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One-Port View of Oscillators 

 An alternative perspective views oscillators as two one-port components, 
namely, a lossy resonator and an active circuit that cancels the loss. 
 
 

 If an active circuit replenishes the energy lost in each period, then the 
oscillation can be sustained.  

 In fact, we predict that an active circuit exhibiting an input resistance of -Rp 
can be attached across the tank to cancel the effect of Rp. 
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How Can a Circuit Present a Negative Input 
Resistance? 

 The negative resistance varies with frequency. 
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Connection of Lossy Inductor to Negative-
Resistance Circuit 

 Since the capacitive component in equation above can become part of the tank, 
we simply connect an inductor to the negative-resistance port. 
 

Express the oscillation condition in terms of inductor’s parallel equivalent 
resistance, Rp, rather than RS. 
 
 
 
 
 
 
 
 

The startup condition: 
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Tuned Oscillator 
We wish to build a negative-feedback oscillatory system using “LC-tuned” amplifier stages. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

At very low frequencies, L1 
dominates the load and 
 
 
 
 
 
 
 
 
 

|Vout/Vin| is very small and 
∠(Vout/Vin) remains around -90° 
 
 
 

At the resonance frequency 
 
 
 
 
 
 
 
 
 
 

The phase shift from the 
input to the output is thus 
equal to 180° 
 
 
 

At very high frequencies 
 
 
 
 
 
 
 
 
 
 

|Vout/Vin| dinimishes ∠(Vout/Vin) 
approaches +90° 
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Cascade of Two Tuned Amplifiers in Feedback Loop 
Can the circuit above oscillate if its input and output are shorted? No. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

We recognize that the circuit provides a phase shift of 180 ° with possibly adequate gain 
(gmRp) at ω0. We simply need to increase the phase shift to 360 °. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Assuming that the circuit above (left) oscillates, plot the voltage waveforms at X 
and Y. 
 
 
 
 
 
 

Wave form is shown above (right). A unique attribute of inductive loads is that they can 
provide peak voltages above the supply. The growth of VX and VY ceases when M1 and M2 
enter the triode region for part of the period, reducing the loop gain. 
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Cross-Coupled Oscillator 

The oscillator above (left) suffers from poorly-defined bias currents. The circuit above 
(middle) is more robust and can be viewed as an inductively-loaded differential pair with 
positive feedback. 
 
 
 
 
 
 
 

Compute the voltage swings in the circuit above (middle) if M1 and M2 experience 
complete current switching with abrupt edges. 
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One-Port View of Cross-Coupled Oscillator 

For gm1 = gm2 =gm 
 
 
 
 
 
 
 

For oscillation to occur, the negative resistance must cancel the loss of the tank: 
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Three-Point Oscillators 

Three different oscillator topologies can be obtained by grounding each of the transistor 
terminals. Figures below depict the resulting circuits if the source, the gate, or the drain is 
(ac) grounded, respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

If C1 = C2, the transistor must provide sufficient transconductance to satisfy 
 
 
 
 
 
 
 
 
 

 The circuits above may fail to oscillate if the inductor Q is not very high. 
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Differential Version of Three-Point Oscillators 

 Another drawback of the circuits shown above is that they produce only 
single-ended outputs. It is possible to couple two copies of one oscillator so 
that they operate differentially. 

 If chosen properly, the resistor R1 prohibits common-mode oscillation. 
 Even with differential outputs, the circuit above may be inferior to the cross-

coupled oscillator previous discussed —not only for the more stringent start-
up condition but also because the noise of I1 and I2 directly corrupts the 
oscillation. 
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Voltage-Controlled Oscillators: Characteristic 

 The output frequency varies from ω1 to ω2 (the required tuning range) as the 
control voltage, Vcont, goes from V1 to V2.  

 The slope of the characteristic, KVCO, is called the “gain” or “sensitivity” of the 
VCO and expressed in rad/Hz/V. 
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Example: VDD as the “Control Voltage” 

As explained in previous example, the cross-coupled oscillator exhibits sensitivity 
to VDD. Considering VDD as the “control voltage,” determine the gain. 
 
 
 
 
 
 
 
 
 
 
 
 
 

The junction capacitance is approximated as  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

If C1 includes all circuit capacitances except CDB 
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VCO Using MOS Varactors 

 Since it is difficult to vary the inductance electronically, we only vary the 
capacitance by means of a varactor.  

 MOS varactors are more commonly used than pn junctions, especially in low-
voltage design. 
 

 First, the varactors are stressed for part of the period if Vcont is near ground 
and VX (or VY ) rises significantly above VDD.  

 Second, only about half of Cmax - Cmin is utilized in the tuning. 
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Oscillator Using Symmetric Inductor 

 Symmetric spiral inductors excited by differential waveforms exhibit a higher Q 
than their single-ended counterparts. 

