

 Computers are machines that through
programs can solve many problems
including
› Sorting (ascending/descending) of numbers,

strings, dates etc.

› Finding the roots of polynomials like x7+3x4+2=0
e.g. by applying the Newton-Raphson method

› Solving system of linear equations e.g. by using
the Gauss-Jordan elimination

› Calculate functions such as Sine, Cosine,
Logarithms etc using e.g. Taylor and McLaurin
Series

› ...and many more (but not all )

 Steps to solve a problem using computers
› Write the appropriate program

 E.g. To find the roots of some polynomial, write a
program that implements the Newton-Raphson
method

› Give the program the appropriate input i.e.
required data

› Execute the program on the computer with the
data provided

› After some time, the program will emit (on
screen/disk) the solution to the problem (output)
 E.g. in case of finding the roots of a polynomials, it

will show the roots. You can verify the solution, i.e.
roots

› You can always verify the solution

 In our context «Program = Algorithm»
› What’s an algorithm? = a well defined order of commands

and operations (steps) that when executed by machines
called computers and given the appropriate input can
solve a particular problem on it’s output.
 «Solve a problem»: the algorithm on it’s output will produce

data which are the solution to the problem (as it has been
defined).

 Example: Algorithm which sorts numbers: it’s a set of
commands/operations that when given as input a random
list of numbers will produce as output the same numbers
sorted in ascending or descending order.

Sorting algorithm
(ascending order)

Input

19, 8, 1, 0, 7

Output

0, 1, 7, 8, 19

Input data:
List of numbers.
Randomly
ordered

Output data
Same
numbers as
input, bur
sorted in
ascending
order. Solution
of the
problem.
You can verify
the solution!

 There exist algorithms that solve many, many
problems:
› Calculate the average of a set of numbers

› Calculate sine, cosine, logarithm of a number

› Find min, max, median, stdev etc from a set of numbers

› Find the roots of a polynomial

› Find solution(s) of a system of linear equations

› Find a particular character in a string

› Find webpages that contain the word “economics”

› …and many, many more

 Problems for which there exist an algorithm that solve
them (correctly) are called “Decidable” ☺

 But not all! Unfortunately there are some
problems for which there exist NO algorithm
that can solve them. E.g.
› “Halting problem”: whether or not an algorithm

with some input will terminate or not (i.e. crash).
Such algorithm (currently) does not exists.

› “Matrix mortality problem”: Given a finite set of
nxn matrices, is there a way of multiplying them
(with or without repetition) that will result in the
zero matrix? Such algorithm (currently) does not
exist.

 Problems for which there are no algorithms
that can solve them are called
“Undecidable” 

 Example of algorithm?

Simple algorithm that finds the greatest number in an array of numbers.

Input: Array with 10 random numbers

Output: The greatest number (max) contained in the input numbers

Step 1: Read 10 numbers from user (keyboard) and insert these numbers in an array T such

that T[1] contains the first number given and T[10] the last number given

Step 2: Assume that the greatest number is the number in the first position of the array

i.e. T[1]. Store this number in a variable called max: max=T[1].

Step 3: For each position of array T, starting from 2 up until position 10 of the array T

do the following:

Step 4: Compare number in current array position with max. If current position of

array has number greater than max then:

Step 5: Store in variable max the number in current position of array

Step 6: Output on screen the variable max. This will be the greatest number in array T.

Order of
execution

21 5 1 9 47 12 3 5 13 -4

max=21 max=47

= Compare with max

= Replace max.

Found new max
T[1] T[2] T[3] T[4] T[5] T[6] T[7] T[8] T[9] T[10]

 Same algorithm in a real programming
language (Python)

Simple algorithm that finds the greatest number in an array of numbers.

Input: Array with 10 random numbers

Output: The greatest number (max) contained in the input numbers

#Array T will hold the numbers

T=[] Step 1

#Ask for 10 numbers from user.

for i in range (0, 10): Step 2

number = int (input("Give me the number: ")) Step 3

T.append(number) Step 4

#Ok. Got 10 numbers. Do your thing now.
#Set as max the first number. In python, array indices start at 0, not 1!

currMax = T[0] Step 5

i=1 Step 6

while (i < len(T)): Step 7

#Is current position Τ[i] greater than currMax?

if (T[i] >= currMax): Step 8

#Yes, it is! Found a new max value

currMax = T[i] Step 9

#advance to next element in array

i = i + 1 Step 10

print("The result is: ", currMax) Step 11

Order of

execution

 An algorithm can be represented in
many ways (form does not matter)
› Pseudocode (first example)

› Programming language (second example)

 ...as long as
› Specifies concrete steps

› Takes well defined input

› Each step can be executed by the machine
(computer)

› Solves (correctly) the problem at the output

 For a given problem there might be two

or more different algorithms that solve

the problem

› Different? They execute different set of steps

 For example we can come up with two

different algorithms for finding the

greatest number in a list

› Earlier example

First algorithm (see previously)

Step 1: Set as max the first
element of the list

Step 2: Compare other
elements with current max

Step 3: If current max is smaller
than current element, set
current element as max

Step 4: If all elements of list
have been compared, output
max. This will be the greatest
number. Output it and
terminate.

Second algorithm
Step 1: Compare first element with all
other elements of table to see if this is
greater than all other elements

Step 2: If it is, then output first element
as greatest and terminate.

Step 3: If first element is not the
greatest, compare second element
to all other elements to see if this is
greater than all other elements

Step 4: If it is, then output second
element as greatest and terminate.

...

Step 19: Display last element of list as
the largest number (no need to
compare).

Two different algorithms solving the “find greatest
number” problem

Both algorithms solve the problem (correctly)!

 Many different algorithms that solve the

same problem

› E.g. Sorting algorithms (numbers, strings,

dates etc):

 BubbleSort

 QuickSort

 HeapSort

 MergeSort

 Since there might be different algorithms that solve the
same problem, which algorithm is better?
› What does “better” mean? Here it means “faster” i.e.

which algorithm solves a given problem in the shortest
time (= Execution time of algorithm)
 Many different interpretations of “better”: in terms of

execution time, space used etc.

› Of course we are interested in solving the problem quickly
 An algorithm A solving a problem in less time than algorithm B, is

faster and hence in our context is better.

 To answer such questions, we need to answer another
important and related question:
› How to measure the execution time of algorithms? What is the

best metric to assess the time needed by an algorithm to solve a
problem?
 One approach: use real time (measured in min, sec, msec, ns etc)

. Measuring the real time elapsed: when the algorithm starts
executing until it produces the solution of the problem on the
output and terminates

 Is time (measured in min, sec, msec etc)

a good metric for assessing the

execution speed of algorithms?

Sroting algorithm

(ascending order)
Input

1, 8, 1, 0, 7

Output

0, 1, 1, 7, 8

Input data:

List of numbers.

Random order
Output data:

Same

numbers as

input, in

ascending

order.

Solution of

the problem

• It’s one (valid) approach. Used today

in many practical situations.

 But, using the (real) time as a metric to

assess running time of algorithms, is not the

best idea. This, for two reasons:

› Measured that way, running time depends on

the computer/machine the algorithm runs on

› Time does not tell us how the running time of an

algorithm is affected, when the size of input

data changes

 Using time as the metric, makes it difficult to

compare algorithms in a systematic way.

 1) Time depends on computer the

algorithm executes on.

Sorting algorithm
(ascending order)

Input

19, 8, 1, 0, 7

Output

0, 1, 7, 8, 19

Sorting algorithm
(ascending order)

Input

19, 8, 1, 0, 7

Output

0, 1, 7, 8, 19

Solves ordering of

5 numbers on

computer A in

0.31 sec

Solves ordering of

5 numbers on

computer B in

0.46 sec

Same sorting
algorithm with
same input,
executed on
different
computers.

