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One-Port View of Oscillators

➢ An alternative perspective views oscillators as two one-port components, 

namely, a lossy resonator and an active circuit that cancels the loss.

➢ If an active circuit replenishes the energy lost in each period, then the 

oscillation can be sustained. 

➢ In fact, we predict that an active circuit exhibiting an input resistance of -Rp 

can be attached across the tank to cancel the effect of Rp.



2

How Can a Circuit Present a Negative Input 

Resistance?

➢ The negative resistance varies with frequency.
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Connection of Lossy Inductor to Negative-

Resistance Circuit

➢ Since the capacitive component in equation above can become part of the tank, 

we simply connect an inductor to the negative-resistance port.

Express the oscillation condition in terms of inductor’s parallel equivalent 

resistance, Rp, rather than RS.

The startup condition:
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Tuned Oscillator

We wish to build a negative-feedback oscillatory system using “LC-tuned” amplifier stages.

At very low frequencies, L1 

dominates the load and

|Vout/Vin| is very small and 

∠(Vout/Vin) remains around -90°

At the resonance frequency

The phase shift from the 

input to the output is thus 

equal to 180°

At very high frequencies

|Vout/Vin| dinimishes ∠(Vout/Vin) 

approaches +90°
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Cascade of Two Tuned Amplifiers in Feedback Loop

Can the circuit above oscillate if its input and output are shorted? No.

We recognize that the circuit provides a phase shift of 180 ° with possibly adequate gain 

(gmRp) at ω0. We simply need to increase the phase shift to 360 °.

Assuming that the circuit above (left) oscillates, plot the voltage waveforms at X 

and Y.

Wave form is shown above (right). A unique attribute of inductive loads is that they can 

provide peak voltages above the supply. The growth of VX and VY ceases when M1 and M2 

enter the triode region for part of the period, reducing the loop gain.
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Example of Voltage Swings (Ⅰ)

The inductively-loaded differential pair shown in figure below is driven by a large 

input sinusoid at 

 Plot the output waveforms and determine the output swing.

With large input swings, M1 and M2 experience complete switching in a short transition time, 

injecting nearly square current waveforms into the tanks. Each drain current waveform has 

an average of ISS/2 and a peak amplitude of ISS/2. The first harmonic of the current is 

multiplied by Rp whereas higher harmonics are attenuated by the tank selectivity.
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Recall from the Fourier expansion of a square wave of peak amplitude A (with 50% duty 

cycle) that the first harmonic exhibits a peak amplitude of (4/π)A (slightly greater than A). 

The peak single-ended output swing therefore yields a peak differential output swing of

Example of Voltage Swings (Ⅱ)
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Cross-Coupled Oscillator

The oscillator above (left) suffers from poorly-defined bias currents. The circuit above 

(middle) is more robust and can be viewed as an inductively-loaded differential pair with 

positive feedback.

Compute the voltage swings in the circuit above (middle) if M1 and M2 experience 

complete current switching with abrupt edges.
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One-Port View of Cross-Coupled Oscillator

For gm1 = gm2 =gm

For oscillation to occur, the negative resistance must cancel the loss of the tank:
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Three-Point Oscillators

Three different oscillator topologies can be obtained by grounding each of the transistor 

terminals. Figures below depict the resulting circuits if the source, the gate, or the drain is 

(ac) grounded, respectively.

If C1 = C2, the transistor must provide sufficient transconductance to satisfy

➢ The circuits above may fail to oscillate if the inductor Q is not very high.
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Differential Version of Three-Point Oscillators

➢ Another drawback of the circuits shown above is that they produce only 

single-ended outputs. It is possible to couple two copies of one oscillator so 

that they operate differentially.

➢ If chosen properly, the resistor R1 prohibits common-mode oscillation.

➢ Even with differential outputs, the circuit above may be inferior to the cross-

coupled oscillator previous discussed —not only for the more stringent start-

up condition but also because the noise of I1 and I2 directly corrupts the 

oscillation.
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Voltage-Controlled Oscillators: Characteristic

➢ The output frequency varies from ω1 to ω2 (the required tuning range) as the 

control voltage, Vcont, goes from V1 to V2. 

➢ The slope of the characteristic, KVCO, is called the “gain” or “sensitivity” of the 

VCO and expressed in rad/Hz/V.
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Example: VDD as the “Control Voltage”

As explained in previous example, the cross-coupled oscillator exhibits sensitivity 

to VDD. Considering VDD as the “control voltage,” determine the gain.

The junction capacitance is approximated as 

If C1 includes all circuit capacitances except CDB
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VCO Using MOS Varactors

➢ Since it is difficult to vary the inductance electronically, we only vary the 

capacitance by means of a varactor. 