The symmetric inductor above has a value of 2 nH and a Q of 10 at 10 GHz. What 
is the minimum required transconductance of M1 and M2 to guarantee start-up? 
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Tuning Range Limitations 
We make a crude approximation, Cvar << C1, and 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

If the varactor capacitance varies from Cvar1 to Cvar2, then the tuning range is given by 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 The tuning range trades with the overall tank Q. 
 Another limitation on Cvar2 - Cvar1 arises from the available range for the control 

voltage of the oscillator, Vcont. 
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Effect of Varactor Q: Tank Consisting of Lossy 
Inductor and Capacitor 

A lossy inductor and a lossy capacitor form a parallel tank. Determine the overall 
Q in terms of the quality factor of each. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The loss of an inductor or a capacitor can be modeled by a parallel resistance (for a narrow 
frequency range). We therefore construct the tank as shown below, where the inductor and 
capacitor Q’s are respectively given by: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Merging Rp1 and Rp2 yields the overall Q: 
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Tank Using Lossy Varactor 

Transforming the series combination of Cvar and Rvar to a parallel combination 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The Q associated with C1+Cvar is equal to 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The overall tank Q is therefore given by 
 
 
 
 
 
 
 
 

Equation above can be generalized if the tank consists of an ideal capacitor, C1, and lossy 
capacitors, C2-Cn, that exhibit a series resistance of R2-Rn, respectively. 
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LC VCOs with Wide Tuning Range: VCOs with 
Continuous Tuning 

 We seek oscillator topologies that allow both positive and negative (average) 
voltages across the varactors, utilizing almost the entire range from Cmin to 
Cmax. 

The CM level is simply given by the gate-source voltage of a diode-connected transistor 
carrying a current of IDD/2. 
 
 
 
 
 
 
 
 

We select the transistor dimensions such that the CM level is approximately equal to VDD/2. 
Consequently, as Vcont varies from 0 to VDD, the gate-source voltage of the varactors, VGS,var, 
goes from +VDD/2 to –VDD/2, 
 
 



18 

Output CM Dependence on Bias Current 

The tail or top bias current in the above oscillators is changed by DI. Determine 
the change in the voltage across the varactors. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Each inductor contains a small low-frequency resistance, rs . If ISS changes by ΔI, the output 
CM level changes by ΔVCM = (ΔI/2)rs, and so does the voltage across each varactor. In the 
top-biased circuit, on the other hand, a change of ΔI flows through two diode-connected 
transistors, producing an output CM change of ΔVCM = (ΔI/2)(1/gm). Since 1/gm is typically in 
the range of a few hundred ohms, the top-biased topology suffers from a much higher 
varactor voltage modulation. 
 
 
 
 
 
 
 

What is the change in the oscillation frequency in the above example? 
 
 
 
 
 

Since a CM change at X and Y is indistinguishable from a change in Vcont, we have 
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VCO Using Capacitor Coupling to Varactors 

 In order to avoid varactor modulation due to the noise of the bias current 
source, we return to the tail-biased topology but employ ac coupling between 
the varactors and the core so as to allow positive and negative voltages across 
the varactors. 

 The principal drawback of the above circuit stems from the parasitics of the 
coupling capacitors. 
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VCO Using Capacitor Coupling to Varactors: 
Parasitic Capacitances to the Substrate 

 The choice of CS = 10Cmax reduces the capacitance range by 10% but 
introduces substantial parasitic capacitances at X and Y or at P and Q because 
integrated capacitors suffer from parasitic capacitances to the substrate. 
 

 Cb/CAB typically exceeds 5%. 
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VCO Using Capacitor Coupling to Varactors: Effect 
of the Parasitics of CS1 and CS2 

 A larger C1 further limits the tuning range. 
 
 

The VCO above is designed for a tuning range of 10% without the series effect of 
CS and parallel effect of Cb. If CS = 10Cmax, Cmax = 2Cmin, and Cb = 0.05CS, determine 
the actual tuning range. 
 
 
 
 
 
 
 
 
 

Without the effects of CS and Cb 
 
 
 
 
 
 
 
 

For this range to reach 10% of the center frequency, we have 
 
 
 
 
 
 

With the effects of CS and Cb 
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Phase Noise: Basic Concepts 

 The noise of the oscillator devices randomly perturbs the zero crossings. To 
model this perturbation, we write x(t) = Acos[ωct + Φn(t)], The term Φn(t) is 
called the “phase noise.” 

 From another perspective, the 
frequency experiences random 
variations, i.e., it departs from ωc 
occasionally. 
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Phase Noise: Declining Phase Noise “Skirts” 

Explain why the broadened impulse cannot assume the shape shown below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This spectrum occurs if the oscillator frequency has equal probability of appearing 
anywhere between ωc - Δω and ωc + Δω. However, we intuitively expect that the oscillator 
prefers ωc to other frequencies, thus spending lesser time at frequencies that are farther 
from ωc. This explains the declining phase noise “skirts”. 
 