What is the execution time of the algorithm (same in both situations)?

The average? What if the same algorithm executes on another

computer and sorts these 5 numbers in say 0.08 secs?

Computer Α

Computer Β

 2) Time dos not tell us what happens, when

input data changes e.g. is increased in size.

Sorting algorithm
(ascending order)

Input

19, 8, 1, 0, 7

Output

0, 1, 7, 8, 19

Solves ordering of

5 numbers on

computer A in 0.3
sec

If we double the input
numbers that need to be
sorted by the same
algorithm e.g. 19,8,1,0,7,-
1, 13, 7, 1, -91 ...

...will the execution time also
double? Will it increase by a
factor of 4 or 8 ? The only thing
we can say is that that
particular algorithm, executed
on that particular computer,
sorts 5 numbers in 0.3 sec.
Nothing more 

Then

 Time is not an appropriate metric for assessing the
speed of algorithms
› Can’t compare different algorithms that solve the same

problems

› In practice though, time is used under very specific
circumstances and as an indication of the efficiency of an
algorithm

 Use a different metric: count the number of steps an
algorithm performs/executes until it finds the solution.
› This is today the established way to assess the running time

of algorithms!

› Don’t forget: an algorithm is a finite number of steps
that execute and solve a problem

› The idea is that an algorithm A who solves a problem is
faster than algorithm B who solves the same problem,
when A executed fewer number of steps
(commands/operations).

 How to express the number of steps executed?
› As a function T of a variable called the “problem size” : T(n) .

› Problem size = An aspect of the input data, that definitely will
affect the number of steps or how many times the steps will be
executed, until the algorithm finds the solution to the problem
 Example: In the context of a sorting algorithm, sorting 10 numbers

(input data) will require each step of the algorithm to be
executed more times than say the sorting of 8 number by the
same algorithm (more comparisons). Hence, Problem size for
sorting algorithms = Count of numbers to be sorted (more numbers
=> more steps)

 Example: in the context of an algorithm which finds the greatest
from a list of numbers, the count of numbers given as input will
affect the times each step will be executed and hence its running
time. Hence, Problem size for finding max = Count of numbers
in the input list (more numbers => more comparisons)

 Example: in an algorithm that searches if character “a” is
contained in a string (say “John” or “Nabuzennezor”), how
many times each step is executed depends on the length of
the input string (bigger strings will result in more execution of
steps). Hence, Problem size for fining char in string = the length
of the input string (more chars in string => more comparisons)

 Examples of running times expressed as a
function T of the problem size, denoted as n:
› Number of operations of algorithm, Τ: T(n) = 2n, n >

0
 This means that when given an input of size n, then

algorithm will do 2n operations until it outputs the
solution.

› Number of operations of algorithm, Τ: Τ(n) = n2 + 3
 If given input of size n, algorithm will make n2+3

operations until it solves the problem.

 From now on: Number of operations of
algorithm = running time of algorithm
› We say: running time of algorithm Τ(n) = 2n, T(n) =

n3+n+4, T(n) = 2n , etc.

 Example of computing running time, T(n)
Simple algorithm to find the biggest from a list of 10 numbers. 10 numbers provided

by user.

Input: 10 random numbers.

output: the greatest number in input set.

/* generalization: assume that we ask for n numbers*/
T=[] Step 1 Executed 1 time

for i in range (0, 10): Step 2 Executed n+1 times

number = int (input("Give me the number: ")) Step 3 Executed n times

T.append(number) Step 4 Executed n times

#Assume first number as greatest

currMax = T[0] Step 5 Executed 1 time

i=1 Step 6 Executed 1 time

while (i < len(T)): Step 7 Executed n+1 times

#current number at Τ[i] greater than current maximum?

if (T[i] >= currMax): Step 8 Executed n times

#Yup! Found a bigger number

currMax = T[i] Step 9 Executed n times

i = i + 1 Step 10 Executed n times

print("The result is: ", currMax) Step 11 Executed 1 time

+

Running time: T(n)=7n+6

 Calculating running time T(n) also referred
to as calculating exact time

 This form of representing T(n) tells us useful
things like
› Which algorithm is faster

 E.g. If algorithm Α with running time T(n)=n+3 and
algorithm Β with running time T(n)=2n solve the
same problem, then algorithm A is faster.

› How running time changes when input changes

 E.g. If T(n) = 2n then if input doubles, then number
of operations will double, because:
 Τ(2n) = 4n = 2(2n) = 2T(n)

 Expressing running time of algorithm in the form
of T(n) usually captures the worst case of the
running time of the algorithm
› “Worst case”: an input for which the algorithm will do

its maximum number of operations

 E.g. when sorting ascending order, worst case is input in
descending order

› “Best case”: an input for which the algorithm will do
its minimum number of operations to solve the
problem

 E.g. giving an already sorted list of number as input to
an sorting algorithm

› “Average case”: a “typical”, “average” input (which
is encountered in the real world most of the time)

Simple algorithm to find the biggest from a list of 10 numbers. 10 numbers provided

by user.

Input: 10 random numbers.

output: the greatest number in input set.

/* generalization: assume that we ask for n numbers*/
T=[] Step 1 Executed 1 time

for i in range (0, 10): Step 2 Executed n+1 times

number = int (input("Give me the number: ")) Step 3 Executed n times

T.append(number) Step 4 Executed n times

#Assume first number as greatest

currMax = T[0] Step 5 Executed 1 time

i=1 Step 6 Executed 1 time

while (i < len(T)): Step 7 Executed n+1 times

#current number at Τ[i] greater than current maximum?

if (T[i] >= currMax): Step 8 Executed n times

#Yup! Found a bigger number

currMax = T[i] Step 9 Executed n times

i = i + 1 Step 10 Executed n times

print("The result is: ", currMax) Step 11 Executed 1 time

This line will never be

executed, if greatest

number is at the

beginning. You can

“save” (these) n

operations!

 Running time of algorithm also referred

to as time complexity

› There is also space complexity (guess what

this measures…)

 What is asymptotic analysis of

algorithms?

› It’s when we are interested what happens

when n->∞ i.e. problem size “goes to infinity”

› Does it matter?

 Yes, very much!

 Why does it matter?
› Assume algorithm A has time complexity T(n) = 2n

and algorithm B has time complexity T(n) = n20 + 4
. Assume that both solve the same problem.

 Which algorithm is faster?
 Practically, i.e. for some n < n0, faster is A (i.e. for n=1,2,3,4,..)

 Theoretically, when n > 143 and n-> ∞, things change: B will
always be faster since then 2n > n20 + 4. Hence B is
asymptotically faster.

 Solve 2n > n20 + 4 => n > 143

 Useless note to show how big this is: Our sun has ~280

hydrogen atoms. (so 2143 is really, really, really huuuuge).

 Explanation?

› 2n grows faster than n20+4 .

› In general the biggest term in running time

determines the magnitude

 i.e. if T(n) = 3n2 + 45n +2, then factor 3n2 would

be the most important when n-> ∞, since 3n2

>> 45n and 3n2 >> 2

 3n2 grows faster than 45n and (of course

constant) 2

 Take this as a starting point to define

formalisms that characterize the

asymptotic running time of algorithms (or

the theoretical running time:

› O(), Θ(), Ω(), ω()

 Definition of these formalisms?

 Definition O () (Big-O notation)

› Let there be an algorithm with running time Τ(n).

We say that Τ(n) = O(g(n)) if there exist a

constant c and a n0 such that T(n) <= cg(n) for

every n > n0

 This means that saying f(n) = O(g(n)) tells us that

g(n) is an upper bound of the number of steps an

algorithms executes to solve a problem of size n.