➢ MOS varactors are more commonly used than pn junctions, especially in low-

voltage design.

➢ First, the varactors are stressed for part of the period if Vcont is near ground 

and VX (or VY ) rises significantly above VDD. 

➢ Second, only about half of Cmax - Cmin is utilized in the tuning.
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Oscillator Using Symmetric Inductor

➢ Symmetric spiral inductors excited by differential waveforms exhibit a higher Q 

than their single-ended counterparts.

The symmetric inductor above has a value of 2 nH and a Q of 10 at 10 GHz. What 

is the minimum required transconductance of M1 and M2 to guarantee start-up?



16

Tuning Range Limitations

We make a crude approximation, Cvar << C1, and

If the varactor capacitance varies from Cvar1 to Cvar2, then the tuning range is given by

➢ The tuning range trades with the overall tank Q.

➢ Another limitation on Cvar2 - Cvar1 arises from the available range for the control 

voltage of the oscillator, Vcont.
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Effect of Varactor Q: Tank Consisting of Lossy 

Inductor and Capacitor

A lossy inductor and a lossy capacitor form a parallel tank. Determine the overall 

Q in terms of the quality factor of each.

The loss of an inductor or a capacitor can be modeled by a parallel resistance (for a narrow 

frequency range). We therefore construct the tank as shown below, where the inductor and 

capacitor Q’s are respectively given by:

Merging Rp1 and Rp2 yields the overall Q:
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Tank Using Lossy Varactor

Transforming the series combination of Cvar and Rvar to a parallel combination

The Q associated with C1+Cvar is equal to

The overall tank Q is therefore given by

Equation above can be generalized if the tank consists of an ideal capacitor, C1, and lossy

capacitors, C2-Cn, that exhibit a series resistance of R2-Rn, respectively.
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LC VCOs with Wide Tuning Range: VCOs with 

Continuous Tuning

➢ We seek oscillator topologies that allow both positive and negative (average) 

voltages across the varactors, utilizing almost the entire range from Cmin to 

Cmax.

The CM level is simply given by the gate-source voltage of a diode-connected transistor 

carrying a current of IDD/2.

We select the transistor dimensions such that the CM level is approximately equal to VDD/2.

Consequently, as Vcont varies from 0 to VDD, the gate-source voltage of the varactors, VGS,var, 

goes from +VDD/2 to –VDD/2,
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Output CM Dependence on Bias Current

The tail or top bias current in the above oscillators is changed by DI. Determine 

the change in the voltage across the varactors.

Each inductor contains a small low-frequency resistance, rs . If ISS changes by ΔI, the output 

CM level changes by ΔVCM = (ΔI/2)rs, and so does the voltage across each varactor. In the 

top-biased circuit, on the other hand, a change of ΔI flows through two diode-connected 

transistors, producing an output CM change of ΔVCM = (ΔI/2)(1/gm). Since 1/gm is typically in 

the range of a few hundred ohms, the top-biased topology suffers from a much higher 

varactor voltage modulation.

What is the change in the oscillation frequency in the above example?

Since a CM change at X and Y is indistinguishable from a change in Vcont, we have
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VCO Using Capacitor Coupling to Varactors

➢ In order to avoid varactor modulation due to the noise of the bias current 

source, we return to the tail-biased topology but employ ac coupling between 

the varactors and the core so as to allow positive and negative voltages across 

the varactors.

➢ The principal drawback of the above circuit stems from the parasitics of the 

coupling capacitors.
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VCO Using Capacitor Coupling to Varactors: 

Parasitic Capacitances to the Substrate

➢ The choice of CS = 10Cmax reduces the capacitance range by 10% but 

introduces substantial parasitic capacitances at X and Y or at P and Q because 

integrated capacitors suffer from parasitic capacitances to the substrate.

➢ Cb/CAB typically exceeds 5%.
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VCO Using Capacitor Coupling to Varactors: Effect 

of the Parasitics of CS1 and CS2

➢ A larger C1 further limits the tuning range.

The VCO above is designed for a tuning range of 10% without the series effect of 

CS and parallel effect of Cb. If CS = 10Cmax, Cmax = 2Cmin, and Cb = 0.05CS, determine 

the actual tuning range.

Without the effects of CS and Cb

For this range to reach 10% of the center frequency, we have

With the effects of CS and Cb
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Phase Noise: Basic Concepts

➢ The noise of the oscillator devices randomly perturbs the zero crossings. To 

model this perturbation, we write x(t) = Acos[ωct + Φn(t)], The term Φn(t) is 

called the “phase noise.”

➢ From another perspective, the 

frequency experiences random 

variations, i.e., it departs from ωc 

occasionally.
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Phase Noise: Declining Phase Noise “Skirts”

Explain why the broadened impulse cannot assume the shape shown below.

