίσματα των σταθερών 1 και μεταθέτοντας κάποιους προς τα πάνω σε επιπλέον στήλες

Πολλαπλασιασμός σε συμπλήρωμα ως προς 2 (4/4)

Κωδικοποίηση Booth

- Με τον κλασσικό αλγόριθμο κάθε ψηφίο του πολλαπλασιαστή παράγει ένα μερικό γινόμενο που πρέπει να προστεθεί =>
 - μεγάλο πλήθος προσθέσεων μερικών γινομένων (για μεγάλους πολλαπλασιαστές)
 - αύξηση της καθυστέρησης
- Ο αλγόριθμος του Booth κωδικοποιεί τον πολλαπλασιαστή ώστε να δημιουργήσει πολλές και μεγάλου μήκους ακολουθίες από "00...00"
- Τα παραγόμενα μερικά γινόμενα έχουν μηδενική τιμή (είναι "00...00")
- Σημαντική μείωση των προσθέσεων και των χρησιμοποιούμενων αθροιστών

Κωδικοποίηση Booth – Βασική ιδέα

• Έστω μια δυαδική ακολουθία

Απαιτούνται κατάλληλες ολισθήσεις και 1 πρόσθεση (+Α) και 1 αφαίρεση (-Α) αντί κ προσθέσεις (A+A+...+A) του πολλαπλασιαστέου Α

≻Εισάγονται 2 βοηθητικά (dummy) bits b_n, b₋₁=0 και στο B=b_{n-1}, b_{n-2}, ..., b₁, b₀

Πίνακας κωδικοποίησης Booth (1/2)

Πολλο	ιπλασιαστής	
Bit <i>i</i>	Bit <i>i</i> + 1	Λειτουργία
0	0	0 imesπολλαπλασιαστέος ($0 imes A$)
0	1	$+1 \times πολλαπλασιαστέος (+1 \times A)$
1	0	$-1 \times πολλαπλασιαστέος$ ($-1 \times A$)
1	1	0 imesπολλαπλασιαστέος ($0 imes A$)

> Χρησιμοποιεί μόνο τους όρους 0, +Α, -Α και κατάλληλες ολισθήσεις

>Με βάση τον παραπάνω πίνακα ο αριθμός 0011110 (+30) κωδικοποιείται σε 0+1000-10 (32-2=30)

Πίνακας κωδικοποίησης Booth (2/2)

VLSI – I

Worst case	0	1	0	1	0	1	0	1
Κωδικοποίηση	+1	-1	+1	-1	+1	-1	+1	-1
Best case	0	0	1	1	1	1	0	0
Κωδικοποίηση	0	+1	0	0	0	-1	0	0

Πολλαπλασιασμός Booth – Παράδειγμα

0 1 0 1 0 1 1 0 1 0 1 0 1 1 0 0 1 1 1 1 0 0 + 1 0 0 0 - 1 00 1 0 1 0 1 1 $1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1$ 0 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 2's 0 0 0 0 0 0 0 0 0 0 0 0 complement 0 1 0 1 0 1 1 0 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 1 0 1 0

Συμβατικός

Booth

Κωδικοποίηση Booth – Radix 4 (1/3)

- Η προηγούμενη κωδικοποίηση επιταχύνει τον πολλαπλασιασμό υπερπηδώντας ακολουθίες από συνεχόμενους "1.....1"
- Η διαδικασία μπορεί να επιταχυνθεί ακόμη περισσότερο συνδυάζοντας 3αδες ψηφίων του πολλαπλασιαστή
 - Στην ουσία εξετάζει ένα ζεύγος ψηφίων λαμβάνοντας υπόψη το αμέσως προηγούμενο ψηφίο δεξιά
- Οδηγεί στην παραγωγή το πολύ n/2 μερικών γινομένων για έναν n-bit πολλαπλασιαστή
- Όπως και η προηγούμενη κωδικοποίηση ισχύει για προσημασμένους και μη προσημασμένους αριθμούς

2011-2012

Πίνακας κωδικοποίησης Booth radix 4 (2/3)