Upper bound:

number of operations

will never exceed this

after some problem

size n0

 Examples of Big-O notation
› T(n) = 2n+3 => T(n) = O(n) . We say that algorithm with

running time T(n) has time complexity O(n).

 Why? We can find constant c and a n0 such that 2n+3
<= cn, for each n > n0 (e.g. for each c >= 5 and n0 =1)

 Since time complexity is O(n) we say that running time is
linear O(n)

› T(n) = lg(n) + 5 => T(n) = O(lg(n))

 Logarithmic time (note: lg is base-2 logarithm)

› T(n) = n2+n+7 => Τ(n) = O(n2)

 Polyonimic time algorithm

› Τ(n) = 2n + 3 => T(n) = O(2n)

 Exponential time algorithm

 Examples of Big-O
› There is also running time of O(1)

 Means constant time i.e. running time independent
of input size
 Whether you give input of size 1 or 1012 , algorithm will

perform constant number of steps (=c).

 E.g. assigning a number (value) to variable like x=123

 O() notation is not a tight bound!
 E.g. T(n) = n+3 => T(n) = O(n) but also T(n) = O(5n)

 But in general, it is used as a “tight bound”

 So when you see that an algorithm has time complexity
of O(n2) you can assume that it will never execute more
than cn2 operations if given an input size of n.

 What is the constant, c, in the definition

of Big-O representing?

› E.g. in the definition on T(n) = O(g(n)) we

have cg(n) <= T(n).

› Intuitively: represents the environment the

algorithm runs on

 E.g. speed of computer, memory of computer,

what other apps were running etc

 Such aspects are modelled, but are considered a

constant, c. Different computers will have different

values of c.

 Examples of asymptotic time complexity and growth
of functions.

 In general, Big-O helps in grouping
algorithms
› E.g. Class of algorithms with O(n) are said to be

linear

› E.g. Class of algorithms with O(logn) are said to
be logarithmic

 From now on, you’ll see O() as a measure of
the running time of algorithms
› For example when someone tells you that an

algorithm has time complexity of O(n3) then you
can understand that running time is proportional
to n3 of its input n
 This means, running time can be T(n) = 2n3 or T(n) =

13n3+3n2+3 but also T(n) = 97129n3 +34n+1. But
never faster growing than n3 !

 Definition Θ() (Big-Theta notation)
› Let there be an algorithm with running time Τ(n).

We say that Τ(n) = Θ(g(n)) if there exist constants
c1, c2 and a n0 such that c1g(n)<=T(n)<= c2g(n) for
every n > n0

 This means that g(n) is upper and lower bounding
T(n) (lower bound=gives also minimum number of
steps to solve the problem).

Upper bound:

number of operations

will never exceed

this!

Lower bound: number

of operations will

never go below this!

Actual running time

of algorithm

 In general, algorithms with polynomial time

complexities are considered fast and

preferred

› Even with great exponent e.g. O(n50)

 Algorithms with exponential time

complexity are slow.

› E.g. O(3n) is slow

› If an algorithm has time complexity of O(2n),

then if problem size is increased by one (n+1)

number of operations double (yup, that’s sh*tty!).

 Example algorithms
› QuickSort:

 Best case: O(nlgn)

 Average case: O(nlgn)
 Worst case: O(n2)

› MergeSort
 Best case: O(nlgn)

 Average case: O(nlgn)

 Worst case: O(nlgn)

› All cryptographic algorithms
 Exponential time complexity to crack password

› Algorithm for making the course schedule for school/
university
 Exponential time (that’s why humans do it)

 Example of time complexities of algorithms
in data mining
› K-means

 If k and d (dimensions) fixed: O(ndk+1 logn), n
number of objects/data to be clustered

 NP-hard for general form of the problem
 What is NP-hard? As hard/difficult as the hardest

problems to solve

› Apriori

 O(mn+ (1-RM)/(1-R)), n=number of input
transactions, m=threshold, R=number of unique
elements.

 What is data? A collection

of objects and their
attributes

 An attribute is a property or

characteristic of an object

› Examples: eye color of a

person, temperature, etc.

› Attribute is also known as

variable, field,

characteristic, or feature

 A collection of attributes
describe an object

› Object is also known as

record, point, case,

sample, entity, or instance

Tid Refund Marital
Status

Taxable
Income Cheat

1 Yes Single 125K No

2 No Married 100K No

3 No Single 70K No

4 Yes Married 120K No

5 No Divorced 95K Yes

6 No Married 60K No

7 Yes Divorced 220K No

8 No Single 85K Yes

9 No Married 75K No

10 No Single 90K Yes
10

Attributes

Objects,

records,

instances

 Attribute values?

› Numbers or symbols assigned to an attribute

 Attribute vs Attribute values

› Same attribute can be mapped to different

attribute values

 E.g. height in feet or meters

› Different attributes can be mapped to the

same set of values

 E.g. Attribute values for ID and age are integers

 But with different properties: id’s don’t have

limits, age has

 There are different types of attributes (based
on how you can reason with these):
› Nominal

 Examples: ID numbers, eye color, zip codes

› Ordinal

 Examples: rankings (e.g., taste of potato chips on a
scale from 1-10 – Likert scale), grades, height in {tall,
medium, short}

› Interval

 Examples: calendar dates, temperatures in Celsius or
Fahrenheit.

› Ratio

 Examples: temperature in Kelvin, length, time, counts

 The type of an attribute depends on which
of the following properties it possesses
(basically what arithmetic operations you
can do with them):
› Distinctness: = 

› Order: < >

› Addition: + -

› Multiplication: * /

› Nominal attribute: distinctness

› Ordinal attribute: distinctness & order

› Interval attribute: distinctness & order & addition

› Ratio attribute: distinctness & order & addition &
Multiplication

Attribute

Type

Description Examples Allowed

Operations

Nominal The values of a nominal
attribute are just different
names, i.e., nominal attributes
provide only enough
information to distinguish one
object from another. (=, )

zip codes,

employee ID

numbers, eye

color, sex: {male,

female}

mode,

entropy,

contingency

correlation, 2

test

Ordinal The values of an ordinal

attribute provide enough

information to order

objects. (<, >)

hardness of
minerals, {good,
better, best},
grades, street
numbers, Likert
scales

median,
percentiles, rank
correlation, run
tests, sign tests

Interval For interval attributes, the

differences between values
are meaningful, i.e., a unit of
measurement exists.
(+, -) but not (*, /) . E.g. 30oC is
not twice as hot as 15oC

calendar dates,

temperature in

Celsius or

Fahrenheit

mean, standard

deviation,
Pearson's
correlation, t
and F tests

Ratio For ratio variables, both

differences and ratios

are meaningful. (*, /)

temperature in

Kelvin, monetary

quantities,

counts, age,

mass, length,

electrical current

geometric

mean,

harmonic

mean,

percent

variation

Q
u

a
li
ta

ti
v
e

Q
u

a
n

ti
ta

ti
v

e

Attribut

e Level

Allowed Transformation Comments

Nominal Any permutation of values If all employee ID

numbers were

reassigned, would it

make any difference?

Ordinal An order preserving change of

values, i.e.,

new_value = f(old_value)

where f is a monotonic

function.

An attribute encompassing

the notion of good, better

best can be represented

equally well by the values

{1, 2, 3} or by { 0.5, 1,

10}.

Interval new_value =a * old_value + b,

where a and b are constants

E.g. he Fahrenheit and

Celsius temperature scales

differ in terms of where

their zero value is and the

size of a unit (degree).

Ratio new_value = a * old_value Length can be measured

in meters or feet.