 
 
 
 
 
 
 
 
 

The spectrum can be related to the time-domain expression. 
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Various Factors of 4 and 2 

 (1) since Φn(t) in equation above is multiplied by sin ωct, its power spectral 
density, SΦn, is multiplied by 1/4 as it is translated to ±ωc; 

 (2) A spectrum analyzer measuring the resulting spectrum folds the negative   
frequency spectrum atop the positive-frequency spectrum, raising the spectral 
density by a factor of 2. 
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How is the Phase Noise Quantified? 

 Since the phase noise falls at frequencies farther from ωc, it must be specified 
at a certain “frequency offset,” i.e., a certain difference with respect to ωc.  

 We consider a 1-Hz bandwidth of the spectrum at an offset of Δf, measure the 
power in this bandwidth, and normalize the result to the “carrier power”, called 
“dB with respect to the carrier”. 

 
 

 In practice, the phase noise reaches a constant floor at large frequency offsets 
(beyond a few megahertz).  

 We call the regions near and far from the carrier the “close-in” and the “far-out” 
phase noise, respectively. 
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Specification of Phase Noise 

At high carrier frequencies, it is difficult to measure the noise power in a 1-Hz 
bandwidth. Suppose a spectrum analyzer measures a noise power of -70 dBm in a 
1-kHz bandwidth at 1-MHz offset. How much is the phase noise at this offset if the 
average oscillator output power is -2 dBm? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Since a 1-kHz bandwidth carries 10 log(1000 Hz) = 30 dB 
higher noise than a 1-Hz bandwidth, we conclude that the 
noise power in 1 Hz is equal to -100 dBm. Normalized to the 
carrier power, this value translates to a phase noise of -98 
dBc/Hz. 
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Effect of Phase Noise: Reciprocal Mixing 

 Referring to the ideal case depicted above (middle), we observe that the 
desired channel is convolved with the impulse at ωLO, yielding an IF signal at 
ωIF = ωin - ωLO. 

  Now, suppose the LO suffers from phase noise and the desired signal is 
accompanied by a large interferer. The convolution of the desired signal and 
the interferer with the noisy LO spectrum results in a broadened 
downconverted interferer whose noise skirt corrupts the desired IF signal.  

 This phenomenon is called “reciprocal mixing.” 
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Example of Reciprocal Mixing 

A GSM receiver must withstand an interferer located three channels away from the 
desired channel and 45 dB higher. Estimate the maximum tolerable phase noise of 
the LO if the corruption due to reciprocal mixing must remain 15 dB below the 
desired signal. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The total noise power introduced by the interferer in the desired channel is equal to 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

For simplicity, we assume Sn(f) is relatively flat in this 
bandwidth and equal to S0, 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

which must be at least 15 dB. 
 
 
 
 
 
 
 
 
 
 

If fH - fL = 200 kHz, then 
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Received Noise due to Phase Noise of an Unwanted 
Signal 

 In figure below, two users are located in close proximity, with user #1 
transmitting a high-power signal at f1 and user #2 receiving this signal and a 
weak signal at f2. If f1 and f2 are only a few channels apart, the phase noise skirt 
masking the signal received by user #2 greatly corrupts it even before 
downconversion. 

A student reasons that, if the interferer at f1 above is so large that its phase noise 
corrupts the reception by user #2, then it also heavily compresses the receiver of 
user #2. Is this true? 
 
 
 
 
 
 
 

Not necessarily. An interferer, say, 50 dB above the desired signal produces phase noise 
skirts that are not negligible. For example, the desired signal may have a level of -90 dBm 
and the interferer, -40 dBm. Since most receivers’ 1-dB compression point is well above -40 
dBm, user #2’s receiver experiences no desensitization, but the phenomenon above is still 
critical. 
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Corruption of a QPSK Signal due to Phase Noise 

 Since the phase noise is indistinguishable from phase (or frequency) 
modulation, the mixing of the signal with a noisy LO in the TX or RX path 
corrupts the information carried by the signal. 
 

 The constellation points experience only random rotation around the origin. If 
large enough, phase noise and other nonidealities move a constellation point 
to another quadrant, creating an error. 
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Phase Noise Corruption on 16-QAM Constellation 

Which points in a 16-QAM constellation are most sensitive to phase noise? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Consider the four points in the top right quadrant. Points B and C can tolerate a rotation of 
45° before they move to adjacent quadrants. Points A and D, on the other hand, can rotate 
by only θ = tan-1(1/3) = 18.4°. Thus, the eight outer points near the I and Q axes are most 
sensitive to phase noise. 
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Analysis of Phase Noise: Approach I --- Q of an 
Oscillator 

 Another definition of the Q that is especially well-suited to oscillators is shown 
above, where the circuit is viewed as a feedback system and the phase of the 
open-loop transfer function, is examined at the resonance frequency. 