Ζεύγος ψηφίων πολ/στή 2 ¹ 2 ⁰		Ψηφίο δεξιά	Λειτουργία	Εξήγηση
<i>i</i> + 1	i	<i>i</i> – 1		
0	0	0	0×A	No string
0	0	1	$+1 \times A$	End of string
0	1	0	+1×A	Single 1 (+2-1)
0	1	1	$+2 \times A$	End of string
1	0	0	-2×A	Beginning of string
1	0	1	-1×A	End/ beginning of string
1	1	0	-1×A	Beginning of string
1	1	1	0×A	String of 1s

VLSI – II

Κωδικοποίηση Radix-4 (3/3)

Ζεύγος πολλαπλ	ψηφίων λασιαστή		Λειτου	Εξήγηση		
21	20		ργια			
<i>i</i> + 1	i	<i>i</i> – 1				
0	0	0	0×A	No string		
0	0	1	$+1 \times A$	End of string		
0	1	0	+1×A	Single 1 (+2-1)		
0	1	1	+2×A	End of string		
1	0	0	-2×A	Beginning of string		
1	0	1	-1×A	End/ beginning of string		
1	1	0	-1×A	Beginning of string		
1	1	1	0×A	String of 1s		

 $\mathbf{0} \times \mathbf{A}$, LSB in column 2⁶

Πολλαπλασια	ΣĻ	ιó	ς	В	0	ot	h		Π	αρ	сó	ιδ	3	ιγ	ገ	۱C	l	
000011	_	0	-	,		_				-			0	0	0	0	1	1
011101	Συ -	μβα	τικά	ος		Boo	th R	adix2	<u> </u>				+1	0	0	-1	0	1
000011								0	0	0 () ()	0	0	0	0	0	1	1
$0 \ 0 \ 0 \ 0 \ 0 \ 0$								0	0	0 () ()	0	0	0	0	0	0	
$0\ 0\ 0\ 0\ 1\ 1$								1	1	1	l 1	1	1	1	0	1		
$0\ 0\ 0\ 0\ 1\ 1$				2'	_			0	0	0 () ()	0	0	0	0			
$0\ 0\ 0\ 0\ 1\ 1$					mnl	eme	nt	0	0	0 (0 0	0	0	0				
000000	-			00		enne		0	0	1	l							
00001010111								0	0	0 () ()	1	0	1	0	1	1	1
					0	0	0	0	1	1								
						1	Φ	1	\bigcirc	1								
						2×A		-1×A		1×A			Boc	oth	Rad	dix4	ŀ	
0 0	0	0	0	0	0	0	0	0	1	1								
1 1	1	1	1	1	1	1	0	1										
0 0	0	0	0	1	1	0												
0 0	0	0	0	0	1	0	1	0	1	1	1							

Κυκλώματα Κωδικοποίησης & Επιλογής Booth

	Inputs		Partial Product	Booth Selects			
x_{2i+1}	x_{2i}	^x 2i−1	PP_i	$SINGLE_i$	DOUBLE_i	NEG _i	
0	0	0	0	0	0	0	
0	0	1	Y	1	0	0	
0	1	0	Y	1	0	0	
0	1	1	2Y	0	1	0	
1	0	0	-2Y	0	1	1	
1	0	1	-Y	1	0	1	
1	1	0	-Y	1	0	1	
1	1	1	-0 (= 0)	0	0	1	

- Το κύκλωμα κωδικοποίησης παράγει τα σήματα (single, double, neg)
- Το κύκλωμα επιλογής δέχεται τα σήματα (single, double, neg) και τον πολλαπλασιαστέο Υ εκτεταμένο ως προς το μηδέν σε N + 1 bits - έξοδος τιμές 0, Y, 2Y
- Αν το μερικό γινόμενο είναι αρνητικό (neg=1) χρησιμοποιείται το συμπλήρωμα του δύο

Επέκταση προσήμου

- Ακόμα και σε μη προσημασμένους αριθμούς τα αρνητικά μερικά γινόμενα πρέπει να επεκταθούν ως προς το πρόσημο για να προστεθούν σωστά
- Κάθε μερικό γινόμενο επεκτείνεται ως προς το πρόσημο με βάση το σήμα negi
- Προστίθεται *s* στο LSB στην επόμενη γραμμή (το συμπλήρωμα ως προς 2)
- Μεγάλες απαιτήσεις fanout για τα MSBs