Allowed transformation i.e. transformation that do not change

the meaning of the attribute

 Discrete Attribute
› Has only a finite (or countable infinite set) of values

(countable means can be ordered with a relationship)

› Examples: zip codes, counts, or the set of words in a
collection of documents

› Often represented as integer variables.

› Note: binary attributes are a special case of discrete
attributes.

 Continuous Attribute
› Has real numbers as attribute values (cannot be ordered

with a relationship)

› Examples: temperature, height, or weight.

› Practically, real values can only be measured and
represented using a finite number of digits.

› Continuous attributes are typically represented as floating-
point variables.

 Ways in which they are represented/structured
› “Structured” data : ordered/grouped in some particular way

 Record data
› Data Matrix

› Document Data

› Transaction Data

 Graph data
› World Wide Web

› Molecular Structures

 Ordered data
› Spatial Data

› Temporal Data

› Sequential Data

› Genetic Sequence Data

 Dimensionality
› How many dimensions the data has (here

dimensions: number of features, attributes)

› Dimensionality is a big problem (curse of
dimensionality)

 Sparcity
› How many values are present (or non-

present/zero)?

 Resolution
› Different patterns at different scales

 Record: a fixed set of attributed, handled as
one entity

 Record data: collection of records

Tid Refund Marital
Status

Taxable
Income Cheat

1 Yes Single 125K No

2 No Married 100K No

3 No Single 70K No

4 Yes Married 120K No

5 No Divorced 95K Yes

6 No Married 60K No

7 Yes Divorced 220K No

8 No Single 85K Yes

9 No Married 75K No

10 No Single 90K Yes
10

Record data

One record

 If data objects have the same fixed set of numeric

attributes, then the data objects can be thought of

as points in a multi-dimensional space, where each

dimension represents a distinct attribute

 Such data set can be represented by an m by n

matrix, where there are m rows, one for each

object, and n columns, one for each attribute

1.12.216.226.2512.65

1.22.715.225.2710.23

Thickness LoadDistanceProjection

of y load

Projection

of x Load

1.12.216.226.2512.65

1.22.715.225.2710.23

Thickness LoadDistanceProjection

of y load

Projection

of x Load

 Each document becomes a `term' vector,
› each term is a component (attribute) of the

vector,

› the value of each component is the number of
times the corresponding term occurs in the
document.

Document 1

s
e

a
s
o

n

tim
e

o
u

t

lo
s
t

w
i

n

g
a

m
e

s
c
o

re

b
a

ll

p
lay

c
o

a
c
h

te
a

m
Document 2

Document 3

3 0 5 0 2 6 0 2 0 2

0

0

7 0 2 1 0 0 3 0 0

1 0 0 1 2 2 0 3 0

Note: Search

engines like

google, Bing do this

Term/lemma/word

‘team’ appears in

‘Document 1’ 3 times

 A special type of record data, where

› each record (transaction) involves a set of items.

› For example, consider a grocery store. The set of

products purchased by a customer during one

shopping trip constitute a transaction, while the

individual products that were purchased are the

items.

TID Items

1 Bread, Coke, Milk

2 Beer, Bread

3 Beer, Coke, Diaper, Milk

4 Beer, Bread, Diaper, Milk

5 Coke, Diaper, Milk

 Data represented with nodes and links

(=graphs)

5

2

1

 2

5

 Examples
› World wide web

(pages, links)

› References in scientific
articles
 Who references which

paper (link)

› Calculate
 PageRank (google)

 h-index

 Hubs

 Position/rank matters

› E.g. genomic sequence

GGTTCCGCCTTCAGCCCCGCGCC

CGCAGGGCCCGCCCCGCGCCGTC

GAGAAGGGCCCGCCTGGCGGGCG

GGGGGAGGCGGGGCCGCCCGAGC

CCAACCGAGTCCGACCAGGTGCC

CCCTCTGCTCGGCCTAGACCTGA

GCTCATTAGGCGGCAGCGGACAG

GCCAAGTAGAACACGCGAAGCGC

TGGGCTGCCTGCTGCGACCAGGG

 Spatio-temporal data

Average

Monthly

Temperature of

land and ocean

 Data quality?

› The aspects of data sets that make it

suitable/useful (or not) for processing to

achieve a goal

› Common data quality issue/problems

 Noise and outliers

 Missing values

 Duplicate data

 Noise refers to involuntarily modification of
original values
› Examples: distortion of a person’s voice when talking on

a poor phone and “snow” on television screen

Two Sine Waves (voice) Two Sine Waves + Noise (voice +
distortion). Yup it’s a miracle that
you can hear a voice.

 Useless/funny bits of noise

› Give rise to information theory

 Claude Shannon aiming at separate voice

(information) from not-voice (noise)

› Noise can be interesting

 “Snow” on old TVs is ~40% cosmic radiation

(from Big Bang)

 Meaning the “snow” that you saw, was the

cosmos/universe on your TV

 Not anymore though due to digital TV.

 Outliers are data objects with
characteristics that are considerably
different than most of the other data
objects in the data set

Outlier

Outlier

Outlier

“Most of the

data” in data

set

 Can seriously distort your view

Person Wealth (in Linden

dollars)

Gianna 10000000000

Jim 19

John 20

Phil 25

Martha 16

(Naïve) average wealth:

2000000016 Linden dollars

#LOL, made everyone rich.
No joke pal.

 Reasons for missing values
› Information is not collected

(e.g., people decline to give their age and
weight)

› Attributes may not be applicable to all cases
(e.g., annual income is not applicable to
children)

› Devices may be faulty (e.g. faulty thermometer)

 Handling missing values
› Eliminate Data Objects (commonly used)
› Estimate Missing Values
› Ignore the Missing Value During Analysis
› Replace with all possible values (weighted by

their probabilities)

 Data set may include data objects that are
duplicates, or almost duplicates of one
another
› Major issue when merging data from

heterogeneous sources (typical in greek public
sector)

 Examples:
› Same person with multiple email addresses

 I know: what you do on facebook, twitter, insta etc.

 Data cleaning
› Process of dealing with duplicate data issues

 E.g. names: in greek Κων/νος, Κωνσταντίνος,
Κώστας, Αγ. Βαρβάρα, Αγία Βαρβάρα etc

 Data preprocessing?
› Steps that aim making the data, before their

processing, suitable for the desired processing.
 The issue here is to optimize various aspects that

may affect processing, in particular
 Required space

 Processing time, minimize running times i.e. O(g(n))

 Don’t forget: we’re working with Big data!

 Probably the most important step in data
mining

 In general, about 70%-80% of total time is
consumed on data preprocessing tasks

 Can definitely shoot your own foot
› Wrong preprocessing yields to wrong results.

 Techniques/methods

› Aggregation

› Sampling

› Dimensionality reduction

› Feature subset selection

› Feature creation

› Discretization

› Attribute transformation

 Combining two or more attributes (or
objects) into a single attribute (or object)

 Purpose
› Data reduction

 Reduce the number of attributes or objects

› Change of scale

 Cities aggregated into regions, states,
countries, etc

› More “stable” data

 Aggregated data tends to have less variability

Standard Deviation of

Average Monthly

Precipitation

Standard Deviation of

Average Yearly

Precipitation – aggregated
(note smaller variability)

Variation of Precipitation in Australia

Sampling is the main technique employed for
data selection.
› It is often used for both the preliminary

investigation of the data and the final data
analysis.

Why sampling?
› Statisticians sample because obtaining the entire

set of data of interest is too expensive or time
consuming.

Sampling is used in data mining because
processing the entire set of data of interest is
too expensive or time consuming.