 Oscillators with a high open-loop Q tend to spend less time at frequencies 
other than ω0. 
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Open-Loop Model of a Cross-Coupled Oscillator 

Compute the open-loop Q of a cross-coupled LC oscillator. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Since at s = jω, 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

We have 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This result is to be expected: the cascade of frequency-selective stages makes the phase 
transition sharper than that of one stage. 
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Noise Shaping in Oscillators(Ⅰ) 

In the vicinity of the oscillation frequency, we can approximate H(jω) with the first two terms 
in its Taylor series: 
 
 
 
 
 
 
 
 
 
 
 
 
 

If H(jω0) = -1 and ΔωdH/dω << 1, 
 
 
 
 
 
 
 
 
 
 

The noise spectrum is “shaped” by 
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Noise Shaping in Oscillators (Ⅱ) 

To determine the shape of |dH/dω|2, we write H(jω) in polar form, and differentiate with 
respect to ω, 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Note that (a) in an LC oscillator, the term |d|H|/dω|2 is much less than |dΦ/dω|2 in the vicinity 
of the resonance frequency, and (b) |H| is close to unity for steady oscillations. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Known as “Leeson’s Equation”, this result reaffirms our intuition that the open-loop Q 
signifies how much the oscillator rejects the noise. 
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Apparently Infinite Q in an Oscillator 

 A student designs the cross-coupled oscillator below with 2/gm = 2Rp, reasoning 
that the tank now has infinite Q and hence the oscillator produces no phase noise! 
Explain the flaw in this argument. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The Q in equation above is the open-loop Q, i.e., ω0/2 times 
the slope of the phase of the open-loop transfer function, 
which was calculated in previous example. The “closed-loop” 
Q does not carry much meaning. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

If the feedback path has a transfer function G(s), then 
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Linear Model (Ⅰ) 

Compute the total noise injected to the differential output of the cross-coupled 
oscillator when the transistors are in equilibrium. Note that the two-sided spectral 
density of the drain current noise is equal to In2 = 2kTγgm. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 The small-signal (linear) model may ignore some important effects, e.g., the 
noise of the tail current source, or face other difficulties. 

The output noise is obtained as 
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Linear Model (Ⅱ) 

Since In1 and In2 are uncorrelated 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Unfortunately, this result contradicts Leeson’s equation. gm is typically quite higher than 
2/Rp and hence R ≠ ∞. 
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Mathematical Model of VCOs: Linear and Quadrature 
Growth of Phase with Time 

Plot the waveforms for V1(t) = V0 sinω1t and V2(t) = V0 sin(at2). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

To plot these waveforms carefully, we must determine the time instants at which the 
argument of the sine reaches integer multiples of π. For V1(t), the argument, ω1t, rises 
linearly with time, crossing kπ at t = πk/ω1. For V2(t), on the other hand, the argument rises 
increasingly faster with time, crossing kπ more frequently.  
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Example of Mathematical Model of VCOs (Ⅰ) 

Since a sinusoid of constant frequency !1 can be expressed as V0 cos !1t, a 
student surmises that the output waveform of a VCO can be written as 
 
 
Explain why this is incorrect. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

As an example, suppose Vcont = Vm sin ωmt, i.e., the frequency of the oscillator is modulated 
periodically. Intuitively, we expect the output waveform frequency periodically swings 
between ω0 + KVCOVm and ω0 - KVCOVm, i.e., has a “peak deviation” of ± KVCOVm. However, 
the student’s expression yields 
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Example of Mathematical Model of VCOs (Ⅱ) 

The intersection of each horizontal line with the phase plot signifies the zero crossings of 
Vout(t). Thus, Vout(t) appears as shown above. The key point here is that the VCO frequency is 
not modulated periodically. 
 
 
 

We plot the overall argument and draw horizontal lines corresponding to kπ. 
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VCO as a Frequency Modulator 

Let us now consider an unmodulated sinusoid, V1(t) = V0 sin ω1t. Called the “total phase,” 
the argument of the sine, ω1t, varies linearly with time in this case, exhibiting a slope of ω1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Define the instantaneous frequency as the time derivative of the phase: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Since a VCO exhibits an output frequency given by 
ω0 + KVCOVcont, we can express its output waveform 
as 
 
 
 
 
 
 
 
 
 
 

 A VCO is simply a frequency modulator. For example, the narrow-band FM 
approximation holds here as well. 
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Frequency Modulation by a Square Wave 

A VCO experiences a small square-wave disturbance on its control voltage. 
Determine the output spectrum. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

We expand the square wave in its Fourier series, 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

If 4KVCOa/(πωm) << 1 rad, then the narrow-band FM approximation applies: 
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