Απλοποιημένη επέκταση προσήμου (1/2)

- Τα Sign bits είναι είτε όλα 0's είτε όλα 1's
 - Όμως το όλα 0's είναι ισοδύναμο με το όλα 1's + 1 στην κατάλληλη στήλη
 - Η ιδέα αυτή χρησιμοποιείται για να ελαττώσει το φορτίο του MSB

Απλοποιημένη επέκταση προσήμου (2/2)

- Δε χρειάζεται να γίνονται όλες οι προσθέσεις των 1's in hardware
 - Προϋπολογισμός έξω από τον πίνακα

Τροποποιημένος πίνακας για αρνητικούς αριθμούς

- Τα ψηφία προσήμου πρέπει να επεκταθούν κατάλληλα
 - Στη 1^η γραμμη έχουμε 11 αντί 6 ψηφία κοκ
- Αυξάνει την πολυπλοκότητα των multioperand adder
- Αν χρησιμοποιηθεί 1's complement και πρόσθεση 1 στο LSB => ακόμη μεγαλύτερη αύξηση των στηλών και πολυπλοκότητα των multi-operand adder

10	9	8	7	6	5	4	3	2	1	0
•	•	•	•	•	0	0	0	0	0	ο
•	•	•	•	ο	ο	ο	ο	ο	0	
•	•	•	ο	ο	ο	0	ο	ο		
•	•	ο	ο	ο	ο	0	ο			
•	0	ο	ο	ο	0	ο				
ο	ο	0	ο	ο	ο					

Μείωση πολυπλοκότητας

Two's complement αριθμός ssssss z₄z₃z z₁z₀ με τιμή

$$-s \cdot 2^{10} + s \cdot 2^9 + s \cdot 2^8 + s \cdot 2^7 + s \cdot 2^6 + s \cdot 2^5 + z_4 \cdot 2^4 + z_3 \cdot 2^3 + z_2 \cdot 2^2 + z_1 \cdot 2^1 + z_0$$

Αντικαθίσταται από 00000 (-s) z₄z₃z₂z₁z₀ αφού

$$-s \cdot 2^{10} + s \cdot (2^9 + 2^8 + 2^7 + 2^6 + 2^5)$$
$$= -s \cdot 2^{10} + s \cdot (2^{10} - 2^5) = -s \cdot 2^5.$$

Πρόσθεση μερικών γινομένων

- Τα μερικά γινόμενα πρέπει να προστεθούν για την παραγωγή του τελικού αποτελέσματος
- Χρήση αθροιστών πολλαπλών ορισμάτων
 - Fast multi-operand adder
- Η δομή των μερικών γινομένων πρέπει να ληφθεί υπόψη ώστε να ελαττωθεί η πολυπλοκότητα
- Μερικά μερικά γινόμενα έχουν μικρότερο πλήθος ψηφίων από το μέγιστο
 - πρέπει να ευθυγραμμιστούν κατάλληλά
 - απαιτούν λιγότερους και απλούστερους αθροιστές / μετρητές

Παράδειγμα - 6 Partial Products

- Παράγονται όταν πολ/νται μη προσημασμένοι
 6-bit αριθμοί
- 6 operands μπορούν να προστεθούν χρησιμοποιώντας 3 επίπεδα CSAs (Wallace tree)
- Το πλήθος των (3,2) μετρητών μπορεί να μειωθεί δραστικά εκμεταλλευόμενοι το γεγονός ότι μόνο μια στήλη έχει 6 ψηφία
- Επανασχεδίαση του διαγράμματος κουκίδων για την επιλογή των (3,2) μετρητών

10	9	8	7	6	5	4	3	2	1	0	
					0	0	ο	ο	ο	ο	
				ο	0	ο	0	0	0		
			ο	ο	ο	ο	ο	ο			
		ο	ο	ο	ο	ο	ο				
	0	0	ο	ο	ο	ο					
0	0	0	ο	ο	0						
10	9	8	7	6	5	4	3	2	1	0	
0	ο	ο	ο	ο	ο	ο	ο	ο	ο	ο	
	0	0	ο	ο	0	ο	0	0	0		
		0	ο	ο	0	ο	0	0			
			ο	ο	ο	ο	ο				
				ο	0	ο					
					ο						