 The key principle for effective sampling is

the following:

› using a sample will work almost as well as

using the entire data sets, if the sample is
representative

› A sample is representative if it has

approximately the same property (of interest)

as the original set of data

 In terms of its distribution

 Simple Random Sampling
› There is an equal probability of selecting any particular

item

 Sampling without replacement
› As each item is selected, it is removed from the population

 Sampling with replacement
› Objects are not removed from the population as they are

selected for the sample.
 In sampling with replacement, the same object can be

picked up more than once

 Stratified sampling
› Split the data into several partitions; then draw random

samples from each partition

 Effect of sample size?

8000 points 2000 Points 500 Points

More objects/points/data is in general better. But more objects require

more space, more time (preprocessing and analysis). Tradeoff.

Effects almost any type of
data: e.g. when you talk on
the phone and your voice is
sent to other guy/girl

What sample size is necessary to get at
least one object from each of 10 groups.

This graph will tell you. For example

with a sample size of 40, the

probability of having at least one from

each group is ~0.87 .

10 groups

 Curse of dimensionality
› Remember: dimensions = number of

attributes

 When dimensionality
increases, data
becomes increasingly
sparse in the space
that it occupies (i.e.
many, many, missing
or zero values)

 Definitions of density
and distance
between points,
which is critical for
clustering and outlier
detection, become
less meaningful

• Randomly

generate 500

points

• Compute

difference

between max and

min distance

between any pair

of points

• Note: as

dimensions

increase, less

meaningful

distance which

causes problems

when clustering!

 Purpose
› Get rid of curse (ha, take that!)

› Reduce space and time required by data
mining algorithms

› Facilitate easy visualization of data

› May help in reducing noise

 Techniques/methods
› Principal Components Analysis (PCA)

› Singular Value Decomposition (SVD)

› Supervised and non-supervised techniques

 A quick look at PCA
› What it aims for?

 It aims to expressing existing data with high
dimensionality (attributes, n) in the context of a new
(optimal) axis system (“subspace”) with fewer
dimensions d, i.e. d < n.
 Goal of PCA: capture most of the variation in original data set

to bring out patterns.
 “fewer dimensions” => reducing dimensionality and hence the

curse of dimensionality
 Basically we compress the data set.
 Note: might lose some of variation of original data, and hence

can’t perfectly reproduce original data in the new subspace,
but this variation is not important (due to being very
small/insignificant).

 This new “subspace” comprises the Principal Components

 IMPORTANT: PCA works only with numerical vectors!

 A quick look at PCA

› Several issues with the new subspace

 How to choose new dimension d ?

 How to select feature space (“subspace”) that

represents our data well (i.e. principal

components)?

 How to find axes of

new space?

› The Eigenvectors,

Eigenvalues of the

Covariance matrix

define these spaces

 Eigenvectors are

linear independent

x2

x1

e

Eigenvector which captures the

biggest variance in dataset.

 Steps to calculate Principal Components
› Take whole dataset with n dimensions

› Compute the dimensional mean-vector (i.e. mean for each
dimension/attribute)

› Subtract mean from each dimension (make variables have
mean =0) – Normalize the data

› Compute the covariance matrix
 Indicating how each dimension/attribute varies with respect to all

other

› Compute Eigenvectors and Eigenvalues of the covariance
matrix solving:
 |λI – A| = 0, λ=eigenvalue, | | = determinant, I = unit vector
 Av = lv, v = eigenvector

› Choose k largest Eigenvalues and corresponding Eigenvectors

› Use these Eigenvectors to form a d x k new matrix W of
Eigenvectors

› Use this d x k Eigenvector matrix to transform each object
(vector) onto the new space, as follows:
 <New vector> = WT x <old_vector>

 Numerical Example

 Assume the following observations/data about different food
items: vitamin C content, protein content)

Vitamin C Protein

2.5 2.4

0.5 0.7

2.2 2.9

1.9 2.2

3.1 3.0

2.3 2.7

2 1.6

1 1.1

1.5 1.6

1.1 0.9

 Our goal/question to
answer?

 Reduce the number
of variables while at
the same time
keep/explain most of
the variance.
› We have here only 2

variables, so this
makes little sense.
Imagine e.g. having
250 variables. In such
cases you want to
reduce the number of
variables but “keep”
the variance.

 Calculate mean for each variable

mean =1.81 mean =1.91

Vitamin C Protein

2.5 2.4

0.5 0.7

2.2 2.9

1.9 2.2

3.1 3.0

2.3 2.7

2 1.6

1 1.1

1.5 1.6

1.1 0.9

 Subtract mean from each value to

normalize the data.

mean =1.91 mean =1.81

NOTE: we will work

from now on with

the red values!

Hint: mean of both

variables is now 0.

Vitamin C Protein

2.5 – 1.81 = 0.69 2.4 – 1.91 = 0.49

0.5-1.81=-1.31 0.7 – 1.91 = -1.21

2.2-1.81=0.39 2.9 – 1.91 = 0.99

1.9-1.81=0.09 2.2 -1.91=0.29

3.1-1.81=1.29 3.0 – 1.91 =1.09

2.3-1.81=0.49 2.7 -1.91 =0.79

2-1.81=0.19 1.6-1.91 = -0.31

1-1.81= -0.81 1.1 – 1.91 = -0.81

1.5-1.81=-0.31 1.6 – 1.91 = -0.31

1.1-1.81=-0.71 0.9 -1.91 = -1.01

 Calculate the covariance matrix

Vitamin C Protein

Vitamin C 0.616 0.615

Protein 0.615 0.716

𝑐𝑜𝑣 𝑉𝑖𝑡𝑎𝑚𝑖𝑛𝐶, 𝑃𝑟𝑜𝑡𝑒𝑖𝑛 =
σ𝑖=1
10 𝑉𝑖𝑡𝐶𝑖 − 𝑉𝑖𝑡𝐶 𝑃𝑟𝑜𝑡𝑖 − 𝑃𝑟𝑜𝑡

9 = (10 − 1)

NOTE: mean here is calculated on the normalized data (i,.e. mean = 0)

 Calculate Eigenvalues and Eigenvectors of

the Covariance matrix

 Definition of Eigenvector v with Eigenvalue λ

of the covariance matrix cov(VitC, Pr):

› 𝑐𝑜𝑣 𝑉𝑖𝑡𝐶, 𝑃𝑟 𝑣 = 𝜆𝑣 ⇒ 𝑐𝑜𝑣 𝑉𝑖𝑡, 𝑃𝑟 𝑣 − 𝜆𝑣 = 0 ⇒
𝒄𝒐𝒗 𝑽𝒊𝒕, 𝑷𝒓 − 𝝀𝑰𝟐 𝒗 = 𝟎

 Calculate Eigenvalues first!

 Calculate Eigenvalues first

𝒄𝒐𝒗 𝑽𝒊𝒕, 𝑷𝒓 − 𝝀𝑰𝟐 𝒗 = 𝟎

Note: 0 is the zero vector. We search for λ

(eigenvalue) and corresponding v

(eigenvector). Let’s remember a little bit of

linear algebra: In order for this to have non-

zero vector v as solution, the determinant of

must be zero! Let’s do it.𝐜𝐨𝐯 𝐕𝐢𝐭, 𝐏𝐫 − 𝛌𝐈𝟐

 Calculate Eigenvalues

- λ
1 0

0 1
=

= 0.616 - λ 0.615

0.615 0.716 - λ

Determinant of this
must be zero.