This spectrum occurs if the oscillator frequency has equal probability of appearing 

anywhere between ωc - Δω and ωc + Δω. However, we intuitively expect that the oscillator 

prefers ωc to other frequencies, thus spending lesser time at frequencies that are farther 

from ωc. This explains the declining phase noise “skirts”.

The spectrum can be related to the time-domain expression.
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Various Factors of 4 and 2

➢ (1) since Φn(t) in equation above is multiplied by sin ωct, its power spectral 

density, SΦn, is multiplied by 1/4 as it is translated to ±ωc;

➢ (2) A spectrum analyzer measuring the resulting spectrum folds the negative   

frequency spectrum atop the positive-frequency spectrum, raising the spectral 

density by a factor of 2.



27

How is the Phase Noise Quantified?

➢ Since the phase noise falls at frequencies farther from ωc, it must be specified 

at a certain “frequency offset,” i.e., a certain difference with respect to ωc. 

➢ We consider a 1-Hz bandwidth of the spectrum at an offset of Δf, measure the 

power in this bandwidth, and normalize the result to the “carrier power”, called 

“dB with respect to the carrier”.

➢ In practice, the phase noise reaches a constant floor at large frequency offsets 

(beyond a few megahertz). 

➢ We call the regions near and far from the carrier the “close-in” and the “far-out” 

phase noise, respectively.
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Specification of Phase Noise

At high carrier frequencies, it is difficult to measure the noise power in a 1-Hz 

bandwidth. Suppose a spectrum analyzer measures a noise power of -70 dBm in a 

1-kHz bandwidth at 1-MHz offset. How much is the phase noise at this offset if the 

average oscillator output power is -2 dBm?

Since a 1-kHz bandwidth carries 10 log(1000 Hz) = 30 dB 

higher noise than a 1-Hz bandwidth, we conclude that the 

noise power in 1 Hz is equal to -100 dBm. Normalized to the 

carrier power, this value translates to a phase noise of -98 

dBc/Hz.
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Effect of Phase Noise: Reciprocal Mixing

➢ Referring to the ideal case depicted above (middle), we observe that the 

desired channel is convolved with the impulse at ωLO, yielding an IF signal at 

ωIF = ωin - ωLO.

➢  Now, suppose the LO suffers from phase noise and the desired signal is 

accompanied by a large interferer. The convolution of the desired signal and 

the interferer with the noisy LO spectrum results in a broadened 

downconverted interferer whose noise skirt corrupts the desired IF signal. 

➢ This phenomenon is called “reciprocal mixing.”
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Example of Reciprocal Mixing

A GSM receiver must withstand an interferer located three channels away from the 

desired channel and 45 dB higher. Estimate the maximum tolerable phase noise of 

the LO if the corruption due to reciprocal mixing must remain 15 dB below the 

desired signal.

The total noise power introduced by the interferer in the desired channel is equal to

For simplicity, we assume Sn(f) is relatively flat in this 

bandwidth and equal to S0,

which must be at least 15 dB.

If fH - fL = 200 kHz, then
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Received Noise due to Phase Noise of an Unwanted 

Signal

➢ In figure below, two users are located in close proximity, with user #1 

transmitting a high-power signal at f1 and user #2 receiving this signal and a 

weak signal at f2. If f1 and f2 are only a few channels apart, the phase noise skirt 

masking the signal received by user #2 greatly corrupts it even before 

downconversion.

A student reasons that, if the interferer at f1 above is so large that its phase noise 

corrupts the reception by user #2, then it also heavily compresses the receiver of 

user #2. Is this true?

Not necessarily. An interferer, say, 50 dB above the desired signal produces phase noise 

skirts that are not negligible. For example, the desired signal may have a level of -90 dBm 

and the interferer, -40 dBm. Since most receivers’ 1-dB compression point is well above -40 

dBm, user #2’s receiver experiences no desensitization, but the phenomenon above is still 

critical.
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Corruption of a QPSK Signal due to Phase Noise

➢ Since the phase noise is indistinguishable from phase (or frequency) 

modulation, the mixing of the signal with a noisy LO in the TX or RX path 

corrupts the information carried by the signal.

➢ The constellation points experience only random rotation around the origin. If 

large enough, phase noise and other nonidealities move a constellation point 

to another quadrant, creating an error.
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Phase Noise Corruption on 16-QAM Constellation

Which points in a 16-QAM constellation are most sensitive to phase noise?