Μείωση πολυπλοκότητας - Χρήση (2,2) Counters (HAs)

Ο αριθμός των επιπέδων παραμένει 3 αλλά λιγότεροι counters

Επιπλέον μείωση του πλήθους των μετρητών

- Reduce # of bits to closest element of 3,4,6,9,13,19,...
- 15 (3,2) and 5 (2,2) vs. 16 (3,2) and 9 (2,2) counters

Γρήγορες είσοδοι – γρήγορες έξοδοι

Μια υλοποίηση του [4:2] compressor

V.G. Oklobdzija, D.Villeger, and S.S. Liu, "A Method for Speed Optimized Partial Product Reduction and Generation of Fast Parallel Multipliers Using an Algorithmic Approach," *IEEE Transactions on Computers*, pp. 294 – 306, March 1996.

3D άποψη της αναγωγής μερικών γινομένων

Example of Delay Optimization

Ελαχιστοποίηση καθυστέρησης με βέλτιστη ανάθεση εισόδων

Μοντέλο καθυστέρησης πλήρους αθροιστή ενός ψηφίου

$$\begin{split} & \text{Delay(S)} \\ = \text{MAX} \left\{ \text{Delay(A)} + \text{D}_{\text{A-S}}, \, \text{Delay(B)} + \text{D}_{\text{B-S}}, \, \text{Delay(C}_{\text{in}}) + \text{D}_{\text{Cin-S}} \right\} \\ & \text{Delay(C)} \\ = \text{MAX} \left\{ \text{Delay(A)} + \text{D}_{\text{A-C}}, \, \text{Delay(B)} + \text{D}_{\text{B-C}}, \, \text{Delay(C}_{\text{in}}) + \text{D}_{\text{Cin-C}} \right\} \end{split}$$

Worst Case

TDM Arrangement

Αλγόριθμος κατασκευής δένδρου αναγωγής

Αρχικοποίηση: Form 2N - 1 lists L_i (i = 0,1,...,2N - 2) each consisting of p_i elements where: $p_i = i + 1$ for $i \le N - 1$ and $p_i = 2 N - 1 - i$ for $i \ge N$

An element of a list L_i (j = 0,1,..., $p_i - 1$) is a pair: $\langle d_j, n_j \rangle_i$ where:

n_i : is a unique node identifying name

 d_j : is a delay associated with that node representing a delay of a signal arriving to the node n_i with respect to some reference point.

For i = 0, 1 and 2N - 2: connect nodes from the corresponding lists Li directly to the CPA;

Αλγόριθμος (2)

```
Partial Product Array Generation:
For I = 2 to I = 2N - 3 Begin For
 if length of L_i is even Then
 Begin If
  Sort the elements of L_i in ascending order by the
 values of delay d1;
  connect an HA to the first 2 elements of L_i starting
 with the slowest input;
 Ds = max {d_{A}+d_{A-s}, d_{B}+d_{B-s}}
 Dc = max \{ dA+dA-c, dB+dB-c \}
  remove 2 elements from L_i;
 insert the pair \langle Ds, NetName \rangle into L_i;
  insert the pair \langle Dc, NetName \rangle into L_{i+1};
 decrement the length of L_i;
 increment the length of L_{i+1};
  End If;
```

```
while length of L_i > 3
  Begin While
   sort the elements of L_i in ascending order by the
          values of delay dl;
   connect an FA to the first 3 elements of L_i starting
          with the slowest input of the FA:
   Ds = max \{ dcA + dcA-s, dcB + dcB-s \};
   Dc = max \{ dcA+dcA-c, dcB+dcB-c \};
   remove 3 elements from L_i;
   insert the pair \langle Ds, NetName \rangle into L_i;
   insert the pair \langle Dc, NetName \rangle into L_{i+1};
   subtract 2 from the length of L_i;
   increment the length of L_{i+1};
  End While;
 sort the elements of L_i;
connect an FA to the last 3 nodes of L_i;
connect the S and C to the bit i and I + 1 of the CPA;
End For;
End Method;
```