0.616 0.615

0.615 0.716

Covariance matrix Identity matrix I2

𝑑𝑒𝑡 𝑐𝑜𝑣 𝑉𝑖𝑡, 𝑃𝑟 − 𝜆𝐼2 = 0

 Calculate Eigenvalues

Det() = 0 =>

=> (0.616-λ)*(0.716-λ) – 0.615 * 0.615 = 0 => λ1 = 0.0489, λ2=1.283

2 Eigenvalues calculated λ1, λ2 !

0.616 - λ 0.615

0.615 0.716 - λ

 Now, for each Eigenvalue, calculate the

Eigenvector V.

* V =
0

0 =>

* V =
0

0 =>

0.616 - λ 0.615

0.615 0.716 - λ

0.616 – 0.0489

= 0.567

0.615

0.615 0.716 – 0.0489

= 0.667

For eingenvalue λ =0.0490

 For each Eigenvalue, calculate the

Eigenvectors.

*
0

0 =>

v1

v2
=

0.567*v1 +0.615*v2 = 0

0.615*v1 + 0.667*v2 = 0

0.567 0.615

0.615 0.667

For eingenvalue λ =0.0490

Eigenvalue λ=0.049

Eigenvector =
−𝟎. 𝟕𝟑𝟓𝟏
𝟎. 𝟔𝟕𝟕𝟖

 For each Eigenvalue, calculate the Eigenvectors.

For Eigenvalue λ =1.284

* V =
0

0 =>

* V =
0

0 =>

0.616 - λ 0.615

0.615 0.716 - λ

0.616 – 1.284 =

-0.668

0.615

0.615 0.716 – 1.284 =

-0.568

 For each Eigenvalue, calculate the Eigenvectors.

For Eigenvalue λ =1.284

*

0

0 =>

v1

v2

-0.668 0.615

0.615 -0.568

-0.668*v1 +0.615*v2 = 0

0.615*v1 + 0.568*v2 = 0

Eigenvalue λ=1.284

Eigenvector =
−𝟎. 𝟔𝟕𝟕𝟖
−𝟎. 𝟕𝟑𝟓𝟏

=

 We found 2 Eigenvalue/Eigenvector

pairs

Eigenvalue λ=0.049

Eigenvector =
−𝟎. 𝟕𝟑𝟓𝟏
𝟎. 𝟔𝟕𝟕𝟖

Eigenvalue λ=1.284

Eigenvector =
−𝟎. 𝟔𝟕𝟕𝟖
−𝟎. 𝟕𝟑𝟓𝟏

 Notice how one Eigenvalue is greater than
the other ? 1.284 > 0.049.
› This means that the Eigenvector with λ = 1.284

captures most variance of the dataset!

 How much variance does the greatest
Eigenvector explain?

› Use
𝝀𝒌

σ𝒊=𝟏
𝒏 𝝀𝒊

where n= number of

eigenvalues/eigenvectors - to see how muck variance
Eingenvector with Eigenvalue λk explains

› In our case Eigenvector with λ=1.284 explains 1.284 /
(1.284+0.049) = 0.96 or 96% of the variance in the data

› In the general case, what you do is select the k largest
Eigenvalues (and corresp. Eigenvectors) until you are
happy with the variance explained – The selected
Eigenvalues/Eigenvectors are the Principal
Components!

 In this case the explained variance is
σ𝒊=𝟏
𝒌 𝝀𝒊

σ𝒋=𝟏
𝒏 𝝀𝒋

 Empirical: aiming at explaining >70% or variance

 If we are happy with the variance explained,
do the following:
› Map the original data to the selected k Eigenvectors

with the k greatest eigenvalues -in our example, lets
say we select only 1 Eigenvalue/Eigenvector pair –
the one with the largest Eigenvalue :

Eigenvalue λ=1.284

Eigenvector =
−𝟎. 𝟔𝟕𝟕𝟖
−𝟎. 𝟕𝟑𝟓𝟏

Vitamin C Protein

2.5 2.4

0.5 0.7

2.2 2.9

1.9 2.2

3.1 3.0

2.3 2.7

2 1.6

1 1.1

1.5 1.6

1.1 0.9

Map this data to

this feature vector

defined by the

Eigenvector We aim to do this => Express data
solely in terms of the selected
Eigenvectors!

 A more complex example:
 “In the Places Rated Almanac, Boyer and Savageau rated 329

communities according to the following nine criteria:
› Climate and Terrain
› Housing
› Health Care & the Environment

› Crime
› Transportation
› Education
› The Arts
› Recreation
› Economics

Note that within the dataset, except for housing and crime, the higher
the score the better. For housing and crime, the lower the score the
better. Where some communities might do better in the arts, other
communities might be rated better in other areas such as having a
lower crime rate and good educational opportunities.”

Objective: Search for relationships (correlation) between these
variables.

 In order to do this you need to check all
combination of variables and expect a linear
correlation
› In this 9-dimensional space, observation which are

correlated will appear closely together

› Difficult to see: too many scatterplots of variables
against each other, how to draw a 9-dimensional
space etc.

 Or you could do a PCA, find principal
components and project data onto these
› Such projection gives you a quick view of the

grouping which implies correlation.

 Some Notes!

 Principal Component Analysis - PCA
› When to use it?

 When number of dimensions (attributes) in dataset
is very large (say >100) and you want to reduce
the number of dimensions while still explaining
great amount of variance in the data

› On what kind of attributes/data does it work?
 PCA works only on Ratio attributes.

 Variations of PCA to work in interval data available.

› PCA can make use of the Correlation matrix
instead of the Covariance matrix
 Important when implementing PCA in R

 Look at the appropriate parameters!

 I’m sorry, I still don’t get PCA. Get you

draw it for me? Ok, first some basics.

x2

x1

This point at coordinates (2,3) defines a

vector: From origin (0,0) to point (2,3)

on that plane. That vector is also

denoted as
𝟐
𝟑

2

3 Point A

 Notice how point B is a reflection of Point A
on the origin (0,0)?

x1

2

3 Point A

-2

-3
Point B

𝟐
𝟑

−𝟐
−𝟑

The question is now: how can we calculate
the reflection of any point P in the origin?

Easy: Just multiply the vector with the matrix
−𝟏 𝟎
𝟎 −𝟏

this will calculate the vector that is

the reflection of the original e.g.

−𝟏 𝟎
𝟎 −𝟏

𝟐
𝟑

=
−𝟐
−𝟑

From this, please take away the following
important message: Matrix multiplication is
simply Vector TRANSFORMATIONS (i.e. move
vector elsewere)! Note: you can define
matrices for any transformation. If you

multiply matrices A and B with vector
−𝟐
−𝟑

i.e. A*B*
−𝟐
−𝟑

that means: transform vector

−𝟐
−𝟑

according to B and the result according

to A. This may indicate e.g. Rotate and
Mirror vector.

 Let’s assume we have some data.

Vitamin C

Protein

Data / observations

 Let’s do the following now: Draw random

lines on the plane of your data and

project the data on that line. How does

this look like?

Vitamin C

Protein

Vitamin C

Protein

Line 1

Line 2

Note: Red dots on Line 1 and Line 2 are the projections of the data on
each line. Projections are perpendicular to the lines. HINT: Notice how the
“spread” (aka variance) of the red dots on these lines (Line1, Line2)
differ?

Vitamin C

Protein

Line 3

Compare the spacing of the red dots (variance) on Line 3 to Line 1
and 2. See how the spread of red dots on Line 3 is well…. Smaller
than on Lines 2 and 3? That means smaller variance of red dots!

You can draw indefinitely many such lines (see rotating line)
and project the data onto them. On some lines, the “spread”
of red dots i.e. variance of red dots on the line will be greater
than on others. These are the Eigenvectors!