Consider the four points in the top right quadrant. Points B and C can tolerate a rotation of 

45° before they move to adjacent quadrants. Points A and D, on the other hand, can rotate 

by only θ = tan-1(1/3) = 18.4°. Thus, the eight outer points near the I and Q axes are most 

sensitive to phase noise.
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Analysis of Phase Noise: Approach I --- Q of an 

Oscillator

➢ Another definition of the Q that is especially well-suited to oscillators is shown 

above, where the circuit is viewed as a feedback system and the phase of the 

open-loop transfer function, is examined at the resonance frequency.

➢ Oscillators with a high open-loop Q tend to spend less time at frequencies 

other than ω0.
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Open-Loop Model of a Cross-Coupled Oscillator

Compute the open-loop Q of a cross-coupled LC oscillator.

Since at s = jω,

We have

This result is to be expected: the cascade of frequency-selective stages makes the phase 

transition sharper than that of one stage.
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Noise Shaping in Oscillators(Ⅰ)

In the vicinity of the oscillation frequency, we can approximate H(jω) with the first two terms 

in its Taylor series:

If H(jω0) = -1 and ΔωdH/dω << 1,

The noise spectrum is “shaped” by
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Noise Shaping in Oscillators (Ⅱ)

To determine the shape of |dH/dω|2, we write H(jω) in polar form, and differentiate with 

respect to ω,

Note that (a) in an LC oscillator, the term |d|H|/dω|2 is much less than |dΦ/dω|2 in the vicinity 

of the resonance frequency, and (b) |H| is close to unity for steady oscillations.

Known as “Leeson’s Equation”, this result reaffirms our intuition that the open-loop Q 

signifies how much the oscillator rejects the noise.
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Apparently Infinite Q in an Oscillator

A student designs the cross-coupled oscillator below with 2/gm = 2Rp, reasoning 

that the tank now has infinite Q and hence the oscillator produces no phase noise! 

Explain the flaw in this argument.

The Q in equation above is the open-loop Q, i.e., ω0/2 times 

the slope of the phase of the open-loop transfer function, 

which was calculated in previous example. The “closed-loop” 

Q does not carry much meaning.

If the feedback path has a transfer function G(s), then
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Linear Model (Ⅰ)

Compute the total noise injected to the differential output of the cross-coupled 

oscillator when the transistors are in equilibrium. Note that the two-sided spectral 

density of the drain current noise is equal to In
2 = 2kTγgm.

➢ The small-signal (linear) model may ignore some important effects, e.g., the 

noise of the tail current source, or face other difficulties.

The output noise is obtained as
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Linear Model (Ⅱ)

Since In1 and In2 are uncorrelated

Unfortunately, this result contradicts Leeson’s equation. gm is typically quite higher than 

2/Rp and hence R ≠ ∞.
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Mathematical Model of VCOs: Linear and Quadrature 

Growth of Phase with Time

Plot the waveforms for V1(t) = V0 sinω1t and V2(t) = V0 sin(at2).

To plot these waveforms carefully, we must determine the time instants at which the 

argument of the sine reaches integer multiples of π. For V1(t), the argument, ω1t, rises 

linearly with time, crossing kπ at t = πk/ω1. For V2(t), on the other hand, the argument rises 

increasingly faster with time, crossing kπ more frequently. 
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Example of Mathematical Model of VCOs (Ⅰ)

Since a sinusoid of constant frequency !1 can be expressed as V0 cos !1t, a 

student surmises that the output waveform of a VCO can be written as

Explain why this is incorrect.

As an example, suppose Vcont = Vm sin ωmt, i.e., the frequency of the oscillator is modulated 

periodically. Intuitively, we expect the output waveform frequency periodically swings 

between ω0 + KVCOVm and ω0 - KVCOVm, i.e., has a “peak deviation” of ± KVCOVm. However, 

the student’s expression yields
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Example of Mathematical Model of VCOs (Ⅱ)

The intersection of each horizontal line with the phase plot signifies the zero crossings of 

Vout(t). Thus, Vout(t) appears as shown above. The key point here is that the VCO frequency is 

not modulated periodically.

We plot the overall argument and draw horizontal lines corresponding to kπ.
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VCO as a Frequency Modulator

Let us now consider an unmodulated sinusoid, V1(t) = V0 sin ω1t. Called the “total phase,”

the argument of the sine, ω1t, varies linearly with time in this case, exhibiting a slope of ω1.

Define the instantaneous frequency as the time derivative of the phase:

Since a VCO exhibits an output frequency given by 

ω0 + KVCOVcont, we can express its output waveform 

as

➢ A VCO is simply a frequency modulator. For example, the narrow-band FM 

approximation holds here as well.
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Frequency Modulation by a Square Wave

A VCO experiences a small square-wave disturbance on its control voltage. 

Determine the output spectrum.

We expand the square wave in its Fourier series,

If 4KVCOa/(πωm) << 1 rad, then the narrow-band FM approximation applies:
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