Παράδειγμα TDM

TABLE 1 COMPARISON BETWEEN TDM AND OTHER REPRESENTATIVE SCHEMES, IN XOR LEVELS USED IN THE PARTIAL PRODUCT ARRAY

Multiplier	Wallace	4:2 Tree	Fadavi-	TDM
Word-	Tree [7]	[11]*	Ardekani	
length			[16]	
3	2	2	2	2
4	4	3	3	3
6	6	6 (5)	5	5
8	8	6	7	5
9	8	. 8	7	6
. 11	10	9 (8)	8	7
12	10	9 (8)	8	7
16	12	9	10	8
19	12	12 (11)	11	9
24	14	12 (11)	12	10
32	16	12	13	11
42	16	15 (14)	14	12
53	18	15	15	13
64	20	15	16	14
95	20	18 (17)	17	15

* Number in parenthesis represent delays when a Full Adder is used (instead

of 4:2 compressor) every time the column size is found to be three.

TABLE 2 CRITICAL PATH DELAY [CMOS: LEFF = 1 μ , T = 25°C, V_{cc} = 5V]

N =	4:2	9:2	Fadavi-	TDM
24 bits	Design	Design	Ardekani	Design
Delay [nS]	14.0	13.0	11.7	10.5

Σύγκριση (3,2), [4:2], F-A, TDM

Ο ρόλος του τελικού αθροιστή

Οργάνωση CPA: Καθορισμός περιοχών

- <u>Περιοχή 1:</u> Γραμμική καθυστέρηση με τη θέση του δυαδικού ψηφίου.
- <u>Περιοχή 2:</u> Τα ψηφία καταφθάνουν περίπου ταυτόχρονα.
- <u>Περιοχή 3:</u> Τα περισσότερο σημαντικά ψηφία καταφθάνουν νωρίτερα.

Τελική οργάνωση CPA

Ο πολλαπλασιαστής των Kidambi, El-Guibaly και Antoniou¹

¹"Area-Efficient Multipliers for Digital Signal Processing Applications," *IEEE Transactions on Circuits and Systems – Part II*, 43(2), σελ. 90 - 95, Feb. 96.
Πολλαπλασιαστές Σταθερού Μήκους

Επιπτώσεις σε φίλτρα

 Εφαρμογή του συγκεκριμένου πολλαπλασιαστή (16×16) σε κατωδιαβατό Butterworth wave φίλτρο δεύτερης τάξης και δομής GIC (generalized-immitance converter)

• A. Antoniou, *Digital filters analysis and design*, McGraw Hill, 1993.

Το ίδιο πρόβλημα από άλλη πλευρά...²

² Van, Wang, και Feng, "Design of the lower-error fixed-width multiplier and its application," *IEEE Transactions on Circuits and Systems – Part II*, 47(10), Oct 2000.

Επιδόσεις του δεύτερου πολλαπλασιαστή σε ψηφιακά φίλτρα φωνής

FIR φίλτρο

35 συντελεστών

Κατανεμημένη (Distributed) Αριθμητική

• Υπολογισμός εσωτερικού γινομένου σταθερού διανύσματος $C = [c_1 c_2 \dots c_N]$ με μεταβλητό διάνυσμα $X = [x_1 \ x_2 \dots x_N]$.

$$Y = C \cdot X = \sum_{i=1}^{N-1} c_i x_i$$

 Εφαρμογές: φίλτρα σταθερών συντελεστών, διακριτοί μετασχηματισμοί όπως ο DCT...

Παράδειγμα Κατανεμημένης Αριθμητικής

$$(001)_2 = 0 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-3}$$
$$= (0.125)_{10}$$

 $Y = c_0 x_0 + c_1 x_1 + c_2 x_2 + c_3 x_3$ $Y = c_0 (001)_2 + c_1 (010)_2 + c_2 (110)_2 + c_3 (101)_2$ $= 2^{-1} (c_0 0 + c_1 0 + c_2 1 + c_3 1) + (c_0 0 + c_1 1 + c_2 1 + c_3 0) + (c_0 0 + c_1 1 + c_2 0 + c_3 1)$ $= 2^{-1} f (0, 0, 1, 1) + 2^{-2} f (0, 1, 1, 0) + 2^{-3} f (1, 0, 0, 1)$

$$f(x_{0,j}, x_{1,j}, x_{2,j}, x_{3,j}) \triangleq c_0 x_{0,j} + c_1 x_{1,j} + c_2 x_{2,j} + c_3 x_{3,j}$$

Τρεις κύκλοι ρολογιού

Δεν απαιτούνται πολλαπλασιασμοί.