For animated version see file: PCA-Eigenvector-Illustration.gif

 The line where the red dots have the greatest variance (biggest
spread), is an Eigenvector and the First Principal Component of
our data! The variance (spread) of red dots are the Eigenvalues of
the Eigenvectors!
› The line with the second biggest spread is the second Principal

Component, the line with the third biggest spread is the Third Principal
Component etc.

Vitamin C

Protein

Eigenvector -1
st

Principal Component
Eigenvector - 2nd Principal

Component

The length of the

Eigenvector is its

Eigenvalue λ

 Using Eigenvalues/Eigenvectors is one

way to do PCA

 Other ways also available

› E.g. using Single Value Decomposition – SVD

 Both methods yield to similar results

› i.e. not much difference.

###

A simple example of Principal Component Analysis on the build in iris dataset.

#

Iris is a dataset that contains observations of three iris varieties

(Iris setosa, Iris virginica, Iris Versicolor) recording five features

for each observaion: Sepal length, Sepal width, Pedal lentgh, Pedal width and

the species it belongs to (Setosa, Virginica, Versicolor)

#

For a picture of the Iris plant and what is recorded in the dataset see:

http://5047-presscdn.pagely.netdna-cdn.com/wp-content/uploads/2015/04/iris_petal_sepal.png

#

The Iris dataset contains a total of 150 observations, 50 from each variety.

#

The aim of the code is to perform Principal Component Analysis on the Iris dataset. #

Please note that this may not make sense for only 5 variables as PCA is mostly used in

situations where the number of variables must be reduces, if these are large (dimensionality).

#

###

Let's take a quick look at the Iris dataset, by displaying the first 6 observations in the dataset.

Note: you can peek at more data by supplying a second argument like this: head(iris, 10) which

means show the first 10 observations of the iris dataaset.

head(iris)

By peeking at the dataset we see that it has 5 variables, of which the first 4 looks to be numerical values

and the last one (Species) nominal i.e. not numerical.

Let's take a summary of the iris data. This will show some fisrt desctiptive statistics.

summary(iris)

cont…

 PCA in R: the Iris dataset – 1/3

Since the variable 'Species' has nominal values, we can't use them for PCA. PCA works only
on numerical values. Hence, get rid of the column 'Species' and keep just the other ones.
This can be done using the following command: iris[, 1:4] => This means from the iris dataset
return all rows, but only columns 1 until 4 (i.e. exluding column 5 which is the 'Species' variable).
We store this data in a new variable data pcaData.
NOTE: We could also do the following: pcaData <- iris[, -5] which means all rows and all columns except
column 5.

pcaData<-iris[,1:4]

Let's take a look to see if everything is ok
head(pcaData, 12)

Yep, looks ok. Now, we need to make sure that there are no
missing values (that are displayed as NA).
PCA does not work if there are missing values in any column/variable.
Let's check this.

Does variable Sepal.Length have any (at least 1) missing (na) value?
if (any(is.na(pcaData[,"Sepal.Length"]))) {
sprintf("Sepal.Length has NA values")

} else
sprintf("Sepal.Length is ok! ")

Does variable Sepal.Width have any (at least 1) missing (na) value?
if (any(is.na(pcaData[,"Sepal.Width"]))) {
sprintf("Sepal.Width has NA values")

} else
sprintf("Sepal.Width is ok! ")

Does variable Petal.Length have any (at least 1) missing (na) value?
if (any(is.na(pcaData[,"Petal.Length"]))){
sprintf("Petal.Length has NA values")

} else
sprintf("Petal.Length is ok! ")

Does variable Petal.Width have any (at least 1) missing (na) value?
if (any(is.na(pcaData[,"Petal.Width"]))){
sprintf("Petal.Width has NA values")

} else
sprintf("Petal.Width is ok! ")

#cont…

 PCA in R: the Iris dataset – 2/3

#

OK, our data (pcaData) is ok. Now ready to execute PCA

#

R's princomp() function is one way of executing PCA (there are also other functions available e.g. prcomp()).

We use princomp() because it can be configured to use the Covariance matrix to calculate Eigenvalues/Eigenvectors

Please note that princomp() supports also performing PCA by using a Correlation matrix and SVD. This all depends

on the parameters that you will provide.

First parameter is our data (pcaData). Since we'll use the Covariance matrix and we signify this by setting

the parameter cor equal to FALSE. Set to TRUE, princomp() will calculate the Covariance matrix. However you can

provide yourself the Covariance matrix by setting the covmat parameter.

If you set parameter cor to TRUE, the Correlation matrix will be used instead.

Parameter score=TRUE tells princomp to transform each original observation to the new system defined by the principal

components. Remember that principal components define a new coordinate system and the original data MUST be mapped

properly onto this new coordinate system.

principalComponents<-princomp(pcaData, cor=FALSE, score=TRUE)

Ok, done. Now the result of the princomp() function is a new object -that we store in a new variable

called principalComponents- that has inside all necessary information. This object has attributes that

you can access.

But first, let's see what attributes it has.

attributes(principalComponents)

#You can see attributes such sdev, scores etc. You can display their values.

Here, we display the calculated scores

principalComponents$scores

Or, you can display a summary, which gives you a better overview.

summary(principalComponents)

You may also plot the principal components to see the variances of each principal component

in decreasing order

plot(principalComponents)

Or you can plot the original data on a coordinate system defined by the two biggest principal

components (note the bi- in biplot). Note that eigenvectors are the vertical and horizontal axes.

The red vectors you see are pointing in the direction of the variables, as projected

into the 2-d plane of the biplot.

biplot(principalComponents)

 PCA in R: the Iris dataset – 3/3

 PCA in Python: the Iris dataset
#

Principal Component Analysis in Python

#

#

Load the required libraries.

Make sure that you installed properly the sklearn module that contains

the required functions and datasets

#

#Next two lines required to load the PCA function

from sklearn import decomposition

from sklearn.decomposition import PCA

sklearn comes with datasets. Make them available to this program

from sklearn import datasets

Load the iris dataset

iris = datasets.load_iris()

Get the data of the iris dataset into a new variable

irisDataset = iris.data

Initialize the PCA function of the sklearn module.

Here, we say how many principal components we want. We will require

2 principal components

pca = decomposition.PCA(n_components=2)

Here we actually apply PCA to the iris dataset.

After executing PCA on the dataset, you can examine the properties

of the pca object to get the necessary information

pca.fit(irisDataset)

Now transform the data of the iris dataset to the new coordinate system,

defined by the two Eigenvectors that resulted from PCA

transformedIrisDataset = pca.transform(irisDataset)

 Discretization?

› Divide the range of a continuous attribute into intervals

› Some classification algorithms only accept categorical

attributes.

› Reduce data size by discretization

› Prepare for further analysis

› Used in problems that require categorization and

correlation analysis

 Two ways to discretization

› Unsupervised

 Don’t take into consideration the classes in

which the data item belong

› Supervised

 Take into consideration the classes in which

data items belong

 Unsupervised methods

› Equal interval width : Split range in n equal

spaces by specifying n-1 split points

Equal interval width

 Unsupervised methods

› Equal frequency: Split range in spaces so that

equal number of data objects are in each
space/bin

Equal frequency

Number of objects in this bin…

…equal to number of objects in these

bins

 Supervised methods
› Here we look at some attribute (class) of the

data and try to take this into consideration when
building the bins (hence supervised). Try to
improve quality of bins wrt class.

› Bottom-up approach

 Each item belongs to its own bin. Then try to
produce bigger bins by evaluating some metrics

› Goal: create bins that are as “clean” as possible
wrt an attribute, i.e. minimize
“chaos”/”unorderly-ness” in each bin in terms of
the class the items belong.

 Can we measure “chaos”/”unorderly-

ness” in each bin?