<i>x</i> _{0,,<i>j</i>}	$x_{1,j}$	<i>x</i> _{2,<i>j</i>}	<i>x</i> _{3,,<i>j</i>}	Περιεχόμενα Θέσης Μνήμης
0	0	0	0	0
0	0	0	1	<i>c</i> ₃
0	0	1	0	c_2
0	0	1	1	$c_{2} + c_{3}$
0	1	0	0	<i>c</i> ₁
0	1	0	1	$c_1 + c_3$
0	1	1	0	$c_1 + c_2$
0	1	1	1	$c_1 + c_2 + c_3$
1	0	0	0	c_0
1	0	0	1	$c_{0} + c_{3}$
1	0	1	0	$c_{0} + c_{2}$
1	0	1	1	$c_0 + c_2 + c_3$
1	1	0	0	$c_{0} + c_{1}$
1	1	0	1	$c_0 + c_1 + c_3$
1	1	1	0	$c_0 + c_1 + c_2$
1	1	1	1	$c_0 + c_1 + c_2 + c_3$

Αρχές Κατανεμημένης Αριθμητικής

- *c_i*: *M*-bit σταθερές
- x_i : W-bit δεδομένα συμπληρώματος δύο
- *x_{i,k}* είναι 0 ή 1

$$x_{i} = -x_{i,W-1} + \sum_{j=1}^{W-1} x_{i,W-1} 2^{-j} \\ Y = \sum_{i=0}^{N-1} c_{i} x_{i}$$

$$\Rightarrow Y = \sum_{i=0}^{N-1} c_{i} \left(-x_{i,W-1} + \sum_{j=1}^{W-1} x_{(i,W-1)} 2^{-j} \right) = -\sum_{i=0}^{N-1} c_{i} x_{i,W-1} + \sum_{i=0}^{N-1} \sum_{j=1}^{W-1} c_{i} x_{i,W-1} 2^{-j}$$

$$Y = \sum_{i=0}^{N-1} c_i x_i = \sum_{j=0}^{W-1} C_{W-1-j} \ 2^{-j}, \qquad C_{W-1-j} = \sum_{i=1}^{N-1} c_i x_{i,W-1-j}, \ j \neq 0$$
$$C_{W-1} = -\sum_{i=0}^{N-1} c_i x_{i,W-1}$$

Αλγόριθμος Εσωτερικού Γινομένου με Κατανεμημένη Αριθμητική

$$Y = \sum_{i=0}^{N-1} c_i x_i = \sum_{j=0}^{W-1} C_{W-1-j} \ 2^{-j}, \qquad C_{W-1-j} = \sum_{i=1}^{N-1} c_i x_{i,W-1-j}, \ j \neq 0$$
$$C_{W-1} = -\sum_{i=0}^{N-1} c_i x_{i,W-1}$$

Παρατηρήσεις

- Οι W σταθερές C_j εξαρτώνται από τα N bits $x_{i,j}$
- Κάθε C_j μπορεί να λάβει 2^N διαφορετικές τιμές.
- Το εσωτερικό γινόμενο Y προκύπτει ως άθροισμα ολισθημένων C_j .

Τυπική Αρχιτεκτονική Κατανεμημένης Αριθμητικής

 Σε W επαναλήψεις υπολογίζεται το εσωτερικό γινόμενο, χωρίς πολλαπλασιασμούς.

Μείωση μεγέθους μνημών σε κατανεμημένη αριθμητική

 $F(a, b, c, d, e, f, g, h) = (a \cdot c_0 + b \cdot c_1 + c \cdot c_2 + d \cdot c_3) + (e \cdot c_4 + f \cdot c_5 + g \cdot c_6 + h \cdot c_7)$ = $F_1(a, b, c, d) + F_2(e, f, g, h)$