› Yup, that is what Entropy does

› Measuring entropy of bin ei:

…where k the number of different bins/classes, mi the

number of items in class i, mij the number of items that are in

class j found in bin i. mij/mi is the probability of class j in bin i.

 Total entropy e of the

spaces/partitioning is defined as

…where m total number of data items, mi

the number of data items in bin I (defined

in terms of class)

 Some notes on Entropy
› If Entropy = 0 => no chaos, perfect order,

clean space/partition. Minimum entropy

› If Entropy = 1 => biggest chaos, greatest
“unorder”, most unclean space/partition.
Maximum entropy

 Similarity
› Numerical measure of how alike two data

objects are.

› Is higher when objects are more alike.

› Often falls in the range [0,1]

 Dissimilarity
› Numerical measure of how different two data

objects are

› Lower when objects are more alike

› Minimum dissimilarity is often 0

› Upper limit varies

 Proximity refers to a similarity or dissimilarity

 For simple attributes
› Note: q, p below are attribute values for two data objects

› s, d below stand for (s)imilarity and d(istance)

 Distance
› is an dissimilarity measure

› Observe that Dissimilarity and Distance are same
things

 You use distance to measure similarity/dissimilarity

 You transform distance in order to calculate

similarity/dissimilarity e.g. 𝒔𝒊𝒎𝒊𝒍𝒂𝒓𝒊𝒕𝒚 =
𝟏

𝒅𝒊𝒔𝒕𝒂𝒏𝒄𝒆 𝒑𝟏,𝒑𝒘
or

𝒔𝒊𝒎𝒊𝒍𝒂𝒓𝒊𝒕𝒚 =
𝟏

𝒆𝒅𝒊𝒔𝒕𝒂𝒏𝒄𝒆 𝒑𝟏,𝒑𝟐
, etc. In general you choose

the proper formula.

 Different ways to measure distance
› Euclidian distance

› Minkowski distance

› Mahalanobis distance

 You can define your own distance measure.

 However, in order to be considered a proper
distance measure, it must be a metric. Or
more clearly it has to have the following
properties:

),(),(),(4.

),(),(3.

 iff 0),(2.

0),(1.

zydyxdzxd

xydyxd

yxyxd

yxd

+

=

==



 “Works” for points x, y in one, two, three

or more dimensions

 (known) Formula

…where n is the number of dimensions (attributes)

and xk and yk are, respectively, the kth attributes

(components) or data objects x and y.

0

1

2

3

0 1 2 3 4 5 6

p1

p2

p3 p4

point x y

p1 0 2

p2 2 0

p3 3 1

p4 5 1

Euclidean Distance Matrix

p1 p2 p3 p4

p1 0 2.828 3.162 5.099

p2 2.828 0 1.414 3.162

p3 3.162 1.414 0 2

p4 5.099 3.162 2 0

Data objects

 Minkowski distance is a generalization of
Euclidean Distance

…where r is a parameter, n is the number of dimensions

(attributes) and xk and yk are, respectively, the kth attributes

(components) or data objects x and y.

 Special cases of the Minkowski distance:

 r = 1. City block (Manhattan distance, taxicab, L1 norm)
distance.
› A common example of this is the Hamming distance, which is just the

number of bits that are different between two binary vectors

 r = 2. Euclidean distance

 r → . “Supremum” (Lmax norm, L norm) distance.
› This is the maximum difference between any component of the vectors

 IMPORTANT! Do not confuse r with n, i.e., all these
distances are defined for all numbers of dimensions.

Distance Matrices

point x y

p1 0 2

p2 2 0

p3 3 1

p4 5 1

L1 p1 p2 p3 p4

p1 0 4 4 6

p2 4 0 2 4

p3 4 2 0 2

p4 6 4 2 0

L2 p1 p2 p3 p4

p1 0 2.828 3.162 5.099

p2 2.828 0 1.414 3.162

p3 3.162 1.414 0 2

p4 5.099 3.162 2 0

L p1 p2 p3 p4

p1 0 2 3 5

p2 2 0 1 3

p3 3 1 0 2

p4 5 3 2 0

Manhattan

distance, r=1

Euclidean

distance, r=2

Distance r → ,

L norm

 Is the distance between a point p and a

distribution D

› If Mahalanobis distance = 0, then point is at

the mean of D

For red points, the Euclidean distance is 14.7, Mahalanobis distance is 6.

 is the covariance matrix of

the input data X

Applies to document data

If d1 and d2 are two document vectors, then

cos(d1, d2) = (d1 • d2) / ||d1|| ||d2|| ,

where • indicates vector dot product and || d || is the length of vector d.

 Example:

d1 = (3, 2, 0, 5, 0, 0, 0, 2, 0, 0)

d2 = (1, 0, 0, 0, 0, 0, 0, 1, 0, 2)

d1 • d2= 3*1 + 2*0 + 0*0 + 5*0 + 0*0 + 0*0 + 0*0 + 2*1 + 0*0 + 0*2 = 5

||d1|| = (3*3+2*2+0*0+5*5+0*0+0*0+0*0+2*2+0*0+0*0)0.5 = (42) 0.5 = 6.481

||d2|| = (1*1+0*0+0*0+0*0+0*0+0*0+0*0+1*1+0*0+2*2) 0.5 = (6) 0.5 = 2.245

Hence, cos(d1, d2) = .3150

 Running time of algorithms is characterized in
terms of number of steps they take to solve a
problem
› Number of steps expressed as a function of the

problem size, T(n) (in general polynomial time alg =
good! Exponential time algorithm = bad!)

 Problem size: aspect of input data that will influence
number of steps

 Use of asymptotic notations to characterize running
time (referred to as time complexity): O(), Θ()

 Data has different types of attributes
depending on the type of values they may
take

 Different types imply different methods of
analysis
› Different methods of analysis work for on

different types of data

 Preprocessing is one of the most important
steps in data mining
› Consumes most of the time (70-80% of dm tasks)

 There are different objectives when
preprocessing data
› Reducing dimensions

› Sampling

› Discretization

 PCA most powerful way to reduce

dimensions of the dataset (curse of

dimensionality) which causes problems in

Big Data

› Used in many-many Big Data environments

 There are also different distance metrics

› Depending on objective of task at hand

 In general, choose wisely, the appropriate,

types of values, preprocessing methods

and distance metrics

› Will influences your data mining results!

 D. P. Ballou and G. K. Tayi. Enhancing data quality in data warehouse environments.

Communications of ACM, 42:73-78, 1999

 T. Dasu and T. Johnson. Exploratory Data Mining and Data Cleaning. John Wiley & Sons, 2003

 T. Dasu, T. Johnson, S. Muthukrishnan, V. Shkapenyuk. Mining Database Structure; Or, How to

Build a Data Quality Browser. SIGMOD’02.

 H.V. Jagadish et al., Special Issue on Data Reduction Techniques. Bulletin of the Technical

Committee on Data Engineering, 20(4), December 1997

 D. Pyle. Data Preparation for Data Mining. Morgan Kaufmann, 1999

 E. Rahm and H. H. Do. Data Cleaning: Problems and Current Approaches. IEEE Bulletin of the

Technical Committee on Data Engineering. Vol.23, No.4

 V. Raman and J. Hellerstein. Potters Wheel: An Interactive Framework for Data Cleaning and

Transformation, VLDB’2001

 T. Redman. Data Quality: Management and Technology. Bantam Books, 1992

 Y. Wand and R. Wang. Anchoring data quality dimensions ontological foundations.

Communications of ACM, 39:86-95, 1996

 R. Wang, V. Storey, and C. Firth. A framework for analysis of data quality research. IEEE Trans.

Knowledge and Data Engineering, 7:623-640, 1995

